Automatic Representation Changes
in Problem Solving

Eugene Fink

June 1999
CMU-CS-99-150

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Herbert A. Simon, Jaime G. Carbonell, Manuela M. Veloso,
and Richard E. Korf (University of California at Los Angeles).

The work was sponsored by the Defense Advanced Research Projects Agency (DARPA) via the Navy,
under grant F33615-93-1-1330, and the Air Force Research Laboratory, under grant F30602-97-1-0215. The
author’s views and conclusions should not be interpreted as policies of DARPA or the U.S. government.

Keywords: Machine learning, problem solving, planning, automatic problem reformu-
lation, primary effects, abstraction, PRODIGY.

Contents

I Introduction

1 Motivation

2

1.1 Representations in problem solving
1.1.1 Informal examples
1.1.2 Alternative definitions of representation
1.1.3 Representations in the SHAPER system
1.1.4 The role of representation
1.2 Examples of representation changes
1.2.1 Tower-of-Hanoi Domain
1.2.2 Constructing an abstraction hierarchy
1.2.3 Selecting primary effectso
1.2.4 Partially instantiating operators
1.2.5 Choosing a problem solver L.
1.3 Related work
1.3.1 Psychological evidence
1.3.2 Automating representation changes
1.3.3 Integrated systems
1.3.4 Theoretical results
1.4 Overview of the approach
1.4.1 Architecture of the system
1.4.2 Specifications of description changers
1.4.3 Search in the space of representations
1.5 Extended abstract

Prodigy search

2.1 PRODIGY system e
2.1.1 History e
2.1.2 Advantages and drawbacks

2.2 Search engine
2.2.1 Encoding of problems L.
2.2.2 Incomplete solutions
2.2.3 Simulating executiono o
2.2.4 Backward chaining Lo Lo
225 Main versionso

[

S = e W

13
14
16
19
21
22
23
23
24
25
26
27
28
30
32
33

ii CONTENTS
2.3 Extended domain languageo 53
2.3.1 Extended operators 53
2.3.2 Inferencerules. 5%
2.3.3 Complex types 58

2.4 Search control 60
2.4.1 Avoiding redundant search 61
2.4.2 Knobvwvalues 64
24.3 Controlrules 66

2.5 Completeness 67
2.5.1 Limitation of PRODIGY means-ends analysis 68
2.5.2 Clobbers among if-effects 71
2.5.3 Other violations of completeness 72
2.5.4 Completeness proofo 76
2.5.5 Performance of the extended solver 7
2.5.6 Summary of completeness results 78

II Description changers 79
3 Primary effects 81
3.1 Search with primary effects o 000 82
3.1.1 Motivating exampleso 83

3.1.2 Main definitionso 84
3.1.3 Search algorithm o 87

3.2 Completeness of primary effects 88
3.2.1 Completeness and solution costs 88
3.2.2 Condition for completeness 92

3.3 Analysis of search reduction 0oL 95
3.4 Automatically selecting primary effects 98
3.4.1 Selection heuristics oo 99
3.4.2 Instantiating the operators 0oL 103

3.5 Learning additional primary effects 0oL 112
3.5.1 Inductive learning algorithm 114
3.5.2 Selection heuristics and state generation 118
3.5.3 Sample complexity 120

3.6 ABTWEAK experiments o v v vt 124
3.6.1 Controlled experiments 125
3.6.2 Robot world and machine shop 128

3.7 PRODIGY experiments vt 132
3.7.1 Domains from ABTWEAK v v v it 132
3.7.2 Sokoban puzzle and sSTRIPS world 136

3.7.3 Summary of experimental results 0000 140

CONTENTS

4 Abstraction

4.1

4.2

4.3

4.4

Abstraction in problem solving Lo oL oo
4.1.1 History of abstraction
4.1.2 Hierarchical problem solving
4.1.3 Efficiency and possible problems 00000
4.1.4 Avoiding the problems oL oo
4.1.5 Ordered monotonicity
Hierarchies for the PRODIGY domain language
4.2.1 Additional constraints oL
4.2.2 Abstraction graph.
Partial instantiation of predicates
4.3.1 Improving the granularity
4.3.2 Instantiation grapho
4.3.3 Basic operations
4.3.4 Construction of a hierarchy
4.3.5 Level of a given literal
Performance of the abstraction search

5 Other enhancements

5.1
5.2
5.3
5.4

Abstracting the effects of operators
Evaluation of the enhanced abstraction
Identifying the relevant literals
Experiments with goal-specific descriptions

6 Summary of work on description changers

6.1

6.2

6.3

6.4

Library of description changers
6.1.1 Interactions among description changers
6.1.2 Description changes for specific problems and problem sets
Primary effects and abstraction,
6.2.1 Automatic selection and use of primary effects
6.2.2 Improvements to the learning algorithm
6.2.3 Abstraction for the full PRODIGY language
Unexplored description changes
6.3.1 Removing unnecessary operators
6.3.2 Replacing operators with macros
6.3.3 Generating new predicates
Toward a theory of description changes
6.4.1 Systematic approach to the design of changer algorithms
6.4.2 Framework for the analysis of description changers
6.4.3 Analysis of specific descriptions

il

148
148
149
150
152
154
156
157
157
161
166
166
168
173
174
180
182

191
191
194
204
206

v CONTENTS

IIT Top-level control 237
7 Generation and use of multiple representations 239
7.1 Use of problem solvers and description changers 240
7.1.1 Elements of the domain description 240
7.1.2 Domain descriptions o 243
7.1.3 Problem solvers 245
7.1.4 Description changers 0oL 247
7.1.5 Representations 248
7.1.6 Control center 249

7.2 Generalized description and representation spaces 250
7.2.1 Descriptions, solvers, and changers 251
7.2.2 Description space 254
7.2.3 Representation space 257

7.3 Utility functions 259
7.3.1 Gain function 260
7.3.2 Additional constraints 261
7.3.3 Representation quality 263
7.3.4 Use of multiple representations 264
7.3.5 Summing gains 265

7.4 Simplifying assumptions and the user’'srole. 266
7.4.1 Simplifying assumptionso 267

742 Roleoftheuser 269

8 Statistical selection among representations 271
8.1 Selection task 271
8.1.1 Previousand new results L. 272
8.1.2 Example and general problem 273

8.2 Statistical foundations 275
8.3 Computation of the gain estimates 279
8.4 Selection of a representation and time bound 283
8.4.1 Choice of candidate bounds 284
8.4.2 Setting a time bound o oo 285
8.4.3 Selecting a representation Lo 287

8.5 Selection without past data 289
8.5.1 Initial time bounds L o 290
8.5.2 Computation of initial bounds 291
8.5.3 Drawbacks of the default bounds 292
8.5.4 Other initial decisions L. 294

8.6 Empirical examples 295
8.6.1 Extended transportation domain 295
8.6.2 Phone-call domain 296

8.7 Artificial tests 299

CONTENTS

9 Extensions to the statistical technique
9.1 Problem-specific gain functions o0

9.1.1
9.1.2

Example of problem-specific estimates
General case

9.2 Useofproblemsize

9.2.1
9.2.2
9.2.3
9.2.4

Dependency of timeon size
Scaling of past running times
Results in the transportation domain
Experiments with artificial data

9.3 Similarity among problems Lo

9.3.1
9.3.2
9.3.3

Similarity hierarchy o oL
Choice of a group in the hierarchy
Examples of using similarity

10 Preference rules

10.1 Preferences and preference rules

10.1.1
10.1.2

Encoding and application of rules
Typesofrules

10.2 Counting rules L
10.3 Testing rules
10.4 Preference graphs L

10.4.1
10.4.2
10.4.3
10.4.4

Full preference graph
Reduced preference graph
Constructing the reduced graph
Modifying the reduced graph

10.5 Use of preferences

11 Summary of work on the top-level control
11.1 Delaying the change of representations

11.1.1
11.1.2

Suspension and cancellation rules
Expected performance of changer operators

11.2 Collaboration with the human user

11.2.1
11.2.2

User interface
Main tools

11.3 Contributions and open problems

11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6
11.3.7
11.3.8

Architecture for changing representations
Search among descriptions and representations
Evaluation model
Statistical selection
Other selection mechanisms
Expanding the description space, ..
Summary of limitations. L oL
Future research directions

305
305
305
307
309
309
312
314
316
317
318
320
323

326
326
326
328
330
333
336
337
338
340
343
345

vi

IV Empirical results

12 Machining Domain
12.1 Selection among domain descriptions

12.2 Selection among problem solvers
12.3 Different time bounds

13 Sokoban Domain

13.1 Choice among three alternatives
13.2 Larger representation space
13.3 Different time bounds

14 Extended Strips Domain

14.1 Small-scale selection tasks
14.2 Large-scale tasks
14.3 Different time bounds

15 Logistics Domain

15.1 Choosing a description and solver
15.2 Space of twelve representations
15.3 Different time bounds

CONTENTS

CONTENTS vii

Abstract

The purpose of our research is to enhance the efficiency of AI problem solvers by automating
representation changes. We have developed a system that improves description of input
problems and selects an appropriate search algorithm for each given problem.

Motivation Researchers have accumulated much evidence of the importance of appro-
priate representations for the efficiency of Al systems. The same problem may be easy or
difficult, depending on the way we describe it and on the search algorithm we use. Previ-
ous work on automatic improvement of problem description has mostly been limited to the
design of individual learning algorithms. The user has traditionally been responsible for the
choice of algorithms appropriate for a given problem.

We present a system that integrates multiple description-changing and problem-solving
algorithms. The purpose of our work is to formalize the concept of representation, explore
its role in problem solving, and confirm the following general hypothesis:

An effective representation-changing system can be constructed out of three parts:

e a library of problem-solving algorithms;
e «a library of algorithms that improve problem description by static analysis and learning;
e a top-level control module that selects appropriate algorithms for each given problem.

Representation-changing system We have supported this hypothesis by building a sys-
tem that improves representations in the PRODIGY problem-solving architecture. The library
of problem solvers consists of several search engines available in the PRODIGY architecture.
The library of description changers comprises novel algorithms for selecting primary effects,
generating abstractions, and discarding irrelevant elements of a problem encoding. The con-
trol module chooses and applies appropriate description changers, stores and reuses new
descriptions, and selects problem solvers.

Improving problem description The implemented system includes seven static-analysis
and learning algorithms for improving description of a given problem. First, we formalize the
notion of primary effects of operators, and give two algorithms for identifying primary effects.
Second, we extend the theory of abstraction search to the PRODIGY domain language, and
describe two techniques for abstracting preconditions and effects of operators. Third, we
present auxiliary algorithms that enhance the power of abstraction, by identifying relevant
features of a problem and generating partial instantiations of operators.

Top-level control We define a space of possible representations of a given problem, and
view the task of changing representation as search in this space. The top-level control
mechanism guides the search, using statistical analysis of previous results, user-coded control
rules, and general heuristics. First, we formalize the statistical problem involved in finding an
effective representation and derive a solution to this problem. Then, we describe control rules
for selecting representations, and present a mechanism for the synergetic use of statistical
techniques, control rules, and heuristics.

viii CONTENTS

Acknowledgments

The reported work was a result of my good fortune of being a student at Carnegie Mellon
University, which gave me freedom and support to pursue my inquiries. I gratefully acknowl-
edge the help of my advisors, co-workers, and friends, who greatly contributed to my work
and supported me during six long years of my graduate studies.

My greatest debt is to Herbert Alexander Simon, Jaime Guillermo Carbonell, and Maria
Manuela Magalhaes de Albuquerque Veloso, who provided so much stimulating ideas, guid-
ance, and advice to my research that it is no longer possible to segregate the ideas of the
thesis exploration into those that were theirs, those of the author, and those developed
jointly.

They guided me through my years in the graduate school, and provided invaluable help
and support in all aspects of my work, from the strategic course of my research to minute
details of implementation and writing. They helped me to broaden my knowledge and, at
the same time, stay focussed on my thesis research.

I am grateful to Derick Wood, Qiang Yang, and Jo Ebergen, who guided my research
before I entered Carnegie Mellon. Derick Wood and Qiang Yang also supervised my work
during the three summers that I spent away from Carnegie Mellon, after entering the Ph.D.
program. They taught me research and writing skills, which proved invaluable in my thesis
work.

[am also grateful to my undergraduate teachers of math and computer science, especially
to my advisor Robert Rosebrugh, who led me through the woods of my coursework and
encouraged me to pursue a graduate degree.

I would like to thank my first teachers of science, Maria Yurievna Filina, Nikolai Moisee-
vich Kuksa, and Alexander Sergeevich Golovanov. Back in Russia, they introduced me into
the wonderful world of mathematics, developed my taste for learning and research, and gave
an impetus to my career.

I am thankful to Richard Korf for his valuable comments on my thesis research and
writing. I have also received thorough feedback from Catherine Kaidanova, Henry Rawley,
and Karen Haigh.

I have done my work in the stimulating research environment of the PRODIGY group. I
fondly remember my meetings and discussions with members of the group, including Jim
Blythe, Daniel Borrajo, Michael Cox, Rujith DeSilva, Rob Driskill, Karen Haigh, Vera
Kettnaker, Craig Knoblock, Erica Melis, Steven Minton, Alicia Perez, Paola Rizzo, Yury
Smirnov, Peter Stone, and Mei Wang!. My special thanks are to Jim Blythe, who helped
me to understand PRODIGY code and adapt it for my system. I also thank Yury Smirnov
for his feedback and constructive criticism.

Svetlana Vainer, a graduate student in mathematics, aided me in constructing the sta-
tistical model used in my system. She helped me to acquire the necessary background and
guided me through the forest of statistical derivations. Evgenia Nayberg, a fine-arts student,
assisted me in designing some illustrations.

I have received a lot of support and encouragement from fellow graduate students, Claud-
son Bornstein, Tammy Carter, Karen Haigh, Nevin Heintze, Bob Monroe, Henry Rawley,
and Po-Jen Yang'. I am especially thankful to Nevin Heintze for his help to adapt to the

CONTENTS Ib'e

environment of the Computer Science Department during my first year of studies, and for
encouraging me to write a thesis proposal during my third year; to Karen Haigh, for her
support in understanding the American culture; and to Henry Rowley and Bob Monroe, for
their help with innumerable software problems.

I am grateful to my parents, who provided help and support all through my studies, in
spite of their original negative attitude toward my immigration and intensive scientific work.

Finally, I thank my friends outside of the Computer Science. Natalie Gurevich, Alex
Gurevich, and Lala Matievsky played especially important role in my life. They encouraged
me to immigrate from Russia and helped me to form my priorities and objectives. I have
received much support and encouragement from my other ex-Russian friends, Catherine
Kaidanova, Natalia Kamneva, Alissa Kaplunova, Alexander Lakher, Irina Martynov, Alex
Mikhailov, Evgenia Nayberg, Michael Ratner, and Viktoria Suponiskaya!. I am also thankful
to my Canadian friends, Elverne Bauman, Louis Choiniere, Margie Roxborough, Marty
Sulek, Alison Syme, and Linda Wood!, who helped me to learn and accept the culture of
Canada and the United States.

IThe names are in the alphabetical order.

Part 1

Introduction

Chapter 1
Motivation

Could you restate the problem? Could you restate it still differently?
— George Polya [1957], How to Solve It.

The performance of all reasoning systems crucially depends on problem representation: the
same problem may be easy or difficult to solve, depending on the way we describe it. Re-
searchers in psychology, cognitive science, artificial intelligence, and many other areas have
accumulated much evidence on the importance of appropriate representations for human
problem solvers and Al systems.

In particular, psychologists have found out that human subjects often simplify hard prob-
lems, by changing their representation, and that the ability to find an appropriate problem
reformulation is a crucial skill for mathematicians, physicists, economists, and experts in
many other areas. Al researchers have demonstrated the impact of changes in problem de-
scription on the performance of search systems, and showed the need for automating problem
reformulation.

Although researchers have long realized the importance of effective representations, they
have done little investigation in this area, and the notion of “good” representations has re-
mained at an informal level. The human user has traditionally been responsible for providing
appropriate problem descriptions, as well as for selecting search algorithms that effectively
use these descriptions.

The purpose of our work is to automate the process of revising problem representation in
Al systems. We formalize the concept of representation, explore its role in problem solving,
and develop a system that evaluates and improves representations in the PRODIGY problem-
solving architecture.

The work on the system for changing representations has consisted of two main stages,
described in Parts II and III. First, we outline a framework for the development of algorithms
that improve problem descriptions, and apply it to designing several novel algorithms. Sec-
ond, we construct an integrated Al system, which utilizes the available description improvers
and PRODIGY problem-solving algorithms. The system is named SHAPER, for its ability to
change the shape of problems and their search spaces. We did not plan this name to be an
acronym; however, it may be retroactively deciphered as Synergy of Hierarchical Abstraction,
Primary Effects, and other Representations. The central component of the SHAPER system

4 CHAPTER 1. MOTIVATION

is a top-level control module, which selects appropriate algorithms for each given problem.

We begin by explaining the concept of representations in problem solving (Section 1.1),
illustrating their impact on problem complexity (Section 1.2), and reviewing the previous
work on representation changes (Section 1.3). We then outline our approach to the automa-
tion of representation improvements (Section 1.4) and give a summary of the main results
(Section 1.5).

1.1 Representations in problem solving

Informally, a problem representation is a certain view of a problem and approach to solving it,
which determines the efficiency of search for a solution. Scientists have considered different
formalizations of this concept, and its exact meaning varies across research contexts. The
representation of a problem in an Al system may include the initial encoding of the problem,
data structures for storing relevant information, production rules for drawing inferences
about the problem, and heuristics that guide the search for a solution.

We explain the meaning of representation in our research and introduce related terminol-
ogy. First, we give informal examples that illustrate this notion (Section 1.1.1). Second, we
review several alternative formalizations (Section 1.1.3) and define the main notions used in
the work on the SHAPER system (Section 1.1.2). Third, we discuss the role of representation
in problem solving (Section 1.1.4).

1.1.1 Informal examples

We consider two examples that illustrate the reasons for using multiple representations. In
Section 1.2, we will give a more technical example, which involves representation changes in
the PRODIGY architecture.

Representations in geometry

Mathematicians have long developed the art of constructing and fine-tuning sophisticated
representations, which is one of their main tools for addressing complex research tasks [Polya,
1957]. For example, when a scientist works on a hard geometry problem, she usually tries
multiple approaches, such as pictorial reasoning, analytical techniques, trigonometric deriva-
tions, and computer simulations.

These approaches differ not only in the problem encoding, but also in the operations for
transforming its encoding, as well as in related mental structures and high-level strategies
[Qin and Simon, 1992]. For example, the mental techniques for analyzing geometric sketches
are very different from the methods for solving trigonometric equations.

A mathematician may have to try many alternative representations of the given problem,
and go back and forth among promising approaches [Kaplan and Simon, 1990]. For instance,
she may consider several pictorial representations, then try analytical techniques, and then
give up on her analytical model and go back to one of the pictures.

If several different representations provide useful information about the problem, the
mathematician may use them in parallel and combine the resulting inferences. This syner-

1.1. REPRESENTATIONS IN PROBLEM SOLVING 3

getic use of alternative representations is a standard mathematical technique. In particular,
proofs of geometric results often include equations along with pictorial arguments.

Search for an appropriate representation is based on two main processes: retrieval or con-
struction of candidate representations, and evaluation of their utility. The first process may
involve look-up of a matching representation in the library of available strategies, modifica-
tion of an “almost” matching representation for use with the new problem, or development
of a completely new approach. For example, the mathematician may re-use an old sketch,
draw a new one, or even devise a new framework for solving this type of problems.

After constructing a new representation, the mathematician estimates its usefulness for
solving the problem. If the representation does not look promising, she may prune it right
away, or store it as a back-up alternative; for example, she may discard the sketches that
clearly do not help. Otherwise, she tries to use the representation in problem solving and
evaluates the usefulness of the resulting inferences.

To summarize, different representations of a given problem support different inference
techniques, and the choice among them determines the effectiveness of the problem-solving
process. Construction of an appropriate representation may be a difficult task, which requires
search in a certain space of alternative representations.

Driving directions

We next give an example of representation changes in everyday life, and show that the choice
of representation may be important for simple tasks. In this example, we consider the use
of directions for driving to an unfamiliar place.

Most drivers employ several standard techniques for describing a route, such as a sketch
of the streets that form the route, pencil marks on a city map, and verbal directions for
reaching the destination. When a driver chooses one of these techniques, she commits to
certain mental structures and strategies. For instance, if the driver navigates by a map, then
she has to process pictorial information and use imagery for matching it to the real world.
On the other hand, the execution of verbal instructions requires discipline in following the
described steps and attention to the relevant landmarks.

When the driver selects a representation, she should consider her goals, the effectiveness of
alternative representations for achieving these goals, and the related trade-offs. For instance,
she may describe the destination by its address, which is a convenient way for recording it
in a notebook or quickly communicating to others; however, the address alone may not
be sufficient for finding the place without a map. The use of accurate verbal directions is
probably the most convenient way for reaching the destination, without stopping to look at
the map. On the other hand, the map may help to identify points of interest close to the
route; moreover, it becomes an invaluable tool if the driver gets lost.

If an appropriate representation is not available, the driver may construct it from other
representations. For example, if she has the destination address, then she may find a route
on the map, and then write down directions that help to follow this route. When people
consider these representation changes, they often weigh the expected simplification of the
task against the cost of performing the changes. For instance, even if the driver believes that
written directions facilitate the trip, she may decide they are not worth the writing effort.

6 CHAPTER 1. MOTIVATION

A representation...

e includes a machine language for the description of reasoning tasks and a specific en-
coding of a given problem in this language [Amarel, 1968].

e is the space expanded by a solver algorithm during its search for a solution [Newell
and Simon, 1972].

e is the state space of a given problem, formed by all legal states of the simulated world
and transitions between them [Korf, 1980].

e “consists of both data structures and programs operating on them to make new infer-
ences” [Larkin and Simon, 1987, page 67].

e determines a mapping from the behavior of an Al system on a certain set of inputs
to the behavior of another system, which performs the same task on a similar set of
inputs [Holte, 1988].

Figure 1.1: Different definitions of representation, in artificial intelligence and cognitive science;
note that these definitions are not equivalent, and thus they give rise to different formal models.

To summarize, this example shows that people employ multiple representations not only
for complex problems, but also for routine tasks. When people repeatedly perform some
task, they develop standard representations and routine techniques for constructing them.
Moreover, the familiarity with the task facilitates the selection among available representa-
tions.

1.1.2 Alternative definitions of representation

Even though AI researchers agree in their intuitive understanding of representation, they
have not yet developed a standard formalization of this notion. We review several formal
models, used in artificial intelligence and cognitive science, and discuss their similarities and
differences; in Figure 1.1, we summarize the main definitions.

Problem formulation

Amarel [1961; 1965; 1968] was first to point out impact of representation on the efficiency of
search algorithms. He considered some problems of reasoning about actions in a simulated
world, and discussed their alternative formulations in the input language of a search algo-
rithm. The discussion included two types of representation changes: modifying the encoding
of a problem and translating it to different languages.

In particular, he demonstrated that a specific formulation of a problem determines its
state space, that is, the space of possible states of the simulated world and transitions between
them. We illustrate this notion in Figure 1.7 (page 17), which shows the full space of the
Tower-of-Hanoi puzzle. Amarel pointed out that the efficiency of problem-solving algorithms

1.1. REPRESENTATIONS IN PROBLEM SOLVING 7

depends on the size of the state space, as well as on the allowed transitions, and that change
of a description language may help to reveal hidden properties of the simulated world.

Van Baalen [1989] adopted a similar view in his doctoral work on a theory of represen-
tation design. He defined a representation as a mapping from concepts to their syntactic
description in a formal language and implemented a program that automatically improves
descriptions of simple reasoning tasks.

Problem space

Newell and Simon [1972] investigated the role of representation in human problem solving.
In particular, they observed that the human subject always encodes a given task in a problem
space, that is, “some kind of space that represents the initial situation presented to him, the
desired goal situation, various intermediate states, imagined or experienced, as well as any
concepts he uses to describe these situations to himself” (Human Problem Solving, page 59).
They defined a representation as the subject’s problem space, which determines partial
solutions considered by the human solver during his search for a complete solution. This
definition is applicable not only to human subjects but also to Al systems, since all problem-
solving algorithms are based on the same principle of searching among partial solutions.
Observe that the problem space may differ from the state space of the simulated world.
In particular, the subject may disregard some of the allowed transitions and, on the other
hand, consider impossible world states. For instance, when people work on hard versions of
the Tower of Hanoi, they sometimes attempt illegal moves [Simon et al., 1985]. Moreover, the
problem solver may abstract from the search among world states and use some alternative
view of partial solutions (for example, see the textbook by Rich and Knight [1991]). In
particular, the search algorithms in the PRODIGY architecture explore the space of transition
sequences (see Section 2.2), which is very different from the space of world states.

State space

Korf [1980] described a formal framework for changing problem representations and used it
in designing a system for automatic improvement of the initial representation. He developed
a language for describing search problems, and defined a representation as a specific encoding
of a given problem in this language. The encoding includes the initial state of the simulated
world and operations for transforming the state; hence, it defines the state space of the
problem.

Korf has pointed out the correspondence between the problem encoding and the resulting
state space, which allowed him to view a representation as a space of named states and
transitions between them. This view underlies his techniques for changing representation.
In particular, he has defined a representation change as a transformation of the state space,
and considers two main types of transformations, called isomorphism and homomorphism.
An isomorphic representation change involves renaming the states without affecting the
structure of the space. On the other hand, a homomorphic transformation is a reduction of
the space, by abstracting some states and transitions.

Observe that Kort’s notion of representation does not include the behavior of a problem-
solving algorithm. Since performance depends not only on the state space, but also on the

8 CHAPTER 1. MOTIVATION

search strategies, a representation in his model does not uniquely determine the efficiency of
problem solving.

Data and programs

Simon suggested a general definition of representation as “data structures and programs
operating on them,” and used it in the analysis of reasoning with pictorial representations
[Larkin and Simon, 1987]). When describing the behavior of human solvers, he viewed their
initial encoding of a given problem as a “data structure,” and the available productions for
modifying it as “programs.” Since the problem encoding and rules for changing it determine
the subject’s search space, this view is similar to the earlier definition in Human Problem
Solving.

If we apply Simon’s definition in other research contexts, the notions of data structures
and programs may take different meanings. The general concept of “data structures” en-
compasses any form of a system’s input and internal representation of related information.
Similarly, the term “programs” may refer to any strategies and procedures for processing a
given problem and constructing its solution.

In particular, when considering an Al architecture with several search engines, we may
view the available engines as “programs” and the information passed among them as “data
structures.” We will use this approach to formalize representation changes in the PRODIGY
system.

System’s behavior

Holte [1988] developed a framework for analysis and comparison of learning systems, which
included rigorous mathematical definitions of task domains and their alternative represen-
tations. He considered representations of domains rather than specific problems, which
distinguished his view from the earlier definitions.

A domain in Holte’s framework includes a set of certain elementary entities, a collection
of primitive functions that describe the relations among entities, and legal compositions of
primitive functions. For example, we may view the world states as elementary objects and
transitions between them as primitive functions. A domain specification may include not
only a description of reasoning tasks, but also a particular behavior of an Al system on these
tasks.

A representation is a mapping between two domains that encode the same reasoning tasks.
This mapping may describe a system’s behavior on two different encodings of a problem.
Alternatively, it may show the correspondence between the behavior of two different systems
that perform the same task.

1.1.3 Representations in the SHAPER system

The previous definitions of representation have been aimed at the analysis of its role in
problem solving, but researchers have not applied theoretical results to automating repre-
sentation changes. Korf utilized his formal model in the development of a general-purpose

1.1. REPRESENTATIONS IN PROBLEM SOLVING 9

A problem solver is an algorithm that performs some type of reasoning task. When we
invoke this algorithm, it inputs a given problem and performs search for a solution, which
results in either solving the problem or reporting a failure.

A problem description is an input to a problem solver. In most systems, it includes
a list of allowed operations, available objects, initial state of the world, logical statement
describing the goals, and possibly some heuristics for guiding the search.

A domain description is the part of the problem description that is common for a certain
class of problems. It usually does not include specific objects, initial state, and goal.

A representation is a domain description with a problem solver that uses this description.
A representation change may involve improving a description, selecting a new solver, or both.

A description changer is an algorithm for improving domain descriptions. When we invoke
the changer algorithm, it inputs a given domain and modifies its description.

A system for changing representations is an Al system that automatically improves
domain descriptions and matches them with appropriate problem solvers.

Figure 1.2: Definitions of the main objects in the SHAPER system; these notions underlie our
formal model, aimed at developing an Al architecture for automatic representation changes.

system for improving representations, but encountered several practical shortcomings of the
model, which prevented complete automation of search for appropriate representations.

Since the main purpose of our work is the construction of a fully automated system, we
develop a different formal model, which facilitates the work on SHAPER. We follow Simon’s
view of representation as “data structures and programs operating on them;” however, the
notion of data structures and programs in the SHAPER system differs from their definition
in the research on human problem solving [Newell and Simon, 1972]. We summarize our
terminology in Figure 1.2.

The SHAPER system uses PRODIGY search algorithms, which play the role of “programs”
in Simon’s definition. We illustrate the functions of a solver algorithm in Figure 1.3(a):
given a problem, the algorithm searches for its solution, and either finds some solution or
terminates with a failure. In Chapter 7, we will discuss two main types of failures: exhausting
the available search space and reaching a time bound.

A problem description is an input to the solver algorithm, which encodes a certain reason-
ing task. This notion is analogous to Amarel’s “problem formulation,” which is a part of his
definition of representation. The solver’s input must satisfy certain syntactic and semantic
rules, which form the input language of the algorithm.

When the initial description of a problem does not obey these rules, we have to translate it
into the input language before applying the solver [Paige and Simon, 1966; Hayes and Simon,
1974]. If a description satisfies the language rules but causes a long search for solution, we
may need to modify it for efficiency reasons.

A description-changing algorithm is a procedure for converting the initial problem de-
scription into an input to a problem solver, as illustrated in Figure 1.3(b). The conversion
may serve two goals: (1) translating the problem into the input language of the problem

10 CHAPTER 1. MOTIVATION

description of problem solution
the problem ™ - solver = or failure

(a) Use of a problem-solving algorithm.

initial description description new description roblem
of the problem - chan%er = of the problem — - psolver

(b) Changing the problem description before application of a problem solver.

initial description description new description roblem
of the domain - chan%er = of the domain - psolver
problem /
instance

(c) Changing the domain description.

Figure 1.3: Description changes in problem solving: a changer algorithm generates a new descrip-
tion and then a solver algorithm uses it to search for a solution.

solver and (2) improving performance of the solver.

The SHAPER system performs only the second type of description changes. In Figure 1.4,
we show the three main categories of these changes: decomposing the initial problem into
smaller subproblems, enhancing the description by adding relevant information, and replac-
ing the original problem encoding with a more appropriate encoding.

Note that there are no clear-cut boundaries between these categories. For example,
suppose that we apply some abstraction procedure (see Section 1.2), which determines the
relative importance of different problem features, and then uses important features in con-
structing an outline of a solution. We may view it as enhancement of the initial description
with the estimates of importance. Alternatively, we may classify abstraction as decomposi-
tion of the original problem into two subproblems: constructing a solution outline and then
turning it into a complete solution.

A problem description in the PRODIGY architecture consists of two main parts, a domain
description and problem instance. The first part comprises the properties of a simulated
world, which is called the problem domain. For example, if we apply PRODIGY to solve the
Tower-of-Hanoi puzzle (see Section 1.2.1), then the domain description specifies the legal
moves in this puzzle. The second part encodes a particular reasoning task, which includes
an initial state of the simulated world and a goal specification. For example, a problem
instance in the Tower-of-Hanoi Domain consists of the initial positions of all disks and their
desired final positions.

The PRODIGY system first parses the domain description and converts it into internal
structures that encode the simulated world. Then, PRODIGY uses this internal encoding in
processing specific problem instances. Observe that the input description determines the

1.1. REPRESENTATIONS IN PROBLEM SOLVING 11

P subproblem
initial description -
S|ttt
subproblem

(a) Decomposing a problem into subproblems: We may often simplify a reasoning
task by breaking it into smaller subtasks. For example, a driver may subdivide search for an
unfamiliar place into two stages: getting to the appropriate highway exit and then finding
her way from the exit. In Section 1.2.2, we will give a technical example of problem decom-
position, based on an abstraction hierarchy.

ini_tial

1 I
initial description description |
description changer .

(b) Enhancing a problem description: If some important information is not explicit
in the initial description, we may deduce it and add to the description. If the addition of
new information affects the problem-solving behavior, we view it as a description change.
For instance, a mathematician may enhance a geometry sketch by an auxiliary construction,
which reveals hidden properties of the geometric object. As another example, we may im-
prove performance of PRODIGY by adding control rules.

initial description aternative
description changer description

(c) Replacing a problem description: If the initial description contains unnecessary
data, then improvements may include not only addition of relevant information, but also
deletion of irrelevant data. For example, a mathematician may simplify her sketch by eras-
ing some lines. In Section 5.3, we will describe a technique for detecting irrelevant features
of PRODIGY problems.

Figure 1.4: Main categories of description changes: We may (a) subdivide the original problem
into smaller reasoning tasks, (b) extend the initial description with additional knowledge, and
(c) replace the given problem encoding with a more effective encoding.

12 CHAPTER 1. MOTIVATION

system’s internal encoding of the domain; thus, the role of domain descriptions in our model
is similar to that of “data structures” in the general definition.

When using a description changer, we usually apply it to the domain encoding and utilize
the resulting new encoding for solving multiple problem instances (see Figure 1.3c). This
strategy reduces the computational cost of description improvements, since it allows us to
amortize the running time of the changer algorithm over several problems.

A representation in the SHAPER system consists of a domain description and a problem-
solving algorithm that operates on this description. Observe that, if the algorithm does
not make any random choices, then the representation uniquely defines the search space for
every problem instance. This observation relates our definition to Newell and Simon’s view
of representation as a search space.

We use this definition in our work on a representation-changing system, which automates
the two main tasks involved in improving representations. First, it analyzes and modifies
the initial domain description, with the purpose of improving the search efficiency. Second,
it selects an appropriate solver algorithm for the modified domain description.

1.1.4 The role of representation

Researchers have used several different frameworks for defining and investigating the concept
of representation. Despite these differences, most investigators have reached consensus on
the main qualitative conclusions:

e The choice of a representation affects the complexity of a given problem; both human
subjects and Al systems are sensitive to changes in the problem representation

e Finding the right approach to a given problem is often a difficult task, which may
require a heuristic search in a space of alternative representations

e Human experts employ advanced techniques for construction and evaluation of new
representations, whereas amateurs often try to utilize the original problem description

Alternative representations differ in explicit information about properties of the problem
domain. Every representation hides some features of the domain, and highlights other fea-
tures [Newell, 1965; Van Baalen, 1989; Peterson, 1994]. For example, when a mathematician
describes a geometric object by a set of equations, she hides visual features of the object and
highlights some of its analytical properties.

Explicit representation of important information enhances performance of problem-solving
systems. For instance, if a student of mathematics cannot solve some problem, the teacher
may help her by pointing out the relevant features of the task [Polya, 1957]. As another
example, we may improve efficiency of an Al system by encoding useful information in con-
trol rules [Minton, 1988], macro operators [Fikes et al., 1972], or an abstraction hierarchy
[Sacerdoti, 1974].

On the other hand, explicit representation of irrelevant data may have a negative effect.
In particular, when a mathematician tries to utilize some seemingly relevant properties of a
given problem, she may attempt a wrong approach.

1.2. EXAMPLES OF REPRESENTATION CHANGES 13

If we provide irrelevant information to an Al system and do not mark this information
as unimportant for the current task, then the system attempts to use it, which takes extra
computation and often leads to exploring useless branches of the search space. For example,
if we allow use of unnecessary extra operations, then the branching factor of search increases,
which usually results in a larger search time [Stone and Veloso, 1994].

Since problem-solving algorithms differ in their use of available information, they perform
efficiently with different domain descriptions. Moreover, the utility of explicit knowledge
about the domain may depend on a specific problem instance. We usually cannot find a
“universal” description, which works well for all solver algorithms and problem instances.
The task of constructing good descriptions has traditionally been left to the user.

The relative performance of solver algorithms also depends on specific problems. Most
analytical and experimental studies have shown that different search techniques are effective
for different classes of problems, and no solver algorithm can consistently outperform all its
competitors [Minton et al., 1994; Stone et al., 1994; Knoblock and Yang, 1994; Knoblock
and Yang, 1995; Smirnov, 1997]. To ensure efficiency, the user has to make an appropriate
selection among the available algorithms.

To address the representation problem, researchers have designed a number of learning
and static-processing algorithms, which deduce hidden properties of a given domain, and use
it to improve the domain description. For example, they constructed systems for learning
control rules [Mitchell et al., 1983; Minton, 1988], replacing operators with macros [Fikes
et al., 1972; Korf, 1985al, abstracting unimportant features of the domain [Sacerdoti, 1974;
Knoblock, 1993], and reusing past problem-solving episodes [Hall, 1987; Veloso, 1994].

These algorithms are themselves sensitive to changes in problem encoding, and their
ability to learn useful information depends on the initial description. For instance, most
systems for learning control rules require a certain generality of predicates in the domain
encoding, and become ineffective if we use too specific or too general predicates [Etzioni and
Minton, 1992; Veloso and Borrajo, 1994].

As another example, abstraction algorithms are very sensitive to the description of avail-
able operators [Knoblock, 1994]. If the operator encoding is too general, or the domain
includes unnecessary operations, then they fail to construct an abstraction hierarchy. In
Section 1.2, we will illustrate such failures and discuss related description improvements.

To ensure the effectiveness of learning algorithms, the user normally has to perform two
manual tasks. First, she needs to decide which algorithms are appropriate for the current
domain. Second, she may have to adjust the initial domain description for the selected
algorithms. An important next step in Al research is to develop a system that automatically
accomplishes these tasks.

1.2 Examples of representation changes

All AT systems are sensitive to description of the input problems. If we use an inappropriate
domain encoding, then even simple problems may become hard or unsolvable. Researchers
have noticed that novices often construct ineffective domain descriptions, because intuitively
appealing encodings are often inappropriate for AI problem solving.

14 CHAPTER 1. MOTIVATION

On the other hand, expert users prove proficient in finding good descriptions; however,
the construction of a proper domain encoding is often a difficult task, which requires not
only familiarity with the system, but also creativity and experimentation with alternative
encodings. The user usually begins with a semi-effective description and tunes it, based on
the results of problem solving. If the user does not provide a good domain encoding, then
automatic improvements are essential for efficient problem solving.

To illustrate the need for description changes, we present a puzzle domain, whose standard
encoding is inappropriate for PRODIGY (Section 1.2.1). We then show modifications to the
initial encoding that drastically improve efficiency (Sections 1.2.1-1.2.4) and discuss the
choice of an appropriate problem solver (Section 1.2.5). The SHAPER system is able to
perform these improvements automatically.

1.2.1 Tower-of-Hanoi Domain

We consider the Tower-of-Hanoi puzzle, shown in Figure 1.5, which has proved difficult for
most problem-solving algorithms, as well as for human subjects. It long served as one of the
tests for Al systems, but gradually acquired a negative connotation of a “toy” domain. We
utilize this puzzle to illustrate basic description changes in the SHAPER system; however, we
will use larger domains for empirical evaluation of the system.

The puzzle consists of three vertical pegs and several disks of different sizes. Every disk
has a hole in the middle, and we may stack several disks on a peg (see Figure 1.5a). The
rules allow us to move disks from peg to peg, one disk at a time; however, the rules do not
allow placing any disk above a smaller one. In Figure 1.7, we show the complete state space
of the three-disk puzzle.

When using a classical Al system, we have to specify predicates for describing states of the
simulated world (for example, see the AI textbook by Nilsson [1980]). If the Tower-of-Hanoi
puzzle has three disks, then we may describe its states with three predicates, which denote the
positions of the disks: (small-on <peg>), (medium-on <peg>), and (large-on <peg>), where <peg>
is a variable that denotes an arbitrary peg. We obtain literals describing a specific state by
substituting the appropriate constants for variables. For instance, the literal (small-on peg-1)
means that the small disk is on the first peg.

The legal moves are encoded by production rules for modifying the world state, which are
called operators. The description of an operator consists of precondition predicates, which
must hold before its execution, and effects, which specify predicates that are added to or
deleted from the world state upon the execution. In Figure 1.5(b), we give an encoding of
all allowed moves in the three-disk puzzle. This encoding is based on the PRODIGY domain
language, described in Sections 2.2 and 2.3; however, we slightly deviate from the exact
PRODIGY syntax, in order to improve readability.

The <from> and <to> variables in the operator description denote arbitrary pegs. When
a problem-solving algorithm uses an operator, it instantiates the variables with specific
constants. For example, if the solver algorithm needs to move the small disk from peg-1
to peg-2, then it can execute the operator move-small(peg-1,peg-2) (see Figure 1.5¢). The
precondition of this operator is (small-on peg-1), that is, the small disk must initially be on
peg-1. The execution results in deleting (small-on peg-1) from the current state and adding

1.2. EXAMPLES OF REPRESENTATION CHANGES 15

L,

~~/

(a) Tower-of-Hanoi puzzle.

<from> <to>

= | |
v

== | L

[

<from> <to>

==
by
S S R

<from> <to>

ey |
b
|

move-small(<from>, <to>)
Pre: (small-on <from>)

move-medium(<from>, <to>)
Pre: (medium-on <from>)

move-lar ge(<from>, <to>)
Pre: (large-on <from>)

Eff: del (small-on <from>)
add (small-on <to>)

not (small-on <from>)
not (small-on <to>)
Eff: del (medium-on <from>)
add (medium-on <to>)

not (small-on <from>)
not (medium-on <from>)
not (small-on <to>)
not (medium-on <to>)
Eff: del (large-on <from>)
add (large-on <to>)

(b) Encoding of operations in the three-disk puzzle.

peg-1 peg-2 peg-3

=L

peg-1 peg-2 peg-3

= | |

[

Initial State New State
(small-on peg-1) (small-on peg-2)
(medium-on peg-1) ?;ggi,s?glz) (medium-on peg-1)
(large-on peg-1) (large-on peg-1)

(c) Example of executing an instantiated operator.

Figure 1.5: Tower-of-Hanoi Domain and its encoding in the PRODIGY architecture. The player
may move disks from peg to peg, one at a time, without ever placing a disk on top of a smaller one.
The traditional task is to move all disks from the left-hand peg to the right-hand (see Figure 1.6).

16 CHAPTER 1. MOTIVATION

number of a problem mean
1 2 3 4 5 6 time
without abstraction | 2.0 | 34.1 | 275.4 | 346.3 | 522.4 | 597.4 | 296.3
using abstraction 0.5 04 1.9 0.3 0.5 2.3 1.0

Table 1.1: PRODIGY performance on six problems in the three-disk Tower-of-Hanoi Domain. We
give running times in seconds, for problem solving without and with the abstraction hierarchy.

(small-on peg-2).

In Figure 1.6, we show the encoding of a classic problem in the Tower-of-Hanoi Domain,
which requires moving all three disks from peg-1 to peg-3, and give the shortest solution to
this problem. The initial state of the problem corresponds to the left corner of the state-space
triangle in Figure 1.7, whereas the goal state is the right corner.

1.2.2 Constructing an abstraction hierarchy

Most Al systems solve a given problem by exploring the space of partial solutions, rather
than expanding the problem’s state space. That is, the nodes in their search space represent
incomplete solutions, which may not correspond to paths in the state space (for example,
see the review article by Weld [1994]).

This strategy allows efficient reasoning in large-scale domains, which have intractable
state spaces; however, it causes a major inefficiency in the Tower-of-Hanoi Domain. For
example, if we apply PRODIGY to the problem in Figure 1.6, then the system considers more
than hundred thousand partial plans during its search for a solution, which takes ten minutes
on a Sun 5 computer.

We may significantly improve performance by using an abstraction hierarchy [Sacer-
doti, 1974], which enables the system to subdivide problems into simpler subproblems. To
construct a hierarchy, we assign different levels of importance to predicates in the domain
encoding. In Figure 1.8(a), we give the standard hierarchy for the three-disk Tower of Hanoi.

The system first constructs an abstract solution at level 2 of the hierarchy, ignoring the
positions of the small and medium disk. We show the state space of the abstracted puzzle in
Figure 1.8(b) and its solution in Figure 1.8(c). Then, PRODIGY steps down to the next lower
level and inserts operators for moving the medium disk. At this level, the system cannot add
new move-large operators, which limits its search space. We give the level-1 search space
in Figure 1.8(d) and the corresponding solution in Figure 1.8(e). Finally, the system shifts
to the lowest level of the hierarchy and inserts move-small operators, thus constructing the
complete solution (see Figures 1.8f and 1.8g).

In Table 1.1, we give the running times for solving six Tower-of-Hanoi problems, without
and with abstraction. We have obtained these results using a Lisp implementation of the
PRODIGY search, on a Sun 5 machine; they show that abstraction drastically reduces search.

Knoblock [1994] has investigated abstraction problem solving in PRODIGY and developed
the ALPINE system, which automatically assigns importance levels to predicates. We have
extended Knoblock’s technique and implemented the Abstractor algorithm, which serves as
one of the description changers in the SHAPER system.

1.2. EXAMPLES OF REPRESENTATION CHANGES 17

peg-1 peg-2 peg-3 peg-1 peg-2 peg-3
= | "
Initial State —— Goal State —
small-on peg-1) (small-on peg-3)
(med|um on peg-1) (medium-on peg-3)
(large-on peg-1) (large-on peg-3)

a) Encoding of the problem.

2l =14 Ll L&l 1l JLL Al 12

move-small Mmovenmediumﬁmovesmall Mmoveularge Mmovesma]l Mmovemediumﬁmoveusmall
(peg-1,peg-3) | |(peg-1,peg-2) (peg-3peg-2) | | (Peg-1,peg-3) | | (peg-2,peg-1) | | (peg-2,peg-3) (peg-1,peg-3)

(b) Shortest solution.

Figure 1.6: Example of a problem instance in the Tower-of-Hanoi Domain: We need to move all
three disks from peg-1 to peg-3. The optimal solution to this problem comprises seven steps.

L= O/\O 2l
w/ N\
IANEVAY
/ S \
Lil /\ L1l Lls /\ Ll
w/ N/ N

/\ JANIA /\

@¥££%%¥$

Figure 1.7: State space of the three-disk Tower of Hanoi: We illustrate all possible configurations
of the puzzle (circles) and legal transitions between them (arrows). The initial state of the problem
in Figure 1.6 is the left corner of the triangle, and the goal is the right corner.

18

(large-on <peg>)

(medium-on

<peg>)

(small-on <peg>)

CHAPTER 1.

level 2
level 1

level O

(a) Abstraction hierarchy of predicates.

b
YA

initial state

goal state

(b) State space at level 2.

=l Lo 1ol ll=

initial state

goal st

(d) State space at level 1.

ate

Initial State

=1

more

important

@

less

important

move-large
(peg-1,peg-3)

MOTIVATION

Goal State

Ll

(c) Solution at level 2.

move-medium
(peg-1,peg-2)

| (peg-1,peg-3)

move-large

move-medium

| (peg-2,peg-3)

(e) Solution at level 1.

2l =2l Lel L2l a2l .ol ll=]2

initial state goal state
(f) State space at level 0.
move-small || move-medium || move-small || move-large || move-small | move-medium || move-small
(peg-1,peg-3) | |(peg-1peg-2) | | (peg-3,peg-2) | | (peg-1peg-3) | | (peg-2,peg-1) | |(peg-2,peg-3) | | (peg-1,peg-3)

(9) Solution at level 0.

Figure 1.8: Abstraction problem solving in the Tower-of-Hanoi Domain, with a three-level hierar-
chy (a). First, the system disregards the small and medium disk, and solves the simplified one-disk
puzzle (b, c). Then, it inserts the missing movements of the medium disk (d, e). Finally, it steps
down to the lowest level of abstraction and adds move-small operators (f, g).

1.2. EXAMPLES OF REPRESENTATION CHANGES 19

number of a problem mean
1 2 3 4 5 6 time
without primary effects 85.3 | 1.1 | 505.0 | > 1800.0 | 31.0 | 1724 | > 432.4
using primary effects 0.5 |12 16.6 144.8 77.5 | 362.5 | 100.5
primaries and abstraction | 0.5 | 0.3 | 2.5 0.2 0.2 3.1 1.1

Table 1.2: PRODIGY performance in the extended Tower-of-Hanoi Domain, which allows two-disk
moves. We give the running times in seconds for three different domain descriptions: without
primary effects, with primary effects, and using primary effects along with abstraction. The results
show that primary effects not only reduce the search, but also allow the construction of an effective
abstraction hierarchy.

1.2.3 Selecting primary effects

Suppose that we deviate from the standard rules of the Tower-of-Hanoi puzzle and allow
moving two disks together (see Figure 1.9a). The new operators enable us to construct
shorter solutions for most problems. For example, we can move all three disks from peg-1 to
peg-3 in three steps (Figure 1.9b).

This change in the rules simplifies the puzzle for humans, but it makes most problems
harder for the PRODIGY system. The availability of extra operations results in a higher
branching factor, thus increasing the size of the expanded search space. Moreover, Abstractor
fails to generate a hierarchy for the domain with two-disk moves. In Table 1.2, we give the
results of using the extended set of operators to solve the six sample problems (see the first
row of running times). For every problem, we set a 1800-second limit for the search time,
and the system ran out of time on problem 4.

To reduce the branching factor, we may select primary effects of some operators and force
the system to use these operators only for achieving their primary effects. For example, we
may indicate that the main effect of the move-sml-mdm operator is the new position
of the medium disk. That is, if the system’s only goal is moving the small disk, then
it must not consider this operator. Note that an inappropriate choice of primary effects
may compromise completeness, that is, make some problems unsolvable; we will describe
techniques for ensuring completeness in Section 3.2.

In Figure 1.9(c), we list the primary effects of the two-disk moves. The use of the selected
primary effects improves the system’s performance on most sample problems (see the middle
row of Table 1.2); more importantly, it enables Abstractor to build the three-level hierarchy,
which reduces search by two orders of magnitude (see the last row).

The SHAPER system includes an algorithm for selecting primary effects, called Margie®,
which automatically performs this description change. The Margie algorithm is integrated
with Abstractor: it chooses primary effects with the purpose of improving the quality of
abstraction.

!The Margie procedure (pronounced mdr’ge) is named after my friend, Margie Roxborough. Margie and
her husband John invited me to stay at their place during the Ninth CSCSI Conference in Vancouver, where
I gave a talk on related research results. This algorithm is not related to the MARGIE system (mdr’je) for
parsing and paraphrasing simple stories in English, implemented by Schank et al. [1975].

<from> <to>

= ||
v

= |

[

<from> <to>

A
WY
| Lb

CHAPTER 1.

<from> <to>

L
W
| Ll

move-sml-mdm(<from>, <to>)

Pre: (small-on <from>)
(medium-on <from>)

del (small-on <from>)

add (small-on <to>)

del (medium-on <from>)

add (medium-on <to>)

Eff:

move-sml-Irg(<from>, <to>)
Pre: (small-on <from>)
(large-on <from>)
not (medium-on <from>)
not (medium-on <to>)
Eff: del (small-on <from>)
add (small-on <to>)
del (large-on <from>)
add (large-on <to>)

move-med-Ir g(<from>, <to>)
Pre: (medium-on <from>)
(large-on <from>)
not (small-on <from>)
not (small-on <to>)
Eff: del (medium-on <from>)
add (medium-on <to>)
del (large-on <from>)
add (large-on <to>)

(a) Encoding of two-disk moves.

0 = 1= llz

move-small
(peg-1,peg-2)

move-med-Irg

(peg-1,peg-3)

move-small
(peg-2,peg-3)

(b) Solution to the example problem.

operators

primary effects

MOTIVATION

move-sml-mdm(<from>,<to>)
move-sml-lrg(<from>,<to>)
move-mdm-Irg(<from>,<to>)

del (medium-on <from>), add (medium-on <to>)
del (large-on <from>), add (large-on <to>)

del (large-on <from>), add (large-on <to>)

Figure 1.9: Extension to the Tower-of-Hanoi Domain, which includes operators for moving two

(c) Selection of primary effects.

disks at a time, and the selected primary effects of these additional operators.

1.2. EXAMPLES OF REPRESENTATION CHANGES 21

(on <disk> <peg>)
(small-on <peg>) (on small <peg>)
(medium-on <peg>) (on medium <peg>)
(large-on <peg>) (on large <peg>)

b

(a) Replacing the predicates with a more general one.

<from> <to> <from> <to>
—
P - I o
peg-1 peg-2 peg-3
move-lar ge(<from>, <to>) ‘ ‘ ’_FEL‘

]

Pre: (onlarge <from>)

(forall <disk> other than large —— Goal Sate —
not (on <disk> <from>) (forall <disk>
not (on <disk> <to>)) (on <disk> peg-3))

Eff: del (on large <from>)
add (on large <to>)

(b) Examples of using the general predicate in the encoding of operators and problems.

(on large <peg>) level 2
(on medium <peg>) level 1
(on small <peg>) level O

(c) Hierarchy of partially instantiated predicates.

Figure 1.10: General predicate (on <disk> <peg>) in the encoding of the Tower-of-Hanoi Domain.
This predicate enables the user to utilize quantifications in describing operators and goals, but it
causes a failure of the Abstractor algorithm. The system has to generate partial instantiations of
(on <disk> <peg>) before invoking Abstractor.

1.2.4 Partially instantiating operators

The main drawback of the Abstractor algorithm is its sensitivity to syntactic features of a do-
main encoding. In particular, if the domain includes too general predicates, then Abstractor
may fail to construct a hierarchy.

For instance, suppose that the human user replaces the predicates (small-on <peg>),
(medium-on <peg>), and (large-on <peg>) with a more general predicate (on <disk> <peg>), which
allows greater flexibility in encoding operators and problems (see Figure 1.10a). In particu-
lar, it enables the user to utilize universal quantifications (see the examples in Figure 1.10b).

Since the resulting description contains only one predicate, the abstraction algorithm
cannot generate a multi-level hierarchy. To remedy this problem, we may construct partial
instantiations of (on <disk> <peg>) and apply Abstractor to build a hierarchy of these instan-
tiations (see Figure 1.10c). We have implemented a description-changing algorithm, called

22 CHAPTER 1. MOTIVATION

number of a problem mean
1 2 3 4 5 6 time
SAVTA with depth bound | 0.51 | 0.27 2.47 0.23 | 0.21 3.07 1.13
w/o depth bound | 0.37 | 0.28 0.61 0.22 | 0.21 0.39 0.35

SABA with depth bound | 5.37 | 0.26 | > 1800.00 | 2.75 | 0.19 | > 1800.00 | > 601.43
w/o depth bound | 0.45 | 0.31 1.22 0.34 | 0.23 0.51 0.51

Table 1.3: Performance of SAVTA and SABA in the extended Tower-of-Hanoi Domain, with primary
effects and abstraction. We give running times in seconds, for search with and without a depth
bound. The data suggest that SAVTA without a time bound is the most efficient among the four
search techniques, but this conclusion is not statistically significant.

Refiner, that generates partially instantiated predicates for improving the effectiveness of
Abstractor.

1.2.5 Choosing a problem solver

The efficiency of search depends not only on the domain description, but also on the choice
of a solver algorithm. To illustrate importance of a solver, we consider the application of
two different search strategies, called SAVTA and SABA, to problems in the extended Tower-
of-Hanoi Domain.

Veloso and Stone [1995] developed these two strategies for guiding PRODIGY search (see
Section 2.2.5). Experiments have shown that the relative performance of SAVTA and SABA
varies across domains, and the choice between them may be essential for efficient problem
solving. We consider two different modes of using each strategy: with a bound on the
search depth and without limiting the depth. A depth bound helps to prevent an extensive
exploration of inappropriate branches in the search space; however, it also results in pruning
some solutions from the search space, which may have a negative effect on performance.
Moreover, if a bound it too tight, it may lead to pruning all solutions, thus compromising
the system’s completeness.

In Table 1.3, we give the results of applying SAVTA and SABA to six Tower-of-Hanoi prob-
lems. These results show that SAVTA without a time bound is more effective than the other
three techniques; however, the evidence is not statistically significant. In Section 8.4, we
will describe a method for estimating the probability that a selected problem-solving tech-
nique is the best among the available techniques. We may apply this method to determine
the chances that SAVTA without a time bound is indeed the most effective among the four
techniques; its application gives the probability estimate of 0.47.

If we apply SHAPER to many Tower-of-Hanoi problems, then it can accumulate more
data on performance of the candidate strategies before adopting one of them. The system’s
control module combines exploitation of the past performance information with collecting
additional data. First, the SHAPER system applies heuristics for rejecting inappropriate
search techniques; then, the system experiments with promising search algorithms, until it
accumulates enough data for identifying the most effective algorithm.

Note that we have not accounted for solution quality in evaluating PRODIGY performance

1.3. RELATED WORK 23

in the Tower-of-Hanoi Domain. If the user is interested in near-optimal solutions, then
SHAPER has to analyze the trade-off between running time and solution quality, which may
result in selecting different domain descriptions and search strategies. For instance, a cost
bound reduces the length of generated solutions, which may be a fair payment for the increase
in search time. As another example, search without an abstraction hierarchy usually yields
better solutions than abstraction problem solving. In Chapter 8, we will describe a statistical
technique for evaluating trade-offs between speed and quality.

1.3 Related work

We next summarize previous results on representation changes, which include psychologi-
cal experiments (Section 1.3.1), Al techniques for reasoning with multiple representations
(Sections 1.3.2 and 1.3.3), and theoretical frameworks (Section 1.3.4).

We will later describe some other directions of past research, related to specific aspects of
our work. In particular, we will give the history of the PRODIGY architecture in Section 2.1.1,
outline the previous research on abstraction problem solving in Section 4.1.1, and review the
work on automatic evaluation of problem solvers in Section 8.1.1.

1.3.1 Psychological evidence

The choice of an appropriate representation is one of the main themes of Polya’s famous
book How to Solve It. Polya showed that the selection of an effective approach to a problem
is a crucial skill for a student of mathematics. Gestalt psychologists also paid particular
attention to reformulation of problems [Duncker, 1945; Ohlsson, 1984].

Recent explorations in cognitive science have yielded much evidence that confirms Polya’s
pioneering insight. Researchers have demonstrated that changes in a problem description
affect the problem difficulty, and that performance of human experts in many areas depends
on their proficiency in constructing a representation that fits a given task [Gentner and
Stevens, 1983; Simon, 1989; Gentner and Stevens, 1983].

Newell and Simon [1972] studied the role of representation during their investigation
of human problem solving. They observed that human subjects always construct some
representation of a given problem before searching for a solution: “Initially, when a problem
is first presented, it must be recognized and understood. Then, a problem space must
be constructed or, if one already exists in LTM, it must be evoked. Problem spaces can
be changed or modified during the course of problem solving” (Human Problem Solving,
page 809).

Simon [1979; 1989] continued the investigation of representations in human problem
solving and studied their role in a variety of cognitive tasks. In particular, he tested the
utility of different mental models in the Tower-of-Hanoi puzzle. Simon [1975] noticed that
most subjects gradually improved their mental representations, in the process of solving the
puzzle.

Hayes and Simon [1974; 1976; 1977] investigated the effect of isomorphic changes in task
description on subjects’ reasoning. Specifically, they analyzed hard isomorphs of the Tower
of Hanoi [Simon et al., 1985] and found out that “changing the written problem instructions,

24 CHAPTER 1. MOTIVATION

without disturbing the isomorphism between problem forms, can affect by a factor of two
the times required by subjects to solve a problem” (Models of Thought, volume I, page 498).

Larkin and Simon [1981; 1987] explored the role of multiple mental models in solving
physical and mathematical problems, with a particular emphasis on pictorial representations.
They observed that mental models of skilled scientists differ from those of novices, and that
expertly constructed models are crucial for solving scientific problems. Qin and Simon [1992]
came to a similar conclusion during their experiments on the use of imagery in understanding
special relativity.

Kook and Novak [1991] also explored alternative representations in physics. They imple-
mented the APEX program, which used multiple representations of physics problems, handled
incompletely specified tasks, and performed transformations among several types of repre-
sentations. Their conclusions about the significance of appropriate representation in expert
reasoning agreed with Simon’s results.

Kaplan and Simon [1990] explored representation changes in solving the Mutilated-
Checkerboard problem. They noticed that the participants of their experiments first tried
to utilize the initial representation and then searched for a more effective approach. Ka-
plan [1989] implemented a production system that simulated the representation shift of
successful human subjects.

Tabachneck [1992] studied the utility of pictorial reasoning in economics, and showed that
the right mental models are essential for economics problems. She then implemented the
CaMeRa production system, which modeled human reasoning with multiple representations
[Tabachneck-Schijf et al., 1997).

Boehm-Davis et al. [1989], Novak [1995], and Jones and Schkade [1995] recently demon-
strated the importance of representations in software development. Their results confirmed
that people are sensitive to changes in problem description, and that improvement of the
initial description is often a difficult task.

The reader may find a detailed review of past results in Peterson’s [1996] collection of
recent articles on reasoning with multiple representations. It includes several different views
on the role of representation, as well as evidence on importance of representation changes in
physics, mathematics, economics, and other areas.

1.3.2 Automating representation changes

AT researchers recognized the significance of representation back in the early Sixties, in the
very beginning of their work on automated reasoning systems. In particular, Amarel [1960;
1968; 1971] discussed the effects of representation on the behavior of search algorithms, using
the Missionaries-and-Cannibals problem to illustrate his main points. Newell [1965; 1966]
showed that the complexity of reasoning in some games and puzzles strongly depends on the
representation and emphasized that “hard problems are solved by finding new viewpoints;
i.e., new problem spaces” (On the Representations of Problems, page 19).

Later, Newell with several other researchers implemented the Soar system [Laird et al.,
1987; Tamble et al., 1990; Newell, 1992], capable of utilizing multiple descriptions of a
problem domain to facilitate search and learning; however, their system did not generate new
representations. The human operator was responsible for constructing domain descriptions

1.3. RELATED WORK 25

and providing guidelines for their effective use.

Larkin et al. [1988] took a similar approach in their work on the FERMI expert system,
which accessed several different representations of task-related knowledge and used them in
parallel. This system required the human operator to provide appropriate representations of
the input knowledge. The authors of FERMI encoded “different kinds of knowledge at different
levels of granularity” and demonstrated that “the principled decomposition of knowledge
according to type and level of specificity yields both power and cross-domain generality”
(FERMI: A Flexible Expert Reasoner with Multi-Domain Inferencing, page 101).

Research on automatic change of domain description has mostly been limited to design
of separate learning algorithms that perform specific types of improvements. Examples
of these special-purpose algorithms include systems for replacing operators with macros
operators [Korf, 1985b; Mooney, 1988; Cheng and Carbonell, 1986; Shell and Carbonell,
1989], changing the search space by learning heuristics [Newell et al., 1960; Langley, 1983]
and control rules [Minton et al., 1989b; Etzioni, 1993; Veloso and Borrajo, 1994; Pérez, 1995],
generating abstraction hierarchies [Sacerdoti, 1974; Knoblock, 1994], and replacing a given
problem with a similar simpler problem [Hibler, 1994].

The authors of these systems have observed that utility of most learning techniques varies
across domains, and their blind application may worsen efficiency in some domains; however,
researchers have not automated selection among available learning systems and left it as the
user’s responsibility.

1.3.3 Integrated systems

The Soar architecture comprises a variety of general-purpose and specialized search algo-
rithms, but it does not have a top-level procedure for selecting an algorithm that fits a
given task. The classical problem-solving systems, such as SIPE [Wilkins, 1988], PRODIGY
[Carbonell et al., 1990; Veloso et al., 1995], and ucPoP [Penberthy and Weld, 1992; Weld,
1994], have the same limitation: they allow alternative search strategies, but do not include
a central mechanism for selecting among them.

Wilkins and Myers [1995; 1998] have recently addressed this problem and constructed
the Multiagent Planning Architecture, which supports integration of multiple planning and
scheduling algorithms. The available search algorithms in their architecture are arranged
into groups, called planning cells. Every group has a top-level control procedure, called a
cell manager, which analyzes an input problem and selects an algorithm for solving it. Some
cell managers are able to break the given task into subtasks and distribute them among
several algorithms.

The architecture includes advanced software tools for incorporating diverse search al-
gorithms, with different domain languages; thus, it allows a synergetic use of previously
implemented Al systems. Wilkins and Myers have demonstrated the effectiveness of their
architecture in constructing centralized problem-solving systems. In particular, they have
developed several large-scale systems for Air Campaign Planning.

Since the Multiagent Planning Architecture allows the use of diverse algorithms and
domain descriptions, it provides an excellent testbed for the study of search with multiple
representations; however, its current capabilities for automated representation changes are

26 CHAPTER 1. MOTIVATION

very limited.

First, the system has no general-purpose control mechanisms, and the human operator
has to design and implement a specialized manager algorithm for every planning cell. Wilkins
and Myers have used fixed selection strategies in the implemented cell managers, and have
not augmented them with learning capabilities.

Second, the system has no tools for the inclusion of algorithms that improve domain
descriptions, and the user must either hand-code all necessary descriptions or incorporate a
mechanism for changing descriptions into a cell manager. The authors of the architecture
have implemented several specialized techniques for decomposing an input problem into
subproblems, but have not considered other types of description changes.

Minton [1993a; 1993b; 1996] has investigated the integration of constraint-satisfaction
programs and designed the MULTI-TAC system, which combines a number of generic heuristics
and search procedures. The system’s top-level module explores the properties of a given
domain, selects appropriate heuristics and search strategies, and combines them into an
algorithm for solving problems in this domain.

The main component of MULTI-TAC’s top-level module is an inductive learning mecha-
nism, which tests the available heuristics on a collection of problems and utilizes the accu-
mulated data to select among them. It guides a beam search in the space of the allowed
combinations of heuristics and search procedures.

The system synthesizes efficient constraint-satisfaction algorithms, which usually perform
on par with manually configured programs and exceed the performance of fixed general-
purpose strategies. The major drawback is significant learning time: when the top-level
module searches for an efficient algorithm, it tests candidate procedures on hundreds of
sample problems.

Yang et al. [1998] have recently begun development of an architecture for integration of Al
planning techniques. Their architecture, called PLAN++, comprises tools for implementing,
modifying, and re-using the main elements of planning systems. The purpose is to modularize
typical planning algorithms, construct a large library of search modules, and use them as
building blocks for new algorithms.

Since the effectiveness of most planning techniques varies across domains, the authors of
PLAN++ intend to design software tools that enable the user to select appropriate modules
and configure them for specific domains. The automation of these tasks is one of the main
open problems, which is closely related to our work on representation improvements.

1.3.4 Theoretical results

Researchers have developed theoretical frameworks for some special cases of description
changes, including abstraction, replacement of operators with macros, and learning control
rules; however, they have done little study of the common principles that underlie different
types of changer algorithms. The results in developing a formal model of representation
are also limited, and the general notion of useful representation changes has remained at an
informal level.

Most theoretical models are based on the analysis of a generalized search space. When
investigating some description change, researchers usually identify its effects on the search

1.4. OVERVIEW OF THE APPROACH 27

space of a solver algorithm, and estimate the resulting reduction in the algorithm’s running
time. This technique helps to determine the main desirable properties of a new description.

In particular, Korf [1985a; 1985b; 1987] investigated the effects of macro operators on the
state space, and demonstrated that well-chosen macros may exponentially reduce the search
time. Etzioni [1992] analyzed the search space of backward-chaining algorithms and showed
that inappropriate choice of macro operators or control rules may worsen performance. He
then derived a condition under which macros reduce the search, and compared the utility of
macro operators with that of control rules.

Cohen [1992] developed a mathematical framework for analysis of macro-operator learn-
ing, explanation-based generation of control rules, and chunking. He applied the learning
theory to analyze mechanisms for saving and reusing solution paths, and described a series
of learning algorithms that provably improve performance.

Knoblock [1991; 1994] explored the benefits and limitations of abstraction, identified
conditions that ensure search reduction, and used them in developing an algorithm for au-
tomatic generation of abstraction hierarchies. Bacchus and Yang [1992; 1994] lifted some
of the assumptions underlying Knoblock’s analysis and presented a more general evaluation
of abstraction search. They studied the effects of backtracking across abstraction levels,
demonstrated that it may impair efficiency, and described a technique for avoiding it.

Giunchiglia and Walsh [1992] proposed a general model of reasoning with abstraction,
which captured and generalized most of the previous frameworks. They defined an abstrac-
tion as a certain mapping between axiomatic formal systems, investigated the properties of
this mapping, and classified the main abstraction techniques.

A generalized model for improving representation was suggested by Korf [1980], who
formalized representation changes based on the notions of isomorphism and homomorphism
of state spaces (see Section 1.1.3). Korf utilized the resulting formalism in his work on
automatic representation improvements; however, his model did not address “a method
for evaluating the efficiency of a representation relative to a particular problem solver and
heuristics to guide the search for an efficient representation for a problem” (Toward a Model
of Representation Changes, page 75), whereas such heuristics are essential for developing an
effective representation-changing system.

1.4 Overview of the approach

The review of previous work has shown that the results are still very limited. The main open
problems are (1) design of Al systems capable of performing a wide range of representation
changes and (2) development of a unified theory of reasoning with multiple representations.

The work on the SHAPER system is a step toward addressing these two problems. We
have developed a framework for evaluating available representations, and formalized the
task of finding an appropriate representation as search in the space of alternative domain
descriptions and matching solver algorithms. We have applied this framework to designing
a system that automatically performs several types of representation improvements.

The system comprises a collection of problem-solving and description-changing algo-
rithms, and a top-level control module that selects and invokes appropriate algorithms (see

28 CHAPTER 1. MOTIVATION

Top-level
control

(1l A
Problem Description
solvers changers
[L_11 [l

Figure 1.11: Integration of solver and changer algorithms: The SHAPER system includes a top-level
module, which analyzes a given problem and selects appropriate algorithms for solving it.

Figure 1.11). The most important result of our research is the control mechanism for in-
telligent selection among available algorithms and representations. We use it to combine
multiple learning and search algorithms into an integrated Al system.

We now explain the main architectural decisions that underlie SHAPER (Section 1.4.1),
outline our approach to development of changer algorithms (Section 1.4.2), and briefly de-
scribe search in a space of representations (Section 1.4.3).

1.4.1 Architecture of the system

According to our definition, a system for changing representations has to perform two main
functions: (1) improvement of the initial problem description and (2) selection of an
algorithm for solving the problem. The key architectural decision underlying the SHAPER
system is the distribution of the first task among multiple changer algorithms. For instance,
the description improvement in Section 1.2 has involved three algorithms, Refiner, Margie,
and Abstractor.

The centralized use of separate algorithms differentiates our system from Korf’s mecha-
nism for improving representations. It also differs from the implementation of description-
improving cell managers in the Multiagent Planning Architecture.

Every changer algorithm explores a certain space of modified descriptions, until finding
a new description that improves the system’s performance. For example, Margie searches
among alternative selections of primary effects, whereas Refiner explores a space of different
partial instantiations.

The top-level module of the SHAPER system coordinates the application of description-
changing algorithms. It explores a more general space of domain descriptions, using changer
algorithms as operators for expanding nodes in this space. The system thus combines the
low-level search by changer algorithms with the centralized high-level search. This two-
level search prevents a combinatorial explosion in the number of candidate representations,
described by Korf [1980].

The other major function of the top-level procedure is selection of problem-solving algo-
rithms for the constructed domain descriptions. To summarize, SHAPER consists of three
main parts, illustrated in Figure 1.11:

Library of problem solvers: The system uses search algorithms of the PRODIGY

1.4. OVERVIEW OF THE APPROACH 29

Efficiency: The primary criterion for evaluating representations in the SHAPER system is
the efficiency of problem solving, that is, the average running time of the solver algorithm.

Near-completeness: A change of representation must not cause a significant violation of
completeness, that is, most solvable problems should remain solvable after the change. We
measure the completeness violation by the percentage of problems that become unsolvable.

Solution quality: A representation change should not result in significant decline of solution
quality. We usually define the quality as the total cost of operators in a solution, and evaluate
the average increase in solution costs.

Figure 1.12: Main factors that determine the quality of a representation; we have developed a
general utility model that unifies these factors and enables the system to make trade-off decisions.

architecture. We have composed the solver library from several different config-
urations of PRODIGY’s general search mechanism.

Library of description changers: We have implemented seven algorithms
that compose SHAPER’s library of changers. They include procedures for select-
ing primary effects, building abstraction hierarchies, generating partial and full
instantiations of operators, and identifying relevant features of the domain.

Top-level control module: The functions of the control mechanism include
selection of description changers and problem solvers, evaluation of new repre-
sentations, and reuse of the previously generated representations. The top-level
module comprises statistical procedures for analyzing past performance, heuris-
tics for choosing algorithms in the absence of past data, and tools for manual
control.

The control mechanism does not rely on specific properties of solver and changer algo-
rithms, and the user may readily add new algorithms; however, all solvers and changers must
use the PRODIGY domain language and access relevant data in the central data structures of
the PRODIGY architecture.

We evaluate the utility of representations along three dimensions, summarized in Fig-
ure 1.12: the efficiency of search, the number of solved problems, and the quality of the
resulting solutions [Cohen, 1995]. The work on changer algorithms involves decisions on
trade-offs among these factors. We allow a moderate loss of completeness and decline of
solution quality in order to improve efficiency. In Section 7.3, we will describe a general
utility function that unifies the three evaluation factors.

Observe that, when evaluating the utility of a new representation, we have to account for
the overall time for improving a domain description, selecting a problem solver, and using
the resulting representation to solve given problems. We consider the system effective only if
this overall time is smaller than the time for solving the problems with the initial description
and some fixed solver algorithm.

30 CHAPTER 1. MOTIVATION

1.4.2 Specifications of description changers

The current version of SHAPER includes seven description changers. We have already men-
tioned three of them: an extended version of the ALPINE abstraction generator, called Ab-
stractor; the Margie algorithm, which selects primary effects; and the Refiner procedure,
which generates partial instantiations of operators.

Every changer algorithm in the SHAPER system performs a specific type of description
change and serves a certain purpose. For example, Margie selects primary effects of operators,
with the purpose of increasing the number of levels in the abstraction hierarchy.

When implementing a changer algorithm, we must decide on the type and purpose of the
description changes performed by the algorithm. The choice of a type determines the space
of alternative descriptions explored by the algorithm, whereas the purpose specification helps
to develop techniques for search in this space. We also need to analyze interactions of the
new algorithm with other changer and solver algorithms. Finally, we have to identify the
parts of the domain description that compose the algorithm’s input.

These decisions form a high-level specification of a changer algorithm. We use speci-
fications to summarize and systematize the main properties of description changers, thus
separating them from implementation techniques. These summaries of main decisions have
proved a useful development tool and facilitated our work. In Part II, we will give specifica-
tions for all seven description changers.

When making the high-level decisions, we must ensure that they define a useful class of
description changes and lead to an efficient algorithm. We compose a specification from the
following five parts:

Type of description change. When designing a new algorithm, we first have to decide
on the type of description change. For instance, the Abstractor algorithm improves the
domain description by generating an abstraction hierarchy. As another example, Margie is
based on selecting primary effects of operators.

In Figure 1.13, we summarize the types of description changes used in SHAPER. Note
that this list is only a small sample from the space of approaches to improving domain
descriptions. We will briefly discuss some other improvements in Section 6.4.1.

Purpose of description change. Every changer algorithm in the SHAPER system
serves a specific purpose, such as reducing the branching factor of search, constructing an
abstraction hierarchy with certain properties, or improving the effectiveness of other descrip-
tion changers. We express this purpose by a heuristic function for evaluating the quality of
a new description. For example, we may evaluate the performance of Margie by the number
of levels in the resulting abstraction hierarchy: the more levels, the better. We also specify
certain constraints that describe necessary properties of newly generated descriptions. For
example, the Margie algorithm must preserve the completeness of problem solving, which
limits its freedom in selecting primary effects.

To summarize, we view the purpose of a description improvement as maximizing a specific
evaluation function, while satisfying certain constraints. This formal specification of the
purpose shows exactly in which way we improve description, and helps to evaluate the
results of applying the changer algorithm. Note that the overall effectiveness of our approach
depends on the choice of an appropriate evaluation function, which must correlate with the

1.4. OVERVIEW OF THE APPROACH 31

Selecting primary effects of operators: Choosing certain “important” effects of opera-
tors, and using operators only for achieving their important effects (Sections 3.4.1 and 3.5).

Generating an abstraction hierarchy: Decomposing the set of predicates in a domain
encoding into several subsets, according to their “importance” (Sections 4.1, 4.2, and 5.1).

Generating more specific operators: Replacing an operator with several more specific
operators, which together describe the same actions. We generate specific operators by in-
stantiating variables in the original operator description (Section 3.4.2).

Generating more specific predicates: Replacing a predicate in a domain encoding with
more specific predicates, which together describe the same set of literals (Section 4.3).

Identifying relevant features (literals): Determining which features of a domain de-
scription are relevant to the current task and ignoring the other features (Section 5.3).

Figure 1.13: Types of description changes in the current version of SHAPER; we plan to add more
techniques in the future (see the list of other description improvements in Figure 6.7, page 227).

resulting efficiency improvements.

Use of other algorithms. The description-changing algorithm may use subroutine
calls to some problem solvers or other description changers. For example, Margie calls the
Abstractor algorithm to construct hierarchies for the chosen primary effects. It repeatedly
invokes Abstractor for alternative selections of primary effects, until finding a satisfactory
selection.

Required input. We identify the elements of domain description that must be a part
of the changer’s input. For example, Margie has to access the description of all operators in
the domain.

Optional input. Finally, we specify the additional information about the domain that
may be used in changing description. If this information is available, then the changer
algorithm utilizes it to generate a better description; otherwise, the algorithm uses some
default assumptions. The optional input may include restrictions on the allowed problem
instances, useful knowledge about domain properties, and advice of the human user.

For example, we may specify constraints on the allowed problems as an optional input
to the Margie algorithm. Then, Margie passes these constraints to Abstractor, which utilizes
them in building hierarchies (see Section 5.3). As another example, the user may pre-select
some primary effects of operators. Then, Margie preserves this pre-selection and chooses
additional primary effects (see Section 5.1).

We summarize the specification of the Margie algorithm in Figure 1.14; however, this spec-
ification does not account for advanced features of the PRODIGY domain language. In Sec-
tion 5.1, we will extend it and describe the implementation of Margie in the PRODIGY
architecture.

32 CHAPTER 1. MOTIVATION

Type of description change: Selecting primary effects of operators.

Purpose of description change: Maximizing the number of levels in Abstractor’s hierarchy,
while ensuring completeness of problem solving.

Use of other algorithms: The Abstractor algorithm, which constructs hierarchies for the
selected primary effects.

Required input: Description of all operators in the domain.

Optional input: Restrictions on the allowed goal literals; pre-selected primary and side effects.

Figure 1.14: Simplified specification of the Margie algorithm. We use specifications to summarize
the main properties of changers, thus abstracting them from the details of implementation.

é/ construct a new description or use an old one? >

I
construct a descri ption use an avail able description
which changer to apply? which solver to apply?
to which oId description? with WhICh description?
apply the selected apply the selected
description changer problem solver

Figure 1.15: Top-level decisions in the SHAPER system: The control module applies changer
algorithms to improve the domain description, and then chooses an appropriate solver algorithm.

1.4.3 Search in the space of representations

When the SHAPER system inputs a new problem, the control module has to determine a
strategy for solving it, which involves several high-level decisions (see Figure 1.15):

1. Can SHAPER solve the problem with the initial domain description? Alternatively, can
the system re-use one of the previously generated descriptions?

2. If not, what are the necessary improvements to the initial description? Which changer
algorithms can make these improvements?

3. Which of the available search algorithms can efficiently solve the given problem?

These decisions guide the construction of a new representation, which consists of an
improved description and matching solver. For example, if we encode the Tower-of-Hanoi
Domain using the general predicate (on <disk> <peg>) and allow the two-disk moves, the
control procedure will apply three description changers, Refiner, Margie, and Abstractor,
and then select an effective problem solver (see Figure 1.16).

1.5. EXTENDED ABSTRACT 33

applying selecting

Abstractor

applying
Margie

applying
Refiner

SAVTA with
primary effects
and abstraction

selection
of primary
effects

partially
instantiated
operators

primary
effectsand
abstraction

initial
description

Figure 1.16: Representation changes in the Tower-of-Hanoi Domain (see Section 1.2): The top-level
module applies three description changers and then identifies the most effective problem solver.

When SHAPER searches for an effective representation, it performs two main tasks: gen-
erating new representations and evaluating their utility (see Figure 1.17). The first task
involves improving the available descriptions and pairing them with appropriate solvers.

The top-level module selects and applies changer algorithms, using them as basic steps
for expanding a space of alternative descriptions (see Figure 1.18a). After generating a new
domain description, the top-level procedure chooses solver algorithms for this description.
If the procedure identifies several matching algorithms, then it pairs each of them with the
new description, thus constructing several representations (see Figure 1.18b).

The system evaluates the available representations in two steps (see Figure 1.17). First,
it applies heuristics for estimating their relative utility and eliminates ineffective represen-
tations. We have provided several general heuristics and implemented a mechanism that
enables the user to add domain-specific heuristics. Second, the system collects experimental
data on performance of the remaining representations, and applies statistical analysis to
select the most effective domain description and solver algorithm.

The exploration of the representation space is computationally expensive, because it
involves execution of changer algorithms and evaluation of representations on multiple test
problems. We therefore need to develop effective heuristics that guide the search in this
space and allow the construction of good representations in feasible time.

1.5 Extended abstract

The main results of our work on SHAPER include development of several description changers,
construction of a general-purpose control module, and empirical evaluation of the system in
the PRODIGY architecture. The presentation of these results is organized in four parts, as
shown in Figure 1.19.

Part T includes the motivation for our research (Chapter 1) and description of the
PRODIGY search (Chapter 2). In Part II, we present algorithms for using primary effects
and abstraction, as well as auxiliary procedures that improve the performance of these algo-
rithms.

Then, in Part 111, we describe the top-level control mechanism, which explores a space of
alternative representations. Finally, in Part IV, we give the results of testing the SHAPER
system and compare its performance to that of fixed description changers.

We now give a more detailed overview of the main results and summarize the material of
every chapter. In Figure 1.19, we illustrate the dependencies among the contents of different
chapters.

34 CHAPTER 1. MOTIVATION

SEARCH FOR AN EFFECTIVE
REPRESENTATION

evaluation of the
available representations

construction of new
representations

application of
description changers

pruning ineffective
representations

heuristic selection of
problem solvers for the
generated descriptions

collection and analysis
of performance datafor the
remaining representations
computationally
expensive

computationally
expensive

Figure 1.17: Main operations involved in exploring the space of representations: The SHAPER
system interleaves generation of new representations with testing of their performance.

applying
changer-1

applying |
changer-2 | |

applying
changer-3

desc-3 [:

- - space of descriptions- -

- - - space of representations- - -

Figure 1.18: Expanding the representation space: The control module invokes changer algorithms
to generate new domain descriptions, and combines solvers with the resulting descriptions.

1.5. EXTENDED ABSTRACT 35

Il Description changers

3
Primary .
effects | 5 b SRR
mmary o
hOther = deﬁcript%lon 12. .
4 enhancements changers Machining
/ Abstraction I~ \ Domain
— | Introduction —— 13
1 2 Sokoban
i — |l Top-level contr ol — Domain
Motivation = Pmd'ﬂ 7
search [
Generation and 14
use of multiple / Extended
representations Strips
Domain
8- 9 11
Statistical Extensionsto Summary of 15
selection among [=| the statistical [=| the top-level .
representations technique control Logistics
Domain
10 /
Preference
rules

Figure 1.19: Reader’s guide: Dependencies among the material of different chapters. The large
rectangles show the four main parts of the presentation, whereas the small rectangles are chapters.

Part I: Introduction

The purpose of the introduction is to explain the problem of automatic representation
changes, motivate the work on this problem, and present the background results that underlie
our explorations.

We have emphasized importance of finding appropriate representations, described previ-
ous research on automating this task, and summarized the goals of our work. In Chapter 2,
we will describe the PRODIGY architecture, which serves as a testbed for the development
and evaluation of our system for changing representations.

Chapter 1: Motivation

We have explained the concept of representation, discussed its role in problem solving, and
argued the need for an Al system that generates and evaluates multiple representations.
We have also reviewed past work on representation changes, identified the main research
problems, and outlined our approach to addressing some open problems.

To illustrate the role of representation, we have given an example of representation
changes in PRODIGY, using the Tower-of-Hanoi puzzle. This example has demonstrated
the functions of the SHAPER system, which improves PRODIGY domain representations.

36 CHAPTER 1. MOTIVATION

Chapter 2: Prodigy search

The PRODIGY system is based on a combination of goal-directed reasoning with simulation of
operator execution. Researchers have implemented a series of search algorithms that utilize
this technique; however, they have provided few formal results on the common principles
underlying the developed algorithms.

We formalize the PRODIGY search, elucidate some techniques for improving its efficiency,
and show how different strategies for controlling search complexity give rise to different
versions of the system. In particular, we demonstrate that PRODIGY is not complete and
discuss advantages and drawbacks of its incompleteness. We then develop a complete algo-
rithm, which is almost as fast as PRODIGY and solves a wider range of problems.

Part II: Description changers

We investigate two techniques for reducing complexity of goal-directed search: identifying
primary effects of operators and generating abstraction hierarchies. These techniques en-
able us to develop a collection of efficiency-improving algorithms, which compose SHAPER’s
library of description changers.

We test the developed algorithms in several domains and demonstrate that they enhance
performance of the PRODIGY system. We also discuss the drawbacks of the implemented
speed-up techniques and point out some restrictions on their use.

Chapter 3: Primary effects

The use of primary effects of operators allows us to improve search efficiency and solution
quality in many domains. We formalize this technique and provide analytical and empirical
evaluation of its effectiveness.

First, we present a criterion for choosing primary effects, which guarantees efficiency and
completeness, and describe algorithms for automatic selection of primary effects. Second, we
experimentally demonstrate their effectiveness in two backward-chaining systems, PRODIGY
and ABTWEAK.

Chapter 4: Abstraction

We describe abstraction for the PRODIGY system, present algorithms for automatic gen-
eration of abstraction hierarchies, and give empirical confirmation of their effectiveness in
reducing search.

First, we review Knoblock’s ALPINE system, which constructs hierarchies for a limited
domain language, and extend it for the advanced language of PRODIGY. Second, we give an
algorithm that improves effectiveness of the abstraction generator, by partially instantiating
predicates in the domain encoding.

Chapter 5: Other enhancements

We present two techniques for enhancing utility of primary effects and abstraction. First,
we describe a synergy of the abstraction generator with the procedure for selecting primary

1.5. EXTENDED ABSTRACT 37

effects, and demonstrate that it leads to better hierarchies.

Second, we give an algorithm for adjusting the domain description to given classes of
problems. It identifies the features of the simulated world that are relevant to a specific
problem type, and then the system utilizes them to choose appropriate primary effects and
abstraction.

Chapter 6: Summary of work on description changers

We review the main results of the work on description-changing algorithms in the SHAPER
system. In particular, we summarize the interactions among the implemented algorithms
and discuss the role of problem-specific information in improving domain descriptions.

In addition, we outline some directions for future research, which include implementation
of other changer algorithms and work on a general theory of description changes. First, we
consider several unexplored types of description improvements and give examples of their
application in PRODIGY. Second, we discuss some steps toward a general framework for
developing and evaluating changer algorithms.

Part III: Top-level control

We develop a system, called SHAPER, for the automatic generation and use of multiple
domain descriptions. When SHAPER faces a new problem, it first improves the problem
description and then selects an appropriate solver algorithm.

The system’s central part is the top-level control module, which chooses appropriate
changer and solver algorithms, stores and re-uses descriptions, and accumulates performance
data. We describe the structure of the control module and its access to other parts of
the system, present techniques for automatic selection among the available algorithms and
domain descriptions, and discuss the main limitations of the implemented system.

Chapter 7: Generation and use of multiple representations

We lay a theoretical groundwork for a synergy of multiple description changers and problem
solvers in a unified system. First, we discuss the task of improving domain descriptions and
selecting appropriate solvers, formalize it as search in the space of available representations,
and define the main elements of the representation space. Second, we develop a utility model
for evaluating a representation-changing system. Third, we identify the limitations of our
theory and their effects on the SHAPER system.

We apply the theoretical results to constructing the system’s “control center,” which
provides access to the available algorithms. It consists of data structures and procedures that
support exploration of the representation space. The control center forms the intermediate
layer between the system’s algorithms and the top-level decision mechanism.

Chapter 8: Statistical selection among representations

We consider the task of choosing among the available representations and formalize the
statistical problem involved in evaluating their performance. We then present a learning

38 CHAPTER 1. MOTIVATION

algorithm that gathers performance data, evaluates representations, and chooses an appro-
priate representation for each given problem. The algorithm also selects a time bound for
search with the chosen representation, and interrupts the solver upon reaching the bound.

We give results of applying this algorithm to select among PRODIGY problem solvers. We
also describe controlled experiments with artificially generated performance data.

Chapter 9: Extensions to the statistical technique

We extend the statistical procedure to account for properties of specific problems, which
allow a more accurate performance evaluation. We test it in the PRODIGY system and on
artificially generated data, and demonstrate the resulting improvement in selection accuracy.

The extended learning algorithm accounts for problem-specific utility functions, adjusts
the performance data to the estimated problem sizes, and utilizes information about simi-
larity among problems.

Chapter 10: Preference rules

We describe heuristic rules for identifying an effective representation, which supplement the
statistical evaluation. We then present techniques for resolving conflicts among multiple
rules and for synergy of rules with the statistical algorithm.

The human operator may provide rules that encode initial knowledge about relative per-
formance of different representations. She may also use rules for implementing additional
learning mechanisms, as well as for controlling the trade-off between exploitation and explo-
ration in statistical learning.

Chapter 11: Summary of work on the top-level control

We present some extensions to the control module, and then summarize the key results of
developing the SHAPER system. The major implemented extensions include (1) a mecha-
nism for selecting among changer algorithms and (2) a collection of tools for optional user
participation in the top-level control.

First, we describe the extension mechanisms and discuss their role. Then, we review
the main parts of the top-level control and summarize the techniques underlying each part.
Finally, we list the limitations of SHAPER and point out related directions of future work.

Part IV: Results

We give the results of applying the SHAPER system to a variety of problems in four different
domains: a model of a machine shop (Chapter 12), Sokoban puzzle (Chapter 13), extended
STRIPS world (Chapter 14), and PRODIGY Logistics Domain (Chapter 15).

The experiments have confirmed that the system’s control module almost always selects
the right description changers and problem solvers, and that its performance is not sensitive
to features of specific domains.

Chapter 2

Prodigy search

Newell and Simon [1961; 1972] developed the means-ends analysis technique during their
work on the General Problem Solver (GPs), back in the early days of artificial intelligence.
Their technique combined goal-directed reasoning with forward chaining from the initial
state. The authors of later systems [Fikes and Nilsson, 1971; Warren, 1974; Tate, 1977]
gradually abandoned forward search and began to rely exclusively on backward chaining.

Researchers investigated several types of backward chainers [Minton et al., 1994] and
discovered that least commitment improves the efficiency of goal-directed reasoning, which
gave rise to TWEAK [Chapman, 1987], ABTWEAK [Yang et al., 1996], sNLP [McAllester
and Rosenblitt, 1991], ucPoP [Penberthy and Weld, 1992; Weld, 1994], and other least-
commitment problem solvers.

Meanwhile, PRODIGY researchers extended means-ends analysis and designed a family of
problem solvers based on the combination of goal-directed backward chaining with simulation
of operator execution. The underlying strategy is a special case of bidirectional search [Pohl,
1971]. It has given rise to several versions of the PRODIGYsystem, including PRODIGY],
PRODIGY2, NOLIMIT, PRODIGY4, and FLECS.

The developed algorithms keep track of the domain state that results from executing parts
of the currently constructed solution, and use the state to guide the goal-directed reasoning.
Least commitment proved ineffective for this search technique, and Veloso developed an
alternative strategy, based on instantiating all variables as early as possible.

Experiments have demonstrated that PRODIGY search is an efficient procedure, a fair
match to least-commitment systems and other successful problem solvers. Moreover, the
PRODIGY architecture has proved a valuable tool for the development of learning techniques,
and researchers have used it in constructing a number of systems for the automated acqui-
sition of control knowledge.

We have utilized this architecture in the work on the representation changes and con-
structed the SHAPER system as an extension to PRODIGY. In particular, SHAPER’s library
of problem solvers is based on PRODIGY search algorithms. We therefore describe these
algorithms before presenting SHAPER.

First, we review the past work on the PRODIGY system and discuss advantages and draw-
backs of the developed search techniques (Section 2.1). Then, we describe the foundations
of these techniques and their use in different versions of PRODIGY (Section 2.2), as well as

39

40 CHAPTER 2. PRODIGY SEARCH

version year authors

PRODIGY]1 1986 Minton and Carbonell

PRODIGY2 1989 Carbonell, Minton, Knoblock, and Kuokka
NOLIMIT 1990 Veloso and Borrajo

PRODIGY4 1992 Blythe, Wang, Veloso, Kahn, Perez, and Gil
FLECS 1994 Veloso and Stone

Table 2.1: Main versions of the PRODIGY architecture. The work on this problem-solving archi-
tecture continued for over ten years, and gave rise to a series of novel search strategies.

the main extensions to the basic search engine (Sections 2.3 and 2.4). Finally, we report
the results of a joint investigation with Blythe on the completeness of the PRODIGY search
technique (Section 2.5).

2.1 PRODIGY system

The PRODIGY system went through several stages of development, over the course of ten
years, and gradually evolved into an advanced architecture, which supports a variety of
search and learning techniques. We give a brief history of its development (Section 2.1.1)
and summarize the main features of the resulting search engines (Section 2.1.2).

2.1.1 History

The history of the PRODIGY architecture (see Table 2.1) began circa 1986, when Minton and
Carbonell implemented PRODIGY1, which became a testbed for their work on control rules
[Minton, 1988; Minton et al., 1989a). They concentrated on explanation-based learning of
control knowledge and left few records of the original search engine.

Minton, Carbonell, Knoblock, and Kuokka used PRODIGY1 as a prototype in their work
on PRODIGY?2 [Carbonell et al., 1990], which supported an advanced language for describing
problem domains [Minton et al., 1989b]. They demonstrated the system’s effectiveness in
scheduling machine-shop operations [Gil, 1991; Gil and Pérez, 1994], planning a robot’s ac-
tions in an extended STRIPS world [Minton, 1988], and solving a variety of smaller problems.

Veloso [1989] and Borrajo developed the next version, called NOLIMIT, which signifi-
cantly differed from its predecessors. In particular, they added new branching points, which
made the search near-complete, and introduced object types for specifying possible values
of variables. Veloso demonstrated the effectiveness of NOLIMIT on the previously designed
PRODIGY domains, as well as on large-scale transportation problems.

Blythe, Wang, Veloso, Kahn, Pérez, and Gil developed a collection of techniques for
enhancing the search engine and built PRODIGY4 [Carbonell et al., 1992]. In particular,
they provided an efficient technique for instantiating operators [Wang, 1992], extended the
use of inference rules, and designed advanced data structures to improve the efficiency of
the low-level implementation. They also implemented a friendly user interface and tools for
adding new learning mechanisms.

2.1. PRODIGY SYSTEM 41

Veloso and Stone [1995] implemented the FLECS algorithm, an extension to PRODIGY4
that included an additional decision point and new strategies for exploring the search space,
and demonstrated that their strategies often improved the efficiency.

The PRODIGY architecture provides ample opportunities for the application of speed-up
learning, and researchers have used it to develop and test a variety of techniques for the
automated efficiency improvement. Minton [1998] designed the first learning module for the
PRODIGY architecture, which automatically generated control rules. He demonstrated the
effectiveness of integrating learning with PRODIGY search, which stimulated work on other
efficiency-improving techniques.

In particular, researchers have designed modules for explanation-based learning [Etzioni,
1990; Etzioni, 1993; Pérez and Etzioni, 1992], inductive generation of control rules [Veloso
and Borrajo, 1994; Borrajo and Veloso, 1996, abstraction search [Knoblock, 1993], and
analogical reuse of problem-solving episodes [Carbonell, 1983; Veloso and Carbonell, 1990;
Veloso and Carbonell, 1993a; Veloso and Carbonell, 1993b; Veloso, 1994]. They also in-
vestigated techniques for improving the quality of solutions [Pérez and Carbonell, 1993;
Pérez, 1995, learning unknown properties of the problem domain [Gil, 1992; Carbonell and
Gil, 1990; Wang, 1994; Wang, 1996], and collaborating with the human user [Joseph, 1992;
Stone and Veloso, 1996; Cox and Veloso, 1997a; Cox and Veloso, 1997b; Veloso et al., 1997].

The reader may find a summary of PRODIGY learning techniques in the review papers
by Carbonell et al. [1990] and Veloso et al. [1995]. These research results have been major
contributions to the study of machine learning; however, they have left two notable gaps.
First, PRODIGY researchers tested the learning modules separately, without exploring their
synergetic use. Even though preliminary attempts to integrate learning with abstraction
gave positive results [Knoblock et al., 1991al, the researchers have not pursued this direction.
Second, there has been no automated techniques for deciding when to invoke specific learning
modules. The user has traditionally been responsible for the choice among available learning
systems. Addressing these gaps is among the goals of our work on the SHAPER system.

2.1.2 Advantages and drawbacks

The PRODIGY architecture is based on two major design decisions, which differentiate it
from other problem-solving systems. First, it combines backward chaining with simulated
execution of relevant operators. Second, it fully instantiates operators in early stages of
search, whereas most classical systems delay the commitment to a specific instantiation.

The backward-chaining procedure selects operators relevant to the goal, instantiates
them, and arranges them into a partial-order solution. The forward chainer simulates the
execution of these operator and gradually constructs a total-order sequence of operators.
The system keeps track of the simulated world state, which would result from executing this
sequence.

The problem solver utilizes the simulated world state in selecting operators and their
instantiations, which improves the effectiveness of goal-directed reasoning. In addition,
PRODIGY learning modules use the state to identify reasons for successes and failures of
the search algorithm.

Since PRODIGY uses fully instantiated operators, it efficiently handles a powerful domain

42 CHAPTER 2. PRODIGY SEARCH

language. In particular, it supports the use of disjunctive and quantified preconditions,
conditional effects, and arbitrary constraints on the values of operator variables [Carbonell
et al., 1992]. The solver utilizes the knowledge of the world state in choosing appropriate
instantiations.

On the flip side, early commitment to full instantiations and specific execution order
leads to a large branching factor, which results in gross inefficiency of breadth-first search.
The problem solver uses depth-first search and relies on heuristics for selecting appropriate
branches of the search space, which usually leads to finding suboptimal solutions. If the
heuristics prove misleading, the solver expands wrong branches and may fail to find a solu-
tion. When a problem has no solution, a large branching factor becomes a major handicap:
PRODIGY cannot exhaust the available space in reasonable time.

A formal comparison of PRODIGY with other search systems is still an open problem;
however, multiple experimental studies have confirmed that PRODIGY search is an efficient
strategy [Stone et al., 1994]. Experiments also revealed that PRODIGY and backward chainers
perform well in different domains. Some tasks are more suitable for execution simulation,
whereas others require standard backward chaining. Veloso and Blythe [1994] identified some
domain properties that determine which of the two strategies is more effective.

Kambhampati and Srivastava [1996a; 1996b] investigated common principles underlying
PRODIGY and least-commitment search. They developed a framework that generalizes these
two types of goal-directed reasoning and combines them with direct forward search. They
implemented the Universal Classical Planner (UCP), which can use all these search strategies;
however, the resulting general algorithm has many branching points, which give rise to an
impractically large search space. The main open problem is development of heuristics that
would effectively use the flexibility of ucP to guide the search.

Blum and Furst [1997] constructed GRAPHPLAN, which uses the domain state in a differ-
ent way. They implemented propagation of constraints from the initial state of the domain,
which enables their system to identify some operators with unsatisfiable preconditions. The
system then discards these operators and uses backward chaining to construct a solution
from the remaining operators. GRAPHPLAN performs forward constraint propagation prior
to the search for a solution. Unlike PRODIGY, it does not use forward search from the initial
state.

The relative performance of PRODIGY and GRAPHPLAN also varies from domain to do-
main. The GRAPHPLAN algorithm has to generate and store all possible instantiations of
all operators before searching for a solution, which often causes a combinatorial explosion;
thus, PRODIGY usually faster than GRAPHPLAN in large-scale domains. On the other hand,
GRAPHPLAN wins in small-scale domains that require extensive search.

Researchers recently applied PRODIGY to robot navigation and discovered that its exe-
cution simulation is useful for interleaving search with real execution. In particular, Blythe
and Reilly [1993a; 1993b] explored techniques for planning routes of a household robot in a
simulated environment. Stone and Veloso [1996] constructed a mechanism for user-guided
interleaving of problem solving and execution.

Haigh and Veloso [1996; 1997; 1998a; 1998b] built a system that navigates XAVIER, a
real robot at Carnegie Mellon University. Haigh [1998] integrated this system with XAVIER’s
low-level control procedures, and demonstrated its effectiveness in planning and guiding the

2.2. SEARCH ENGINE 43

robot’s high-level actions.

Their interleaving algorithms begin the real-world execution before PRODIGY completes
the search for a solution, thus eliminating some backtracking points in the search space. This
strategy involves the risk of bringing the robot to a deadend or even into an inescapable trap.
To avoid such traps, Haigh and Veloso restricted the use of their system to domains with
reversible actions.

2.2 Search engine

We next describe the basics of PRODIGY search; the description is based on the results of
joint work with Veloso on formalizing the main principles underlying the PRODIGY system
[Fink and Veloso, 1996]. All versions of the system are based on the algorithm described
here; however, they differ from each other in the decision points used for backtracking, and
in the general heuristics for guiding the search.

We present the foundations of the PRODIGY domain language (Section 2.2.1), encoding of
intermediate incomplete solutions (Section 2.2.2), and the algorithm that combines backward
chaining with execution simulation (Sections 2.2.3 and 2.2.4). We delay the discussion of
techniques for handling disjunctive and quantified preconditions until Section 2.3. After
describing the search engine, we discuss differences among the main versions of PRODIGY
(Section 2.2.5).

2.2.1 Encoding of problems

We define a problem domain by a set of object types and a library of operators that act
on objects of these types. The PRODIGY language for describing operators is based on the
STRIPS domain language [Fikes and Nilsson, 1971], extended to express conditional effects,
disjunctive preconditions, and quantifications.

An operator is defined by its preconditions and effects. The preconditions of an operator
are the conditions that must be satisfied before its execution. They are represented by a
logical expression with negations, conjunctions, disjunctions, and universal and existential
quantifiers. The effects are encoded as a list of predicates added to or deleted from the
current state of the domain upon the execution.

We may specify conditional effects, also called if-effects, whose outcome depends on the
domain state. An if-effect is defined by its conditions and actions. If the conditions hold,
the effect changes the state, according to its actions. Otherwise, it does not affect the state.

The effect conditions are represented by a logical expression, in the same way as operator
preconditions; however, their meaning is somewhat different. If the preconditions of an
operator do not hold in the state, then the operator cannot be executed. On the other hand,
if the conditions of an if-effect do not hold, we may execute the operator, but the if-effect
does not change the state.

The actions of an if-effect are predicates, to be added to or deleted from the state; that
is, their encoding is identical to that of unconditional effects. We refer to both unconditional
effects and if-effect actions as simple effects. When we talk about “effects” without explicitly
referring to if-effects, we mean simple effects.

44

’ Package ‘ ’ Place‘

’ Town‘ ’ Village ‘

CHAPTER 2. PRODIGY SEARCH

—— TypeHierarchy —

leave-town(<from>, <to>)

<from>: type Town

<to>: type Place

Pre: (truck-at <from>)

Eff: del (truck-at <from>)
add (truck-at <to>)

leave-village(<from>, <to>)
<from>: type Village
<to>: type Place
Pre: (truck-at <from>)
(extra-fuel)
Eff: del (truck-at <from>)
add (truck-at <to>)

load(<pack>, <place>)

<pack>: type Package

<place>: type Place

Pre: (at <pack> <place>)
(truck-at <place>)

Eff: del (at <pack> <place>)

unload(<pack>, <place>)

<pack>: type Package

<place>: type Place

Pre: (in-truck <pack>)
(truck-at <place>)

fuel(<place>)

<place>: type Town
Pre: (truck-at <place>)
Eff: add (extra-fuel)

cushion(<pack>)
<pack>: type Package
Eff: del (fragile <pack>)

Eff: del (in-truck <pack>)
add (at <pack> <place>)

add (in-truck <pack>)
(if (fragile <pack>)
add (broken <pack>))

Figure 2.1: Encoding of a simple trucking world in the PRODIGY domain language. The Trucking
Domain is defined by a hierarchy of object types and a library of six operators.

In Figure 2.1, we give an example of a simple domain. Note that the syntax of this
domain description slightly differs from the PRODIGY language [Carbonell et al., 1992], for
the purpose of better readability. The domain includes two types of objects, Package and
Place. The Place type has two subtypes, Town and Village. We use types to limit the allowed
values of variables in the operator description.

A truck carries packages between towns and villages. The truck’s fuel tank is sufficient
for only one ride. Towns have gas stations, so the truck can refuel before leaving a town. On
the other hand, villages do not have gas stations; if the truck comes to a village without a
supply of extra fuel, it cannot leave. To avoid this problem, the truck can get extra fuel in
any town.

We have to load packages before driving to their destination and unload afterwards. If a
package is fragile, it gets broken during loading. We may cushion a package by soft material,
which removes the fragility and prevents breakage.

A problem is defined by a list of object instances, an initial state, and a goal statement.
The initial state is a set of literals, whereas the goal statement is a condition that must hold
after executing a solution. A complete solution is a sequence of instantiated operators that
can be executed from the initial state to achieve the goal. We give an example of a problem
in Figure 2.2. The task in this problem is to deliver two packages from town-1 to ville-1. We
may solve it as follows: “load(pack-1,town-1), load(pack-2,town-1), leave-town(town-1,ville-1),
unload(pack-1,ville-1), unload(pack-2,ville-1)).”

The initial state may include literals that cannot be added or deleted by operators, called
static literals. For example, if the domain did not include the fuel operator, then (extra-fuel)

2.2. SEARCH ENGINE 45

nitial — Set of Objects
nitial State pack-1, pack-2: type Package
town-1 town-1: type Town

) @1) ville-1: type Village
@@ —— Goal Statement —
ville-1
(at pack-1 town-1) Q

(at pack-2 town-1) .
(truck-at town-1) (at pack-1ville-1)
(at pack-2 ville-1)

Figure 2.2: Encoding of a problem in the Trucking Domain, which includes a set of object instances,
initial world state, and goal statement; the task is to deliver two packages from town-1 to ville-1.

would be a static literal. If all instantiations of a predicate are static literals, we say that
the predicate itself is static. Since no operator sequence can affect these literals, the goal
statement should be consistent with the static elements of the initial state. Otherwise, the
problem is unsolvable and the system reports failure without search.

2.2.2 Incomplete solutions

Given a problem, most problem-solving systems begin with the empty set of operators and
modify it until a solution is found. Examples of modifications include adding an operator,
instantiating or constraining a variable in an operator, and imposing an ordering constraint.
The intermediate sets of operators are called incomplete solutions. We view them as nodes in
the search space of the solver algorithm. Each modification of a current incomplete solution
gives rise to a new node, and the number of possible modifications determines the branching
factor of the search.

Researchers have explored a variety of structures for representing an incomplete solution.
In particular, it may be a sequence of operators [Fikes and Nilsson, 1971] or a partially
ordered set [Tate, 1977]. Some problem solvers fully instantiate the operators, whereas other
solvers use the unification of operator effects with the corresponding goals [Chapman, 1987].
Some systems mark relations among operators by causal links [McAllester and Rosenblitt,
1991], and others do not explicitly maintain these relations.

In PRODIGY, an incomplete solution consists of two parts, a total-order head and tree-
structured tail (see Figure 2.3). The root of the tail’s tree is the goal statement G, the other
nodes are fully instantiated operators, and the edges are ordering constraints.

The tail is built by a backward chainer, which starts from the goal statement and adds
operators, one by one, to achieve goal literals and preconditions of previously added oper-
ators. When the algorithm adds an operator to the tail, it instantiates the operator, that
is, replaces all the variables with specific objects. The preconditions of a fully instantiated
operator are a conjunction of literals, where every literal is an instantiated predicate.

The head is a sequence of instantiated operators that can be executed from the initial
state. It is generated by the execution-simulating algorithm described in Section 2.2.3. The

46 CHAPTER 2. PRODIGY SEARCH

Initial Current Goal
State State Staterment

-
=1
<--hed - = I|<gap>=l =-- tal -->

Figure 2.3: Representation of an incomplete solution: It consists of a total-order head, which can
be executed from the initial state, and a tree-structured tail constructed by a backward chainer.
The current state C' is the result of applying the head operators to the initial state I.

Initial State Current State Goal Statement
unload
(in-truck (pack-1,
o pack-1) ville-1) (aﬁvﬁ?gkl')l
(pack-1, (at pack-2 |<- gap =
town-1) (at pack-2
town-1) (truck-at unload ville-1)
town-1) (pack-2,
ville-1)

Figure 2.4: Example of an incomplete solution in the Trucking Domain: The head consists of a
single operator, load; the tail comprises two unload operators, linked to the goal literals.

state C' achieved by executing the head is the current state. In Figure 2.4, we illustrate an
incomplete solution for the example trucking problem.

Since the head is a total-order sequence of operators that do not contain variables, the
current state C' is uniquely defined. The backward chainer, responsible for the tail, views C'
as its initial state. If the tail operators cannot be executed from the current state C, then
there is a “gap” between the head and tail. The purpose of problem solving is to bridge
this gap. For example, we can bridge the gap in Figure 2.3 by a sequence of two operators,
“load(pack-2,town-1), leave-town(town-1,ville-1).”

2.2.3 Simulating execution

Given an initial state I and a goal statement G, PRODIGY begins with the empty head and
tail, and modifies them, step by step, until it builds a complete solution. Thus, the initial
incomplete solution has no operators and its current state is the same as the initial state,
C=1.

At each step, PRODIGY can modify the current incomplete solution in one of two ways
(see Figure 2.5). First, it can add an operator to the tail (operator ¢ in the picture), to
achieve a goal literal or a precondition of another operator. Tail modification is a job of the
backward-chaining algorithm, described in Section 2.2.4.

Second, PRODIGY can move some operator op from the tail to the head (operator x in the
picture). The preconditions of op must be satisfied in the current state C'. The operator op
becomes the last operator of the head, and the current state is modified according to the
effects of op. The search algorithm usually has to select among several operators that can

2.2. SEARCH ENGINE 47

ol s
ppd N
150 no8 (oo oeg

Adding an operator to the tail Applying an operator (moving it to the head)

Figure 2.5: Modifying an incomplete solution: PRODIGY either adds a new operator to the tail
tree (left), or moves one of the previously added operator to the head (right).

be moved to the head; thus, it needs to decide on the order of executing these operators.

Intuitively, we may imagine that the system executes the head operators in the real world
and has already changed the world from its initial state I to the current state C. If the tail
contains an operator whose preconditions are satisfied in C', then PRODIGY applies this
operator and further changes the state. Because of this analogy with the real-world changes,
moving an operator from the tail to the head is called the application of the operator;
however, this term refers to simulating an operator application. Even if the execution of the
head operators is disastrous, the world does not suffer: the search algorithm backtracks and
tries an alternative execution sequence.

When the system applies an operator to the current state, it begins with the deletion
effects, and removes the corresponding literals from the state; then, it performs addition of
new literals. Thus, if the operator adds and deletes the same literal, the net result is adding
it to the state.

For example, suppose that the current state includes the literal (truck-at town-1), and
PRODIGY simulates the application of leave-town(town-1,town-1), whose effects are “del
(truck-at town-1)” and “add (truck-at town-1).” The system first removes this literal from
the state description, and then adds it back. If the system processed the effects in the oppo-
site order, it would permanently remove the truck’s location, thus obtaining an inconsistent
state.

An operator application is the only way of updating the head. The system never inserts
a new operator directly into the head, which means that it uses only goal-relevant operators
in the forward chaining. The search terminates when the head operators achieve the goals;
that is, the goal statement G is satisfied in C. If the tail is not empty at that point, it is
dropped.

2.2.4 Backward chaining

We next describe the backward-chaining procedure that constructs the tree-structured tail
of an incomplete solution. When the problem solver invokes this procedure, it adds a new
operator to the tail, for achieving either a goal literal or a precondition literal of another tail
operator. Then, it establishes a link from the newly added operator to the literal achieved by
this operator, and adds the corresponding ordering constraint. For example, if the incomplete
solution is as shown in Figure 2.4, then the procedure may add the operator load(pack-2,ville-

48 CHAPTER 2. PRODIGY SEARCH

Current State Goal Statement

(in-truck

pack-1) ™S ?p?ala(:)lfli
in-truck e
() (uckal, 7| villeD) | 7 (at pack-1
(at pack-2 ville-1)
town-1)
k-2 (in-truck (at pack-2
(truck-at (@pack2 . | load | A(0IUCK | unload ville-1)
town-1) W)/ (pack-2, P)/ (pack-2,
(trt%(\:llv(ﬁ?tl) town-1) (trtltj)(\:/\i/(r}?i) ville-1)

Figure 2.6: Example of the tail in an incomplete solution to a trucking problem. First, the
backward chainer adds the unload operators, which achieve the two goal literals. Then, it inserts
load to achieve the precondition (in-truck pack-1) of unload(pack-2,ville-1).

| |

| load (in-truck :

: (<pack>, —=" pack-2)---- !

| <place>) l

e - - - |
,,,,,,,,,,,,,,, £l LN
| |
| load (in-truck : | load (in-truck :
| (pack2, =="pack-2) || (pack-2, —="pack-2) -~
! town-1) l ! ville-1) l

Figure 2.7: Instantiating a newly added operator: If the set of objects is as shown in Figure 2.2,
PRODIGY can generate two alternative versions of load for achieving the subgoal (in-truck pack-2).

1) to achieve the precondition (in-truck pack-2) of unload(pack-2,ville-1) (see Figure 2.6). If
the backward chainer uses an if-effect of an operator to achieve a literal, then the effect’s
conditions are added to the preconditions of the instantiated operator.

PRODIGY tries to achieve a literal only if it is not true in the current state C' and has
not been linked to any tail operator. Unsatisfied goal literals and preconditions are called
subgoals. For example, the tail in Figure 2.6 has two identical subgoals, marked by italics.

Before inserting an operator into the tail, the solver fully instantiates it, that is, sub-
stitutes all free variables of the operator with specific object instances. Since the PRODIGY
domain language allows the use of disjunctive and quantified preconditions, instantiating an
operator may be a difficult problem. The system uses a constraint-based matching procedure
that generates all possible instantiations [Wang, 1992].

For example, suppose that the backward chainer uses an operator load(<pack>,<place>)
to achieve the subgoal (in-truck pack-2) (see Figure 2.7). First, PRODIGY instantiates the
variable <pack> with the instance pack-2 from the subgoal literal. Then, it has to instantiate
the other free variable, <place>. Since the domain has two places, town-1 and ville-1, the
variable has two possible instantiations, which give rise to different branches in the search
space (Figure 2.7).

In Figure 2.8, we summarize the search algorithm, which explores the space of incomplete
solutions. The Operator-Application procedure builds the head and maintains the current
state, whereas Backward-Chainer constructs the tail.

2.2. SEARCH ENGINE 49

The algorithm includes five decision points, which give rise to different branches of the
search space. It can backtrack over the decision to apply an operator (Line 2a), and over
the choice of an “applicable” tail operator (Line 1b). It also backtracks over the choice of
a subgoal (Line 1c), an operator that achieves it (Line 2¢), and the operator’s instantiation
(Line 4c). We summarize the decision points in Figure 2.9.

Note that the first two choices (Lines 2a and 1b) enable the problem solver to consider
different orderings of head operators. These two choices are essential for solving problems
with interacting subgoals; they are analogous to the choice of ordering constraints in least-
commitment algorithms.

2.2.5 Main versions

The algorithm in Figure 2.9 has five decision points, which allow flexible selection of opera-
tors, their instantiations, and order of their execution; however, these decisions give rise to a
large branching factor. The use of built-in heuristics, which eliminate some of the available
choices, may reduce the search space and improve the efficiency. On the negative side, such
heuristics prune some solutions and may direct the search to a suboptimal solution, or even
prevent finding any solution. Determining appropriate restrictions on the solver’s choices is
one of the major research problems.

Even though the described algorithm underlies all PRODIGY versions, from PRODIGY1 to
FLECS, the versions differ in their use of decision points and built-in heuristics. Researchers
investigated different trade-offs between flexibility and reduction of branching. They gradu-
ally increased the number of available decision points, from two in PRODIGY1 to all five in
FLECS. We outline the use of the backtracking mechanism and its evaluation in the PRODIGY
architecture.

The versions also differ in some features of the domain language, in the use of learning
modules, and in the low-level implementation of search mechanisms. We do not discuss these
differences; the reader may learn about them from the review article by Veloso et al. [1995].

PRODIGY1 and PRODIGY2

The early versions of PRODIGY had only two backtracking points: the choice of an operator
(Line 2c¢ in Figure 2.8) and the instantiation of the selected operator (Line 4c). The other
three decisions were based on fixed heuristics, which did not give rise to multiple search
branches. The algorithm preferred operator application to adding new operators (Line 2a),
applied the tail operator that had been added last (Line 1b), and achieved the first unsatisfied
precondition of the last added operator (Line lc). This algorithm generated suboptimal
solutions and sometimes failed to find any solution.

For example, consider the PRODIGY2 search for the problem in Figure 2.2. The solver
adds unload(pack-1,ville-1) to achieve (at pack-1 ville-1), and load(pack-1,town-1) to achieve
the precondition (in-truck pack-1) of unload (see Figure 2.10a). Then, it applies load and
adds leave-town(town-1,ville-1) to achieve the precondition (truck-at ville-1) of unload (Fig-
ure 2.10b). Finally, PRODIGY applies leave-town and unload (Figure 2.10c¢), thus bringing
only one package to the village.

50 CHAPTER 2. PRODIGY SEARCH

Base-PRODIGY
la. If the goal statement G is satisfied in the current state C', then return the head.
2a. Either
(i) Backward-Chainer adds an operator to the tail,
(ii) or Operator-Application moves an operator from the tail to the head.
Decision point: Choose between (i) and (ii).
3a. Recursively call Base-PRODIGY on the resulting incomplete solution.

Operator-Application
1b. Pick an operator op, in the tail, such that
(i) there is no operator in the tail ordered before op,
(ii) and the preconditions of op are satisfied in the current state C.
Decision point: Choose one of such operators.
2b. Move op to the end of the head and update the current state C.

Backward-Chainer
lc. Pick a literal | among the current subgoals.
Decision point: Choose one of the subgoal literals.
2c. Pick an operator op that achieves [.
Decision point: Choose one of such operators.
3c. Add op to the tail and establish a link from op to [.
4c. Instantiate the free variables of op.
Decision point: Choose an instantiation.
5c. If the effect that achieves [has conditions,

then add them to the operator preconditions.

Figure 2.8: Foundations of the PRODIGY search algorithm: The Operator-Application procedure
simulates execution of operators, whereas Backward-Chainer selects operators relevant to the goal.

********** Base-PRODIGY ~-~--~--~--~ "1

|
1 2a. Decide whether to apply an operator
I
|
|

apply or add a new operator to the tail add new
operator | , o~ 7 operator
***** Operator-Application - - - - - ------ Backward-Chainer ------
v

———————————————————————— [\l/

2c. Choose an operator
that achievesthisliteral

| i

4c. Choose an instantiation for
the variables of the operator

Figure 2.9: Main decision points in the PRODIGY search engine, summarized in Figure 2.8. Every
decision point allows backtracking, thus giving rise to multiple branches of the search space.

2.2. SEARCH ENGINE 51

Goal
Statement

|
l
|
(at pack-1 in- - !
town-1) | load /('g‘a(‘j(‘i%\ unload /,(?,E @Ci‘)l }
(truck-at - (tpack-%, truck-at .7 (p'?ICk-lL (et pack-2 | |
town-1)~ [_town-1) (viIIe-l) ville-1) villel)) |
1
777777777777777777777777 [e i J
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Vo
l Current State Goal |
I i Statement
! (i n—tg(u% i
| pm - . |
| load [eave (in-truck load (at pack-1) |
(b) (peckc1, [@padic? | (rudkegt | fown | POel) SN g o villed)
| town-1) town-I) 1 CONE 3 | \truck-at 7| Ville1) | |(@pack-2 | |
! (truck-at ville-1) ville'l) /)
| town-1) |
| L L L L L L L L L L L L L L Ll o et e il I
0k
Co e T T
| |
1 l
| |
! load leave- unload |
© (pack-1, —| (S, — (pack-1, |
! town-1) ville-1) ville-1) \
| |
| |
N |
FAILURE

Figure 2.10: Incompleteness of PRODIGY2: The system fails to solve the trucking problem in
Figure 2.2. Since the PRODIGY2 search algorithm always prefers the operator application to adding
new operators, it cannot load both packages before driving the truck to its goal destination.

Since the algorithm uses only two backtracking points, it does not consider loading two
packages before the ride or getting extra fuel before leaving the town; thus, it fails to solve
the problem. This example demonstrates that the PRODIGY2 system is incomplete, that is, it
may fail on a problem that has a solution. The user may improve the situation by providing
domain-specific control rules, which enforce different choices of subgoals in Line 1c. Note
that PRODIGY2 does not backtrack over these choices, and an inappropriate control rule
may cause a failure. This approach often allows the enhancement of performance; however,
it requires the human operator to assume the responsibility for completeness and solution
quality.

NOLIMIT and PRODIGY4

During the work on the NOLIMIT system, Veloso added two more backtracking points, de-
laying the application of tail operators (Line 2a) and choosing a subgoal (Line 1c), and

52 CHAPTER 2. PRODIGY SEARCH

at pack-1 2
(tovF\)/n—l) N\ |(03dk L
i : PaCK=1, N (i 1
Initial State (truck-at | Yopn.1j| (in-truck (nioad Goal
town-1) pack-1) "\ Statement

(pack-1,

ied (ruckat | own. 3//(tr'tffk'1a)1 7|villed) (at pack-1
appli - ville- X(at pack-
second town-1) | (ORI vifle1)
at pack-2
(at pack-2 5 (intruck _ [o—7 4 (viIFI)el)
applied town-1)~Jload = Toan 5y unload
first (truck_at (paCk-2, (paCk'Z,
town-1) -~ |_town-1) (trplllck-la)r[/ ville-1)
vilie-

Figure 2.11: Example of inefficiency in the PRODIGY4 system; the boldface numbers, in the upper
right corners of operators, mark the order of adding operators to the tail. Since the PRODIGY4
algorithm always applies the last added operator, it attempts to apply leave-town before one of
the load operators, which leads to a deadend and requires backtracking.

later PRODIGY4 inherited these points. On the other hand, PRODIGY4 makes no decision in
Line 1b: it always applies the last added operator. The absence of this decision point does
not rule out any solutions, but sometimes negatively affects the search time.

For instance, if we use PRODIGY4 to solve the problem in Figure 2.2, it may generate
the tail shown in Figure 2.11, where the numbers show the order of adding operators. We
could now solve the problem by applying the two load operators, the leave-town operator,
and then both unload operators; however, the solver cannot use this application order. The
system applies leave-town before one of the load operators, which leads to a deadend. It
then has to backtrack and construct a new tail, which allows the right order of applying the
operators.

FLECS

The FLECS algorithm has all five decision points, but it does not backtrack over the choice of
a subgoal (Line 1c), which means that only four points give rise to multiple search branches.
Since backtracking over these points may produce an impractically large space, Veloso and
Stone [1995] implemented general heuristics that further limit the space.

They experimented with two versions of the FLECS algorithm, called SAVTA and SABA,
which differ in their choice between adding an operator to the tail and applying an operator
(Line 2a). SAVTA prefers to apply tail operators before adding new ones, whereas SABA tries
to delay their application.

Experiments have demonstrated that the greater flexibility of PRODIGY4 and FLECS usu-
ally gives an advantage over PRODIGY2, despite the larger branching factor. The relative
effectiveness of PRODIGY4, SAVTA, and SABA depends on the specific domain, and the right
choice among these algorithms is often essential for performance [Stone et al., 1994].

Veloso has recently fixed a minor bug in the implementation of SABA, which sometimes led
to inappropriate search decisions; however, she has not yet reported empirical evaluation of
the corrected algorithm. Note that we employed the original version of SABA in experiments
with the SHAPER system, since the bug has been found after the completion of our work.

2.3. EXTENDED DOMAIN LANGUAGE 53

Goal Statement
cushion(<pack>, <place>) Cexists <pack>_of type Package)
<pack>: type Package (at <pack> ville-1))
<place>: type Place (b) Existential quantification.

Pre: (or (at <pack> <place>)
(in-truck <pack>)) Goal Statement
Eff: del (fragile <pack>) Cforall <pack> of type Package)
(at <pack> ville-1))

(&) Disjunction. (c) Universal quantification.
Figure 2.12: Examples of disjunction and quantification in the PRODIGY domain language. The
user may utilize these constructs in precondition expressions and goal statements.

2.3 Extended domain language

The PRODIGY domain language is an extension of the STRIPS language [Fikes and Nilsson,
1971]. The STRIPS system used a limited description of operators, and PRODIGY researchers
added several advanced features, which allowed encoding of large-scale domains. The new
features included complex preconditions and goal expressions (Section 2.3.1), inference rules,
(Section 2.3.2), and flexible use of object types (Section 2.3.3).

2.3.1 Extended operators

The PRODIGY domain language allows complex logical expressions in operator preconditions,
if-effect conditions, and goal statements. They may include not only negations and conjunc-
tions, but also disjunctions and quantifications. The language also enables the user to specify
the costs of operators, which serve as a measure of solution quality.

Disjunctive preconditions

To illustrate the use of disjunction, we consider a variation of the cushion operator, given
in Figure 2.12(a). In this example, we can cushion a package when it is inside or near the
truck.

When PRODIGY instantiates an operator with disjunctive preconditions, it generates an
instantiation for one element of the disjunction and discards all other elements. For example,
if the solver has to cushion pack-1, it may choose the instantiation (at pack-1 town-1), which
matches (at <pack> <place>), and discard the other element, (in-truck <pack>).

If the initial choice does not lead to a solution, the solver backtracks and considers the in-
stantiation of another element. For instance, if the selected version of the cushion(o)perator
has proved inadequate, PRODIGYmay discard the first element of the conjunction, (at <pack>
<place>), and choose the instantiation (in-truck pack-1) of the other element.

54 CHAPTER 2. PRODIGY SEARCH

Quantified preconditions

We illustrate the use of quantifiers in Figures 2.12(b) and 2.12(c). In the first example, the
solver has to transport any package to ville-1. In the second example, it has to deliver all
packages to the village.

When the problem solver instantiates an existential quantification, it selects one object of
the specified type. For example, it may decide to deliver pack-1 to ville-1, thus replacing the
goal in Figure 2.12(b) by (at pack-1 ville-1). If the chosen object does not lead to a solution,
PRODIGY backtracks and tries another one. When instantiating a universally quantified
expression, the solver treats it as a conjunction over all matching objects.

Instantiated operators

The pPrRODIGY language allows arbitrary logical expressions, which may contain multiple
levels of negations, conjunctions, disjunctions and quantifications. When adding an opera-
tor to the tail, the problem solver generates all possible instantiations of its preconditions
and chooses one of them. If the solver backtracks, it chooses an alternative instantiation.
Every instantiation is a conjunction of literals, some of which may be negated; it has no
disjunctions, quantifications, or negated conjunctions.

Wang [1992] has designed an advanced algorithm for generating possible instantiations of
operators and goal statements. In particular, she developed an efficient mechanism for prun-
ing inconsistent choices of objects and provided heuristics for selecting the most promising
instantiations.

Costs

The use of operator costs allows us to measure the quality of complete solutions. We assign
nonnegative numerical costs to instantiated operators, and define a solution cost as the sum
of its operator costs. The lower the cost, the better the solution.

The authors of the original PRODIGY architecture did not provide support for operator
costs, and usually measured the solution quality by the number of operators. Pérez [1995]
has implemented a mechanism for using operator costs during her exploration of control
rules for improving solution quality; however, she did not incorporate costs into the main
version.

We re-implemented the cost mechanism during the work on the SHAPER system. In
Figure 2.13, we give an example of cost encoding. For every operator, the user specifies a
Lisp function, whose arguments are operator variables. Given specific object instances, the
function returns the corresponding cost, which must be a nonnegative real number. If the
operator cost does not depend on the instantiation, it may be specified by a number rather
than a function. If the user does not encode a cost, then by default it is 1.

The example in Figure 2.13(a) includes two cost functions, called leave-cost and load-
cost. We give pseudocode for these functions (Figure 2.13b) and their real encoding in the
PRODIGY system (Figure 2.13c).

The cost of driving between two locations is linear in the distance, determined by the
miles function. The user may specify distances by a matrix or by a list of initial-state

2.3. EXTENDED DOMAIN LANGUAGE %)

leave-town(<from>, <to>) load(<pack>, <place>))

. cushion(<pack>)
<from>: type Town <pack>: type Package <packo: tvbe Package
<to>: type Place <place>: type Place P -typ &

- o Cogt
Cost: leave-cost(<from>,<to>) Cost: load-cost(<place>) °
(@) Use of cost functions and constant costs.
leave-cost (<from>,<to>) (defun leave-cost (<from> <to>)
Return 0.2 - miles(<from>,<to>) + 5. (+ (* 0.2 (miles <from> <to>)) 5))
load-cost (< place>) (defun load-cost (<place>)
If <place> isof type Village, (if (eg (type-name (prodigy-object-type <place>)) 'Village)
then, return 4; esle, return 3. 43)
(b) Pseudocode of the cost functions. (c) Actual LISP functions.

Figure 2.13: Encoding of operator costs: The user may specify a constant cost value or, alterna-
tively, a Lisp function that inputs operator variables and returns a nonnegative real number. If the
description of an operator does not include a cost, PRODIGY assumes that it is 1.

literals, and should provide the appropriate look-up procedure. The loading cost depends
on the location type; it is larger in villages. Finally, the cost of the cushion operator is
constant.

When the problem solver instantiates an operator, it calls the corresponding function
to determine the cost of the resulting instantiation. If the returned value is negative, the
system signals an error. Note that, since incomplete solutions consist of fully instantiated
operators, the solver can determine the cost of every intermediate solution.

2.3.2 Inference rules

The PRODIGY language supports two mechanisms for changing the domain state, operators
and inference rules, which have identical syntax but differ in semantics. Operators encode
actions that change the world, whereas rules point out implicit properties of the world state.

Example

In Figure 2.14, we show three inference rules for the Trucking Domain. In this example,
we have made two modifications to the original domain description (see Figure 2.1). First,
the cushion operator adds (cushioned <pack>) instead of deleting (fragile <pack>), and the
add-fragile rule indicates that uncushioned packages are fragile. Thus, the user does not
have to specify fragility in the initial state.

Second, the domain includes the type County and the predicate (within <place> <county>).
Note that this predicate is static, that is, it is not an effect of any operator or inference
rule. We use the add-truck-in rule to infer the county of the truck’s current location. For
example, if the truck is at town-1, and town-1 is within county-1, then the rule adds (truck-in

56 CHAPTER 2. PRODIGY SEARCH

TypeHierarchy
Inf-Rule add-fragile(<pack>)

<pack>: type Package
Pre: not (cushioned <pack>)
Eff: add (fragile <pack>)

cushion(<pack>)
<pack>: type Package
Eff: add (cushioned <pack>)

’Package‘ ’ Place ‘ ’ County‘

’ Town‘ ’ Village ‘

Inf-Rule add-in(<pack>, <place>, <county>)
<pack>: type Package
<place>: type Place
<county>: type County
Pre: (at <pack> <place>)
(within <place> <county>)
Eff: add (in <pack> <county>)

Inf-Rule add-truck-in(<place>, <county>)
<place>: type Place
<county>: type County
Pre: (truck-at <place>)
(within <place> <county>)
Eff: add (truck-in <county>)

Figure 2.14: Encoding of inference rules in the PRODIGY domain language. These rules point out
indirect results of changing the world state; their syntax is identical to that of operators.

Initial State
truck-at
(town-1) (truck-at Goal Statement
(within leave-town town-2)~| add-truck-in)
town-1 (truck-at —| (town-1 7 (town-2 L (truck-in
county-1) town-1) \ (within = ' county-2)
(within town-2) town-2 county-2)
town-2 county-2)

county-2)

Figure 2.15: Use of an inference rule in backward chaining: PRODIGY links the add-truck-in rule
to the goal literal, and then adds leave-town to achieve the rule’s precondition (truck-at town-2).

county-1) to the current state. Similarly, we use add-in to infer the current county of each
package.

Use of inferences

The encoding of inference rules is the same as that of operators, which may include disjunctive
and quantified preconditions, and if-effects; however, the rules have no costs and their use
does not affect the overall solution cost.

The use of inference rules is also similar to that of operators: the problem solver adds an
instantiated rule to the tail, for achieving the selected subgoal, and applies the rule when its
preconditions hold in the current state. We illustrate it in Figure 2.15, where the solver uses
the add-truck-in rule to achieve the goal, and then adds leave-town to achieve a rule’s
precondition.

If the system applies an inference rule and later adds an operator that invalidates the
rule’s preconditions, then it removes the rule’s effects from the state. For example, the
inference rule in Figure 2.16(a) adds (truck-in town-2) to the state. If the system then applies

2.3. EXTENDED DOMAIN LANGUAGE 57

| Initial State |
b/ (truck-at !
1 town-1) (truckat |
| Miown : town-2) | |
| county-1) leave-town add-truck-in (truck-in !
@ | (within [(town-l, | (town-2, county-2) | |
: town-2 town-2) county-2) (within...) | |
. | county-2) (within...) | |
| (within i
w town-3 I
1 _ county-3) / |
. S e e e e e e I
777777777777777777777777 v —_— e o — o — — —
: Current State |
! |
! roTTTomTmTmm e |
} leave-town . add-truck-in leave-town OW !
(b) | (town-1, - (town-2, — (town-2, (within...) ||
| town-2) . county-2) | town-3) (within . ..) |
N |
|

Figure 2.16: Cancelling the effects of an inference rule upon the negation of its preconditions:
When PRODIGY applies leave-town(town-2,town-3), it negates the precondition (truck-at town-2)
of the add-truck-in rule; hence, the system removes the effects of this rule from the current state.

leave-town (Figure 2.16b), it negates the preconditions of add-truck-in and, hence, cancels
its effects. This semantics differs from the use of operators, whose effects remain in the state,
unless deleted by opposite effects of other operators.

Eager and lazy rules

The Backward-Chainer algorithm selects rules at its discretion and may disregard unwanted
rules. On the other hand, if some inference rule has an undesirable effect, it should be applied
regardless of the solver’s choice. For example, if pack-1 is not cushioned in the initial state,
the system should immediately add (fragile pack-1) to the state.

When the user encodes a domain, she has to mark all rules that have unwanted effects.
When the preconditions of a marked rule hold in the current state, the system applies it at
once, even if it is not in the tail. The marked inference rules are called eager rules, whereas
the others are lazy rules. Note that Backward-Chainer may use both eager an lazy rules, and
the only special property of eager rules is their forced application in the matching states. If
the user wants Backward-Chainer to disregard some eager rules, she may provide a control
rule that prevents their use in the tail.

Truth maintenance

When the PRODIGY system applies an operator or inference rule, it updates the current state
and then identifies the previously applied rules whose preconditions no longer hold. If the
system finds such rules, it modifies the state by removing their effects. If some rules that

58 CHAPTER 2. PRODIGY SEARCH

remain in force have if-effects, the system must check the conditions of every if-effect, which
may also lead to modification of the state. Next, PRODIGY looks for an eager rule whose
conditions hold in the resulting state. If the system finds such a rule, then it applies the rule
and further changes the state.

If inference rules interact with each other, then this process may involve a chain of rule
applications and cancellations. It terminates when the system gets to a state that does
not require applying a new eager rule or removing effects of old rules. This chain of state
modifications, which does not involve search, is similar to the firing of productions in the
Soar system [Laird et al., 1986; Golding et al., 1987].

Blythe designed an efficient truth-maintenance procedure, which keeps track of all ap-
plicable inference rules and controls the described forward chaining. The solver invokes this
procedure after each application of an operator or inference rule from the tail.

If the user provides inference rules, she has to ensure that the resulting inferences are
consistent. In particular, a rule must not negate its own preconditions. If two rules may
be applied in the same state, they must not have opposite effects. If a domain includes
several eager rules, they should not cause an infinite cyclic chain of forced application. The
PRODIGY system does not check for such inconsistencies, and an inappropriate rule set may
cause unpredictable results.

2.3.3 Complex types

We have already explained the use of a type hierarchy (see Figure 2.1), which defines object
classes and enables the user to specify the allowed values of variables in operator precon-
ditions, conditions of if-effects, and goal statements. For example, the possible values of
the <from> variable in leave-town include all towns, but not villages. The early versions
of the PRODIGY system did not support a type hierarchy. Veloso designed a typed domain
language during her work on NOLIMIT, and the authors of PRODIGY4 further developed the
mechanism for using types.

A type hierarchy is a tree, whose nodes are called simple types. For instance, the hierarchy
in Figure 2.1 has five simple types: Package, Town, Village, Place, and the root type that
includes all objects. We have illustrated the use of simple types in the operator encoding;
however, they often do not provide sufficient flexibility.

For example, consider the type hierarchy in Figure 2.17 and suppose that truck may
get in extra fuel in a town or city, but not in a village. We cannot encode this constraint
with simple types, unless we define an additional type. The PRODIGY language includes a
mechanism for defining complex constraints, through disjunctive and functional types.

Disjunctive types

We illustrate the use of a disjunctive type in Figure 2.17, where it specifies the possible values
of <from> and <place>. The user specifies a disjunctive type as a set of simple types; in our
example, it includes Town and City. When the problem solver instantiates the corresponding
variable, it uses an object that belongs to any of these types. For instance, the system may
use the leave-town operator for departing from a town or city.

2.3. EXTENDED DOMAIN LANGUAGE 59

TypeHierarchy leave-town(<from>, <to>)
| <from>: type (or Town City) fuel(<place>)
’Package ‘ ’ Place ‘ ’ State ‘ <to>: type Place <place>: type (or Town City)
Pre: (truck-at <from>) Pre: (truck-at <place>)
| city | | Town | | village| Eff: del (truck-at <from>) Eff: add (extra-fuel)
add (truck-at <to>)

Figure 2.17: Disjunctive type: The <from> and <place> variables are declared as (or Town City),
which means that they may be instantiated with objects of two simple types, Town and City.

connected(<from>, <to>)
If <from> = <to>,

then return False;

else, return True.

leave-town(<from>, <to>)

<from>: type (or Town City)

<to>: type Place
connected(<from>,<to>)

Pre: (truck-at <from>) (b) Pseudocode for the function.
Eff: del (truck-at <from>)
add (truck-at <to>) (defun connected (<from> <to>)
(not (eq <from> <t0>)))
(&) Use of afunctional type. (c) Actua LISP function.

Figure 2.18: Functional type: When PRODIGY instantiates leave-town, it ensures that <from>
and <to> are connected by a road. The user has to implement a boolean Lisp function for testing
the connectivity. We give an example function, which defines the fully connected graph of roads.

Functional types

We give an example of a functional type in Figure 2.18, where it limits the values of the <to>
variable. The description of a functional type consists of two parts: a simple or disjunctive
type, and a boolean test function. The system first identifies all objects of the specified simple
or disjunctive type, and then eliminates the objects that do not satisfy the test function. The
remaining objects are the valid values of the declared variable. In our example, the valid
values of the <to> variable include all places that have road connections with the <from>
location.

The boolean function is an arbitrary Lisp procedure, whose arguments are the operator
variables. The function must input the variable described by the functional type. In addition,
it may input variables declared before this functional type; however, the function cannot
input variables declared after it. For example, we use the <from> variable in limiting the
values of <to>; however, we cannot use the <to> variable as an input to a test function for
<from>, because of the declaration order.

For instance, if every place is connected with every other place except itself, then we
use the test function given in Figure 2.18(b). The domain encoding must include a Lisp
implementation of this function, as shown in Figure 2.18(c).

60 CHAPTER 2. PRODIGY SEARCH

Use of test functions

When the system instantiates a variable with a functional type, it identifies all objects of the
specified simple or disjunctive type, prunes the objects that do not satisfy the test function,
and then selects an object from the remaining set. If the user specifies not only functional
types but also control rules, which further limit suitable instantiations, then the generation
of instantiated operators becomes a complex matching problem. Wang [1992] investigated
it and developed an efficient matching algorithm.

Test functions may use any information about the current incomplete plan, other nodes
in the search space, and the global state of the system, which allows unlimited flexibility
in constraining operator instantiations. In particular, they enable us to encode functional
effects, that is, operator effects that depend on the current state.

Generator functions

The system also supports the use of generator functions in the specification of variable types.
These functions generate and return a set of allowed values, instead of testing the available
values. The user has to specify a simple or disjunctive type along with a generator function.
When the system uses the function, it checks whether all returned objects belong to the
specified type and prunes the extraneous objects.

In Figure 2.18, we give an example that involves both a test function, called positive, and
a generator function, decrement. In this example, the system keeps track of the available
space in the trunk. If there is no space, it cannot load more packages. We use the generator
function to decrement the available space after loading a package. The function always
returns one value, which represents the remaining space.

When the user specifies a simple or disjunctive type used with a generator function,
she may define a numerical type that includes infinitely many values. For instance, the
Trunk-Space type in Figure 2.18 may comprise all natural numbers. On the other hand, the
generator function always returns a finite set. The PRODIGY manual [Carbonell et al., 1992]
contains a more detailed description of infinite types.

2.4 Search control

The efficiency of problem solving depends on the search space and the order of expanding
nodes of the space. The nondeterministic PRODIGY algorithm in Figure 2.32 defines the
search space, but does not specify the exploration order. The algorithm has several decision
points (see Figure 2.33), which require heuristics for selecting appropriate branches of the
search space.

The PRODIGY architecture includes a variety of search-control mechanisms, which com-
bine general heuristics, domain-specific experience, and advice by the human user. Some
of the basic mechanisms are an integral part of the search algorithm, hard-coded into the
system; however, most mechanisms are optional, and the user can enable or disable them at
her discretion.

2.4. SEARCH CONTROL 61

Type Hierarchy

’Package‘ ’Place‘ ’County‘ ’Trunk—Space‘

123
objects

’City‘ ’Town‘ ’Village‘ E /‘\ ﬂ

—— Test Function —
load(<pack>,<place>, .
<old-space>,<new-space>) positive (<old-space>)

<pack>: type Package If <old-space> > _0’
<place>: type Place then return True;
else, return False.
<old-space>: type Trunk-Space
positive(<old-space>)
<new-space>: type Trunk-Space
decrement(<old-space>) decrement(<old-space>)
Pre: (at <pack> <place>) If <old-space> = 0, _
(truck-at <place>) then signal an error;
else, return old-space>-1}.
(empty <old-space>)
Eff: del (at <pack> <place>)
add (in-truck <pack>)

—— Generator Function

— Actual Lisp Functions

del (empty <old-space>) (defun positive (<old-space>)

add (empty <new-space>) (> <old-space> 0)

(if (fragile <pack>) (defun decrement (<old-space>
add (broken <pack>)) (list (- <old-space> 1))

Figure 2.19: Generator function: The user provides a Lisp function, called decrement, which
generates instances of <new-space>; these instances must belong to the specified type, Trunk-Space.

We outline some control mechanisms, including heuristics for avoiding redundant search
(Section 2.4.1), main knobs for adjusting the search strategy (Section 2.4.2), and the use of
control rules to guide the search (Section 2.4.3). The reader may find an overview of other
control techniques in the article by Blythe and Veloso [1992], which explains dependency-
directed backtracking in PRODIGY, the use of limited look-ahead, and some heuristics for
choosing appropriate subgoals and instantiations.

2.4.1 Avoiding redundant search

We describe three basic techniques for eliminating redundant branches of the search space.
These techniques improve the performance in almost all domains and, hence, they are hard-
coded into the search algorithm, which means that the user cannot turn them off.

62 CHAPTER 2. PRODIGY SEARCH

Initial State Goal
k-1 (in-truck Statement
(at pack-1 (at pac
town-1 ville-1) ~| load pack-1) ~| unload)
. (peck1, (pacic1, 1= (R
(truck-at (truck-at 7| ville-l) | (truck-at 7| ville-1)
town-1) ville-1) ville-1)

Figure 2.20: Goal loop in the tail: The precondition (at pack-1 ville-1) of the load operator is the
same as the goal literal; hence, the solver has to backtrack and choose another operator.

Ix
- [|
= Y~

|

Figure 2.21: Detection of goal loops: The backward changer compares the precondition literals of
a newly added operator z with the links between z and the goal statement. If some precondition [
is identical to one of the link literals, then the solver backtracks.

Goal loops

We present a mechanism that prevents PRODIGY from running in simple circles. To illustrate
it, consider the problem of delivering pack-1 from town-1 to ville-1 (see Figure 2.20). The solver
first adds unload(pack-1,ville-1) and then may try to achieve its precondition (in-truck pack-1)
by load(pack-1,ville-1); however, the precondition (at pack-1 ville-1) of load is identical to the
goal and, hence, achieving it is as difficult as solving the original problem.

We call it a goal loop, which arises when a precondition of a newly added operator is
identical to the literal of some link on the path from this operator to the goal statement.
We illustrate it in Figure 2.21, where thick links mark the path from a new operator z to
the goal. The precondition [of z makes a loop with an identical precondition of x, achieved
by .

When the problem solver adds an operator to the tail, it compares the operator’s precon-
ditions with the links between this operator and the goal. If the solver detects a goal loop, it
backtracks and tries either a different instantiation of the operator or an alternative operator
that achieves the same subgoal. For example, the solver may generate a new instantiation
of the load operator, load(pack-1,town-1).

State loops

The problem solver also watches for loops in the head of an incomplete solution, called state
loops. Specifically, it verifies that the current state differs from all previous states. If the
current state is identical to some earlier state (see Figure 2.22a), then the solver discards
the current incomplete solution and backtracks.

We illustrate a state loop in Figure 2.22, where the application of two opposite operators,
load and unload, leads to a repetition of an intermediate state. The solver would detect
this redundancy and either delay the application of unload or use a different instantiation.

2.4. SEARCH CONTROL 63

Initial Intermediate Current
State State State

at pack-1
(tovF\)/n-l)

(in-truck

(in-truck
pack-1)

pack-1)

load load unload
at pack-2 at pack-2 at pack-2
(tovr\)/n-l) (pack-1, (tovl?/n-l) (pack-2, — (pack-2, (tov?/n-l)
- - town-1) town-1) town-1)
(truck-at (truck-at (truck-at
town-1) town-1) town-1)
(a) State loop. (b) Example of aloop.

Figure 2.22: State loops in the head of an incomplete solution: If the current state C' is the same
as one of the previous states, then the problem solver backtracks. For example, if PRODIGY applies
unload(pack-2,town-1) immediately after load(pack-2,town-1), then it creates a state loop.

Satisfied links

Next, we describe the detection of redundant tail operators, illustrated in Figure 2.23. In this
example, PRODIGY is solving the problem in Figure 2.2, and it has constructed the tail shown
in Figure 2.23(a). Note that the literal (truck-in ville-1) is a precondition of two different oper-
ators in this solution, unload(pack-1,ville-1) and unload(pack-2,ville-1). Thus, they introduce
two identical subgoals, and the solver adds two copies of the operator leave-town(town-
1,ville-1) to achieve these subgoals.

Such situations arise because PRODIGY links each tail operator to only one subgoal, which
simplifies the maintenance of links. When the solver applies an operator, it detects and skips
redundant parts of the tail. For example, suppose that it has applied the two load operators
and one leave-town, as shown in Figure 2.23(b). The precondition (truck-in ville-1) of the
tail operator unload now holds in the current state, and the solver skips the tail operator
leave-town, linked to this precondition.

When a tail operator achieves a precondition that holds in the current state, we call the
corresponding link satisfied. We show this situation in Figure 2.24(a), where the precondi-
tion [of z is satisfied, which makes the dashed operators redundant.

The problem solver keeps track of satisfied links, and updates their list after each mod-
ification of the current state. When the solver selects a tail operator to apply (line 1b
in Figure 2.8) or a subgoal to achieve (line lc), it ignores the tail branches that support
satisfied links. Thus, it would not consider the dashed operators in Figure 2.24 and their
preconditions.

If the algorithm applies the operator x, it discards the dashed branch that supports a
precondition of x (Figure 2.24b). This strategy allows the deletion of redundant operators
from the tail. Note that the solver discards the dashed branch only after applying x. If it
decides to apply some other operator before z, it may delete [, in which case dashed operators
become useful again.

64 CHAPTER 2. PRODIGY SEARCH

|
1 load }
|
(pack-1,
l town-1) \ unload Goal 1
! ack-1, !
| |?3¥Ven / (\?ille-l) Statement |
‘ (town-1 at pack-1) |
@ ville-1) Gifess™ |
| |
I Ioad (aI &k-z |
| (pack-2, N V|IFI)e-1) |
I town-1) unload !
: leave- (p?fk_lz’ |
l fown | 7Y€) l
| town-1 |
‘ ville-1) ‘
,,,,,,,,,,,,,,,,,, |— === === == == = = 1
,,,,,,,,,,,,,,,,,,,,,,,,,,, ¥
| Current State |
|
in-truck unload !
: [eave- (pack-l) (p'?fk_ll '\ :
(0) | Ioadk | Ioadk || fown (in-truck ville-1) |
[s | Ty ||| Poed eave | [unioad | /| | |
! ville (truck-at (ttc?v\\llvr?—l . tlgac?l?—Z, / :
l town-2) ville)| | ville-1) |

Figure 2.23: Satisfied link: After the solver has applied three operators, it notices that all pre-
conditions of unload(pack-2,ville-1) hold in the current state; hence, it omits the tail operator
leave-town, which is linked to a satisfied precondition of unload.

2.4.2 Knob values

The PRODIGY architecture includes several knob variables, which allow the user to adjust
the search strategy to a current domain. and changes in their values may have a drastic
impact on performance. Some of the knobs are numerical values, such as the search depth,
whereas others specify the choices among alternative techniques and heuristics. We list some
of the main knob variables, which were used in our experiments with the SHAPER system.

Depth limit

The user usually limits the search depth, which results in backtracking upon reaching the
pre-set limit. If the system explores all branches of the search space to the specified depth and
does not find a solution, then it terminates with failure. Note that the number of operators
in a solution is proportional to the search depth; hence, limiting the depth is equivalent to
limiting the solution length.

After adding operator costs to the PRODIGY language, we provided a knob for limiting
the solution cost. If the system constructs a partial solution whose cost is greater then the
limit, it backtracks and considers an alternative branch. If the user bounds both search
depth and solution cost, the solver backtracks upon reaching either limit.

2.4. SEARCH CONTROL 65

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2.24: Identification of satisfied links: The solver keeps track of all link literals that are
satisfied in the current state, and disregards the tail operators that support these satisfied literals.

The effect of these bounds varies across domains and specific problems. Sometimes, they
improve not only solution quality but also efficiency, by preventing a long descent into a
branch that has no solutions. In other domains, they cause an extensive search instead of
fast generation of a suboptimal solution. If the search space has no solution within the
specified bound, then the system fails to solve the problem, which means that a depth limit
may cause a failure on a solvable problem.

Time limit

By default, the problem solver runs until it either finds a solution or exhausts the available
search space. If it takes too long, the user may enter a keyboard interrupt or terminate the
execution.

Alternatively, she may pre-set a time limit before invoking the solver and then the system
automatically interrupts the search upon reaching this limit. We will analyze the role of time
limits in Chapter 7.

The user may also bound the number of expanded nodes in the search space, which causes
an interrupt upon reaching the specified node number. If she limits both running time and
node number, then the search terminates after hitting either bound.

Search strategies

The system normally uses depth-first search and terminates upon finding any complete
solution. The user has two options for changing this default behavior. First, PRODIGY
allows breadth-first exploration; however, it is usually much less efficient than the default
strategy. Moreover, some heuristics and learning modules do not work with breadth-first
search.

Second, the user may request all solutions to a given problem. Then, the solver explores
the entire search space and outputs all available solutions, until it exhausts the space, gets
a keyboard interrupt, or reaches a time or node bound. The system also allows search for
an optimal solution. This strategy is similar to the search for all solutions; however, when
finding a new solution, the system reduces the cost bound and then looks only for better
solutions. If the solver gets an interrupt, it outputs the best solution found by that time.

66 CHAPTER 2. PRODIGY SEARCH

(a) Select Rule (b) Reject Rule

If (truck-at <to>) isthe current subgoa
and leave-town(<from>,<to>) is used to achieve it
and (truck-at <place>) holdsin the current state and (in-truck <pack>) is asubgoal
and <place> if of type Town

Then select instantiating <from> with <place>

If (truck-at <place>) is a subgoal

Then reject the subgoal (truck-at <place>)

Figure 2.25: Examples of control rules, which encode domain-specific heuristics for guiding
PRODIGY search. The user may provide rules that represent her knowledge about the domain.
Moreover, the system includes several mechanism for automatic construction of control heuristics.

2.4.3 Control rules

The efficiency of depth-first search crucially depends on the heuristics for selecting appro-
priate branches of the search space, as well as on the order of exploring these branches. The
PRODIGY architecture provides a general mechanism for specifying search heuristics, in the
form of control rules. These rules usually encode domain-specific knowledge, but they may
also represent general domain-independent techniques.

A control rule is an if-then rule that specifies appropriate branching decisions, which may
depend on the current state, subgoals, and other features of the current incomplete solution,
as well as on the global state of the search space. The PRODIGY domain language provides
a mechanism for hand-coding control rules. In addition, the architecture includes several
learning mechanisms for automatic generation of domain-specific rules. The development of
these mechanisms has been one of the main goals of the PRODIGY project.

The system uses three rule types, called select, reject, and prefer rules. A select rule points
out appropriate branches of the search space. When its applicability conditions match the
current incomplete solution, the rule generates one or more promising choices. For example,
consider the control rule in Figure 2.25(a). When the problem solver uses the leave-town
operator for moving the truck to some destination, the rule indicates that the truck should
go there directly from its current location.

A reject rule determines inappropriate choices and removes them from the search space.
For instance, the rule in Figure 2.25(b) indicates that, if PRODIGY has to load the truck and
drive it to a certain place, then it should delay driving until after loading.

Finally, a prefer rule specifies the order of exploring branches, without pruning any of
them. For example, we may replace the select rule in Figure 2.25 with an identical prefer
rule, which would mean that the system should first try going directly from the truck’s
current location to the destination, but keep the other options open for later consideration.
For some problems, this rule is more appropriate than the more restrictive select rule.

At every decision point, the system identifies all applicable rules and uses them to make
appropriate choices. First, it uses an applicable select rule to choose candidate branches of
the search space. If the current incomplete solution matches several select rules, the system
arbitrarily selects one of them. If no select rules are applicable, then all available branches
become candidates. Next, PRODIGY applies all reject rules that match the current solution
and prunes every candidate branch indicated by at least one of these rules. Note that select
and reject rules sometimes prune branches that lead to a solution; hence, they may prevent

2.5. COMPLETENESS 67

the system from solving some problems.

After using select and reject rules to prune branches at the current decision point,
PRODIGY applies prefer rules to determine the order of exploring the remaining branches. If
the system has no applicable prefer rules, or the applicable rules contradict each other, then
it relies on general heuristics for selecting the exploration order.

If the system uses numerous control rules, matching of their conditions at every decision
point may take significant time, which sometimes defeats the benefits of the right selection
[Minton, 1990]. Wang [1992] has implemented several techniques that improve the matching
efficiency; however, the study of the trade-off between matching time and search reduction
remains an open problem.

2.5 Completeness

A search algorithm is complete if it finds a solution for every solvable problem. This notion
does not involve a time limit, which means that an algorithm may be complete even if it
takes an impractically long time for some problems.

Even though researchers used the PRODIGY search engine in multiple studies of learning
and search, the question of its completeness had remained unanswered for several years.
Veloso demonstrated the incompleteness of PRODIGY4 in 1995. During the work on SHAPER,
we further investigated completeness issues, in collaboration with Blythe.

The investigation showed that, to date, all PRODIGY algorithms had been incomplete;
moreover, it revealed the specific reasons for their incompleteness. Then, Blythe implemented
a complete solver by extending the PRODIGY4 search engine. We compared it experimentally
with the incomplete system, and demonstrated that the extended algorithm is almost as
efficient as PRODIGY and solves a wider range of problems [Fink and Blythe, 1998]. We now
report the results of this work on completeness.

We have already sho