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Abstract

Parallelism is the key to achieving high performance in computing. How-
ever, writing efficient and scalable parallel programs is notoriously difficult,
and often requires significant expertise. To address this challenge, it is crucial to
provide programmers with high-level tools to enable them to develop solutions
efficiently, and at the same time emphasize the theoretical and practical aspects
of algorithm design to allow the solutions developed to run efficiently under all
possible settings. This thesis addresses this challenge using a three-pronged
approach consisting of the design of shared-memory programming techniques,
frameworks, and algorithms for important problems in computing. The thesis
provides evidence that with appropriate programming techniques, frameworks,
and algorithms, shared-memory programs can be simple, fast, and scalable,
both in theory and in practice. The results developed in this thesis serve to ease
the transition into the multicore era.

The first part of this thesis introduces tools and techniques for deterministic
parallel programming, including means for encapsulating nondeterminism
via powerful commutative building blocks, as well as a novel framework for
executing sequential iterative loops in parallel, which lead to deterministic
parallel algorithms that are efficient both in theory and in practice.

The second part of this thesis introduces Ligra, the first high-level shared-
memory framework for parallel graph traversal algorithms. The framework
allows programmers to express graph traversal algorithms using very short and
concise code, delivers performance competitive with that of highly-optimized
code, and is up to orders of magnitude faster than existing systems designed
for distributed memory. This part of the thesis also introduces Ligra+, which
extends Ligra with graph compression techniques to reduce space usage and
improve parallel performance at the same time, and is also the first graph
processing system to support in-memory graph compression.

The third and fourth parts of this thesis bridge the gap between theory and
practice in parallel algorithm design by introducing the first algorithms for a
variety of important problems on graphs and strings that are efficient both in
theory and in practice. For example, the thesis develops the first linear-work
and polylogarithmic-depth algorithms for suffix tree construction and graph
connectivity that are also practical, as well as a work-efficient, polylogarithmic-
depth, and cache-efficient shared-memory algorithm for triangle computations
that achieves a 2—-5x speedup over the best existing algorithms on 40 cores.
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Chapter 1

Introduction

In today’s data-driven world with rapidly increasing data sizes, performance has become
more important than ever before. Reducing the running time of programs lowers overall
costs—for example, the rental costs of machines on Amazon EC2! is proportional to
the usage time. In addition, reducing the time-to-completion of tasks has been shown to
increase worker productivity as well as end-user experience. Alternatively, one can view
improving performance as enabling more computation to be performed in a given amount
of time, effectively increasing one’s computing budget.

Traditionally, high-performance computing solutions have been developed and used by
only a small community, as these solutions rely on expensive and specialized computing
environments. In recent years, in an effort to bring performance computing closer to the rest
of the community, large-scale computing solutions using distributed clusters of commodity
machines have emerged. However, within the past decade, commodity multicore machines
have become prevalent, and today these machines support up to terabytes of memory,> more
than enough for a majority of applications. This thesis contends that a single shared-memory
machine is sufficient for solving many problems in large-scale computing. The thesis shows
that large-scale shared-memory solutions can be simple, scalable to the largest data sets
considered by distributed-memory solutions for many problems, and significantly more
efficient on a per-core, per-dollar, and per-joule basis than existing distributed-memory
solutions. The goal of this thesis is to bring high-performance computing to the masses
via parallel programming frameworks, techniques, and algorithms for shared-memory
multicore machines.

Why have multicore machines become so widespread in just the past decade? Moore’s

'http://aws.amazon.com/ec2/pricing/
2For example, the Intel Sandy Bridge-based Dell PowerEdge R920 can be configured with up to 60 cores
and 6 Terabytes of memory.


http://aws.amazon.com/ec2/pricing/

law states that the transistor density doubles approximately every 18 months [337], and
along with Dennard scaling, which states that transistor power density is constant [132],
this has historically corresponded to increases in clock speeds of single core machines of
roughly 30% per year since the mid-1970’s [295]. However, since around the mid-2000’s,
Dennard scaling no longer continued to hold due to physical limitations of hardware, and
as a result hardware vendors have turned to developing processors with multiple cores
to deliver improved performance. These machines are referred to as shared-memory
multicore machines,’® as the different cores have access to a shared global memory. This
shift in processor technology has often been referred to as the “multicore revolution” [295].
Multicore technology has become ubiquitous today, with most personal computers, and even
most cellular phones containing multiple cores. Therefore, writing parallel programs to take
advantage of the multiple cores on a machine is crucial to obtaining scalable performance
and enabling large-scale data to be processed.

In addition to multicore technology, parallel computing can come in the form of
distributed systems as mentioned above, graphics processing units (GPUs), and field
programmable gate arrays (FPGAs). Unlike multicores, distributed systems can solve
problems that do not fit in the memory of a single machine. However, compared to
multicore shared-memory systems, communication and data replication in distributed
systems often leads to high additional overheads. Therefore, for problems that can fit in
memory, shared-memory multicores are generally significantly more efficient on a per-core,
per-dollar, and per-joule basis than distributed-memory systems. For example, this thesis
shows that the exact triangle count of the Yahoo! Web graph with over 6 billion edges can be
computed in under 1.5 minutes and a suffix tree can be constructed on the 3 gigabyte human
genome in under three minutes on a modern 40-core machine, much faster than previous
distributed-memory solutions (both in absolute performance and on a per-core basis) for
the same problem. The data sets in these examples are among the largest considered
in the literature for the corresponding problems, and easily fit on a multicore machine.
While GPUs and FPGAs may be more efficient for certain problems, multicore machines
are much more general-purpose, support larger memory sizes (useful for scaling to large
data), and are considerably easier to program.* This thesis argues that shared-memory
multicores offer a sweet spot between programmability and efficiency. There has been a
large body of work on developing efficient algorithms and frameworks for regular problems,
where the parallelism is relatively well-structured (e.g., problems in dense numerical linear
algebra and scientific simulations), while less work has been done for irregular problems,

3These are sometimes also referred to as manycore machines when the number of cores is large enough.

4The techniques developed in this thesis are also applicable to Intel’s new Xeon Phi coprocessors, which
support higher memory bandwidth than traditional multicore machines. However, currently their memory
sizes are not sufficient for some of the larger data sets studied in this thesis.
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where the parallelism is much less well-structured and highly dependent on input data
(e.g., problems on graphs and strings). This thesis studies shared-memory programming
techniques, frameworks, and algorithms for a wide class of irregular problems and shows
that shared-memory parallelism can be simple, fast, and scalable.

The thesis adopts a three-pronged approach of studying shared-memory parallelism
from the perspective of programming techniques, algorithm design, and performance
analysis. Furthermore, significant attention will be paid to both the theoretical aspects as
well as the practical implications of the solutions developed. The work in this thesis builds
on ideas from previous research on shared-memory parallelism, but the comprehensive
approach used in the thesis enables simplicity, efficiency, and scalability, both in theory
and in practice, to be achieved for a variety of important problems for the first time. The
remainder of this chapter is organized as follows:

e Section 1.1 introduces nested fork-join parallelism, which is the type of parallelism
this thesis studies. This section then describes challenges in shared-memory program-
ming, including obtaining determinism, controlling shared access, and developing
high-level programming abstractions. The reader will obtain an overview of the
contributions of this thesis to addressing these challenges.

e Section 1.2 describes the Parallel Random Access Machine (PRAM) and work-depth
models for analyzing parallel algorithms. This is followed by some highlights of
the thesis’s contribution in bridging the gap between theory and practice in parallel
algorithms via designing theoretically-efficient algorithms that perform well on
modern multicore machines.

e Section 1.3 describes performance factors of multicore programs, including caching,
memory contention, scalability, and memory bandwidth. This section introduces
techniques developed in this thesis that take into account these factors to improve
performance.

e Section 1.4 introduces a benchmark suite developed in this thesis to comprehensively
evaluate solutions to given problems in terms of simplicity as well as theoretical and
practical efficiency.

e The thesis statement is presented in Section 1.5.

e The contributions of this thesis are summarized in Section 1.6.



1.1 Shared-Memory Programming

Languages. While shared-memory parallelism has many advantages, writing correct, effi-
cient, and scalable shared-memory multicore programs is notoriously difficult. Traditionally,
shared-memory parallel programs are written with explicit assignment of tasks to threads
(e.g., using pthreads). This low-level approach requires the programmer to carefully
consider the many possible interleavings of threads, and it is generally difficult to write a
correct program let alone an efficient and scalable one. For programs in which there is no
clear way to evenly split the work among threads, scheduling for good performance is a big
challenge. Such programs generally require extensive tuning to obtain good performance.

Another method for writing shared-memory multicore programs is to use simple con-
structs that indicate which parts of the program are safe to run in parallel, and allow
a run-time scheduler to assign work to threads and perform load balancing on-the-fly.
This approach is known as dynamic multithreading. Using languages such as Cilk [158],
OpenMP [360], Intel Threading Building Blocks [237], Habanero [76], and X10 [88] that
support dynamic multithreading, one can write clean programs while letting the run-time
scheduler perform the work allocation and load balancing. This approach frees the pro-
grammer from the low-level details of explicit thread management, leading to simpler code,
while delivering comparable or improved performance. With advances in scheduling, it is
now possible to write a wide class of parallel programs in this framework that are efficient,
both in theory and in practice [65], without having to tune the program to achieve balanced
workloads.

Nested Fork-Join Parallelism. All of the algorithms and techniques studied in this thesis
are designed for nested fork-join parallelism, in which procedures can be called recursively
in parallel via a fork construct, and synchronized via a join construct [49]. Nested parallel
computations can be defined inductively in terms of the composition of sequential and
parallel components, and modeled as a directed acyclic graph (computation DAG). Dynamic
multithreading languages such as Cilk support low-overhead primitives to implement fork-
join parallelism [294]. A broad class of parallel programs can be expressed with fork-join
parallelism, and the programming techniques and frameworks developed in this thesis aim
to enable programs written within this paradigm to be simpler and more efficient.

Determinism. While dynamic multithreading languages free the programmer from schedul-
ing and load balancing, there are still many challenges in writing correct and fast parallel
programs. One of the key challenges in parallel programming is dealing with nondeter-
minism arising from the parallel program and/or the parallel machine and its runtime
environment. Nondeterminism arises from race conditions in the program (concurrent ac-
cesses to the same data with at least one being a write), and makes it hard for programmers
to debug and reason about the correctness/performance of their code. One way to obtain
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determinism in nested parallel programs is to not have any races. While this approach is
reasonable for certain problems, in general it can be overly restrictive as it is often useful
and efficient to have shared data. The goal in this thesis is to develop less restrictive and
more efficient ways to obtain determinism.

There has been significant previous work on obtaining determinism using various ap-
proaches, including using special-purpose hardware, modifying compilers, runtime systems
and/or operating systems, and designing new programming languages (see Chapter 3 for
references). In contrast to most previous work, this thesis designs building blocks and
programming techniques for simplifying deterministic parallel programming that can be
used with the existing computing stack, making determinism more accessible. In other
words, programmers do not have to install special programming languages, compilers,
runtime systems or operating systems, nor do they need access to special-purpose hardware.
This thesis advocates a form of determinism called internal determinism. Informally, given
an abstraction level, a program is internally deterministic if key intermediate steps of
the program are deterministic with respect to the abstraction level. Internal determinism
has many benefits, including leading to external determinism and implying a sequential
semantics, which in turn leads to many advantages such as ease of reasoning about code,
verifying correctness and debugging.

One of the main approaches to developing efficient deterministic parallel solutions in
this thesis is the deterministic reservations framework for parallelizing greedy sequential
algorithms (Chapter 3). The approach consists of two phases—in the reserve phase, the
iterates concurrently mark all of the data that they affect, and in the commit phase, iterates
whose mark is still written on all of its affected data proceed with the computation on the
data. Determining successful reservations is done in a deterministic manner, so that for a
given round the same iterates succeed/fail on every execution. Parallel algorithms written
in this framework return the same answer as their sequential counterparts, which gives
determinism, and allows the parallel and sequential algorithms to be interchanged when
necessary. The algorithms developed are also very simple, as the user only needs to specify
the reserve and commit functions called by each iterate in the two corresponding
phases, as well as corresponding data structures. For example, Figure 1.1 shows the C++
code for a spanning forest algorithm using deterministic reservations. disjointSet isa
deterministic union-find data structure developed in this thesis, and speculative_for
executes the deterministic reservations framework using the user-defined reserve and
commit functions (more details will be discussed in Chapter 3).

Part I of this thesis describes tools for writing internally deterministic parallel code [53,
423, 421], drawing heavily on using commutative operations. This part also describes
internally deterministic solutions to a broad set of benchmark problems using these tools,
and shows that these solutions are efficient (competitive with existing nondeterministic
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struct STStep {
int u; int v;
edge *E; res xR; disjointSet F;
STStep (edgex _E, disjointSet _F, res* _R)
: E(_E), R(_R), F(_F) {}

bool reserve (int 1)

{
u = F.find(E[i].u); //find component
v = F.find(E[i].V); //find component
if (u == v) return O; //skip edge if endpoints belong to the same component
if (u > v) swap(u,v);
R[v] .reserve (1) ; //reserve larger component

return 1;}

bool commit (int 1) {
if (R[v].check(i)) { F.link(v, u); return 1;} //link if reservation was successful
else return 0; }
}i

void ST (res* R, edgex E, int m, int n, int psize) {
disjointSet F(n); //deterministic union-find data structure
speculative_for (STStep(E, F, R), 0, m, psize); //deterministic reservations driver

}

Figure 1.1: C++ code for spanning forest using deterministic reservations (with its operations reserve,
check, and speculative_for), where m is the number of edges and n is the number of vertices in the
graph.

solutions and achieve good parallel speedup), scalable to large inputs, natural to reason
about, not complicated to code [53], and also have good theoretical guarantees [55, 427].

Controlling Shared Access. Many parallel programs use locks to control access to shared
resources. The granularity of locking (e.g., locking an entire data structure versus locking a
small part of the data structure) affects the performance, scalability, and programmability
of a solution, with coarser-grained locking leading to simpler solutions and finer-grained
locking leading to higher efficiency and scalability. Programming with locks, however, has
disadvantages such as leading to deadlock or livelock, and writing efficient fine-grained
lock-based programs is often very tedious. There has been significant work on writing
parallel programs without locks by making use of atomic operations (e.g., compare-and-
swap and fetch-and-increment) supported in hardware [225]. Proper use of atomics can
lead to more efficient programs than fine-grained locking and has the advantage of having
progress guarantees. All of the programming techniques, algorithms, and data structures
developed in this thesis are lock-free, making use of atomic operations when necessary,
while also being simple. An extremely useful atomic primitive called priority update for
controlling shared access in deterministic programs [423] is introduced in Chapter 6, and is
used throughout the algorithms in this thesis.

Transactional memory (TM) is a technique to simplify shared-memory programming by
allowing users to specify regions of code that will execute atomically (see, e.g., [216] for an
overview). This frees the programmer from having to lock critical sections in code, leading
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to simpler programs. There has been significant research in implementing transactional
memory both in software and in hardware. However, the techniques developed in this thesis
are unlikely to benefit from TM for two reasons: (1) the order in which transactions succeed
in TM is not deterministic, and (2) the algorithms in this thesis have no lock-based critical
sections—shared accesses are protected using only a single atomic instruction.

Programming Frameworks. Another effort in simplifying shared-memory programming
has been in developing higher-level frameworks and interfaces for writing parallel solutions.
These range from general parallel programming libraries such as the Parallel Boost Graph
Library [197], Multi-Core Standard Template Library (MCSTL) [432], SWARM [22],
Galois [379], and algorithms/containers provided as part of the Intel Thread Building
Blocks, to domain-specific frameworks/languages such as GraphLab [306, 186] and Green-
Marl [229]. The solutions all vary in programmability, efficiency, and coverage.

Graph processing frameworks have received significant recent interest due to their
importance in large-scale data analytics. Part II of this thesis introduces Ligra, the first high-
level shared-memory graph processing framework that targets graph traversal algorithms
(i.e., algorithms that visit a small subset of the graph in each iteration). The framework is
very simple and lightweight. In addition to a graph data structure, it requires only one data
structure, used for representing a subset of vertices (vertexSubset), and two functions, one
for mapping user-defined functions over vertices (VERTEXMAP) and the other for mapping
over edges (EDGEMAP). For example, Figure 1.2 shows a concise implementation of a
parallel breadth-first search (BFS) algorithm in Ligra. Each iteration of the BFS algorithm
applies an EDGEMAP to the current frontier of vertices (Line 10), in which the user-defined
UPDATE function is applied to all outgoing edges of the frontier vertices such that the
applying the COND function on the target of the edge returns true. Here, the COND function
simply checks if a vertex is unexplored, and if so, the UPDATE function atomically marks
the neighbor as visited with a compare-and-swap.

This thesis shows that Ligra can process the largest publicly-available real-world graphs
in shared-memory, is much faster than existing graph processing systems, and competitive
with highly-optimized code for the same applications. This work advocates performing
large-scale graph analytics on a single shared-memory server instead of using distributed
memory, and since the development of Ligra, there have been several other large-scale graph
processing frameworks [351, 399, 247, 471] developed for shared-memory multicores, as
well as a graph processing framework for GPUs sharing ideas with Ligra [457].

Concurrency. There has been a large body of research on concurrency in parallel pro-
gramming, which studies how different threads interact with each other. Dealing with
concurrency often requires considerable effort from the programmer because the behavior
of concurrent programs is almost always nondeterministic due to the nondeterministic
order in which the threads execute. The goal of this thesis is to hide the concurrency in
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I: Parents={—1,...,—1} > initialized to all -1’s, indicating unexplored
2: procedure UPDATE(s, d)

3: return (CAS(&Parents[d], —1, s)) > atomically explore vertex
4: procedure COND(7)

5: return (Parents[i] == —1) > check if unexplored
6: procedure BFS(G, r) > G is the graph and r is the source vertex
7: Parents[r] = r

8: Frontier = {r} > vertexSubset initialized to contain only r
9: while (SI1ZE(Frontier) # 0) do
10: Frontier = EDGEMAP(G, Frontier, UPDATE, COND) > visit next frontier

Figure 1.2: Pseudocode for breadth-first search (BFS) in Ligra. The compare-and-swap function
CAS(loc,0ldV,newV) atomically checks if the value at location loc is equal to oldV and if so it updates loc
with newV and returns frue. Otherwise it leaves loc unmodified and returns false.

parallel programs from the programmer by raising the level of abstraction and develop-
ing deterministic tools at this higher level of abstraction (e.g., deterministic reservations
described in Chapter 3 and priority updates described in Chapter 6) and data structures
(e.g., a deterministic phase-concurrent hash table described in Chapter 5) that the user can
simply call in their programs. By raising the level of abstraction, the implementations of
the tools can be nondeterministic (but hidden to the programmer), giving more flexibility
and efficiency. This approach leads to deterministic parallel solutions that are simple to
reason about, and that are also efficient at the same time.

Memory consistency issues often arise in concurrent programs as instructions can be
reordered on multicore processors. However, in all of the solutions developed in this thesis,
reads and writes to the same memory location are either separated by a synchronization
point or use a compare-and-swap, which implicitly issues a memory barrier to prevent
consistency issues. All of the solutions are sequentially consistent, which means that their
results are consistent with some valid sequential execution of the program [291].

Thesis Scope. In summary, the algorithms, frameworks, and techniques developed in this
thesis are for nested fork-join parallelism, and use only the fork and join primitives, parallel
for-loops (which can be implemented with fork and join), and atomic instructions supported
in hardware. This set of primitives was sufficient for all of the problems considered in this
thesis. Furthermore, designing algorithms within this paradigm allows for clean theoretical
analysis in the work-depth model, described in Section 1.2, and good performance in
practice using a work-stealing runtime scheduler. Solutions in this thesis do not use
techniques such as locks, transactional memory, pipelining, futures, or message passing,
as they were not necessary in developing simple and efficient solutions for the problems
considered.



1.2 Shared-Memory Algorithm Design

Parallel Random Access Machine. Algorithm designers have traditionally used the
Parallel Random Access Model (PRAM) to analyze parallel algorithms for shared memory.
In this model, every core has unit-time access to the shared global memory. An algorithm’s
complexity is characterized by its asymptotic time 7" and number of cores P, with the total
number of operations being the product of the two terms. They can also be analyzed in the
Work-Time Framework [243], in which the total number of operations W and number of
parallel time steps 7' is specified. PRAM algorithms are written using flat parallelism, in
which parallel operations over a single array is done synchronously at every time step. The
algorithm must specify how work can be efficiently allocated among the cores on each step
(known as the processor allocation problem). Using Brent’s scheduling principle [73, 243],
an algorithm with W work and 7" time can be run in W/ P + T time with P cores. Nested
fork-join parallel algorithms cannot be directly expressed in the PRAM, and the parallelism
in such algorithms must be flattened to work for the PRAM. Different classes of PRAM
models differ in whether concurrent reads or writes are allowed, how to resolve write
conflicts, and how to deal with contention (see, e.g., [243, 171]). There have also been
variants proposed that allow for asynchrony among the cores [168, 107, 356, 170], as well
as a related model that provides parallel primitives on vectors [48].

Work-Depth Model. The work-depth model is a model supporting nested fork-join par-
allelism.> As discussed in Section 1.1, a nested parallel computation can be modeled as
a computation DAG. An algorithm’s complexity is analyzed by computing its work W,
which is the sum of the costs of all the tasks in the computation DAG, and its depth D,
which is the maximum sum of costs of tasks on a directed path in the DAG (the longest
sequential dependence). The maximum possible amount of parallelism (i.e., the maximum
number of cores the computation can take advantage of) is W/D. The complexity of
PRAM algorithms translate to results in the work-depth model, however they can often be
simplified, as the processor allocation step is not necessary and divide-and-conquer can
be used. The work-depth model underlies the design of programming languages such as
NESL [49] and Cilk [158], and algorithms designed for the model can take advantage of
dynamic multithreading languages. For example, a computation with work 1" and depth
D using Cilk’s randomized work-stealing scheduler gives an expected running time of
W/P + O(D) when running on P cores [65]. The algorithms developed in this thesis are
analyzed in the work-depth model, but they can easily be translated into PRAM algorithms.

Traditional Design Goals. The main goal in developing efficient parallel algorithms is to
have an algorithm with low (polylogarithmic) depth and work matching that of the best

3>This contrasts with the Work-Time Framework, which is a framework for analyzing PRAM algorithms
and does not allow for nested parallelism.



sequential algorithm for the same problem (work-efficient). Being work-efficient is desirable
in that the parallel algorithm does not perform asymptotically more operations than the best
sequential algorithm for the same problem, and so is efficient even when there is not much
parallelism available. Having depth that is polylogarithmic (O(log® n) for an input size of n
and any constant c) is desirable in that it allows for ample parallelism.® Work-efficient and
polylogarithmic-depth algorithms have been developed for many fundamental problems
in computing. Many of these algorithms, however, are not practical as they involve many
sophisticated machinery and have large hidden constant factors in their complexity.

Bridging Theory and Practice. Because the goal of this thesis is to develop parallel
algorithms that are efficient and scalable on real shared-memory machines, the simplicity
and practicality of the algorithms are also important. Therefore, in addition to designing
work-efficient algorithms with low depth, this thesis also strives for simple solutions
that perform well in practice. Having algorithms that are efficient both in theory and in
practice allows for good performance across all possible inputs, scalability across a wide
range of core counts, and graceful scalability to larger data sets. There has traditionally
been a gap between theory and practice in parallel algorithms, with many theoretically-
efficient algorithms not being practical and many algorithms used in practice lacking strong
theoretical guarantees. This thesis seeks to bridge this gap by developing large-scale shared-
memory algorithms for various well-studied problems on that are simple, and efficient both
in theory and in practice.

Chapter 4 presents the theoretical guarantees and empirical performance of several
simple parallel algorithms developed using the technique of deterministic reservations. The
chapter shows that, perhaps surprisingly, several natural sequential iterative algorithms
inherently have high parallelism, both in theory and in practice, leading to very simple and
practical deterministic parallel implementations. Parts III and IV of this thesis introduce
the first parallel algorithms for a variety of problems on graphs and strings that are both
theoretically-efficient and practical. The theoretical bounds of the algorithms developed are
shown in Table 1.1, and an experimental analysis on modern multicore machines of each of
the algorithms is presented in their respective chapters of the thesis.

We will now briefly look at the performance of two of the algorithms developed in this
thesis—triangle counting and suffix tree construction. For triangle counting, this thesis
develops the first work-efficient, polylogarithmic-depth, and cache-friendly shared-memory
algorithm (Chapter 10), which outperforms existing shared-memory algorithms by a factor
of 2-5x on 40 cores with two-way hyper-threading and achieves a parallel speedup ranging
from 22x to 49x [428]. The speedup of the algorithm with respect to the fastest existing

®Polylogarithmic-depth algorithms are also desirable for computational complexity reasons, as they fall in

the class NC (Nick’s Class) containing problems that can be solved on circuits with polylogarithmic depth
and polynomial size [15].
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Problem \ Work \ Depth
Maximal Independent Set (Chapter 4) O(m) O(log® n)
Maximal Matching (Chapter 4) O(m) O(log® m)
Random Permutation (Chapter 4) O(n) O(log® n)
List Contraction (Chapter 4) O(n) O(log? n)
Tree Contraction (Chapter 4) O(n) O(log® n)
Connected Components (Chapter 9) O(m) O(log® m
Triangle Counting (Chapter 10) O(m3/2) | O(log®?m)
Cartesian Tree/Suffix Tree (Chapter 11) O(n) O(log? n)
Longest Common Prefixes (Chapter 12) O(n) O(log® n)
Lempel-Ziv Factorization! (Chapter 13) O(n) O(log® n)
Wavelet Tree Construction® (Chapter 14) | O(nlogo) | O(lognlogo)

Table 1.1: Work and depth bounds for the (randomized) algorithms developed in this thesis. For the graph
problems, n = number of vertices and m = number of edges. For the other problems, n is the input size.
TBounds are for constant-sized alphabets. o = alphabet size. The depth of some of these algorithms can be
improved with approximate compaction [174], as described in their respective chapters.

shared-memory implementation on various graphs is shown in Figure 1.3(a). Additionally,
this algorithm has stronger theoretical bounds than previous shared-memory algorithms.
Compared to existing distributed-memory solutions, the algorithm is faster by at least
an order of magnitude on a per-core basis on the largest graphs studied in the literature.
For suffix tree construction, this thesis develops the first parallel algorithm with linear
work and polylogarithmic depth that is also practical (Chapter 11) [422]. On 40 cores
with two-way hyper-threading, the algorithm achieves a 5.4-50.4x speedup over the best
sequential algorithm [285] on a variety of inputs. The algorithm can construct in under
3 minutes the suffix tree for the 3 gigabyte human genome, one of the largest data sets
reported in the literature for suffix tree construction. Compared to the fastest numbers
reported in the literature for suffix tree construction on the human genome, the algorithm
is at least two times faster in practice, as shown in Figure 1.3(b), in addition to being
theoretically more efficient.

1.3 Shared-Memory Performance

Cache Performance. Due to the high latency to access main memory, modern multicore
machines have caches, which are smaller memories that support faster access times. Mul-
ticore machines can have multiple levels of caches, each with different sizes and access
times, and furthermore caches may either be shared among cores or private to a single core.
The caches thus form a hierarchy, and designing algorithms that make efficient use of the
cache hierarchy is crucial for performance. The algorithms studied in this thesis involve
many memory accesses, and thus their performance is largely determined by the number
of cache misses. While this thesis does not explicitly analyze the cache performance of

11



M Qur algorithm (shared-memory, 40 cores)

Speedup of our t"ia.ngke counting algorithm rel.ative Comin and Farreras (MPI, disk-based, 172 cores)*
to the fastest previous shared-memory algorithm B Mansour et al. (shared-memory, disk-based, 32 cores)*
B Mansour et al. (shared-memory, 40 cores)**
.§ > 800
o 4
a 3
2 3 S 600
] 2 g
a o
& 1 £ 400
; AN NN BN
/- 7 Ky [a) [a) —
%, %, O, 0, %, % 4 £ 200
%, 9y, O N, 70, K E
i v v e v /;F(/ 7 o«
2

0

(a) Speedup of our triangle counting algorithm rela-  (b) Parallel running times of suffix tree construction
tive to the fastest shared-memory algorithm (varies  on the 3 GB human genome. *Reported time from
between the implementation in GraphLab [186] and  the literature [320, 108]. **Code from [320] run on
the one by Green et al. [192]) on various synthetic ~ our 40-core machine with a memory budget of 160
graphs from [424] and real-world graphs from [298, GB.

288] on 40 cores with two-way hyper-threading.

Figure 1.3: Experimental evaluation of triangle counting and suffix tree construction.

algorithms (with the exception of Chapter 10, which analyzes cache performance of triangle
computations), they are all implemented to be cache-friendly, maximizing spatial and
temporal locality when possible. Cache misses can also be factored into an algorithm’s
theoretical complexity (see, e.g., [157, 431]), although this is not the focus of this thesis.

Contention. On multicore machines, different private caches may reference the same
objects in memory, and so there is the challenge of making sure that the cores’ views of the
data are consistent. A cache coherence protocol dictates how this consistency is maintained
among the caches (see, e.g., [121] for more details). Cache coherence protocols have a
significant effect on the performance of shared memory accesses (see, e.g., the recent
study by David et al. [123]). In general, when updates are performed to a shared location
concurrently by many different cores, the memory contention causes performance to worsen
as the cache coherence protocol must perform significant work to ensure consistency among
different caches. To reduce contention in shared-memory programs, Chapter 6 of this thesis
develops and advocates the usage of the priority update operation, which performs an actual
update only when the value written has “higher priority” than the existing value, for a
large class of applications. The thesis studies its performance both experimentally and
theoretically under varying degrees of sharing, showing that it is much more efficient than
many commonly-used operations, and comparable in performance to other, less powerful
operations. Figure 1.4(a) shows an experiment measuring the performance of commonly
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Figure 1.4: (a) Experiments measuring contention of various parallel operations and (b) average performance
of Ligra+ relative to Ligra on 40 cores with two-way hyper-threading.

used operations on varying numbers of shared locations (fewer locations implies more
sharing). Observe that when there is a high degree of sharing (e.g., only 8 locations) the
priority update is competitive with reads and test-and-sets (less powerful operations), and
over two orders of magnitude faster than standard writes and other atomic operations. The
priority update operation also has the added benefit of giving determinism and guaranteeing
progress when used appropriately.

Scalability. The goal in parallel computing is to design solutions that scale well both with
an increasing number of cores and also with increasing input size. The shared-memory
solutions developed in this thesis are able to achieve both of these goals. They achieve
good parallel scalability on the multicore machines used in this thesis (limited by memory
bandwidth, as discussed next), and due to their low depth complexities are likely to scale
well on future multicore machines with many more cores. The solutions are also scalable to
large data sets—for example, the Ligra framework and the graph algorithms introduced in
Part I1I are able to process the largest publicly-available real-world graphs (with billions of
vertices and edges) in the order of seconds to minutes, and the string algorithms developed
in Part I'V scale to texts with billions of symbols, such as the human genome. This thesis
proposes the use of graph compression in Chapter 8 to reduce space usage and allow even
larger graphs to be processed in shared-memory.

Memory Bandwidth. Due to the irregular nature of the problems that studied in this thesis,
random access is often unavoidable, and the parallel scalability of solutions is often limited
by the bandwidth of the memory interconnect (using more cores increases the load on the
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Basic Building Blocks Prefix Sum, Integer Sort, Comparison Sort, Remove Duplicates, Dictio-
nary, Sparse Matrix-Vector Multiply, Random Permutation, List Con-
traction, Tree Contraction

Graphs Breadth-First Search, Connected Components, Spanning Forest, Mini-
mum Spanning Forest, Maximal Independent Set, Maximal Matching,
Triangle Counting, Graph Separators

String/Text Processing Suffix Array, Burrows-Wheeler Transform, Longest Common Prefixes,
Sequence Alignment

Computational Geometry Quad/Oct Tree, Delaunay Triangulation, Delaunay Refinement, Convex

and Graphics Hull, k-Nearest Neighbors, N-Body, Ray Casting

Table 1.2: Benchmarks in the Problem Based Benchmark Suite.

memory interconnect, which often becomes saturated before all cores are fully utilized).
To alleviate this problem, this thesis uses graph compression techniques in Chapter 8 to
reduce memory usage, thus reducing the impact of the memory bandwidth bottleneck, and
as a result improving parallel performance and scalability. The thesis develops Ligra+ by
integrating the graph compression techniques into Ligra, and shows that reduced space
usage and improved parallel performance can be achieved at the same time [426]. The
graph sizes are reduced to about half of the original size on average, and performance
increases by about 14% on average on 40 cores. Figure 1.4(b) shows the average relative
performance of Ligra+ compared to Ligra on various graph applications using 40 cores.
Ligra+ is the first high-level graph processing system to support in-memory compression.

1.4 The Problem Based Benchmark Suite

To measure the programming simplicity, theoretical efficiency, and empirical performance
among different solutions for given problems, my co-authors and I have developed a
benchmark suite, called the Problem Based Benchmark Suite (PBBS) [424], containing
a set of well-known fundamental problems that is representative of a broad class of non-
numeric applications arising in computing. Table 1.2 shows the problems currently in the
benchmark suite (the definitions of these problems can be found in Section 2.6).” Unlike
most existing benchmarks, which are based on specific code, the PBBS benchmarks are
defined in terms of the problem specifications—a concrete description of valid inputs and
corresponding valid outputs, along with some specific inputs. Any algorithms, programming
methodologies, specific programming languages, or machines can be used to solve the
problems. The benchmark suite is designed to compare the benefits and shortcomings
of different algorithmic and programming approaches, and to serve as a dynamically
improving set of educational examples of how to parallelize applications. The PBBS has

"The table has been modified from [424] to reflect the problems currently in the benchmark suite.
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enabled comparisons in terms of simplicity, and theoretical/practical performance among
various algorithms and programming techniques for the problems studied in this thesis.®
Many of the implementations developed in this thesis are part of the PBBS.

1.5 Thesis Statement

This thesis seeks to address the three types of challenges arising in multicore programs,
as outlined in Sections 1.1, 1.2, and 1.3, to make large-scale shared-memory parallelism
more accessible. Programming techniques, algorithm design, and performance analysis
are closely interrelated, and therefore effective solutions require attention to all three areas.
Throughout the development of this thesis, I have used my knowledge in each of these
areas to improve my understanding of issues arising in the other areas, and thus the thesis
contains contributions cutting across all three areas.
This thesis provides evidence to support the following statement:

Thesis statement: With appropriate programming techniques, frameworks, and algorithms,
shared-memory programs can be simple, fast, and scalable, both in theory and in practice.

I believe that the frameworks, tools, algorithms and ideas developed in this thesis
will enable more people to write efficient shared-memory parallel programs and take
advantage of the power of multicore machines to perform large-scale computations. The
code developed as part of this thesis is publicly available, and has already been used by
various researchers for benchmarking and developing their own shared-memory solutions.

1.6 Thesis Contributions

This thesis uses a three-pronged approach studying programming techniques, algorithm
design, and performance analysis for shared-memory multicores. These three areas are
highly interrelated, and so each of the chapters of this thesis will inevitably cut across the
different areas. An illustration placing each of the topics of this thesis into the closer two
among the three categories is shown in Figure 1.5. I have developed the results of this
thesis in collaboration with various co-authors: Guy Blelloch, Laxman Dhulipala, Jeremy
Fineman, Phillip Gibbons, Yan Gu, Aapo Kyrola, Harsha Simhadri, Kanat Tangwongsan,
and Fuyao Zhao. The following paragraphs describe the organization and contributions of
this thesis.

Chapter 2 introduces the necessary definitions and notation used throughout the thesis.
Then, Part I of the thesis describes frameworks and techniques for simplifying deterministic
parallel programming. The contributions of this part include:

8While the thesis focuses on multicore solutions, this is not a constraint of the PBBS.
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Programming
Techniques

Framework for large-
scale graph processing
[Chapters 7—8]

Deterministic parallelism
[Chapters 3—6]

Algorithm
Design
Theory and practice of parallel algorithms
[Chapters 4, 9—14]

Figure 1.5: A pictorial organization of this thesis. The topics touch upon programming techniques, algorithm
design, and performance analysis, and are placed in the closer two among the three areas in the figure.
e A new approach for writing efficient deterministic parallel programs using building
blocks based on commutativity, and the design of several building blocks including
priority updates, dictionaries, and disjoint sets (Chapters 3, 5, and 6).

e A novel technique called deterministic reservations for taking sequential loops with
dependencies among iterations and parallelizing them deterministically (Chapters 3
and 4).

e A suite of deterministic parallel algorithms and data structures, including comparison
sorting, a hash-based dictionary, remove duplicates, random permutation, list contrac-
tion, tree contraction, breadth-first search, spanning forest, minimum spanning forest,
maximal independent set, maximal matching, suffix arrays, Delaunay triangulation,
Delaunay refinement, quad/oct trees, k-nearest neighbors, N-body, and triangle ray
intersect, along with experiments showing they are fast, scalable, and competitive
with the best nondeterministic code for the same problem (Chapters 3—-6).

e The first proofs that the lexicographically first maximal independent set and maximal
matching problems on random inputs have polylogarithmic depth, as well as efficient
linear-work parallel algorithms for the problems (Chapter 4).

e The first proofs that the standard sequential random permutation algorithm and natural
sequential iterative algorithms for list contraction and tree contraction on random in-
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puts have logarithmic depth, as well as efficient linear-work parallel implementations
of the algorithms (Chapter 4).

e The first application of Nisan’s pseudorandom generator for space-bounded computa-
tions [354] to reducing the amount of randomness in low-depth parallel algorithms,
in particular reducing the amount of randomness in the random permutation and list
contraction algorithms from O(n logn) to a polylogarithmic number of random bits
(Chapter 4).

e The formalization of the concept of phase-concurrency in deterministic parallel
programs to simplify the design of data structures and improve their performance
(Chapter 5).

e A deterministic phase-concurrent hash table that is faster than all existing concurrent
hash tables, and has many applications in deterministic parallel programs, such as in
removing duplicates, Delaunay refinement, suffix trees, edge contraction, breadth-first
search, and spanning forest (Chapter 5).

e The generalization of special cases of the priority update operation in the literature,
an efficient contention-reducing implementation of the operation, as well as the first
theoretical analysis of its performance (Chapter 6).

e The first comprehensive experimental study of the priority update operation versus
other widely-used operations under varying degrees of sharing, demonstrating that it
is up to orders of magnitude faster on modern Intel and AMD multicore machines
(Chapter 6).

e Many applications of the priority update operation in deterministic parallel programs,
enabling good performance even under a high degree of write sharing (Chapter 6).

Part II of the thesis describes the Ligra/Ligra+ graph processing framework and includes
the following contributions:

e The Ligra shared-memory graph processing framework containing just two simple
functions—one for mapping computation over a subset of vertices and one for
mapping computation over a subset of edges—sufficient to concisely express a broad
class of graph traversal algorithms in shared-memory (Chapter 7).

e The generalization of the direction-optimizing idea used in breadth-first search [32]
to a large class of graph traversal algorithms to improve performance (Chapter 7).
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e An experimental evaluation showing that the Ligra implementations are efficient
and scalable to the largest publicly-available real-world graphs in the literature, and
outperform existing systems by up to orders of magnitude (Chapter 7).

e The first high-level shared-memory graph processing system (Ligra) to process (in
under a minute) the largest publicly-available real-world graph, the Yahoo! Web
graph with over 6 billion edges, showing the benefits of shared-memory for large-
scale graph processing, and subsequently leading to several other shared-memory
graph processing systems [351, 399, 247, 471, 457] (Chapter 7).

e Ligra+, the first high-level shared-memory graph processing system to use graph
compression to reduce in-memory space usage, improving the scalability of shared-
memory graph processing (Chapter 8).

e An efficient implementation and experimental evaluation of Ligra+ showing that
graph compression both reduces the space usage and also improves the parallel
performance of graph traversal algorithms (Chapter 8).

Part III of the thesis describes practical large-scale parallel algorithms with strong
theoretical guarantees for solving problems on graphs. The contributions of this part
include:

e The first practical linear-work and polylogarithmic-depth parallel algorithm for graph
connectivity, a problem that has been open for over a decade (Chapter 9).

e Extensive empirical evaluation of the parallel connectivity algorithm, showing that it
is competitive with existing parallel implementations, none of which are linear-work
and polylogarithmic-depth (Chapter 9).

e The first work-efficient, polylogarithmic-depth, and cache-efficient shared-memory
algorithms for exact and approximate triangle computations that are both simple and
practical (Chapter 10).

e Comprehensive empirical evaluation of the running time and cache performance
of the triangle computation algorithms showing that they are faster than distributed
implementations by up to orders of magnitude and shared-memory implementations
by up to a factor of 5, and scale to the largest publicly-available real-world graphs
(Chapter 10).

Part IV of the thesis describes large-scale parallel string algorithms that have strong
theoretical guarantees and also perform well in practice, scaling to the largest data sets
considered in the literature for the problems. This part includes the following contributions:
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e A new and simple linear-work, polylogarithmic-depth parallel algorithm for building
multiway Cartesian trees using divide-and-conquer, and various applications of
Cartesian trees (Chapter 11).

e The first practical linear-work and polylogarithmic-depth parallel algorithm for
suffix tree construction, developed using suffix arrays and multiway Cartesian trees
(Chapter 11).

o The state-of-the-art parallel suffix tree implementation for shared-memory, achieving
good parallel speedup (up to 24x on 40 cores) and outperforming existing parallel
implementations by at least a factor of 2 (Chapter 11).

e New theoretically-efficient and practical parallel algorithms for computing longest
common prefixes, a useful primitive in suffix array (and suffix tree) construction
(Chapter 12).

e The first comprehensive experimental evaluation of parallel longest common prefix
algorithms, showing that the new algorithms achieve good parallel speedup, are up
to 2.3x faster than the best existing algorithm on 40 cores, and lead to improved
performance for suffix array construction (Chapter 12).

e The first practical linear-work and polylogarithmic-depth parallel algorithm for
Lempel-Ziv factorization (based on suffix arrays), an essential operation in many
data compression methods (Chapter 13).

e An extensive experimental study of the Lempel-Ziv factorization algorithm showing
that it achieves good parallel speedups (up to 23x on 40 cores) and outperforms the
sequential algorithm with just 2 or more threads (Chapter 13).

e The first polylogarithmic-depth parallel algorithms for constructing wavelet trees, an
essential component to many compressed data structures (Chapter 14).

e A comprehensive empirical evaluation of the wavelet tree algorithms showing that
they achieve good speedup over the sequential algorithm (up to 27x on 40 cores) and
are up to 5.6 times faster than existing parallel implementations (Chapter 14).

Finally, Chapter 15 concludes the thesis and describes directions for future work.
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Chapter 2

Preliminaries and Notation

This chapter presents the definitions, models, and notation that will be used throughout the
thesis. Individual chapters have additional definitions and notation that are specific to the
chapter.

2.1 Parallel Programming Model

All of the algorithms, frameworks, and tools in this thesis can be implemented using nested
Jork-join parallelism, in which a fork specifies procedures that can be called in parallel,
and ajoin specifies a synchronization point among procedures. The fork and join constructs
can be nested, making this type of parallelism particularly useful for divide-and-conquer
algorithms.

More formally, nested parallel computations can be defined inductively in terms of
the composition of sequential and parallel components. At the base case, a strand is a
sequential computation. A task is then a sequential composition of strands and parallel
blocks, where a parallel block is a parallel composition of tasks starting with a fork and
ending with a join.

A nested parallel computation can be modeled (a posteriori) as a series-parallel com-
putation DAG over the operations of the computation: the tasks in a parallel block are
composed in parallel, and the operations within a strand as well as the strands and parallel
blocks of a task are composed in series in the order they are executed. All operations are
assumed to take a state and return a value and a new state (any arguments are part of the
operation). Vertices in the computation DAG are labeled by their associated operation
(including arguments, but not return values or states). An operation (vertex) u precedes
v if there is a directed path from u to v in the DAG. If there is no directed path in either
direction between u and v, then v and v are logically parallel, meaning that they may be
executed in parallel.
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The support of nested parallelism dates back at least to Dijkstra’s parbegin-parend
construct. Many parallel languages support nested parallelism including NESL [49],
Cilk [158], the Java fork-join framework [244], OpenMP [360], X10 [88], Habanero [76],
Intel Threading Building Blocks [237], and the Task Parallel Library [441]. Although not
appropriate for certain types of parallelism, e.g., pipeline parallelism, nested parallelism has
many theoretical and practical advantages over more unstructured forms of parallelism, in-
cluding simple schedulers for dynamically allocating tasks to cores, compositional analysis
of work and depth, and good space and cache behavior (e.g., [2, 64, 50, 59]).

Programs in this thesis are written with the Cilk programming language, which is
a dynamic multithreading language for shared memory that supports nested fork-join
parallelism [64]. Simple constructs are used to indicate which parts of the program are
safe to run in parallel, and a run-time scheduler assigns work to threads and performs
load-balancing. The Cilk constructs used are cilk_for, used to indicate that iterates of a
for-loop may execute in parallel, ci1lk_spawn, used to indicate a procedure may be called
in parallel (fork), and cilk_sync, used to indicate that the current procedure must wait
for all procedures that it spawned to complete before proceeding (join). A cilk_for loop
is implemented using cilk_spawn and cilk_sync. There is an implicit cilk_sync
at the end of each procedure.

2.2 Algorithmic Complexity Model

This thesis uses the work-depth model to analyze the complexity of algorithms. As dis-
cussed in Section 2.1, a computation can be modeled using a computation DAG. The thesis
assumes unbounded in-degree and out-degree of the vertices in the DAG, although other
variants of the model assume bounded degree.! The work TV of an algorithm is equal to the
sum of the costs of all tasks in the computation DAG, which is equivalent to the number of
operations the algorithm performs. The depth D of an algorithm is equal to the maximum
sum of costs of tasks over all directed paths in the computation DAG, which is equivalent
to the number of time steps the algorithm requires if an infinite number of cores were avail-
able. This model makes it particularly convenient for analyzing nested parallel algorithms.
Using the randomized work-stealing scheduler of Cilk gives an expected running time of
W/P 4 O(D) when using P cores [65]. Note that for sequential algorithms, the work
and the depth terms are equivalent. A parallel algorithm is defined to be work-efficient
if its work is asymptotically equal to the work of the fastest sequential algorithm for the
same problem. The goal of this thesis is to design work-efficient parallel algorithms with
polylogarithmic depth.

The traditional parallel random access machine (PRAM) model [243] for analyzing par-

IThis increases the overall depth by at most a logarithmic factor.
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allel algorithms differs from the work-depth model in that nested parallelism is not allowed
(parallelism must be flattened), and on each time step the algorithm must specify how work
is allocated to the cores (known as the processor allocation problem). Algorithms are ana-
lyzed using the Work-Time Framework [243], where work is the same as in the work-depth
model and time is equivalent to depth in the work-depth model. For an algorithm with work
W and time 7, Brent’s scheduling theorem [73, 243] bounds the running time by W/T + P
using a greedy scheduler with P cores. Most of the algorithms in this thesis can be easily
translated into PRAM algorithms with the same work and depth (time) complexities as
they use parallel primitives that have equivalent complexities (see Section 2.3) in both the
work-depth and PRAM models, parallelism can be flattened when necessary, and there
is enough parallel slackness in each iteration to perform processor allocation efficiently.
There are four versions of the PRAM that are used in the thesis: (1) the exclusive-read
exclusive-write (EREW) model, which does not allow for concurrent reads or writes; (2)
the concurrent-read exclusive-write (CREW) model, which allows for concurrent reads
but not concurrent writes; (3) the concurrent-read concurrent-write (CRCW) model, which
allows for both concurrent reads and writes; and (4) the scan PRAM [47], a version of the
EREW PRAM in which scan (prefix sum) operations take unit depth. For the CRCW model,
concurrent writes to a shared location results in either an arbitrary write being recorded
(arbitrary CRCW), or the minimum (or maximum) value being recorded (priority CRCW).

Randomization. Many of the algorithms make use of randomization. For randomized
algorithms, the thesis states that a result holds in expectation if it holds on average over all
possible random choices made by the algorithm (the input can be adversarially chosen).
Similarly, a result holds with high probability (w.h.p.) for an input of size n if it holds with
probability at least 1 — 1/n¢, for any constant ¢ > 0, over all possible random choices made
by the algorithm.

2.3 Parallel Primitives

The thesis makes use of the basic parallel primitives, prefix sum (scan), reduce, filter,
and merge [62]. Prefix sum (scan) takes a sequence A of length n, an associative binary
operator @, and an identity element L such that L & a = a for any a, and returns the
sequence (L, L & A[0], L® A[0]® A[1],..., LB A0]B A[l]®...® A[n—2]) as well as
the resulting “sum” L @& A[0] & A[1] & ... ® A[n — 1]. Reduce takes the same arguments
as prefix sum, but only returns the resulting sum L & A[0] & A[1] & ... ® A[n — 1]. Filter
takes a sequence A of length n, and a predicate function f, and returns a sequence A’ of
length n’ containing the elements in a € A such that f(a) returns true, in the same order
that they appear in A. Filter can be implemented using prefix sum, and both require O(n)
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work and O(log n) depth [62].2 Merge takes sorted sequences A and B of lengths n and m,
respectively, and returns a sorted sequence containing the union of the elements in A and
B. Tt can be implemented in O(n + m) work and O(log(n + m)) depth [62]. Merge can
be modified to return the intersection of the elements of two sorted sequences in the same
complexity bounds. The above primitives all run on the EREW PRAM in the stated bounds.
Cilk implementations of the primitives are available in the Problem Based Benchmark
Suite.

A compare-and-swap (CAS) is an atomic instruction that takes three arguments—a
memory location (loc), an old value (0ldV) and a new value (newV); if the value stored
at loc is equal to oldV it atomically stores newV at loc and returns true, and otherwise it
does not modify loc and returns false. CAS is supported in hardware by modern multicore
machines. The implementations in this thesis use CAS’s both directly and as a subroutine
to other atomic functions. The notation &z is used to refer to the memory location of
variable x.

2.4 Graphs

A directed unweighted graph is denoted by G = (V, E'), where V' is the set of vertices and
E 1s the set of (directed) edges in the graph. The thesis uses the convention of denoting
the number of vertices in a graph by n = |V'| and number of edges in a graph by m = |E)|.
The vertices are assumed to be indexed from O to n — 1. A weighted graph is denoted
by G = (V, E,w), where w is a function which maps an edge to a real value, and each
edge e € E is associated with the weight w(e). N (v) denotes the set of out-neighbors
of vertex v in G and d* (v) denotes the out-degree of v in G. Similarly, N~ (v) and d~ (v)
denote the in-neighbors and in-degree of v in GG. For an undirected graph, d(v) is used to
denote the degree of vertex v. The thesis uses /N (V') to denote the set of all neighbors of
vertices in V, and N (E) to denote the neighboring edges of E (ones that share a vertex).
N(v) is used as a shorthand for N ({v}) when v is a single vertex. G[U] is used to denote
the vertex-induced subgraph of G by vertex set U, i.e., G[U] contains all vertices in U
along with edges of GG with both endpoints in U. G[E'] is used to denote the edge-induced
subgraph of G, i.e., G[E'] contains all edges £’ along with the incident vertices of G.

The adjacency list format for graph representation stores for each vertex an array of
indices of other vertices that it has an edge to as well as the vertex’s degree. The arrays
are assumed to be stored consecutively in memory. This representation requires O(n + m)
space.

2This thesis uses log z to be the base 2 logarithm of x, unless stated otherwise.
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2.5 Strings

A string is denoted by S, its length by n, the ’th character (using zero-based indexing) of
a string S by S[i], and the sub-string starting at the i’th character and ending at the j’th
character of S by S[i, ..., j]. The alphabet of S is denoted by ¥ = [0, ..., 0 — 1], where
o = |X] is the alphabet size. The thesis assumes that a string ends with a special character
$, lexicographically smaller than all characters in 3. suf; of a string S is defined to be the
suffix of S starting at position ¢ (i.e., S[i, ..., n — 1]).

2.6 Problem Definitions

This section defines the various problems studied in the thesis.
2.6.1 Sequences

Comparison Sort. For a sequence S and comparison function < defining a total order on
elements of S, return the values of S sorted by <.

Remove Duplicates. For a sequence of elements, a comparison function f, and a hash
function / that maps elements to integers, return a sequence in which any duplicates
(equal-valued elements) are removed.

Random permutation. For a sequence S, return a random ordering of the elements of S
such that each of the |S|! possible orderings is equally likely.

2.6.2 Lists, Trees, and Graphs

List Contraction. For an input of a collection of linked lists represented by an array L
(L[7] stores the predecessor and successor of node 7), contract each list into a single node,
possibly combining values on the nodes during contraction.

List Ranking. For an input of a collection of linked lists represented by an array L (L]
stores the predecessor and successor of node 7), compute the distance from each node to
the end of its linked list.

Tree Contraction. For a tree represented by an array T (T'[i] stores pointers to the parent
and the two children of node 7), contract the tree down to the root node, possibly combining
values on the nodes during contraction.

Breadth First Search. For an undirected graph G and a source vertex r, return a breadth-
first-search (BFS) tree, rooted at r, containing all of the vertices reachable from 7 in

G.

Connected Components. For an undirected graph G, return a labeling L such that for two
vertices v and v, L(u) = L(v) if u and v belong in the same connected component (i.e.,
there exists a path between u and v), and L(u) # L(v) otherwise.
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i | S[i] | SA[{] | LCP[i] | suf;

0 b 6 0 $

1| a 5 0 a$

2| n 3 1 ana$

3| a 1 3 anana$
4| n 0 0 banana$
51 a 4 0 na$

6| $ 2 2 nana$

Figure 2.1: Example: SA and LCP arrays for S = banana$.

Spanning Forest. For an undirected graph G = (V, E), return edges F' C F, such that for
each connected component C; = (V;, E;) in G, a spanning tree T; (|T;| = |V;| — 1) of C; is
contained in F'. Furthermore, |F| = Y. o(|Vi] = 1).

Minimum Spanning Forest. For an undirected graph G = (V, E') with weights w : £ —
R, return a spanning forest of minimum total weight.

Maximal Independent Set. For an undirected graph G = (V, E'), return U C V such that
no vertices in U are neighbors and all vertices in V' \ U have at least one neighbor in U.

Maximal Matching. For an undirected graph G = (V, E), return £’ C FE such that no
edges in E’ share a vertex and each edge in £\ E’ shares at least a vertex with an edge in
E'.

Single-source Shortest Paths. For a weighted graph G = (V, E, w) and a source vertex
r, compute either the shortest path distance from r to each vertex in V' (if a vertex is
unreachable from r, then the distance returned is o0), or report the existence of a negative
cycle.

2.6.3 Strings

Suffix Array and Longest Common Prefixes. The suffix array [319] SA of S is a permu-
tation of the integers [0, ..., n — 1] such that sufsajg < sufsap) < ... < sufsap,—1], where
“<” means lexicographically smaller. The longest common prefix array is an array LCP
of length n such that LCP[0] = 0 and for i > 0, LCP[i] contains the length of the longest
common prefix (Icp) between sufsa;—) and sufsap;. As an example, Figure 2.1 shows the
SA and LCP arrays for the string S = banana$.

Trie. For a set of strings S, return a tree where (1) each edge stores a character, (2) the
concatenation of the characters on any path from the root to a node in the tree is a prefix of
at least one string in S, and (3) every string in S corresponds to concatenation of labels for
a path from the root to a leaf.

Patricia Tree. For a set of strings S, return a modified (compacted) trie in which (1) edges
can be labeled with a sequence of characters instead of a single character, (2) no node has
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a single child, and (3) every string in S corresponds to concatenation of labels for a path
from the root to a leaf [340].

Suffix Tree. For a string S, return the patricia tree storing the n suffixes of S [460].
2.6.4 Geometry

Triangle Ray Intersect. For a set of triangles 7" and rays I? in three dimensions, return the
first triangle each ray intersects, if any.

Delaunay Triangulation. For a set of n points in two dimensions, return a triangulation
such that no point is contained in the circumcircle of any triangle in the triangulation [127].

Delaunay Refinement. For a Delaunay Triangulation on a set of n points, and an angle «,
add new points such that in the resulting Delaunay Triangulation, no triangle has an angle
less than a.

N-body. For a set of n point sources in three dimensions, each point p with coordinate
vector p'and a mass m,, return the force induced on each one by the others based on the

Coulomb force F, = D aePazy Mamp(d — D)/17 — PIP°.

K-Nearest Neighbors. For n points in two or three dimensions, and a parameter k, return
for each point its k£ nearest neighbors (Euclidean distance) among all the other points.

2.7 Experimental Environment

This section summarizes the shared-memory multicore machines and compilers used for
experimental evaluation throughout this thesis. The experimental setup varies among differ-
ent chapters as the development of this thesis took several years, and different machines
and compilers were available at different points in time. The specifications of the three
machines and the compilers that were used are given below.

32-core Intel machine. A 32-core (with two-way hyper-threading) Dell PowerEdge 910
with 4 x 2.26GHz Intel 8-core X7560 Nehalem Processors. Each processor has a 1066MHz
bus and a 24MB L3 cache. Each core has a 256KB L2 cache, a 32KB L1 data cache,
and a 32KB L1 instruction cache. The processors are connected via an Intel QuickPath
Interconnect (QPI) with a theoretical peak bandwidth of 25.6GB/second. The machine has
a total of 64GB of main memory.

40-core Intel machine. A 40-core (with two-way hyper-threading) machine with 4 x
2.4GHz Intel 10-core E7-8870 Xeon processors. Each processor has a 1066MHz bus and
30MB L3 cache. Each core has a 256KB L2 cache, a 32KB L1 data cache, and a 32KB L1
instruction cache. This machine also uses the Intel QPI and has a total of 256GB of main
memory.

26



64-core AMD machine. A 64-core AMD machine with 4 x 2.4GHz 16-core 6278 Opteron
processors. Each processor has a 1600MHz bus and 16MB L3 cache, 8 x2MB shared 1.2
caches, 8 x64KB shared L1 instruction caches, and 16 x 16KB private L1 data caches. The
interconnect uses HyperTransport with a theoretical peak bandwidth of 25.6GB/second.
There is a total of 188GB of main memory on the machine.

Compilers. The three compilers used to compile parallel code are the ci1lk++ compiler
(build 8503) with the —02 flag, icpc compiler (version 12.1.0) with the —03 flag, and
the g++ (version 4.8.0, which supports Cilk) compiler with the —~02 flag. The sequential
programs were compiled using g++ with the —02 flag. The optimization flags were chosen
to give the best performance overall.
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Part 1

Programming Techniques for
Deterministic Parallelism
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Introduction

This part of the thesis introduces techniques and primitives for deterministic parallel pro-
gramming, as well as deterministic algorithms and data structures. Chapter 3 studies a form
of determinism, known as internal determinism, which requires the result of the computa-
tion as well as certain intermediate states to be deterministic. The chapter demonstrates
that for a wide body of problems, there exist efficient internally deterministic algorithms,
and moreover that these algorithms are natural to reason about and not complicated to
code. Programming at a higher level of abstraction using commutative building blocks,
and the technique of deterministic reservations for parallelizing sequential loops with
dependencies among iterations are introduced as useful tools for deterministic parallel
programming. Chapter 4 studies the theoretical properties of natural sequential algorithms
for maximal independent set, maximal matching, random permutation, list contraction,
and tree contraction, and shows that they actually exhibit high parallelism. The chapter
designs simple parallel algorithms for these problems that obey the same dependencies as
the corresponding sequential algorithms, and hence are deterministic. Experiments show
that the implementations perform well in practice, outperforming the corresponding sequen-
tial algorithms with just a modest number of cores. Chapter 5 describes a deterministic
phase-concurrent hash table in which operations of the same type are allowed to proceed
concurrently, but operations of different types are not. Phase-concurrency guarantees that
all concurrent operations commute, guaranteeing that the state of the table at any quiescent
point is independent of the ordering of operations (and is hence deterministic). Furthermore,
restricting the hash table to be phase-concurrent enables it to support operations more
efficiently than previous concurrent hash tables. Chapter 6 presents a detailed study of
the priority update operation, a useful primitive for deterministic parallel programming.
The chapter shows both experimentally and theoretically that if implemented appropriately,
priority updates greatly reduce memory contention over standard writes or other atomic
operations when locations have a high degree of sharing. Various applications of the priority
update in deterministic parallel programs are presented.

The results in this part of the thesis have appeared in the following publications:
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Guy Blelloch, Jeremy Fineman, Phillip Gibbons and Julian Shun. Internally Deter-
ministic Parallel Algorithms Can Be Fast, Proceedings of the ACM Symposium on
Principles and Practice of Parallel Programming (PPoPP), pp. 181-192, 2012.

Guy Blelloch, Jeremy Fineman and Julian Shun. Greedy Sequential Maximal In-
dependent Set and Matching are Parallel on Average, Proceedings of the ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 308-317,
2012.

Julian Shun, Yan Gu, Guy Blelloch, Jeremy Fineman and Phillip Gibbons. Sequential
Random Permutation, List Contraction and Tree Contraction are Highly Parallel.
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
431-448, 2015.

Julian Shun and Guy Blelloch. Phase-concurrent Hash Tables for Determinism.

Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 96-107, 2014.

Julian Shun, Guy Blelloch, Jeremy Fineman and Phillip Gibbons. Reducing Con-
tention Through Priority Updates. Proceedings of the ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pp. 152-163, 2013.
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Chapter 3

Internally Deterministic Parallelism:
Techniques and Algorithms

3.1 Introduction

One of the key challenges of parallel programming is dealing with nondeterminism. For
many computational problems, there is no inherent nondeterminism in the problem state-
ment, and indeed a serial program would be deterministic—the nondeterminism arises
solely due to the parallel program and/or due to the parallel machine and its runtime
environment. The challenges of nondeterminism have been recognized and studied for
decades [371, 210, 168, 436]. Steele’s 1990 paper, for example, seeks “to prevent the
behavior of the program from depending on any accidents of execution order that can
arise from the indeterminacy” of asynchronous programs [436]. More recently, there has
been a surge of advocacy for and research in determinism, seeking to remove sources of
nondeterminism via specially-designed hardware mechanisms [134, 135, 230], runtime
systems and compilers [35, 37, 359, 469, 120, 119, 303, 118, 352, 247, 308], operating
systems [36, 235], and programming languages [66, 322, 284, 283].

While there seems to be a growing consensus that determinism is important, there is
disagreement as to what degree of determinism is desired (worth paying for). Popular
options include:

e Data-race free [4, 165], which eliminate a particularly problematic type of non-
determinism: the data race. Synchronization constructs such as locks or atomic
transactions protect ordinary accesses to shared data, but nondeterminism among
such constructs (e.g., the order of lock acquires) can lead to considerable nondeter-
minism in the execution.
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e Determinate (or external determinism), which requires that the program always
produces the same output when run on the same input. Program executions for a
given input may vary widely, as long as the program “converges” to the same output
each time.

e [nternal determinism, in which key aspects of intermediate steps of the program are
also deterministic, as discussed in this chapter.

e Functional determinism, where the absence of side-effects in purely functional
languages make all components independent and safe to run in parallel.

e Synchronous parallelism, where parallelism proceeds in lock step (e.g., SIMD-style)
and each step has a deterministic outcome.

There are trade-offs among these options, with stronger forms of determinism often viewed
as better for reasoning and debugging but worse for performance and perhaps programmabil-
ity. Making the proper choice for an application requires understanding what the trade-offs
are. In particular, is there a “sweet spot” for determinism, which provides a particularly
useful combination of debuggability, performance, and programmability ?

This chapter advocates a particular form of internal determinism as providing such a
sweet spot for nested-parallel computations in which there is no inherent nondeterminism
in the problem statement. As discussed in Chapter 2, an execution of a nested-parallel
program defines a computation DAG with vertices representing computations and edges
representing control dependencies among them. This DAG when annotated with the
operations performed at each vertex (including arguments and return values, if any) is
referred to as the trace. Informally, a program/algorithm is internally deterministic if for
any input there is a unique trace. This definition depends on the level of abstraction of
the operations in the trace. At the most primitive level the operations could represent
individual machine instructions, but more generally, and as used in this chapter, it is any
abstraction level at which the implementation is hidden from the programmer. Note that
internal determinism does not imply a fixed schedule since any schedule that is consistent
with the DAG is valid.

Internal determinism has many benefits. In addition to leading to external determin-
ism [371] it implies a sequential semantics—i.e., considering any sequential traversal of
the dependence DAG is sufficient for analyzing the correctness of the code. This in turn
leads to many advantages including ease of reasoning about the code, ease of verifying
correctness, ease of debugging, ease of defining invariants, ease of defining good cov-
erage for testing, and ease of formally, informally and experimentally reasoning about
performance [134, 135, 230, 37, 359, 469, 36, 66, 35]. Two primary concerns for internal
determinism, however, are that it may restrict programmers to a style that (i) is complicated
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to program, unnatural, or too special-purpose and (ii) leads to slower, less scalable programs
than less restrictive forms of determinism. Indeed, prior work advocating less restrictive
forms of determinism has cited these concerns, particularly the latter concern [219].

This chapter seeks to address these two concerns via a study of a set of the benchmark
problems in the Problem Based Benchmark Suite (refer to Section 1.4 and Figure 1.2),
which cover a reasonably broad set of applications including problems involving sorting,
graphs, geometry, graphics, and string processing. The main contribution of this chapter is
demonstrating that for this wide body of problems, there exist fast and scalable internally
deterministic algorithms, and moreover that these algorithms are natural to reason about
and not complicated to code.

This thesis’s approach for implementing internal determinism for these benchmarks is to
use nested parallel programs in which concurrent operations on shared state are required to
commute [459, 436] in their semantics and to be linearizable [227] in their implementation.
Many of the algorithms implemented use standard algorithmic techniques based on nested
data parallelism where the only shared state across concurrent operations is read-only (e.g.,
divide-and-conquer, map, reduce, and scan) [50]. However, a key aspect to several of the
algorithms is the use of non-trivial commutative operations on shared state. The notion of
commutativity has a long history, dating back at least to its use in analyzing when database
transactions can safely overlap in time [459]. A seminal paper by Steele [436] discusses
commutativity in the context of deterministic nested-parallel programs, showing that when
applied to reads and writes on memory locations, commutativity of concurrent operations
is sufficient to guarantee determinism.

Although there has been significant work on commutativity, there has been little work
on the efficacy or efficiency of using non-trivial commutativity in the design of determin-
istic parallel algorithms. Much of the prior work on commutativity focuses on enforcing
commutativity assuming the program was already written within the paradigm (e.g., using
type systems [67]), automatically parallelizing sequential programs based on the commu-
tativity of operations [396, 437, 383], or using commutativity to relax the constraints in
transactional systems [224, 280], an approach that does not guarantee determinism. In
contrast, this chapter identifies useful applications of non-trivial commutativity that can be
used in the design of internally deterministic algorithms.

This chapter describes, for example, an approach called deterministic reservations for
parallelizing certain greedy algorithms. In this approach, the user implements a loop with
potential loop carried dependencies by splitting each iteration into reserve and commit
phases. The loop is then processed in rounds in which each round takes a prefix of the
unprocessed iterates applying the reserve phase in parallel and then the commit phase in
parallel. Some iterates can fail during the commit due to conflicts with earlier iterates and
need to be retried in the next round, but as long as the operations commute within the
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reserve and commit phases and the prefix size is selected deterministically, the computation
is internally deterministic (for a given round, the same iterates always succeed/fail on every
execution).

This chapter describes algorithms for the benchmark problems using these approaches
and presents performance results for Cilk implementations of these algorithms on a 32-core
machine. Perhaps surprisingly, for all problems, the internally deterministic implementa-
tions achieve good speedup and good performance even relative to prior nondeterministic
and externally deterministic solutions, implying that the performance penalty of internal
determinism is quite low. The experiments show parallel speedups of up to 31.6 on 32 cores
with two-way hyper-threading (for sorting), and almost all of the speedups are above 16.
Compared to good sequential implementations of the problems, the internally deterministic
parallel implementations range from being slightly faster on one core (sorting) to about
a factor of 2 slower (spanning forest). All of the internally deterministic algorithms are
quite concise (20-500 lines of code), and are “natural” to reason about (understandable, not
complicated, not special purpose). This combination of performance and understandability
provides significant evidence that internal determinism is a sweet spot for a broad range of
computational problems.

3.2 Programming Model

This chapter focuses on achieving internally deterministic behavior in nested-parallel
programs through “commutative” and “linearizable” operations. Each of these terms limits
the programs permitted by the programming model, but as Section 3.4 exhibits, the model
remains expressive. This section defines each of these terms.

3.2.1 Nested parallelism

As discussed in Chapter 2, nested-parallel computations achieve parallelism through the
nested instantiation of fork-join constructs, such as parallel loops, parallel map, parbegin/-
parend, parallel regions, and spawn/sync. Figure 3.1 shows an example of a nested-parallel
program using a syntax similar to Dijkstra’s parbegin [137]. Languages with nested
parallelism rely on runtime schedulers to assign sub-computations to cores. Whereas these
runtime schedulers are inherently nondeterministic to handle load balancing and changes in
available resources, the goal of this chapter is to guarantee that the program nevertheless
behaves deterministically.

3.2.2 Internal determinism

This chapter adopts a strong notion of determinism here, often called internal determin-
ism [144, 348]. Not only must the output of the program be deterministic, but all interme-
diate values returned from operations must also be deterministic. Note that this does not
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z:=0
in parallel do
{ 7r3:=AtomicAdd(z,1) }
{ 74:=AtomicAdd(z,10)
in parallel do
{ rg:=AtomicAdd(x,100) }
{ r7:=AtomicAdd(z,1000) }

NoUnsE B =

}

8. returnzx

Figure 3.1: An example nested-parallel program. The in parallel keyword means that the following two
{...} blocks of code may execute in parallel. AtomicAdd(x,v) atomically updates x to z := z + v and
returns the new value of x.

preclude the use of pseudorandom numbers, where one can use, for example, the approach
of Leiserson et al. [297] to generate deterministic pseudorandom numbers in parallel from
a single seed, which can be part of the input.

This chapter defines determinism with respect to abstract operations and abstract state,
not with respect to machine instructions and memory state. Nevertheless, the definition
supplied here is general and applies to both cases. The difference hinges on the notion of
“equivalence.” Various levels of abstraction have been considered in the literature (see [309]
for a discussion). Given a definition of equivalent operations, states, and values, internal
determinism is defined as follows.

For a (completed) computation, its frace is the final state along with the computation
DAG on which operation vertices are (further) annotated with the values returned (if
any). Figure 3.2 shows two traces corresponding to executions of the program shown in
Figure 3.1. Two computation DAGs are equivalent if they have the same graph structure and
corresponding vertices are labeled with equivalent operations. Two traces are equivalent
traces if they have equivalent final states, equivalent computation DAGs, and corresponding
DAG vertices are annotated with equivalent return values.

Definition 1. A program is internally deterministic if for any fixed input I, all possible
executions with input I result in equivalent traces.

Note that since the parallelism is dynamic, a nondeterministic program may result in
dramatically different DAGs. Because all decisions in a computation are based only on
the result of operations performed, however, if operations return equivalent results despite
different schedulings, then the structure of the DAG is guaranteed to remain the same.

For primitive types like integers, it is clear what equivalence means. When working with
objects and dynamic memory allocation, however, a formal definition of equivalent objects
and states becomes more complicated, and not within the scope of this thesis. Informally,
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returns “1111” returns “1111”

Figure 3.2: Two possible traces for the program in Figure 3.1. The diamonds, squares, and circles denote forks,
joins, and data operations, respectively. Vertices are numbered by line number, as a short hand for operations
such as AtomicAdd(z, 1). The left trace corresponds to the interleaving/schedule 1, 2,3, 4,5, 6, 7, 8, whereas
the right trace corresponds to 1,2,4,5,7,6, 3, 8. Because the intermediate return values differ, the program
is not internally deterministic. It is, however, externally deterministic as the output is always the same. If
AtomicAdd did not return a value, however, then the program would be internally deterministic.

when we say that states or values are equivalent, we mean semantically equivalent, i.e., that
no sequence of valid operations can distinguish between them (see, e.g., [224]).

3.2.3 Commutativity

Internally deterministic programs are a subset of parallel programs, and thus programming
methodologies that yield internal determinism restrict a program’s behaviors. The method-
ology adopted in this chapter is to require all logically parallel accesses of shared objects to
use operations that commute. The fact that this restriction yields internally deterministic
programs is observed in many works, see, for example, [436, 396, 90] among others.

This chapter adopts Steele’s notation and definition of commutativity [436]. We use
f(S) — S" = v to denote that when the operation f is executed (without any concurrent
operations) starting from system (object) state .S, the system transitions to state S’ and f
returns the value v. To simplify notation, operations not returning values are viewed as
returning v = ().

Definition 2. Two operations f and g commute with respect to state S if the order in
which they are performed does not matter. That is, if

f(S) = Sy = vy
g(Sf) = Sty = vy
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and

9(8) = S, = v,
f(Sy) = Spp = v}

then [ and g commute with respect to S if and only if Sy, = S}, vy = U}, and vy = vy,
where “="" here denotes equivalence. (Note that there is no requirement that Sy = Sj.)

Moreover, that two operations are said to commute if they commute with respect to all
valid states .S. It is possible to relax this definition (e.g., [459, 224]), but this definition is
sufficient for the purposes in this chapter.

Linearizability. Commutativity is not a sufficient condition for deterministic behavior, as
commutativity alone does not guarantee that the implementation of the operations work
correctly when their instructions are interleaved in time. To guarantee safety of concurrent
execution of operations this chapter uses the standard definition of linearizability [227],
which enforces atomicity of the operations. In this setting, operations are concurrent if
and only if they are logically parallel. Thus, linearizability guarantees that there is a
total order (or history), H, of the annotated operations in a trace 7" such that H is a legal
sequential execution of those operations, starting from the initial state. That is, (i) H is a
valid scheduling of 7”’s computation DAG, and (ii) each annotated operation in 7’ remains
legal (including its return value) when executed atomically in the order of /. Note that
linearizability is a property of the implementation and not the semantics of the operation
(e.g., two insertions into a dictionary might semantically commute, but an implementation
might fail when interleaved). One way to guarantee linearizability is to use a lock around
all commuting operations, but this is inefficient. This chapter uses only non-blocking
techniques to achieve linearizability among commuting operations. We however do not
guarantee that all commuting operations are linearizable, just that the logically parallel
ones are.

Summary. The model this chapter uses for internally deterministic behavior is summarized
by the following theorem.

Theorem 1. Let P be a nested-parallel program. If for all inputs, all logically parallel
operations commute and are linearizable, then P is internally deterministic.

Proof. (Sketch) Consider any fixed input / and any fixed (completed) execution of P with
input /. Let G (7)) be the resulting computation DAG (trace, respectively), and let H be
its linearizability history. The proof will show that 7" is equivalent to a canonical trace
T obtained by executing P with input / using only a single core. Let G* and H* be the
computation DAG and linearizability history, respectively, for 7. The proof shows by

37



induction on the length of H* that (i) G and G* are equivalent and (ii) H permuted to
match the order in /7* of equivalent vertices is also a linearizability history for 7", implying
equivalent return values. Construct such a permutation, H’, inductively, with H' = H
initially. Assume inductively that (i) the subgraph of G* corresponding to the vertices in
H*[1...i] has an equivalent subgraph in GG, and (ii) H' is a linearizability history for T’
such that H'[1...4] and H*[1...1] are equivalent ([5 . .. k] denotes subsequence). Consider
© 4+ 1, and let o* be the ¢ 4 1’st annotated vertex in *. It follows inductively that there is
a vertex o in 1" with equivalent parent(s) and an equivalent operation, say the j’th vertex
in H'. If j = i + 1, the proof is done, so assume j > ¢ + 1. None of the vertices in
H'[i +1...j — 1] can precede or be preceded by o, so o must commute with each such
vertex. Thus, o can be pairwise swapped up to position i + 1 in H’ while preserving
a linearizability history, establishing both inductive invariants. The argument is readily
extended to show the equivalence of the final states by augmenting each execution with
operations that read the final state. The theorem follows. ]

The approach of this chapter is similar to previous models for enforcing deterministic
behavior [436, 90], except that in Steele [436] commutativity is defined in terms of memory
operations and memory state, and in Cheng et al. [90] commutativity is defined with respect
to critical sections and memory state. In this work, commutativity is defined in terms of
linearizable abstract operations and abstract state.

3.3 Commutative Building Blocks

Achieving deterministic programs through commutativity requires some level of (object or
operation) abstraction. Relying solely on memory operations is doomed to fail for general-
purpose programming. For example, requiring a fixed memory location for objects allocated
in the heap would severely complicate programs and/or inhibit parallelism, possibly re-
quiring all data to be pre-allocated. Instead, this section defines some useful higher-level
operations that are used as commutative operations in many of the algorithms presented
later. They are all defined over abstract data types supporting a fixed set of operations. This
section also describes non-blocking linearizable implementations of each operation. These
implementations do not commute at the level of single memory instructions and hence the
abstraction is important.

Priority write. The most basic data type is a memory cell that holds a value, and supports
a priority write and a read. The priority write on a cell z, denoted by x.pwrite(v) updates
x to be the maximum of the old value of = and a new value v. It does not return any value.
x.read() is just a standard read of the cell = returning its value. Priority write is often used
to select a deterministic winner among parallel choices, e.g., claiming a next-step neighbor
in breadth first search (Section 3.4.4).
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Any two priority writes z.pwrite(v;) and x.pwrite(vy) commute, in accordance with
Definition 2, because (i) there are no return values, and (ii) the final value of x is the
maximum among its original value, v, and v, regardless of which order these operations
execute. A priority write and a read do not commute since the priority write can change the
value at the location. We implement non-blocking and linearizable priority writes using a
compare-and-swap. With this implementation, the machine primitives themselves do not
commute. The implementation, further applications, and a detailed experimental study of
priority writes will be presented in Chapter 6.

Priority reserve. In the “deterministic reserva