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Abstract
Understanding transcriptional gene regulation is an important step to understand-

ing how essential mechanisms are controlled in biological systems. Functional as-
says such as ChIP-seq and DNase I have been used to obtain a binding map of
transcription factor (TF) binding sites on DNA and to determine the transcriptional
regulatory network of TFs and their target genes. However, binding alone may not
result in a change in target gene expression. Experimental approaches to identifying
functional binding events involve performing artificial TF knockdown experiments
or genome editing [31, 45, 70] and then declaring the differentially expressed genes
as functionally validated target genes. Instead of artificial perturbation, in order
to functionally validate the TF binding map, we propose to leverage the naturally-
occurring genetic variations as the source of perturbations that vary gene expressions
and to analyze population single nucleotide polymorphism (SNP) and gene expres-
sion data. Experimental approaches typically target either a single TF or a family
of TFs. In addition, in a single experiment, you must choose whether to perturb
TF concentration through RNA interference or CRISPR interference, or TF binding
affinity through genome editing. However, our approach is potentially more power-
ful because any aspects of the TF-target interaction, including TF concentration and
TF binding affinity, can be perturbed by a large number of SNPs found across the
genome simultaneously and the effects are learned in a single analysis.

In this thesis, we first introduce a statistical approach, based on conditional Gaus-
sian Bayesian networks, that integrates population SNP and gene expression data
with TF binding data to validate the TF binding map. We developed an efficient
learning algorithm for learning the gene regulatory network by using TF binding
data as prior knowledge, and selecting the TF-target interactions that are validated
based on population SNP and gene-expression data. Given the estimated network,
we perform inference on the estimated probabilistic graphical models to determine
downstream genes that are differentially expressed due to the effect of the TF-target
interactions.

We apply our method to learn transcriptional regulatory networks in lymphoblas-
toid cell lines (LCLs) and breast cancer tumours. First, we demonstrate our approach
for validation of the TF binding map derived from ENCODE DNase I and ChIP-
seq data from 71 TFs in LCLs, with SNP and gene expression data from the 1000
genomes and HapMap 3 projects respectively. We examined functional target genes
that were validated under perturbation of TF concentration and TF binding affinity.
Finally, we apply our method to perform TF binding map validation for ER and its
coregulators which include 38 TFs obtained from Cistrome TF binding data, by us-
ing The Cancer Genome Atlas SNP and expression data from breast cancer tumors.
We identified many previously known interactions between ER and its coregulators.
We also found expression quantitative trait loci (eQTLs) in local binding regions of
target genes that are potential super enhancers and eQTLs in coding regions that may
affect the protein structure of important regulators.
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Chapter 1

Introduction

1.1 Motivation

One of the ultimate challenges in biology is to understand the mechanisms that underly cellular
processes. A large part of this is comprehending gene regulation, which is basically how the
cell controls the production of proteins that carries out these mechanisms. An important control
point is transcription during which the binding of transcription factors (TFs) determines which
genes are transcribed. The protein products of these regulated genes then go on and trigger other
mechanisms and have downstream effects. One primary goal of studying gene regulation is to
elucidate the TF to target gene relationships and the resulting downstream pathways.

Recently, many experimental procedures have been developed to construct a genome wide
binding map of TF binding sites on DNA. These include approaches such as chromatin immuno-
precipitation sequencing (ChIP-seq) [40, 108] and DNase I sequencing (DNase I) [40] . These
techniques help identify the binding events that occur between TFs and target genes which con-
struct a TF binding map. However, many of the binding events do not result in a change in
target gene expression. Thus, functional validation is required to determine whether the TF bind-
ing affects target gene expression. One common approach for such functional validations is to
perform artificial gene knockdown experiments. In this kind of experiment, a TF’s expression
is reduced, most commonly via RNA interference (RNAi) [94] and more recently via CRISPR
interference (CRISPRi) [31]. Another recent method is to perform genome editing using the
CRISPR-Cas9 system [7] where a particular locus can be modified, such as a regulatory region
of a TF [31, 45, 70]. For both experimental approaches, the genes that are differentially expressed
as a result of the perturbation are determined. The well-known limitation of these approaches is
that the differential expression of a gene does not necessarily mean that the gene is being directly
targeted by the TF, but can be an indirect downstream effect.

Instead of using experimental approaches to perturb gene expression, we propose to validate
the TF binding map by using naturally occurring genetic variants as the source of perturbations
that vary the gene expression levels. We accomplish this by analysis of population single nu-
cleotide polymorphism (SNP) and gene expression data. Using SNP perturbations for functional
validation has several advantages over the experimental methods. First, a large number of SNPs
are found across the genome, and can perturb any aspect of the TF-target interaction simultane-
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ously. For instance, in addition to capturing the effects of concentration perturbations, we can
also capture SNP perturbations of binding affinity through changes in TF binding sites or TF
binding domains. In contrast, different experiments must be performed for perturbing concen-
tration such as RNAi or CRISPRi, and perturbing TF binding sites and binding domains such
as genome editing. Furthermore, while our approach can perturb the TF-target interaction for
many TFs simultaneously, experimental methods can only target a single TF or family of TFs
at a time. Another advantage is since expression quantitative trait loci (eQTL) mapping [4, 44]
with population gene expression and SNP data is widely used to study the genetic architecture
of various diseases and tissues types, it is easy to leverage existing data for our approach. This
also means that we can perform functional validation whenever SNP and gene expression data
are available, and that we are not restricted to particular cell lines or model organisms as is the
case for the experimental approaches.

The main computational challenge for using SNP perturbations to functionally validate TF
bindings is to decouple the large number of SNP perturbations that are simultaneously affect-
ing all genes. To address this challenge, we present a statistical approach based on conditional
Gaussian Bayesian networks to validate the TF binding map, constructed from TF binding sites,
by learning the functional TF-target interactions from SNP and expression data. The statistical
model incorporates TF binding map as prior information, and then the learning algorithm selects
the TF-target interactions that are validated under SNP perturbations. We develop a learning
algorithm that can learn the gene regulatory networks under SNP perturbations efficiently and
accurately [161]. The validated target genes that are directly regulated by the TF-target interac-
tion are identified in the model as edges in the network, whereas we can perform inference on
the model to infer the indirect downstream effects of TF-target interactions. Thus, we are able
to overcome the well-known limitation of the standard experimental approach and distinguish
between direct targets and indirect differentially expressed genes. We demonstrate our method
on ChIP-seq and DNase I data from the Encyclopedia of DNA Elements (ENCODE) Project [22]
and SNP and expression data from the 1000 Genomes [20] and HapMap 3 projects [97, 140],
all collected for lymphoblastoid cells. In addition, we apply our approach to TF binding data
of estrogen receptor and its coregulators, and population SNP and expression data collected for
breast cancer cells from the Cancer Genome Atlas network (http://cancergenome.nih.gov/).

1.2 Thesis goals
We now define the subgoals to address the problem of developing a statistical model that can
model gene regulation with population SNP and expression data.

1. Use A* search for Gaussian Bayesian network learning. We select Bayesian networks to
model the directional relationships between genes in the regulatory network and propose
a new learning algorithm called A* lasso. A* lasso learns a sparse Bayesian network
structure of TFs, target genes and downstream genes. For a small number of nodes in
the network, A* lasso recovers the optimal sparse Bayesian network structure by solving
a single optimization problem with the A* search algorithm, using lasso in its scoring
system. For larger networks, we suggest a heuristic scheme that dramatically reduces
computational time without substantially compromising the quality of solutions.
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2. Use conditional Gaussian Bayesian network to determine functional TF bindings
by integrating TF binding data with gene expression and SNP data. We construct
a method that validates TF to target binding events from ChIP-seq and DNase I data
with population gene expression data under SNP perturbations. We extend A* lasso so
that it can estimate a conditional Gaussian Bayesian network where the nodes are gene-
expressions conditioned on SNPs and the TF binding map is integrated as prior knowledge.

3. Seek biological evidence for TF to target interactions validated by perturbing con-
centration and by perturbing binding affinity in human lymphoblastoid cells. We
investigate how the TF to target relationships that are validated by perturbing TF con-
centration compare with knockdown experiments and analyze whether SNP perturbations
indeed disrupt binding affinity of TFs resulting in differential gene expression of target
genes.

4. To investigate transcriptional regulation of estrogen receptor (ER), its coregulators,
and targets in breast cancer tumor cells. We apply our method of validating the TF
binding map to data obtained from breast cancer cell lines. We build the TF binding
map from ENCODE ChIP-seq and DNase I hypersensitivity data, and validate it with
TCGA gene expression and SNP data. We perform detailed analysis of the gene regulatory
network for ER and its coregulators. We also investigate the SNPs that affect target gene
expression and look for potential enhancers. Finally, we identify SNPs in coding regions
of TF and ER upstream regulators and examine their effect on protein structure.

1.3 High-throughput omics data
The subgoals presented above depend on several data sources. Instead of validating TF binding
events with experimental approaches, we propose to use a statistical model based on population
SNP and gene expression data. Population SNP and gene expression data is often collected for
eQTL mapping, which is a popular approach for studying the effects of genetic variation on gene
expressions. In our approach, we can harness the information that has already been collected to
train our statistical model. A brief description of the data sources is provided below.

1.3.1 Microarray expression profiling
Microarrays are used to measure gene expression from a particular cell or tissue. For population
expression data, we will be using microarray data from the HapMap 3 population [97, 140]. It
is very useful for genome-wide studies because this technology allows the expression of tens of
thousands of genes to be quantified simultaneously on one chip. A microarray experiment begins
with the extraction of messenger RNA (mRNA) from cells or tissue. This mRNA is then ampli-
fied, converted to cDNA, labeled with fluorescent dyes and hybridized to the microarray chip.
Each chip contains thousands of DNA probes which contain short sequences that will hybridize
with the prepared sample. After hybridization, the arrays are then placed in a specialized scanner
that will quantify the intensity of each probe. The scanned images are then analyzed using soft-
ware that can subtract background noise, normalize the data to generate output expression levels
for each gene. A detailed review of microarray technology is available from [126].

3



While microarray technology provides genome wide expression levels at a low cost, it also
has certain limitations. There is a lot of noise in the measurement due to cross-hybridization [105,
119] and there is limited dynamic range of detection due to noise and saturation of signals [156].
In addition, detection of different isoforms is usually not possible. This has lead to the develop-
ment of newer technologies such as RNA sequencing.

1.3.2 RNA sequencing

RNA sequencing (RNA-seq) is part of a suite of next-generation sequencing (NGS) tools that
have recently become available, and is used to measure gene expression [89, 107, 156]. This
technology is rapidly replacing microarrays and we will be using this type of data for analysis
of gene regulation in cancer. In an RNA-seq experiment, the sample mRNA is converted into a
library of cDNA fragments. High-throughout sequencing technology is then used to sequence
each fragment. The resulting reads are then aligned to a reference genome. The reads are then
quantified and statistical tools are used to normalize the data producing the expression levels for
each gene.

Although RNA-seq has slightly greater experiment costs and computational costs due to re-
quirement of sequencing and alignment, it has advantages over expression profiling by microar-
ray. It has very low noise in the signal because it does not suffer from cross-hybridization in the
experiment and it does not have an upper limit for quantification since it is counting sequences.
Thus, a larger dynamic range of expression levels can be detected compared to microarrays.
Another important advantage is that RNA-seq can detect transcripts that do not correspond to ex-
isting genomic sequence. Instead of mapping reads to a reference genome, they can be mapped
to a de novo assembly of the transcriptome. This allows for the identification of novel transcripts
and is useful for studies on non-model organisms [107].

1.3.3 Chromatin immunoprecipitation sequencing

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a technique used to iden-
tify the genomic locations where DNA-binding proteins such as TFs or histones bind [40, 108].
We use publicly available ChIP-seq data from the ENCODE project [22] to determine candidate
TF to target gene relationships that we can then validate. These DNA-binding proteins bind pref-
erentially to specific DNA sequences. However, these locations cannot be predicted using DNA
sequence features alone. Thus, ChIP-seq is a way of finding these binding locations in cells.
In a typical ChIP-seq experiment, a specific DNA-binding protein that associates with the DNA
fragments are cross linked to the DNA in vivo by treatment with formaldehyde. The chromatin
is then broken up by sonication resulting in fragments of DNA. Next, an antibody specific to
the protein is used to immunoprecipitate the DNA-protein complex. Finally, the cross links are
removed and the free DNA that was bound by the protein is sequenced. The resulting sequences
are then aligned to the reference genome to find out where exactly in the genome the protein was
found.
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1.3.4 DNase I hypersensitive sites

DNase I digestion followed by sequencing [40] is a technique to detect open chromatin, these
are regions where TFs can bind and are likely to have gene regulatory functions. The DNase I
endonuclease preferentially digests unbound, open chromatin. The DNase I hypersensitive sites
correspond to regions of unbound chromatin, free of nucleosomes. The DNase-seq experiments
will determine the regions that are enriched for DNase I hypersensitive sites. We use this data
from the ENCODE project [22] in addition to ChIP-seq data to determine the candidate TF
binding map that is to be validated.

1.3.5 SNP data

Single nucleotide polymorphisms (SNPs) are variations in a single nucleotide that occurs at
many positions in the genome. These genetic variations are identified for individuals in a pop-
ulation because they can potentially result in differences in both protein products and regu-
latory sequences. We use publicly available population SNP data from the 1000 Genomes
Project [20]. In addition, for cancer analysis, we will use data from the TCGA Research Net-
work: http://cancergenome.nih.gov/. SNP data can be generated by using SNP arrays or next
generation sequencing [93] (NGS). SNP arrays can genotype thousands of previously known
SNPs in one experiment [76]. In NGS methods, the genome is digested in small fragments that
get sequenced and aligned to a reference genome. Once the fragments of individuals of popu-
lation are aligned to a reference genome, the first step is to do variant calling. Next, genotype
calling is performed which identifies the correct genotype for each individual at each site. Then
SNP loci are determined by comparing the genome sequences across samples. The details of this
process is reviewed in [104].

1.3.6 Knockdown experiments with RNA interference

One common method of determining whether TF binding is functional is by gene knockdown of
the TF. A popular technique of achieving gene silencing is by RNA interference (RNAi) [94]. We
use the RNAi experiments done by Cusanovich et al. [26] for a HapMap lymphoblastoid cell line
and compare the results with our population-based approach. RNAi gene knockdown involves
using siRNAs to target and silence TF expression. These experiments must be done for a single
TF and a single cell line at a time. After TF knockdown, a profiling technique such as microarray
or RNA-seq can be used to measure the gene expressions of the sample. The success of these
experiments is dependent on siRNA targeting, that is the ability to silence the target TF and have
relatively few off-target effects. Thus, when using this technique many knockdown experiments
may be discarded due to low efficiency. In the study by Cusanovich et al. [26], out of 112, 53 TF
knockdown experiments were discarded for low efficiency.
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1.4 Background on computational methods

1.4.1 Bayesian networks
Bayesian networks are widely used for modeling complex distributions over a large number of
variables, where the dependency between variables are represented as directed edges [75]. A
Bayesian network provides a compact representation of a probability distribution. This distribu-
tion can be factorized by using its corresponding directed acyclic graph (DAG). Given a Bayesian
network, inference can be performed to find probabilities of certain variables given observations
of others. Bayesian networks are useful for modeling settings where the relationships between
variables are directed and has often been used to model networks in biology [67].

1.4.2 Structure learning for Bayesian networks
Given the structure, estimating the parameters of a Bayesian network is straightforward, how-
ever learning the network structure is a difficult problem. In fact, learning the Bayesian network
structure has been known to be an NP-hard problem [18] because of the constraint that the net-
work structure has to be a directed acyclic graph (DAG). Many of the exact methods that have
been developed for recovering the optimal structure are computationally expensive and require
exponential computation time [71, 133]. Approximate methods based on heuristic search are
more computationally efficient, but they recover a suboptimal structure.

Many of the existing algorithms are based on scoring each candidate graph and finding a
graph with the best score, where the score decomposes for each variable given its parents in
a DAG. Although methods may differ in the scoring method that they use (e.g., MDL [77],
BIC [127], and BDe [51]), most of these algorithms, whether exact methods or heuristic search
techniques, have a two-stage learning process. In Stage 1, candidate parent sets for each node
are identified while ignoring the DAG constraint. Then, Stage 2 employs various algorithms to
search for the best-scoring network structure that satisfies the DAG constraint by limiting the
search space to the candidate parent sets from Stage 1. For Stage 1, methods such as sparse can-
didate [36], max-min parents children [151], and total conditioning [109] algorithms have been
previously proposed. For Stage 2, exact methods based on dynamic programming [71, 133] and
A* search algorithm [166] as well as inexact methods such as heuristic search technique [151]
and linear programming formulation [63] have been developed. These approaches have been
developed primarily for discrete variables, and regardless of whether exact or inexact methods
are used in Stage 2, Stage 1 involves exponential computation time and space.

For continuous variables, L1-regularized Markov blanket (L1MB) [124] was proposed as
a two-stage method that uses lasso to select candidate parents for each variable in Stage 1 and
performs heuristic search for DAG structure and variable ordering in Stage 2. Although a two-
stage approach can reduce the search space by pruning candidate parent sets in Stage 1, Huang et
al. [59] observed that applying lasso in Stage 1 as in L1MB is likely to miss the true parents in a
high-dimensional setting, thereby limiting the quality of the solution in Stage 2. They proposed
the sparse Bayesian network (SBN) algorithm that formulates the problem of Bayesian network
structure learning as a single-stage optimization problem and transforms it into a lasso-type op-
timization to obtain an approximate solution. Then, they applied a heuristic search to refine the
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solution as a post-processing step. We develop a single-stage algorithm that recovers the optimal
solution with less computation time than previous exact algorithms. We modified our algorithm
using heuristic schemes to make it even more computationally efficient and practical for learning
large networks without significantly reducing the quality of the solution.

1.4.3 A* Search
A* search is a search algorithm that has been widely used in path-finding. In A* search, the goal
is to find the shortest path between the start node and the goal node, where the paths between
nodes are weighted. To find the optimal path, A* search will construct a tree of paths from the
start node, expanding nodes at every step which result in partial paths, until one of the paths
reaches the goal node. At each iteration, A* will investigate each partial path and estimate the
total cost to reach the goal. A* will then select the partial path that minimizes that cost. This cost
is represented by:

f = g + h (1.1)

where f is the estimate of the total cost, g is the exact cost of the path from the start node to
the current node, and h is the heuristic estimate of the cost from the current node to the goal.
The heuristic function is defined for each specific problem. To find the optimal path, the only
property that it must satisfy is that it is admissible, which means that it never overestimates the
actual cost to get to the goal node. If the heuristic also satisfies the property of consistency, then
the optimal path to a node is always the first one followed. A heuristic is consistent if for two
adjacent nodes x and y,

h(x) ≤ c(x, y) + h(y). (1.2)

This means that the estimated cost of reaching the goal from x is no greater than the step cost of
getting to y plus the estimated cost of reaching the goal from y.

The most common way to implement A* search is with a priority queue. At each step, the
node with the lowest cost f is selected popped off the queue, the f values of its neighbors are
computed and added to the queue. This continues until a goal node has the minimum f value
in the queue. The heuristic function h value is 0 at this point and this solution has the shortest
path. A full description of A* search is provided in Russell and Norvig [120]. We incorporate
A* search in our learning algorithm to significantly prune the search space while guaranteeing
the optimality of the solution. We then further limit the search space of A* search with heuristic
schemes to improve computation time of our algorithm for large networks.

1.4.4 Learning gene regulatory networks from expression data
Constructing gene regulatory networks is an important step in understanding the mechanisms
behind biological processes. In the post genomic era, gene expression data is available for the
whole genome which facilitates the understanding of organisms at the organism level, instead
of pathways that involved a only few genes. However, this requires computational methods in
order to model a network over a large number of genes. In this section, we review modern ap-
proaches to estimating gene regulatory networks from gene expression data. Further information
is provided in review articles (e.g., [67], [154], [5]).
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Logical networks

One of the earliest and simplest modeling strategies was to use logical models [154]. This was
introduced by Kauffmann and Thomas in 1973 [46, 146]. Their application was to reconstruct
the regulatory network that controlled the development of sea urchin embryos. Logical models
have variables such as gene or proteins, and represent the state of the variables at a discrete
level. The system is then assumed to update at synchronous time steps. This type of modeling is
useful when the data is qualitative. There are also variations of logic models that include fuzzy
logic [98].

Boolean networks

Another simple strategy for modeling gene regulatory networks are Boolean networks [154, 162].
In Boolean networks, each variable such as a gene or protein takes on two possible values, on
or off. It is a directed graph of a set of binary variables called nodes and each node’s value at a
particular time is determined by its parents through a Boolean function. The states of all nodes are
updated simultaneously (synchronously). Similar to logical networks, boolean networks can be
useful when a small number of variables are available and the data is qualitative. The limitations
of this method are that gene expression values must be discretized and that we must assume that
states are changing synchronizing which is generally not true in biological systems. The structure
of Boolean networks can be learned by observation of the gene expression measurements after
perturbation experiments [61].

Bayesian Networks

As discussed previously, a common approach to building gene regulatory networks is using
Bayesian networks. Bayesian networks are more flexible than logical networks and boolean net-
works allowing both discrete and continuous variables. They can be used to estimate static net-
works and dynamic bayesian networks (DBNs) can be used for temporal settings. As described
previously, the challenge of using Bayesian networks is learning the structure. Nir Friedman
demonstrated how to learn Bayesian networks from gene expression data and used it to model
the gene regulatory networks of yeast [37]. A variation on Bayesian networks specifically to
model regulatory relationships was proposed by Segal et al. called Module Networks [128, 129].
Module networks can be described as a Bayesian network in which the variables in the same
module share parents and parameters. The authors propose a learning algorithm that finds sets
of variables with similar behaviour that are then grouped as a module.

Correlation-based methods

Another category of methods to generate gene regulatory networks are correlation-based meth-
ods. These methods are based on defining a gene coexpression similarity matrix computed from
the pairwise correlation coefficients between two genes and their expressions. Then, some thresh-
olding technique is applyed to the similarity measures to determine whether the connections are
meaningful or not [16, 78, 168]. While these methods are simple to implement are computation-
ally efficiently, there is not a systematic method to select the threshold.
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Partial-correlation based methods

In addition to correlation methods, there are partial-correlation based methods. These are based
on gaussian graphical models where the conditional dependencies are inferred from the inverse of
the covariance matrix, called the precision matrix. Two examples of these methods with different
learning algorithms are SPACE [110], and GENENET [122]. Both correlation-based and partial-
correlation based methods have the characteristic that they produce undirected networks which
may not be appropriate for applications where the directed nature of gene regulation is preferred.

Information theoretic approaches

Finally, there are methods that use mutual information (MI) to determine the dependency amongst
genes. ARACNE [88] is one of the most cited methods in this category. These methods also pro-
duce undirected networks but an advantage of information theory based methods is their ability
to identify non-linear dependencies which will be missed by correlation-based methods.

Of the methods that build gene regulatory networks from continuous variables, we use Bayesian
networks because it is most appropriate for our objectives. Because we are validating TF to
target interactions, our application requires a directed network. Our model also facilitates the
ability to incorporate the prior knowledge of TF binding data as candidate edges in the network.
Our method is more flexible than module networks because we do not make assumptions about
groups of genes. In addition, the sparsity of biological networks is incorporated directly in our
model with the lasso penalty.

1.4.5 Constructing transcriptional regulatory networks from TF binding
data

Transcription is an important control point of gene regulation. Thus, elucidating the transcrip-
tional regulatory network has become a crucial step in understanding gene regulation. The
transcriptional regulatory network consists of TFs which are proteins that bind to regulatory
sequences in the DNA, which influence the transcription of target genes, affecting expression
levels. As experimental techniques to profile TF binding such as chromatin immunoprecipitation
(ChIP) techniques [157] such as ChIP-chip [14] and ChIP-seq [108] became available, it became
possible to use this information to construct transcriptional networks more accurately.

Once TF binding was available, researchers began exploiting it to build transcriptional regu-
latory networks. Lee et al. used the genome-wide location analysis [117], which uses a modified
ChIP-chip technique to identify where particular yeast TFs were bound. They use these TF-
target relationships to build simple network motifs. These network motifs can then be used to
form larger networks. They also integrate expression data to find groups of genes that are both
bound and similarly expressed. Bar-Joseph and et al. [6] proposed a similar approach called Ge-
netic Regulatory Modules (GRAM) which integrates TF binding data with gene expression data
to construct gene modules of TFs and target genes. Their method was also applied to yeast data.
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Recently, large amounts of TF binding data have been used to discover transcriptional re-
lationships. Public consortiums such as ENCODE [22] have generated the functional data and
projects like Cistrome [92] have provided at platform for organizing this data and making it easily
accessible to researchers. For humans, the ENCODE project has facilitated the network analysis
for 119 TFs solely based on TF binding data. Thorough analysis of the network found that the
TFs coassociate in particular combinations near different targets. In addition, TFs coassociate in
different patterns depending on whether the binding occurs close to the target gene or far away.
TFs form a hierarchy where the middle level has the most information flow bottlenecks and the
most regulatory collaboration between TFs. Detailed findings and conclusions are discussed in
Gerstein et al.[42].

Perturbation experiments have been used in combination with TF binding data to confirm
functional TF-target relationships. The methods discussed above primarily rely on the TF bind-
ing data to determine target genes. However, ChIP-seq data has false positives and thus does not
guarantee functional binding. One way of addressing this issue is finding the overlap between
bound genes and differentially expressed genes after TF knockdown. This is commonly done
through RNA interference as demonstrated by Cusanovich et al. on lymphoblastoid cells [26].
There are several limitations of this approach. It is tedious because a perturbation experiment
and subsequent microarray must be performed for each TF. In addition, the method is a single-
gene perturbation and does not account for multiple perturbations. Furthermore, while a gene
may be differentially expressed, this technique does not confirm that it was directly caused by
perturbation of the TF, it could be a downstream effect.

In our approach, we replace the artificial perturbations by using the natural genetic variation
as perturbations to the system. We then validate the TF-target interactions that occur under these
SNP perturbations. By using a statistical approach to model all the SNP perturbations, we can
handle multiple perturbations of each gene and we can distinguish between direct perturbations
to the TF-target interaction and downstream effects.

1.4.6 Mapping expression quantitative trait loci (eQTLs) using variation
and gene expression data

Driven by the completion of the human genome and subsequent cataloguing of all genetic vari-
ants in humans and other species, researchers invested significant efforts into understanding how
these variants affect phenotypes. A specific group of variants, called expression quantitive trait
loci (eQTLs) are those that influence the expression of genes. Doing genome-wide eQTL map-
ping was initially proposed in 2001 [65] and then carried out in yeast in 2002 [12] with the gene
expression data from microarrays. Since then, there have been many studies on humans and other
model organisms. Albert and Kryglyak’s review article has summarized these early eQTL map-
ping studies [4]. Today, the availability of RNA-seq data and allele specific expression allows
for isoform-specific eQTL mapping [141].

The problem of eQTL mapping has computational and statistical challenges because of the
large number of genetic variants. SNP arrays can have up to a million SNPs and with the ad-
vances in modern sequencing techniques, there can be millions of SNPs produced by each study.
Traditionally, eQTL analysis is carried out by performing an association test between the SNP
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and gene across individuals of a population. The association test method can be either a correla-
tion or regression analysis. The association analysis is performed on each pair of SNP and gene
separately.

Once the single SNP, single gene association tests are performed, a multiple testing correction
must be performed. Many methods have been developed for multiple testing correction that vary
in how stringent they are. For example, Bonferroni correction controls for Family Wise Error [56]
but is too stringent in practice. More commonly, methods that control the False Discovery Rate
(FDR) [139] and random permutations [11] are used.

In addition to association tests, there have been statistical learning approaches for eQTL
mapping. One class of methods that was developed by the machine learning community is sparse
linear regression methods.In this setting, the SNPs are the covariates and the gene expressions
are the dependent variables. Because of the large number of SNPs, this problem generally suffers
from the challenge of having a high-dimensional covariate matrix with the number of covariates
being much larger than the number of samples. Sparse regression methods can be justified by
assuming that only a few number of SNPs are associated for a particular gene expression. The
lasso method is commonly used for eQTL analysis [148]. After running Lasso, only a few
regression coefficients corresponding to the SNPs are non-zero. These are selected as eQTL
associations.

Both association tests and performing Lasso assume that the SNPs and gene expressions are
not correlated. There have been many methods that have been developed that are variations of
Lasso that address the structure of the data. For example, elastic net regularization adds a ridge
regression penalty which allows the method to select strongly correlated variables together [172].
Group lasso allows groups of covariates to be selected as a single unit [35]. Tree guided group
lasso is used to solve the problem of multi-task regression that addresses the structure of the de-
pendent variables [69]. For instance, the gene expressions can be represented as a tree structure.
Fused lasso can be used in settings where the regression coefficents change in a smooth fashion.
This makes sense when the same data is collected and varies temporally or spatially [149].

Mapping eQTLs is incorporated into our approach for ChIP-seq binding validation as we
select the TF-target interactions that are validated under SNP perturbations. In order to do this,
we implement a Gaussian Bayesian Network conditioned on SNPs. The SNPs that influence TF
or target gene expressions are then selected by lasso as part of the optimization procedure.

1.4.7 Evaluating the effect of SNPs on gene expression regulation using
CRISPR/Cas9 system

Recent work providing efficient site-specific genome editing with the CRISPR-Cas9 system has
opened up a new avenue for studying gene regulation. While RNA interference can only mod-
ify TF expression, CRISPR-based screens can be used to study regulatory sequences, enhancer
elements and non-coding sequences [7, 74, 116]. In addition, CRISPR-Cas9 engineered cells
with different SNP genotypes can be used to study gene expression under a variety of conditions
including drug treatment [114]. However, using this system for genome editing is expensive and
time consuming since an experiment must be performed for each mutation and each cell line.
It is much more efficient to identify possible regulatory SNPs computationally, refine the list of
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SNPs and then using CRISPR-screening for final validation.

1.5 Thesis contributions

This thesis addresses the problem of validating the TF binding map constructed from exper-
imental techniques. The existing experimental approaches use artificial perturbations via TF
knockdowns or genome editing and then observe target gene expressions in order to find vali-
dated TF to target relationships. In our approach, we use genetic variation in populations as the
source of perturbations of gene expressions levels. The main challenge of our method is how
to model the large number of SNP perturbations that affect multiple genes simultaneously. In
this thesis, we specify a statistical model, conditional Gaussian Bayesian networks and develop
the learning algorithm, we demonstrate how to use the model to validate TF-to-target relation-
ships on lymphoblastoid cell lines, and we then use the method to understand gene regulation of
estrogen receptor and important cofactors in breast cancer.

Below, we describe the contributions of each thesis chapter.

Contributions of Chapter 2

• We propose a new single-stage algorithm called A* lasso that performs structure learning
of a Gaussian Bayesian network (GBN) in a high dimensional setting. Our method finds
the optimal network structure while significantly improving upon the computation time of
the state-of-the-art optimal Bayesian network learning algorithm DP lasso, by using the
A* search algorithm to prune the search space.

• We propose a heuristic scheme to further limit the search space for larger problems.
• In experiments, we demonstrate that A* lasso substantially improves computation time

of previous optimal structure learning algorithms and that the heuristic scheme can sub-
stantially improve computation time without significantly compromising the quality of the
solution.

Contributions of Chapter 3

• We extend the GBN of Chapter 2 to a conditional Gaussian Bayesian network (cGBN) so
that we can model a network of gene expressions conditioned on SNPs, with candidate TF-
to-target edges generated from the TF binding map being incorporated as prior knowledge.

• We demonstrate TF binding map validation on ENCODE ChIP-seq and DNase I data from
lymphoblastoid cell lines by using SNP and gene expression data from the 1000 genomes
and HapMap 3 projects.

• Unlike the experimental approaches to functional validation where the bound and differ-
entially expressed genes are considered validated, we show that our method is able to
distinguish between validated target genes and differentially expressed downstream genes.

• We show evidence that eQTLs detected near target genes disrupt binding affinity of TFs.
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• We find a subset of eQTLs in coding regions of TFs which result in missense mutations
that may affect TF protein structure.

• We compare the validated targets from our computational approach with those from knock-
down studies. We show that epistatic interactions between TFs lead to different expression
patterns of downstream genes between the two methods, which results in different sets of
target genes.

Contributions of Chapter 4

• We demonstrate our computational approach on validating the TF binding map of ER and
its coregulators in breast cancer tumours, derived from the Cistrome Project, by using SNP
and expression data from the TCGA.

• From studying the gene regulatory network of ER and its coregulators, we find several
interactions estimated from our model that were supported by experimental evidence in
the literature.

• From analyzing the eQTLs in regulatory regions of target genes, we found eQTLs that are
potentially super enhancers and act as important regulatory elements.

• By examining eQTLs in coding regions of protein kinases and TFs, we identified several
missense SNPs that are near or contained within protein domains.
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Chapter 2

A* Lasso: Using A* search for structure
learning of Gaussian Bayesian networks

2.1 Motivation

In order to learn the directional relationships between genes in a regulatory network, we estimate
a Gaussian Bayesian network structure of genes from gene expression data. We propose a new
algorithm, called A* lasso, for learning a sparse Bayesian network structure with continuous
variables in high-dimensional space. Our method is a single-stage algorithm that finds the opti-
mal network structure with a sparse set of parents while ensuring the DAG constraint is satisfied.
It significantly improves the computation time compared to the state-of-the-art optimal Bayesian
network learning algorithm.

We first show that we can represent this structure learning problem as finding the shortest path
from the start state to the goal state of a graph, and then show that this problem can be solved by
familiar graph-search techniques. In particular, we show that this problem can be solved by dy-
namic programming (DP) where the scores are computed by incorporating a lasso-based scoring
method (DP lasso). While previous approaches based on DP required identifying the exponential
number of candidate parent sets and their scores for each variable in Stage 1 before applying DP
in Stage 2 [71, 133], our approach effectively combines the score computation in Stage 1 within
Stage 2 via lasso optimization. Because the number of states DP lasso must consider is expo-
nential in the number of variables, it is not feasible for more than 20 nodes. Thus, we present
A* lasso [161] which significantly prunes the search space of DP by incorporating the A* search
algorithm [120], while guaranteeing the optimality of the solution. Since in practice, A* search
can still be expensive compared to heuristic methods especially when trying to estimate large
gene networks, we explore heuristic schemes that further limit the search space of A* lasso. We
demonstrate in our experiments that this heuristic approach can substantially improve the com-
putation time without significantly compromising the quality of the solution, especially on large
Bayesian networks.
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2.2 Problem definition: Bayesian network structure learning
A Bayesian network is a probabilistic graphical model defined over a DAG G with a set of
q = |V | nodes V = {v1, . . . , vq}, where each node vj is associated with a random variable
Yj [72]. For our purposes, the random variables Yj represent genes. The probability model
associated with G in a Bayesian network factorizes as p(Y1, . . . , Yp) =

∏p
j=1 p(Yj|Pa(Yj)),

where p(Yj|Pa(Yj)) is the conditional probability distribution for Yj given its parents Pa(Yj)
with directed edges from each node in Pa(Yj) to Yj in G. We assume continuous random vari-
ables and use a linear regression model for the conditional probability distribution of each node
Yj = Pa(Yj)

′βj + ε, where βj = {βjk’s for Yk ∈ Pa(Yj)} is the vector of unknown parameters
to be estimated from data and ε is the noise distributed as ∼ N(0, 1).

Given a dataset Y = [y1, . . . ,yq], where yj is a vector of n observations for random variable
Yj , our goal is to estimate the graph structure G and the parameters βj’s jointly. We formulate
this problem as that of obtaining a sparse estimate of βj’s, under the constraint that the overall
graph structureG should not contain directed cycles. Then, the nonzero elements of βj’s indicate
the presence of edges in G. We obtain an estimate of Bayesian network structure and parameters
by minimizing the negative log likelihood of data with sparsity enforcing L1 penalty as follows:

min
β1,...,βp

p∑
j=1

‖ yj −Y−j
′βj ‖22 +λ

p∑
j=1

‖ βj ‖1 s.t. G ∈ DAG, (2.1)

where Y−j represents all columns of Y excluding yj , assuming all other variables are candidate
parents of node vj . Given the estimate of βj’s, the set of parents for node vj can be found as the
support of βj , S(βj) = {vi|βji 6= 0}. The λ is the regularization parameter that determines the
amount of sparsity in βj’s and can be determined by cross-validation.

We notice that if the acyclicity constraint is ignored, Equation (3.2) decomposes into individ-
ual lasso estimations for each node:

LassoScore(vj|V \vj) = min
βj

‖ xj − x−j
′βj ‖22 +λ ‖ βj ‖1,

where V \vj represents the set of all nodes in V excluding vj . The above lasso optimization
problem can be solved efficiently with the shooting algorithm [39]. However, the main challenge
in optimizing Equation (3.2) arises from ensuring that the βj’s satisfy the DAG constraint.

2.3 DP Lasso: Dynamic programming with Lasso as the score
function

The problem of learning a Bayesian network structure that satisfies the constraint of no directed
cycles can be cast as that of learning an optimal ordering of variables [72]. Once the optimal
variable ordering is given, the constraint of no directed cycles can be trivially enforced by con-
straining the parents of each variable in the local conditional probability distribution to be a
subset of the nodes that precede the given node in the ordering. We let ΠV = [πV1 , . . . , π

V
|V |]
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denote an ordering of the nodes in V , where πVj indicates the node v ∈ V in the jth position of
the ordering, and ΠV

≺vj denote the set of nodes in V that precede node vj in ordering ΠV .
Algorithms based on DP have been developed to learn the optimal variable ordering for

Bayesian networks [144]. These approaches are based on the observation that the score of the
optimal ordering of the full set of nodes V can be decomposed into (a) the optimal score for
the first node in the ordering, given a choice of the first node and (b) the score of the optimal
ordering of the nodes excluding the first node. The optimal variable ordering can be constructed
by recursively applying this decomposition to select the first node in the ordering and to find the
optimal ordering of the set of remaining nodes U ∈ V . This recursion is given as follows, with
an initial call of the recursion with U = V :

OptScore(U) = min
vj∈U

OptScore(U\vj) + BestScore(vj|V \U) (2.2)

πU1 = argmin
vj∈U

OptScore(U\vj) + BestScore(vj|V \U), (2.3)

where BestScore(vj|V \U) is the optimal score of vj under the optimal choice of parents from
V \U .

In order to obtain BestScore(vj|V \U) in Equations (2.2) and (2.3), for the case of discrete
variables, many previous approaches enumerated all possible subsets of V as candidate sets of
parents for node vj to precompute BestScore(vj|V \U) in Stage 1 before applying DP in Stage
2 [71, 133]. While this approach may perform well in a low-dimensional setting, in a high-
dimensional setting, a two-stage method is likely to miss the true parent sets in Stage 1, which in
turn affects the performance of Stage 2 [59]. In this chapter, we consider the high-dimensional
setting and present a single-stage method that applies lasso to obtain BestScore(vj|V \U) within
DP as follows:

BestScore(vj|V \U) = LassoScore(vj|V \U)

= min
βj ,S(βj)⊆V \U

‖ xj − x−j
′βj ‖22 +λ ‖ βj ‖1 .

The constraint S(βj) ⊆ V \U in the above lasso optimization can be trivially maintained by
setting the βjk for vk ∈ U to 0 and optimizing only for the other βjk’s. When applying the
recursion in Equations (2.2) and (2.3), DP takes advantage of the overlapping subproblems to
prune the search space of orderings, since the problem of computing OptScore(U ) for U ⊆ V
can appear as a subproblem of scoring orderings of any larger subsets of V that contain U .

The problem of finding the optimal variable ordering can be viewed as that of finding the
shortest path from the start state to the goal state in a search space given as a subset lattice
(Fig. 2.1). The search space consists of a set of states, each of which is associated with one of
the 2|V | possible subsets of nodes in V . The start state is the empty set {} and the goal state is
the set of all variables V . A valid move in this search space is defined from a state for subset Qs

to another state for subset Qs′ , only if Qs′ contains one additional node to Qs. Each move to the
next state corresponds to adding a node at the end of the ordering of the nodes in the previous
state. The cost of such a move is given by BestScore(v|Qs), where v = Qs′\Qs. Each path
from the start state to the goal state gives one possible ordering of nodes. Figure 2.1 illustrates
the search space, where each state is associated with a Qs. DP finds the shortest path from the
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{υ1,υ2} 

{υ3} {υ2} 

{} 

{υ1} 

{υ1,υ3} {υ2,υ3} 

{υ1,υ2,υ3} 

Figure 2.1: Search space of variable ordering for three variables V = {v1, v2, v3}.

start state to the goal state that corresponds to the optimal variable ordering by considering all
possible paths in this search space and visiting all 2|V | states.

2.4 A* Lasso for Pruning Search Space
As discussed in the previous section, DP considers all 2|V | states in the subset lattice to find the
optimal variable ordering. Thus, it is not sufficiently efficient to be practical for problems with
more than 20 nodes. On the other hand, a greedy algorithm is computationally efficient because
it explores a single variable ordering by greedily selecting the most promising next state based
on BestScore(v|Qs), but it returns a suboptimal solution. In this section, we propose A* lasso
that incorporates the A* search algorithm [120] to construct the optimal variable ordering in the
search space of the subset lattice. We show that this strategy can significantly prune the search
space compared to DP, while maintaining the optimality of the solution.

When selecting the next move in the process of constructing a path in the search space,
instead of greedily selecting the move, A* search also accounts for the estimate of the future
cost given by a heuristic function h(Qs) that will be incurred to reach the goal state from the
candidate next state. Although the exact future cost is not known until A* search constructs the
full path by reaching the goal state, a reasonable estimate of the future cost can be obtained by
ignoring the directed acyclicity constraint. It is well-known that A* search is guaranteed to find
the shortest path if the heuristic function h(Qs) is admissible [120], meaning that h(Qs) is always
an underestimate of the true cost of reaching the goal state. Below, we describe an admissible
heuristic for A* lasso.

While exploring the search space, A* search algorithm assigns a score f(Qs) to each state
s and its corresponding subset Qs of variables for which the ordering has been determined. A*
search algorithm computes this score f(Qs) as the sum of the cost g(Qs) that has been incurred
so far to reach the current state from the start state and an estimate of the cost h(Qs) that will be
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incurred to reach the goal state from the current state:

f(Qs) = g(Qs) + h(Qs). (2.4)

More specifically, given the ordering ΠQs of variables in Qs that has been constructed along the
path from the start state to the state for Qs, the cost that has been incurred so far is defined as

g(Qs) =
∑
vj∈Qs

LassoScore(vj|ΠQs
≺vj) (2.5)

and the heuristic function for the estimate of the future cost to reach the goal state is defined
as:

h(Qs) =
∑

vj∈V \Qs

LassoScore(vj|V \vj) (2.6)

Note that the heuristic function is admissible, or an underestimate of the true cost, since
the constraint of no directed cycles is ignored and each variable in V \Qs is free to choose any
variables in V as its parents, which lowers the lasso objective value.

When the search space is a graph where multiple paths can reach the same state, we can
further improve efficiency if the heuristic function has the property of consistency in addition
to admissibility. A consistent heuristic always satisfies h(Qs) ≤ h(Qs′) + LassoScore(vk|Qs),
where LassoScore(vk|Qs) is the cost of moving from state Qs to state Qs′ with {vk} = Qs′\Qs.
Consistency ensures that the first path found by A* search to reach the given state is always the
shortest path to that state [120]. This allows us to prune the search when we reach the same
state via a different path later in the search. The following proposition states that our heuristic
function is consistent.

Proposition 1 The heuristic in Equation (2.6) is consistent.

Proof For any successor state Qs′ of Qs, let vk = Qs′\Qs.

h(Qs) =
∑

vj∈V \Qs

LassoScore(vj|V \vj)

=
∑

vj∈V \Qs,vj 6=vk

LassoScore(vj|V \vj) + LassoScore(vk|V \vk)

≤ h(Qs′) + LassoScore(vk|Qs),

where LassoScore(vk|Qs) is the true cost of moving from state Qs to Qs′ . The inequality above
holds because vk has fewer parents to choose from in LassoScore(vk|Qs) than in LassoScore(vk|V \vk).
Thus, our heuristic in Equation (2.6) is consistent.

Given a consistent heuristic, many paths that go through the same state can be pruned by
maintaining an OPEN list and a CLOSED list during A* search. In practice, the OPEN list can
be implemented with a priority queue and the CLOSED list can be implemented with a hash table.
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Input : X, V , λ
Output: Optimal variable ordering ΠV

Initialize OPEN to an empty queue;
Initialize CLOSED to an empty set;
Compute LassoScore(vj|V \vj) for all vj ∈ V ;
OPEN.insert((Qs = {}, f(Qs) = h({}), g(Qs) = 0,ΠQs = [ ]));
while true do

(Qs, f(Qs), g(Qs),Π
Qs)← OPEN.pop();

if h(Qs) = 0 then
Return ΠV ← ΠQs;

end
CLOSED← CLOSED ∪{Qs};
foreach v ∈ V \Qs do

Qs′ ← Qs ∪ {v};
if Qs′ /∈ CLOSED then

Compute LassoScore(v|Qs) with lasso shooting algorithm;
g(Qs′)← g(Qs) + LassoScore(v|Qs);
h(Qs′)← h(Qs)− LassoScore(v|V \v);
f(Qs′)← g(Qs′) + h(Qs′);
ΠQs′ ← [ΠQs , v];
OPEN.insert(L = (Qs′ , f(Qs′), g(Qs′),Π

Qs′ ));
end

end
end

Algorithm 1: A* lasso for learning Bayesian network structure

The OPEN list is a priority queue that maintains all the intermediate results (Qs, f(Qs), g(Qs),Π
Qs)’s

for a partial construction of the variable ordering up to Qs at the frontier of the search, sorted
according to the score f(Qs). During search, A* lasso pops from the OPEN list the partial
construction of ordering with the lowest score f(Qs), visits the successor states by adding an-
other node to the ordering ΠQs , and queues the results onto the OPEN list. Any state that has
been popped by A* lasso is placed in the CLOSED list. The states that have been placed in the
CLOSED list are not considered again, even if A* search reaches these states through different
paths later in the search.

The full algorithm for A* lasso is given in Algorithm 1. As in DP with lasso, A* lasso is a
single-stage algorithm that solves lasso within A* search. Every time A* lasso moves from state
Qs to the next stateQs′ in the search space, LassoScore(vj|ΠQs

≺vj ) for {vj} = Qs′\Qs is computed
with the shooting algorithm and added to g(Qs) to obtain g(Qs′). The heuristic score h(Qs′) can
be precomputed as LassoScore(vj|V \vj) for all vj ∈ V for a simple look-up during A* search.
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2.5 Simulation experiments
We perform simulation experiments to evaluate the accuracy the estimated networks and measure
the computation time of our method. We created a group of small networks under 20 nodes
and obtained the structure of several benchmarks networks between 20 and 60 nodes from the
Bayesian Network Repository. In addition, we used the tiling technique [152] to generate two
networks of approximately 300 nodes so that we could evaluate our method on larger graphs.
Given the Bayesian network structures, we set the parameters βj for each conditional probability
distribution of node vj such that βjk ∼ ±Uniform[l, u] for predetermined values for u and l
if node vk is a parent of node vj and βjk = 0 otherwise. We then generated data from each
Bayesian network by forward sampling with noise ε ∼ N(0, 1) in the regression model, given
the true variable ordering. All data were mean centered.

We compare our method to several other methods including DP with lasso for an exact
method, L1MB for heuristic search, and SBN for an optimization-based approximate method.
We downloaded the software implementations of L1MB and SBN from the authors’ website.
For L1MB, we increased the authors’ recommended number of evaluations 2500 to 10 000 in
Stage 2 heuristic search for all networks except the two larger networks of around 300 nodes
(Alarm 2 and Hailfinder 2), where we used two different settings of 50 000 and 100 000 evalua-
tions. We also evaluated A* lasso with the heuristic scheme with the queue sizes of 5, 100, 200,
and 1000.

DP, A* lasso, and A* lasso with a limited queue size require a selection of the regularization
parameter λwith cross-validation. In order to determine the optimal value for λ, for different val-
ues of λ, we trained a model on a training set, performed an ordinary least squares re-estimation
of the non-zero elements of βj to remove the bias introduced by the L1 penalty, and computed
prediction errors on the validation set. Then, we selected the value of λ that gives the smallest
prediction error as the optimal λ. We used a training set of 200 samples for relatively small
networks with under 60 nodes and a training set of 500 samples for the two large networks with
around 300 nodes. We used a validation set of 500 samples. For L1MB and SBN, we used a
similar strategy to select the regularization parameters, while mainly following the strategy sug-
gested by the authors and in their software implementation. All methods were implemented in
Matlab and were run on computers with 2.4 GHz processors.

We first compare A* lasso to DP lasso which both yield optimal solutions. We record both
the number of states considered and the computational time. We used a dataset generated from
a true model with βjk ∼ ±Uniform[1.2, 1.5]. It can be seen Figure 2.2A that DP considers all
possible states 2|V | in the search space that grows exponentially with the number of nodes. It is
clear that A* lasso visits significantly fewer states than DP lasso, visiting less than 10% of the
number of states for the network with 20 nodes. As a result, the computation time required for
A* lasso is also dramatically reduced compared to DP lasso (Fig. 2.2B).

For networks with greater than 20 nodes, the exact methods become computationally expen-
sive. For these networks, we limit the size of the queue in A* lasso, and use a heuristic scheme
to prune the queue. We compare this approach, with L1MB for heuristic search, and SBN for an
optimization-based approximate method. For A* lasso with the heuristic scheme, we use queue
sizes of 5, 100, 200, and 1000. Compared with exact methods, A* lasso with heuristic scheme
reduces both number of states visited and computation time. For instance, A* lasso with a queue
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A B

Figure 2.2: Comparison of DP lasso and optimal A* lasso on simulated data. A) The number of
states expanded. B) Computational time.

limit of 1000 expands 0.2% of the states of DP lasso and takes 0.1% of the time for the network
with 20 nodes. Figure 2.3 shows the number of states expanded for A* lasso of various limits
and Figure 2.4 shows the computational time for A* lasso with various limits and the competing
methods L1MB and SBN. We note that the computation time for A* lasso with a small queue of
5 or 100 is comparable to that of L1MB and SBN.

In general, we found that the extent of pruning of the search space by A* lasso compared to
DP depends on the strengths of edges (βj values) in the true model. We applied DP and A* lasso
to datasets of 200 samples generated from each of the networks under each of the three settings
for the true edge strengths, ±Uniform[1.2, 1.5], ±Uniform[1, 1.2], and ±Uniform[0.8, 1].
As can be seen from the computation time and the number of states visited by DP and A* lasso
in Figures 2.5 as the strengths of edges increase, the number of states visited by A* lasso and the
computation time tend to decrease. The results in Figure 2.5 indicate that the efficiency of A*
lasso is affected by the signal-to-noise ratio.

In order to evaluate the accuracy of the Bayesian network structures recovered by each
method, we make use of the fact that two Bayesian network structures are indistinguishable
if they belong to the same equivalence class, where an equivalence class is defined as the set
of networks with the same skeleton and v-structures. The skeleton of a Bayesian network is
defined as the edge connectivities ignoring edge directions and a v-structure is defined as the
local graph structure over three variables, with two variables pointing to the other variables (i.e.,
A → B ← C). We evaluate the performance of the different methods by comparing the esti-
mated network structure with the true network structure in terms of skeleton and v-structures and
computing the precision and recall.

The precision/recall curves for the skeleton and v-structures of the models estimated by the
different methods are shown in Figure 2.6 and Figure 2.7, respectively. Each curve was obtained
as an average over the results from 30 different datasets for the large graphs (Alarm 2 and Hail-
finder 2) and from 50 different datasets for the smaller graphs (Barley and Hailfinder). The data
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Figure 2.3: Comparison of the number of states required for Bayesian network structure learning
algorithms on data simulated from benchmark Bayesian networks..

was simulated under the settings βjk ∼ ±Uniform[0.5, 1] and βjk ∼ ±Uniform[0.4, 0.7] re-
spectively. For the benchmark Bayesian networks, we used A* lasso with different queue sizes,
including 100, 200, and 1000, whereas for the two large networks (Alarm 2 and Hailfinder 2)
that require more computation time, we used A* lasso with queue size of 5 and 100. For L1MB,
10000 evaluations were used for benchmark networks, and we used two different settings of 50
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Figure 2.4: Comparison of the computational time required for Bayesian network structure learn-
ing algorithms on data simulated from benchmark Bayesian networks.

000 and 100 000 evaluations for larger networks. As can be seen in Figures 2.6 and 2.7, all
methods perform relatively well on identifying the true skeletons, but find it significantly more
challenging to recover the true v-structures. We find that although increasing the size of queues
in A* lasso generally improves the performance, even with smaller queue sizes, A* lasso out-
performs L1MB and SBN. While A* lasso with a limited queue size preforms consistently well
on smaller networks, it significantly outperforms the other methods on the larger graphs such as
Alarm 2 and Hailfinder 2, even with a queue size of 5 and even when the number of evaluations
for L1MB has been increased to 50 000 and 100 000. This demonstrates that while limiting
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A B

Figure 2.5: A* lasso computation time and states expanded under different edge strengths βj’s.
A) The number of states expanded. B) Computational time.

the queue size in A* lasso will not guarantee the optimality of the solution, it still reduces the
computation time of A* lasso dramatically without substantially compromising the quality of the
solution. In addition, we compare the performance of the different methods in terms of predic-
tion errors on independent test datasets in Figure 2.8. We find that the prediction errors of A*
lasso are consistently lower even with a limited queue size.

2.5.1 Analysis of S&P stock data

We applied the methods on the daily stock price data of the S&P 500 companies to learn a
Bayesian network that models the dependencies in prices among different stocks. We obtained
the stock prices of 125 companies over 1500 time points between Jan 3, 2007 and Dec 17, 2012.
We estimated a Bayesian network using the first 1000 time points with the different methods, and
then computed prediction errors on the last 500 time points. For L1MB, we used two settings for
the number of evaluations, 50 000 and 100 000. We applied A* lasso with different queue limits
of 5, 100, and 200. The prediction accuracies for the various methods are shown in Figure 2.9.
Our method obtains lower prediction errors than the other methods, even with the smaller queue
sizes.
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Figure 2.6: Precision/recall curves for the recovery of skeletons of the network structure of
benchmark Bayesian networks.

2.6 Conclusions
In this chapter, we considered the problem of learning a Bayesian network structure and proposed
A* lasso that guarantees the optimality of the solution while reducing the computational time of
the well-known exact methods based on DP. We proposed a simple heuristic scheme that further
improves the computation time but does not significantly reduce the quality of the solution.
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Figure 2.7: Precision/recall curves for the recovery of v-structures of the network structure of
benchmark Bayesian networks.
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Chapter 3

TF binding map validation with
conditional Gaussian Bayesian networks

3.1 Motivation
We propose to validate TF bindings by using population expression and SNP data, and we pro-
pose using conditional Gaussian Bayesian networks (cGBNs) as the statistical model to achieve
this objective. These cGBNs are an extension of GBNs discussed in the previous section where
some variables represent genes, and are conditioned on other variables representing SNPs. While
A* lasso was originally developed to learn GBNs, we extend it to learn a cGBN. This extension
is straightforward, as it involves augmenting the variable ordering over genes, with the condi-
tioning variables which are SNPs at the beginning of the ordering. In addition to modeling direct
influence of TFs or SNPs on target genes, the downstream effects of such interactions can also
be determined by performing inference on the model.

3.2 Methods

3.2.1 Learning Gene Regulatory Networks Under SNP Perturbations
In order to determine whether TF bindings on DNA have functional consequences on gene ex-
pressions, we propose to leverage an eQTL dataset that captures how naturally occurring genetic
variants perturb a transcriptional regulatory system. We introduce a computational methodol-
ogy, based on conditional Gaussian Bayesian networks (cGBNs), for integrating TF binding data
with an eQTL dataset, to identify functional TF-target interactions, along with the overall gene
regulatory network and eQTLs that perturb this network. In this section, we first describe our
approach for learning a gene regulatory network under SNP perturbations from population gene
expression and SNP data. Then, we show how ChIP-seq data can be integrated into our model
and learning algorithm as prior knowledge to select the TF-target interactions that are validated
under SNP perturbations of gene expressions.

Let Y = (Y1, . . . , Yq) denote the expression levels of q genes and X = (X1, . . . , Xp) the
SNP genotypes of p SNPs for the same individual, where Xj ∈ {0, 1, 2} for the minor allele
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frequency at SNP j. We model the gene regulatory network as a directed graph over q genes, and
the SNP perturbations of the gene expressions as edges from p SNPs to q genes. Then, each gene
expression Yj can be influenced by the expression levels of other gene-expression regulators or
by genetic variants that have edges pointing to Yj . We define a conditional Gaussian Bayesian
network as a probability density over this graph that factorizes as follows:

p(Y |X) =

q∏
j=1

p(Yj|Ypa(j),Xpa(j)), (3.1)

where Ypa(j) is the set of gene expressions regulating the expression Yj and Xpa(j) is the set of
SNPs perturbing Yj . We model each probability factor using a linear regression model:

p(Yj|Ypa(j),Xpa(j)) = N (Ypa(j)βj +Xpa(j)αj, σ
2
j ),

where βj = {βjk|Yk ∈ Ypa(j)} and αj = {αjk|Xk ∈ Xpa(j)} are the regression parameters
associated with edges in the graph, modeling the strengths of expression regulations by Ypa(j)

and SNP perturbations byXpa(j), respectively, and σ2
j models the noise.

In order to simultaneously estimate the graph structure and regression parameters from data,
we extend A* lasso from our previous work for learning Gaussian Bayesian networks to the case
of conditional Gaussian Bayesian networks. Given gene expression data Y = [y1, . . . ,yq] and
SNP data X = [x1, . . . ,xp], where yj and xk are vectors of length n for observations from
n individuals for gene Yj and SNP Xk, A* lasso jointly learns the network structure and edge
weights by maximizing the following L1 regularized log-likelihood of data, under the constraint
that the graph over Y is a directed acyclic graph:

min
βj ,αj ,σ2

j

q∑
j=1

(
n

2
log(σ2

j ) +
1

2σ2
j

‖ yj − Y−jβj −Xαj ‖22 +
λ

σj
‖ βj ‖1 +

γ

σj
‖ αj ‖1

)
(3.2)

where Y−j is the gene expression data for all genes except for gene j. The L1 regularization
||c||1 =

∑K
k=1 |ck| for vector c = [c1, . . . , cK ] plays the role of setting a small number of el-

ements in c to non-zero values to determine the network structure. The non-zero elements in
βj’s correspond to the presence of edges in the gene network, and the non-zero elements in αj’s
correspond to the presence of SNPs that perturb the expression levels. λ and γ are the regular-
ization parameters that control the amount of sparsity in βj’s and αj’s and are determined by
cross-validation.

To solve Eq. (3.2) for learning the conditional model p(Y |X) in Eq. (3.1), we extend A*
lasso that we have previously developed which significantly improves the computation time for
learning an optimal Gaussian Bayesian network p(Y ). Our learning algorithm simultaneously
solves two problems, one for learning the network structure and the other for learning the param-
eters associated with the network edges. The structure learning problem is cast as that of finding
a topological ordering of the variables X and Y such that edges go only from left to right in
the ordering, which is then solved with dynamic programming, combined with A* algorithm to
reduce the search space of variable orderings. We learn the model parameters jointly with the
network structure by embedding lasso as a scoring system within the dynamic programming. We
modify the original A* lasso to learn a conditional model, by augmenting the variable ordering
over Y with the conditioning variablesX at the beginning of the ordering.
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3.2.2 Validating TF Bindings in ChIP-seq with SNP and Gene-expression
Data

Our computational approach leverages perturbations of multiple mechanisms behind TF gene
regulation by a large number of SNPs across genomes in order to perform functional valida-
tion. In order to determine which TF bindings in ChIP-seq data are functional, we integrate
the ChIP-seq TF binding information into the A* lasso learning procedure described above. The
candidate TF-target interactions identified by ChIP-seq provide prior knowledge on the transcrip-
tion network structure, which is then updated by A* lasso to include only the validated TF-target
interactions after seeing the gene expression and genetic variation data. In particular, we con-
sider three different ways that SNPs affect TF-target interactions to modify the expressions of
the target genes and further downstream genes which are described below:
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Figure 3.1: Illustration of our approach for validating TF binding events. A) Candidate edges
between TFs and target genes are collected from ChIP-seq and DNase I data. B) The candidate
edges are validated in three different ways. The edges that are detected in the statistical model
are shown. Target genes validated by concentration appear as an edge from the TF to target gene
(red). Target genes validated by local perturbations of TF binding affinity appear as an edge from
a SNP in the regulatory region of the target gene to the target gene (green). Target genes validated
by global SNP perturbation appear as an edge from a SNP in the TF to the target gene (blue). C)
Only a subset of the candidate edges represent functional binding events. The resulting validated
edges are shown. The colors of the edges correspond with the type of statistical edge used for
validation.

• Perturbation of TF concentration: The first type of SNP perturbation we consider is the
change in TF concentration, due to either SNPs or the expression variation of upstream
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genes, that induces changes in target gene expressions. Functional target genes validated
under this scenario are represented in our cGBN as edges from the TF expression to the
target gene expressions (red edges in Figure 3.1B).

• Local perturbation of TF binding affinity: Another type of SNP perturbation we con-
sider is SNPs in the regulatory regions of the TF bound genes that modify the short se-
quence bound by a TF and thus the binding affinity for the TF to influence the expressions
of the bound genes. Such cis eQTLs of functional target genes are represented in our
cGBN as edges from SNPs in the regulatory region of the target genes to the target gene
expressions (green edges in Figure 3.1B).

• Global SNP perturbation of TF structure: The final type of SNP perturbation we con-
sider is SNPs located in the TF coding region that can influence the expressions of many
target genes globally, by modifying TF amino acid sequence in the case of non-synonymous
mutations or by modifying TF translation, folding, or splicing in the case of synonymous
mutations. Such trans eQTLs are represented in our model as edges from SNPs in the
coding regions of TFs to the target gene expressions (blue edges in Figure 3.1B).

Each candidate target gene derived from the TF binding map as a gene near each binding site
(Figure 3.1A) provides three types of candidate edges corresponding to the above three scenarios.
Once the statistical model is estimated (Figure 3.1B), we examine this model to determine which
of the candidate target genes are functional targets of the TF (Figure 3.1C). A candidate target
gene identified by ChIP-seq may be validated under one or more scenarios above. In addition,
once population genome and gene expression data are available, this dataset can be used to
validate TF binding events in ChIP-seq data for multiple different TFs simultaneously.

In order to reduce the computation time for learning our network model over a large num-
ber of gene expressions and SNPs, we further reduce the A* lasso search space over network
structures by making additional assumptions on the network edge connectivities. First, we fo-
cus on learning the regulatory network over the TFs with ChIP-seq data and their downstream
genes, and assume that those non-TFs without ChIP-seq data are candidate downstream genes of
the TFs. This assumption is easily implemented within A* lasso by constraining all TFs to be in
front of the rest of the genes in the variable ordering. In addition, we assume that the downstream
genes of TFs form regulatory modules, where edge connections exist from TFs to genes in each
module and among genes within each module, but not between modules. Under this assumption,
we first applied hierarchical clustering to all candidate downstream genes to find 40 gene clusters
of sizes 100-400 genes, and then applied A* lasso on TFs and each module separately.

3.2.3 Inferring Downstream Effects of Functional TF Bindings
Given the estimated model, we determine the effects of perturbations of TF-target interactions
on the expressions of downstream genes via probabilistic inference. Such inferred downstream
perturbation effects are analogous to differential gene expressions after experimental TF knock-
down. However, unlike in experimental TF knockdown, among the differentially expressed
genes, our approach can further distinguish between the genes directly regulated by the TF and
the downstream genes indirectly affected by the TF regulation. As a result, while the experi-
mental approach declares all bound and differentially expressed genes as functionally validated

32



(Fig. 3.2A), our approach finds only a subset of the bound and differentially expressed genes as
directed regulated and functionally validated target genes (Fig. 3.2B).

To learn the downstream effects of TF concentration perturbation, we infer from p(Y|X) the
conditional density p(YTFd|YTF,Y−TFd ,X), which represents the expressions of TF downstream
genes YTFd given the perturbed TF concentration YTF, assuming the expressions of all the other
genes Y−TFd and genotypes X are fixed. This conditional probability density is Gaussian with
mean E[YTFd

] = [YTF,Y
>
−TFd

,X>]Θ in a linear regression form, where covariates are the condi-
tioning variables and regression coefficients are given in Θ, a (q − |YTFd

|+ p)× |YTFd
| matrix.

The row of Θ for YTF quantifies the downstream effect sizes of TF concentration perturbation
on each of the downstream genes.

Similarly, to determine the downstream effects of perturbations by either cis or trans eQTLs
of target genes, we infer from p(Y|X) the conditional density p(YA,YAd|Y−Ad ,X) for target
gene YA with an eQTL in X. This conditional probability is again Gaussian distributed with
mean E[YA,YAd

] = [Y >−Ad
,X>]K, where K is a (|Y−Ad|+ p)× |YA,YAd

| matrix of regression
coefficients. The row of K for SNPs represent the strengths of SNP effects on the downstream
genes.

A B

Bound
Differentially
Expressed

Validated
Target 
genes

Bound
Differentially
Expressed

Validated
Target 
genes

Figure 3.2: Comparison between our approach and TF knockdown experiments for functional
validation of the TF binding map. A) With TF knockdown experiments, the validated targets
are those that are bound and differentially expressed. B) In our approach, the validated targets
are bound and directly targeted by the TF, a subset of the genes that are bound and differentially
expressed.

While in general inference tasks in probabilistic graphical models is computationally expen-
sive, efficient inference algorithms can be obtained when the local conditional probability densi-
ties p(Yk|Y pa

k ,X)’s are Gaussian [72]. In our inference tasks, the desired conditional densities
for TFs’ downstream effects are in the form of p(YA|YB,X), where YA and YB are two disjoint
sets of gene expression variables. In order to derived this conditional density, we first re-write
it as p(YA|YB,X) = p(YA,YB|X)/p(YB|X). Then, we find the numerator p(YA,YB|X) as
a multivariate Gaussian density that is equivalent to our original conditional Gaussian Bayesian
network in Eq. (3.1), and find the denominator p(YB|X) from p(YA,YB|X) via marginaliza-
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tion, which is a straightforward operation in Gaussian densities. Then, our desired conditional
density p(YA|YB,X) can be obtained from p(YA,YB|X) and p(YB|X) with the standard result
in multivariate Gaussians: p(YB|YA,X) = N ([µB − ΣBAΣ−1AAµA] + ΣBAΣ−1AAYA, ΣBB −

ΣBAΣ−1AAΣAB), given p(YA,YB|X) = N
([
µA
µB

]
,

[
ΣAA ΣAB

ΣBA ΣBB

])
.

In order to compute the multivariate Gaussian form p(Y |X) = N (µ,Σ) from the factorized
model in Eq. (3.1), we recursively construct this density, visiting each Yj in the toplogical or-
dering of the genes found by A* lasso. Let Π = [π1, . . . , πq] represent the topological ordering
of genes in Y found by A* lasso, where edges are allowed only from left to right. Assume (αk,
βk)’s, k = 1, . . . , q, are ordered according to Π. Also, assume the elements of βj and Y are
ordered according to Π. Given the factorized density

p(Y |X,Π) = p(Y1|X)

q∏
k=2

p(Yk|Y1:(k−1),X),

we initialize with

p(Y1|X) = N (α>1X, σ2
1) = N (µ1,Σ1,1),

and compute the partial joint distribution iteratively for k = 2, . . . , q

p(Y1:k|X) = p(Yk|Y1:(k−1),X)p(Y1:(k−1)|X)

= N (β>k Y1:(k−1) +α>kX, σ2
k)N (µ1:(k−1),Σ1:(k−1),1:(k−1))

= N
([

µ1:(k−1)
β>k µ+α>kX

]
,

[
Σ1:(k−1),1:(k−1) Σ1:(k−1),1:(k−1)βk
β>k Σ1:(k−1),1:(k−1) σ2

k + β>k Σ1:(k−1),1:(k−1)β,k

])
= N (µ1:k,Σ1:k,1:k) .

Input : xi, yi, (αj , βj , σ2
j ) for j = 1, . . . , q, Π

Output: µ, Σ
Initialize µ = 0q, Σ = 0q×q;
for k ← 1 to q do

µk ← β>k µ+α>k xi;
Σkk ← σ2

k + β>k Σβk;
Σ1:(k−1),k ← Σ1:(k−1),k + Σ1:(k−1),1:(k−1)βk;
Σk,1:(k−1) ← Σ1:(k−1),k;

end
Set p(Y|X) = N(µ,Σ);

Algorithm 2: Procedure to compute P (yi|xi).

3.3 Datasets
We applied our computational approach to determine whether the TF bindings in the ENCODE
ChIP-seq and DNase-seq data [22] are functional, using the SNP and gene expression data from
the HapMap 3 and 1000 Genomes Project population [20, 97, 140].

34



We downloaded the ENCODE ChIP-seq data for 71 TFs and the DNase I hypersensitivity
sites both for the GM12878 LCL, processed with the ENCODE uniform peak calling pipeline [22].
For the five TFs whose ChIP-seq data are available from multiple experiments, we took the union
of the binding sites from all experiments. We constructed the TF binding map from ChIP-seq
binding sites for each TF that also overlapped with DNase I hypersensitivity regions. Given the
TF binding map, we determined the set of genes potentially targeted by the TF as those genes
that contained binding regions within 10kb from the transcription start and end sites of the gene.

In order to functionally validate the candidate target genes suggested by ChIP-seq data, we
identified 520 individuals whose LCL gene expression levels were profiled in a previous study of
HapMap 3 population [97, 140] and whose genome sequences were available from the 1000
Genomes Project Phase 3 [20]. We downloaded the expression data for 21,800 probes that
was collected with the Illumina Human-6 v2 Expression BeadChip platform and analyzed in
[97, 140]. We first filtered out the probes with standard deviation less than 0.2, if the probes
correspond to non-TF genes without ChIP-seq results, and discarded the redundant probes that
recognize the same transcripts. The remaining 9,940 probes were included in our network learn-
ing. Of the total 9,940 probes, 8,505 probes represented gene-level expressions with one-to-one
correspondence to genes, as they recognized either all transcripts of the gene or the single tran-
script that exists for that gene. Our probe data also included 1,176 probes corresponding to
transcript-specific expressions for 1,048 genes that have multiple transcripts. For a small subset
of these genes (259 genes), probes for gene-level expressions were available in addition to probes
for transcript-specific expressions and we included them in our analysis.

For the same 520 individuals above with expression data, we obtained the genome sequence
data from the 1000 Genome Project Phase 3 [20]. After filtering out SNPs with minor allele
frequency less than 0.05, we included in our analysis the 87,267 biallelic SNPs in the promoter
and exon regions of each gene with expression data, where the promoter region was defined as
2000bp from the transcription start site.

3.4 Results

3.4.1 Functional validation of TF bindings in lymphoblastoid cell lines

We applied our approach for TF binding map validation to determine if the TF binding events
from the ENCODE TF binding data in LCL lead to changes in target gene expressions, using the
SNP and gene expression data from the HapMap 3 and 1000 Genome Project population [20, 97,
140]. We used the TF binding map from ENCODE as a structural prior for our cGBN and then
we estimated a cGBN by combining this prior knowledge with the expression and SNP genotype
data.

We first examined our estimated model to determine which of the bound genes in the TF
binding map are functionally validated. For each TF, we extracted from the estimated model the
validated target genes under each of the three perturbation scenarios, as genes with edges from
TF expression, genes with cis eQTLs located within the TF bound region, and genes with trans
eQTLs located in TF coding region. As can be seen in Figure 3.3A, the fraction of function-
ally validated target genes to candidate target genes in the binding map varied from 3% to 69%
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depending on the TF. We found that a large fraction of the functional target genes were those
validated under the perturbations of TF concentrations (Figure 3.3B), and that relatively fewer
genes were validated under the perturbations of regulatory sequences or TF coding sequences
(Figures 3.3C-D). In addition, we found that for each TF, more functional target genes were per-
turbed by their cis eQTLs than by trans eQTLs located in the TF coding region. For example, 71
out of 83 TFs had more than 500 target genes validated under perturbations by cis eQTLs (Fig-
ure 3.3C), whereas none of the TFs had more than 500 target genes validated under perturbations
by trans eQTLs in the TF coding region (Figure 3.3D). This is consistent with the observation
from previous studies that trans regulatory elements tend to be evolutionarily more conserved
than cis regulatory elements, because of the global impact of the potentially damaging changes
in trans regulatory elements [15, 138, 160]. Finally, we found that the TF expression variances
are highly correlated with the number of target genes validated under the perturbation of TF con-
centration (R = 0.80, Figure 3.4). This shows that our approach of using SNP perturbations to
functionally validate TF bindings is most effective when there exists sufficient variations in TF
expression levels in the population.

Next, we examined the differential gene expression induced by each individual perturbation
as described above, via probabilistic inference on our cGBN. While an experimental knockdown
approach considers all bound and differentially expressed genes as functional targets of the TF,
our approach finds only a subset of those genes as functional targets, as it further distinguishes
direct targets of the TF from indirectly affected downstream genes with non-functional binding.
Given the estimated cGBN, we compared the differential gene expressions of the functionally
validated target genes with those of further downstream genes with non-functional binding. We
first performed probabilistic inference to obtain downstream effect sizes on each downstream
gene of the TF, for each individual perturbation of TF concentrations, regulatory regions, and
coding sequences. Then, at different levels of downstream effect sizes, we compared the set of
differentially-expressed and bound genes (green bars in Figure 3.5) with a subset of those genes,
which consists of functionally validated target genes (red curves in Figure 3.5). As can be seen
in Figure 3.5, our approach found that for each perturbation type and for each TF, 0.02 to 100 %
of the bound and differentially expressed genes were validated as functional targets of the given
TF. This shows that our computational model and learning algorithm can determine the direct
and indirect targets by statistically assessing the direct and indirect probabilistic dependencies
among the gene expression variables. This allows our approach to potentially identify functional
targets of each TF with higher accuracy, compared to exprimental method. In addition, we found
that the downstream effect sizes vary across TFs and that those TFs with stronger downstream
perturbation effects tend to have a greater number of validated genes. Among the three types of
perturbations we consider, the downstream effect sizes were the strongest for the perturbations
of TF concentrations and the weakest for trans eQTLs in TFs coding region for target gene
expression.

To characterize the biological functions that the TFs are regulating, we looked for the Gene
Ontology (GO) terms that are enriched in the set of validated target genes for each TF, using
the GO annotations. For those TFs with more than 20 target genes validated under each of the
three scenarios, we show in Figure 3.6 the significantly enriched GO slim terms (FDR of 5%)
and the corresponding p-values, grouping together the related GO slim terms. We show the GO
slim terms enriched in at least four TFs for the TF concentration perturbation (Figure 3.6A),
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and in one or more TFs for the local perturbation of target gene regulatory sequences and global
perturbations in TF coding sequences (Figures 3.6A and 3.6B). As can be seen in Figure 3.6A,
for the TF concentration perturbation, the GO category of immune system processing is enriched
for many of the TFs. This is consistent with the fact that an LCL is a human B cell immortalized
after Epstein-Barr virus infection and thus has the phenotypes of highly activated B cells [38].
In addition, since activated immune cells undergo cell proliferation and potential changes in
metabolic processes [62], GO terms related to cell growth (e.g., cell cycle, cell proliferation)
and metabolic processes (e.g., biosynthetic and catabolic processes) were found enriched for
many of the same TFs whose target genes were enriched for immune system processing. For the
cases of local and global SNP perturbations of TF binding affinities (Figures 3.6A and 3.6B), the
enrichment was overall weaker than the case of TF concentration perturbation, mainly because
there were far fewer validated target genes. The enrichment results under the perturbations of TF
concentrations and under the perturbations of cis eQTLs of target genes were similar in that the
GO terms related to metabolic processes were enriched for many of the TFs in both cases.

Finally, to see if the enrichments of the immune system processing GO category in Figure
3.6A indicate a B cell immune response, we performed a similar GO enrichment analysis with
the more fine-grained GO categories under the immune system processing GO category in the
hierarchy. As can be seen in Figure 3.7, many TFs had target gene sets that are enriched in
GO terms related to B cell activities. Overall, we found the biological functions that these TFs
regulate are consistent with what is known about the B cell immune response in LCL.
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A B C D

Figure 3.3: The number of validated target genes in TF binding map for LCLs. For TFs that
had multiple transcripts in the study, each transcript is numbered. A) The gray bars represent the
number of target genes in the TF binding map for each TF. The brown bars represent the number
of target genes that were validated using our approach. B), C), and D) show the total number of
target genes validated by perturbing TF concentration, perturbing TF binding affinities locally,
and perturbing the TF structure globally.
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Figure 3.4: The effects of TF expression variance on functional validation of TF bindings. Each
data point represents a different TF. The number of validated target genes is correlated with the
TF expression variance (R=0.80).
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Figure 3.5: Validated target genes and differentially expressed and bound genes for each TF determined
by our approach. Each panel represents genes that are either validated (red curves) or differentially ex-
pressed and bound (green bars) by perturbing A) TF concentration, B) TF binding affinities locally, and
C) TF structure globally. 40
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Figure 3.6: GO enrichment analysis of validated target genes. The x-axis are GO ontology terms
and y-axis list TFs. A) GO analysis of target genes validated by concentration. B) GO analysis
of target genes validated by local perturbations from cis eQTLs.
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Figure 3.7: GO enrichment analysis of selected TFs that show enrichment for more specific GO
categories under the broad immune system processing GO category.
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3.4.2 TF-target interactions validated by perturbing TF concentration

First, we examine the bound genes whose expressions are affected under the perturbations of
TF concentrations, as identified by our analysis. In particular, to assess the effectiveness of our
approach, we compare our results with those obtained from TF RNAi experiments in the LCL
from a previous study [26]. Since both RNAi and SNP perturbations of TF concentrations vary
TF expression levels, downstream effects of such perturbations may be similar in both cases. On
the other hand, RNAi perturbs a single gene at a time, whereas in an eQTL data, a large number
of genes are perturbed simultaneously by a large number of SNPs. Thus, the downstream effects
may be different between the two approaches, just as there is a significant difference in gene
expression patterns between single knockdown and double knockdown. Below, we explore such
similarities and differences in the perturbation effects and their impact on functional validation
of binding maps between experimental and our computational approaches.

We obtained the functionally validated target genes from the previous RNAi experiments [26]
as those genes that are bound and differentially expressed after TF knockdown. Then, we com-
pared these genes with an equivalent set of genes in our analysis, the set of bound and differen-
tially expressed genes under TF concentration perturbation, a subset of which is the target genes
functionally validated by our computational approach. For 14 out of 72 TFs included in our
study, microarray gene expression data were available for a HapMap LCL (GM19238) before
and after RNAi with knockdown efficiency above 50% measured by qPCR [26]. From the 4,661
probe measurements that matched the probes used in our analysis, we determined the genes dif-
ferentially expressed after RNAi, using the same procedure in [26] and applying the likelihood
ratio test followed by multiple testing correction (FDR < 0.05). Among the TF bound genes in
our binding map (Figure 3.8A), we examined the overlap between the differentially expressed
genes after TF RNAi and those genes in our analysis with downstream effect sizes greater than
.05 under TF concentration perturbation (Figure 3.8B). We also examined the amount of TF con-
centration perturbation in our population data as the sample variance of TF expression, since this
can directly affect the amount of differential expression of downstream genes (the red line in
Figure 3.8B).

For TFs such as PAX5 and TCF12-1 whose expressions are not naturally perturbed and thus,
have little variability across samples, our computational approach found no or few differentially
expressed downstream genes (Figure 3.8B). However, for the same TFs, the TF knockdown ex-
periments revealed many differentially expressed genes. This suggests that in general, if there
is no or little naturally-occurring variation in TF expression, it is not feasible to leverage the
TF concentration perturbation to functionally validate target genes of the TF or to reveal down-
stream genes regulated by the TF. Then, an artificial perturbation via experimental knockdown is
necessary to determine whether the TF bindings near the candidate target genes are functional.

On the other hand, for EZH2-1 and EZH2-2, even though the TF expressions had substantial
variability across individuals in our data, neither experimental nor naturally-occurring pertur-
bation of the TF expression led to significant differential expression of any downstream genes
(Figure 3.8B). Thus, for those TFs, we conclude that the results are in agreement between our
computational method and the experimental method.

For the other remaining 10 TFs in Figure 3.8B, the TF expressions were perturbed both in
TF knockdown and in the population in nature, but the sets of bound and differentially expressed
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genes after perturbations only partly agreed between the two approaches. We hypothesize an
epistatic interaction between a TF and its co-regulators as the primary underlying cause of this
discrepancy in perturbation effects. Without epistasis, the regulatory effect of each TF on its tar-
get gene would be independent of other regulators of the target gene. Thus, naturally-occurring
perturbations and experimental knockdown studies would reveal a nearly identical set of dif-
ferentially expressed downstream genes. Even though unlike in TF knockdown many gene ex-
pressions are simultaneously perturbed in SNP perturbation, the effect of perturbation of each
individual TF concentration, as is teased out by our computational approach, would be analo-
gous to the TF knockdown effect. The two types of perturbations may differ in the magnitudes
of TF expression perturbations, but otherwise, would induce the same downstream effects.

A B

Figure 3.8: Comparison of validated target genes between TF knockdown experiments and our
approach. A) Target genes from the TF binding map. B) The bar graph indicates number of
target genes validated by each method. The line graph shows the expression variance of each TF
in the population.

However, when a TF epistatically interacts with other co-regulators to regulate target genes,
TF knockdown and SNP perturbations of the TF and its co-regulators would lead to different
downstream expression patterns. Under epistasis, the regulatory effect of the TF on target genes
is dependent on the states of co-regulators in the cell environment. Then, the key difference be-
tween the two perturbation approaches is that a TF knockdown experiment is typically performed
on cells with a single genetic background representing a single state of the co-regulators, whereas
an eQTL dataset contains many samples with different genetic backgrounds and thus with differ-
ent configurations of TF and co-regulator states. This difference in turn leads to differences in the
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sets of downstream genes that can be revealed by either type of TF perturbations. A TF knock-
down can reveal downstream genes only if the states of co-regulators in the cell under study do
not mask the effects of TF knockdown. Otherwise, SNP perturbations, where potentially many
more configurations are represented across samples, can be potentially more powerful, when the
data are analyzed with an appropriate computational method that models epistatic interactions.
On the other hand, SNP perturbations can reveal downstream genes, only if there exist samples in
the eQTL dataset in which the states of co-regulators do not mask the effects of TF perturbations.
Otherwise, an artificial perturbation is necessary to reveal the downstream genes. Overall, there
are downstream genes that can be revealed only by either of the perturbation methods, while
some downstream genes can be revealed by both methods if the co-regulator states do not mask
the TF perturbation effect in the TF knockdown and in some of the samples in the eQTL dataset.

The power of SNP perturbations in eQTL data to identify epistatically regulated downstream
genes can be fully realized if the data are analyzed with an approach that fully models the epistatic
interactions of regulators. Our cGBN has limited power as it assumes independent influence of
each regulator on its target. Instead of fully modeling epistasis, which is computationally expen-
sive due to a large number of possible interactions that need to be considered, we use a relatively
simple statistical method to assess the presence of epistasis in the regulatory relationships that
have been identified by our cGBN.

For each TF, we fit a linear model that models two-way epistatic interactions, each of which
involves the given TF and one other co-regulator and can potentially influence the bound and
differentially-expressed genes identified by either the TF knockdown or our computational ap-
proach. Recall the original conditional probability density is written as p(YTFd

|YTF,Y−TFd
,X)

for downstream genes YTFd
, conditional on TF itself YTF, the rest of the genes Y−TFd

, and SNPs
X , E[YTFd

] = [YTF,Y
>
−TFd

,X>]Θ. For the linear model augmented with two-way interaction
terms, E[YTFd

] = [YTF,Y
>
−TFd

,X>,Φ(YTF)]Ψ where the set of non-downstream genes Y−TFd
is

limited to those genes with the corresponding entries in Θ > 0.15 and Φ(YTF) = YTF × Y1:k,
where Y1:k = [Y1, . . . , Yk] consists of TFs in Y−TFd

that potentially interact with YTF. To fit the
model, we optimize the L1 regularized negative log-likelihood using a different regularization
parameter for the linear terms, interaction terms, and SNPs. The best regularization parameters
were selected by cross validation.

Next, we examined for each TF how many of the bound and differentially expressed genes in
either type of perturbations were found to be regulated by epistatically interacting TF and its co-
regulators (Figure 3.9). Across TFs, most of the bound genes that were differentially expressed
only in TF knockdown were found to be epistatically regulated, while the remaining genes are
likely to be the ones that are not perturbed in nature due to the masking effects of co-regulators
of the TF. In addition, some of the bound genes that were differentially expressed only in our
analysis of eQTL data are likely to be genes with strong epistatic effects that could be captured
by our cGBN but were found to be unaffected in the TF knockdown due to the masking effects
of the interaction partners. As can be seen in Figure 3.9, many of these genes were found to
be epistatically regulated by the TF and another co-regulator, while other genes may be under
two-way epistasis that were not modeled in our analysis or under higher-order epistasis.
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Figure 3.9: Two-way interaction effects of bound and differentially expressed genes. Left col-
umn: Total number of bound and differentially expressed genes that were identified by TF knock-
down or our computational approach using population data. Right column: The number of
bound and differentially expressed genes with two-way interaction effects involving the TF and
co-regulators.
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3.4.3 Perturbing TF binding affinities

Now, we turn to the other perturbation scenarios and examine the TF bound genes whose ex-
pressions are modified by the genetic variants in the target gene regulatory sequences or the TF
coding sequences. In particular, we investigate whether any of the eQTLs of the validated tar-
get genes affect TF binding affinities. For each validated target gene, we examine whether its
cis eQTLs change DNA motif sequences recognized by TF and whether trans eQTLs in the TF
coding region change the TF structure.

Perturbing TF binding affinities locally

In this section, we examine whether the cis eQTLs in the TF bound regions disrupt binding
affinities of the DNA motif sequences recognized by TF. ChIP-seq and DNase-seq technology
provides only the information on broad DNA regions bound by TF, but not the precise location
on DNA where TF bindings occur. We use the previously known TFBS motif models to pinpoint
TF binding sites (TFBSs) on the binding map and then, assess the impact of the cis eQTLs on
TF binding affinities of motif matching sequences.

In order to narrow down TFBSs within the bound region, where genetic variants can alter
binding affinities, we first scanned the genome of the same cell line (GM12878) whose TF bind-
ing data were available from the ENCODE project, with motif position weight matrices (PWMs)
from TRANSFAC and JASPAR databases [90, 91]. We focused on the 58 TFs whose PWMs
were available from the databases and identified TFBS motif matches located within the pro-
moter regions of the validated target genes, defined as 2000bp from the transcription start site.
For many of the TFs, multiple PWMs were available, each derived from different data sources
(e.g., SELEX, ChIP-seq, DNA binding arrays, protein binding arrays, and 3D-structure-based
energy calculations) or compiled from the literature and individual genomic sites. For PWMs de-
rived from ChIP-seq, we used the ones from LCL ChIP-seq data processed with MDSCAN [84],
but if a PWM from LCL is not available, we used PWMs from another normal cell line. For
PWMs obtained from SELEX, we selected for our analysis the PWM from the most recent SE-
LEX experiment, including both homodimer and heterodimer cases. For PWMs compiled from
many genomic sites or from the literature, we first favored a factor-specific PWM over a family
PWM, a PWM derived from human data over non-human data, and PWMs constructed from a
greater number of genomic sites. We added pseudocounts to entries in PWMs and re-normalized
the PWMs. The pseudocounts were set to 0.004 for ‘C’ and ‘G’ and 0.006 for ‘A’ and ‘T’, if
PWMs were available as a normalized probability matrix. For PWMs with unnormalized counts,
the pseudocounts were set to 0.04 for ‘C’ and ‘G’ and 0.06 for ‘A’ and ‘T’, if the PWM was de-
rived from a large number of binding sites (e.g., PWMs obtained through SELEX, DNA binding
array data, or 3D structure based energy calculations), and 0.4 for ‘C’ and ‘G’ and 0.6 for ‘A’
and ‘T’, if the PWM was derived from a small number of binding sites (e.g., PWMs compiled
from individual genomic binding sites or from the literature). A position-specific scoring matrix
was then constructed from the resulting PWMs using background nucleotide frequencies with
40% GC content. We assessed the significance of motif matches at α = 0.001, based on the null
distribution obtained by enumerating and scoring all possible sub-sequences of motif length via
dynamic programming. For motifs with length 12 or greater, we used an approximate null distri-
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bution by binning the scores. All computations were made using the Biopython package [19].

Next, we identified those motif matches that contain cis eQTLs found by our learning algo-
rithm. For 50 TFs out of the 58 TFs with known PWMs, there was at least one motif match in
bound genes overlapping with cis eQTLs. Many of the cis eQTLs located in the bound promoter
regions of the validated target genes overlapped with motif matches (Figure A.1). Across the 50
TFs, the fraction of cis eQTLs that coincide with motif matches for each TF ranged from 2.0%
to 48.8%. These cis eQTLs of the validated target genes that lie on the TF motif matches could
potentially change the binding affinity of the short DNA sequences recognized by TF to influence
the expression of genes near the eQTLs.

To see if the eQTLs lying on TF motif matches indeed disrupt TF binding affinity, we com-
pared the effects of eQTLs on motif match scores with those of other SNPs in the bound promoter
regions that are not eQTLs. To measure SNP effects on binding affinity, we defined a score delta
as a difference in motif match scores of two short sequences that are identical except for different
alleles at SNP locus. For the 50 TFs with at least one motif match overlapping with cis eQTLs,
we computed score deltas for all motif matches with cis eQTLs (5,165 motif matches across
all TFs) and also for all motif matches with the other SNPs that are not cis eQTLs (722 motif
matches across all TFs), and then compared the two score delta distributions. As can be seen in
Figure 3.10A, overall the cis eQTLs resulted in higher score deltas on motif matching sequences
than the other SNPs (rank sum test p-value = 0.0286). We also examined average score deltas
for eQTLs and non eQTLs within each TF, after averaging over all motif matches for the TF. We
found that among the 50 TFs, 29 TFs had higher average score deltas for cis eQTLs than other
SNPs that are not cis eQTLs (Figure 3.10A). This provides evidence that when bound genes are
validated under the perturbation by cis eQTLs in our approach, those cis eQTLs are likely to
change the binding affinities of regulatory sequences recognized by TFs to lead to expression
changes of the bound genes.

When an eQTL overlaps with motif matching sequences for multiple TFs, we do not have
knowledge of which TF’s binding site is affected by the eQTL. In such cases, so far, we assumed
the eQTL influences the binding affinities of all TFs with overlapping motif matches. Instead, we
now hypothesize that an eQTL influences the binding of TF with the largest score delta, to see if
such an assignment of eQTL to a TF better differentiates between the two score delta distributions
for eQTLs and the other SNPs. We first computed the max score delta for each eQTL, defined
as the maximum score delta over overlapping TF motif matches. Then, we compared the max
score delta distribution across the 302 eQTLs with the score delta distribution that we obtained
above for the other SNPs. As can be seen in Figure 3.11A, the max score deltas for eQTLs are
significantly higher than the score deltas for the other SNPs (rank sum test, p-value=1.6×10−16).
We also examined the eQTL max score deltas for each TF, and compared the max score deltas
averaged over motif matches within each TF with the average score deltas for the other SNPs for
the same TF. Out of the 45 TFs with more than one motif matches assigned with the max score
delta, for 35 TFs, max score deltas for eQTLs were larger than score deltas for the other SNPs
(Figure 3.11B). Our results show score delta distributions between SNPs and cis eQTLs were
significantly different when cis eQTLs were assigned to TFs with the strongest evidence for a
change in binding affinity.
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A B

Figure 3.10: Comparing the effects of eQTLs and non eQTLs on TF binding affinities. A)
The distributions of score deltas for eQTLs and non eQTLs. The mean and standard deviation
are shown as blue dots and orange lines. B) Average score deltas for eQTLs and non eQTLs
computed for each TF. Dark blue points represent TFs with significant difference (p < 0.1) in
the distribution of score deltas.

Perturbing TF structure globally

In order to determine whether trans eQTLs that reside in the TF gene regions and affect tar-
get gene expression, by modifying the structure of the TF, we investigated the location of these
changes in the protein sequence. To alter protein structure, the trans eQTL must result in a mis-
sense mutation that generates a different amino acid sequence. We first found the trans eQTLs
located in coding regions of TFs. We then annotated these SNPs using the UCSC variant an-
notator to find the missense SNPs [118]. To see if these missense mutations affect TF protein
structure, we also collected SIFT scores and protein binding domain information from the UCSC
variant annotator [118], the Uniprot database [23], and ScanProsite [29]. Out of 301 trans eQTLs,
48 eQTLs were located in coding regions of TFs. Out of these 48 variants, 16 of them were an-
notated as missense variants. We found that 7/16 of the missense SNPs were associated with
binding domains, 6 of them had nearby binding domains that are between 30-100 amino acids
away, and 1 of them overlapped with the binding domain. In addition, 3/18 were considered
damaging with a SIFT score<0.05, two of these were associated with a binding domain, and one
of them was not. In total, we found evidence for structural changes in 8/16 of these trans eQTLs
covering 8 different TFs out of 11 TFs. These eQTLs are described in detail in Table 3.4.3.
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A B

Figure 3.11: Comparing the effects of eQTLs and non eQTLs on TF binding affinities where
eQTLs are assigned to the TF with the largest score delta. A) The distributions of max score
deltas for eQTLs and score deltas for non eQTLs. The mean and standard deviation are shown
as blue dots and orange lines. B) Averaged max score deltas for eQTLs and average score deltas
for non eQTLs computed for each TF. Dark blue points represent TFs with significant difference
(p < 0.1) in the distribution of score deltas.

3.5 Conclusions
In this chapter, we presented a computational approach for validating the TF binding map by
using SNP perturbations of gene expressions. We discussed how to learn a cGBN that models
the gene regulatory network and outlined an efficient learning and inference procedure. ChIP-
seq and DNase I data was used as prior knowledge and our method selected the functional TF-
target interactions that were validated under SNP perturbations. We compared the target genes
validated by concentration with knockdown experiments and found that epistasis amongst the
TFs exists. By analyzing the cis eQTLs that affect target gene expression, we found evidence that
cis eQTLs alter binding affinity by modifying TFBSs in the promoter regions of target genes. In
addition, we found several trans eQTLs that change the protein sequence of the TF which might
alter TF protein structure.
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Table 3.1: Regulatory SNPs

Gene Refseq ID rSNP TFBSs
Mean
Score
Delta

Function

CCL5 NM 002985 rs2107538
EP300,
MAZ,
SP1

6.5

This rSNP has been linked to atopic
dermatitis, atherosclerosis, and prostate
cancer. It is also produced by B-cells and
attracts monocytes and other leukocytes
[53, 68, 99, 158].

FECH NM 000140 rs17063905 MAZ1 5.1

The rSNP was originally studied in the
context of erythropoeitic protoporphyria
(EPP), a condition resulting from FECH
enzyme deficiency [47].

LCT NM 002299 rs56064699 This rSNP is in the lactase gene [41].
1 The TFBSs of this TF are also within the ChIP-seq binding site.

Table 3.2: Missense SNPs
TF (RefSeq ID) SNP ID SIFT1 Amino Acid position2 Affected Domain Domain Type

BRCA1 (NM 007299) rs1799966 T(0.05) 509 538-632 BRCT
ELF1 (NM 172373) rs1056820 T(0.84) 343 208-290 ETS
ELF1 (NM 172373) rs7799 T(0.23) 58
EP300 (NM 001429) rs20551 T(0.32) 997 1067-1139 Bromo

FOXM1 (NM 202003) rs3742076 T(0.91) 628
NFATC1 (NM 172387) rs754093 D(0.00) 738 690-930 Trans-activation Domain

PML (NM 033238) rs5742915 T(1.00) 645
PML (NM 033239) rs743580 T(1.00) 772
PML (NM 033239) rs743581 T(0.25) 780
PML (NM 033239) rs743582 T(0.06) 802
REST (NM 005612) rs3796529 T(0.14) 797

RUNX3 (NM 001031680) rs6672420 D(0.01) 18 68-196 Runt Domain
SIX5 (NM 175875) rs2341097 D(0.04) 693
SIX5 (NM 175875) rs2014576 T(0.23) 635
TCF3 (NM 003200) rs2074888 T(0.38) 492 549-602 bHLH

ZNF143 (NM 003442) rs10743108 T(0.52) 561 417-440 Zinc Finger
1 SIFT is a tool based on sequence homology that is used to predict whether amino acid substitutions are likely to affect

protein function [102]. Through the UCSC Variant Annotation Integrator [118], we access the SIFT scores. A SIFT
score is a probability of observing the substituted amino acid at that position. The scores range from 0 to 1 with a value
between 0 and 0.05 indicating that the substitution is predicted to affect protein function [132].

2 Given the particular transcript of the TF and the variant, the UCSC Variant Annotation Integrator [118] will locate the
codon that is affected and the position of the amino acid in the amino acid sequence that is affected.

51



52



Chapter 4

Estrogen receptor and cofactor regulation
in breast cancer cells

4.1 Motivation

We apply our approach of validating the TF binding map on breast cancer cells in order to study
estrogen receptor (ER) regulation. ER plays an important role in breast cancer progression.
When activated by the binding of estrogen, ER translocates to the nucleus and binds to target
genes which stimulates transcription [121]. Clinicians have found that disrupting ER function is
an effective therapeutic strategy [48]. However, researchers are still trying to understand the pre-
cise mechanisms of ER action in breast cancer cells. Many coregulatory TFs have been found to
be crucial for transcriptional activity of ER [52, 86]. In addition, growth factor receptor tyrosine
kinase including those in the ErbB family and the protein kinase families of several signal trans-
duction pathways such as PIK3, AKT and MAPK act upstream of the transcription factors, in-
cluding ER, to enhance mechanisms leading to cellular proliferation, growth and survival [167].
Thus, these growth factor receptors and protein kinase pathways have been investigated as po-
tential targets for drug therapy. In this study, we use TF binding map validation to elucidate the
transcriptional network of the TFs. We also learn the interactions of the protein kinases in order
to study the mechanisms of upstream regulation.

While breast cancer is heterogenous with five major subtypes: Luminal A, Luminal B, Basal,
Claudin-low and HER2 [57], we focus on luminal A breast cancer. In order to determine the
candidate TF-to-target relationships, we obtain ChIP-seq and DNase-seq data from the Cistrome
Project database [92] for MCF-7 and T47D cell lines, which are used as example luminal A cell
lines [57, 79]. To validate these relationships, we train our cGBN using SNP and expression
data from the TCGA Research Network (http://cancergenome.nih.gov/), selecting only patients
that have subtype luminal A breast cancers. We then analyze the TF-target relationships that are
learned and discuss the effects of local perturbations of TF binding affinity and global perturba-
tions of TF structure.
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4.2 Methods

4.2.1 Modeling the gene regulatory network
To validate the TF binding map using SNP perturbations of gene expressions for luminal A breast
cancer population, we estimate a cGBN. We follow the same approach that was performed for
lymphoblastoid cells as described in Chapter 3 Section 3.2.1. The TF binding map constructed
from ChIP-seq and DNase I data was incorporated into our model and learning algorithm as
prior knowledge. Then, TF-target interactions that are validated under SNP perturbations of
gene expressions are selected by the learning algorithm. Figure 4.1 provides an overview of
the TF-target interactions that are validated by each mechanism. The TF-target interactions are
validated by concentration, if the TF’s expression influences the target gene’s expression. The
TF-target interaction is validated by local perturbations of binding affinity, if there exists SNP
in the regulatory region of the target gene that is associated with the target gene. These SNPs
are then referred to as cis eQTLs. In addition, the TF-target interaction is validated by global
perturbations, if there exists an SNP in the coding region of the TF that is associated with the
target gene. These SNPS are trans eQTLs.

We also validate interactions between protein kinases and TFs (Fig. 4.1). A interaction be-
tween a protein kinase and a TF is validated by concentration, if the perturbation in the expres-
sion of the protein kinase affects the expression of the TF. In addition, we can validate the protein
kinase-TF interaction by binding affinity, if there exists a SNP in the coding region of the protein
kinase that influences the expression of the TF. This indicates that a change in the structure of
the protein kinase is affecting the expression of the TF. We refer to these SNPs are trans eQTLs.

We learn the network structure such that it reflects the sequence of interactions in the ER
biological pathways. Protein kinases are recruited to the ER complex and act upstream of ER
and other TFs. The genes pertaining to these protein kinases and their respective families are
listed in Table 4.1. We constrain our network structure such that the protein kinases influence
the TFs, and the TFs then regulate target genes. We enforce this constraint during learning by
partially fixing the variable ordering a priori such that the kinase nodes appear before the TF
nodes in the ordering.

4.2.2 Selection of genomic variants
SNPs that were selected for the model were those that were useful in identifying local pertur-
bations of binding affinity or structural changes of TFs or upstream regulators. SNPs within
binding sites near target genes were included in order to detect local perturbations of TF binding
affinity. In addition, SNPs from the exon regions of TFs were included to identify changes in the
structure of the TF. Similarly, SNPs from exon regions of upstream regulators were included to
capture SNP perturbations of protein structure.

4.2.3 Experimental design and parameter selection
To learn the gene regulatory network structure, we perform network estimation on the gene ex-
pressions conditional on SNPs. Because protein kinases are recruited to the ER complex and are
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Figure 4.1: Overview of gene regulatory network learned for Luminal A breast cancer cells from
SNP and expression data. Red edges indicate those edges that are validated by perturbation of
concentration. Blue edges between SNPs and gene expressions mark those edges validated by
global perturbations. The associated SNPs are referred to as trans eQTLs. Green edges between
SNPs and target gene expressions indicate local perturbations. The associate SNP is referred to
as a cis eQTL.

upstream of the TFs, we learn their structure first, and they can have directed edges to TFs. The
TFs can have directed edges to other TFs or candidate target genes. The rest of the genes (candi-
date target genes and other genes) can interact with each other freely. To reduce computational
time, we approximate the structure of the entire network as follows. We divide the non-TF genes
into clusters that were selected based on hierarchical clustering of the gene expression data. The
cluster sizes vary between 200-600 genes. After determining the network structure over the pro-
tein kinases and TFs, we then add a cluster of non-TF genes and continue learning the structure.
The regularization parameters were selected by cross validation. We explored a range of λ’s
between 40 and 200, and a range of γ’s between 20 and 200. We cross-validated with a 80%20%
split of the data. There were 332 luminal A breast cancer samples in total, which means that 265
samples were using for training and 67 samples were used as test data.

55



Family Gene Names
Akt AKT1, AKT2, AKT3
GSK GSK3A, GSK3A
mTOR MTOR
ERK MAPK1, MAPK3
JAK JAK1, JAK2, JAK3, TK2
PI3K PIK3CA, PIK3CB, PIK3CG, PIK3CD, PIK3R1, PIK3R2, PIK3R3,

PIK3R4, PIK3R5, PIK3C2A, PIK3C2B, PIK3C2G, PIK3C3
SRC SRC, FYN, YES1, LCK, LYN, HCK, BLK
MAPK MAPK8, MAPK9, MAPK10, MAPK11, MAPK12, MAPK13,

MAPK14, MAPK7, MAPK6, MAPK4, MAPK15
MEK MAP2K1, MAP2K2
RAF RAF1, BRAF
S6K RPS6KA1, RPS6KB1
ErbB EGFR, ERBB2, ERBB3, ERBB4
IGFR IGF1R
InsR INSR
FGFR FGFR1, FGFR2, FGFR3, FGFR4

Table 4.1: List of upstream regulators of ER grouped by families.

4.3 Datasets

4.3.1 ChIP-seq and DNase I data for the TF binding map

In order to determine the TF binding map in luminal A breast cancer cells, we obtain ChIP-seq
and DNase I hypersensitivity data from previous studies performed on luminal A cell lines. We
downloaded all ChIP-seq and DNase I studies for MCF-7 and T47D cell lines from the Cistrome
Project database [92] that were either done in full media or were estrogen treated. The list of
TFs with ChIP-seq data, which cell lines data was available for, and the corresponding studies
that generated it is listed in Table 4.2. DNase I data was available for both MCF-7 and T47D cell
lines [50, 147] and was obtained from the Cistrome Project database [92]

For each TF and each cell line, we generate a consensus set of binding sites. If a TF had
multiple samples within the same study, we determined a consensus set of binding sites for
that study by taking the majority vote across all samples using the DiffBind R package [136].
Similarly, for TFs that had multiple ChIP-seq studies available, we found a consensus set of
binding sites by taking the majority vote across all studies.

To filter the resulting binding sites for the regions that exist in open chromatin, we use the
information from DNase I hypersensitivity data. For each cell line, we find the regions of the
TF’s ChIP-seq binding sites that are contained in DNase I hypersensitivity sites. The resulting
set of binding sites make up the TF binding map for each TF and each cell line. For TFs, that
had data available for both MCF-7 and T47D cell lines, we took the union of the binding sites to
create a single set of binding sites.

To generate candidate TF to target gene relationships, we must associate target genes with
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the TF binding map of a particular TF. We consider a gene a candidate target of a particular TF
if there are binding sites for the TF within 100kb upstream of its transcription start site.

4.3.2 Genome and Transcriptome data from breast cancer cohorts

SNP Data

To validate TF-target gene relationships in MCF-7 and T47D cell lines under SNP perturbations,
we identified 332 individuals of luminal A subtype with both SNP and expression data available
from the TCGA project. SNP data in upstream regulatory regions of genes were obtained from
SNP arrays. SNPs in coding regions of TFs and upstream regulators were primarily taken from
exome sequencing data.

In order to process SNP array data, we filter SNPs based on confidence and minor allele
frequency (MAF). To do this, we first downloaded TCGA SNP array data. The original set of
906,600 SNPs was first filtered based on confidence. SNPs that were included had at least 80%
of the samples called with confidence<0.1. Next, SNPs were filtered based on minor allele
frequency with those with MAF>0.01 being included in the analysis. We threshold the SNPs
by MAF because we can only detect SNP perturbations of gene expression where there exists
variation in the population.

To study SNP perturbation of binding sites, we select SNPs for our analysis that were located
in the TF binding map associated with each gene. A total of 3646 SNPs were found in the
TF binding map near TFs and target genes. Table 4.3.2 specifies the number of genes that had
SNPs in the TF binding map and whether they had somatic or germline mutations. If at least one
individual differed at the SNP between its normal and tumor cells, we listed this SNP as a somatic
mutation. We also show the number of genes with SNPs after thresholding at MAF>0.01. In our
analysis, 3210 genes had SNPs located within the TF binding map, while 5066 genes (including
TFs) did not.

To find SNP perturbations of protein structure for upstream regulators and TFs, we include
those SNPs that were in exon regions which potentially affect the protein sequence. The SNPs
were obtained from exome sequencing data and SNP arrays from the TCGA. The pool of variants
considered from exome sequencing data were those that were present both in the population of
individuals sequenced at UCSC and in the population of individuals sequenced at WUSC. These
SNPs were then filtered such that those with MAF> 0.01 were included in our analysis. A small
number of SNPs located in exon regions from SNP arrays: three SNPs found in TFs and 14 SNPs
found in of upstream regulators were also included. The total number of somatic and germline
mutations collected for TFs and upstream regulators in exon regions are listed in Figures 4.3 and
4.4.

RNA-seq data

To validate the candidate target genes proposed by ChIP-seq, we identified 332 individuals with
luminal A breast cancer cells and had their gene expression levels available. We obtained RNA-
seq Version 2 gene-level expression data from the TCGA. We obtained processed data where the
gene-level expression measurement was already provided (Level 3 data). There was originally a
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TFs MCF-7 T47D Reference
BRD4 X [101]
CTBP1 X [30]
CTCF X [60]
DNase I X X [50, 147]
EHMT2 X [131]
EP300 X X [73, 96, 145]
ESR1 X X [34, 60, 66, 81, 96, 101, 145]
FOS X [66]
FOXA1 X X [34, 60, 66, 85, 143]
GATA3 X X [1, 73, 85, 145]
GREB1 X [96]
HECTD1 X [81]
HIF1A X [169]
JUN X [66]
KLF4 X [95]
LMTK3 X [163]
MBD3 X [130]
MED1 X [85]
MTA3 X [131]
MYC X [22]
NCAPG X [81]
NCAPG2 X [81]
NR2F2 X [95]
NR5A2 X [9]
NRF1 X [169]
POLR2A X [66]
PR X X [96]
RAD21 X [123]
RELA X [34]
RXRA X [95]
SPDEF X [33]
STAG1 X [123]
TDRD3 X [164]
TFAP2A X [143]
TFAP2C X [85]
TLE3 X [95]
TOP2B X [87]
TP53 X [171]
TRIM24 X [150]

Table 4.2: ChIP-seq data from the Cistrome Project that was included in our study.
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total of 17023 genes. We included expression data from 59 upstream regulators and TFs. For the
rest of the genes, after log-transforming the data and filtering for standard deviation >0.8, we
included the 8238 target genes that passed the threshold.

Number of genes Number of genes (SNP MAF >0.01)
Genes with SNPs 3347 3210
Genes with somatic mutations 3274 3173
Genes with germline mutations 103 77

Table 4.3: Somatic and germline mutations in nearby upstream regions of genes.

A B

Figure 4.2: SNPs within 100K upstream of the transcription start site of target genes. A) His-
togram of number of SNPs associated with target genes. B) Histogram of number of SNPs
associated with target genes with MAF>0.01.
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Figure 4.3: Somatic and germline mutations collected in exon regions of TFs. A) Number of
somatic mutations for in luminal A samples. B) Number of germline mutations in luminal A
samples.
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Figure 4.4: Somatic and germline mutations collected in exon regions of ER upstream regulators.
A) Number of somatic mutations in luminal A samples. B) Number of germline mutations in
luminal A samples.
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4.4 Results

4.4.1 Overview of upstream regulation and validated TF binding events
We validate the TF binding map of ER and other pertinent TFs and investigate the influence of
upstream regulators. To do this, we validate the TF-binding map determined from ChIP-seq and
DNase I data from the Cistrome project using SNP and expression data from the TCGA. Overall,
we validated TF bindings for 38 TFs and looked at interactions of 59 upstream regulators. We
functionally validated these interactions by using expression and SNP data from 8238 genes and
4,302 SNPs.

The estimated network structure of TFs involved in ER regulation contains previously known
interactions. We plotted the network structure of ER and other important coregulating TFs that
was generated by our method. In Figure 4.5A we show the correlation between the gene expres-
sions of the TFs. In Figure 4.5B, we show the adjacency matrix that corresponds to the network
structure that was estimated. The strength of the interaction is indicated by color. We found that
several edges between TFs listed in Table 4.4 are known interactions that have been previously
validated by experimental approaches in the literature. A diagram of the estimated network of
TFs is shown in Figure 4.6 with the known interactions highlighted. From examining this esti-
mated network, we can conclude that FOXA1 is an important coregulator of ER that shares direct
interactions towards GATA3, PGR. In addition, ER expression influences GREB1 and TLE3.

From To Reference
ESR1 GATA3 [153, 159]
ESR1 PGR [96]
ESR1 GREB1 [95, 115]
ESR1 TLE3 [64, 100]
FOXA1 ESR1 [60]
FOXA1 MYC [103]
FOXA1 PGR [3]
FOS GREB1
PGR GREB1 [170]

Table 4.4: The regulatory relationships from TFs to targets identified by our algorithm and sup-
ported by evidence in the literature.

Examining the network structure of the upstream regulators which are protein kinases that
are recruited to the ER complex show that families of protein kinases interact with each other.
We plotted the correlation between gene expressions of upstream regulators in Figure 4.7A, and
the adjacency matrix corresponding to the network structure of these genes in Figure 4.7B. It can
be seen that several members of the Src family of kinases, LYK, FYN, BLK, LYN, and HCK,
are connected. In addition, many of the MAPK and PIK3 families are connected in the network
(Fig. 4.7). MTOR is also connected to these families which is an interesting observation since
PI3Ks play a role in the MTOR signaling pathway [112].

Studying the network interactions of upstream regulators show that two particular groups
of protein kinases regulate two distinct groups of TFs, one involved in transcription regulation,
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A B

Figure 4.5: Correlation and estimated network structure of TFs. A) The correlation R2 of gene
expressions of TFs. B) The edges of the estimated network between TFs.

and other involved in chromatin regulation. We illustrate the correlation pattern between up-
stream regulators and TFs in Figure 4.8A and the adjacency matrix showing the network es-
timated by our method in Figure 4.8B. The network recovered shows that a group of protein
kinases MAPK4, EGFR, ERBB3, ERBB4 and IGF1R regulate a group of TFs ESR1, GATA3
and FOXA1. The activity of these TFs have previously been shown to be important for lu-
minal tumours. Specifically, ESR1 drives tumour growth and both FOXA1 and GATA3 have
been shown to influence transcription of ESR1 [145]. In addition, a different group of pro-
tein kinases MAPK2, PIK3CA, MAPK8, PIK3C2A, and MAP2K2 have direct interactions with
MBD3, CTCF, EP300 which are involved in chromatin remodeling and STAG1 and TOP2B
which participate in DNA replication.

We quantify the validated interactions between upstream regulators and TFs. For each up-
stream regulator, we show the overall number of TFs that it regulates in Figure 4.9A. In addition,
we also show those edges validated by concentration (Fig.4.9B), and those edges validated by
global SNP perturbations in exon regions of upstream regulators (Fig.4.9C). Figure 4.10A illus-
trates the total number of SNPs that were located in exon regions of upstream regulators and how
many of them were selected as trans eQTLs. Figure 4.10B shows the number of TFs regulated
per trans eQTL. This indicates that most trans eQTL affects a small number of TFs.
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Figure 4.6: Estimated network structure of ER and TF coregulators. Black indicates edges re-
covered by our model, red indicates edges supported by evidence in the literature.

We summarize the overall gene regulatory network by quantifying the TF-target interactions.
From the estimated GBN, we determined that the fraction of validated target genes to candidate
target genes according to the TF binding map was between 1.4% to 46.5% depending on the
TF (Fig 4.11A). For each TF, we then further categorize the validated genes by the mechanism
by which they were validated. Figure 4.11B shows the target genes that were validated by con-
centration. Figure 4.11C shows that target genes that were validated by local SNP perturbations
in regulatory regions of target genes. Figures 4.11D shows the target genes validated by global
SNP perturbations from exon regions of TFs. Figure 4.12A illustrates the total number of SNPs
that were located in exon regions of TFs and how many of them were selected as trans eQTLs.
Figure 4.12B shows the number of target genes per trans eQTL. It can be observed that that
number of most of the target genes were validated by perturbation of concentration. ESR1, FOS,
FOXA1, GATA3 and GREB1 are highly active as regulators as they have a large number of target
genes. In addition, there are a number of trans eQTLs that have greater than five target genes
illustrating that these global SNP perturbations can exhibit an effect across multiple target genes.

After examining the results from perturbing concentration, we find that the number of candi-
date targets and the expression variance of the TF in the population affects the number of target
genes that can be validated by our approach. There are a couple factors that affect that number of
targets recovered for each TF. First, the number of candidates targets affect how many targets we
are able to validate (Fig. 4.13). In addition, we find that the expression variance of the TF in the
population affects the number of target genes that can be validated by our approach (Fig. 4.13).
A TF that has a high expression variance also has a large number of target genes assuming that
the TF binding map suggests many candidate targets for this TF.
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The highly active TF regulators also share many targets. We plotted the adjacency matrix
where each position shows the number of common targets validated by perturbation of concen-
trated that were shared by the pair of TFs. ESR1, GATA3, FOXA1 and GREB1 all share many
targets (Fig. 4.14) indicating that together they coordinate target genes that lead to luminal A
breast cancer in the cell.

4.4.2 Overview of differentially expressed genes

In order to identify genes that are differentially expressed as a result of TF-target interactions, we
performed inference on the cGBN. We identified those genes that were differentially expressed
as a result of perturbation of TF concentration, local perturbations of target genes, and global
perturbations of TF gene regions (Fig. 4.15). By examining the genes that were differentially
expressed due to concentration, it can be seen that despite having few validated targets, MYC,
NRF2, RAD21, STAG1, TFAP2C have many differentially expressed genes indicating that the
downstream effects of these TFs may be important in breast cancer progression. The TFs MYC,
RAD21, STAG1 are all involved in modifying the chromatin during cell cycle progression and
TFAP2C has been found to regulate ER expression in breast cancer [111]. Many of the same TFs

A B

Figure 4.7: Correlation and estimated network structure of upstream regulators. A) The correla-
tion R2 of gene expressions of ER upstream regulators . B) The edges of the estimated network
among ER upstream regulators.
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RAD21, STAG1, TFAP2C also have a relatively large number of differentially expressed genes
as a result of SNP perturbations locally and globally. In addition, local SNP perturbations of
CTCF and CTBP1 also have a larger number of differentially expressed genes. These TFs were
discussed previously as being chromatin modifiers.

Next, we identify differentially expressed genes as a result of the upstream regulators to
TF interactions by performing inference. We determined those genes that were differentially
expressed as a result of perturbation of the concentration of the upstream regulators and per-
turbations of their gene regions (Fig. 4.16). From examining the downstream genes of protein
kinases, we observe that EGFR, ERBB2-4, IGF1R, FGGR3-4 have a large number of differen-
tially expressed genes. This is expected since it is known that the EGF and ErbB family receptors
are over expressed in breast cancer [137, 165].

A B

Figure 4.8: Correlation and network structure of upstream regulators to TFs. A) The correlation
R2 of gene expressions of upstream regulators to TFs. B) The edges of the estimated network
between upstream regulators and TFs.
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Figure 4.9: ER upstream regulators and their validated target genes. The set of potential target
genes are ER and its TF coregulators. A) All target genes. B) All target genes validated by
concentration. C) All target genes validated by global SNP perturbations.
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Figure 4.10: Global perturbations of TF expressions by SNPs located in exon regions of ER
upstream regulators. A) Total number of SNPs in exon regions and those selected as eQTLs. B)
Histogram of the number of targets genes per trans eQTL.
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Figure 4.11: Summary of validated TF to target relationships. A) The candidate target genes
are shown in gray and the validated target genes across all mechanisms are shown in brown. B)
Target genes validated by concentration. C) Target genes validated by local SNP perturbations
of binding affinity D) Target genes validation by global SNP perturbations.
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Figure 4.12: Global perturbations of SNPs in exon regions of TFs. A) Total number of SNPs
in exon regions and those selected as eQTLs. B) Histogram of the number of targets genes per
trans eQTL.
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Figure 4.13: TF binding events validated by concentration. A) Candidate edges between TFs and
target genes from the TF binding map. B) Expression variance of TF gene expression data. C)
Number of target genes validated by concentration.
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Figure 4.14: Number of common target genes of TFs validated by concentration.
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Figure 4.15: Differentially expressed genes for each TF. Each panel represents genes that are
differentially expressed by A) TF concentration, B) TF binding affinities locally, and C) TF
binding affinities globally.
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Figure 4.16: Differentially expressed genes for each upstream regulator. Each panel represents
genes that are differentially expressed by A) concentration, B) global binding affinities.
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4.4.3 Perturbing binding affinities of transcription factors

To observe whether cis eQTLs of validated target genes influence gene expression through mod-
ifying transcription factor binding sites (TFBSs), we find the cis eQTLs that overlap with TFBSs
in the upstream region of the transcription start site (TSS). The TFBSs were collected by scan-
ning sequences of the TCGA luminal A breast cancer population with motif position weight
matrices (PWMs) from the the TRANSFAC and JASPAR databases [90, 91]. We were able to
obtain PWMs for 22 out of the 38 TFs in our analysis. We only scanned regions that were in the
TF binding map, that is regions that were were both ChIP-seq bound and in open chromatin, as
determined by ChIP-seq and DNase I hypersensitivity data from the Cistrome Project [92]. For
each target gene, we scanned a region that is 100kb upstream of the TSS. Given the PWM, we
derived the corresponding log-odds scores and used the resulting position specific scoring matrix
(PSSM) to score TFBSs. We thresholded TFBSs such that they passed a PWM-specific score
threshold (p <0.001). We collected all the TFBSs, those binding sites that were polymorphic in
the population. There were a total of 12793 polymorphic loci in the TF binding map and 472 of
them overlapped with eQTLs. Of those, 1240 polymorphic loci intersected with TFBSs and 61
of those overlapped with eQTLs. In total, there were 3646 SNPs and we determined that 150 of
them were eQTLs. Of these, there were 949 SNPs that intersected with TFBSs and 40 eQTLs
that intersected with TFBSs.

To see if the cis eQTLs in TFBSs do change TF binding affinity, we compared the differences
between the effects of SNPs and those of cis eQTLs. For each polymorphic site in the population,
we measured the effect of a SNP or eQTL on binding affinity by finding the difference in PWM
scores between the TFBSs that contain alternate alleles. We refer to these differences as score
deltas. Detailed discussion of how these score deltas are obtained is provided in Section 3.4.3.
As can be observed from Figure 4.17A, we found that the score delta distributions of cis eQTLs
compared to SNPs were not significantly different according to the rank sum test (p=0.59).

Next, we investigated whether assigning the TFBSs to cis eQTLs that exhibited more evi-
dence of influencing the binding site would change who the score dealt distributions compare.
We make the same assumption described in Section 3.4.3 that the TF with the largest score delta
is most likely affected by the cis eQTL. Once we compare max TF score deltas to the mean score
deltas of other SNPs, we see that the distributions are significantly different (p=0.02, Fig. 4.17B,
eQTL max TF score deltas are denoted eQTL Max).

We then compare the average of score deltas across all SNPs for each TF against all cis eQTLs
for each TF (Fig. 4.18A). In addition, we compare the average of score deltas across all SNPs for
each TF against all cis eQTLs for each max TF (Fig. 4.18B). Both comparisons for performed
for the same 10 TFs. For 6/10 TFs, the average of cis eQTLs in Figure 4.18A was larger than
that of SNPs, one TF had a significant difference in score delta distributions (p<0.1). After cis
eQTLs were assigned to the max TF, for 7/10 TFs, the average of cis eQTLs in Figure 4.18B
was larger than that of SNPs, again one TF had a significant different in score delta distributions
(p<0.1). To summarize, the score deltas between SNPs and cis eQTLs are similar when averaged
over all PWM models, but the distributions are different when cis eQTLs were assigned to TFs
with the strongest evidence. However, comparing these score delta distributions specifically for
each TF does not yield differences in score deltas between SNPs and cis eQTLs. For this study,
because we were relying on SNP arrays in non-coding regions, there were fewer SNPs. Now
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whole genome sequencing is available and we are able to analyze more SNPs in this region,
these results might change.

A B

Figure 4.17: The effects of eQTLs on TF binding affinities. The distributions of score deltas
for SNPs, eQTLs and of maximum score deltas over TFs for eQTLs. The mean and standard
deviation are shown as blue dots and orange lines.

4.4.4 Identification of super enhancers

By investigating the cis eQTLs of target genes and the TF motif matches that overlap, we identify
several sites that may be super enhancers. Super enhancers are sites where many TFs bind and
drive gene expression [55, 113]. From examining the list of cis eQTLs, we find many where mul-
tiple TFs have binding sites that overlap with that eQTLs (Tab. 4.5). Because, histone H3K27ac
distinguishes actively used enhancers [24], we identify those eQTLs in regions with H3K27ac
enrichment (Fig4.19). In order identify active enhancer regions we used histone H3K27ac enrich-
ment data from the Cistrome Project database [92]. We downloaded studies that were performed
on MCF-7 cells with estrogen treatment [13, 49, 80, 145] and T47D cells in full media [155].
We aggregated all the studies by taking the union of all sites. We list the eQTLs in Table 4.20
that had at least two TFs bind and were also in H3K27ac enriched regions (highlighted pink in
Figure 4.5).
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Figure 4.18: The effects of eQTLs on TF binding affinities. TF averages for SNPs and eQTLs
computed for each TF. Dark blue points represent TFs with significant difference in the distribu-
tion of score deltas for SNPs and eQTLs.

4.4.5 The effect of global perturbations of SNPs from upstream regulators
and transcription factors

To see if SNP perturbations of TFs have global effects on target genes, we study the SNPs in
exon regions of TFs that influence target gene expression . There were 233 SNPs in exon regions
of TFs and 75 of them were selected as eQTLs. We annotated the 75 trans eQTLs using the
UCSC Variant Annotator (cite) and 30 of them were annotated as either synonymous or missense
mutations. These 30 trans eQTLs, the corresponding annotation of the variant and the number of
targets that they influence are illustrated in Table 4.6. We also indicate whether the mutation was
a somatic mutation in at least one patient.

Next, we study SNPs located within upstream regulators to see whether they influence the
gene expression of TFs. There are 402 SNPs located in exon regions of upstream regulators, and
96 of them were selected as eQTLs. Similar to the procedure for trans eQTLs of TFs, we anno-
tated these trans eQTLs using the UCSC Variant Annotator (cite) and 43 of them were annotated
as either synonymous or missense mutations. We list these 43 trans eQTLs, the annotation of the
variant and the TF genes that they influence in Table 4.6. In addition, we indicate whether the
mutation was a somatic mutation in at least one patient.
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Figure 4.19: Identification of super enhancers. Of the cis eQTLs that were found to associate
with target genes. We identify those that are contained in multiple TFBSs and also overlap with
H3K27ac regions.

eQTL Target TFs with binding sites
rs584438 GJD3 NR2F2, TFAP2A, TFAP2C
rs2249851 STXBP1 CTBP1, TFAP2A
rs1078272 TFF2 CTCF, MYC
rs6130959 WFDC3 FOXA1, RAD21
rs7185427 GCSH FOXA1,MYC
rs2289226 SLC40A1 NR2F2, TFAP2A, TFAP2C

Figure 4.20: Identified eQTLs that overlap with super enhancers.

4.5 Conclusions

In this chapter, we applied our computational approach of validating the TF binding map to
studying ER regulation in Luminal A breast cancer cells. We used ChIP-seq and DNase I data
from the Cistrome project as prior knowledge for our cGBN, and trained the network using
SNP and expression data from the TCGA Research network. We were able to identify several
interactions between ER and its coregulators that were supported by evidence from the literature.
We identified both the validated target genes and differentially expressed genes for both TF
coregulators and upstream regulators of ER. By analyzing local SNP perturbations of target gene
expression, we found cis eQTLs that are possible super enhancers. In addition, we found trans
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eQTL TF Distance
rs2249851 CTBP1 50331
rs1078272 CTCF 25705
rs12103867 CTCF 44906
rs1215114 CTCF 57265
rs1329004 CTCF 79709
rs1838173 CTCF 36123
rs3850616 CTCF 71842
rs900347 EP300 938
rs6546227 ESR1 45467
rs8105903 ESR1 16
rs900347 ESR1 938
rs757274 FOS 42406
rs757274 FOS 87005
rs10500391 FOXA1 34356
rs10853784 FOXA1 47076
rs220149 FOXA1 11816
rs458480 FOXA1 93387
rs4845139 FOXA1 68951
rs6130959 FOXA1 80911
rs6546227 FOXA1 45467
rs7185427 FOXA1 40411
rs7986370 FOXA1 55653
rs9325891 FOXA1 58330
rs1044228 GATA3 97263
rs11059356 GATA3 95252
rs3782094 GATA3 66461
rs458480 GATA3 93387
rs5751603 GATA3 40841
rs1078272 MYC 25705
rs10813990 MYC 59039
rs10853784 MYC 47076
rs2393592 MYC 50344
rs4656572 MYC 327
rs6546227 MYC 45467
rs7185427 MYC 40411
rs2289226 NR2F2 80668
rs3800550 NR2F2 39021
rs4075583 NR2F2 408
rs584438 NR2F2 78227
rs6479445 NR2F2 54498
rs900347 NR2F2 938
rs971173 NR2F2 17745
rs1329004 RAD21 79709
rs1840549 RAD21 7773
rs2814086 RAD21 81826
rs3850616 RAD21 71842
rs6130959 RAD21 80911
rs7260152 RAD21 26578
rs1729252 TFAP2A 42184
rs2249851 TFAP2A 50331
rs2289226 TFAP2A 80668
rs2426800 TFAP2A 5098
rs3850616 TFAP2A 71842
rs584438 TFAP2A 78227
rs900347 TFAP2A 938
rs1840549 TFAP2C 7773
rs1990716 TFAP2C 21332
rs2289226 TFAP2C 80668
rs3850616 TFAP2C 71842
rs584438 TFAP2C 78227
rs6910546 TFAP2C 53471
rs900347 TFAP2C 938

Table 4.5: Motif matches that overlap with eQTLs in nearby regions of target genes.

eQTLs that result in missense mutations affecting important regions in the protein sequence such
as binding domains for TFs and kinase domains for protein kinases.
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eQTL TF Somatic Mutation
rs535586 EHMT2 X syn
rs7887 EHMT2 X mis
rs20551 EP300 X mis
rs20552 EP300 X syn
rs1801132 ESR1 X syn
rs2077647 ESR1 X syn
rs2228480 ESR1 syn
rs1046117 FOS X syn
rs7144658 FOXA1 X mis
rs10929757 GREB1 X mis
rs2304402 GREB1 X mis
rs36030386 GREB1 X mis
rs4669751 GREB1 X mis
rs2302212 NCAPG X syn
rs1060060 NR5A2 X syn
rs2821368 NR5A2 X syn
rs1882094 NRF1 X syn
rs2071504 POLR2A X syn
rs2228128 POLR2A X syn
rs2228129 POLR2A X syn
rs2228132 POLR2A X syn
rs2301609 POLR2A X syn
rs1050838 RAD21 X syn
rs9860801 STAG1 X syn
rs3734391 TFAP2A X syn
rs35023929 TFAP2C syn
rs1057865 TLE3 X syn
rs2133977 TLE3 X syn
rs2228178 TLE3 X syn
rs33935215 TRIM24 X syn

Table 4.6: Trans eQTLs in the coding regions of TFs.
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eQTL TF Somatic Mutation
rs1130233 AKT1 X syn
rs2306234 BLK X syn
rs3816668 BLK X syn
rs9648696 BRAF X syn
rs1050171 EGFR syn
rs2072454 EGFR X syn
rs2227983 EGFR X mis
rs2227984 EGFR X syn
rs1058808 ERBB2 X mis
rs2271189 ERBB3 X syn
rs3748962 ERBB4 X syn
rs1047057 FGFR2 X syn
rs1047100 FGFR2 X syn
rs376618 FGFR4 X mis
rs452885 FGFR4 X syn
rs2229765 IGF1R X syn
rs2059806 INSR X syn
rs2230588 JAK1 X syn
rs2230724 JAK2 X syn
rs10250 MAP2K2 X syn
rs2076139 MAPK11 X syn
rs1129880 MAPK12 X syn
rs2272857 MAPK12 X syn
rs1059227 MAPK13 X syn
rs12678428 MAPK15 X syn
rs3752087 MAPK4 X mis
rs1064261 MTOR X syn
rs11121691 MTOR X syn
rs1135172 MTOR X syn
rs214936 PIK3C2A X mis
rs11044004 PIK3C2G X mis
rs12312266 PIK3C2G X mis
rs762537354 PIK3C2G X mis
rs1129293 PIK3CG X syn
rs17847825 PIK3CG mis
rs706713 PIK3R1 X syn
rs785467 PIK3R3 X mis
rs785468 PIK3R3 X syn
rs11650737 PIK3R5 X syn
rs394811 PIK3R5 X syn
rs9915880 PIK3R5 X syn
rs1064196 RPS6KA1 X syn
rs11800553 RPS6KA1 syn

Table 4.7: Trans eQTLs in coding regions of ER upstream regulators.

eQTL TF Mutation AA Pos. SIFT Domain Loc. Domain
rs7144658 FOXA1 Mis 83 T(0.540000) 170 - 264 Fork head domain
rs20552 EP300 Syn 1061 1067-1139 Bromodomain
rs2228480 ESR1 Syn 594 262 - 595 Interaction with AKAP131

264 - 595 Self-association
311- 595 Transactivation AF-2

Table 4.8: Identified eQTLs that affect target genes and are near or overlap with protein domains
in the protein sequence of TFs.
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eQTL Kinase Mutation AA Pos. SIFT Domain Loc/. Domain
rs1058808 ERBB2 Mis 1170 D(0.030000) 720-987 Protein Kinase

1011 - 1023 EF-hand calcium-binding domain
1195 -1197 Interaction with PIK3C2

rs3752087 MAPK4 Mis 38 T(0.080000) 18 - 310 Protein kinase domain
rs214936 PIK3C2A Mis 90 D(0.030000) 2-142 Interaction with clathrin
rs12312266 PIK3C2G Mis 911 D(0.040000) 916 -1180 PI3 and PI4 kinase family profile
rs1050171 EGFR Syn 742 667 - 934 Protein kinase domain

Table 4.9: Identified eQTLs that affect TFs and are near or overlap with protein domains in the
protein sequence of protein kinases.
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Chapter 5

Conclusions

5.1 Summary of the thesis

The main goal of this thesis was to validate the TF binding map that is constructed from func-
tional data such as ChIP-seq and DNase I data. In order to achieve this goal, we proposed to use
natural variation in the genome sequence as perturbations of gene expression. However, the chal-
lenge of doing this is how to decouple the effects of a large number of SNPs on gene expressions
to determine which TF-to-target gene relationships are being affected. To address this challenge,
we developed a statistical approach that incorporates TF binding map as prior information and
then selects the TF-target interactions validated under SNP perturbations. We demonstrated this
approach with data from lymphoblastoid cell lines. We also applied our approach to study ER
regulation in breast cancer cells.

In Chapter 2, we first discussed our method for structure learning of a Gaussian Bayesian net-
work. We developed a learning algorithm called A* lasso that estimates the structure of Bayesian
network for continuous variables in a high dimensional setting. For small networks, this method
used the A* search algorithm to find the optimal solution, while being more computationally
efficient than dynamic programming. For larger networks, we developed a heuristic scheme that
further prunes the search space of A* search such that we can learn the networks efficiently and
without substantial compromise to the quality of the solutions.

In Chapter 3, we extended the statistical model to a conditional Gaussian Bayesian network
of gene expressions conditioned on SNPs and demonstrated how to perform ChIP-seq validation
on data from lymphoblastoid cells. The TF binding map was encoded as prior information and
the TF-target interactions validated under SNP perturbations were selected. We used a single
analysis that learned the validated TF-target interactions from SNP and expression data. We
found that a relatively larger number of targets were validated by perturbations in concentration
compared to the number of targets validated by local perturbations of binding affinity or global
perturbations of TF structure. By analyzing the score differences of TF binding sites of SNPs
compared with eQTLs found in the promoter regions of target genes, we found that eQTLs did
affect binding affinity of TFs. By studying the locations of trans eQTLs in coding regions of TF,
we found evidence that a subset of them may affect TF protein structure. Finally, we found that
the target genes determined through our approach differ from the set of target genes determined
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by artificial perturbation studies. We found that there exists interaction effects amongst the TFs
that may contribute to these differences.

In Chapter 4, we applied our method to study estrogen receptor (ER) regulation and its cofac-
tors in breast cancer. For this analysis, we focused on luminal A breast cancers. After analyzing
the connectivity amongst the TFs, we found several edges detected by our algorithm that are
supported by the literature. By analyzing the eQTLs in the regulatory region of target genes, we
found that several eQTLs are potentially super enhancers and thus may be important regulatory
elements. In addition, by examining the eQTLs that are in coding regions of protein kinases and
TFs, we found missense SNPs that may be important to protein structure or binding domains.

In summary, we proposed a computational approach for exploiting natural variation in popu-
lations to validate TF binding data. We presented a statistical model and developed the learning
algorithm to estimate the model efficiently and accurately. We then demonstrated how to per-
form ChIP-seq validation on lymphoblastoid cell lines and showed how we can use this method
to understand gene regulation in breast cancer biology.

5.2 Future Work

We conclude by discussing the limitations of our approach and directions for future work that
extend the contributions of this thesis. We discuss the computational limitations of our ap-
proach and suggest technical extensions of our algorithm in order to improve computational
efficiency. We discuss future work in defining guidelines and requirements that would allow
other researchers to evaluate whether our method is appropriate for their data. We also make sug-
gestions that would improve the power of our computational approach for validating TF-target
regulatory relationships for both LCL and breast cancer regulatory networks.

5.2.1 Computational limitations

Limitations of modeling the transcriptional network with Gaussian Bayesian networks

There are inherent limitations of modeling the transcriptional network using conditional Gaus-
sian Bayesian networks. First, Bayesian networks are directed acyclic graphs and they do not
model cycles. But, it is well known that feedback loops occur in biological mechanisms. How-
ever, despite this limitation, we can still learn useful TF-to-target interactions and SNP perturba-
tions of TF and targets using conditional Gaussian Bayesian networks and use this information
to validate ChIP-seq candidate edges. In addition, we assume that gene expressions vary linearly
with the expression of their parent genes and SNPs. This assumption allows us to exploit the
computational advantages of Gaussian graphical models. However, the limitation of the Gaus-
sian assumption is that it does not account for the situation where the expression of a particular
gene varies non-linearly with respect to a particular parent gene or SNP. Further work can explore
the possibility of using non-linear models.
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Limitations of structure learning

In addition to constraints of the model, there are limitations of the structure learning procedure.
For instance, we constrain the structure such that TFs are upstream of the target genes, and we
group the target genes into clusters and learn the structure of each group independently. Simi-
larly, we limit the priority queue in A* lasso and use a heuristic scheme to obtain a high-quality
solution, but not the optimal solution. For both these issues, we trade off computational effi-
ciency and estimation of the best possible structure. Furthermore, the structure that we estimate
is dependent on the measurements of variables that we have. In directed graphical models, if a
variable is missing, then it is equivalent to being marginalized out. As a result, two variables
may be correlated even though there does not exist a causal relationship between them. When
we estimate the network with missing variables, we may learn edges between variables that are
correlated instead of those with true causal relationships. Specifically, when estimating networks
on data from LCLs, we are limited by the measurements that are collected. In this case, we are
limited by the ChIP-seq data which was collected for 71 TFs. Increased number of TF ChIP-seq
experiments becoming available will allow us to improve the accuracy of the estimated transcrip-
tional network.

Improving computational efficiency of A* lasso

While A* lasso is computationally efficient for structure learning of GBNs, for networks with
thousands of nodes, the algorithm is still not fast enough. Because the bottleneck is doing the
lasso optimization step, the algorithm can potentially be made faster with shotgun for lasso [10].
One potential approach to improving computational efficiency is modification of the current
heuristic scheme. Using theoretical results to justify why the heuristic scheme is able to improve
computational speed without substantially decreasing the quality of solutions may bring about
insights that can inform extensions of this algorithm. There are two dimensions upon which the
heuristic scheme may change. First, the actual heuristic function can be modified. For example
instead of using the LassoScore without the DAG constraint, an alternative heuristic could be
finding the LassoScore of a subset of nodes. Second, how the search is conducted can be altered.
Currently, we limit the queue size and prune the solutions intelligently based on the depth of
the states. However, there are alternative methods of speeding up search originally developed for
planning applications. For example, Multi-Heuristic A* uses multiple heuristics at different parts
of the search space in order to achieve solutions faster and overcome local minima [2]. There
are also alternatives that incorporate randomness in the searches. For example, R* performs
short-range weighted A* searches towards goal states selected at random and then reconstructs
a solution from the paths produced by these small searches [82]. These modifications on the
heuristic or the search strategy may be investigated in order to improve computational efficiency
of A* lasso.
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5.2.2 Recommendations for biological data
Defining sample size requirements

In order to make our approach accessible to other researchers in the biological domain, it would
be useful to specify the number of samples required for successful learning. One strategy to pro-
vide these recommendations is to study sample complexity for conditional Gaussian Bayesian
networks. It may be possible to borrow ideas from previous analyses on Gaussian Bayesian
networks [43] and discrete Bayesian networks [28]. A more practical approach is to perform
Bootstrap [32] simulations. In particular, we would generate multiple sample data sets of differ-
ent sample sizes in order to evaluate the recovery of the network structure, given data sampled
from known Bayesian network structures.

Defining appropriate TFs for TF binding map validation

It would be useful to evaluate whether TF-target regulatory relationships in the TF binding map
can be validated successfully using our population-based approach. One important feature is
variation in expression measurements across the population. If a TF is tightly regulated or if
genetic variation does not vary the TF expression, then using an artificial perturbation may be
more successful. In addition, if a TF is highly redundant, then even if the TF expression varies,
we may not find the correct set of validated target genes because other TFs will take over its
function. For these TFs, higher order knockdown experiments may be necessary for functional
validation.

5.2.3 Expanding scope of the current study
Further investigation of epistatic interactions between TFs

We currently do not model epistatic interactions between TFs in our cGBN. A useful extension
would be to model epistasis efficiently. Furthermore, comparing the results from our approach
using population data with higher-order artificial perturbation studies would improve our under-
standing of cooperative TF regulation. For example, when double knockdown data are avail-
able, comparing the targets of those artificial perturbation studies with the targets determined
from population analysis would provide more insight into how two-way interaction effects affect
downstream target genes. In performing comparisons, it would be useful to be able to predict
off-target effects of RNA interference and remove those genes from the target set [27].

Validation of TFs in ER signaling in breast cancer

After estimating the transcriptional network on luminal A breast cancer data, we find interactions
of TFs and protein kinases with ER and known coregulators of ER that are potential discoveries.
NCAPG and RAD21 have been previously characterized in cancer, but not much is known about
these TFs in association with breast cancer [54, 83]. SPDEF and KLF4 have been previously
reported to be involved in breast cancer but not specific to ER signaling [134, 135]. In addition,
we find that a group of protein kinases MAPK4, EGFR, ERBB3, ERBB4, and IGF1R regulate
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EP300, CTCF, MBD3, STAG1, and TOP2B in a tight cluster. While EP300 and CTCF have
been tied to ER independently, there is not a lot known about their cooperation with each other,
their interaction with the other TFs: MBD3, STAG1, TOP2B, or their upstream regulation. One
strategy to confirm that these interactions are important for ER signaling is to replicate these
interactions using another dataset. One future direction is to refit the model with data from the
METABRIC project [25] and observe whether the same interactions are in the estimated network.
Another direction that can be pursued is to use survival data from the breast cancer patients and
determine whether these genes are associated with breast cancer survival.

Validation of eQTLs in breast cancer

We found both cis eQTLs and trans eQTLs that potentially affect binding sites or protein do-
mains. We find six cis eQTLs that might be super enhancers. One of these eQTLs rs1078272
was previously reported to affect binding of both ER and RAD21 [58]. The rest of the five cis
eQTLs require further investigation to determine how they might affect ER signaling. We found
seven missense eQTLs among TF coding regions. Out of these seven eQTLs, one of them was
found within the binding domain (rs7144658), and one near a binding domain (rs20551). We
found 10 missense eQTLs among protein kinase coding regions. Out of these 10 eQTLs, 4 were
within a protein and 3 were near a protein domain. The three eQTLs near protein domains were
all previously reported as mutations in other cancers [17, 21]. Further efforts are required to
determine whether these eQTLs are potential driver mutations in breast cancer. Future efforts
should be directed towards determining whether these eQTLs exist as both germline and somatic
mutations for different patients and to study their frequencies in normal and tumor populations.
If we observe that particular eQTLs are being selected for or against in breast cancer tumors, this
might indicate that these eQTLs are important in tumor progression.

Modeling gene regulation for subtypes of breast cancer

For studying gene regulation in breast cancers, studying all subtypes instead of simply focusing
on luminal A breast cancers is the next step. This can be done by learning a cGBN for each
of the five subtypes of breast cancer (luminal A, luminal B, basal, claudin-low and HER2).
Alternatively, a single model can be estimated where certain edges of the network are common,
and others deviate according to subtype. The latter approach may be advantageous because of
the limited data available for each subtype. Previous methods proposed such as fused lasso may
be useful for network estimation [106, 149].

Including rare variants in the analysis

Among luminal A tumours in TCGA data, we did not include variants with a minor allele fre-
quency of less than 0.01. This eliminated any mutations that occurred in only one or two patients
because our sample size is small. Collapsing multiple rare variants is a common approach to
address the limited statistical power of individual rare variances because of their low frequency.
There are two potential strategies to collapse variants. The first is based on proximity of vari-
ants in genome. For example the variants from a particular gene or segment of the genome
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may be combined [142]. In addition, we can also collapse variants based on their proximity
in the 3-dimensional structure of the chromatin, which can now be obtained through chromatin
conformation capture methods [8, 125].
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Appendix A

Supplementary Materials

Figure A.1: Number of cis eQTLs in TF binding regions. A) Number of cis eQTLs located in
promoter ChIP-seq regions. B) Number of cis eQTLs in promoter motif matches.
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[146] René Thomas. Boolean formalization of genetic control circuits. Journal of theoretical
biology, 42(3):563–585, 1973. 1.4.4

[147] Robert E Thurman, Eric Rynes, Richard Humbert, Jeff Vierstra, Matthew T Maurano,
Eric Haugen, Nathan C Sheffield, Andrew B Stergachis, Hao Wang, Benjamin Vernot,
et al. The accessible chromatin landscape of the human genome. Nature, 489(7414):
75–82, 2012. 4.3.1

[148] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996. 1.4.6

[149] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. Sparsity
and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 67(1):91–108, 2005. 1.4.6, 5.2.3

[150] Wen-Wei Tsai, Zhanxin Wang, Teresa T Yiu, Kadir C Akdemir, Weiya Xia, Stefan Winter,
Cheng-Yu Tsai, Xiaobing Shi, Dirk Schwarzer, William Plunkett, et al. Trim24 links
a non-canonical histone signature to breast cancer. Nature, 468(7326):927–932, 2010.
4.3.1

[151] Ioannis Tsamardinos, Laura E Brown, and Constantin F Aliferis. The max-min hill-
climbing Bayesian network structure learning algorithm. Machine Learning, 65(1):31–78,
2006. 1.4.2

[152] Ioannis Tsamardinos, Alexander Statnikov, Laura E Brown, and Constantin F Aliferis.
Generating realistic large Bayesian networks by tiling. In the Nineteenth International
FLAIRS conference, pages 592–597, 2006. 2.5

[153] Jerry Usary, Victor Llaca, Gamze Karaca, Shafaq Presswala, Mehmet Karaca, Xiaping
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