

Backtracking Support in Code Editing

YoungSeok Yoon

May 2015

CMU-ISR-15-103

Institute for Software Research

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Brad A. Myers (Chair, CMU HCII)

Jonathan Aldrich (CMU ISR)

Christian Kästner (CMU ISR)

Emerson Murphy-Hill (North Carolina State University)

Submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

in Software Engineering

Copyright © 2015 YoungSeok Yoon. All rights reserved.

 Funding for this research comes in part from the Korea Foundation for Advanced Studies (KFAS) and

in part from NSF grants CCF-0811610, IIS-1116724, and IIS-1314356. Any opinions, findings and con-

clusions or recommendations expressed in this material are those of the author and do not necessarily

reflect those of KFAS or the National Science Foundation.

ii

Keywords: selective undo, backtracking, fine-grained edit history, logging, timeline visuali-

zation, history search, edit collapsing, Eclipse IDE, Java, exploratory programming

 iii

ABSTRACT

Programmers often need to backtrack while coding. Here, “backtracking” refers to when pro-

grammers go back at least partially to an earlier state of code, either by removing inserted

code or by restoring removed code. For example, when some newly added feature does not

work as imagined, the programmer might have to backtrack and try something else. When

learning an unfamiliar API, programmers often need to try some sequence of object instanti-

ation and method calls, run the program, and backtrack if the result is not as expected. I con-

ducted a series of three empirical studies in order to better understand the backtracking be-

havior of programmers. The results indicated that backtracking is prevalent in programming,

and programmers often face challenges when backtracking. For example, they had difficulties

when trying to find all the relevant parts of code to be backtracked or when trying to restore

some code they had deleted that later turned out to be needed.

However, programmers only have very limited support for backtracking in today’s tools. The

linear undo command can only undo the most recent changes, and loses the undone changes

as soon as the programmer makes a single new change after invoking the undo command.

Version control systems such as Subversion and Git can also be used for backtracking, but

only when the desired code is already committed in the repository. Furthermore, the results

from the empirical studies showed that 38% of all the backtrackings are done manually with-

out any tool support and 9.5% are selective, which means that they could not have been per-

formed using the conventional undo command.

To help programmers backtrack more easily and accurately, I devised a novel selective undo

mechanism for code editors, and implemented it in an IDE plug-in called AZURITE. The core

idea is to combine the following mechanisms into a coherent programming tool: a selective

undo mechanism for code editors, novel visualizations of the coding history, and a code change

history search. AZURITE retains the full fine-grained code change history, and the selective

undo mechanism allows users to select and undo one or more isolated edit operations, while

appropriately detecting and handling conflicting operations. The visualizations and history

search are the user interfaces that help users to select the desired edit operations to be back-

tracked and express what they remember about the code changes that they want to revert. In

a controlled lab experiment, programmers using AZURITE performed twice as fast compared

to the control group when completing typical backtracking tasks. My hope is that this selec-

tive undo tool will help programmers achieve their daily programming tasks more effectively.

iv

 v

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor, Brad Myers. Through-

out my entire career as a PhD student, he has constantly provided guidance and support to

help me conduct better research, write better research papers, and prepare my presentations.

I cannot express enough how fortunate I have been to have Brad Myers as my advisor. I would

also like to thank all my thesis committee members, Jonathan Aldrich, Christian Kästner, and

Emerson Murphy-Hill. Their detailed, constructive feedback greatly helped in making this

dissertation better.

It has been a pleasure to work with all my co-authors, Joel Brandt, Andrew Faulring, Sebon

Koo, Ashley Lai, Thomas LaToza, Tam Minh Le, and Cyrus Omar. I would not have been able

to publish all the research papers without the hard work and insight of these individuals. My

academic siblings, Kerry Chang, Michael Coblenz, and Stephen Oney, also deserve my thanks

for all the interesting research discussions we had. I would also like to thank the faculty and

friends in the Software Engineering PhD program. Their thoughtful feedback at the SSSG sem-

inars was invaluable resource for improving my research and presentation skills.

I would like to thank the Korea Foundation for Advanced Studies for all the financial support

for the last five years, and the National Science Foundation for providing research funding. In

addition, I was fortunate to be part of the Exploratory Programming Group, which is an NSF-

funded joint research project.

Getting through the PhD program was more than just doing research. I would like to give

special thanks to my wife, Min Jeong Kim, who has always been with me and helped me get

through all the difficult times. I thank my parents, Jang Ho Yoon and Sang Hee Lee, and my

younger brother, Youngkwon Yoon, for being always on my side and praying for my soul.

vi

 vii

TABLE OF CONTENTS

Abstract iii

Acknowledgements v

Table of Contents vii

Figures xi

Tables xvii

1. Introduction 1

1.1. Problem: Limited Support for Backtracking ... 2

1.2. Motivating Example ... 3

1.3. An Approach: Selective Undo in Code Editors .. 4

1.4. AZURITE: A Selective Undo Tool for Programmers .. 5

1.5. Thesis ... 7

1.6. Contributions ... 7

1.7. Outline ... 8

2. Related Work 9

2.1. Undo Models ... 9

2.2. Version Control and Variation Management Systems .. 14

2.3. Collecting and Utilizing Fine-Grained Interaction Data ... 18

2.4. Edit History Visualizations & Search Tools .. 21

2.5. Empirical Studies of Source-Code Editing ... 22

2.6. Conclusion .. 22

3. Capturing Fine-Grained Coding Events from the Code Editor 23

3.1. Related Work ... 23

3.2. FLUORITE: Fine-Grained Coding Event Logger for Eclipse ... 24

3.3. FLUORITE Implementation .. 25

3.4. FLUORITE Analyzer ... 28

3.5. Discussion ... 32

3.6. Conclusion .. 34

4. Empirical Studies of Backtracking 35

4.1. Preliminary Lab Study of Backtracking .. 35

4.2. Online Survey .. 43

4.3. Longitudinal Study of Programmers’ Backtracking .. 46

4.4. Conclusion .. 61

viii

5. A Selective Undo Mechanism for Code Editors 63

5.1. Internal Edit History Representation for Selective Undo ... 64

5.2. Selective Undo Algorithm ... 71

5.3. Discussion ... 74

5.4. Conclusion .. 75

6. Timeline Visualization of Code Edits 77

6.1. File Rows and Edit Operation Rectangles ... 78

6.2. Coding Events Displayed Along the Timeline .. 80

6.3. Layout Modes .. 81

6.4. Selecting Rectangles ... 82

6.5. Selecting Times or Time Ranges.. 84

6.6. IDE-Independent Implementation of the Timeline ... 85

6.7. Discussion ... 88

6.8. Conclusion .. 89

7. Real-time Edit Collapsing and Semantic Zooming 91

7.1. The Four Collapse Levels .. 95

7.2. Collapsing Algorithm .. 97

7.3. Integration with the Timeline Visualization ... 101

7.4. Log Analysis .. 104

7.5. Limitations and Future Work .. 106

7.6. Conclusion ... 107

8. User Interfaces for Selective Undo 109

8.1. Code History Diff View ... 110

8.2. Regional Undo Shortcut ... 112

8.3. History Search .. 112

8.4. Interactive Selective Undo .. 113

8.5. Reading the History of Past Sessions ... 115

8.6. Limitations and Future Work .. 116

8.7. Conclusion ... 116

9. Evaluation of AZURITE 117

9.1. Field Trial with the Initial User Interface Design .. 117

9.2. Evaluation Study ... 118

9.3. Performance Feasibility ... 123

9.4. Example Use Cases ... 126

9.5. My Own Experience of Using AZURITE .. 129

9.6. Conclusion ... 130

 ix

10. Selective Undo Support for Painting Applications 133

10.1. Motivation ... 133

10.2. Initial Semi-Structured Interviews .. 135

10.3. Design Tradeoffs ... 139

10.4. Implemented System .. 146

10.5. Usability Evaluation... 148

10.6. Conclusion ... 150

11. Limitations and Future Work 151

11.1. Extensions to FLUORITE ... 151

11.2. Extensions to AZURITE ... 152

11.3. Extensions to Aquamarine .. 155

11.4. Applying Selective Undo to Other Tools and Domains ... 156

12. Conclusion 159

Appendix A: Materials from the Preliminary Lab Study 163

A.1. Task instructions for Group 1 ... 163

A.2. Task instructions for Group 2 ... 170

A.3. Questionnaire ... 176

Appendix B: Questionnaire Used for the Online Survey 181

Appendix C: Materials from the AZURITE Evaluation Lab Study 197

C.1. Task Sheets Given to the Participants .. 197

Bibliography 203

x

 xi

FIGURES

Figure 1-1. A sketch of the desired UI .. 3

Figure 1-2. The code changes for the motivating example. The green highlight shows newly

inserted lines, and the grey highlight shows updates to the existing code. 4

Figure 1-3. An example screenshot of AZURITE running in the Eclipse IDE. At the bottom, a

timeline visualization of recent code changes is provided. The user is currently

using the “Interactive Selective Undo” dialog in order to selectively undo the

code and restore the GridBagLayout code without losing the desired code.

 ... 6

Figure 2-1. Error message generated by Git showing there is a conflict that should be

resolved. .. 15

Figure 2-2. The content of the file that has the conflict. The user need to manually resolve

this conflict and then make another commit to finish the revert operation. ... 15

Figure 2-3. An example variational program annotated with choice calculus (a), and one of

the variants obtained by selecting the first alternative from Name dimension,

and the second alternative from the Traffic dimension (b). 17

Figure 3-1. Example log generated by FLUORITE. The developer (1) moved the cursor by

clicking the mouse button, (2) selected one line by Shift+DownArrow, (3)

deleted selected code using the Delete key, and (4) saved the file. Each event

has its own parameters, and the whole deleted text is listed in the

DocumentChange event. .. 26

Figure 3-2. Annotation toolbar button and its dialog box. .. 27

Figure 3-3. The event list interface of FLUORITE analyzer. ... 29

Figure 3-4. Examples of detected typo fixing patterns. A pattern is represented in the form

of “originally typed text” – “deleted text” + “newly typed text”. The ID column

indicates the ID of the event where the patterns starts so the investigator can

jump to the events list and see what was happening around that time. 30

Figure Error! No text of specified style in document.-1. Example active code length graph

drawn from one of the logs by the FLUORITE analyzer. Some interesting points

are marked using red circles and the corresponding code editing strategies are

described. Y-axis value can be one of the metrics described in Error! Reference

source not found.. Only line graphs of the files that have been changed during

xii

the session are drawn. The graph can be zoomed with the mouse wheel, and

the user can double click on a point to jump to the events-list view. 30

Figure 3-6. Example keystroke / command distribution reports generated by FLUORITE

analyzer showing the distributions for one participant. The reports are also

provided in comma-separated values (CSV) format, which can easily be

imported into spreadsheets for more analyses. ... 32

Figure 4-1. A screenshot of the Paint program used during the lab study. 36

Figure 4-2. The responses for the question "For each of the following, please specify how

often you need to experiment, iterate, and/or explore while you are developing."

The lighter color represents more flexibility. .. 44

Figure 4-3. The backtracking situations shown to the survey respondents, and their

answers. .. 45

Figure 4-4. An example of a node evolution history, which contains three backtracking

instances. The node first appeared in the code as “toString();” (v1),

changed a few times (v2 through v5), and finally ended up back at the original

code (v6). The different contents are symbolized as capital letters A, B, and C.

There are three backtracking instances in this node history, indicated as black

backward arrows. ... 50

Figure 4-5. An example output of the analyzer, showing the history of a statement node.

Each row maps to each version (v1, v2, …, v5). This node contains a single

backtracking instance, which is v1…v5. Note that the version numbers (v1-v5)

are not part of the output, and added here for the purpose of explanation. 50

Figure 4-6. Distribution of all the detected backtracking sizes. .. 54

Figure 4-7. A backtracking instance illustrated. The analyzer determines the farthest

version within each instance, and considers all the changes following the

farthest version as backward changes. .. 55

Figure 4-8. The identified backtracking tactics .. 55

Figure 4-9. Cumulative percentage of all backtracking instances with different editing

session distances. 96.7% of all backtrackings were performed within the same

editing session. 99.0% of all instances have less than or equal to a 3 session

distance. .. 57

Figure 4-10. Two possible backtracking scenarios, whose backtracking instances are not

selective. The source file has three different statement nodes being affected (s1-

s3). Each backtracking scenario has three backtracking instances in each node.

 xiii

Except for the backtracking instance in s3 in scenario #1, all the backtracking

instances have some changes to other parts of the same file within their

timespan. Nevertheless, these are not selective because the undo command can

handle both cases. ... 58

Figure 4-11. Repeat counts of all backtracking instances, along with the percentage fraction

of revisiting the same state in the future. .. 59

Figure 5-1. Types of regional conflicts illustrated. ... 66

Figure 5-2. Ambiguity in the case of Insert Insert conflicts. In both examples, the lighter

shade indicates the code inserted first (conflictee), and the darker shade

indicates the code inserted later (conflictor). ... 67

Figure 5-3. Ambiguity in the case of Delete Delete conflicts. In both examples, the lighter

shade indicates the code deleted first (conflictee), and the darker shade

indicates the code deleted later (conflictor). ... 68

Figure 5-4. Illustration of dynamic segment management. For simplicity, each dynamic

segment is denoted as <offset, length>. OP1 inserts println(), OP2 inserts

“Hello” within the parentheses, and then OP3 deletes ln from the method

name println, in temporal order. Below the code is illustrated how the

existing dynamic segments are updated or split as new edit operations are

added to the history. .. 69

Figure 5-5. Pseudo code illustrating the dynamic segment updating algorithm. 70

Figure 5-6. Illustration of the selective undo mechanism. First, the algorithm determines

the code chunks affected by the selected operations (a), and then performs

selective undo on each chunk separately. When there are no conflicts outside

of the chunk, selective undo can be performed without user intervention, and

the undo operation is added as “j” (b). When there are some irresolvable

conflicts, it provides the three alternatives of possible resulting code to the user

and if the user selects a change, the operation is added as “k” (c). 73

Figure 5-7. The high-level architecture of the selective undo system. 74

Figure 6-1. Different versions of the timeline visualization shown from the most recent

version (a) to the oldest version (c). The design has been improved iteratively

based on the user feedback and the changes are discussed in this chapter. 79

Figure 6-2. An example tooltip. The timestamp is shown at the top. The inserted code is

shown in the light-green box. For a delete operation, the deleted code will

appear in a pink box instead. In case of a replacement operation, both boxes

appear to indicate the deleted / inserted code. .. 80

xiv

Figure 6-3. Context menu for the selected rectangles. Users can invoke various commands,

such as “Selective Undo”. The third command, “Jump to the Code” appears only

if a single rectangle is selected... 82

Figure 6-4. The code corresponding to the selected rectangles (with yellow outlines) in the

timeline are indicated by (a) the boxes in the code editor, (b) the small icons on

the left ruler, and (c) the markers on the scroll-bar on the right side. The colors

of the boxes match the rectangle colors in the timeline. .. 83

Figure 6-5. The time selection marker, which is the orange vertical bar with a triangle-

shaped handle attached to the top. Right-clicking the marker brings up a

context menu with various commands. ... 84

Figure 6-6. An example screenshot of a time range selection. The start time is indicated as

white, dotted vertical line, and the end time is indicated with the same time

marker used for time selection.. 85

Figure 6-7. Embedded browser control used in the Graphite project [Omar 2012]. The

color palette and the regular expression pattern builder were implemented

using standard web technologies and then embedded into the Eclipse Code

editor using the Browser control in SWT. .. 86

Figure 6-9. Timeline visualization of AZURITE loaded in Microsoft Visual Studio 2012. 87

Figure 6-8. High-level architecture of the HTML-based user interface in an IDE plug-in. . 87

Figure 6-10. Firebug Lite loaded within the Eclipse IDE. The developer console is fully

functional, and the DOM elements can be navigated within this UI. 88

Figure 7-1. The code changes for the factorial example. .. 93

Figure 7-2. The state of the timeline visualization after completing all the four steps in the

factorial example, shown at the raw level. The blue vertical separation lines

were added on the screenshot for the purpose of the explanation, and are not

shown in the actual timeline. The numbers in the square brackets indicate how

many rectangles are in each section.. 93

Figure 7-3. The example code edit script for the factorial program shown at different

collapse levels but the same zoom level. ... 94

Figure 7-4. Illustration of the overall collapse mechanism for the parse level. When there

is an incoming edit operation, the parse level collapser runs the collapse test to

see if the new edit should be added to the pending list or if the existing pending

edits should finally be marked as collapsed. The newly collapsed edit (A-D) is

 xv

taken to the next level collapser as the incoming edit, and the same process is

followed. .. 97

Figure 7-5. Illustration of the change detail extraction process. .. 99

Figure 7-6. The horizontal zoom slider and the collapse level controller (the letter “P” and

the popup menu above it), located at the bottom-left of the timeline. 101

Figure 7-7. An example composite rectangle which is partially selected. If the user clicks on

this rectangle, it becomes fully selected. .. 103

Figure 7-8. An example tooltip shown for a composite rectangle in the timeline. The one

line summary also shows the method name factorial in which the edits

were performed. ... 104

Figure 8-1. The code history diff view of AZURITE. The most recent version of the selected

region of code is always shown in the left panel, and the version of the code

from the selected time is shown in the right panel. The currently selected time

is indicated by the orange time marker in the timeline at 05:17:13pm. 110

Figure 8-2. The history search dialog of AZURITE. Users can search through the history to

find out the time range in which a certain text existed in the code. 113

Figure 8-3. The interactive selective undo dialog of AZURITE. Users can mark some code in

the left panel, and ask to “Keep this code unchanged”, which can be repeated

until the preview in the right matches what is desired. ... 114

Figure 8-4. The interactive selective undo dialog when there is a chunk with regional

conflicts. The user can choose one of the provided options to resolve the

conflicts. Here, the second option (FontSize) is chosen by the user, which is

indicated by the blue outline. .. 115

Figure 9-1. The average backtracking completion time for each task. The error bars

indicate the standard deviations.*differences are statistically significant (p <

0.05). .. 122

Figure 10-1. Aquamarine’s history panel with operation #10 (brush stroke for the nose)

selectively undone. .. 135

Figure 10-2. Multiple steps to create a drawing. ... 138

Figure 10-3. In a painting program, (1) paint a shirt, (2) flood fill it with a new color, (3) then

do a variety of other actions. ... 140

Figure 10-4. Highlighting operation 3 in orange since it conflicts with the selected operation

1 (shown in blue). .. 142

xvi

Figure 10-5. An alternative form of history panel where selective undo/redo operations are

included in the history panel. .. 144

Figure 10-6. Pixelitor modified with our history panel. ... 147

 xvii

TABLES

Table 2-1. Feature table of the existing single-user undo models. ... 13

Table 3-1. List of the different types of events captured by FLUORITE. 26

Table 3-2. List of the common parameters. ... 27

Table 3-3. List of the code size metrics logged for the document change events. 28

Table 4-1. Participant groups and the tasks of the preliminary lab study 37

Table 4-2. Commands and keystroke distributions. The top twenty entries are listed for

each category. Shaded entries are related to code navigation, and the inverted

entries are related to backtracking. ... 39

Table 4-3. Demographics of the online survey respondents. ... 43

Table 4-4. Participant groups of the longitudinal backtracking study 48

Table 4-5. Summary of the analysis results of the longitudinal backtracking study 53

Table 6-1. List of significant coding events displayed in the timeline view 81

Table 7-1. Different kinds of code edits determined by the collapsing algorithm. 100

Table 7-2. Collapse test matrix used for the method level collapse test. 100

Table 7-3. Collapse test matrix used for the type level collapse test. 101

Table 7-4. Number of edit operations at each collapse level, obtained from the log data set

used in the longitudinal study of backtracking. The number of edit operations

is significantly reduced at each collapse level. ... 105

Table 7-5. Distribution of the different kinds of code changes at each collapse level. ... 106

Table 9-1. Summary of the evaluation study tasks. ... 119

Table 9-2. Running time of the collapse logic at each collapse level (in milliseconds). . 125

Table 9-3. Summary of the measured response time (in milliseconds). 126

Table 9-4. Frequency of all the AZURITE commands that I used during 2014. 129

Table 10-1. Participants in our semi-structured interviews. ... 136

xviii

Table 10-2. Participants in our usability evaluation. ... 149

 1

1.
INTRODUCTION

Since programmers are human, it is unrealistic to expect them to complete a whole task on

the first attempt without making any mistakes. Besides, programmers may intentionally

make temporary changes to the code, either as an experiment or to help with debugging. As

a consequence, programmers need to backtrack while coding. Throughout this dissertation,

the term “backtracking” is defined as “programmers going back at least partially to an earlier

state of code, either by removing inserted code or by restoring removed code,” and does not

refer to the algorithm for solving constraint satisfaction problems in the artificial intelligence

area or similar (cf. [Cormen 2009]). For example, programmers fix typos and correct minor

mistakes, and they try out different values for parameters to methods. When programmers

try to learn an unfamiliar API, they might try writing some code and running it to see if the

code works as expected, and if it does not, they backtrack and try something else.

In some situations, programmers will program in an exploratory manner. They quickly build

prototypes that meet the known requirements of the system. If the prototypes fail in some

way or uncover any fundamental flaws of the requirements, they backtrack and refine the

requirements [Sandberg 1988][Sametinger 1992]. Often, problems are ill-defined, and there

is no single correct solution for these problems. Rather, there are several alternative solutions

with their own strengths and weaknesses [Reitman 1965][Simon 1973][Terry 2004]. In or-

der to evaluate each solution, the programmer might implement one, backtrack, and imple-

ment another.

Also, backtracking plays an important role in situations where alternative solutions need to

be managed for a given task. When programmers are unsure about which algorithm, library,

or UI component to use in a given situation, then they might want to try out one of the alter-

natives to see how it works. If it does not work, then the first attempt might be reverted,

which is an example of backtracking, and another attempt might be made. Moreover, when

making another attempt after backtracking, it might turn out that the previous attempt was

better, which leads to another backtracking situation. Several variation management tools

have been developed [Hartmann 2008][Terry 2004], but these are limited in that users can-

not easily backtrack and add a new alternative from there, if they did not plan ahead where

they would need new alternatives.

Other researchers have shown that programmers do backtrack a significant amount while

coding, much more than people do during the text editing of regular documents [Card

1980a][Card 1980b][MacKenzie 2002]. One way to measure the frequency of backtracking is

2

to count the text editing commands related to backtracking, such as delete, undo, and the

toggle-comment commands executed in the code editor. The Eclipse Usage Data Collector

(UDC) kept track of the usage of commands executed by all the Eclipse users who have con-

sented to provide their usage data. According to the UDC data collected from Jan. 2009

through Jan. 2010 (which is the latest data published), the delete command is the most fre-

quently executed command among all the commands executed in the code editor (at 15.32%

of all commands). The undo command was 7th (4.26%). Murphy et al. also reported that delete

was the most frequently executed command in their study [Murphy 2006]. Note that undo is

not the same as backtracking because undo command can only revert the most recent

changes but backtracking includes when programmers revert some changes that were made

a while ago.

As part of this dissertation work, I conducted a series of empirical studies of backtracking,

since little was known about the backtracking behaviors of programmers (Chapter 4). My

results confirm that backtracking happens frequently. First, it was shown that the backspace

keystrokes were 12.41% of all the keystrokes made in the code editor, which is a higher per-

centage for backspace compared to normal document editing (e.g., 7.10% in [MacKenzie

2002]). An exploratory lab study and a follow-up online survey confirmed that backtracking

is quite common in programming, and programmers often reported having problems when

they want to backtrack. In addition, a longitudinal study was conducted with 1,460 hours of

actual code editor usage data from 21 programmers. The programmers in this study back-

tracked 10.3 times per hour on average, and 34% of all the detected backtracking instances

were performed manually without using the undo command or any other tool support.

1.1. PROBLEM: LIMITED SUPPORT FOR BACKTRACKING

Despite the frequency of backtracking in development contexts, modern IDEs do not provide

much support. For example, there are no sophisticated undo mechanisms used in IDEs other

than the restricted linear undo model [Berlage 1994]. However, this restricted linear undo

model, which is widely used in most text and code editors, is not suitable for all situations.

The most significant problem is that the users can only undo the most recently performed

edits. This can be very inconvenient when users realize that they made a mistake after making

some other changes that they want to retain. In addition, programmers may intentionally

make changes to the code that they want to remove later on. For instance, a developer might

insert many print statements in different places in the process of debugging, then fix the bug,

and finally want to remove all those print statements. Since there would be some other

changes (for actually fixing the bug) that the developer wants to retain after the insertions of

the print statements, the conventional undo command cannot be used for removing the print

statements. Also, when the programmer undoes several steps backwards and makes a new

change from that point, all the previously undone commands are discarded and cannot be

redone, because the undo model does not keep the complete command history tree but only

keeps a linear list. Moreover, the undo implemented in code editors only works on one file at

a time, whereas many edits to be backtracked span multiple files in the project.

Chapter 1: Introduction 3

Another popular way of backtracking is using a version control system (VCS) such as Subver-

sion or Git. A VCS allows users to revert some code to a previous version. This is not the same

as backtracking either, because backtracking can (and is actually quite likely to) happen be-

tween two version control snapshots. In fact, version control relies on the assumption that

the desired code is already committed to the repository. This may not always be the case,

especially in a backtracking situation, because it is likely that the programmer is experiment-

ing and the code is unstable or there are many temporary code fragments that should not be

committed to the repository.

1.2. MOTIVATING EXAMPLE

Imagine a scenario where a programmer is working on a graphical

user interface (GUI) in Java Swing and wants to implement a simple

panel with three vertically arranged buttons, as shown in Figure 1-1.

There should be a fixed amount of padding inside the entire panel

and between the buttons. First, she starts out with having a stub

method that returns an empty panel. She then makes the following

changes in order.

1. She creates three button objects and adds them to the panel

(Figure 1-2a).

2. Running the application shows horizontally laid out buttons, so

she looks for some layout manager to use. She first tries out

GridBagLayout (Figure 1-2b).

3. The intermediate code seems too complicated for just a simple vertical layout. She looks

for a simpler layout manager, and discovers BoxLayout. She uses undo command multi-

ple times to get rid of all the GridBagLayout code (backtracking to Figure 1-2a).

4. She writes some code with BoxLayout, resulting in much simpler code and vertically laid

out buttons (Figure 1-2c).

5. She changes some properties of the buttons, such as the background color and button text

(Figure 1-2d).

She now wants to finish up the layout and add some spacing between the buttons before

moving further. However, she realizes that BoxLayout does not directly support spacing

while GridBagLayout does. Therefore, she wants to restore the GridBagLayout code she

wrote in step 2, while keeping the changes from step 5.

Figure 1-1. A sketch of

the desired UI

4

This example illustrates the problems of existing backtracking mechanisms discussed above

in Section 1.1. At this point, the regular undo command cannot be used because she had pre-

viously used the undo command to remove the GridBagLayout code and then she made

some new changes from there, so the needed operations have been eliminated from the undo

stack. Even if she had not used the undo command in step 3, the undo command would still

be inappropriate for this situation, because it will necessarily revert the changes made in step

5, which is also not desired. Moreover, it would be very unlikely that the GridBagLayout

code had been committed to a version control system, because the code was still an incom-

plete state. The only option she now has is to reproduce the GridBagLayout code from

scratch, which is inefficient. It would be much more convenient for her if there was at least a

semi-automatic way of restoring the desired code from Figure 1-2b while keeping the subse-

quent desired edits from Figure 1-2d.

1.3. AN APPROACH: SELECTIVE UNDO IN CODE EDITORS

These problems can be solved by having a selective undo feature in code editors. Users could

select specific edit operations performed in the past, for example the insertions of the print

statements for debugging, and invoke the selective undo command to revert only the code

affected by the those operations. The results from my longitudinal backtracking study

showed that 9.5% of all the backtrackings performed by the participants were selective,

meaning that they could not have been handled by the conventional undo command (Section

private JPanel createButtons() {

 JPanel p = new JPanel();

 JButton button1 = new JButton("Button 1");

 JButton button2 = new JButton("Button 2");

 JButton button3 = new JButton("Button 3");

 p.add(button1);

 p.add(button2);

 p.add(button3);

 return p;

}

 (a)

private JPanel createButtons() {

 JPanel p = new JPanel();

 p.setLayout(new GridBagLayout());

 GridBagConstraints c = new GridBagConstraints();

 ... (omitted) multiple lines of code

 ... (omitted) for configuring c.

 JButton button1 = new JButton("Button 1");

 JButton button2 = new JButton("Button 2");

 JButton button3 = new JButton("Button 3");

 p.add(button1, c);

 p.add(button2);

 p.add(button3);

 return p;

} (b)

private JPanel createButtons() {

 JPanel p = new JPanel();

p.setLayout(new BoxLayout(p,

 BoxLayout.Y_AXIS));

 JButton button1 = new JButton("Button 1");

 JButton button2 = new JButton("Button 2");

 JButton button3 = new JButton("Button 3");

 p.add(button1);

 p.add(button2);

 p.add(button3);

 return p;

} (c)

private JPanel createButtons() {

 JPanel p = new JPanel();

 p.setLayout(new BoxLayout(p, BoxLayout.Y_AXIS));

 JButton buttonOrange = new JButton("Orange");

 buttonOrange.setBackground(Color.orange);

 JButton button2 = new JButton("Button 2");

 JButton button3 = new JButton("Button 3");

 p.add(buttonOrange);

 p.add(button2);

 p.add(button3);

 return p;

} (d)

Figure 1-2. The code changes for the motivating example. The green highlight shows newly inserted lines, and

the grey highlight shows updates to the existing code.

Chapter 1: Introduction 5

4.3). Selective undo has been well researched in the area of graphical editors [Berlage

1994][Myers 1996][Myers 1998].

1.3.1. CHALLENGES OF PROVIDING SELECTIVE UNDO IN CODE EDITORS

However, selective undo has not been used with text or code editors due to the many text-

specific challenges. First, as Berlage pointed out, existing selective undo mechanisms are de-

signed to work best when the system has identifiable objects that are affected by operations,

but text does not have the notion of objects but rather has a stream of characters [Berlage

1994]. Second, there can be many “regional conflicts” among edit operations. A regional con-

flict can occur when the region of a later edit overlaps the region of the earlier edit which the

user wants to selectively undo. When there is a regional conflict among the edit operations,

the result of a selective undo may not be well defined. To illustrate this point, consider the

following example. An edit operation 𝑒1 changes the code from “myFontSize = 12;” to

“myRectangleSize = 12;” and sometime later, another operation 𝑒2 changes it to “myRe-

gionArea = 12;”. This is an example of regional conflict because the affected ranges of the

two operations are overlapping and the “Rectangle” text inserted by 𝑒1 is only partially

available in the current code. In this case, it is not clear what the result of selectively undoing

operation 𝑒1 alone should be. The system should be able to detect such cases and provide an

appropriate approach to resolving them.

A final challenge of providing selective undo for code is that it is difficult to provide intuitive

user interfaces for the user to find what to selective undo. Many existing selective undo user

interfaces for graphics present a list of edit operations performed in the past along with hu-

man-readable descriptions of individual operations [Berlage 1994][Myers 1996][Myers

1998]. However, text editing operations are much more fine-grained than graphical editing,

so it is hard for the users to interpret the high level edit intent just by looking at the individual

text edits. In addition, graphical applications can use a thumbnail to represent a snapshot of

the graphics at a certain point of time, which makes it easier to present the edit history to the

user [Kurlander 1988][Klemmer 2002][Terry 2004][Kurlander 1990][Chii 1998]. In contrast,

a thumbnail of a piece of a large text file does not give much information to the users.

1.4. AZURITE: A SELECTIVE UNDO TOOL FOR PROGRAMMERS

To solve the problem of limited support for backtracking while addressing the challenges

mentioned above in Section 1.3 and complement the existing tools, I devised a novel selective

undo mechanism for code editors, which is the main topic of this dissertation. The selective

undo mechanism is implemented into a prototype tool called AZURITE, as a plug-in for the

Eclipse IDE (Figure 1-3). AZURITE allows programmers to selectively undo fine-grained

changes in the code editor. To provide this functionality, the system takes the stream of fine-

grained code edits as input and maintains the mapping between the different segments of the

current source file and the edit operations that introduced those segments. The system also

keeps track of regional conflict relationships among edit operations (Section 5.1.2). The sys-

tem makes use of this information to provide selective undo in code editors (Section 5.2).

6

In the motivating example above, the programmer can restore the deleted GridBagLayout

code without losing the changes related to buttonOrange using AZURITE, with the following

steps:

1. Find the point in time in the past where the text “GridBagLayout” existed in the

createButtons method using AZURITE’s history search.

2. Select all the edit operations within the createButtons method performed since the

point found in step 1.

3. Launch the interactive selective undo dialog (Figure 1-3). Then, from the left panel, indi-

cate the parts of the current code that should be kept unchanged.

4. After checking the preview of the selective undo result shown in the right panel, press the

OK button to actually perform the selective undo.

AZURITE provides a rich set of user interfaces designed to help users complete various back-

tracking tasks. The list of steps described above is just one example, and there are several

different ways to achieve the same result using AZURITE. Users can use AZURITE in the way that

they feel the most comfortable.

Figure 1-3. An example screenshot of AZURITE running in the Eclipse IDE. At the bottom, a timeline visualization

of recent code changes is provided. The user is currently using the “Interactive Selective Undo” dialog in order to

selectively undo the code and restore the GridBagLayout code without losing the desired code.

Chapter 1: Introduction 7

To evaluate the effectiveness of AZURITE on completing backtracking tasks, an A vs. B evalua-

tion study was conducted with 12 programmers. The study results showed that the group

using AZURITE was twice as fast compared to the control group, when completing the provided

backtracking tasks.

1.5. THESIS

This dissertation work seeks to evaluate the following thesis statement:

Programmers will be able to perform backtracking tasks more easily and

accurately by having a selective undo mechanism for code editors,

visualizations of code change history designed for selective undo, and history

search options to express what they remember about the previous edits that

they want to backtrack.

1.6. CONTRIBUTIONS

This dissertation makes the following major contributions:

 A recording tool for capturing low-level events and fine-grained edits in the code ed-

itor, which is used for performing the empirical studies of this thesis work, and by

several other research institutions. The recording tool is also used for providing se-

lective undo feature in the code editor. (Chapter 3)

 Findings from three empirical studies to understand programmers’ backtracking be-

haviors (Chapter 4)

 A novel selective undo mechanism for code editors that is capable of dealing with re-

gional conflicts among edit operations (Chapter 5)

 A novel interactive timeline visualization of fine-grained code edit history (Chapter 6)

 A novel mechanism for summarizing fine-grained code edits in real time to provide

“semantic zooming” (Chapter 7)

 Novel user interaction techniques for providing usable interfaces for selective undo

(Chapter 8)

 Evidence from a user study that the prototype selective undo tool is usable and ena-

bles programmers to perform certain backtracking tasks about twice as fast com-

pared to when not using the tool (Chapter 9)

 An exploration of applying the selective undo idea in a painting application using a

script-model selective undo mechanism, which discovered many interesting design

issues from the user studies (Chapter 10)

8

1.7. OUTLINE

The rest of this dissertation is organized as follows. Chapter 2 starts with discussing the re-

lated work, including the various undo mechanisms, variation management systems, and his-

tory visualization systems. Chapter 3 presents our tool called FLUORITE, which is a logging

plug-in for Eclipse that captures all the fine-grained code edits and IDE interactions. FLUORITE

was used for the empirical studies and the evaluation studies conducted in this dissertation

work. FLUORITE is also used as the input source of our selective undo tool: it forwards all the

captured coding events to the selective undo core component. Chapter 4 presents the results

from a series of empirical studies of backtracking, which show that programmers frequently

need to backtrack and the existing tool support is quite limited. Chapter 5 describes the core

selective undo mechanisms, including the internal data structure maintained to support se-

lective undo and the selective undo algorithm. Chapter 6 introduces the timeline visualization

of code edits, the most basic user interface for selective undo, which displays all the fine-

grained code edits and allows users to select one or more past edit operations and invoke

selective undo command. Chapter 7 describes a real-time algorithm for collapsing related

fine-grained edits and displaying higher-level edits in the timeline. Chapter 8 describes a set

of additional user interfaces specifically designed for selective undo and their design ra-

tionale. The described user interfaces include code history diff view, history search dialog,

and the interactive selective undo dialog presented above. Chapter 9 discusses the evaluation

of our prototype tool AZURITE which implements the aforementioned selective undo mecha-

nisms and user interfaces, in terms of its usability, usefulness, and performance. Chapter 10

summarizes our effort on applying the selective undo approach in painting applications, and

presents interesting design issues not pertaining to selective undo in code editors. Chapter

11 discusses the limitations of this work and potential future work directions, and Chapter

12 concludes.

 9

2.
RELATED WORK

This research is inspired by and was built upon previous work done in various areas, including

undo models, version control and variation management systems, collecting and utilizing fine-

grained interaction history, software visualizations, and empirical studies of code editing. This

chapter summarizes related work in each of these areas.

2.1. UNDO MODELS

One way to support backtracking is with undo commands. The most widely adopted model

of undo is called the restricted linear undo model [Berlage 1994]. The system keeps a list of all

the executed commands and users can only undo the most recently performed commands. In

this model, a redo command is also supported, and it is always performed in the opposite

order of the undo, in order to make sure that the commands are re-executed the same state

where they were originally executed. Although this model is very popular and well under-

stood by the users, it has several major limitations as described in Section 1.1.

There are other more sophisticated undo models providing additional commands beyond undo

and redo, which essentially enable selective undo in an indirect way. The US&R model [Vitter

1984] allows users to skip redoing an operation, using a tree-based data structure. Users can

selectively undo an isolated operation, by undoing multiple steps until the target operation gets

undone, skipping the redo command once, and then redoing the rest of the operations. The tri-

adic model [Yang 1988] uses a simpler structure composed of a linear history list, and a circular

redo list which can be rotated by users. Undoing an operation puts the operation at the begin-

ning of the redo list, and rotating the redo list takes one operation at the beginning of the list

and puts it at the end. Since the rotate command can be used to skip a redo command, users can

selectively undo a certain operation in a similar way. However, both models require deep un-

derstanding of the underlying history structure to correctly perform selective undo. In addition,

selective undo cannot be done in one step, which can be cumbersome for users.

2.1.1. SELECTIVE UNDO MODELS

Selective undo has been extensively studied for object-based graphical, interactive editors.

With selective undo, users can select an operation (called the target operation, hereafter) from

the command history and undo that operation, isolated from the rest of the operations in the

history. There are three types of selective undo models in general: script model, inverse model,

and cascading selective undo.

10

In the script model, the system tries to guarantee that the final result to be as if the target oper-

ation had never been performed [Archer 1984]. That is, the system rolls back all the operations

in the command history to the point immediately before the target operation was performed,

skips the target operation, and reruns all the following operations that were not previously un-

done. This model has not been widely used, but we adopted this model for a pixel-based paint-

ing application (as opposed to a drawing application having identifiable objects), which will be

discussed in Chapter 10.

In the inverse model (or direct selective undo), as introduced in GINA system by Berlage, the

system adds the inverse of the target operation to the current context [Berlage 1994]. Thus, the

selective undo command itself is added to the end of the command history. The Amulet [Myers

1996] and Topaz [Myers 1998] systems had a similar selective undo feature, and these also

allowed repeating a selected command on a new object. To support this undo model, the editor

commands should be represented by command objects, each with its own undo function

[Myers 1996][Gamma 1994]. The inverse model is simpler compared to the script model in that

the rest of the command history is not affected by the selective undo command. The selective

undo for code editors described in this dissertation (Chapters 5 through 9) uses the inverse

model.

The result of selective undo may be different between these two models in the presence of con-

flicts (or dependencies), which refer to the situations where there are some later performed

operations in the history which are dependent on the target operation that the user is trying to

undo. The following example, taken from [Berlage 1994], illustrates this point. Suppose that a

graphical object is recolored with operation A, and then later that object is duplicated with a

copy operation B. What would be the result of selectively undoing A? In the script model, both

objects will return to the original color, because it works exactly as if the operation A had never

happened. In the inverse model, however, only the original object will return to its original color

without affecting the copied object, because the undo operation is applied to the current con-

text.

There is another class of selective undo model called cascading selective undo which takes care

of the conflicts [Cass 2005]. In this model, all the subsequent operations dependent on the tar-

get operation are all undone together, which eliminates the ambiguity described above. Their

user studies showed that people could predict and understand what the system will do [Cass

2006][Cass 2007].

There are other applications providing selective undo features. Selective undo was applied in

spreadsheets [Kawasaki 2004] by allowing users to select a region in the spreadsheet and per-

form regional undo. Dwell-and-spring [Appert 2012] is a selective undo mechanism for direct

manipulation. It provides an interface for undoing any press-drag-release interaction.

Chapter 2: Related Work 11

However, unlike in these graphical applications, it is difficult to provide a meaningful thumbnail

view of source code so users can determine where to go back to. Also, the code editing com-

mands are too numerous and complex to be easily displayed in a command history list box

where the user can choose one of the commands on the list.

Finally, all of these approaches assume that there is an object on which the operations can be

performed: primitive graphical objects such as shapes in graphical editors, and individual cells

in spreadsheets. In contrast, there is no clear notion of objects in text and code editors,1 since

edit operations typically affect ranges of text, and the text itself moves around and is changed.

The same problem occurs in painting programs, since edit operations typically affect areas of

pixels.

The issue of conflicts among operations is not limited to the object-based graphical editors. In

fact, text and code editors face the exact same issue when the region of a later performed edit

operation overlaps with the region of another earlier performed edit, which is referred to as a

regional conflict (see Section 5.1.2). In AZURITE, when the user tries to selective undo some edit

with one or more conflicts, AZURITE provides the user with several alternative results to choose

from.

2.1.2. REGIONAL UNDO IN TEXT EDITORS

Some text editors such as Emacs2 and DistEdit [Prakash 1994] support regional undo, where

the user undoes the most recent operation that affected a specific selected region of text, which

can be seen as a special case of selective undo. Regional undo is useful and also relatively easy

to implement compared to the generic selective undo, because it always undoes the most recent

operation performed in the selected region, which guarantees that there are no regional con-

flicts with the target operation. Regional undo is directly supported in AZURITE using a keyboard

shortcut, by searching for all edits for the region of code and invoking selective undo on the last

one, or by using code history diff view and using the revert button. In regional undo, however,

there can be an ambiguity if the user selects a region which partially overlaps with an opera-

tion’s effective region. Li and Li refer to this problem as region overlapping, and introduce the

idea of partial undo as a solution, which undoes only overlapped part of the operation when an

operation partly falls in the given undo region [Li 2003]. In this situation, AZURITE would do the

same thing when using the code history diff view or the regional undo shortcut to revert a cer-

tain region of code to one of the previous versions.

1 In fact, projectional editors (or structured editors) such as JetBrains MPS (https://www.jetbrains.com/mps/), in

which users can directly edit the underlying document structure (e.g., abstract syntax tree), do have objects.
However, they do not usually provide selective undo features, but in theory, it would be possible to apply the
existing selective undo approaches to implement per-object selective undo.

2 http://www.gnu.org/software/emacs/manual/html_node/emacs/Undo.html

https://www.jetbrains.com/mps/
http://www.gnu.org/software/emacs/manual/html_node/emacs/Undo.html

12

2.1.3. TREE-BASED UNDO MODELS

As seen in the US&R model [Vitter 1984], one way to extend the conventional linear undo is to

keep the edit history as a tree instead of as a linear list. When the user undoes multiple steps

and makes a new edit from there, it creates a new branch in the history tree and puts the new

operation in it, while keeping the previously undone operations in the previous branch. One of

the problems of this approach is that it becomes difficult to provide useful and usable interfaces

for users. Moreover, selective undo cannot be clearly presented in a history tree, because a se-

lective undo command would create a new node which has never been visited before, thus mak-

ing it not distinguishable from any other normal operations in the history.

Several text editors and plug-ins provide tree-structured visualizations which allow users to

move around among the different nodes and make new changes from any of the existing nodes

[Losh 2012][Cubitt 2010]. However, as the edit history gets bigger, it becomes more difficult to

understand the history because the nodes do not provide sufficient useful information for the

user to navigate the tree.

2.1.4. OPERATIONAL TRANSFORMATION IN COLLABORATIVE EDITING

Another use of selective undo is in collaborative editing, where multiple people can edit a doc-

ument concurrently, which has been studied by various systems (e.g., [Ellis 1989][Berlage

1993][Choudhary 1995][Prakash 1994][Sun 2002]). For a real-time collaborative editing

tool, maintaining consistency of a document across different sites is a major challenge, in the

presence of multiple local copies of the shared document and network latency. To address this

problem, a line of technology called operational transformation (OT) has evolved by the Com-

puter-Supported Cooperative Work (CSCW) community [Sun 1998]. OT provides formal foun-

dations for maintaining consistency properties.

Sun gives a good summary of how OT can be used to perform a selective undo operation cor-

rectly in a collaborative editing environment [Sun 2002]. The high-level idea is that when a

selective undo of operation 𝑂 is invoked, the system processes the undo command as if it was

an inverse operation �̅� generated immediately after 𝑂, that is concurrent with all the other op-

erations afterwards. Then, the system can process the undo operation using the well-defined

rules of OT.

This approach has a number of major differences from the selective undo approach described

in this dissertation. First, because the main purpose of OT is to maintain document consistency,

this approach is excessively complicated for the purpose of providing a single-user selective

undo.3 Second, the OT-based undo approach modifies the history buffer. After successfully un-

doing operation 𝑂, the inverse operation �̅� would be added to the history buffer immediately

after 𝑂, and all the rest of the operations in the history buffer would be transformed against �̅�.

Essentially, this makes the 𝑂 ∘ �̅� pair a no-op, and works similar to the script-based selective

3 Joseph Gentle, author of ShareJS (http://sharejs.org/), a web library for OT, says “I am an ex Google Wave engineer.

Wave took 2 years to write and if we rewrote it today, it would take almost as long to write a second time.”

http://sharejs.org/

Chapter 2: Related Work 13

undo model. In contrast, AZURITE uses the inverse model and always adds the undo operations

at the end of the history.

Finally, and most importantly, the issue of regional conflict is still not very well defined in OT-

based undo approach. Due to the inherent complexity of the consistency issue, OT literature

almost always considers only two primitive edit operations: single character insertion and sin-

gle character deletion. When the edits are limited to single character, the regional conflict does

not even occur, because the edits do not have the notion of edit regions. However, this may not

be very practical, because users would not want to undo only individual character level edits.

For example, most of the available text and code editors automatically group a series of charac-

ter edits and make it possible to undo at a higher-level. Similarly, pasting text over a selected

region causes a range of text to be replaced.

2.1.5. OTHER UNDO MODELS

Similar to operational transformation approach, Hayashi et al. proposed the idea of edit history

refactoring, which is a restructuring of an edit history without affecting the final result of the

code, and implemented it in their system called Historef [Hayashi 2012][Hayashi 2015]. His-

toref also provides a selective undo feature using history refactoring. The selected operations

are first moved to the end of the history using swap refactoring, the changes are merged into a

Undo Model Structure

Return to Any

Previous State? Selective Undo Support

Selecting Target

Operation(s) Reference

Restricted

Linear Undo
Linear list Not Supported N/A [Berlage 1994]

History-Tree

Visualizations
Tree Yes Not Supported N/A

[Losh

2012][Cubitt

2010]

Photoshop

Non-linear Undo
Non-linear list Yes Not Supported N/A

Revision Control

for Images

Directed acyclic

graph
Yes Not Supported N/A [Chen 2011]

US&R Tree
Undo, skip, then redo

(manual)
Indirect [Vitter 1984]

Triadic Model
Undo list + Redo

list (rotatable)

Undo, rotate, then redo

(manual)
Indirect [Yang 1988]

Script-Model

Selective Undo
Linear list

Pretend that the target

operation never happened
Direct

[Archer 1984]

Aquamarine

(Chapter 10)

Inverse-Model

Selective Undo
Linear list Yes

Add the inverse operation

at the end
Direct

[Berlage 1994]

[Myers 1996]

AZURITE

(Chapters 5-9)

Cascading

Selective Undo
Linear list

Undo all the conflicting

operations together
Direct [Cass 2005]

Regional Undo Linear list
Filter the operations in the

region, and undo them
By region

[Li 2003]

[Kawasaki 2004]

History

Refactoring
Linear list Yes

Move the target

operations to the end
Direct [Hayashi 2012]

Table 2-1. Feature table of the existing single-user undo models.

14

single operation, and then the inverse operation of it is executed. This approach, however, can-

not address situations where the operations conflict, which our selective undo can handle. His-

toref also does not provide any visualizations or history search mechanisms that would help

users to find and select the operations to be undone.

Adobe Photoshop provides a history window with a mode for “non-linear undo”, but this is dif-

ferent from selective undo—when the user undoes operations and then does new ones, Pho-

toshop’s non-linear undo retains the undone operations on the undo stack rather than remove

them. However, future undos still start at the last operation and continue backwards through

all previous operations in order.

Chen et al. presented another system that provides a revision control system for images based

on a directed acyclic graph (DAG), which enables users to make forks and joins and then move

around in the history and see various versions of images [Chen 2011]. However, it does not

support selective undo or the script model.

As a summary, a feature table of the existing undo models for single-user environments de-

scribed above is provided in Table 2-1.

2.2. VERSION CONTROL AND VARIATION MANAGEMENT SYSTEMS

A version control system (VCS) can be seen as a variation management system [Conradi 1998].

Traditional centralized version control systems such as Subversion help programmers to revert

a file or a set of files to an older version whenever something goes wrong with an experiment.

However, there are many cases where a VCS cannot directly help with backtracking. As men-

tioned in Section 1.1 above, the user must think to commit the desired version, which may not

happen if the programmer only later realizes that backtracking is needed. It may not be even

possible to use a VCS to commit a certain variation when that version contains unstable code,

which is likely to be the case during an exploration.

2.2.1. FEATURES OF GIT RELATED TO SELECTIVE UNDO

In recent years, a distributed version control system (DVCS) called Git4 became one of the most

popular version control systems in the software development community. The 2014 version of

the Eclipse community survey5 reports that Git is the first most used VCS (33.3%), surpassing

Subversion (30.7%), which used to be the dominant tool. In a DVCS environment like Git, a pro-

grammer normally works with a local clone of the public repository, and pushes the local

changes to the shared repository only when the local version seems to be stable. This style of

workflow can mitigate the problem of committing an unstable piece of code because the local

clone does not affect the repository of other colleagues, although committing is still a fairly

heavyweight process.

4 http://git-scm.com/
5 https://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/

http://git-scm.com/
https://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/

Chapter 2: Related Work 15

Git provides a large set of powerful features, some of which are closely related to selective undo.

When the changes to the code that the programmer wants to undo (called target changes, here-

after) are already grouped as a single commit in the history, there are multiple ways to revert

that particular commit in the current context, which is essentially selectively undoing the

changes at a coarse-grained level. The “git revert” command can be used to create an inverse

commit of the target commit and it adds the new commit at the end of the commit history. Git

also provides the “git cherry-pick” command, which is essentially a selective redo com-

mand. Using the cherry-pick command, users can apply some of the changes from one branch

to another. This command can be used to mimic selective undo between branches, because us-

ers can cherry-pick all the commits except for the commit containing the target changes.

One limitation of this approach is that the target changes must have already be isolated as a

single commit, separated from the other changes. In other words, if the target changes are in-

termixed with other changes in a single commit, it can be very tedious to selectively undo only

the target changes. Another limitation is that the revert and the cherry-pick commands can

cause regional conflicts, in which case the user has to manually fix all the conflicts and then

commit again. Although regional conflicts can also occur in AZURITE, there are a few important

differences. First, because Git keeps track of the line-level changes, the regional conflict may

occur even if the changes are not overlapping, when the changes are made in the same line. For

example, imagine there is a variable declaration statement with an initial value, such as “int

foo = 1;” (v1). The user changes this code to “int bar = 1;” (v2), and then to “int bar =

2;” (v3). Assuming these three versions are separately committed to Git, the user should be

able to use the git revert command to undo the variable name change. However, because

these two changes were made in the same line, Git will produce an error message indicating

that there is a conflict that needs to be resolved by the user (Figure 2-1), and when the user

opens the file, the conflicting part is marked as shown in Figure 2-2, and the user needs to man-

ually fix the code to the desired state and then invoke the git commit command to finish the

revert operation.

error: could not revert 6a7f7ad... Foo to Bar

hint: after resolving the conflicts, mark the corrected paths

hint: with 'git add <paths>' or 'git rm <paths>'

hint: and commit the result with 'git commit'

Figure 2-1. Error message generated by Git showing there is a conflict that should be resolved.

<<<<<<< HEAD

int bar = 2;

=======

int foo = 1;

>>>>>>> parent of 6a7f7ad... Foo to Bar

Figure 2-2. The content of the file that has the conflict. The user need to manually resolve this conflict and then

make another commit to finish the revert operation.

16

In contrast, selectively undoing the variable name change using AZURITE would not result in a

conflict, because AZURITE keeps the accurate regions of the individual edits, even within a single

line. Even when there is a conflict, the conflict resolution could be done by simply clicking one

of the options provided by AZURITE, which is much easier compared to the manual conflict res-

olution process of Git. Granted, there are numerous third-party visual merge tools that can be

used in conjunction with Git which helps resolving conflicts (e.g., DiffMerge,6 Araxis Merge7),

but they still require some manual work from the user.

There is another situation where Git can help achieve selective undo. Suppose that there are

local code changes which are not yet committed and some of those changes should be selec-

tively undone. In other words, only some of the local changes should be selectively committed.

This can be achieved using the “git add --patch" command, which presents an interactive

command line interface where the user can review each hunk (Git terminology referring to a

contiguous lines of changes) in the local changes and decide whether to include the hunk in the

commit or not. The closest feature provided in AZURITE is the interactive selective undo dialog

(Figure 1-3, Section 8.4), which allows users to review the selective undo result and dynami-

cally add or remove edit operations. The “git add --patch" command, however, cannot be

used to restore code that is neither in the committed code nor in the local changes (i.e., some

code that was produced after the last commit but removed in the current local version),

whereas AZURITE can be used to restore such code.

2.2.2. LOCAL HISTORY FEATURES OF INTEGRATED DEVELOPMENT ENVIRONMENTS

Most of the popular IDEs support local history keeping features, where the snapshots of each

source file is automatically kept in a history upon file save (e.g., Eclipse, Visual Studio8) or as

the code changes (e.g., NetBeans). Xcode 4 has a feature called Version Editor, where the history

of a file is displayed in a code compare view with two panels, and users can move through the

history using the vertical timeline located between those two panels. However, these features

are limited compared to AZURITE in that (1) the history is shown in a linear list without any

human-readable descriptions or cues, (2) changes can only be seen at the file level, (3) history

search is not supported, and (4) selective undo is not directly supported, so users must com-

pare the local and the desired older versions and merge the wanted changes manually. Similar

to these IDEs, cloud-based text editors such as Google Docs support linear revision history, but

with the same limitations.

2.2.3. OTHER VARIATION MANAGEMENT SYSTEMS

Backtracking becomes important when trying out multiple alternative solutions. There exist

several tools that help with variation management. Juxtapose [Hartmann 2008] enables devel-

opers to add an alternative at any time, and allows them to move among alternative source

6 http://www.sourcegear.com/diffmerge/
7 http://www.araxis.com/merge/index.en
8 http://blogs.msdn.com/b/visualstudio/archive/2014/01/23/auto-history-extension-in-visual-studio-2013.aspx

http://www.sourcegear.com/diffmerge/
http://www.araxis.com/merge/index.en
http://blogs.msdn.com/b/visualstudio/archive/2014/01/23/auto-history-extension-in-visual-studio-2013.aspx

Chapter 2: Related Work 17

files. When testing the application, multiple alternatives can be juxtaposed and the developer

can compare the results directly. Also, Juxtapose automatically generates widgets for tunable

application parameters so that the developer may change the values at run time and see the

results without recompiling the whole application. Terry et al. proposed the Parallel Paths

model [Terry 2004], which allows users to create a new variation at any time around a single

command invocation, see the variations simultaneously in a single workspace, and edit them

individually or as a whole. However, users must know in advance when they want to add var-

iations in Juxtapose, and Parallel Pies works only in the graphical editing context. Barista [Ko

2006] had an alternative expressions tool which allows selecting an alternative by clicking on

one of the listed choices, but it was restricted to the expression level.

2.2.4. FORMAL REPRESENTATIONS OF VARIATIONS

Other work has studied ways to formally represent and manipulate source code variations.

Choice calculus provides a generalized representation for software variations at the code level

and provides theoretical foundations of variation management [Erwig 2011][Walkingshaw

2013]. Choice calculus provides a syntax to represent variations within a variational program,

semantics for the representation, and semantic preserving transformation laws which can be

used by tools implementing choice calculus.

Consider the following example9 variational program using choice calculus (Figure 2-3a).

In this variational program, there are two dimensions: Name and Traffic. Each of these dimen-

sions has two alternatives. For example, the Name dimension has two alternatives: time and

dur. The named tuple of alternatives (i.e., dimension + alternatives) such as Name<time,dur>

is called a choice. A program variant can be obtained from a variational program by selecting

the index of alternatives for each dimension. Figure 2-3b is an example variant obtained by

selecting the first alternative of the Name dimension, and the second alternative of the Traffic

dimension. Note that the Traffic dimension appears in multiple locations in the variational

program. In this case, all the choices with the same name (dimension) should have the exact

same number of alternatives, and only the alternatives at the same index can be selected to-

gether. For example, the alternatives 4 and 8 cannot be selected together in the example.

Although the original motivation for choice calculus is to support developing, maintaining, and

analyzing variations in software, for example in software product lines, it is also closely related

9 This example was originally created by Martin Erwig.

function Name<time,dur> (n) {

 return Traffic<4,7>*n + Traffic<10,8>

}

{ Name1 , Traffic2 }

function time (n) {

 return 7*n + 8

}

(a) (b)

Figure 2-3. An example variational program annotated with choice calculus (a), and one of the variants obtained

by selecting the first alternative from Name dimension, and the second alternative from the Traffic dimension (b).

18

to selective undo. In theory, each code edit can be translated into a new choice, which is called

the choice edit model. In this model, an Insert of foo can be can be represented as a choice

X<ϕ,foo>, a Delete of foo as Y<foo,ϕ>, and a Replacement of foo to bar as Z<foo,bar>.

Given a variational program annotated with this choice edit model, selective undo can be per-

formed by selecting a different alternative for a particular dimension, while leaving the rest of

the selections unchanged.

Using this choice edit model for selective undo is interesting in several aspects. First, regional

conflict can be modeled as nested choices. Users could either undo a certain edit along with all

the other edits depending on the target edit (i.e. conflictees as defined in Section 5.1.2) or leave

the code unchanged. To compare this model with the conflict resolution interface of AZURITE,

this model would only provide the options A2 and A3 without providing A1 (Section 5.2.2.2).

Another interesting aspect is that semantic dependencies (e.g., renaming method in the defini-

tion and all its call-sites) can be represented as a same-named dimension appearing in multiple

locations of the variational program. Note, however, the notation does not provide anything

about how to determine these semantic relationships among code edits.

A fundamental limitation of this model of selective undo is that it is difficult to translate all the

fine-grained code edits into the choice edit model in practice. Since the amount of fine-grained

edits generated in the code editor is fairly large, the variational program using the choice edit

model would get more and more complicated very quickly with lots of dimensions and nested

choices, which is likely to be unmanageable for the users.

2.3. COLLECTING AND UTILIZING FINE-GRAINED INTERACTION DATA

As part of this dissertation work, a longitudinal study of backtracking was conducted by ana-

lyzing fine-grained code edit logs captured by our FLUORITE tool (Section 4.3). This study can

be seen as a software evolution study performed at a fine-grained level. While mining software

repositories [Kagdi 2007], a popular software evolution research methodology, works at the

commit level, our analysis was performed at the individual code edit level. For the backtracking

study, it was necessary to use the fine-grained history, because programmers would often

backtrack while experimenting, and the intermediate versions are very unlikely to be captured

in version control system histories, which motivated the development of FLUORITE (Chapter 3).

2.3.1. FINE-GRAINED INTERACTION DATA COLLECTION TOOLS

There exist other tools that capture fine-grained code edits and/or user interactions with the

IDEs. Mylyn keeps track of the user interaction history internally in order to derive the task

context [Kersten 2006][Murphy 2006]. Using the Mylyn Monitor API,10 investigators can re-

trieve the user interaction data for their own analyses. FLUORITE differs from the Mylyn Monitor

in that FLUORITE focuses more on the details of the user interaction in the code editor, whereas

10 http://wiki.eclipse.org/Mylyn/Integrator_Reference

http://wiki.eclipse.org/Mylyn/Integrator_Reference

Chapter 2: Related Work 19

the Mylyn Monitor collects more abstract user interaction data on the entire IDE. For example,

when the programmer selects a class from the package explorer, Mylyn Monitor logs that there

was a selection event from the package explorer with the name of the selected class, whereas

FLUORITE logs exactly which file was opened, and the offset and length of the highlighted text

(i.e., the name of the class) in the file.

The Eclipse Usage Data Collector (UDC)11 was another useful source of programmers’ Eclipse

usage data.12 The UDC collected usage information from all the Eclipse users all over the world

who consented to upload their usage data to the UDC. The UDC publicized several usage reports

including the commands report. These reports have been used by many researchers (e.g.,

[Parnin 2009][Murphy-Hill 2009]). However, the command usage report from UDC was not

suitable for my backtracking study because it did not capture some important commands exe-

cuted in the code editor. It ignored many of the most frequent keyboard commands such as

navigating source code with arrow keys and deleting the previous character with the backspace

key because they are not explicitly bound as Eclipse commands or keyboard shortcuts. In con-

trast, FLUORITE collects all commands regardless of how they are invoked.

There exist other research tools that capture fine-grained code changes as FLUORITE does.

OperationRecorder [Omori 2008] and CODINGTRACKER [Vakilian 2012][Negara 2012][Negara

2014] both take the raw text changes as inputs and turns them into AST-level change opera-

tions, whereas FLUORITE logs all the textual changes as-is. IDE++ [Zhongxian 2012] is a system

that captures all types of IDE interactions, which are not limited to code edits. The data can be

used in various ways, and there are other researchers who have analyzed their own fine-

grained code change data to extract different information. Vakilian et al. collected detailed us-

age data of Eclipse refactoring tools using their CODINGSPECTATOR tool, and analyzed the data to

discover usability problems of the refactoring tools [Vakilian 2014]. In their analysis, they de-

tected the situations where the users used the refactoring tools in a way that is not ideal, indi-

cated, for example, by cancellations or undoing of the refactoring commands. As another

example, CODINGTRACKER logs were analyzed by adapting existing data mining techniques

[Negara 2014], which is different from our per-node history keeping approach. They identified

10 previously unknown program transformation patterns. This shows that analyzing fine-

grained code change history can be useful in many different ways. This line of empirical

research is being continued by a team of researchers (in the COPE project: Change-Oriented

Programming Environment 13), and they are studying developers’ test-driven development

practices using the fine-grained logs they are collecting. Although CODINGTRACKER and IDE++

are similar to FLUORITE in that they also capture the fine-grained code edits from the code

editors, I could not use them, unfortunately, because they were independently developed by

different research groups in parallel with FLUORITE and could not be integrated with AZURITE.

11 https://eclipse.org/epp/usagedata/
12 Unfortunately, the Eclipse Usage Data Collector (UDC) project has been discontinued since 2010.
13 http://cope.eecs.oregonstate.edu/

https://eclipse.org/epp/usagedata/
http://cope.eecs.oregonstate.edu/

20

2.3.2. REPLAYING FINE-GRAINED INTERACTION DATA

Syde is a tool for Eclipse that can record fine-grained change history of Java-based systems in

multi-programmer settings [Hattori 2010a][Hattori 2010b]. This tool is intended to increase

team awareness and help programmers understand the code evolution, but it could be used to

track the editor usage as well. Syde differs from FLUORITE in that it records changes at the ab-

stract syntax tree (AST) level, not the textual level. Also, it only records the operations which

modify the AST, and so, for example, the SelectText command will not be recorded by Syde.

As a follow-up tool, they developed Replay, a tool that can be used to replay the changes rec-

orded with the Syde tool [Hattori 2011]. Their empirical study showed that programmers can

answer the software evolution related comprehension questions in a significantly shorter time,

when compared to using a traditional version control system.

Fine-grained code edit scripts can be used for creating coding tutorials with examples. JTutor

[Kojouharov 2004] is a coding tutorial creator / replayer tool suite for Eclipse for students who

are learning Java programming. Similar to FLUORITE, JTutor uses an XML-based data structure,

with the initial snapshot and all the subsequent changes represented as individual steps. Simi-

larly, SmartTutor [Zhang 2009] is a tutorial recorder / replayer tool that works in Eclipse, but

it focuses on teaching how to use the IDE features, while JTutor focuses more on teaching how

to program. Ginosar et al. created a coding tutorial editor tool for the Processing language, but

the main focus was to make it easier for the tutorial creators to edit the existing tutorial scripts

with tool support [Ginosar 2013].

2.3.3. USE OF FINE-GRAINED CODE EDITS IN REFACTORING

BeneFactor [Ge 2012] is a refactoring tool that detects ongoing, incomplete manual refactoring

while the programmer is editing the code and offers a command to finish the rest of the refac-

toring activities automatically. The refactoring detection process involves monitoring the fine-

grained code edits and checking if a series of code edits match one of the pre-defined refactor-

ing patterns, which are defined as state machines. Once the programmer asks BeneFactor to

finish the manual refactoring, BeneFactor rolls back the manual refactoring (to revert the code

context to the state where the automatic refactoring command can be correctly executed), and

then invokes the automatic refactoring command to finish the desired refactoring. If the pro-

grammer made some interleaving edits with the manual refactoring that are independent from

the refactoring, BeneFactor preserves those independent edits while rolling back. Interestingly,

the paper refers to this process as selective undo, because only the edits that are part of the

refactoring are being undone selectively. The selective undo here is an internal algorithm used

to achieve the refactoring, not an explicit command that can be invoked by the users. The actual

selective undo algorithm used in BeneFactor is similar to the script-based selective undo model:

all the edits are undone first, and then only the non-refactoring edits are re-executed, skipping

all the refactoring related edits.

Chapter 2: Related Work 21

2.3.4. ANALYZING FINE-GRAINED INTERACTION DATA TO DISCOVER USABILITY PROBLEMS

Detailed tool usage data can also be used to identify usability problems of specific tools. Akers

et al. devised a study method called backtracking analysis, which is designed to capture usability

problems of graphical creation-oriented programs such as Google SketchUp [Akers 2012]. To

capture richer contextual information, their system automatically captured both the screens of

participants and the backtracking events such as undo or erase. In their backtracking analysis,

backtracking events are assumed to be indicators of usability problems of the creation-oriented

programs. In contrast, our work aims to support programmers to backtrack more easily and

effectively, with the premise that backtracking events in code editing are natural in exploratory

programming activities.

2.4. EDIT HISTORY VISUALIZATIONS & SEARCH TOOLS

One of the most important user interfaces provided in AZURITE is the timeline visualization of

code edits (Chapter 6). There are other edit history visualizations using timelines. Chronos

[Servant 2012] shows the results of history searches in a zoomable timeline. Since Chronos is

designed to work with coarse-grained version control history, however, it is not adequate for

visualizing a large amount of small edits. CodeTimeline [Kuhn 2012] is a visualization for pre-

senting the social history of a software project, similar to Facebook’s Timeline. Programmers

can manually add sticky notes or photos to recall the social events associated with the project.

It also visualizes some level of edit history information such as the lifecycle of all files and the

code ownership. Automark14 is a plug-in for Visual Studio, which generates a HTML or Mark-

down formatted coding history including the actual code edits, visited Stack Overflow questions

or documentation pages, which is designed to help recover programmers’ episodic memory

after an interruption [Parnin 2012] or facilitate sharing a coding history with other people. The

software evolution Storyline [Ogawa 2010] is another timeline visualization which focuses on

who contributed to the project over time. These history visualization tools are primarily de-

signed for helping people recall and share memories, not for providing editor commands as

provided by AZURITE.

Aquamarine, our prototype painting application providing selective undo features (Chapter 10),

displays the past interactions in a graphical History pane (Figure 10-1). There has been signif-

icant research on such displays. Chimera provided graphical histories as thumbnail snapshots

which could be edited and re-used, and past actions could be modified [Kurlander 1988], but

conflicts among operations were not specifically identified. The Designer’s Outpost shows

snapshots of the history of states of a web editing session with multiple users and keeps track

of forks among versions [Klemmer 2002]. Systems have also used graphical histories to foster

learning [Chi 2012][Grossman 2010] and creating macros for later reuse [Kurlander

1988][Lieberman 1992].

14 https://visualstudiogallery.msdn.microsoft.com/078d00b7-dfbd-4cfa-97f9-8be08bb510ee

https://visualstudiogallery.msdn.microsoft.com/078d00b7-dfbd-4cfa-97f9-8be08bb510ee

22

There are systems that provide history search, which has also been called “history slicing.” Op-

erationSliceReplayer [Maruyama 2012] uses the AST data kept by OperationRecorder [Omori

2008] to filter the changes that affected a certain class member. Chronos [Servant 2012] uses

the version control snapshots to trace back to find which commits affected a certain area of

code. The search scope of Chronos can be as small as a single line. These history search features

are limited to region-based search, whereas the history search of AZURITE can find the target

text in the history, even when the text does not even exist in the current code.

2.5. EMPIRICAL STUDIES OF SOURCE-CODE EDITING

There have been general studies about programmers’ code editing strategies, but not for back-

tracking specifically. Kim et al. studied copying and pasting in the programming context [Kim

2004]. Ko et al. analyzed programmers’ character level code-editing strategies [Ko 2005b]. In

that study, comment edits were 3% of all edits, and 60% of the comment edits were for tempo-

rarily commenting out code. Empirical studies on software evolution (e.g. refactoring [Murphy-

Hill 2009][Kim 2011]) also focus on how programmers make changes to code over time, but

they are often limited to revision-level changes.

2.6. CONCLUSION

While researchers have been studying various human aspects of software development, the

knowledge about programmers’ backtracking behavior was very limited. This motivated my

empirical studies of backtracking, which are discussed in Chapter 4. Many undo models have

been proposed to help users backtrack and facilitate exploration, but none are directly applica-

ble to today’s source code editing environments due to their limitations. The existing undo

models do not describe how to handle the edit operation conflicts in a code (or text) editing

context. Version control systems can help programmers backtrack their code changes, but only

if those target changes have already been committed and are well separated from the other

irrelevant changes. In Chapters 3 & 5, I explain how AZURITE can make use of the fine-grained

code edits to provide and handle edit operation conflicts.

Moreover, there is little evidence that the existing undo models are actually usable and useful

for the users. In Chapters 6-8, I describe a set of novel user interfaces designed for selective

undo, and then evaluate those designs in Chapter 9.

 23

3.
CAPTURING FINE-GRAINED CODING EVENTS

FROM THE CODE EDITOR15

Little was known about the backtracking behaviors of programmers when this research started.

I first looked for existing research methods or data that I could analyze to gain more insights

about backtracking, but none of them were suitable for the purpose of understanding back-

tracking behaviors. Therefore, I created my own fine-grained coding event data collection tool,

which is the main topic of this chapter. First, the existing research methods and data sets are

reviewed, and why they were not suitable for the backtracking research is explained.

3.1. RELATED WORK

There are many different sources of programmers’ usage data, each with its own strengths and

weaknesses. One way is to directly ask the programmers who regularly use the target program-

ming language or tool through interviews or surveys. Although these methods are effective and

the investigators can get useful insights about the target feature, the responses from the sub-

jects may not be reliable. For instance, many operations are performed quite automatically by

the programmers (e.g., the undo command), so it is possible that they could report that they

use a feature a lot but could not remember the specific occasions.

Another way of gathering usage data is performing contextual inquiries [Beyer 1997] or exper-

iments in lab settings. Often, the participants are required to think aloud while performing their

tasks, and their screen and voice are recorded for further analyses. However, the experimenter

must then manually inspect the videotape (as was done in [Ko 2004][Ko 2005a][Coman

2008][Ko 2003]) in order to analyze the results, which can be time-consuming and error-prone.

Usage data can also be obtained by mining software repositories and their revision histories.

For example, many researchers have used this method to gain insights about code clones [Kim

2005a][Aversano 2007][Bettenburg 2009] and how the programmers refactor [Murphy-Hill

2009][Xing 2006][Kim 2011]. There is plenty of available data in the open source software re-

positories and from industry, and the data can be analyzed automatically. One problem with

this method is that we still cannot know what events happened between two consecutive revi-

sions. Instead, we can only infer what types of commands the programmers might have used to

15 Portions of this chapter appeared in [Yoon 2011].

24

change the code from one revision to the next. Also, some of the popular version control sys-

tems such as Git provide the ability to edit the existing commit history (e.g., rebase, squash) and

thus there is a high chance that the public repository does not show the software evolution

history as it actually happened [Bird 2009].

When studying the backtracking behavior of programmers, mining software repositories is

inadequate and having access to the low-level code editing and/or tool usage data becomes

even more important, because it is likely that much backtracking is done as part of some ex-

perimentation locally, without being committed to public source code repositories. Although

there were several existing methods for gathering tool usage data, there was none that was

suitable for analyzing fine-grained code editing history without requiring laborious manual

inspection.

3.2. FLUORITE: FINE-GRAINED CODING EVENT LOGGER FOR ECLIPSE

In order to address these limitations, I built a publicly available event logging plug-in for

Eclipse called FLUORITE16 as part of my research. FLUORITE keeps track of all of the events that

occur in the code editor and saves the log files in XML format.

The granularity of events that FLUORITE logs is very fine since it logs character typing, moving

the text cursor, changing the selected text, and all other Eclipse commands executed in the

code editor. FLUORITE not only logs the common metadata such as command IDs and the

timestamps indicating when the command was executed, but also additional parameters spe-

cific to the type of command. For example, a Find command has additional searchText and

replaceText parameters. In the case of text editing events, the inserted and/or deleted text

is also recorded.

What makes FLUORITE unique is that FLUORITE’S time-stamped and detailed event logs enable

us to analyze the programmers’ complex code editing strategies which are often composed

of sequences of commands. For example, it was seen in the collected logs (see Section 4.1) that

backspace was 12.41% of all the keystrokes in code editing, and it was often used in se-

quences of more than four backspaces in a row (4.35 on average) generally used to fix typos

or rename variables. This type of analysis cannot be done using the types of usage data avail-

able from the change-log histories, or other high-level logging tools.

Although the Eclipse Usage Data Collector (UDC) data provides the detailed timestamp of the

editor commands executed, which enables the event sequence analysis, the data does not

contain the actual source code or the fine-grained textual changes. In contrast, with FLUORITE

logs, using the snapshots of the initial source files and the deleted / inserted text from all the

commands, it is possible to completely reproduce any file snapshot at any given time. This

enables us to know in what situation a command was executed.

16 FLUORITE is a mineral, and here it stands for: Full of Low-level User Operations Recorded In The Editor.

Chapter 3: Capturing Fine-Grained Coding Events from the Code Editor 25

Since the FLUORITE log files contain the actual source code in them, the tool should not be used

in a situation where the source code is confidential. This is what makes it difficult to collect

data from the software industry, where most of the code is proprietary. It may also be inap-

propriate to share the collected data, and we could not publicize the logs collected during our

empirical studies for the same reason (Chapter 4).

To mitigate this problem, FLUORITE does not upload log files automatically, so in a field study,

the investigator would have to ask the study participants to send the log files whenever the

code being edited is not confidential.

FLUORITE is useful for many different purposes. First, it can be used in lab studies or field

studies for evaluating existing tools. FLUORITE logs can be used to detect and measure the time

for various usage patterns or events of interest, without needing the experimenter to manu-

ally annotate a videotape. FLUORITE can also be useful for motivating new tools. Ko et al. labo-

riously hand-analyzed videotapes of code editing in their study of Eclipse editing [Ko 2005a],

and showed that people spend significant time scrolling, which motivated interesting new

tools. FLUORITE will provide an easier way to get such data, and thus might help motivate other

ideas for new tools that would help programmers in the future. In addition, as described later

in Chapters 5 & 6, FLUORITE’s logging and analysis can be used in real-time to support novel

code editing operations that depend on the history.

3.3. FLUORITE IMPLEMENTATION

FLUORITE is implemented as an Eclipse plug-in because Eclipse is one of the most widely used

integrated development environments (IDEs). The FLUORITE code was based off of an open

source Eclipse plug-in called Practically Macro,17 but it was not complete enough because

some important commands and parameters were missing (e.g. the FileOpen command), and

it was not stable enough to record long sessions. Therefore, I augmented it to record all the

commands and their parameters, increased its stability, and I also added the capability of

capturing inserted and deleted text.

Once FLUORITE is installed on Eclipse, it begins to capture all the low-level events occurring in

the code editor, and saves the transcript as an XML file when Eclipse is closing. An example

transcript is shown in Figure 3-1.

3.3.1. TYPES OF LOGGED EVENTS

There are three types of events that FLUORITE logs: commands, document changes, and anno-

tations. The full list of different types of events is shown in Table 3-1.

17 http://sourceforge.net/projects/practicalmacro/

http://sourceforge.net/projects/practicalmacro/

26

A command is an event directly invoked by a user’s action. This includes typing new text,

moving the cursor position or selecting text by keyboard or mouse, along with all editor com-

mands such as copying, pasting, and undoing.

A document change event is logged whenever the active file is changed by any executed com-

mand. Each document change event contains the actual deleted or inserted text. This is

needed because it is not always possible to correctly reproduce the snapshots of the files by

capturing only the commands. For example, when the programmer copies a code fragment

from a web browser and pastes it into the code editor, there is no way to find out what the

pasted code was if we have only the command history. In addition, this simplifies the way of

<Command __id="2" _type="MoveCaretCommand" caretOffset="142" docOffset="142"
timestamp="3977"/>
<Command __id="3" _type="EclipseCommand" commandID="eventLogger.styledTextCommand.SE-
LECT_LINE_DOWN" timestamp="5598"/>
<DocumentChange __id="4" _type="Delete" docASTNodeCount="22" docActiveCodeLength="125"
docExpressionCount="10" docLength="151" endLine="9" length="39" offset="142"
startLine="8" timestamp="7186">
 <text>
 <![CDATA[System.out.println("Hello World!");

]]>
 </text>
</DocumentChange>
<Command __id="5" _type="EclipseCommand" commandID="org.eclipse.ui.edit.delete"
timestamp="7202"/>
<Command __id="6" _type="EclipseCommand" commandID="org.eclipse.ui.file.save"
timestamp="8099"/>

Figure 3-1. Example log generated by FLUORITE. The developer (1) moved the cursor by clicking the mouse but-

ton, (2) selected one line by Shift+DownArrow, (3) deleted selected code using the Delete key, and (4) saved

the file. Each event has its own parameters, and the whole deleted text is listed in the DocumentChange event.

Event Type Detailed Type Description

Command MoveCaret Move cursor using the mouse

SelectText Select (highlight) text

Find Find / Find & Replace

InsertString Type new text

Run Run/Debug the application

FileOpen Open or activate a new file

Assist Quick fix/Content assist

Junit Run/Debug Junit tests

MouseWheel Scroll the code editor with the mouse

Eclipse All other Eclipse commands

Document Change Insert Text insertion

Delete Text deletion

Replace Deletion & insertion in one step

Annotation Annotate Manual annotation by the user

Table 3-1. List of the different types of events captured by FLUORITE.

Chapter 3: Capturing Fine-Grained Coding Events from the Code Editor 27

getting the actual change results for each command: just reading the preceding18 document

change event for each command. There can be multiple document change events triggered by

a single command (e.g., find and replace), and even no document changes if a command does

not change any of the code content.

An annotation is logged when the programmer wants to add an annotation at a given time to

provide information to the investigator about the current activity. FLUORITE adds a toolbar

button to Eclipse for adding annotations as shown in Figure 3-2, and a simple dialog box for

inserting annotation pops up when the button is clicked. The buttons at the bottom of the

window provide a quick way for users to identify certain events of interest.

3.3.2. PARAMETERS

Each event is logged as an XML element, and the parameters for each event are logged as

either attributes or sub-elements. There are a few parameters common to every event (Table

3-2) and there are also event-specific parameters. For example, the MoveCaret command has

the resulting cursor position as an offset from the beginning of the document, and the Find

command has searchText and replaceText parameters. Also, every document change

event has a few code size metrics (Table 3-3), in order to keep track of the code size changes.

18 A document change event precedes the causing command rather than following it, due to the event handling

order of the Eclipse code editor.

Figure 3-2. Annotation toolbar button and its dialog box.

Parameter Description

id Unique ID (sequentially incremented)

type Detailed event type (cf. Table 3-1)

timestamp Timestamp relative to the session start time

timestamp2 (optional) Timestamp of the last merged event

repeat (optional) Number of events merged together

Table 3-2. List of the common parameters.

28

3.3.3. MERGING CONSECUTIVE EVENTS

In order to prevent the log files from being unnecessarily large, FLUORITE merges multiple

events of the same type in a row whenever possible. For instance, when the programmer

moves the cursor to ten lines by holding down the up arrow key, the ten events are merged

together as one XML element and its repeat parameter is set to 10. In some cases, some of

the parameters must be merged as well. For example, when merging multiple InsertString

commands which represent typing new text, the data parameter must be merged so as not

to lose important information. Two consecutive events are merged only if their time differ-

ence is no greater than the specified threshold, which is set to 2 seconds by default, and is

configurable. This is similar to the way character typing sequences are merged for the undo

command in other text and code editors.

3.4. FLUORITE ANALYZER

Along with the FLUORITE logger for Eclipse, a FLUORITE log analyzer is also provided on our

website (Chapter 12), which makes it much easier to manually inspect the logs and produces

several types of basic analysis reports and visualizations. In this section, the basic analysis

features of FLUORITE analyzer are demonstrated.

3.4.1. EVENT LIST

FLUORITE analyzer provides an event list interface, where all the coding events in the log file

are displayed (Figure 3-3). The main event list area is in the center of the screen (b). The

events are displayed in chronological order in this list. The events can be filtered by their

types in the leftmost panel (a). For instance, checking only the document change events and

unchecking the rest will make the event list display only the code changes. When an event is

selected in the list (the row highlighted in blue), the detailed parameters are displayed in the

bottom panel (c), and the right panel shows the source file which was active when the se-

lected event was generated (d). The source code panel also indicates the last code change

made in that file. In the example, one line of code was deleted by the selected document

change event. The search panel (e) allows searching for events having any parameter values

containing the search text.

Metric Description

Code Length Code length in # of characters

Active Code Length [Code length] - [Comment length]

AST Node Count # of all the AST nodes

Expression Node Count # of all the expression nodes in AST

Table 3-3. List of the code size metrics logged for the document change events.

Chapter 3: Capturing Fine-Grained Coding Events from the Code Editor 29

3.4.2. CODE EDITING PATTERN DETECTION

It is possible to detect various code editing patterns which are composed of sequences of

commands. As an example, our analyzer can detect fixing typo patterns from the logs. Some

fixing typo patterns can be detected by looking at three consecutive document change events

as follows: 1) Any Insert event, 2) a Delete event whose deletion range is somewhere in-

side the previous Insert event, 3) an Insert event whose starting position is the same as

that of the previous Delete event. Figure 3-4 shows a few sample fixing-typo patterns de-

tected by this algorithm. Some of the detected patterns are not merely typo corrections. For

example, for the pattern starting from ID 1061 in Figure 3-4, we can see that the programmer

decided to declare an array instead of declaring multiple variables. Double-clicking one of the

detected patterns shows the corresponding event in the event list (Section 3.4.1), in order to

make it easier to investigate the code editing pattern with the surrounding context.

It is important to note that this kind of fine-grained editing pattern detection cannot be easily

done with the data that comes from other types of tools. More sophisticated code editing pat-

tern detection could also be implemented. For example, an abstract syntax tree (AST) based

automatic pattern analyzer was implemented to detect backtracking instances within col-

lected FLUORITE logs (Section 4.3).

Figure 3-3. The event list interface of FLUORITE analyzer.

30

3.4.3. CODE LENGTH GRAPH

Since several code size metrics are logged whenever a document change event occurs, it is

possible to plot the code size over time either for each file or as a whole. Currently supported

metrics are listed in Table 3-3. From the collected logs, it was noticeable that the code length

graph and the active code length graphs differ significantly, which indicates that program-

mers often comment out or uncomment code. The graphs also show some interesting editing

trends. In Error! Reference source not found., the steadily increasing part indicates that

the programmer was typing new code, small fluctuations mean the programmer was doing a

Figure 3-4. Examples of detected typo fixing patterns. A pattern is represented in the form of “originally typed

text” – “deleted text” + “newly typed text”. The ID column indicates the ID of the event where the patterns starts

so the investigator can jump to the events list and see what was happening around that time.

Figure 3-5. Example active code length graph drawn from one of the logs by the FLUORITE analyzer. Some inter-

esting points are marked using red circles and the corresponding code editing strategies are described. Y-axis

value can be one of the metrics described in Table 3-3. Only line graphs of the files that have been changed during

the session are drawn. The graph can be zoomed with the mouse wheel, and the user can double click on a point

to jump to the events-list view.

Chapter 3: Capturing Fine-Grained Coding Events from the Code Editor 31

small experiment or fixing minor mistakes, and a big, sudden change means commenting /

uncommenting a block of code or cutting and pasting.

If there is an interesting place on the graph and more thorough investigation is needed to see

what was happening, the point can be double-clicked to jump to the event list. The event

whose timestamp is closest to the selected point on the graph is highlighted to facilitate man-

ual investigation.

3.4.4. KEYSTROKE & COMMAND DISTRIBUTION REPORT

The keystroke distribution report gathers all the keystroke data from the logs and draws a

pie chart showing the frequency of various types of keystrokes. The command distribution

report is similar, but differs from the keystrokes in that it focuses on Eclipse commands ra-

ther than just keystrokes. It is similar to the commands report of the Eclipse Usage Data Col-

lector (UDC), but FLUORITE also includes the commands missing from UDC.

Here, these two features are demonstrated using a particular set of FLUORITE log data col-

lected during an exploratory lab study (see Section 4.1). In the lab study, 12 student partici-

pants performed some small editing tasks for about 2 hours each. These tasks used the Paint

program from [Ko 2005a][Fogarty 2005], and had users add some new features. Figure 3-6

shows example screenshots of a keystroke distribution and a command distribution report

generated from a single participant’s log file from the study.

In the collected data from all the 12 participants, there were a total of 45,872 keystrokes, and

the five most frequent keystrokes were down arrow (12.64%), backspace (12.41%), up ar-

row (9.80%), right arrow (7.82%), and left arrow (6.00%), respectively. Although this data

may be exaggerated because FLUORITE logs multiple instances of the same event when the

programmer holds down a key and it auto-repeats, it is still interesting to see that program-

mers navigate a lot within a file using arrow keys. This result is consistent with Ko et al.’s

observation [Ko 2005a] that developers spend about 16% of their time navigating depend-

encies.

Another interesting observation is that programmers heavily use the backspace key in the

code editor. This seems to be a lot higher than the percent of backspacing in regular typing,

for example, MacKenzie and Soukoreff’s report that 7.10% of keystrokes were backspaces

[MacKenzie 2002]. This provides further evidence, as mentioned in [Ko 2005b], that editing

code is different than editing documents.

Consistent with the keystroke report, the five most frequent commands used by the 12 par-

ticipants were InsertString (31.48%), down arrow (10.67%), backspace (10.48%),

MoveCaret (using the mouse) (8.63%), and up arrow (8.27%), respectively. The proportion

of backspaces is very large here as well, but backspace is not included in the UDC command

report at all since backspace commands are ignored in the UDC logs. More detailed results

and their implications regarding backtracking will be discussed in Section 4.1.4.

32

3.5. DISCUSSION

3.5.1. DETECTING CODE CHANGES MADE OUTSIDE OF THE IDE

Since the system is dealing with individual incremental changes instead of full snapshots, a

single missing item in the edit history can confuse the entire history. However, source code

can be changed even outside of the IDE for many reasons. For example, the code can be mod-

ified by the external version control system while the IDE is not running, to revert to an ear-

lier version, or updated to reflect the changes made by another team member. Sometimes,

users might edit the code with a plaintext editor instead of using the IDE. In addition, if a file

Figure 3-6. Example keystroke / command distribution reports generated by FLUORITE analyzer showing the

distributions for one participant. The reports are also provided in comma-separated values (CSV) format, which

can easily be imported into spreadsheets for more analyses.

Chapter 3: Capturing Fine-Grained Coding Events from the Code Editor 33

is closed without saving, then the last known snapshot of the file kept in FLUORITE would be

out of sync when the file is reopened later.

To avoid this problem, FLUORITE detects such situations by keeping the initial snapshot and

the last known snapshot of each file that was open in the current session. When a file is re-

opened, FLUORITE compares the new snapshot with the last known snapshot, and, if they are

different, extracts diffs between those two snapshots to fill in the missing changes. This pro-

cess is done using the Google-diff-match-patch open-source library [Fraser 2012][Myers

1986].

3.5.2. CODING EVENTS NOT CAPTURED BY FLUORITE

There are several issues with FLUORITE which were only discovered after conducting several

studies with it. FLUORITE only captures the document changes generated from the currently

active source file (i.e., the file currently open in the active editor). Whenever a new source file

is open, a FileOpen command is logged with the initial snapshot, and all the following doc-

ument change events belong to the last open source file. This approach works well for most

of the coding situations, but this approach has a few problems. First, when the programmer

makes some code changes across multiple files with a single command (e.g., refactoring com-

mands), only the changes made in the active file are logged, missing the changes made in the

other files. These missed changes may be captured by FLUORITE later, only when the corre-

sponding source file is open in the editor and becomes the active file, in which case the

timestamp of the document change would be incorrectly logged as being when the file was

opened. Moreover, when there are files that are changed by some command but never are

opened, the document changes in that file would not be captured at all.

Another related limitation is that FLUORITE only captures the files that were open at least once

during the editing session. While the rationale behind this decision was to keep the logging

tool non-intrusive and the log files as small as possible, this makes it difficult to understand

the bigger picture of the entire project when analyzing the log files in isolation. Coding events

can also happen outside the IDE, which are not captured by FLUORITE. A common example

situation is when programmers are invoking version control system commands through com-

mand-line or third-party clients, instead of using the IDE plug-ins.

3.5.3. WRITING LOG ENTRIES AS THE EVENTS ARE CAPTURED

The old versions of FLUORITE used to keep the coding events in memory during the editing

session and write the log file when the IDE is being closed. However, this behavior has been

changed to writing the log entries as the events are captured for two reasons. First, by flush-

ing the events from the memory to the disk frequently, FLUORITE’s memory usage is no longer

increased proportionally to the number of events captured so far. Second, even when the IDE

crashes in the middle of the editing session, the log file is still kept on the disk without any

loss of data. This change did not result in any noticeable extra time or delay in using Eclipse

with FLUORITE running.

34

3.5.4. EVALUATION

FLUORITE and the analyzer tool have been publicly released (see Chapter 12 for the URL) since

Fall 2011. Since then, FLUORITE has been used by many researchers from CMU and other in-

stitutions for different purposes. For example, it has been used for enhancing code search

mechanisms [Martie 2013], monitoring and analyzing the students’ coding behaviors [Fuchs

2014], and visualizing participants’ actions performed during some user studies [Kwan 2013].

Some people used FLUORITE in addition to their primary data collection method during their

studies, in order to make sure that they do not miss any important coding events. For example,

Dörner et al. used FLUORITE for the evaluation study of Euklas [Dörner 2014], and three other

researchers contacted me and told that they were using FLUORITE for their own studies.19

Since the FLUORITE log files are written in XML format, other researchers have been able to

implement their own analyzers with ease. In addition, a group of researchers at Oregon State

University20 developed a FLUORITE log replayer, which they used for converting FLUORITE logs

into another data format that they could analyze more easily, by replaying the FLUORITE logs

while the other capturing tool is running.

Personally, I have been running FLUORITE in my Eclipse environment for developing FLUORITE

and AZURITE, as a “dogfooding” practice [Harrison 2006] for about 4 years, as of the writing

of this dissertation. It has been running without any noticeable problems and has not inter-

fered with my own work. My own FLUORITE log data collected in this way were analyzed to-

gether with the logs collected from the study participants in a longitudinal study (Section 4.3).

Details about the average size of the FLUORITE logs can be found in Section 9.3.1.

3.6. CONCLUSION

The FLUORITE logger for Eclipse and the analyzer were developed in the hopes that they will

be useful to the community for when detailed analyses of programmers’ edits are required.

During our empirical studies of backtracking, FLUORITE reduced significant amount of manual

analysis, and helped uncover interesting results (Chapter 4). Later, FLUORITE was also used as

the input source of our selective undo tool AZURITE, discussed later.

19 When FLUORITE was used as an extra data collection mechanism, it was not always cited.
20 Irwin Kwan, David Piorkowski

 35

4.
EMPIRICAL STUDIES OF BACKTRACKING21

As a first step towards supporting more robust backtracking in modern IDEs, I wanted to first

know more about when and how programmers backtrack when they write source code. How-

ever, there has been no thorough study about backtracking in the software development con-

text. This chapter describes three empirical studies of programmers’ backtracking conducted

in order to understand backtracking better. First, an exploratory lab study was conducted to

gather baseline knowledge about backtracking (Section 4.1), and then a follow-up online sur-

vey was performed to get a better idea of the backtracking frequency and tactics (Section 4.2).

Realizing that these two studies have some limitations, I also conducted an extensive, longi-

tudinal study to complement the previous two studies and see if these backtracking situations

arise when programmers are working on their own programming projects (Section 4.3), not

just the artificial programming tasks given in a lab. These three studies showed that back-

tracking happens quite frequently and often there are difficulties when programmers are

backtracking, suggesting that programmers would benefit from better backtracking tools.

4.1. PRELIMINARY LAB STUDY OF BACKTRACKING

First, an exploratory lab study was conducted to study when and how programmers back-

track using today’s tools, and to identify barriers that they face while backtracking. The focus

of this study was to answer the following research questions.

RQ1-1. How do programmers backtrack?

RQ1-2. How do programmers know where to backtrack to?

RQ1-3. What are the barriers to successful backtracking that a new tool might alleviate?

4.1.1. STUDY DESIGN

This study was a 2 hours long exploratory lab study where participants were asked to finish

two pairs of feature-adding tasks and think aloud during the study. The editing screens and

their voice were recorded for further analyses. In addition, FLUORITE (Chapter 3) was used to

capture all the low-level editing events. Participants used the Eclipse IDE version 3.6.2 (He-

21 Portions of this chapter appeared in [Yoon 2012] and [Yoon 2014]

36

lios) on a laptop PC running Windows 7. They were told that they could use any Internet re-

sources they wanted, and all the subjects made heavy use of Google and Java API Documen-

tation.

After completing the tasks, the participants were asked to fill out a post-survey questionnaire

about their demographics and some the backtracking situations and tactics. We used the re-

sponses when designing our online survey questions. The participants were paid $30 for their

effort.

For this study, 12 graduate students were recruited from the School of Computer Science at

Carnegie Mellon University. The participants were required to (1) have professional devel-

opment experience or at least two internships as a software programmer, and (2) be com-

fortable programming in Java. Of the 12 participants, 11 were male and 1 was female. Their

average age was 24.8 years, and they had been programming for 5.5 years on average.

4.1.2. THE PAINT PROGRAM

As the code base of the study, a Paint program (Figure 4-1) was used which has been previ-

ously used by other researchers [Fogarty 2005][Ko 2005a]. This is a simple Java Swing based

painting application composed of 10 Java files and a total of 452 lines of code.

Using the Paint program as the code base had several advantages. First, graphical user inter-

face (GUI) development tends to be exploratory (i.e. involves extensive experiments with

code), which means that the programmers would often need to backtrack during the 2 hour

period. Second, it had been shown by the previous studies that the code size is small enough

to be understood and modified in a fairly short amount of time.

Figure 4-1. A screenshot of the Paint program used during the lab study.

Chapter 4: Empirical Studies of Backtracking 37

4.1.3. TASKS

The participants were asked to add new features to the Paint program. In order to get as much

backtracking data as possible in 2-hour lab study, the tasks were designed so that they would

lead the programmers to backtrack regardless of any occurrences of their own exploration.

To achieve this goal, an imaginary scenario was set up where a whimsical boss first asks the

participants to implement a feature, changes her mind after testing the feature and asks them

to implement the same functionality using a different user interface element. Because it did

not make much sense to provide two different user interfaces for the same functionality, the

participants were required to backtrack out of the first implementation to some extent. Start-

ing over from scratch was not a good option however, because the first and second versions

shared some code that the participants had to write, and only differed in the user interface

part.

There were two sets of features to implement: thickness control (F1) and x, y coordinates in-

dicator (F2). Each feature had two different user interfaces. The thickness control had to be

implemented using a slider widget (F1-1) and then using a menu of buttons which preview

the desired thicknesses (F1-2). The x, y coordinates indicator had to be located on a status

bar at the bottom of the application window (F2-1) or in a modeless tool window which can

be moved by the user (F2-2).

Another issue investigate was whether the programmers would behave differently if they

knew they might need to backtrack later. Therefore, the participants were first asked to im-

plement one of the features FA-1, without knowing that they might have to backtrack later.

Then, they were asked to implement FA-2 instead. Next, they were asked to go back to FA-1

implementation, in order to see how they would restore the previous version. Finally, they

were given both FB-1 and FB-2 simultaneously and asked to implement one at a time, using

any tactic they wanted, to see if they behave differently when they knew in advance that they

would need to backtrack. Whether participants used Feature 1 as FA and Feature 2 as FB

(Group 1) or vice versa (Group 2) was randomized. The study procedure and group settings

are shown in Table 4-1. All the task sheets provided to the participants can be found in Ap-

pendix A.

As mentioned above, all the code edits performed by the participants were logged using

FLUORITE (Chapter 3). Using this data, several code editing patterns composed of sequences

Step Group 1 (7 subjects) Group 2 (5 subjects)

Begin Introduction

Task1 F1-1 F2-1

Task2 F1-2 F2-2

Task3 Backtrack to F1-1 Backtrack to F2-1

Task4&5 F2-1 & F2-2 F1-1 & F1-2

End Post-study questionnaire

Table 4-1. Participant groups and the tasks of the preliminary lab study

38

of commands could be detected, which are closely related to backtracking. Having this data

has many advantages. Not only does it reduce the time to inspect the videotapes significantly

[Kim 2004], it also enables various automatic analyses.

4.1.4. RESULTS

The study took 96.6 minutes on average. The task accomplishment varied a great deal across

the participants. Of the 12 participants, only 3 participants completed all five tasks. 3 people

could only complete one task and had to give up on all the others. Overall, the participants

completed only 58.3% of the tasks.

The 4 different features were meant to have the similar difficulties, but it turned out that F1-

1 (thickness control using slider widget) was the easiest. 11 participants succeeded on F1-1,

while each other feature was successfully completed by about 5 of the participants.22 The rea-

son for F1-1 being the easiest might be because there was a working example of the slider

widget right in the code base, the color slider.

Even though some participants were not very successful in completing the tasks, their data

were not excluded because the participants still backtracked to some extent while trying to

figure out how to get the tasks completed. The following sections summarize the key obser-

vations related to each research question.

4.1.5. RQ1-1: HOW DO PROGRAMMERS BACKTRACK?

4.1.5.1. COMMAND STATISTICS & KEYSTROKE DISTRIBUTION

In order to investigate how frequently programmers used backtracking related editor com-

mands, I first analyzed the FLUORITE log data to obtain the frequency of each IDE command

execution and each keyboard key press. Table 4-2 shows the top twenty commands executed,

and separately, the top 20 keystrokes typed across all the participants. Except for typing and

code navigation commands, the most frequent commands are the backtracking related com-

mands such as delete and undo, indicated as inverted. Considering that the navigation com-

mands would be expected to be large since FLUORITE logs multiple instances of the same event

when the user holds down a key and it auto-repeats, it is shown that backtracking related

commands are very frequently executed. The command statistics are somewhat different

from those observed by Murphy et al. [Murphy 2006] because the two logging tools differ in

what types of commands are logged. However, the rank orderings of commands are con-

sistent if only the main editor commands such as Delete, Save, Copy, Paste, and Assist are

compared.

22 F1-2, F2-1, and F2-2 were successfully completed by 5, 6, and 4 out of 12 participants, respectively.

Chapter 4: Empirical Studies of Backtracking 39

Table 4-2 lists two different Assist commands. The first one counts all the content assist exe-

cuted automatically (e.g., when the user types a dot following a variable name), and the sec-

ond one only counts the manually executed content assist and quick fixes.

4.1.5.2. DELETING VS. COMMENTING OUT

There were also some interesting backtracking related behaviors observed during the study.

7 of the 12 participants habitually commented out their code rather than deleting it, whether

or not they thought the code was going to be reused later. However, even the participants

who explicitly said that they usually comment out code also deleted code during the study,

because they said they did not like messing up the code with lots of comments. In some cases,

those deleted code fragments turned out to be needed later on.

Some programming languages provide specific ways of activating and deactivating code. For

example, C/C++ has preprocessor directives such as #ifdef, and the .NET Framework pro-

vides the Conditional attribute which allows programmers to conditionally activate a cer-

tain method according to the current build configuration. Although, Java also supports con-

ditional compilation, participants were not aware of this feature and they could only use con-

ventional comments.

Commands Keystrokes

Type char. 17092 (31.8%) Down arrow 5797 (12.64%)

Line down 5795 (10.8%) Backspace 5693 (12.41%)

Delete prev. 5692 (10.6%) Up arrow 4495 (9.80%)

Move caret 4686 (8.7%) Right arrow 3586 (7.82%)

Line up 4491 (8.4%) Left arrow 2751 (6.00%)

Col. next 3544 (6.6%) S 1873 (4.08%)

Col. prev. 2715 (5.1%) Ctrl 1854 (4.04%)

Select text 1975 (3.7%) Shift 1652 (3.60%)

Sel. col. next 1035 (1.9%) Enter 1387 (3.02%)

File open 907 (1.7%) T 1289 (2.81%)

Sel. col. prev. 857 (1.6%) E 1250 (2.72%)

Save 852 (1.6%) N 1003 (2.19%)

Delete 576 (1.1%) I 882 (1.92%)

Paste 459 (0.9%) C 871 (1.90%)

Assist(auto) 456 (0.8%) Space 859 (1.87%)

Run 391 (0.7%) A 800 (1.74%)

Copy 314 (0.6%) O 750 (1.63%)

Undo 294 (0.5%) V 619 (1.35%)

Assist(manual) 213 (0.4%) L 610 (1.33%)

Sel. line down 212 (0.4%) Delete 576 (1.26%)

Others 1113 (2.1%) Others 7275 (15.86%)

Total 53669 Total 45872

Table 4-2. Commands and keystroke distributions. The top twenty entries are listed for each category. Shaded

entries are related to code navigation, and the inverted entries are related to backtracking.

40

4.1.5.3. COMMON REASONS FOR COMMENTING OUT

During the lab study, participants articulated three main reasons why they commented out

the code instead of deleting it. First, the participants commented out code because they knew

that the code being commented out might be used again. This includes the situation where

the code was one of the variations and the programmer wanted to be able to switch to another

variation. Also, when the programmer had implemented two different features simultane-

ously and wanted to test one at a time, they left the code for the feature under test and com-

mented out the other. This was the most common reason given.

The second common reason for commenting out is to keep the code snippet as a good example.

This situation differs from the previous one in that the code is not expected to be used at the

moment, but the programmer wants to keep the code anyway. This could happen when the

programmer thinks that the code could be used as a structural template for other similar code.

For example, in our study, the participants had to add different types of listeners to the graph-

ical widgets. When programmers tried out one type of listener but it did not work, they often

commented it out because the listener creating and adding structure is pretty much the same

regardless of the type of the listener they would use. Also, when it turned out that an example

code snippet they found from the Internet did not quite fit to the given situation, they often

commented out the code rather than deleting it because they did not want to have to search

for the example again in case it would be needed later on.

Finally, programmers occasionally commented out code in order to remind themselves that

the code was not good. They kept the code there because they wanted to avoid making the

same mistakes later.

4.1.5.4. WHEN THEY KNOW THEY NEED TO BACKTRACK LATER

Not surprisingly, even the participants who usually just deleted the code did comment out

the code when they believed that the code was likely to be reused soon. For example, when

they were doing task 3 (getting back to FA-1 after completing FA-2), pretty much all of the

participants commented out the code for FA-2 because they thought they might be asked to

go back to FA-2 again.

Only 5 out of the 9 participants who started task 423 behaved differently when they were do-

ing task 4 (implementing FB-1 & FB-2 simultaneously). One participant used a flag variable so

that he could select either of the two user interface variations dynamically. Four other par-

ticipants marked each code fragment using comments, and only one of the variations would

be activated (uncommented) at a time. When the participants were asked to switch to a dif-

ferent variation, they manually searched for all the currently-activated variation code frag-

ments using the labels and commented them out, and then searched for all the code fragments

to be activated and uncommented them. This worked, but it was a tedious process. Also,

23 The remaining three participants gave up before getting to task 4.

Chapter 4: Empirical Studies of Backtracking 41

when only one of the variations gets accepted and the others are rejected, one would need to

manually search for all of the rejected variations and delete them.

4.1.6. RQ1-2: HOW DO PROGRAMMERS KNOW WHERE TO BACKTRACK TO?

The participants often remembered one or more aspects of the deleted code, especially when

they wanted to restore a specific code fragment that was recently deleted. What they remem-

bered included the original location from where the code was deleted, how the surrounding

code looked, the names of one or more code elements in the deleted code, or what the desired

code looked like. This suggests that in general, even when they could not easily reproduce the

code from scratch, they probably could recognize the code if it was able to be displayed some-

how.

4.1.7. RQ1-3: WHAT ARE THE BARRIERS TO SUCCESSFUL BACKTRACKING?

The study participants faced various problems when they were trying to backtrack. First, the

participants had problems finding the right code fragment to be reverted in the source file.

For instance, when implementing F1-1 (thickness control feature using the slider widget),

most participants copied and pasted the code for the color sliders and modified the pasted

code. Because the original code and the pasted code looked very similar, participants were

often confused and looked at or even edited the wrong code.

When they were trying to backtrack all the code fragments related to a certain source code

level element such as a variable, method, or class, it took some effort to find all the relevant

code fragments. Although participants rarely made mistakes at this, occasionally they did

miss a few statements that should have been reverted. Often, this happened because two or

more elements were involved in a single feature. For example, when restoring the com-

mented-out slider widget, they often forgot to restore the associated change-listener code.

One participant made this mistake even though he manually labeled the related code frag-

ments using comments. It would be even more difficult for the programmers to find all the

relevant code fragments when they are distributed across multiple files, but this did not hap-

pen in our lab study because mostly the participants implemented all the features in a single

file.

The participants often added and removed debug outputs. Especially when they were imple-

menting F2 (x, y coordinates indicator), pretty much all of the participants added debug out-

puts using either a console output method (System.out.println) or a simple message box

(JOptionPane.showMessageDialog) in order to check if the mouse listeners they had just

added was called when the mouse cursor was moved, and if the x,y values were correct. How-

ever, after they had finished implementing the feature, they sometimes forgot to remove the

debug outputs. All the participants who used the message dialog did remove it since the mes-

sage box was continuously interfering, while many of the participants who used console out-

put did not.

42

Several problems were identified with restoring code during the study. For example, one par-

ticipant had a serious problem with restoring code. After copying and pasting some code and

testing the program, he meant to delete only the pasted code, but he accidentally selected the

copied and the pasted code together and deleted them, because they happened to be adjacent

and looked very similar. He realized that something went wrong about 2 minutes later when

he tested the program, and then spent 1 more minute to figure out what was wrong, and then

spent 30 seconds to locate where the deleted code should be put back. However, he said he

could not remember what the deleted code looked like, and he failed to restore the code even

after he correctly found where it went. He had tried to restore the deleted code 24 from

memory for 6 minutes, but eventually failed to produce correct code and gave up.

Another participant faced a similar problem, but in this case, he did remember what the code

looked like, and he knew that he had deleted the code quite recently. He therefore could re-

store the code by taking advantage of the linear undo feature of the code editor. He first exe-

cuted the undo command multiple times until the desired code fragment was restored, copied

the code fragment, executed redo commands to remove all the other extra commands that

still should be redone, and then pasted the code into the desired position. This takes ad-

vantage of the feature that undo/redo does not affect the contents of the clipboard, and that

in Eclipse, the copy command does not affect the undo stack, so redo was still available after

undoing and performing copy.

In addition, participants reproduced the same code fragments repeatedly from memory. For

example, when implementing F2 (x, y coordinates indicator), participants wrote complex ex-

pressions which would result in the desired output string.25 They used these expressions

with the debug outputs to check if they were getting the correct values, and then retyped the

whole expression when trying to display it in the desired graphical widget. Reproducing such

expressions was not difficult, but it was very tedious and inefficient.

4.1.8. LIMITATIONS

This study, however, had some limitations. In order to maximize the chance of observing

programmers’ backtracking behavior in a short (2 hours) lab session, the tasks were

artificially designed so that they require the participants to backtrack. As a consequence, the

study results does not really tell us how frequently those problems would occur in real

development situations. In addition, because the code base used for this study was a

particular type of program, a GUI application, it is left unknown whether the findings from

this study would generalize to other types of programming tasks.

24 6 lines of code, excluding the blank lines and the lines only containing “}”.
25 similar to the following expression: “(X, Y) = (” + x + “, ” + y + “)”

Chapter 4: Empirical Studies of Backtracking 43

4.2. ONLINE SURVEY

In order to get more feedback from general programmers besides just graduate students at

Carnegie Mellon, an online survey was conducted as a follow-up, which took about 15~20

minutes to complete. The key research questions for this online survey were the followings:

RQ2-1. What is the perceived frequency of backtracking?

RQ2-2. What are the common backtracking tactics used by programmers?

RQ2-3. What tools or features could help programmers backtrack better?

The survey was posted on several online programmer forums including reddit.com, 26

dzone.com,27 and others. A total of 103 programmers answered at least some of the questions,

and 48 of them completed the whole survey. Of the 48 people who finished, 31 were from

dzone.com, 15 were from reddit.com, and the other 2 were from the Eclipse developer forum.

Our analyses of this survey are based on the responses from these 48 people who completed

the survey so all of the questions would have the same number of answers. The questionnaire

used for this study can be found in Appendix B.

4.2.1. DEMOGRAPHICS / TRAITS OF THEIR WORK

The survey was composed of three parts. First, the respondents were asked demographic in-

formation including their gender, age, and prior experience in software development. The

demographics of the respondents are summarized in Table 4-3. 72.9% of all the respondents

had been programming for more than 5 years and the overall average was 13 years. This

indicates that the respondents were mostly professional programmers.

26 http://www.reddit.com/r/programming
27 http://www.dzone.com/

Category Value Count Percentage

Gender Male 44 91.7%

Female 4 8.3%

Age 20-30 22 45.8%

30-40 15 31.3%

40-50 6 12.5%

50-60 5 10.4%

Average 32.5 σ = 9.4

Programming

Experience (years)

< 1 1 2.1%

1-3 4 8.3%

3-5 8 16.7%

>= 5 35 72.9%

Average 13.0 σ = 9.9

Total respondents 48

Table 4-3. Demographics of the online survey respondents.

http://www.reddit.com/r/programming
http://www.dzone.com/

44

The respondents were asked to express if they worked alone or as part of a group, using a 5-

point Likert scale. Each of the 5 choices received a rating from 12.5% to 27.1%, which means

the respondents had diverse situations. The next question asked how flexible the program-

mers’ work was for different activities, and the results are summarized in Figure 4-2. We can

see that they can experiment, iterate, and/or explore a lot for the coding details but not much

for the user interface specifications or the desired behaviors.

I speculated that there might be more flexibility if the programmer works alone or as part of

relatively small groups. So, I investigated if there is any correlation between the sizes of the

groups in which the programmers worked, and the flexibility of their work, but could not find

any statistically significant correlation. Even when the programmer worked alone, often the

work was assigned by the boss or the customers and we did not find that the programmer

had much freedom. Only one of the respondents who always worked alone expressed that

everything is completely unspecified and he could do whatever he wants.

4.2.2. RQ2-1: WHAT IS THE PERCEIVED FREQUENCY OF BACKTRACKING?

In the second part of the survey, seven different situations were presented where the pro-

grammers might need to backtrack. For each situation, the respondents were first asked how

often they faced the given situation. Figure 4-3 shows the responses for these questions. We

can see that programmers face these backtracking situations quite often. Roughly 3/4 of the

programmers face these situations at least “sometimes.”

Figure 4-2. The responses for the question "For each of the following, please specify how often you need to

experiment, iterate, and/or explore while you are developing." The lighter color represents more flexibility.

0% 50% 100%

The details of the
implementation code

Which elements of the API
are used

Which APIs/libraries are
used

The architecture of the
code itself

The results that my code
achieves

Highly specified before
I start developing

Specified, but some
opportunity to
negotiate changes

Somewhat flexible,
within broad
constraints

Highly flexible

Completely
unspecified; I can do
whatever I want

Chapter 4: Empirical Studies of Backtracking 45

The respondents were also asked what other backtracking situations they faced. One person

mentioned backtracking while writing a new interface file from scratch. Although the exact

reason for backtracking was not explicitly mentioned, it may be because it is often not clear

what would be the correct interface to be exposed. Two responses were about reorganizing

and simplifying code structure. Another two responses said that they mainly backtrack be-

cause they find new corner cases or missed input values during testing.

4.2.3. RQ2-2: WHAT ARE THE COMMON BACKTRACKING TACTICS USED BY PROGRAMMERS

Next, they were asked what types of tactics they use to backtrack. Eight different potential

tactics related to backtracking were shown, and they were asked how often they think they

use each tactic to solve the given situation using a 5-point Likert scale ranging from “Never”

to “Pretty much every time”. The result showed that only a few tactics are primarily used for

each situation. When fixing typos and small mistakes, the most frequently used tactics were

using backspace / delete keys, using undo command, and selecting and overtyping. When

tuning parameters, they usually select the old parameter and overtype the new parameter.

They look up the method list using the code completion list when they are trying to figure out

how to use an API, or they manually replace one method with another. For debugging or try-

ing out different solutions, they said they mostly comment out code, which is consistent with

our observations from the lab study. Finally, when cleaning up code, they manually select the

unnecessary code and delete it or use refactoring commands to better structure the code.

The respondents were also asked to provide other tactics they use for each given situation, if

any. A total of 34 responses were collected for these questions. Two of the tactics that our

Figure 4-3. The backtracking situations shown to the survey respondents, and their answers.

0% 50% 100%

Cleaning up the code and making it
more readable

Trying to find an appropriate
algorithm

Trying out various user interface
designs

Fixing code just added, because it is
not working

Figuring out how to use an API
correctly

Tuning parameters

Typos, mistyping, or other small
mistakes

All the time

Frequently

Sometimes

Rarely

Never

46

participants mentioned were also observed in our lab study. Two people mentioned that they

use Boolean flag variables to temporarily turn on or off code fragments. Another two partici-

pants said they would write a small code snippet separated from the main project in order to

try out something.

There were two other tactics mentioned by the respondents which were not observed in the

lab study. Two people mentioned that they move the parameters out of the code and put them

in external configuration files or in databases so that they can change the values without re-

building the software, even at runtime. Five people mentioned writing unit tests using mock

objects to see how the API works. It is possible that our lab study participants did not use

these tactics because the code base was fairly small and they had time limitations.

RQ2-3: What Tools or Features Could Help Programmers Backtrack Better?Finally, they were

asked to provide ideas on what types of new features or commands for an IDE could help with

experimenting and backtracking. Two people wanted a tool where programmers can type in

small code snippets and run them, just as they can with scripting languages. Two people

wanted an IDE feature that allows programmers to take snapshots across multiple files at any

point, and switch among those snapshots, as a light-weight version control system (provided

as the tagging feature in AZURITE, Section 6.2). Two other people wanted an even lighter ver-

sion control system that can keep multiple versions of each method or class and allow users

to select one of those versions easily (provided as the code history diff view in AZURITE, Sec-

tion 8.1). One person wanted an undo tree model instead of the conventional linear undo

model.

4.2.4. LIMITATIONS

Although the participants responded how frequently they face various backtracking

situations in the online survey, it is possible that the programmers backtrack unconsciously

and the survey results may not correctly reflect what actually happens in a real development.

In addition, the survey cannot provide details about how and under what circumstances

programmers backtrack.

4.3. LONGITUDINAL STUDY OF PROGRAMMERS’ BACKTRACKING

This section describes an extensive, longitudinal study conducted to further investigate

programmers’ backtracking behavior, as a follow-up to the previous two studies. The goals

of this new study were twofold. First, this study was aimed at obtaining backtracking

statistics in order to quantify the need for backtracking tools. For this study, the focus was on

collecting quantitative data, as our previous studies were mostly qualitative. The second goal

of this study was to identify backtracking situations that are not very well supported by

existing programming tools, and to extract useful design implications for developing better

backtracking tools that might improve programmer productivity.

Chapter 4: Empirical Studies of Backtracking 47

The analysis was performed with the following research questions in mind:

RQ3-1. How frequently do programmers backtrack in a real programming

environment? (Section 4.3.2.1)

RQ3-2. How large are the backtrackings? (Section 4.3.2.2)

RQ3-3. How exactly do programmers perform backtracking?

For example, do programmers backtracking manually? (Section 4.3.2.3)

RQ3-4. Is there evidence of “exploratory programming”? (Section 4.3.2.4)

RQ3-5. Are there backtrackings happening across multiple editing sessions?

(Section 4.3.2.5)

RQ3-6. Are there selective backtrackings, which cannot be performed using the undo

command? (Section 4.3.2.6)

RQ3-7. Do programmers backtrack to the same code repeatedly? (Section 4.3.2.7)

The key idea of this study was to observe programmers in their normal development

environment, rather than in a lab, over a long period of time by using the FLUORITE logger. The

following subsection presents the analysis method that was devised to answer these

questions (Section 4.3.1). Using the fine-grained code edit logs collected from 21 people,

totaling 1,460 total hours of programming time, the analyzer could track the entire histories

of all abstract syntax tree (AST) nodes in their source code, and use the per-node history data

to detect backtracking instances.

The next subsection presents the backtracking related information found from the analysis,

corresponding to the research questions listed above (Section 4.3.2). The results show that

programmers were backtracking 10.3 times per hour on average, and the backtracking size

varied from a single character to more than a thousand characters, which spans from

backtracking out of simple parameter value changes to significant algorithmic changes.

Programmers were backtracking manually by deleting or typing code in 34% of all

backtracking cases. In 20% of the backtracking cases, programmers first changed some code,

ran the application, and then backtracked the changes, suggesting that they were

experimenting with their code. About 97% of all backtrackings were done within the same

editing session. 9.5% of all backtracking instances were selective, which means that the

conventional undo command could not handle them, because they were intermingled with

other changes that the programmers did not want to lose. Finally, only 15% of the

backtracked nodes were reverted to the same state again later.

4.3.1. ANALYSIS METHOD

4.3.1.1. LOG DATA

The data set we used for this study was collected using FLUORITE (Chapter 3). A total of 21

participants were recruited for the study (Table 4-4). Since the goal was to investigate how

programmers backtrack for their own programming projects, the participants were asked to

install FLUORITE on their own Eclipse IDE and perform their own programming tasks as usual.

48

They were periodically asked to archive and send their logs to us, and were paid up to $50

for their participation. I also collected my own logs, which were analyzed together with the

data collected from the participants. The data was collected from April 2012 to January 2014,

and contains 1,460 hours of coding activities, excluding all the idle time exceeding 5 minutes.

All of the participants were programming in Java using Eclipse (v3.6 or higher) across a

variety of Windows and Macintosh machines.

Among the participants, about 8 out of 13 in G1 were Masters students who were working on

their Studio projects with real clients, and the participants in G2 are professional

programmers whose primary job is programming but in an academic context.

4.3.1.2. AST-NODE BASE CHANGE HISTORY TRACKING

The collected data set contained 1,345,241 coding events in the logs, which made it almost

impossible to manually inspect the logs. Therefore, an automated analysis approach was used

for this study. By the definition of backtracking (Chapter 1), a trivial backtracking detector

would detect any pairs of edit operations <op1, op2> where the later performed operation

op2 reverts what op1 did earlier, at least partially. For example, if an earlier edit operation

inserts “foo” in the code (op1) and that “foo” is deleted anytime later by another operation

(op2), this pair of operations could be considered as a backtracking instance. The initial data

analysis attempt followed this approach. However, this naïve approach was unsuccessful due

to the following major limitations:

 Too many false positives were found, caused by auto-formatting, organizing import

statements, auto-generated comments, etc.

 It could not detect multi-step backtracking, where a code fragment is reverted to an

earlier state by multiple edit operations.

 It could not tell syntactically equivalent code fragments very well, as it was purely

text-based. For example, if a method call foo(); is deleted and then later put back as

foo␣(); with an additional space before the parentheses, it could not know the two

statements are actually identical and failed to detect such backtracking.

 It treated comments and source code the same way.

Group # Description Coding Time (hours)
(min / avg / max / total)a

G0 1 Myself 294 / 294 / 294 / 294

G1 13 Graduate students at CMU 3 / 40 / 216 / 520

G2 5 Research programmers / systems scientists at CMU 6 / 118 / 446 / 588

G3 2 Graduate students at the University of Pittsburgh 6 / 29 / 51 / 57

a. min / avg / max: per-user values

total: the sum of all the participants’ coding times in each group

Table 4-4. Participant groups of the longitudinal backtracking study

Chapter 4: Empirical Studies of Backtracking 49

 It was difficult to tell the high-level intent of the detected backtracking automatically,

and required substantial manual inspection to get useful information about the

detected backtracking instances.

In order to address these issues, a more sophisticated analysis approach was devised which

utilized the abstract syntax tree (AST) of the source code. The basic idea of this approach is

to keep the evolution history of individual AST nodes of interest throughout the lifetime of

the nodes.

The automated analyzer28 processes the logged edit events sequentially off-line, separate

from Eclipse. When a new file open event is seen from the log, the analyzer keeps the snapshot

of that source file and parses the snapshot (using ASTParser from the Eclipse JDT) to store all

the AST nodes of interest, for example all the statement nodes in the source file. For each AST

node, the analyzer remembers the start position and length of the node within the file, and

the initial snapshot of that node. When keeping the snapshot, the analyzer normalizes all the

formatting such as whitespaces and indentations.

Whenever an edit operation is seen, the analyzer applies that operation on the last known

snapshot of the file in order to get an updated snapshot, and parses the updated version. Then

the analyzer determines all the AST node(s) that were affected by this change and updates

the start position and length of the node. In addition, the analyzer adds the new version to

the evolution history of that specific node, but only when the normalized snapshot differs

from the last known snapshot.

Because the log data contains character-level edit operations rather than AST-level

differences, a source file can be in an incomplete state (i.e., containing parse errors) after

applying an edit operation. In such cases, the analyzer tries to update only the start position

and length values of all the known nodes according to the edit offset and length. When the file

returns to a parseable state after some subsequent edits, the analyzer again tries to match all

the previously known nodes and the current nodes to find all the affected nodes. By doing

this, the analyzer can keep track of the per-node evolution history over time.

When an AST node gets removed from the AST tree (i.e., the corresponding code fragment is

deleted from the source code), the node can no longer have more evolution history in the

future. At that point, the analyzer checks whether the evolution history of that node contains

any backtracking instances. Let the evolution history ℎ ≔ 𝑣1𝑣2 … 𝑣𝑛 , where 𝑣𝑖 is the 𝑖 -th

snapshot of the node. A backtracking instance 𝑏 is then defined as a sublist 𝑣𝑓 … 𝑣𝑙 of ℎ where:

𝑓 + 1 < 𝑙 ∧ 𝑣𝑓 = 𝑣𝑙 ∧ ∀𝑖 ∈ (𝑓, 𝑙) ∙ 𝑣𝑓 ≠ 𝑣𝑖

In summary, a backtracking instance is a sub-history of a node where the first and the last

snapshots are the same, and all the intermediate snapshots are different from the first

28 The automated backtracking analyzer described in this section is different from the FLUORITE Analyzer tool de-

scribed in Section 3.4.

50

snapshot. This indicates that this node digressed from the first version and then backtracked

to the first version. Figure 4-4 shows an example node history which contains three

backtracking instances. Note that 𝑣1 … 𝑣6 does not count as backtracking, because there is an

intermediate version 𝑣4 which is the same as 𝑣1 and 𝑣6 . Throughout the paper, 𝑣𝑓 will be

referred to as the first version, 𝑣𝑙 as the last version, and any 𝑣𝑖 (𝑓 < 𝑖 < 𝑙) as an intermediate

version of a backtracking instance. When there is no need to distinguish the first and last

version (because they have the same code by definition), the term original version will be

used to refer to either version.

Figure 4-5 shows an example history of a statement node that contains a backtracking

instance. On the left side are the IDs of the edit operations unique within a single

programmer’s entire log (the numbers in the square brackets). Each line shows the snapshot

of the node at a given time, and it shows the evolution history of this specific node from top

to bottom. The green shaded code indicates newly inserted code, and the pink shaded

strikethrough code indicates deleted code compared to the previous version. In this example,

there was one backtracking instance [184263, 184629], which means that the normalized

snapshot of this node at ID 184263 – the first version – was identical to the one at 184629 –

the last version.

The analysis was performed on three different levels of granularity of AST nodes: statement

level, block level, and type definition level. A type definition is any of a whole class, an

Figure 4-4. An example of a node evolution history, which contains three backtracking instances. The node first

appeared in the code as “toString();” (v1), changed a few times (v2 through v5), and finally ended up back at

the original code (v6). The different contents are symbolized as capital letters A, B, and C. There are three back-

tracking instances in this node history, indicated as black backward arrows.

v1

v2

v3

v4

v5

Backtracking instance: [184263, 184629]

[184263]return new Point(getWidth(),getHeight());

[184555]return new Point(getWidth() - MARKER_SIZE,getHeight());

[184567]return new Point(getWidth() - MARKER_SIZE,getHeight() - MARKER_SIZE);

[184623]return new Point(getWidth() - MARKER_SIZE,getHeight() - MARKER_SIZE);

[184629]return new Point(getWidth(),getHeight() - MARKER_SIZE);

Figure 4-5. An example output of the analyzer, showing the history of a statement node. Each row maps to each

version (v1, v2, …, v5). This node contains a single backtracking instance, which is v1…v5. Note that the version

numbers (v1-v5) are not part of the output, and added here for the purpose of explanation.

Chapter 4: Empirical Studies of Backtracking 51

interface, or an enum, which is usually a whole Java file with the exceptions of nested type

definitions. The log analysis was performed at these levels for two reasons. First, this was to

know the granularity of backtracking instances. Second, this is needed to detect certain

backtracking instances. For example, when a statement (s1) is deleted from the code and then

the identical statement (s2) is put back at the same position in the future, the statement level

analyzer would consider s1 and s2 as separate nodes, and thus not detect this as backtracking.

On the other hand, if we run the analysis at the block level as well, both the deletion of s1 and

insertion of s2 would be in the evolution history of the surrounding block, thus the block-

level detector would successfully detect this as a backtracking instance. In addition, block

level analysis can detect the changes spanning across multiple statements. Similarly, when a

code block or an entire method is removed and restored later, or when multiple code blocks

are changed together and backtracked, the type definition level detector would catch those

instances.

Comments in the source code were excluded from the analysis, as we were mainly interested

in actual code changes and exploratory programming. However, when the programmer com-

ments out some code and uncomments it (or vice versa), the analyzer still detects this as a

backtracking, because it is seen by the analyzer as if the commented out code disappeared

and was put back in.

4.3.1.3. DATA PREPARATION & REMOVING DUPLICATED RESULTS

The log data needed to be cleaned up before performing the analysis, in order to get more

meaningful results. First, all of the minor typo correction instances were removed from the

logs using the typo correction detector described in Section 3.4.2. Even though typo

corrections are backtracking instances by definition, these are not very interesting in that it

is hard to imagine a useful programming tool that helps fixing typos any better than current

mechanisms. There were 40,229 code edit events removed as part of typo corrections, out of

a total of 343,685 edits (11.7%).

The second clean-up process applied was removing the noise related to the “Rename

Refactoring” command of Eclipse. When the rename refactoring is invoked, all the

occurrences of the element being renamed (e.g., a variable name) are highlighted directly in

the code editor, and they all change together as the user types. When the user confirms the

renaming by hitting the enter key, however, Eclipse automatically reverts all the character-

level changes made during the renaming process, and turns them into word-level changes so

that users can undo the renaming with a single command. Since all the intermediate

character-level changes are also logged in the FLUORITE logs, they resulted in many false

positives in the analysis results. Thus, all of these instances were cleaned up before the real

analysis.

In addition, the analyzer was designed in a way that it takes extra care to remove possible

duplicate instances from the analysis results. When running the analysis on different levels

of granularities (statement < block < type definition), the same backtracking instance can

52

appear in multiple levels. For instance, when a statement is changed and immediately

backtracked, this instance will appear in all three levels. When counting the backtracking

instances at a coarse level of granularity, the analyzer excluded all the instances that were

already detected at a finer grained level. There can also be duplications within the same level

of granularity, because a code block can contain another block, and a type definition can

contain a nested type definition inside. In such cases, the analyzer only counted the

backtracking instances at the innermost code element.

Finally, because the programming language used was Java, there can also be duplications

when a statement contains one or more type definitions or code blocks. In Java, anonymous

class instances can be defined and assigned to a variable or passed as a parameter of a method

inline. The analyzer excluded these types of duplications as well by not counting such state-

ments.

4.3.2. RESULTS

This section presents the analysis results, which are summarized in Table 4-5. The backtrack-

ing instances were investigated with several specific questions in mind, each of which is ex-

plained in the following subsections.

4.3.2.1. RQ3-1: FREQUENCY OF BACKTRACKING

Overall, the analyzer detected a total of 15,095 backtracking instances within the 1,460 hours

of coding activities, which gives an average rate of 10.3 instances per hour. That is, program-

mers were backtracking every six minutes on average, which is quite frequently considering

that this number excludes all the trivial typo correction types of backtrackings. The rate var-

ied across participants (min=3.8/h, max=28.4/h), but all participants were backtracking fre-

quently.

4.3.2.2. RQ3-2: SIZE OF BACKTRACKING

The size of each backtracking was measured, in terms of how far the intermediate versions

digressed from the original version. Minor backtrackings might not need much tool support,

but it would probably be very helpful to have better tools for relatively larger backtrackings.

To measure this size, the Levenshtein distance [Levenshtein 1966] was used, which is

commonly referred to as the edit distance between two strings. In a backtracking instance,

the size of the instance was obtained by first calculating the edit distances between the

original version and each of the intermediate versions, and then taking the maximum value

among them as the size of the backtracking. For instance, if an instance had a version history

of A→B→C→A, then the size of the instance would be the maximum value of the distance

between (A, B) and (A, C). In the earlier example presented in Figure 4-5, the backtracking

size is 28, which is the edit distance between 𝑣1 and 𝑣3.

Chapter 4: Empirical Studies of Backtracking 53

Figure 4-6 shows the distribution of backtracking sizes. The horizontal axis (which is non-

linear) represents the groups of backtracking sizes in ascending order, and the vertical axis

shows the total number of backtracking instances in each group. It is shown that 1,304

backtrackings were a single character, which were 8.6% of all backtrackings. The most

common backtrackings were between 10 and 49 characters. There were also 220

backtrackings that were larger than or equal to 1,000 characters.

The analysis determined that of all the single character backtrackings, 36% were performed

on variable or method names, 26% on number literals, and 13% on string literals. For the

larger size categories, 50 instances were randomly sampled from each categories and manu-

ally inspected to get a better sense of what kinds of backtrackings are represented at the dif-

ferent sizes. The 2-9 and 10-49 groups seem to be dominated by simple parameter/expres-

sion changes as in Figure 4-5, followed by simple name changes on methods or variables. The

majority of 50-99 group seem to be single statement changes, and some instances were about

surrounding existing code with control blocks (e.g., if, try-catch) and reverting it. The 100-

PID Group Time (h) BI BI/h CRR SR

P0 G0 294.1 2278 7.7 37.5% 10.1%

P1 G1 68.1 961 14.1 6.0% 11.8%

P2 G1 216.2 2450 11.3 26.3% 13.7%

P3 G1 2.6 73 28.4 0.0% 6.8%

P4 G1 64.2 1616 25.2 45.4% 8.1%

P5 G1 13.7 110 8.0 29.1% 17.3%

P6 G1 16.4 164 10.0 8.5% 6.1%

P7 G1 25.3 486 19.2 11.7% 8.4%

P8 G1 29.5 296 10.0 45.6% 10.8%

P9 G1 22.5 380 16.9 36.3% 11.6%

P10 G1 19.5 193 9.9 3.1% 14.5%

P11 G1 22.7 87 3.8 13.8% 10.3%

P12 G1 5.5 65 11.8 13.8% 1.5%

P13 G1 14.0 126 9.0 4.0% 1.6%

P14 G2 5.7 47 8.3 42.6% 6.4%

P15 G2 87.3 622 7.1 19.0% 11.4%

P16 G2 446.0 4179 9.4 4.3% 5.8%

P17 G2 28.0 116 4.1 44.0% 8.6%

P18 G2 21.2 186 8.8 4.8% 4.3%

P19 G3 51.2 605 11.8 2.0% 14.9%

P20 G3 6.2 55 8.9 0.0% 7.3%

Total/Mean 1459.9 15095 10.3 20.4% 9.5%

BI: Number of backtracking instances

BI/h: Backtracking instances per hour

CRR: Cross-run backtracking instances rate

SR: Selective backtracking instances rate

Table 4-5. Summary of the analysis results of the longitudinal backtracking study

54

499 group instances seem to be mostly adding/removing/modifying multiple statements.

The instances with sizes larger than 500 seemed to be significant algorithmic changes, adding

or removing multiple methods, and so on.

4.3.2.3. RQ3-3: BACKTRACKING TACTICS

The ultimate goal of this research was to provide useful backtracking tools for programmers.

Therefore, it was important to understand how programmers are backtracking now, and to

determine whether there is room for improvement. Although this was investigated in the

previous studies (Sections 4.1 & 4.2), this time it was possible to identify the editor features

used for backtracking with actual data. The FLUORITE logs contained not only the code changes

but also the editing commands (e.g., copy, undo, etc.), which allowed detecting what types of

commands were used to accomplish the backtracking. The term tactics will be used to refer

to the low-level editor features used for each backtracking, in accordance with prior research

[Bates 1990][Grigoreanu 2010].

The analyzer reported the editing command that caused all the backward changes of the

instance, which are the changes following the intermediate version with the greatest edit

distance with the original version (Figure 4-7). When all the commands were of same type,

we determined that command to be the backtracking tactic. Otherwise, we marked the tactic

as multiple. We automated this process, but the analyzer could not determine the

Figure 4-6. Distribution of all the detected backtracking sizes.

1304
(8.6%)

3752
(24.9%)

5269
(34.9%)

2026
(13.4%)

2259
(15.0%)

265
(1.8%)

220
(1.5%)

0

2000

4000

6000

1 2 - 9 10 - 49 50 - 99 100 - 499 500 - 999 ≥1000

N
u

m
b

e
r

o
f

B
ac

kt
ra

ck
in

g
In

st
an

ce
s

Backtracking Size (Number of Characters)

Chapter 4: Empirical Studies of Backtracking 55

backtracking tactics for 9.43% of the instances. This happened when the logs did not have

enough information, for example when the source code changed outside of Eclipse.

Figure 4-8 shows the identified backtracking tactics. The most frequently used backtracking

tactic was using the undo and redo commands, constituting 36.63% and 2.57% of all the

backtracking instances, respectively. This implies that these instances were already

supported by existing editor features. We also noticed that many of the undo commands were

invoked repeatedly in sequence. In other words, the participants often used the undo

command multiple times in order to revert the source file to an earlier state.

Figure 4-7. A backtracking instance illustrated. The analyzer determines the farthest version within each in-

stance, and considers all the changes following the farthest version as backward changes.

Figure 4-8. The identified backtracking tactics

UNDO,
36.63%

DELETE, 21.47%

TYPING, 12.61%

PASTE, 6.47%

CUT, 4.25%

REDO, 2.57%

MULTIPLE,
3.53%

UNIDENTIFIED,
9.43%

TOGGLE_COMMENT,
1.29%

CONTENT_ASSIST,
1.74%

56

The next most frequently used tactic was deleting some text from the code, constituting 21.47%

of all instances. This includes using backspace key (16.33%), delete key (3.74%), delete line

command of Eclipse (0.91%), and some combinations of these (0.49%). For these cases, once

the code is located, backtracking itself is trivial; the programmer can easily select the code

and delete it. Therefore, backtracking tools should help programmers locate the right piece

of code to be removed, because that is the biggest challenge in this case.

The third most popular tactic was manually typing the desired code, which was used in 12.61%

of all instances. The analyzer reported the cases with typing and deleting intermixed as typing,

since these deletions can be seen as minor corrections happened while typing. The finding

that manual typing is the third most popular tactic is particularly interesting, because it

shows the lack of tool support for restoring deleted code. Manually restoring the deleted code

or reverting modified code to the original version relies entirely on the programmers’

memory, and thus can be error-prone. Even if the programmer knows exactly what she has

to do, manual typing would be less efficient compared to just undoing – even selectively –

that piece of code to the desired version.

Cutting (4.25%) and pasting (6.47%) were the next most popular tactics. Of all the

backtracking performed by pasting, 41% were just undoing the preceding cut commands,

which can be considered as an alternative way of copying the code.

3.53% of the instances were marked as multiple, which means that more than one type of

editing commands were used to accomplish the backtracking. The rest of the identified tactics

were using content assist features such as code completions and quick fixes (1.74%), and

using the toggle comment feature (1.29%).

4.3.2.4. RQ3-4: CROSS-RUN BACKTRACKING INSTANCES

In situations such as designing a system or learning an unfamiliar API, programmers must

explore and try out multiple alternatives, which has been called exploratory programming

[Sandberg 1988]. It was interesting to investigate in how many of the detected backtracking

instances were performed as part of exploratory programming. One of the ways of

experimenting with code is to make some changes, run the application, and revert the code

back to the way it was before if the code does not behave as desired. The analyzer checked

whether there was an application run command between the first change and the last change

of a backtracking instance, which we call cross-run instances. The FLUORITE logs contain run

commands, such as launching the application under development and running unit tests

within Eclipse, which made it possible to count such instances.

The cross-run instance rates are shown in Table 4-5, in the column titled “CRR” (cross-run

rate). Overall, 20.4% of all instances were cross-run instances. This rate varied among

participants, and two of them (P3 and P20) had no cross-run instances at all. Interestingly,

the logs from these two participants were relatively short (2.6h and 6.2h, respectively)

compared to the other logs, and did not contain any run commands at all. This could mean

Chapter 4: Empirical Studies of Backtracking 57

that these two people ran the application outside Eclipse for some reason, or did not run the

application at all. All the other participants had some number of cross-run instances.

P14 had a 100% cross-run backtracking rate from the statement level analysis. Manual in-

spection of these six cross-run instances discovered that all of them were parameter tuning

instances, for example adjusting some threshold value from 0.3 to 0.4 and then back to 0.3.

4.3.2.5. RQ3-5: CROSS-SESSION BACKTRACKING INSTANCES

In most code editors, the undo feature works only within the same editing session, and users

cannot undo the changes made in the past sessions (where a session is from launching the

IDE to exiting). To determine whether it would be useful to make backtracking tools work

across sessions, I counted the number of cross-session backtracking instances, where the

editing sessions of the first change and the last change were not the same.

The analysis showed that 96.7% of backtrackings were done within the same editing session,

and only 3.3% of all instances were cross-session backtracking. We also measured how many

sessions did each instance go back, which is depicted in Figure 4-9. The graph shows that

99.0% of all backtracking was done within 3 editing sessions. In other words, a backtracking

tool would work for the most (97.0%) cases with only the history within the same editing

session, and providing the history of the last 3 sessions would cover 99.0% of the cases.

Figure 4-9. Cumulative percentage of all backtracking instances with different editing session distances. 96.7%

of all backtrackings were performed within the same editing session. 99.0% of all instances have less than or

equal to a 3 session distance.

96.7%

98.2%

98.8%
99.0% 99.2% 99.3%

96.0%

97.0%

98.0%

99.0%

100.0%

Same
Session

≤1 ≤2 ≤3 ≤4 ≤5

P
e

rc
e

n
ta

ge
 o

f
A

ll
B

ac
kt

ra
ck

in
g

In
st

an
ce

s

Editing Session Distance

58

4.3.2.6. RQ3-6: SELECTIVE BACKTRACKING INSTANCES

The analysis also investigated whether each backtracking instance was selective in nature. A

backtracking instance is determined as selective when there are edits in the middle of the

backtracking that change other parts of the same file, and that are not backtracked together.

I was interested in this, because the restricted linear undo command [Berlage 1994], the

conventional undo command used in most editors, cannot handle selective backtracking.

When determining selectiveness, the analysis was performed as conservatively as possible,

even when there are intermixed changes to other parts of the code. First, all the backtracking

done by undo/redo commands were automatically excluded. There were other subtle cases

that needed to be excluded. For example, Figure 4-10 shows two possible backtracking

scenarios in a source file. The source file has three statement nodes, s1, s2, and s3. In both

scenarios, the three nodes are modified in turn and they are reverted back to the original

version in various orders. We did not want to mark these instances as selective, because the

undo command could be used multiple times to handle these cases. The first scenario shows

such a case. However, the second scenario is also possible when the user performs

backtracking by hand. To exclude these cases, we also looked ahead and checked the changes

immediately following the last change of a backtracking instance, to see if those changes are

reverting the intermixed changes to the other parts.

The results showed that 9.5% of all instances were selective, as indicated in Table 4-5 in the

“SR” (selective rate) column. As explained in Section 4.3.2.3, the analyzer also reported the

tactics of all the selective backtrackings. 63% of selective backtrackings were performed by

manually deleting or typing the desired code, suggesting the need for backtracking tools. No

Figure 4-10. Two possible backtracking scenarios, whose backtracking instances are not selective. The source

file has three different statement nodes being affected (s1-s3). Each backtracking scenario has three backtracking

instances in each node. Except for the backtracking instance in s3 in scenario #1, all the backtracking instances

have some changes to other parts of the same file within their timespan. Nevertheless, these are not selective

because the undo command can handle both cases.

Chapter 4: Empirical Studies of Backtracking 59

significant difference was found between selective and non-selective backtrackings in terms

of their sizes (that is, the selective backtracking had small and large sizes in a similar propor-

tion as shown in Figure 4-6).

4.3.2.7. RQ3-7: REPEAT-COUNT

When a certain node comes back to the same version more than once, the analyzer kept track

of the repeat count of each backtracking instance. For example in Figure 4-4, 𝑏1 and 𝑏2 are of

repeat count 1, but the repeat count of 𝑏3 is 2, because the node content backtracked to 𝐴 for

the second time.

Figure 4-11 shows the repeat counts of all backtracking instances. The blue bars indicate the

number of instances in each repeat count group. When a backtracking happens more than

once, the first time is counted in the first bar, the second time is counted in the second bar,

etc. In other words, each bar is included in the previous bar. Each point on the red line is the

next bar value divided by the current bar value, indicating the percentage of the instances

that come back to the same state again. For example, 12,430 instances have the repeat count

value of 1, and only 15.0% (1,868 out of 12,430) of them come back to the same state after

some exploration in the future. While the number of instances dramatically falls as the repeat

count increases, the revisiting fraction goes up. This implies that when a node comes back to

the same state a few times, it is likely that the node will digress and return again.

One participant (P2) backtracked a statement to the same state 24 times, which was the max-

imum value of all repeat counts. This was another parameter tuning instance, where she was

Figure 4-11. Repeat counts of all backtracking instances, along with the percentage fraction of revisiting the

same state in the future.

12,430

1,868

492 162 143

15.0%

26.3%

32.9%

88.3%

0%

20%

40%

60%

80%

100%

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 ≥5

Fr
ac

ti
o

n
 o

f
R

et
u

rn
in

g
(%

)

N
u

m
b

er
 o

f
B

ac
kt

ra
ck

in
g

In
st

an
ce

s

Repeat Count

of Instances

% of Returning

60

experimenting with different width value for a line drawn on a canvas. The next biggest re-

peat count was 9, where a statement that translated a graphical object on the screen was

removed and put back again multiple times.

4.3.3. LIMITATIONS

There are a few limitations of the analysis method used in this study. First, the analyzer can

only detect exact backtracking instances, which has several implications. For instance, when

a programmer changes two parts within a statement and reverts only one of them, the

analyzer would not be able to catch this backtracking instance because the smallest level of

granularity we used was the statement level.

Moreover, all the detected instances are successful, and the analyzer cannot detect cases

where the programmer intended to backtrack but failed, which occasionally happened in the

preliminary lab study (Section 4.1.7). If programmers fail to backtrack correctly, it would

imply the need for better backtracking tools even more. The analysis also missed any near-

exact backtracking instances. For instance, suppose a variable name fontSize changes to

rectangleSize, then to regionArea, and finally to fontArea in that order (changed parts

are underlined). Conceptually, this is backtracking because the front part of the variable name

has changed from font and then back. This case is interesting, because even a selective undo

tool cannot easily handle this because selectively undoing the first change (fontSize →

rectangleSize) has what I call a “region conflict” with the following change which deleted

a portion of rectangle. The analysis would not count this case. More detailed discussion of

such region conflicts appears in Section 5.1.2.

All the participants were programming in Java. There may be some backtracking patterns

that occur more often when coding in Java, and the statistics presented in this analysis may

not be generalizable to other programming languages. In addition, if a similar analysis were

to be performed for a different programming language, the analyzer might need some

language-specific tweaks. For example, we needed to take Java’s anonymous class definition

into account, in order to filter out duplicated results.

In addition, all the logs were collected within Eclipse, which might have affected the results.

The backtracking patterns may vary if programmers are using different code editors or IDEs

that provide different code editing features. Nevertheless, considering that most available

IDEs provide a similar set of editor commands and all programmers need to do tasks like

understanding APIs and determining the right parameters for methods, I believe that the

patterns would not be drastically different from the results reported here.

All participants, including the professional programmers, were working in academic settings.

It is unknown whether there would be any significant differences in industrial settings. None

of the participants were novices learning to program, and studying novice backtracking

behaviors would be an interesting area for future work. I included my own logs (P0 in Table

4-5), which might have biased the results. Because my main research focus was on

Chapter 4: Empirical Studies of Backtracking 61

backtracking, I might have performed backtracking more than the average programmers.

However, I was able to confirm that excluding my own logs does not change the results much.

For example, the backtracking rate becomes 11.0/hour when P0 is excluded, compared to

10.3/hour as we reported in Section 4.3.2.1, and the selective backtracking rate remains the

same at about 9%.

There were a few types of information that seemed interesting but could not be obtained.

First, because the log data did not record the version control system (VCS) features used by

the programmers such as commit and revert, the analyzer could not determine the fraction of

backtracking done by the VCS. If the source code is backtracked using the revert feature of a

VCS, the analyzer would still detect the backtracking but mark the tactic as unidentified (see

Figure 4-8). If it was known which ones were due to the use of a VCS, the analyzer would have

been able to distinguish the types of backtracking which would be better handled by a VCS

and those most suited for in-editor features. This would help in designing backtracking tools

to work better with existing VCSs.

In addition, I wanted to know whether there were semantic relationships among the

backtracking instances. For example, suppose a programmer first renames a method and all

the callsites, and then reverts these changes later on. The analyzer would detect the

individual backtracking which occurred in the method definition and the callsites separately.

It would be clear that these instances are all related to each other by manually inspecting

these instances, but the analyzer could not automatically determine such relationships.

I also wanted to learn how programmers navigate to the backtracking location before they

actually perform backtracking changes. However, this information could not be determined

partly because there was some missing information needed in the logs, and also because it

required too much manual investigation. There are diverse ways of navigating in Eclipse,

including keyboard keys, mouse clicks and scrolling, and other Eclipse commands such as

various searches. The logger did not catch mouse scroll events, and when the users are

performing searches, only the initial search command is logged but the following events for

clicking on one of the search results to actually jump to the relevant code are not logged,

which makes it difficult to analyze the exact navigation command used by the programmers.

Improving the analysis method and looking for the missing pieces of information remains as

future work.

4.4. CONCLUSION

It is shown from these studies that backtracking is prevalent, and when and how it happens.

Backtracking is inevitable in programming, including when programmers are exploring a

design space, experimenting with different options, or just make a mistake. The findings from

the preliminary lab study (Section 4.1) provided some insights on how programmers back-

track and what problems they have while backtracking. The participants commented out

code or used the regular undo command when applicable, but there were many situations

62

where they had to manually perform backtracking. Moreover, programmers had some prob-

lems while backtracking, such as failing to locate the right code to be backtracked. Since the

lab study did not provide any information on how often programmers face backtracking sit-

uations, a follow-up online survey was conducted (Section 4.2). The results show that the

programmers’ perceived frequency of backtracking is quite high. However, it was difficult to

tell whether the perceived frequency matches the reality.

To overcome the limitations of the previous studies and get more accurate backtracking data

in real settings, a huge data set of programmers’ fine-grained code edit history has been ana-

lyzed using the abstract syntax tree node history tracking analysis (Section 4.3). The results

confirmed that programmers are in fact backtracking a lot (10.3/hour), and 40% of the de-

tected backtrackings were performed manually, indicating that there are backtracking situa-

tions not very well supported by existing programming tools.

There is still much room for improvement in modern development environments, and the

research reported here provides evidence that more robust backtracking assistance tools

would help programmers experiment with code effectively, and improve their productivity.

On top of that, the analysis technique used for the longitudinal study may have applications

beyond detecting backtracking, and other researchers could benefit from analyzing fine-

grained code change patterns to better understand programmers’ coding practices and to

provide useful tools for programmers.

 63

5.
A SELECTIVE UNDO MECHANISM FOR

CODE EDITORS29

The results of the backtracking studies in Chapter 4 shows that the current tool support for

backtracking is limited, and programmers are facing challenges while backtracking in their

code editor. The key insight of this dissertation is that these problems can be addressed by

providing selective undo in code editors. Users could select specific edit operations performed

in the past, for example, the insertions of the print statements for debugging, and invoke the

selective undo command to revert only the code affected by the those operations.

However, providing selective undo in a code editor poses major challenges. First, text and

source code does not have the notion of identifiable objects but rather has a stream of char-

acters [Berlage 1994]. Unlike in a drawing application, an edit operation is not performed on

a specific object, and only the location of the edit matters. Second, there can be regional con-

flicts among the edit operations. A regional conflict can occur when the region of a later edit

overlaps with the region of the earlier edit which the user wants to selectively undo. When

there is a regional conflict among edit operations, the result of a selective undo may not be

well defined.

This chapter describes the technical details of performing selective undo in code editors, ad-

dressing the problems mentioned above. First, it describes the internal data structure main-

tained to provide the selective undo feature which is capable of handling regional conflicts

(Section 5.1). Next, the high-level selective undo algorithm is presented, with some imple-

mentation details that will help others to replicate the selective undo algorithm (Section 5.2).

The selective undo algorithm described here uses the inverse model (Section 2.1.1), which

means that the selective undo effectively puts the inverse of the selected operations at the

end of the history, as opposed to the script model which pretends that the undone operation

has never happened. There are several reasons I chose to use the inverse model over the

script model. In the inverse model, the history is represented more like real life: the past is

immutable and new events can only be added to the end of the history. This might help users

recall the code edit history better, when reviewing the history or backtracking. The inverse

model also makes it a lot easier to undo the selective undo operations, just like any other

29 Portions of this chapter appeared in [Yoon 2015]

64

operations. Moreover, in order to detect and handle the regional conflicts correctly, the cur-

rent locations of the past edit operations should be updated as new edit operations are added

to the history, as will be discussed in Section 5.1.3. This dynamically updated location infor-

mation makes it easier to implement the inverse model selective undo, as explained in Section

5.2. On the other hand, it is not clear how the regional conflicts could be handled using the

script model.

The mechanisms described in this chapter are implemented in our prototype tool AZURITE.30

The selective undo user interfaces provided by AZURITE will be discussed in Chapters 6-8.

5.1. INTERNAL EDIT HISTORY REPRESENTATION FOR SELECTIVE UNDO

5.1.1. DEFINITIONS

In text editing, there exist only a few types of primitive edit operations. Here, the following

three operations are considered as primitive: insert, delete, and replace. These operations are

considered primitive in that these operations are the basic undoable units in the system. A

replace operation is treated as a primitive operation even though it can be decomposed into

a delete followed by an insert with the same offset. This is because, conceptually, a replace

operation is used for changing some code A to some other code B, but only undoing either the

decomposed delete or the insert portion of a replace operation would result in neither A nor

B. Therefore, a replace operation should be undoable as an atomic unit, consistent with the

regular undo. All of the higher-level editing commands that change the text, such as find-and-

replace and cut-and-paste, result in one or more of these primitive operations. Since AZURITE

uses the inverse selective undo model, the history contains the records of every operation

that happens, and new operations are always added to the end of the history. In particular,

regular undo commands and the selective undo commands are also included in the history

using these primitives. For example, the undo of a delete operation is added to the end of the

history as an insert operation.

However, it is not enough to simply keep the edit history to provide the selective undo feature.

When performing a selective undo on some past edit operations, the system must be able to

determine which locations in the current state correspond to the locations where the opera-

tions were originally performed. This is not trivial because the offsets change whenever some

text is inserted or removed above the location in the file of the past edit. This problem has

been identified by others (e.g., [Reiss 2008]) and arises from the requirement that code be

stored as plaintext without embedded meta-information like bookmarks. Thus, before a se-

lective undo can be performed, locations of previous operations in the file may need to be

adjusted dynamically. The adjusted location information of an edit operation along with some

additional meta-data required for selective undo will be referred to as a dynamic segment.

30 AZURITE is a blue mineral, and here it stands for: Adding Zest to Undoing and Restoring Improves Textual Ex-

ploration.

Chapter 5: A Selective Undo Mechanism for Code Editors 65

More formally, a dynamic segment is defined as a 4-tuple (𝑘, 𝑜, 𝜏, 𝑟), where the value of 𝑘 is

either ins or del, 𝑜 is the dynamic offset (i.e., start position) of this segment, 𝜏 is the deleted

or inserted text, and 𝑟 is a relative offset value (can be nil) which will be explained in Section

5.1.4. The notion of dynamic offsets here is similar to the notion introduced by Abowd and

Dix in the collaborative editing context (which they call dynamic pointers) [Abowd 1992], but

the system needs extra information for selective undo. In addition to the dynamic offsets, the

selective undo system keeps track of dynamic segments instead of pointers. There are two

types of dynamic segments: insert segments (𝑘 = ins) and delete segments (𝑘 = del) – a re-

place will use both.

Let Ω be the set of all possible primitive edit operations. A primitive edit operation 𝑒 ∈ Ω can

be defined as a 3-tuple (𝑡, 𝑑, 𝐼), where 𝑡 is the time the operation was performed, 𝑑 is the de-

lete segment associated with the edit operation (can be nil), and 𝐼 is the set of insert segments

(can be nil). Each dynamic segment is always associated with one edit operation. The segment

information is updated whenever a new operation is added to the history. 𝐼 is a set rather

than a single insert segment, because an insert segment can be split by some later performed

operation, as will be explained below.

Finally, the edit history is then defined as a chronological history list of edit operations, 𝐻 ≔

𝑒1𝑒2 … 𝑒𝑁, where 𝑁 is the number of all edit operations performed so far, and 𝑒𝑁 is the last

(newest) edit operation.

Before explaining how the dynamic segment is updated as the edits are made in the code

editor, the issue of regional conflicts among the edit operations is discussed first, because

updating dynamic segment information is also crucial for detecting regional conflicts.

5.1.2. REGIONAL CONFLICTS OF EDIT OPERATIONS

A selective undo operation may not be well defined when there are regional conflicts among

the edit operations. Recall the example from Chapter 1, where a replace operation 𝑒1 changes

the code from “myFontSize = 12;” to “myRectangleSize = 12;” and at some time later,

another operation 𝑒2 changes it to “myRegionArea = 12;”. What should be the result of

selectively undoing operation 𝑒1 alone? There are multiple options:

A1. Selectively undo 𝑒1 while leaving in the parts changed by 𝑒2 , resulting in

“myFontgionArea = 12;”

A2. Also undo the conflicting operation 𝑒2 and revert the code to the way it was before

operation 𝑒1 was performed, resulting in “myFontSize = 12;”

A3. Tell the user that there is a regional conflict and do not allow the selective undo, so

the code stays as “myRegionArea = 12;”

Since it is not entirely clear what the user wants, it would not be appropriate for the system

to choose arbitrarily without user intervention. Throughout the dissertation, the notation

𝑒𝑖 → 𝑒𝑗 will be used to represent a regional conflict where the edit region of 𝑒𝑗 = (𝑡𝑗, 𝑑𝑗 , 𝐼𝑗)

66

overlaps with the region of 𝑒𝑖 = (𝑡𝑖, 𝑑𝑖 , 𝐼𝑖) at least partially, and 𝑡𝑖 < 𝑡𝑗. For example, 𝑒1 → 𝑒2

holds in the example above. Note that these two operations need not necessarily be consecu-

tive in time, and there may be arbitrarily many edit operations in between.

As the arrow implies, a regional conflict is always one-directional: the arrow starts from some

earlier performed operation and points to a later performed operation. For convenience,

when there is 𝑒𝑖 → 𝑒𝑗 conflict, 𝑒𝑖 will be called the conflictee, and 𝑒𝑗 the conflictor. Regional

conflict detection happens at the segment level. Since there are only two types of dynamic

segments, insert and delete, there are total of four combinations of possible regional conflicts

(Figure 5-1a-d).

5.1.2.1. INSERT → INSERT CONFLICT

This occurs when the second insertion is performed somewhere in the middle of an existing

insert segment (Figure 5-1a). (If the second insert is at either end of the first insert and not

in the middle, that is not considered a conflict.) When the user tries to selectively undo the

first insert operation, it is not clear whether the user really wants to remove only the text

inserted by the first operation, or to remove them both together.

Figure 5-2 illustrates why it is difficult to automatically determine what the user wants, when

the user tries to selectively undo the first Insert operation. In the first example (Figure 5-2a),

the user first inserted two lines of code to print out some debug messages when the program

is entering and exiting the method (conflictee). Then, the user fills in the actual method body

(conflictor). Because the method body is inserted between the two debug messages that were

Figure 5-1. Types of regional conflicts illustrated.

Chapter 5: A Selective Undo Mechanism for Code Editors 67

initially inserted, it results in an Insert → Insert conflict. Here, if the user later invokes selec-

tive undo on the first insert operation which added the two debug messages, it is likely that

the user wants to only remove the debug statements while leaving the method body code in

place.

In the second example (Figure 5-2b), the user first adds a method stub (conflictee), and then

writes the method body (conflictor), which again causes an Insert → Insert conflict. However,

unlike the previous example, if the user invokes the selective undo on the first operation, it is

more likely that she actually wants to remove the entire method, because leaving in the

method body without the surrounding method signature does not make much sense. This

shows why resolving this region conflict must be left to the user (see Section 8.4).

When an Insert → Insert conflict is created (that is, when the user performs the conflictor

edit), the insert segment of the conflictee is split into two pieces, as shown in Figure 5-1a.

5.1.2.2. INSERT → DELETE CONFLICT

An Insert → Delete conflict occurs when the deletion range overlaps at least partially with an

existing insert segment, which can happen in four different ways (Figure 5-1b). Fortunately,

there is no ambiguity when the user wants to selectively undo the conflictee; all the remaining

text that came from that insert operation should be removed.

Similar to the Insert → Insert conflict, an Insert → Delete conflict can also split the first insert

segment into multiple (up to three) pieces. In case where the delete operation occurs in the

middle of an insert segment (Figure 5-1b3), the existing insert segment is first split into three

pieces, and the middle piece becomes an empty segment.

public class MyClass1 {

 public void myMethod1() {

 System.out.println("*** bar() method begins");

 // Method body...

 System.out.println("*** bar() method ends--");

 }

}

(a)

public class MyClass2 {

 public void myMethod2() {

 // Method body...

 }

}

(b)

Figure 5-2. Ambiguity in the case of Insert Insert conflicts. In both examples, the lighter shade indicates the

code inserted first (conflictee), and the darker shade indicates the code inserted later (conflictor).

68

5.1.2.3. DELETE → DELETE CONFLICT

A Delete → Delete conflict occurs when the second deletion range encloses the first deletion

range (Figure 5-1c). Similar to the Insert → Insert case, when the user tries to selectively undo

the first delete operation, it is not clear if the user really wants to restore only the text deleted

by the first deletion, or restore the whole text deleted by both operations.

Figure 5-3 illustrates this issue. The code is exactly the same as the one shown in Figure 5-2,

but now the code is being deleted rather than inserted, in the opposite order. In the first ex-

ample (Figure 5-3a), the user first deletes the method body that lies between the two debug-

ging statements (conflictee). Then, the user selects the area in the code where remaining de-

bug statements and then deletes the selected code (conflictor). This results in a Delete → De-

lete conflict because the second deletion range encloses the location where the first deletion

occurred. If the user later invokes selective undo on the first delete operation which deleted

the method body, it is likely that the user wants to only restore the logic code while leaving

the debug statements deleted.

In the second example (Figure 5-3b), the user first deletes the method body (conflictee), and

then deletes the whole method signature (conflictor), which again causes a Delete → Delete

conflict. However, when selectively undoing the first delete operation, it is more likely that

she actually wants to restore the entire method, because only restoring the method body

without restoring the enclosing method signature may not make much sense.

public class MyClass1 {

 public void myMethod1() {

 System.out.println("*** bar() method begins");

 // Method body...

 System.out.println("*** bar() method ends--");

 }

}

(a)

public class MyClass2 {

 public void myMethod2() {

 // Method body...

 }

}

(b)

Figure 5-3. Ambiguity in the case of Delete Delete conflicts. In both examples, the lighter shade indicates the

code deleted first (conflictee), and the darker shade indicates the code deleted later (conflictor).

Chapter 5: A Selective Undo Mechanism for Code Editors 69

5.1.2.4. DELETE → INSERT CONFLICT (CANNOT OCCUR)

As shown in Figure 5-1d, there can never be a Delete → Insert conflict because the range of

deletion becomes a single point, and insert operations also only happen at a single point, and

two points cannot conflict.

5.1.3. KEEPING THE DYNAMIC SEGMENTS UP TO DATE

Each dynamic segment is always associated with an operation, and the segment information

is immediately updated whenever a new operation is added to the history. Keeping the dy-

namic segment information up to date is the essence of the selective undo mechanism. Simply

put, when a single segment needs to be selectively undone, the system can easily refer to the

current dynamic offset of that segment and apply the inverse operation of that segment.

Updating the dynamic segments is also important for detecting conflicts among the opera-

tions. The conflicts can be immediately detected whenever a new edit is made, and these con-

flict relationships can be stored within the edit operation objects so that the selective undo

mechanism can refer to the information when needed. Finally, having these dynamic posi-

tions makes it trivial to search for all of the edits performed in a certain area of code.

The dynamic segment management mechanism is illustrated with an example in Figure 5-4.

For simplicity, a dynamic segment is denoted as <offset, length> in this figure. At first, there

are no operations in the history. OP1 inserts println() to the code. Since there are no exist-

ing operations, there is no need to adjust any dynamic segments, and it would simply add a

new insert segment <0, 9>. Next, OP2 inserts “Hello” within the parentheses, which results

in an Insert → Insert conflict with OP1. This essentially splits the existing insert segment into

two pieces, pushes the second piece to the right by the length of “Hello”, and then adds the

Figure 5-4. Illustration of dynamic segment management. For simplicity, each dynamic segment is denoted as

<offset, length>. OP1 inserts println(), OP2 inserts “Hello” within the parentheses, and then OP3 deletes ln

from the method name println, in temporal order. Below the code is illustrated how the existing dynamic seg-

ments are updated or split as new edit operations are added to the history.

70

new insert segment <8, 7> in the middle. Finally, OP3 deletes ln from the method name

println, which also conflicts with OP1. This first splits the existing insert segment <0, 8>

into three pieces, deletes the middle one, and adjusts the third piece by 2. Then all the other

dynamic segments on the right side of this delete are adjusted by 2 as well. After all of these

adjustments are done, the new delete segment <5, 2> will be added. In case of a delete seg-

ment, the length value does not reflect the actual length of the segment in the current context,

but it refers to the length of the deleted text. A delete segment is instead represented by a

single offset in the current code.

Python-like pseudo code for the edit history management technique is shown in Figure 5-5.

update(𝐻, 𝑛𝑒𝑤𝑂𝑝) would be called whenever a new edit operation 𝑛𝑒𝑤𝑂𝑝 is performed.

5.1.4. SEGMENT CLOSING / REOPENING

When updating the dynamic segment information, a naïve implementation may lose some of

the required information for selective undo. Suppose that there was originally “xyz” in the

code at offset 10, and two delete operations 𝑒𝑎 and 𝑒𝑏 are performed, whose delete segments

are 𝑑𝑎 = (del, 𝑜𝑎 , 𝜏𝑎 , 𝑟𝑎) and 𝑑𝑏 = (del, 𝑜𝑏 , 𝜏𝑏 , 𝑟𝑏) , respectively. First, 𝑒𝑎 deletes “y” in the

middle, resulting in 𝑜𝑎 = 11. Next, 𝑒𝑏 deletes the remaining “xz”, which results in 𝑜𝑏 = 10

and a Delete → Delete conflict. In addition, 𝑜𝑎 is adjusted to 10, so that selectively undoing

just 𝑒𝑎 would put “y” at the correct offset. What would happen if we undo both 𝑒𝑎 and 𝑒𝑏 at

this point?

def update(𝐻, 𝑛𝑒𝑤𝑂𝑝 = (𝑡, 𝑑, 𝐼) ∈ Ω):

 forall 𝑒 in 𝐻, forall 𝑠 in 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠(𝑒):

 if 𝑑 is not nil:

 updateSegment(s, 𝑑)

 if 𝐼 is not nil and 𝐼 = {𝑖}:

 updateSegment(s, 𝑖)

 append 𝑛𝑒𝑤𝑂𝑝 at the end of 𝐻

def updateSegment(𝑠1 = (𝑘1, 𝑜1 , 𝜏1, 𝑟1), 𝑠2 = (𝑘2, 𝑜2, 𝜏2, 𝑟2)):

 if 𝑠2 precedes 𝑠1:

 adjust 𝑜1 appropriately

 elif 𝑠2 overlaps with 𝑠1:

 split 𝑠1 if necessary (Figure 5-1)

 close 𝑠1 if necessary (Section 5.1.4)

 store conflict info 𝑜𝑝(𝑠1) → 𝑜𝑝(𝑠2)

Figure 5-5. Pseudo code illustrating the dynamic segment updating algorithm.

Chapter 5: A Selective Undo Mechanism for Code Editors 71

As will be explained in Section 5.2, the selective undo has to be performed backwards (that

is, starting from the latest edit operation among the selected ones) to avoid messing up dy-

namic segments while performing the selective undo, 𝑒𝑏 would be undone first, and “xz”

would be put back at offset 10. Next, 𝑒𝑎 would be undone and it would put back “y” at offset

10, which is the current value of 𝑜𝑎. The resulting code would be “yxz” instead of “xyz”, which

is clearly not what the user wanted.

This happens because the dynamic segment for the conflictee (𝑒𝑎) loses the offset information

relative to the conflictor (𝑒𝑎)’s offset when a Delete → Delete conflict occurs. To solve this

problem, the system needs to (1) store this relative offset and (2) restore the offset when the

conflictor is undone. These two processes are called segment closing and segment reopening,

which work as follows:

close: 𝑟𝑎 ≔ 𝑜𝑎 − 𝑜𝑏 reopen: 𝑜𝑎 ≔ 𝑜𝑏 + 𝑟𝑎

𝑟𝑎 ≔ 𝑛𝑖𝑙

In the previous example, closing 𝑑𝑎 will store 𝑜𝑎 − 𝑜𝑏 = 11 – 10 = 1 into 𝑟𝑎, right before 𝑜𝑎 is

adjusted to 10. When undoing 𝑑𝑏 , 𝑑𝑎 will be reopened, which will restore the offset 𝑜𝑎 to 𝑜𝑏 +

𝑟𝑎 = 10 + 1 = 11 and make 𝑟𝑎 be nil. Once a segment is closed (𝑟 ≠ 𝑛𝑖𝑙), then its 𝑟 value is never

updated unless the segment is reopened. The same applies to Insert → Delete conflicts.

5.2. SELECTIVE UNDO ALGORITHM

Provided that the system has all the dynamic segments information for the entire history, it

can perform selective undo. Users select one or more edit operations in the past, which are

not necessarily consecutive in time and then invoke the selective undo command. The user

interface for selecting desired edit operations will be presented later in Chapters 6-8. The

selective undo is performed in two phases: determining code chunks, and performing selective

undo for each chunk. For simplicity, this section explains the algorithm with the assumption

that all the selected operations are coming from the same source file. When the selected op-

erations come from multiple source files, the same algorithm is applied for each of those files.

5.2.1. PHASE #1: DETERMINING CODE CHUNKS

Unlike the conventional undo, the selective undo mechanism described here allows the user

to select multiple operations to be undone together. Since there is no guarantee that all the

selected operations were performed at the same place, the selective undo mechanism must

first find all of the code chunks affected by the selected operations. A code chunk consists of

one or more operations and their dynamic segments, which constitute a continuous area in

code.

Three rules are used to determine the code chunks. First, all the segments associated with a

same operation must be added to the same chunk. Second, all the segments located between

two segments in a same chunk must also be added to that chunk. Finally, all abutting chunks

are merged into a single chunk.

72

5.2.2. PHASE #2: PERFORMING SELECTIVE UNDO FOR EACH CHUNK

Once the chunks are determined, selective undo is performed for each chunk independently.

For convenience, this is done from the bottommost chunk within the file so as not to affect

the dynamic offsets of the segments of the other chunks while performing selective undo.

Selective undo is performed in two different ways, depending on the existence of regional

conflicts outside of the chunk, which is defined as following:

𝑟𝑐𝐸𝑥𝑖𝑠𝑡𝑠 = ∃𝑒𝑖, 𝑒𝑗 ∈ Ω 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑒𝑖 ∈ Σ ∧ 𝑒𝑗 ∉ Σ ∧ 𝑒𝑖 → 𝑒𝑗,

where Ω is the set of all edit operations, and Σ ⊆ Ω is the set of all the selected operations in

the chunk. The point is that regional conflicts can be automatically resolved if the conflictor

is also selected (𝑒𝑗 ∈ Σ), which would not have been possible if the system only allowed se-

lectively undoing one operation at a time. When there exists a conflictor that is not selected

together (𝑒𝑗 ∉ Σ), user intervention is required.

5.2.2.1. IF RCEXISTS = FALSE

In this case, selective undo can always be performed without user intervention by applying

the inverse changes of all the operations involved in this chunk, working backwards from the

most recent operation to the oldest one. The inverse changes should be applied to each dy-

namic segment when there are multiple segments associated with an operation. When apply-

ing the inverse change of a delete segment, all the segments closed by this segment should be

reopened (see Section 5.1.4).

5.2.2.2. IF RCEXISTS = TRUE

In my selective undo mechanism, the users are provided with the different alternatives of

possible resulting code so that they can choose one of them or cancel the selective undo, when

there are conflicts (the actual user interface for this will be presented in Section 8.4). Using

the font size example from Section 5.1.2, all three alternatives, A1, A2, and A3, should be pro-

vided to the user. A3 is simply the same code as it is, so the system only needs to calculate A1

and A2.

A1 is obtained by selectively undoing the conflictees while leaving in the parts changed by

the conflictors. It turns out that A1 can be obtained by applying the same algorithm for con-

flict-free chunks used when rcExists=false without extra work.

In order to get A2, the chunk needs to be expanded to include its conflicting operations. How-

ever, there might be other operations conflicting with the ones just included in the chunk. For

instance, in our example, there could be another later operation 𝑒3 which changes the code

from “myRegionArea = 12;” to “myRegionBreadth = 12;”, which conflicts with operation

𝑒2 but not with 𝑒1 . AZURITE includes all of these transitive conflictors to get the expanded

Chapter 5: A Selective Undo Mechanism for Code Editors 73

chunk.31 Once the expanded chunk is obtained, A2 is calculated by applying the selective undo

algorithm as for non-conflicting chunks. The selective undo algorithm is illustrated in Figure

5-6.

31 In edge cases such as if the user replaces an entire file with an older version, AZURITE extracts the diffs between

the two versions and logs the diffs as separate operations to minimize the potential future regional conflicts.

Figure 5-6. Illustration of the selective undo mechanism. First, the algorithm determines the code chunks af-

fected by the selected operations (a), and then performs selective undo on each chunk separately. When there

are no conflicts outside of the chunk, selective undo can be performed without user intervention, and the undo

operation is added as “j” (b). When there are some irresolvable conflicts, it provides the three alternatives of

possible resulting code to the user and if the user selects a change, the operation is added as “k” (c).

74

5.3. DISCUSSION

5.3.1. ENSURING THE CORRECTNESS OF THE DYNAMIC SEGMENTS

In the initial version of the selective undo algorithm built into the AZURITE tool, there were

some subtle bugs where the selective undo results were occasionally incorrect, which were

very difficult to reproduce. These bugs were identified by randomly generating a large se-

quence of edit operations and checking if selectively undoing one or more operations from

the back of the history correctly returns the document to the version right before those op-

erations were originally applied. This approach identified some non-trivial bugs in the selec-

tive undo algorithm, such as the ones explained in Section 5.1.4, where “y” and then “xz” were

deleted from the original text “xyz”. In the early version of the selective undo algorithm, se-

lectively undoing the two deletion operations resulted in “yxz” instead of “xyz”. After identi-

fying this problem using the automated random testing approach, I could fix it by adding

more metadata (the relative offset) to the dynamic segments to correctly perform selective

undo in all situations.

5.3.2. HIGH-LEVEL ARCHITECTURE

All the mechanisms mentioned above do not assume any knowledge about the granularity of

the recorded changes. AZURITE uses the fine-grained editing changes as recorded by FLUORITE

(Chapter 3), but in theory, the same approach could be used with more coarse-grained

changes as well. For instance, the same set of visualizations could be used with the logs pro-

vided by version control systems, or the Eclipse local history. The high-level architecture of

the entire system is shown in Figure 5-7.

Figure 5-7. The high-level architecture of the selective undo system.

Chapter 5: A Selective Undo Mechanism for Code Editors 75

5.3.3. GRANULARITY OF EDIT OPERATIONS

Having different approaches for merging / dividing edit operations might affect the usability

of a selective undo tool. On the one hand, if each character-level edit is logged individually,

the tool could be less usable because all of the individual operations would have to be tedi-

ously identified and selected character by character. AZURITE combines consecutive character

typing or deletion operations performed within 2 seconds (configurable), similar to the way

typical text/code editors do.32 On the other hand, if the operations are too coarse-grained,

then there would be many more regional conflicts among the operations. This would also give

less control to the users, which was a real problem observed during the pilot for the evalua-

tion user study (Section 9.2). Based on our observation that users wanted to control the undo

range at least at the line level, we decided to prevent a single operation from spanning across

multiple lines. For example, when the user types multiple lines or pastes a large block,

AZURITE divides the operation into multiple insert operations, each having one line of code.

This approach worked very well during the actual user study (see Section 9.2).

5.4. CONCLUSION

This chapter explained the selective undo mechanism for code editors and the issue of re-

gional conflicts of edit operations, independent from the user interface aspects. In order to

provide selective undo, the system must keep the dynamic segment information up to date

and remember the regional conflict relationships among the operations. Then, selective undo

can be performed using this information, based on the operations that the user selected.

The following chapters will present the user interfaces specifically designed for selective

undo, which are implemented in our prototype tool AZURITE.

32 To be more precise, FLUORITE does the merging and then forwards the merged operation to AZURITE (Section

3.3.3).

76

 77

6.
TIMELINE VISUALIZATION OF CODE EDITS33

In the previous chapter, the selective undo mechanism was presented, addressing the chal-

lenge of possible conflicts among edit operations. Another major challenge of providing se-

lective undo for code editors is that it is difficult to provide intuitive and usable user inter-

faces for the user to find and select what to undo. Many existing tools have explored ways to

present the edit history and allow users to review or interact with the history and invoke

useful commands on the past operations. However, these are inappropriate for representing

fine-grained code edits, because of the issues described below.

For example, many existing selective undo user interfaces for graphical applications present

a list of edit operations performed in the past along with human-readable descriptions of in-

dividual operations [Berlage 1994][Myers 1996][Myers 1998]. Graphical applications can

also use a thumbnail to represent a snapshot of the graphics at a certain point of time, which

makes it easier to present the edit history to the user. We used this approach in our selective

undo prototype in a painting application (Chapter 10), and many existing graphical editors

did the same [Kurlander 1988][Klemmer 2002][Terry 2004][Kurlander 1990][Chii 1998].

Another set of tools presenting edit history are version control systems (VCSs). Programmers

use VCSs such as Subversion and Git to keep the history of how the source code has evolved

over time. Programmers manually commit each changeset consisting of a set of changes along

with human-readable comments describing the changes. Having these software evolution

histories is useful for many purposes. First, programmers can better understand the source

code by looking at the evolution histories (e.g., [Lanza 2001][Hindle 2007]). This can be use-

ful when reviewing code changes or before modifying any existing codebase written by oth-

ers. Second, programmers can execute many commands on each changeset (or revision) of

the software code. For instance, when some recent changes are discovered to be wrong, then

the entire project can be easily reverted to one of the previous revisions that was correctly

working. Another example operation would be merging a changeset made in one branch into

another branch, for example from a programmer experimenting with different implementa-

tions or from different programmers working independently. Finally, the histories are not

only useful for the programmers, but are also useful for the researchers who are interested

in how software has developed over time. Mining software repositories [Kagdi 2007] is

known to be an effective research method and there is even a whole conference on this topic.

33 Portions of this chapter appeared in [Yoon 2013] and [Yoon 2015]

78

However, these approaches are not suitable for providing selective undo with fine-grained

code edit histories. Text editing operations are much more fine-grained than graphical edit-

ing, so it is hard for the users to interpret the high level edit intent just by looking at the indi-

vidual text edits. Also, a thumbnail of a piece of a large text file does not give much information

to the users. Finally, there is a potential problem of information overload; developers make a

huge number of low-level changes while editing source code. Without proper visualization

and filtering mechanisms, it would be difficult for programmers to focus on the information

they need. This becomes a basic requirement for visualizations and to enable richer editing

commands which would be executed on the past changes, such as various forms of searching,

undo, and redo.

In summary, there are two main challenges of providing selective undo UIs in code:

 How can the users see the history and select past operations?

 How can the users effectively find the desired edits to be undone?

This chapter presents a novel timeline visualization of the fine-grained code edit history, with

the specific focus on making it easier to perform selective undo and addressing the first chal-

lenge mentioned above. How the second challenge was addressed will be discussed later in

Chapter 8.

The timeline visualization is the most basic user interface where the users can see and inter-

act with the code edit history (Figure 6-1).34 The figure shows how the timeline visualization

has been improved, and the explanations in this chapter refer to the most recent version (Fig-

ure 6-1a) unless otherwise specified.

6.1. FILE ROWS AND EDIT OPERATION RECTANGLES

Unlike most other tools supporting selective undo that display the edit history in a linear list

[Maruyama 2012][Hattori 2011], here the edit history is displayed in a two-dimensional space,

in order to provide more contextual information of the history while still using only limited

screen space. The horizontal axis represents time, and the time labels are shown along the x-

axis. Each row contains the edit history of one source file. Individual edit operations are repre-

sented with rectangles. Each rectangle is color-coded according to the type of edit: inserts are

green, deletes are red, and replacements are blue. The timeline displays these three primitive

edit types because all editing operations that change the code result in one of these three types,

and to minimize the information overload as much as possible.

Whenever the user makes a new edit to a file, a new rectangle immediately appears at the right

end of the timeline view representing that edit. The horizontal location (x position) and width

of a rectangle represents the time and duration of the edit performed. The vertical location (y

position) and height of a rectangle within the row represents the relative location of the edit

34 The initial version of the timeline (Figure 6-1c) was developed by Sebon Koo.

Chapter 6: Timeline Visualization of Code Edits 79

within the file. Originally, the y position and height did not have any meanings in the earlier

design (Figure 6-1c), but they were added to help users to identify edits performed in different

locations of a single source file.

The size of the last added rectangle is updated in real time as the user is typing (or deleting)

multiple characters in a row, as they are merged into a single edit event by FLUORITE (Section

3.3.3). However, once the edit operation is finalized (that is, when it becomes no longer availa-

ble to merge with following edits), these dimensions are fixed at that point and no longer will

be updated, even when the corresponding dynamic segments are updated later. There were

two reasons for this decision. First, dynamically updating all the rectangles in the timeline

would slow down the IDE, which is not desirable. Second, it is much more difficult to represent

all the dynamic segments because they can be split or even deleted by later edit operations,

which is difficult to represent. Therefore, the size of a rectangle is not affected by any later op-

erations, and it always represents the properties it had when the edit was originally performed.

In addition, whenever a new edit is performed in the code editor, the edited file moves to the

top row automatically, which enables the user to quickly recognize the most recently edited

files by reading the file names from top to bottom. Currently, the rows cannot be reordered

manually, but a drag & drop interface could be added.

(a)

(b)

(c)

Figure 6-1. Different versions of the timeline visualization shown from the most recent version (a) to the oldest

version (c). The design has been improved iteratively based on the user feedback and the changes are discussed

in this chapter.

80

There is a minimum width and height of a rectangle so that users can easily identify and select

even small edits. The timeline is arbitrarily zoomable and scrollable both horizontally and ver-

tically by using shortcuts (Ctrl + Mouse Scroll for horizontal zooming, and Shift+Ctrl + Mouse

Scroll for vertical zooming) or menu items, so that the user can see all the files and the entire

history of all edits, or the specific details of one editing session. The horizontal zoom scale can

also be modified using the zoom slider control (shown at the bottom-left corner of Figure 6-1a,

next to the “R” button), in which case the zoom scale can only be set between 0.1x and 3.0x.

Note that unlike the undo stack, the edit history contains all the edits that have ever been per-

formed, in chronological order. Any undo operations (including both regular linear undo/redo

and selective undo) are added on to the end of the timeline, just like any other operation, and

the operation which was undone is still kept in the visualization. This makes it possible to see

all previous operations and states of the files.

More detailed information of each edit is

available as a tooltip which is shown on

mouse hover. The tooltip (Figure 6-2) con-

tains the exact time when the edit was

made, and the text that was inserted

and/or deleted by that edit.

In the timeline, users can control which

files are shown using various filtering op-

tions, which can be invoked by right-click-

ing one of the file labels at the left of the

timeline. Currently, AZURITE provides four

file filtering options: (1) show only this file,

(2) show all files in the same project, (3)

show all files edited during a specified time

period (see Section 6.5), and (4) unhide all

files. The “unhide all files” button is displayed in the timeline only when there are one or more

files that are currently hidden.

6.2. CODING EVENTS DISPLAYED ALONG THE TIMELINE

One of the common ways of backtracking is to go back to a certain point in the past when a

specific event happened. As Kent Beck says in his book, “it would be great if the programming

environment helped me with this, working as a checkpoint for the code every time all of the

tests run” [Beck 2002]. To support this, AZURITE detects significant coding events and displays

them in the timeline view.35 Table 6-1 lists the coding events currently displayed in the timeline.

35 More precisely, FLUORITE captures all the Eclipse commands and forwards those to AZURITE, which specifies

which of those commands should be displayed in the timeline.

Figure 6-2. An example tooltip. The timestamp is

shown at the top. The inserted code is shown in the

light-green box. For a delete operation, the deleted code

will appear in a pink box instead. In case of a replace-

ment operation, both boxes appear to indicate the de-

leted / inserted code.

Chapter 6: Timeline Visualization of Code Edits 81

An event is displayed on the timeline as a vertical line with an icon representing that event at

the bottom (Figure 6-1a). Further event types can be trivially added in the future. Users can

also “tag” the current or any previous point in time, which was one of the most requested fea-

tures from the field trial (Section 9.1). The tag also shows an icon (Figure 6-1a at 5:16PM),

which can be named (shown on mouse hover), or stay anonymous. Users can left-click on any

icon to move the orange time marker to that point to see how the code looked then. Right-click-

ing any of the icons shows a context menu providing useful commands such as “Undo All Files

to This Point,” which can be viewed as a lightweight, automatic versioning feature. The context

menu items will be explained in Section 6.5.

Any of these pre-defined set of event icons can be turned on or off in the user preference page.

For example, file save icon is turned off by default, because many programmers tend to save

source files very frequently, in which case the timeline could become messy with all the file save

lines and icons.

6.3. LAYOUT MODES

The timeline visualization supports two layout options: real-time mode and compact mode. In

real-time mode, the rectangles are horizontally located proportionally to the actual time that

they were made. This is a trivial option in terms of implementation and was the only option in

the early version (see Figure 6-1c), but it turned out there is a significant problem with this

approach. There are many gaps between the changes because programmers use only about 20%

of their time actually editing code [Ko 2005a], which makes it difficult to navigate through the

edit history in the timeline.

To resolve this problem, the timeline visualization provides a compact mode, which is used by

default in AZURITE (Figure 6-1a-b). In compact mode, all the horizontal gaps between rectangles

are removed so that times when the user is not editing are not displayed, and all the edits are

shown contiguously. This mode is better for handling longer histories, since it dramatically re-

duces the need for horizontal scrolling.

Icon Description

 Successful JUnit test run

 Failed JUnit test run

 Application run or debug

 File save (disabled by default)

 Version control commands, such as Commit

 User-defined tag

Table 6-1. List of significant coding events displayed in the timeline view

82

In contrast, real-time mode could be better for short histories because users can better recon-

struct their previous working context, for example by seeing the size of the gaps and the group-

ing of edits temporally. Users can switch between the two modes at any time using a menu

command or toolbar icon.

When the compact mode layout was first introduced (Figure 6-1b), some problems were dis-

covered with the time indicators shown below the file rows, which were not very evident in the

real-time mode. Since the horizontal axis became non-linear in the compact mode, it was un-

clear as to which side of the time indicator each label is pointing to. In addition, when scrolling

the timeline horizontally, the time indicators stayed in the same locations and only the numbers

were being changed, which was also confusing.

Inspired by various timeline user interfaces of video editing software, the time indicators were

redesigned to tackle these problems (Figure 6-1a). Each time indicator has a small time tick on

the left side, showing where exactly it is pointing to. The time indicators are scrolled together

with the timeline, which is a lot less confusing to the users. The indicators are arranged so that

there are always about 4 time indicators appearing on the screen. Extra care is taken to prevent

two time indicators from overlapping with each other.

6.4. SELECTING RECTANGLES

Users can click on a rectangle to select it, or

drag to select multiple rectangles at once.

Additional rectangles can be toggled in the

selection using the control key. The cur-

rent selection is highlighted with yellow

outlines (Figure 6-1a). Note that, unlike

regular text or code editors, disconnected

sections of the timeline can be selected.

Once some of the operations are selected,

the user can invoke a popup context menu

by right-clicking.

The first command in the menu is “Selective Undo” which was extensively discussed in Chapter

5. This command undoes only the edit operations corresponding to the selected rectangles

while keeping the other changes unaffected. Note that AZURITE allows rectangles to be selected

across multiple files (i.e., multiple rows in the timeline) and undone together, which is a signif-

icant advantage over conventional undo which only works on a per-file basis. Note that all the

inverse operations added by the “Selective Undo” command are put into the timeline like any

other operations, so users can easily change their mind and undo them.

The “Interactive Selective Undo” command allows users to interactively select which opera-

tions to be undone while seeing a preview of the selective undo result. This will be explained in

more detail in Section 8.4.

Figure 6-3. Context menu for the selected rectangles.

Users can invoke various commands, such as “Selective

Undo”. The third command, “Jump to the Code” appears

only if a single rectangle is selected.

Chapter 6: Timeline Visualization of Code Edits 83

The “Jump to the Code” command appears only when there is exactly one selected operation.

This command opens the source file corresponding to the selected operation in the code editor

and moves the cursor to the location where the operation was performed in the current code.

The same command can be invoked by double-clicking a rectangle in the timeline. This is im-

plemented by moving the cursor to the current dynamic offset of the first dynamic segment

attached to the selected operation (Section 5.1).

Finally, the “Deselect All Rectangles” command is used for clearing the current rectangle selec-

tion. When users want to clear the current selection, this command should be explicitly invoked,

since clicking on an empty space in the timeline does not discard the selection, as in some other

graphical applications such as Photoshop. This was a deliberate decision to prevent the users

from accidentally losing the selection.

There are multiple ways of selecting rectangles in the timeline, other than just manually select-

ing them using the mouse. For example, users can select some region of code, and then invoke

the “Select Corresponding Rectangles” command, which searches through the history for all the

edit operations performed on the currently selected region of code. Users can also search for

specific code or text in the code through the history, which is called “History Search” (see Sec-

tion 8.3). The resulting rectangles are selected on the timeline for both of these commands.

Another requested addition is that when one or more rectangles are selected in the timeline,

the corresponding areas of code are highlighted in the code editor (Figure 6-4). This mitigates

the users’ reported problem that it can be difficult to mentally associate the rectangles with the

code. The highlights are shown only if the corresponding files are currently open in the editor,

and just selecting the rectangles from the timeline does not automatically open the files. When

a file with some selected rectangles is later opened, the highlights are immediately shown in

the file. Due to the problem of Eclipse where it gets slower when many of the boxes are added

or removed in real time, this feature is turned off by default, but can easily be turned on from

the preference dialog of AZURITE, whenever the user wants.

Figure 6-4. The code corresponding to the selected rectangles (with yellow outlines) in the timeline are indi-

cated by (a) the boxes in the code editor, (b) the small icons on the left ruler, and (c) the markers on the scroll-

bar on the right side. The colors of the boxes match the rectangle colors in the timeline.

84

6.5. SELECTING TIMES OR TIME RANGES

Besides selecting rectangles, users can also select a point in time in the history, using the vertical

orange marker in the timeline (Figure 6-5). The marker can only be positioned between any

two consecutive rectangles, and it can be moved by either (1) dragging the triangle at the top,

(2) clicking or dragging within the gray time band area, or (3) clicking any of the event icons.

Right-clicking the marker shows a context menu specific to the time marker.

The “Tag This Point” command is used to tag the currently selected time (i.e., where the marker

is currently pointing at) for future reference. “Undo All Files to This Point” is a convenient com-

mand to revert all the files that has been edited since the selected time, which is essentially a

shortcut for selecting all the rectangles after the selected time and invoking selective undo. The

next command in the menu launches the interactive selective undo dialog (Section 8.4) rather

than performing selective undo directly. The last four commands can be used for selecting /

deselecting rectangles on either side of the selected time.

It is also possible to select a time range in the timeline by first selecting the start time with the

normal time selection method above, and then selecting the end time while holding the Shift

key while clicking in the gray time band. An example screenshot is shown in Figure 6-6.

The first four context menu items for a selected time range are used for selecting / deselecting

rectangles either inside or outside the selected time range. For example, users can select a range

of time, select all rectangles inside the range, and invoke selective undo to revert all the changes

made in that time period. Conversely, users can also selectively undo everything except for the

edit operations within the time period.

Figure 6-5. The time selection marker, which is the orange vertical bar with a triangle-shaped handle attached

to the top. Right-clicking the marker brings up a context menu with various commands.

Chapter 6: Timeline Visualization of Code Edits 85

The “Show All Files Edited in Range” command is a file filtering command (Section 6.1), which

would only show the source files that were edited in the selected time range while hiding all

the other files. Finally, “Open All Files Edited in Range” command opens all the source files in

the range, as the name suggests.

6.6. IDE-INDEPENDENT IMPLEMENTATION OF THE TIMELINE

AZURITE’S timeline visualization is written in HTML-5 / CSS / JavaScript, and it communicates

with the backend through the embedded browser interface of Eclipse. This approach was pre-

viously used for another research prototype tool that I was part of ([Omar 2012], Figure 6-7),

and it has some advantages over using IDE-specific APIs such as SWT and JFace.

First, since web development is very popular, the visualization toolkits for the web tend to be

more mature than the IDE-specific toolkits. Since the timeline visualization needed to be capa-

ble of displaying fairly complex information, going in this direction was a reasonable choice.

The drawing part of the timeline is written using the Scalable Vector Graphics (SVG) standard36

and D3.js,37 which made it a lot easier to implement the zooming and scrolling features because

SVG supports two dimensional affine transformations.

Second, the HTML-based user interface parts can mostly be developed in a stand-alone web

browser. Modern web browsers provide a rich set of web development tools, which are very

useful for UI development. In addition, the entire plug-in does not need to be compiled or

launched when the UI is being updated, which makes the implement-test cycle much shorter.

Finally, using HTML technologies makes the user interface reusable across multiple IDEs, be-

cause it does not have any dependencies on the IDE-specific APIs.

The high-level view of the relationships between the IDE, the AZURITE tool, and the timeline

visualization is depicted in Figure 6-9. The HTML-based UI part was developed independently

from the plug-in API provided by the IDEs. The plug-in side of the tool is the part where the core

36 http://www.w3.org/TR/2011/REC-SVG11-20110816/
37 http://d3js.org/

Figure 6-6. An example screenshot of a time range selection. The start time is indicated as white, dotted vertical

line, and the end time is indicated with the same time marker used for time selection.

http://www.w3.org/TR/2011/REC-SVG11-20110816/
http://d3js.org/

86

business logic of the tool and all the IDE-specific UIs reside. Also in the plug-in side is an em-

bedded browser widget (e.g., Browser in the SWT library), that works as a mediator between

the HTML-based UI and the plug-in.

As shown in Figure 6-9, the plug-in needs to be able to communicate with the HTML-based UI

via the embedded browser control in both directions. Therefore, the embedded browser con-

trol should support at least the following two features:

 invoking JavaScript functions on the HTML-based UI from the plug-in side

 being notified in the plug-in side code when some event happens from the HTML side

Most existing embedded browser controls available in the APIs provided by the IDEs or the

main programming language used by the IDEs meet these two conditions, including the Eclipse,

Visual Studio, and NetBeans IDEs. As a proof of concept, the timeline visualization UI has been

successfully tested on Visual Studio, independently from the selective undo core logic, and a

screenshot is shown in Figure 6-8. All the features implemented within the visualization itself

were fully functional, including the zooming, scrolling, and various selections.

This approach has some disadvantages as well. First, some core functionalities might have to

be implemented in both sides (plug-in side and the UI side) in two different languages. This

problem can be mitigated by moving the functionalities to the UI side as much as possible.

Another problem is that the look-and-feel of the user interfaces in the embedded browser are

different from the other user interfaces of the enclosing IDE. Moreover, there could be cross-

browser compatibility issue as well, because different IDEs use different web rendering en-

gines internally. This problem could be reduced by having a separate cascading style sheets

(CSS) for each IDE and operating system combination to mimic the native look-and-feel of the

IDE as much as possible.

Figure 6-7. Embedded browser control used in the Graphite project [Omar 2012]. The color palette and the

regular expression pattern builder were implemented using standard web technologies and then embedded into

the Eclipse Code editor using the Browser control in SWT.

Chapter 6: Timeline Visualization of Code Edits 87

Another problem is that the UIs implemented within the embedded browser cannot display

any contents outside the boundary of the browser control. For example, this was an im-

portant issue when implementing the popup context menus, because the JavaScript-based

context menu could be larger than the browser boundaries, which often resulted in cut off

context menu items. To address this problem, we needed to re-implement the context menu

by having the timeline visualization send a message to the plug-in side indicating that the

right mouse button was clicked in the timeline, and then showing the context-menu on the

current mouse cursor position using the context menu APIs of SWT.

Debugging the UI while it is running within the plug-in could be a challenge, because the em-

bedded browsers do not support the development tools provided by stand-alone browsers.

Figure 6-8. Timeline visualization of AZURITE loaded in Microsoft Visual Studio 2012.

Figure 6-9. High-level architecture of the HTML-based user interface in an IDE plug-in.

88

Fortunately, there exist portable web development toolkits such as Firebug Lite38 that can be

embedded directly into the UI, as shown in Figure 6-10. Any JavaScript code can be executed

in the developer console.

Finally, running heavy computation on the JavaScript side may block the entire UI thread of

the IDE until the computation is finished, in case the embedded browser control does not

support executing JavaScript code from the plug-in side asynchronously. Therefore, it is de-

sirable to carefully design the JavaScript functions in a way that each function does not take

too long and any significant computation work is divided in smaller pieces and a progress bar

is shown when needed.

6.7. DISCUSSION

6.7.1. LINEAR VS. TREE/GRAPH BASED HISTORY

One might raise the question why AZURITE does not keep the edit history as a tree or graph

instead of as a linear list when the user undoes multiple steps and makes a new edit, as in

US&R [Vitter 1984] or Git. The linear history model was chosen intentionally, where all the

code changes (including the undo commands themselves) are added to the end of the timeline,

for two reasons. First, although several text editors and plug-ins have provided tree-struc-

tured visualizations that allow users to move among different nodes [Losh 2012][Cubitt

2010], it is difficult to understand the tree as the history gets bigger. This is because the nodes

do not provide useful information for the user to navigate the tree, which is why we believe

these have not caught on in popularity. In contrast, the linear history model and timeline vis-

ualization of AZURITE would match programmers’ episodic memory [Parnin 2012] and have

been shown to be understandable in our studies (see Section 9).

38 https://getfirebug.com/firebuglite

Figure 6-10. Firebug Lite loaded within the Eclipse IDE. The developer console is fully functional, and the DOM

elements can be navigated within this UI.

https://getfirebug.com/firebuglite

Chapter 6: Timeline Visualization of Code Edits 89

Second, it is not trivial to represent a selective undo operation in a tree-structured history.

Unlike the regular undo, selectively undoing some changes does not result in one of the pre-

viously visited nodes in the history tree. Rather, it creates a new node that has never existed

before. Also, a graph-based history as provided in Git would be inappropriate because a se-

lective undo operation is not used for merging.

6.7.2. LIMITATIONS

There are some known limitations in the current version of the timeline visualization. When

multiple types of coding events happen in sequence without any code changes in between,

those event icons are displayed on top of each other in a way that only the most recently

executed command may be seen while the other events are hidden behind it. For example,

when the source code is first tested by running some JUnit tests and then committed to the

version control repository, the JUnit test icon would not be shown to the user because the

commit event icon will be on top of it. This could be problematic when the user is trying to

backtrack to the last time when all the unit tests passed, for example. Furthermore, since no

code edits happen in between, zooming in would not help separate the icons in compact mode.

In compact mode, the horizontal time gaps are completely removed, which means some con-

textual information is being lost. For example, a user might want to undo every code changes

made after the lunch break. While the user could switch the timeline to the real-time mode to

find the big gap around the lunch time, it would be more convenient if the size of the gaps

were indicated even in the compact mode using techniques such as a “broken” axis or taking

logarithm values of the gap sizes to differentiate relatively large gaps from the smaller ones.

6.8. CONCLUSION

Despite the recent trends to exploit more fine-grained code editing histories, their use in ex-

isting tools has mostly been limited to replaying the history, or analyzing the data for research

purposes. This chapter demonstrated that these fine-grained histories can also be directly

useful for the programmers with proper visualization and editor commands such as selective

undo, which are tightly integrated with the history. In the future, this approach could also be

applied to regular text editors (see Section 11.4).

Although the timeline visualization was shown to be useful in many situations in several user

studies (Sections 9.1 & 9.2), users agreed that the timeline visualization would be more useful

if the edits could be somehow collapsed to be shown at a higher-level. In the next chapter, a

real-time edit collapsing algorithm will be introduced, and integrated with the timeline visu-

alization to provide a “semantic zooming” technique.

90

 91

7.
REAL-TIME EDIT COLLAPSING AND

SEMANTIC ZOOMING

The timeline visualization can be zoomed in and out arbitrarily in both directions. In the current

version of AZURITE, the timeline visualization also supports automatic edit operation collapsing

and semantic zooming, which are the techniques to dynamically adjust the level of detail pre-

sented in the timeline depending on the current horizontal zoom scale. In earlier versions with-

out semantic zooming, it was difficult to see the bigger picture of the recent code edits by look-

ing at the timeline, even when the timeline visualization was zoomed out significantly, because

the individual edits were still too fine-grained. In addition, the AZURITE users from the field trial

(Section 9.1) and the evaluation study (Section 9.2) mentioned that they often wanted to see

the code changes at a higher-level, such as the level of adding a field, editing an existing method,

and so on. Therefore, the real-time edit collapsing and semantic zooming features were added

to AZURITE, as described in this chapter.

There are existing tools that summarize the code changes when two different snapshots of code

(often from the version control system) are given (e.g., [Ren 2004][Kim 2009]). However, these

techniques could not be directly applied to AZURITE for a number of reasons. First, the existing

techniques use a top-down approach: they extract conceptual edits from the complete snap-

shots. However, AZURITE needs to use a bottom-up approach: it needs to collapse and summa-

rize multiple, fine-grained edit operations into a more meaningful, conceptual edit. Another as-

pect is that the edits should be summarized and displayed in the timeline in real-time, as the

user actively edits the code. This means that the algorithm should be capable of handling the

stream of edits in an efficient, incremental manner.39

The semantic zooming (see Section 7.3.1) feature was inspired by the Semantic Zoom Multi

View feature of SATIN [Hong 2000], where multiple views are defined for different zoom lev-

els, and the appropriate view is automatically chosen based on the current zoom level. To

implement similar semantic zooming in the timeline visualization, our edit collapsing mech-

anism identifies what kinds of code changes the user is making in the code editor, and uses

that information to determine whether to collapse multiple edits at a certain collapse level

(see Section 7.2.2). The different kinds of code changes presented in Table 7-1 are similar to

39 Note that the features described in this chapter are only relevant when the input data are fine-grained edit oper-

ations made in the code editor (see Figure 5-7).

92

the categories of atomic code changes that appear in [Ren 2004], but there are several differ-

ences. First, in their atomic change model, adding and deleting changes always represents

adding or deleting an empty element. For example, suppose that a programmer adds a new

method foo and then fills in the body of the method. In Ren’s model, this set of changes would

be represented as two consecutive atomic changes: an Add Method change that adds the

empty method foo, and a Change Method change for filling in the body. However, in our

model, the same edits can be represented as a single Add Method change that contains the

body as well. Another big difference is that our classification can represent special cases such

as Non-code changes (NCC) or Unknown (UKN). By representing these additional cases in the

history, they can also be selected and undone by the user. For example, a code reformatting

edit (NCC) could later be selectively undone.

Others have developed ways to extract high-level code changes from two versions of code,

using AST tree differencing [Fluri 2007][Neamtiu 2005]. One of the biggest challenges of AST

differencing is the problem of matching code elements between the two versions [Kim

2005b][Kim 2006]. For example, when a method is renamed between the two versions, the

change extraction algorithm can only guess that there was a renaming edit, using various heu-

ristics. This happens because the change extraction algorithm does not know about the actual

edit operations performed in the editor. In contrast, the change extraction algorithm used in

AZURITE uses the actual edit operations (Figure 7-5), which makes it possible to always cor-

rectly match the code elements, even when there are renaming operations.

Our real-time edit collapsing algorithm is described in the following sections. To better illus-

trate the algorithm and our solution, a sample programming task and a code editing script for

performing the task will be presented first, and then the explanations will refer to the script

and show how the example edits are collapsed. Suppose that a programmer wants to write a

program for calculating factorial numbers. For example, she might implement the factorial

calculator by taking the following steps in order:

(a) Write factorial method using a for loop (Figure 7-1a)

(b) Test the function with a constant value (Figure 7-1b)

(c) Change the factorial method to use recursion instead (Figure 7-1c)

(d) Modify the main method to get user input from the console (Figure 7-1d)

Figure 7-2 shows the state of the timeline visualization after completing each of these steps.

The timeline is partitioned into four sections, each corresponding to a programming step de-

scribed above. The blue partitions are not actually shown in the timeline but were added on

the screenshot for the purpose of explanation.

In this example, because the programmer was alternating between the factorial method

and the main method, these different sections of programming are somewhat distinguishable

by the vertical locations of the consecutive rectangles. Thus, if the programmer wants to se-

lectively undo the changes made in step (c), she could visually distinguish the groups of

changes and select all the rectangles in the section (c), and then invoke selective undo.

Chapter 7: Real-time Edit Collapsing and Semantic Zooming 93

However, it can also be seen that there are relatively many rectangles shown in the timeline

(the numbers in the square bracket in Figure 7-2), even for these seemingly simply program-

ming steps. Part of the reason is that often there exists small noise edits made by small mis-

takes or typos, which may interfere with understanding the intent of the programmer. For

example, the first red rectangle appearing in section (a) of Figure 7-2 is a deletion operation

of a letter “l”, which was performed because the method name was accidentally typed as

factoriall, and then the programmer wanted to fix the typo by deleting the duplicated “l”

at the end. Even though this is what actually happened, it would be more meaningful for the

programmer to see the change with the surrounding context and know that she added a new

method named factorial at that moment.

With the real-time edit collapsing algorithm, the same code edit history can be displayed at

higher levels. Figure 7-3 shows how the example edit script shown above would be displayed

at different collapse levels but the same zoom level. AZURITE’s timeline supports a total of four

public class Factorial {

 public static void main(String[] args) {

 }

 public static int factorial(int n) {

 int result = 1;

 for (int i = 2; i <= n; ++i) {

 result *= i;

 }

 return result;

 }

}

public class Factorial {

 public static void main(String[] args) {

 System.out.println(factorial(5));

 }

 public static int factorial(int n) {

 int result = 1;

 for (int i = 2; i <= n; ++i) {

 result *= i;

 }

 return result;

 }

}

(a) (b)

public class Factorial {

 public static void main(String[] args) {

 System.out.println(factorial(5));

 }

 public static int factorial(int n) {

 if (n <= 1) { return 1; }

 return n * factorial(n - 1);

 }

}

public class Factorial {

 public static void main(String[] args) {

 Scanner in = new Scanner(System.in);

 int n = in.nextInt();

 System.out.println(factorial(n));

 in.close();

 }

 public static int factorial(int n) {

 if (n <= 1) { return 1; }

 return n * factorial(n - 1);

 }

}

(c) (d)

Figure 7-1. The code changes for the factorial example.

Figure 7-2. The state of the timeline visualization after completing all the four steps in the factorial example,

shown at the raw level. The blue vertical separation lines were added on the screenshot for the purpose of the

explanation, and are not shown in the actual timeline. The numbers in the square brackets indicate how many

rectangles are in each section.

94

collapse levels: raw level, parse level, method level, and type level, listed from the lowest to the

highest level. Note that AZURITE automatically chooses which collapse level to use based on the

current horizontal zoom scale as a semantic zooming feature (see Section 7.3.1), but the zoom

level is fixed in Figure 7-3 just for the purpose of illustration.

There are certain restrictions when collapsing the edit operations, which were established to

make the collapsing algorithm compatible with the selective undo algorithm described in

Chapter 5. First, collapsing is not allowed to reorder edit operations, so only the edit opera-

tions that are consecutive in time can be collapsed together. Second, edit operations that are

collapsed at one level cannot be split at a higher level. That is, the collapsed edit operations

at one level are considered as the building blocks of the next collapse level. Finally, the edit

operations are not collapsed across user-defined tags or coding events that are displayed in

the timeline (Section 6.2).

(a)

Raw

Level

(b)

Parse

Level

(c)

Method

Level

(d)

Type

Level

Figure 7-3. The example code edit script for the factorial program shown at different collapse levels but the

same zoom level.

Chapter 7: Real-time Edit Collapsing and Semantic Zooming 95

7.1. THE FOUR COLLAPSE LEVELS

In this section, each of the collapse levels – raw level, parse level, method level, and type level

– are described in more detail. The edit collapsing rules for each level and the rationale be-

hind providing each level will be explained. Then, the following section will explain the de-

tailed collapsing algorithm.

7.1.1. RAW LEVEL (NO COLLAPSING)

The raw level (Figure 7-3a) displays the fine-grained edits as they arrive, without collapsing

any of the edits. This level used to be the only option, and it was used during the evaluation

studies of AZURITE (Sections 9.1 & 9.2). The rectangles shown at this level are the basic undo-

able units of the selective undo mechanism in AZURITE.

Although the raw level has several limitations as described above, it is still available as an

option, because it can be useful in certain situations. When some code is edited and then re-

verted quickly, these edits are going to be collapsed at the parse level and higher and essen-

tially considered as a no-op (i.e., identity operation). If the programmer wants to restore the

first edit by selectively undoing the reverting edit, it can only be done at the raw level.

7.1.2. PARSE LEVEL

The parse level (Figure 7-3b) is the new default collapse level used in the timeline visualiza-

tion. The basic idea of constructing the parse level is to collapse consecutive edit operations

so that all the intermediate versions of code (i.e., the versions between any two consecutive

collapsed edits) are parseable. In other words, when a new edit operation is added to the

history buffer and the resulting code turns out to be unparseable, the system collapses the

edit operation with the following edit operations until the source file gets to a parseable state

again. One exception to this rule is that the two consecutive (in time) edits are not collapsed

when their edit ranges are apart by more than one line of code, because they are most likely

to be editing separate statements.

There are significant advantages of using the parse level compared to the raw level, which is

the reason for making the parse level be the new default. By using the collapsing rules above,

individual collapsed edits are much more comprehensible independently, because they are

usually at the level of a single statement change, variable addition, an empty method stub

addition, and so on. In addition, the number of edit operations appearing in the timeline is

significantly reduced, which reduces the problem of information overload. Besides, most of

the noise edits such as typo corrections are naturally collapsed with the surrounding edits.

The parse-level collapsing rule, however, does not work very well for certain situations. For

example, when editing an existing string literal value in the code, the code is always in a par-

seable state, thus making the edit operations not collapsed at all, which is not desired. In or-

der to mitigate this potential problem, the parse level collapsing rule has an exception: even

when an incoming edit gets to a parseable state, the edit is collapsed with the following edit

96

if the following edit is contiguous in location and made within a set amount of time (currently

2 seconds, configurable).

7.1.3. METHOD LEVEL

The method level (Figure 7-3c) is a collapse level that is higher than the parse level. The main

idea behind the method level is to collapse all the consecutive edits made in the same method

(or same class field) into a single edit.

The method level is great for discriminating the conceptual units of code edits, assuming that

programmers divide the code logic into relatively small methods. For example, in the method

level visualization shown in Figure 7-3c, each step of the example factorial programming

matches with a single rectangle in the timeline, because the programmer was alternating be-

tween the factorial method and the main method after completing each step. At this level,

she could backtrack by selecting the code changes that modified the factorial method to

use recursion (the third big rectangle from the left) with a single mouse click, and then invoke

the selective undo command to revert the method to its for loop version.

Note that the code changes in step (d) are still split into two rectangles even though all the

changes were made in the same main method. This happens because the method level col-

lapser needs to wait until the collapsing process is fully completed by the parse level collapser.

This issue will be described in more detail in Section 7.2.1.

7.1.4. TYPE LEVEL

The highest collapse level provided in AZURITE is the type level, which is shown in Figure 7-3d.

Similar to the method level, the main idea of this level is to collapse all the consecutive edits

in the same type (for example, every operation in the same class, interface, or enum) into a

single edit.

The rationale behind providing type level is to make it easier to review or interact with the

code edit history when the programmer is working with nested types (e.g., inner classes in

Java), or when working with multiple types simultaneously. A great example of such situa-

tions is when the programmer is using the State or Strategy design patterns [Gamma 1994],

which are often implemented as nested classes in Java. However, the type level view may not

be very useful when the programmer is working on a single class file for a long time. For

example, in Figure 7-3d, the example code changes for the factorial program are all collapsed

into a giant big box, which may not be useful for the purpose of selective undo.

The last two small rectangles at the end of the timeline are not yet collapsed into the previous

edits for the same reason mentioned in the method level.

Chapter 7: Real-time Edit Collapsing and Semantic Zooming 97

7.2. COLLAPSING ALGORITHM

This section describes the edit collapsing algorithm used for the different collapse levels in-

troduced in the previous section. The raw level is excluded from the discussion in this section,

because it does not require any edit collapsing.

7.2.1. OVERALL COLLAPSE MECHANISM

The collapsing algorithm works in each of the collapse levels separately, and the overall algo-

rithm is the same, but only the logic to determine whether to collapse new incoming edit(s)

with the previous edits is different for each level, which will be referred to as the collapse test.

The key idea of this collapsing algorithm is to keep a list of pending edits (pending list, here-

after) for each level. The edit operations in the pending list are already determined to be col-

lapsed together at that collapse level, but still pending in the sense that the following incom-

ing edit(s) can also be collapsed with them.

Once a new edit operation is added to the history buffer, the edit operation is first considered

by the parse level collapser. There can be three different outcomes when this happens. (1) If

the current pending list is empty, then the incoming edit is simply added to the pending list.

Alternatively. when there are some existing pending changes, then the parse level collapser

runs the collapse test to determine whether the incoming edit should be collapsed with the

currently pending edits or not. For the parse level, the rules described in Section 7.1.2 are

used for the collapse test. (2) If the edit should be collapsed, then it is added to the end of the

pending list. (3) If the edit should not be collapsed, then all the currently pending edits are

finally marked as collapsed, the pending list is emptied, and the new incoming edit is added

Figure 7-4. Illustration of the overall collapse mechanism for the parse level. When there is an incoming edit

operation, the parse level collapser runs the collapse test to see if the new edit should be added to the pending

list or if the existing pending edits should finally be marked as collapsed. The newly collapsed edit (A-D) is taken

to the next level collapser as the incoming edit, and the same process is followed.

98

to the pending list. When this happens, the edits that were just collapsed are considered by

the next level (the method level, in this case) collapser as the new incoming edits. The same

process is followed by the method level collapser, except for the collapse test part, and the

edits collapsed at the method level are then considered by the type level. The tests for these

levels is discussed in the next section, and the whole process is illustrated in Figure 7-4.

Because the method and type level collapsers receive the incoming edits only when their im-

mediate lower-level collapser finally marks a set of edits to be collapsed, some of the code

edits at the end of the history may not appear immediately as collapsed even though they will

be collapsed eventually. This problem can be shown in Figure 7-3c and Figure 7-3d. There is

one more special rule that applies to the overall process. As briefly mentioned above, when

one of the significant coding events such as JUnit test run occurs that would be displayed in

the timeline as an event icon (Section 6.2), all the current pending edits at every collapse level

are immediately marked as collapsed, and all the pending lists are emptied. In other words,

this rule makes sure that the code edits are never collapsed across one of these coding events,

with the assumption that the coding events could be considered as implicit checkpoints, and

the programmer is likely to make code edits something conceptually different from the pre-

vious set of edits after one of these coding events.

7.2.2. COLLAPSE TEST FOR THE METHOD LEVEL AND TYPE LEVEL

At the method (or type) level, the basic collapse rule is to collapse the consecutive edits made

in the same method or field (or type). In order to run this collapse test successfully, the col-

lapser should first extract some detailed information about each edit, such as what kind of

code change the edit entailed, and whether the edit range is bound to a certain method or a

class.

The change detail extraction process is illustrated in Figure 7-5. In order to extract change

details of a set of code edits, the system takes the two snapshots, before and after the edits,

and the edit operations as input. Because there are two sets of edits in consideration, pending

edits and the incoming edit, the collapser needs to analyze three versions of code snapshots

before and after each set of edits: initial snapshot (before the pending edits), intermediate

snapshot (after the pending edit but before the incoming edit), and the final snapshot. Each of

these snapshots are first parsed into an abstract syntax tree (AST) using the ASTParser class

provided in the Java Development Tools (JDT) plug-in in Eclipse. Then, the pending change

details are extracted from the AST trees of the initial and intermediate snapshots and the

pending edits themselves. Similarly, the incoming change details are extracted from the in-

termediate and final AST trees, and the incoming edit itself. There are a total of 12 kinds of

edits determined by the collapsers, summarized in Table 7-1.

Because the focus was on the correctness of the algorithm for the current research prototype,

and not much on the performance, there are many optimizations that could be trivially im-

plemented. For instance, the current algorithm redundantly parses the three different snap-

Chapter 7: Real-time Edit Collapsing and Semantic Zooming 99

shots whenever a new incoming edit is being processed, even though the initial and interme-

diate ASTs could be cached and reused. Also, the final snapshot could be incrementally parsed

from the intermediate AST to enhance performance. The performance analysis of this unop-

timized implementation is provided in Section 9.3.3.

Once the change kinds are determined for the pending changes and the incoming change, then

the collapser uses the collapse test matrix to see if their change kinds are compatible (Table

7-2 & Table 7-3). A collapse test matrix defines whether the different kinds of changes can be

collapsed at the particular collapse level. The content of each cell indicates the resulting

change kind after collapsing the pending changes and the incoming change. For example at

the method level (Table 7-2), an AM change followed by a CM change on the same method

results in a collapsed AM change. When an AM or CM is followed by a DM change on the same

method, the collapsed changed becomes a no-op, which is considered as a Non-Code Change.

The same logic applies to the fields. At the type level, more kinds of changes can be collapsed

than at the method level. For example, an AM change followed by another AM change can be

collapsed at the type level, provided that they were added to the same enclosing type. The

gray cells indicate they are not collapsible.

Figure 7-5. Illustration of the change detail extraction process.

100

Kind of Edit Abbrev. Description

Add Field AF Adding a new field to a class (possibly with an initializer)

Change Field CF Changing an existing field by altering its type, name, or value

Delete Field DF Deleting an existing field

Add Method AM Adding a new method (possibly with the method body)

Change Method CM Changing an existing method by altering its signature or body

Delete Method DM Deleting an existing method

Add Type AT Adding a new type declaration (class, interface, or enum)

Change Type CT Changing an existing type declaration

Delete Type DT Deleting an existing type declaration

Change Import Statement CIS Adding, changing, or deleting one or more import statements

Non-code Change NCC Editing code without altering the abstract syntax tree structure

(e.g., editing a comment section, reformatting the code)

Unknown UNK All the other changes (e.g., when the edit range spans across

multiple code elements)

Table 7-1. Different kinds of code edits determined by the collapsing algorithm.

 Incoming Change

AF CF DF AM CM DM AT CT DT CIS NCC UNK

P
en

d
in

g
C

h
an

ge
s

AF AF NCC

CF CF NCC

DF

AM AM NCC

CM CM NCC

DM

AT

CT

DT

CIS CIS

NCC NCC

UNK

Table 7-2. Collapse test matrix used for the method level collapse test.

Chapter 7: Real-time Edit Collapsing and Semantic Zooming 101

7.3. INTEGRATION WITH THE TIMELINE VISUALIZATION

As briefly shown in Figure 7-3, the collapsed edits can be displayed in the timeline visualization.

The collapsing algorithm is tightly integrated with the timeline visualization and the selective

undo mechanism of AZURITE in many ways described in this section. For clarity, a rectangle rep-

resenting a set of collapsed edits will be called a group rectangle, and the raw-level edits con-

stituting the group rectangle as member edits. The group rectangles are color-coded according

to their change kind. All the Adds (AF, AM, AC) are colored as yellow-green, all the Changes (CF,

CM, CC, CIS) are sky-blue, and all the Deletes (DF, DM, DC) are pink. The other kinds of changes

(NCC, UNK) are shown as grey.

7.3.1. SEMANTIC ZOOMING

Even before the collapsing mechanism was imple-

mented, the timeline visualization supported arbitrary

zooming in both directions. In the current version of

AZURITE, the timeline visualization supports semantic

zooming using the edit collapsing mechanism when the

user changes the horizontal zoom level, for example by

using the horizontal zoom slider (see Figure 7-6). By

default, the horizontal zoom scale of the timeline is set

at 1.0x, and the parse level is used for displaying the

edit history. When the timeline is zoomed in to more

than 1.5x scale, the collapse level is automatically

switched to the raw level, so that the user can see the finest-grained changes from the timeline.

The method level is used when the zoom scale becomes less than 0.7x, and the type level when

 Incoming Change

AF CF DF AM CM DM AT CT DT CIS NCC UNK

P
en

d
in

g
C

h
an

ge
s

AF CT CT* CT* CT CT CT CT DT

CF CT CT* CT* CT CT CT CT DT

DF CT CT CT CT CT CT CT DT

AM CT CT CT CT CT* CT* CT DT

CM CT CT CT CT CT* CT* CT DT

DM CT CT CT CT CT CT CT DT

AT AT AT AT AT AT AT AT NCC

CT CT CT CT CT CT CT CT DT

DT

CIS CIS

NCC NCC

UNK

* or the value specified in the method level matrix, if the changes are made on the same code element

Table 7-3. Collapse test matrix used for the type level collapse test.

Figure 7-6. The horizontal zoom slider

and the collapse level controller (the let-

ter “P” and the popup menu above it), lo-

cated at the bottom-left of the timeline.

102

it becomes less than 0.4x. These threshold zoom scale values are chosen empirically as a proof

of concept. In the future, different threshold values would need to be tested with users to de-

termine the most appropriate values.

Users might want to examine the history at a different collapse level without necessarily

changing the zoom scale. In this case, users can manually switch to another collapse level by

clicking the collapse level controller button (the “P” in Figure 7-6) and then selecting the de-

sired collapse level (Figure 7-6). An abbreviation of the current value of the current collapse

level (e.g., “P” for the parse level) is always displayed as the button label.

7.3.2. WIDTH OF A GROUP RECTANGLE IN THE COMPACT LAYOUT MODE

When implementing the semantic zooming feature, extra care was taken to make sure that a

group rectangle is reasonably sized. Recall that the width of a rectangle in the timeline at the

raw level indicates the time it took to perform that edit, which is calculated by subtracting the

start timestamp from the end timestamp of the edit operation (Section 6.1). However, it could

be problematic if we simply did the same for calculating the width of a group rectangle by sub-

tracting the start timestamp of its first member edit from the end timestamp of its last member

edit, especially in the compact layout mode (Section 6.3). This is because there can be arbitrary

large gaps between the member edits, the resulting group rectangle could become excessively

wide.

In order to address this problem, the width of a group rectangle is calculated by taking the sum

of all the width values of the individual member edits that they would have at the raw level.

Therefore, the meaning of the width of a rectangle at the higher collapse levels is different from

that at the raw level: the width indicates the actual time the programmer spent to make the

group edit, excluding all the idle times in-between.

Because of the way width values are calculated, the timeline visualization does not abruptly

jump to a different location even when the user is manually switching the collapse levels. For

example, the screenshots in Figure 7-3 are taken by keeping the horizontal zoom scale at 1.0x

and manually switching the collapse levels, and it is clearly shown that the horizontal locations

of the rectangles are well aligned across the different collapse levels.

7.3.3. SELECTION OF THE GROUP RECTANGLES

One of the most important aspects of the timeline visualization is that users can select some

of the past edit operations in the timeline and invoke useful commands that operate on those

selected edits such as selective undo. However, it is unclear how the rectangle selection fea-

ture would work in the presence of the various collapse levels. For example, suppose that the

timeline is currently at the raw level and showing four operations in the history: A through

D. The user selects three rectangles, A, B, and C, and then switches the collapse level to the

parse level, which might show two group rectangles: [A-B] and [C-D]. What should happen to

Chapter 7: Real-time Edit Collapsing and Semantic Zooming 103

the rectangle selection in this case? Especially, how do we handle the second group rectangle

[C-D], where only some of its members were originally selected?

One way is to only allow selecting a group rectangle as a whole, which could be achieved in

multiple ways. The system could discard the rectangle selection before performing the col-

lapse level change. This is the easiest option in terms of implementation, but it is not desirable

because the user could lose all the selections just by changing the horizontal zoom scale. Al-

ternatively, the system could choose to keep some of the group rectangles as selected, whose

member edits were all originally selected. In this case, the first group rectangle [A-B] will be

marked as selected, because all of its members, A and B, were selected in the previous col-

lapse level. For the second group rectangle [C-D], where only some of its members were se-

lected, the system could either choose to discard C from the selection, or else add D to the

selection and mark the group rectangle [C-D] as selected in the new level. However, these two

options are not very desirable either, because the selection may be altered against the user’s

wishes.

Alternatively, the system could retain the original se-

lection as is and indicate the group rectangles with

only some selected members as partially selected,

which is what AZURITE does in the current version. A

partially selected rectangle is indicated with a dotted

yellow outline in the timeline (Figure 7-7). Bringing

up a context menu and performing an operation, such

as selective undo, will still operate on the originally se-

lected rectangles. However, if a partially selected rec-

tangle is clicked with the left button, then it becomes

fully selected. Clicking a fully selected rectangle dis-

cards the rectangle from the selection, as it would normally do at the raw level.

When a group rectangle is fully selected, the context menu items work exactly the same way

as they would when all the member rectangles are selected at the raw level. As an exception,

invoking the “Jump to the Code” command on a group rectangle, either by the context menu

or by double-clicking the group rectangle, moves the edit cursor to the location of the first

member edit.

7.3.4. SUMMARIZING THE COLLAPSED EDITS IN THE TOOLTIPS

As discussed in Section 7.2.2, the higher-level collapsers need to determine the kind of change

made by the edit operations, such as Add Method (Table 7-1). This information about the kind

of change that was extracted from the edits can be useful not only for successfully performing

the collapse test, but also for showing the summary of edits to the users. In AZURITE, when the

user hovers the mouse over a group rectangle, the one-line summary of the edit is displayed at

the top, followed by the actual code changes. In Figure 7-8, the summary is shown as “Changed

method ‘factorial’”. As in this screenshot, the name of the relevant code element (field, method,

Figure 7-7. An example composite rec-

tangle which is partially selected. If the

user clicks on this rectangle, it becomes

fully selected.

104

or class) is also displayed. If the code changes are too big, the tooltip box may be expanded

beyond the boundary of the timeline visualization, which is a known issue with the current im-

plementation. In the future, this problem could be resolved by adding scrollbars directly within

the tooltip area, or by allowing the tooltip to be launched as a flowing window.

7.4. LOG ANALYSIS

The real-time collapsing mechanism is fully presented in the previous sections, but there are

many interesting questions unanswered. How well does the collapsing mechanism work for

real code edit histories? How many rectangles would be collapsed at each level, and what are

the reduction rates? What are the relative occurrences of the different kinds of code changes?

What do these numbers imply?

To explore the answers to these questions, the collapsing mechanism was tested with the

entire code editing transcripts obtained from the longitudinal study (Section 4.3). The edit

collapsing component of AZURITE processed the edit operations in the transcripts as if they

were made in the code editor. All the coding events other than the code edits are also fed into

the collapsing component to make sure that the edits are not collapsed across significant cod-

ing events, as explained above in Section 7.2.1.

Table 7-4 summarizes the number of edit operations resulted in each collapse level for all the

participants. There were a total of 282K edit operations at the raw level. The number of edit

operations is considerably reduced when going up one level. On average, the parse level col-

lapser reduces the number of edit operations from the raw level by 55%, resulting in 128K

operations. In turn, the number is reduced by 50% to 64K operations at the method level, and

reduced by 26% more to 47K operations at the type level, which is the highest collapse level.

This implies that the collapsing mechanism would be useful in minimizing the potential in-

formation overload by reducing the number of rectangles displayed in the timeline.

The distribution of different kinds of code changes was also investigated, and the results are

shown in Table 7-5. Not surprisingly, the vast majority of the code edits are Change Method

(CM) edits, which would mostly be about the actual program logic. There are about 98K CM

Figure 7-8. An example tooltip shown for a composite rectangle in the timeline. The one line summary also

shows the method name factorial in which the edits were performed.

Chapter 7: Real-time Edit Collapsing and Semantic Zooming 105

edits at the parse level, which is reduced to 39K at the method level, accounting for most of

the edit operation reduction at the method level. This implies that programmers work on the

same method for a while before moving to another part of the code, considering that some

coding events such as application runs split the preceding and following set of code edits.

At the type level, all of the field level changes (AF, CF, DF) and method level changes (AM, CM,

DM) are significantly reduced, because they would be collapsed with other changes within

the same type to constitute a Change Type (CT) change. Still, the number of CT changes is less

than the previous level, indicating that many of the method level changes were collapsed into

a single CT change.

About 6% of the changes are non-code changes (NCC) which do not change the AST structure

of the code, and less than 2% of the changes are classified as Unknown (UNK), meaning that

the change detail extractor failed to identify what kinds of changes they were, most often be-

cause there are different kinds of changes mixed in a single change.

PID Raw Level Parse Level Method Level Type Level

p00 66,400 29,280 19,902 17,312
p01 1,657 784 384 218
p03 8,041 2,811 1,162 796
p04 21,421 11,069 5,316 3,482
p05 70,550 30,338 9,979 5,577
p06 917 314 207 164
p08 18,302 7,666 4,852 3,669
p107 27,196 14,319 5,283 3,134
p110 740 427 127 78
p112 12,516 6,321 2,795 2,111
p201 2,939 1,374 600 460
p202 4,344 2,198 1,844 1,710
p204 9,639 3,708 2,154 1,742
p205 6,705 3,199 2,214 1,920
p206 4,032 1,526 918 799
p207 3,756 1,482 688 533
p209 4,174 1,690 955 788
p210 862 415 346 335
p301 3,045 1,799 649 457
p303 7,856 4,223 1,906 842
p304 7,103 2,740 1,703 1,257

Total 282,195 127,683 63,984 47,384
Avg. per hour 193/hr 88/hr 44/hr 32/hr
% Reduction from the Previous Level 55% 50% 26%
% Reduction from the Raw Level 55% 77% 83%

Table 7-4. Number of edit operations at each collapse level, obtained from the log data set used in the longi-

tudinal study of backtracking. The number of edit operations is significantly reduced at each collapse level.

106

7.5. LIMITATIONS AND FUTURE WORK

The edit collapsing mechanism described in this chapter has a number of limitations. First,

the mechanism never reorders the edits, so the collapsing mechanism may not work well

when the programmer is jumping around multiple locations in code. For example, a program-

mer might add or delete import statements (CIS in Table 7-1) using the Organize Imports

feature of Eclipse while writing a method body (CM in Table 7-1). According to the collapse

test matrices (Table 7-2 & Table 7-3), these changes would not be merged and the CIS change

will appear in the middle of two CM changes, which may not be what the user wants. The

main reason for not reordering the edits in AZURITE is because reordering edits in the history

may break the correctness of the dynamic segment information. In the future, a history refac-

toring mechanism as in Historef [Hayashi 2012][Hayashi 2015] could be implemented and

extended to be compatible with the dynamic segment management and the selective undo

mechanism presented in Chapter 5 to support edit collapsing in a smarter way.

While the general idea behind the collapsing mechanism is programming language independ-

ent, the actual mechanism described in this chapter is tied to Java. Nevertheless, the change

kind table (Table 7-1) and the collapse test matrices (Table 7-2 & Table 7-3) could be adjusted

for other object-oriented programming languages with minimal effort. Another limitation is

that the collapsing mechanism only detects a few kinds of changes. In the future, more specific

kinds of changes could be detected as in [Fluri 2006]. In addition, the visualization of the col-

lapsed edits might be improved by coding more information about the changes with colors.

The change detail extraction process could also employ other techniques to improve perfor-

mance or extract additional useful information. Currently, the entire source files are parsed

to determine whether the files are currently parseable and to extract the change details from

two versions of code (Figure 7-5). The performance could be improved by optimizing the

parser to only process the changed area of code instead of the entire file, for example by using

Change Kind Parse Level Method Level Type Level

AF 1,598 (1.3%) 1,571 (2.5%) 820 (1.7%)

CF 3,654 (2.9%) 2,345 (3.7%) 713 (1.5%)

DF 573 (0.4%) 549 (0.9%) 190 (0.4%)

AM 2,753 (2.2%) 2,698 (4.2%) 1,713 (3.6%)

CM 97,941 (76.7%) 39,356 (61.5%) 28,758 (60.7%)

DM 799 (0.6%) 742 (1.2%) 361 (0.8%)

AT 105 (0.1%) 107 (0.2%) 107 (0.2%)

CT 7,714 (6.0%) 7,735 (12.1%) 5,867 (12.4%)

DT 44 (0.0%) 44 (0.1%) 44 (0.1%)

CIS 5,275 (4.1%) 4,439 (6.9%) 4,420 (9.3%)

NCC 6,287 (4.9%) 3,458 (5.4%) 3,451 (7.3%)

UNK 940 (0.7%) 940 (1.5%) 940 (2.0%)

Total 127,683 63,984 47,384

Table 7-5. Distribution of the different kinds of code changes at each collapse level.

Chapter 7: Real-time Edit Collapsing and Semantic Zooming 107

island grammars [Moonen 2001]. Alternatively, the AST parser could be configured to resolve

the binding information to determine the connection between different parts of code, which

could be useful for edit collapsing. For example, if the collapser could determine that two

consecutive code edits are semantically related (e.g., renaming a method and its call sites),

those edits could be collapsed as a semantic unit of code changes. However, resolving binding

information incurs considerable cost, and it may not be feasible to be used for a real-time

collapsing algorithm. Moreover, when the code is actively being edited, there is no guarantee

that the source code being parsed is in a stable state, which would make it very difficult to

resolve the binding information correctly.

There could be other types of collapse levels which are orthogonal to the four collapse levels

provided. For instance, when the programmer is using a task tracking system such as Mylyn

[Kersten 2006], all the code changes made for the same task could be collapsed in the history.

7.6. CONCLUSION

This chapter described the real-time edit collapsing algorithm used in the AZURITE timeline,

which provides four different collapse levels with different granularities. By using the col-

lapsing mechanism, users can quickly review or interact with the recent code change history

at a higher level. Although the collapsing algorithm was designed with the goal of making it

easier to understand and navigate the history and/or to perform selective undo, the resulting

collapsed edits could be used by other programming tools as well. For instance, Section 2.2.4

described the choice edit model, where each code edit operation is translated into a choice in

a variational document. One of the problems with this model is that translating each of the

fine-grained edits might make the underlying variational document unnecessarily compli-

cated and messy. By using the edit-collapsing mechanism, the choice edit model could take

coarser-grained edits and create a more practically useful variational document on the fly.

108

 109

8.
USER INTERFACES FOR SELECTIVE UNDO40

In Chapter 6, two key challenges of providing selective undo UI in code editors were presented:

 How can the users see the history and select past operations?

 How can the users effectively find the desired edits to be undone?

The timeline visualization of the code edit history is mainly focused on addressing the first chal-

lenge. It enables users to review the code changes and selectively undo some of the past edit

operations by selecting them in the timeline and invoking the selective undo command on the

selection. However, there is a still big question remaining unanswered: how can the users select

the desired edits to be undone effectively and accurately? If the users need to spend a long time

on the timeline figuring out which of the past edit operations should be selected in order to

achieve the desired selective undo result, using selective undo for backtracking may not be an

effective solution.

The observations from our initial lab study showed that programmers remember certain as-

pects about the code edits that they want to revert (Section 4.1.6). For instance, they remem-

bered when they made the code changes, the location of those changes, what the surrounding

code looked like, and the names of some of the code elements (e.g., variable name, method name)

that they were editing. Although the timeline visualization can help in finding the desired edits

for some cases (e.g., finding the changes made after the last unit test execution), there are many

cases where the programmers cannot directly find the information from the timeline itself.

Our goal is to enable users to express what they remember about the code changes in a more

direct way. For example, when the user remembers where the code edits were made, then the

user should be able to navigate to that code using the familiar code editor, and then select the

area of code and ask the tool to find the code changes made in the selected code. This chapter

introduces a number of user interfaces designed with the specific focus to make it easier to find

the code changes in the history and to perform selective undo more effectively. AZURITE in-

cludes four user interfaces which are described in this chapter: the code history diff view, the

regional undo shortcut, the history search, and the interactive selective undo dialog. These user

interfaces closely interact with the timeline visualization of code edits and the internal selective

undo mechanism to provide a better user experience for selective undo. All of these features

work with the edit history of the current editing session, but the history from the past sessions

40 Portions of this chapter appeared in [Yoon 2013] and [Yoon 2015]

110

can be loaded, if needed. In order to show the feasibility of these user interfaces, they are all

implemented in the AZURITE prototype tool. These user interfaces are shown to be usable in our

user studies (Chapter 9).

8.1. CODE HISTORY DIFF VIEW

Suppose that a programmer faces a backtracking situation, but only remembers the area of

code where the changes were made which she wants to undo. It may be very difficult for the

user to find out what rectangles in the timeline were made from the region of code that she

wants to undo.

The code history diff view, which is shown in Figure 8-1, is designed to solve this problem.

Users can select an arbitrary code snippet from a regular Eclipse code editor window and

launch this view, which is a code-compare view with two juxtaposed panels. The left-hand

panel always shows the current version41 (i.e., the most recent version) of the code snippet. The

right-hand panel shows some version of the code in the past along with the version number,

and the exact time when the change was made.42 In the figure, there were 50 versions of that

specific region, and the user is currently seeing version 44, which was made at 5:17:13pm. The

diffs between the two code snippets are marked. The right side code can go all the way back to

when the code did not even exist, assuming that this is in the history.

Users can move back and forth through the history in two ways. First, they can drag the orange

time marker (see Section 6.5) within the timeline with mouse to see how the code looked at the

time at which the marker is pointing (see bottom of Figure 8-1). This design was inspired by

41 A new version is added for each fine-grained code edit performed in the selected region of code in the past.

Here, the meaning of the term version is different from that of the version control systems such as Git.
42 The left and right panels were switched after it was first presented in [Yoon 2013], to make it consistent with

the Interactive Selective Undo dialog which shows the selective undo preview in the right panel.

Figure 8-1. The code history diff view of AZURITE. The most recent version of the selected region of code is al-

ways shown in the left panel, and the version of the code from the selected time is shown in the right panel. The

currently selected time is indicated by the orange time marker in the timeline at 05:17:13pm.

Chapter 8: User Interfaces for Selective Undo 111

the time marker in video editors. The code snippet shown on the right panel changes instanta-

neously as the marker is moved, and diffs are recalculated as well. Alternatively, users can use

the navigation buttons above the code (Prev / Next) to move back and forth through different

versions incrementally. This is useful when there are many rectangles in the timeline between

versions, which are irrelevant to the code snippet that the user is interested in. Whenever the

version changes using the navigation buttons, the marker position in the timeline is also up-

dated correspondingly.

The code history diff view can be used for several different purposes. First, it can be used to

simply understand how the code has evolved. The results from the experiment conducted by

Hattori et al. shows that people can understand the code base faster with a fine-grained replay

tool [Hattori 2011]. The code history diff view can be considered as a replay tool for a specific

area of code showing the evolution history of that region. Second, this view can be used to look

for some deleted code in the history, copy the desired code from the preview panel on the right

to the clipboard, and then reuse it in the current code by pasting it. This is useful when the code

should be restored in a different place from where it was originally deleted (so selective undo

would not put it in the right place). Finally, users can revert the code snippet to one of its pre-

vious versions simply by moving to the desired version and clicking the “Revert” button. In-

stead of reverting the entire code snippet to the version currently shown in the right side, users

can also interactively select what to undo and what not to, using the “Interactive Selective Undo”

button (described below in Section 8.4).

When the user navigates between different versions of code in the code history diff view, the

view respects the current collapse level used by the timeline visualization. For example, when

the Prev and Next buttons are used, the version jumps between the group rectangles shown at

the current collapse level. This makes it possible to review the evolution history of a specific

region of code at a user-selectable coarser or finer granularity.

To implement this view, AZURITE first searches for all edits performed on the selected code, just

like when the “Select Corresponding Rectangles” command (Section 6.4) is invoked. Then,

AZURITE reconstructs all the intermediate snapshots by incrementally applying selective undo

with the searched edits. This process is fast, and the code history diff view is launched without

any noticeable delay for any practical size code history diff view.

8.1.1. SCOPE OF CODE SNIPPETS

While most other tools such as local history features of IDEs or version control systems only

provide file-based history or method-based history at best, the code history diff view of AZURITE

can show the history of an arbitrary code snippet of any size. For example, users might investi-

gate how an if block was originally written, how the parameters to a function call have

changed, or even how a mathematical expression within a single line has evolved over time.

Conversely, the history of an entire source file can also be investigated using the code history

diff view.

112

One limitation of our code history diff view is that it can only handle a single contiguous block

of code. The reason is because Eclipse does not allow non-contiguous blocks to be selected at

the same time. To partially overcome this problem, AZURITE allows multiple code history diff

views to be launched as separate tabs which can be dragged to be side-by-side or even in a

window outside of Eclipse. This is useful when there are multiple code snippets coupled to-

gether around a certain feature, which has been referred to as a working set [Ko 2005a]. In this

case, all open code history diff views share the same time marker in the timeline, and users can

intuitively see how those code snippets as a whole have evolved over time. Users can also revert

all the code snippets in the code history diff views to the versions shown in their preview panels

in the right side with a single command.

8.2. REGIONAL UNDO SHORTCUT

During the initial field trial of AZURITE (Section 9.1), I found that the most popular form of se-

lective undo is reverting a specific region of code to an old version, which has been referred to

as “regional undo” [Li 2003]. In the current version of AZURITE, users can select some region in

the regular code editor and use a keyboard shortcut (Ctrl+R by default, ⌘R on a Mac) one or

more times to perform selective undo on that region directly within the code editor. This can

be a faster way of performing regional undo, compared to using the code history diff view de-

scribed above. When this regional undo command is invoked multiple times on the same region,

the repeated commands are automatically collapsed into a single command, so that the result-

ing undo performed by multiple invocations of the regional undo command can also be undone

with a single command, if desired.

8.3. HISTORY SEARCH

Recall the motivating example presented in Section 1.2, where the programmer wanted to re-

store the temporary code she wrote about GridBagLayout. How could she effectively find the

deleted code from the history? She could potentially investigate the timeline and see what rec-

tangle contains the desired code, but it could be very tedious especially when the history size is

large.

To address this problem, AZURITE provides a history search feature, where users can search the

edit history to find the information they need. The history search dialog (Figure 8-2) is invoked

from the code editor menus, and the search results are shown in the timeline as selected edit

operations. AZURITE provides three history search options. First, users can search for all edits

performed on a selected area of code, which we found to be the most desired operation during

the field trials (Section 9.1). The scope of this search is not limited to structural code elements

such as a class or a method; the search can be performed on an arbitrary region of code that the

user selects. Internally, this is the same search mechanism also used by the code history diff

view (Section 8.1).

Chapter 8: User Interfaces for Selective Undo 113

Second, users can search for all edits that happened during a time interval where a certain code

(or text) existed. Note that, in this case, the searched-for text does not necessarily have to exist

now in the code, so this is not the same as searching the current code base for the text. It is also

not sufficient to search for the text within the stored deleted / inserted text for each operation,

because the text being searched for may be partially in the edit and partially in the code (for

example, searching for DrawRectangle when the code now says PaintRectangle and an op-

eration is “replace Draw with Paint”). To make this search possible, the history search tool

internally uses the selective undo feature to calculate the snapshot of the code at each point in

time, just like when launching the code history diff view (Section 8.1), and checks if the snap-

shot contains the desired code or not. Although the history search results were instantly shown

for normal usage, the history search could be slowed down when the size of the source file is

large and there are a large number of operations in the current history. In the future, a more

optimized way of performing history search could be implemented by searching only in the

surrounding region of the changed area of each operation locally, instead of searching the entire

source file all the time.

Finally, users can limit the search scope to the current session or include the past sessions. In

the latter case, only the history of past sessions that are already loaded (see Section 8.5) are

considered.

8.4. INTERACTIVE SELECTIVE UNDO

In response to the feedback from the field trial (Section 9.1), a new user interface was created

which is called the interactive selective undo dialog (Figure 8-3). The design was inspired by

Eclipse’s refactoring wizard, which shows a preview of all changes to be made before actually

changing the code. Similar to a typical refactoring wizard, our interactive selective undo dia-

log shows a side-by-side “diff” view where the left panel shows the current code and the right

panel shows the preview of the selective undo based on the currently selected rectangles in

the timeline. On the top panel is the list of all the affected files. When a file is selected on the

top panel, the source panels below update their contents to show the selected code and the

preview for the selected file.

Figure 8-2. The history search dialog of AZURITE. Users can search through the history to find out the time range

in which a certain text existed in the code.

114

The interactive selective undo dialog is modeless, and the rectangles can be added to and/or

removed from the selection while the dialog is open, which immediately updates the preview

results shown in the dialog. By allowing this, users need not worry about selecting the exact

set of rectangles on their first attempt. Users can manipulate the selection until the preview

shows the desired result.

Additionally, users can select an arbitrary region of the code in the left panel of the interactive

selective undo dialog, right-click to bring up the context menu, and select “Keep this code

unchanged” (Figure 8-3). Doing this searches for all the edit operations affecting that selected

region of code and excludes those operations from what will be undone. This feature provides

a significant usability improvement compared to requiring users to select the exact set of op-

erations, because users can easily get the desired results by roughly over-specifying the se-

lected operations, and then marking all the code fragments desired to be in the resulting code.

This dialog is also capable of dealing with regional conflicts. When there is a chunk which

contains regional conflicts, the dialog shows a red X icon () beside the chunk, and the OK

button is disabled temporarily. Once the user selects the chunk from the top panel, the dialog

shows the three alternative options described in Section 5.2.2.2 so that users can choose

which one they want. Once an option is chosen, the chunk is marked as resolved with a green

check icon (, Figure 8-4), and the OK button becomes enabled when the user resolves all

existing regional conflicts. Note that in most use cases of AZURITE, regional conflicts will not

come up since rectangles will be selected with the aid of AZURITE features such as the history

search, the code history diff view, and the “keep this code unchanged” feature explained

Figure 8-3. The interactive selective undo dialog of AZURITE. Users can mark some code in the left panel, and

ask to “Keep this code unchanged”, which can be repeated until the preview in the right matches what is desired.

Chapter 8: User Interfaces for Selective Undo 115

above. The conflict-resolution interface is provided for the sake of soundness, when the user

manually selects or deselects some of the past operations from the timeline.

There are multiple ways of launching the interactive selective undo dialog. Essentially, for all

the situations where the selective undo command can be invoked, the interactive selective

undo dialog can be launched instead to review the selective undo results and fine-tune the

edits to be selective undone if necessary.

8.5. READING THE HISTORY OF PAST SESSIONS

AZURITE keeps the history separately for each session, where a session starts with the IDE being

opened and ends when the IDE is exited. By default, the timeline displays the history of the

current session only. Users can manually invoke the “Read Previous History” command to load

the code change history of previous sessions when needed. When this command is invoked,

AZURITE looks for the recent FLUORITE logs in the current workspace and reads the edit history

into the timeline visualization. Between each two adjacent sessions, a gray vertical line is shown

to indicate the boundary between those two sessions. A vertical line at the right edge of the

current session indicates “now”, which is drawn in yellow to be distinguishable from other ses-

sions. The edit operations loaded from the past sessions can be selected and undone, just like

the normal edit operations of the current editing session.

Similar to when some source files are changed outside Eclipse (Section 3.5.1), AZURITE com-

pares the final snapshot of each file in the past sessions and the known initial snapshot of that

Figure 8-4. The interactive selective undo dialog when there is a chunk with regional conflicts. The user can

choose one of the provided options to resolve the conflicts. Here, the second option (FontSize) is chosen by the

user, which is indicated by the blue outline.

116

file in the next session when reading the history of past sessions in order to check the validity

of the history. If they do not match, then AZURITE extracts the diffs between the two version

using the Google-diff-match-patch library [Fraser 2012], and adds the diffs to the timeline as

if they were normal edit operations.

8.6. LIMITATIONS AND FUTURE WORK

There are many different user interface features and editor commands provided by AZURITE.

Although these features provide a great level of flexibility in performing various backtracking

tasks, having too many features might make it difficult to learn when and how to use these fea-

tures correctly. On top of that, the user interfaces introduced in this chapter, except for the re-

gional undo, present some additional views or dialogs with which the user needs to interact.

Previous research suggests that programmers are less likely to use development tools with

complex user interfaces [Vakilian 2012][Lee 2013]. Simplifying the user interfaces and making

them work directly within the code editor would improve the usability of those interfaces and

minimize the learning overhead (which is why the regional undo shortcut was added (Section

8.2).

Neither the code history diff view nor the interactive selective undo allows editing the selective

undo result. Especially in case of the interactive selective undo dialog, half of the evaluation

study participants tried to manually edit the code within the dialog, which caused them to take

even longer to complete the provided backtracking task (see Section 9.2.6). Allowing users to

edit the code within the dialog or making it work within the editor itself would mitigate this

problem.

8.7. CONCLUSION

This chapter demonstrated various user interfaces and editor commands that are tightly inte-

grated with the fine-grained code editing histories and are specifically designed for selective

undo. I believe that providing more refined editor commands with more history search and

filtering options (see Section 11.2) would make programmers more comfortable in code editing,

fostering more exploration and more reliable backtracking.

 117

9.
EVALUATION OF AZURITE

In order to gain insight on how to improve the user interfaces and to evaluate the usability

and usefulness of AZURITE, I conducted two user studies: field trial with the initial user inter-

faces and a formal comparative evaluation study of a later version of the user interfaces. In

addition, the performance of AZURITE was measured in various aspects in order to demon-

strate that it does not notably slow down the IDE.

9.1. FIELD TRIAL WITH THE INITIAL USER INTERFACE DESIGN

After implementing the initial version of the timeline visualization (Figure 6-1b) and code

history diff view (Figure 8-1) features in AZURITE, I conducted a field trial of AZURITE in order

to get feedback on the usability and usefulness of AZURITE. 8 participants43 were recruited

from the Masters of Software Engineering program at Carnegie Mellon and asked to try using

AZURITE while working on their regular development tasks over the course of the summer.

The entire user interactions related to AZURITE were recorded using FLUORITE. Unfortunately,

because the participants were not enforced to use AZURITE features, four of the participants

never used any of the features during the study. Two other participants only tried each

AZURITE feature once when they first installed AZURITE. Only the remaining two participants

actively used AZURITE features including selective undo, so these two people were inter-

viewed individually (I1 and I2), in order to get more detailed feedback.

The two participants provided both positive feedback and suggestions for improvement. I1

expressed favorable opinions about the timeline visualization while I2 did not like it as much.

This was because I1 used the timeline visualization mainly for quickly checking the list of the

most recently edited files (as shown in the leftmost column of filenames), whereas I2 wanted

to use it for selective undo. They both described that they tried to use selective undo multiple

times by manually selecting rectangles from the timeline, but failed to get the desired result

and had to undo the selective undo operation. The reasons for this was that (1) it was difficult

to determine what the resulting code would look like, just by looking at the selected rectan-

gles, and (2) sometimes the edits represented by the rectangles were too small.

For these reasons, I2 used the code history diff view rather than directly selectively undoing

from the timeline, because the code history diff view worked as a “preview” of the selective

43 Originally, 10 participants were recruited, but 2 of them did not submit their log files and quit the study. The

log data from the remaining 8 participants were also included in the data set analyzed for the longitudinal
backtracking study (Section 4.3, P10-P17 of Table 4-5).

118

undo result for him. He mentioned that he liked to use the code history diff view even when

the regular undo command could be used, because it was convenient to see a preview before

undoing.

I2 also mentioned that he often wanted to keep the comments and selectively undo only the

code because for him the comments are usually the high-level description of a certain algo-

rithm and only the code may be wrong. They both wanted a feature to “tag” the current point

in time in the timeline.

These concerns were addressed in the newer version of AZURITE, by adding the following fea-

tures: the interactive selective undo (Section 8.4), the tagging feature in the timeline (Section

6.2), highlighting the corresponding areas of code when there are selected rectangles in the

timeline (Section 6.4), and the real-time edit collapsing features (Chapter 7). The two inter-

viewees were asked to try out the interactive selective undo and the tagging feature of

AZURITE, and I2 appreciated the new features:

I would say [the interactive selective undo] is a killer. Combined with the [tagging fea-

ture], I have total control over what I want in the code and what I want out.

9.2. EVALUATION STUDY

After implementing all the new user interfaces presented in Chapter 6 (but not the edit oper-

ation collapsing feature of Chapter 7), I conducted a controlled lab study to answer the fol-

lowing two research questions:

RQ1. Is AZURITE usable?

RQ2. Is AZURITE useful?

The second research question asking the usefulness of AZURITE was decomposed into the fol-

lowing three aspects:

RQ2-1. Can AZURITE users perform backtracking tasks more accurately?

RQ2-2. Can AZURITE users perform backtracking tasks more quickly?

RQ2-3. Is AZURITE perceived as useful?

A between-subjects design was used for this evaluation study with two groups: AZURITE and

Eclipse only (as the control). All the tasks were performed using the Eclipse 4.4 IDE on a 15”

Macbook Pro machine running OS X 10.9. The study took about 1.5 to 2 hours for each par-

ticipant.

9.2.1. PARTICIPANTS

A total of 12 programmers were recruited at Carnegie Mellon, 8 males and 4 females (median

age=27), who were randomly assigned to either group. All participants reported that they

had at least 3 years of programming experience in general (median = 5 yrs), and at least 2

Chapter 9: Evaluation of Azurite 119

years of Java experience (median = 4 yrs). No one had previously seen or used AZURITE before

the study.

9.2.2. TASKS

There were a total of 6 Java programming tasks which were derived from the empirical stud-

ies of backtracking (Section 4). The tasks were performed in the same order by all partici-

pants, which are summarized in Table 9-1. A separate code base was provided for each task.

For tasks 1 through 5, each task was composed of a series of steps: a number of normal (non-

backtracking) programming steps described in Table 9-1, followed by a backtracking step to

revert the changes made in the underlined step while keeping the changes from the other

steps. This was because we wanted to have the participants create the edit history themselves,

and wanted to ensure there were backtracking situations that would not be trivial to perform

using regular undo. For example, for T1, participants were asked to revert the factorial

method back to the for loop version after finishing step (3). For task 6, the participants were

provided with an existing code edit history and then asked to perform backtracking from

there. The full task materials provided to the study participants can be found in Appendix C.

Because it would be impossible to gather backtracking timing data if the participant becomes

stuck in one of the non-backtracking steps, we set up a 4-minute limit for each step, and the

experimenter helped the participant after the time limit. No help was provided for the back-

tracking steps from which the reported results are measured.

Task Individual Steps SEL MF

T1 (1) Implement factorial method with a loop

(2) Modify factorial method to use recursion

(3) Make a few more independent changes

√

T2 (1) Delete some existing sorting code

(2) Make a few more independent changes
√

T3 (1) Implement a simple Number class (unit tests given)

(2) Modify Number to be an immutable class
 √

T4 (1) Implement a Stack with inheritance (unit tests given)

(2) Modify Stack to use composition instead

T5 (1) Layout GUI controls using GridLayout

(2) Change the layout manager to GridBagLayout

(3) Add another GUI control

√

T6 Remove all the debugging specific code (e.g., println in multiple places)

while keeping the actual bug fix code. An edit history is provided to begin with.
√ √

SEL: selective backtracking (cannot be done with regular undo)

MF: multiple files are involved

Task T5 is similar to the motivating example of Section 1.2.

Table 9-1. Summary of the evaluation study tasks.

120

9.2.3. STUDY PROCEDURE

After obtaining the informed consent and demographic information, for both groups we al-

ternated between one tutorial session and two programming tasks, resulting in a total of 3

tutorial sessions and 6 tasks.

In the tutorial sessions, the AZURITE group learned how to use the regional undo shortcut

(Section 8.2), the “Undo All Files to This Point” feature from the timeline view (Section 6.5),

and the interactive selective undo dialog (Section 8.4). The tasks were designed in a way that

they can be effectively performed by using the feature they learned from the previous tutorial

session, but the participants were told that they were free to use any tactics. In other words,

Tasks 1-2 were easier to complete with the regional undo shortcut, tasks 3-4 with the “Undo

All Files to This Point” command, and tasks 5-6 with the interactive selective undo dialog.

The control group learned about the local history feature of Eclipse,44 which is a built-in fea-

ture that keeps a per-file local history of every saved version of the source code, and is the

closest existing feature that can help with the tasks. In the three tutorial sessions, this group

learned how to manually perform selective undo using the local history (by copying the de-

sired code from the compare view), how to replace the entire source code with one of the

saved revisions, and how to perform selective undo in multiple files (by performing selective

undo in one file at a time).

It seemed possible that the participants might have wanted to please the investigator and

behave in favor of the AZURITE tool if they knew if it was developed by the investigator. To

mitigate this problem as much as possible, the participants were never told that AZURITE was

developed by the investigator. Interestingly, no one in the control group was previously

aware of the Eclipse local history feature, and two of them mistakenly thought that the feature

was developed by the investigator, which might have also mitigated the bias.

All participants in both groups were familiar with and were able to use the regular linear

undo as well. After each tutorial, the participants were given a written document explaining

the feature they learned during the tutorial with screenshots, so that they could refer to it

later.

9.2.4. RQ1: IS AZURITE USABLE?

In general, the participants in the AZURITE group could learn the AZURITE features and use

them correctly as intended, after they finished the tutorial sessions. For the regional undo

shortcut, all six participants understood the feature quickly, and used the feature for com-

pleting the backtracking tasks. There was one participant who mistyped the shortcut key

twice during T1, but the same participant had no problems while completing T2 using the

44 http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2FgettingStarted%2Fqs-55.htm

http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2FgettingStarted%2Fqs-55.htm

Chapter 9: Evaluation of Azurite 121

regional undo shortcut. All six participants could learn and use the “Undo All Files to This

Point” feature without any noticeable problems.

However, three out of six participants faced some usability problems while completing T5.

This task was meant to be completed using the interactive selective undo dialog, but the par-

ticipants had to also manually edit the resulting code after using the dialog, due to the subtle

difference between the two layout managers they were using. Two of the participants quickly

realized this and roughly performed selective undo with the dialog and then manually edited

the resulting code, which resulted in somewhat faster completion time. One participant used

the regional undo command of AZURITE instead, which also worked. The other three partici-

pants in the AZURITE group tried to complete the backtracking using the interactive selective

undo dialog exclusively, which resulted in much longer time because the current interactive

selective undo dialog does not support manual editing within the dialog itself. On the other

hand, the “compare view” of the Eclipse local history does support manual editing, and the

resulting code can be manually edited within the compare view. So this is a feature that

should be added to AZURITE in the future.

9.2.5. RQ2-1: CAN AZURITE USERS PERFORM BACKTRACKING TASKS MORE ACCURATELY?

All the participants in both groups successfully completed all the provided backtracking steps,

thus no meaningful comparisons could be made between the two groups regarding the accu-

racy of backtracking.

9.2.6. RQ2-2: CAN AZURITE USERS PERFORM BACKTRACKING TASKS MORE QUICKLY?

To see if the AZURITE users can perform backtracking more quickly, I compared the comple-

tion time of the backtracking step of each task. An independent-samples t-test was conducted

to compare the backtracking completion time between the two groups. Over all tasks, the

AZURITE group took significantly less time (mean=386.3 seconds) to perform all the back-

tracking steps compared to Eclipse only group (mean=768.8s, p < 0.01), which is roughly

twice as fast. Figure 9-1 shows the average backtracking completion time for the individual

tasks for the 6 participants in each group. For tasks 2, 4, and 6, the AZURITE group was signif-

icantly faster compared to the control group (p < 0.05). For T1, the AZURITE group was gener-

ally faster but it was not statistically significant (p=0.25), mainly because one participant in

the AZURITE group mistyped the shortcut key twice, so he started over and took much longer

(173s).

T3 & T4 were non-selective backtracking tasks, meaning that they could have been per-

formed by using the regular undo command multiple times. One participant in the control

group in fact used the regular undo command instead of using the local history feature. Still,

the AZURITE group was generally faster because they could quickly skim through the timeline

to find the last successful unit test run and then undo all files to that point with a single com-

mand. There was one participant in the AZURITE group who did not use AZURITE for T3 and

122

took 167s reproducing the code manually, which heavily affected the mean value and made

the average time difference statistically non-significant (p=0.16) for T3.

The AZURITE group did not perform better for T5 (p=0.65), and the completion time varied

much more (sd=108.4) than the control group (sd=37.11). T6 was also meant to be completed

with the interactive selective undo dialog, but in this case everything could be done solely

with the dialog, and thus the AZURITE group dramatically outperformed the control group

(mean=128.5s v. 345.0s, p < 0.02).

Another interesting point shown in Figure 9-1 is that for each pair of tasks that were testing

the same feature (T1&T2 pair, T3&T4 pair, and T5&T6 pair), the second task was always

completed significantly faster by the AZURITE group compared to the control group (p < 0.05).

This may indicate that the AZURITE users became more familiar with the feature after com-

pleting the first task and were able to use that knowledge to complete the second task faster.

9.2.7. RQ2-3: IS AZURITE PERCEIVED AS USEFUL?

After finishing all the tasks, the participants were asked whether the tool they used was useful

for them with a 5-point Likert scale. A Wilcoxon rank sum test showed that AZURITE was more

useful (median=5) than the Eclipse local history (median=3.5, p<0.05).

Figure 9-1. The average backtracking completion time for each task. The error bars indicate the standard de-

viations. *differences are statistically significant (p < 0.05).

* *

*

0

50

100

150

200

250

300

350

T1 T2 T3 T4 T5 T6

A
ve

ra
ge

 t
im

e
 t

o
 c

o
m

p
le

te
e

ac
h

 b
ac

kt
ra

ck
in

g
ta

sk
 (

s)

Eclipse

Azurite

Chapter 9: Evaluation of Azurite 123

9.2.8. SUMMARY OF THE EVALUATION STUDY

In this formal evaluation study, the usability and usefulness of AZURITE was tested. The par-

ticipants in the AZURITE group could quickly learn and use the features during the study, but

there was one usability problem with the interactive selective undo dialog discovered during

the study. The usefulness of AZURITE was evaluated in three aspects. In terms of accuracy of

backtracking, there was no meaningful difference between the two groups. The overall back-

tracking task completion time of the AZURITE group was about half of that of the control group,

which was statistically significant. Finally, users perceived AZURITE to be more useful com-

pared to the Eclipse local history feature.

9.3. PERFORMANCE FEASIBILITY

One of the concerns of using IDE plug-in tools in general is that the tools may slow down the

IDE to the extent that the user becomes less productive. It could be problematic if AZURITE

introduces noticeable performance degradation of the hosting IDE. Therefore, I sought an-

swers to the following research questions regarding the performance:

RQ3. How much disk space do FLUORITE log files take?

RQ4. Does AZURITE notably slow down the IDE?

For RQ4, I measured specifically how much time it takes to perform all the calculations

needed for providing selective undo, whenever a new edit operation is added to the history.

There are three different logics that run when a new edit operation is made. First, the dy-

namic segments of all the past operations are updated (Section 5.1.3), the real-time edit col-

lapsing logic runs to determine whether the new edit should be collapsed with the previous

ones (Section 7.2), and a new rectangle representing the new edit is added to the timeline

(Section 6.1). The calculation time for these three logics were measured separately, which

will be discussed in more detail below.

9.3.1. RQ3: DISK SPACE USED BY FLUORITE LOGS

AZURITE uses the fine-grained code change history generated by FLUORITE (Chapter 3). During

our studies (Chapter 4), there was no noticeable performance loss caused by FLUORITE. This

could be an important issue since FLUORITE would be inappropriate for field studies if it sig-

nificantly slowed down the IDE. The total size of FLUORITE log data from 21 programmers,

containing 1,460 hours of active coding activities, collected for the longitudinal backtracking

study (Section 4.3) was 377MB, which gives a log size growth rate of about 264.5KB/hour

during active editing. Given the spacious hard drives used nowadays, this will not be a critical

issue for most users. Moreover, the same study discovered that 99% of the backtracking in-

stances are performed within 3 editing sessions, implying that purging old editing histories

would be safe enough in most cases if the main use for the logs was for backtracking (as op-

posed to using them for understanding the changes in the code).

124

9.3.2. RQ4-1: PERFORMANCE OF THE EDIT HISTORY MANAGEMENT ALGORITHM

The edit history management algorithm is described in Section 5.1.3 and Figure 5-5. The

update(𝐻, 𝑛𝑒𝑤𝑂𝑝) function is called whenever a new edit operation 𝑛𝑒𝑤𝑂𝑝 is performed.

Each new operation can add at most 4 dynamic segments: 1 delete segment, 1 insert segment,

and up to 2 more segments (Figure 5-1b3) if it happens to split an existing insert segment.

Since the update function iterates through all the segments in the history and performs con-

stant time update work for each segment, the worst-case time complexity of update function

is 𝑂(𝑁), where 𝑁 is the total number of edit operations in the current history 𝐻.

This algorithm gets slower as the history gets bigger because of this. The actual time it takes

to add a new operation to the history was measured45 under varying sizes of 𝑁, and it took

3.93ms when 𝑁 = 10,000, and 39.58ms when 𝑁 = 100,000, which confirms the linear time

complexity. According to the collected log data, 10,000 operations approximate one week of

coding work, assuming 40 hours of work a week (avg. # of edits: 193/hour, from Table 7-4).

This edit history management is needed for providing selective undo. Considering that 97%

of the backtrackings are performed within the same editing session (Section 4.3.2.5), the edit

history management algorithm, even unoptimized, will work in practice without causing sig-

nificant delay.

9.3.3. RQ4-2: PERFORMANCE OF THE REAL-TIME EDIT COLLAPSING ALGORITHM

When the real-time edit collapsing algorithm (Chapter 7) is running, the collapse logic runs

whenever a new edit operations is performed in the code editor. Note that an edit operation

usually contains one or more tokens, not just a single character, because FLUORITE merges

consecutive character typing operations into a single edit (Section 3.3.3). The entire collaps-

ing logic is illustrated in Figure 7-4, and the running time is dominated by the collapse test

logic, which requires parsing the current source file (Section 7.2.2). Unlike the edit history

management algorithm above (Section 9.3.2), the running time of the collapsing algorithm is

not affected by the current history size. Rather, the size of the current source file matters,

because parsing the code is the key element of the collapse test algorithm.

In order to measure the performance of the collapse logic in average use, I measured the time

it takes to run the edit collapsing logic at each level, using the data set from the longitudinal

study (Section 4.3) on the same machine as above.

Table 9-2 summarizes the mean time it takes to run the collapse logic at each collapse level.

Here, I took the trimmed mean values by trimming 10% of the data from each end in order to

remove some extreme outliers from the data.46 The parse level logic, which mainly tests if the

current code is parseable, takes about 7ms on average. The method and type level logic, which

45 Measured on a PC running Windows 8 with a 2.60GHz CPU.
46 This performance analysis was done offline by feeding the log data to the edit collapsing logic. The analyzer

running on the JVM was using a lot of memory to process all the huge log files, and occasionally froze for a long
time for garbage collection, which resulted in some extreme outliers.

Chapter 9: Evaluation of Azurite 125

requires more sophisticated change detail extraction process as in Figure 7-5, takes about

11~12ms.

From the data presented earlier in Table 7-4, we can obtain the invocation rates of the col-

lapse logic at each level. The parse level collapse logic is called every time when a new edit is

made. The method level logic is called 0.45 times/operation, and the type level logic is called

0.23 times/operation on average.47 Combining invocation rate values with the measured time,

the time it takes to run the collapse level per edit operation can be calculated by taking a

weighted average as follows:

7.08ms × 1/op + 11.29ms × 0.45/op + 11.80ms × 0.23/op = 14.87ms/op

This means that whenever a new edit is made, the collapsing logic runs for about 15ms on

average, which is acceptable. The current implementation of the collapsing algorithm is not

very well optimized, and the running time would be considerably reduced when we imple-

ment some simple performance improvements such as AST caching (see Section 7.2.2).

9.3.4. RQ4-3: PERFORMANCE OF THE TIMELINE VISUALIZATION

The timeline should not significantly affect the response time of the code editor either. The re-

sponse time was measured for several important operations of our timeline with 700 and 3,500

rectangles, which approximates one day and one week of work at the parse level, respectively

(88 rects/hr from Table 7-4). The time was measured on the same machine as above running

Internet Explorer 10.48 The results are summarized in Table 9-3.

Note that the measured time in this section does not include the time it takes to compute which

edits should be collapsed, which was discussed above in Section 9.3.3. The collapse results are

forwarded from the edit collapsing component to the timeline, and the timeline is merely re-

sponsible for correctly displaying the rectangles. In other words, the performance of the time-

line operations listed below is only dependent on the number of rectangles in the timeline, in-

dependent from the current collapse level.

47 Calculated by dividing the total number of operations at the previous level, by the total number at the raw level.

See Table 7-4 for the detailed numbers. (Method Level: 127,683 / 282,195 = 0.45, Type Level: 63,984 / 282,195
= 0.23).

48 The browser information here is relevant because the timeline runs in an embedded browser.

Collapse Level Running Time

Parse Level 7.08 ms

Method Level 11.29 ms

Type Level 11.80 ms

Table 9-2. Running time of the collapse logic at each collapse level (in milliseconds).

126

Overall, the compact mode is much slower than real-time mode because of the calculations re-

quired to remove the gaps. The only operation that is automatically performed while the pro-

grammer is editing code is Add Rectangle, which only takes a negligible time (6ms) even in

compact mode with 3,500 rectangles, which means that the timeline is non-intrusive in average

use cases. The other three operations in Table 9-3 are called only when the user interacts with

the visualization. A Layout routine recalculates the positions of all rectangles, and it is called

when the file filtering option is changed, when the layout mode is toggled, or when the collapse

level is being changed. Although Layout takes more than 2 seconds for 3,500 rectangles in com-

pact mode, this is not likely to be an issue in practice because the number of rectangles was a

huge overestimation, and the Layout operation is not needed for most use cases of the tool.

9.3.5. RQ4: PUTTING IT ALL TOGETHER

Assuming that a user keeps her Eclipse environment open for a week and writes code for about

40 hours (which is an overestimation), a new edit operation in the code editor can cause all the

dynamic segments to be updated (4ms), the edit collapsing logic to run (15ms), and a corre-

sponding rectangle to be added to the timeline view (6ms). Adding these three values, the av-

erage response time of AZURITE for adding a new edit operation is 25ms. This means that

AZURITE would not notably slow down the Eclipse IDE.

9.4. EXAMPLE USE CASES

This section lists some example use cases where the timeline visualization in conjunction with

the various selective undo user interfaces of AZURITE can be used to solve real-world problems

that previous research shows that software programmers face.

9.4.1. ANSWERING HISTORY-RELATED QUESTIONS PROGRAMMERS ASK

Prior research has identified many hard-to-answer questions programmers ask as part of their

development activities [Fritz 2010][Ko 2007][LaToza 2010]. These include the following his-

tory-related questions (quoted directly from [LaToza 2010]), which can be easily answered us-

ing AZURITE’s visualizations. Note that answering these history questions can also be an effec-

tive strategy for answering higher-level rationale questions, as pointed out in [LaToza 2010].

Q1. When, how was this code changed or inserted?

 Compact mode Real-time mode

of rectangles # of rectangles

Operations 700 3,500 700 3,500

Add Rectangle 3 6 3 6

H-Scroll 3 9 10 31

V-Scroll 2 6 6 24

Layout 174 2,852 112 593

Table 9-3. Summary of the measured response time (in milliseconds).

Chapter 9: Evaluation of Azurite 127

Q2. How has it changed over time?

Q3. Has this code always been this way?

These three questions can be easily answered by selecting the code and launching the code

history diff view, which would show how the code has changed over time with the exact

timestamp of each change.

Q4. What recent changes have been made?

This question can be answered using the timeline visualization. Programmers can load the his-

tory of the past editing session to see what recent changes have been made to the project (see

Section Error! Reference source not found.). Since the most recently changed file is always

shown at the top of the timeline, the recently changed files can be easily identified by reading

the file names from the top. If more detailed information is needed, the user can jump to the

specific code by double-clicking the last rectangle of each file and the code history diff can be

viewed to see the actual code edits.

Q5. What else changed when this code was changed or inserted?

First, the code history diff view can be used to determine when this code was changed or in-

serted. Next, from the timeline, the user can select the surrounding time range of interest and

invoke “show all files edited in range” command (Section 6.5) to determine all the other files

that were also edited within that timeframe.

Q6. How did this ever work?

Although it would not directly answer this question, AZURITE can help provide some clues by

allowing programmers to quickly identify when the code was introduced, and go back to see

the way the whole project was at that point in time, so that they can test the program under the

configuration where the code was introduced. If the code still does not work in that situation,

then it is likely that the code has never actually worked correctly.

9.4.2. SELECTIVE UNDO SCENARIOS

In our empirical studies, we identified several problems programmers face while backtracking

(Chapter 4). Based on those observations, this section lists some scenarios where the visualiza-

tions and selective undo features can help with backtracking tasks we observed. When these

scenarios occur in between version control commits, the version control systems would not

help in these situations.

9.4.2.1. REVERTING TO A PREVIOUSLY USED LAYOUTMANAGER

When programming GUIs, one often ends up having to experiment with different layout man-

agers to get the UI to look as desired. Recall the example scenario described in Section 1.2. A

programmer is implementing a GUI dialog in Swing. She first writes the code with

128

GridBagLayout, and then changes to a simpler BoxLayout manager. Then she realizes

BoxLayout does not look right, and wants to revert back to GridBadLayout. Assuming the

target operations will be close together either in location or time, this backtracking task can be

completed using AZURITE. History search will find the point in time where GridBagLayout ex-

isted in the code snippet, and the user can use the timeline and/or code history diff view to find

the exact point to backtrack to, and then revert the code with the “Undo All Files to This Point

Interactively” command. Note that this works even if other, unrelated changes are made after

or interspersed with the edits to the layout manager, which would make using conventional

undo or a version control system inappropriate.

This could be achieved without AZURITE if the programmer commented out the GridBag-

Layout code instead of deleting it. However, it was observed from the preliminary lab study

that even the programmers who explicitly said they regularly commented out code, occasion-

ally deleted code which turned out to be needed later (Section 4.1) and programmers occasion-

ally had trouble uncommenting the code correctly.

9.4.2.2. RESTORING DELETED CODE IN GENERAL

Searching for the code like GridBagLayout is not the only way to restore the deleted code. I

also noticed that programmers often remember where the code was deleted, or what the sur-

rounding code looked like, in which case the code history diff view or the regional undo shortcut

can be used to find and then restore the desired code.

9.4.2.3. REMOVING TEMPORARY DEBUGGING CODE

One popular debugging strategy is to add print or logging statements in various locations to see

how the values change as the program executes. In many cases, these statements are temporary

and should not be committed to the main repository. Removing all the recently added println

statements, however, can be a tedious task if they are spread across multiple locations. If the

println statements were consecutive in the history (i.e., they were inserted at the same time),

this can be done quite easily with AZURITE. First, the user can locate one of the println state-

ments from the code editor with regular search, for example. Then, the user can identify the

point in time when the statement was inserted with history search or code history diff view.

Since all the println insertions would appear near to each other in the timeline, they can be

easily selected together and undone at once, even if they are across multiple files. This also

works if there are other println statements mixed in the code that were not part of this de-

bugging and thus should be kept unchanged, in which case using regular text search would be

less useful.

9.4.2.4. ABORTING OR UNDOING A MANUAL REFACTORING

Researchers have discovered that programmers perform refactoring manually a majority of the

time, even when there are automatic refactoring tools available [Murphy-Hill 2009][Vakilian

2012]. Aborting a manual refactoring in the middle, or undoing it sometime later could be tedi-

Chapter 9: Evaluation of Azurite 129

ous, because there can be many steps involved often across multiple files to achieve the refac-

toring. Using AZURITE, a manual refactoring can be reverted in various ways. Users can use the

code history diff view to navigate to the desired version of the code and revert the snippet to

that version. If there are multiple files involved, users can find the other files that were edited

together using AZURITE’s filtering feature and selectively undo them together. Depending on the

type of refactoring, other types of history search can help. For instance, if the refactoring was

Extract Method, one could easily find the point in time right before the refactoring was per-

formed by searching for the time when the extracted method name first existed.

9.4.3. OTHER BENEFITS

Programmers often need to remember the previously attended locations in code when resum-

ing from an interruption or when switching between tasks [Parnin 2012]. The timeline can be

used as automatic bookmarks of recently edited locations in such a situation. Using the timeline,

programmers can quickly see which files were the most recently edited in a project or in a

workspace as a whole. For each file, the last edited location can be easily visited by double-

clicking on the last rectangle that appears in the timeline. Unlike manual bookmarks, this works

well even when there are a great many files in the programmer’s workspace.

9.5. MY OWN EXPERIENCE OF USING AZURITE

This section describes my own experience using AZURITE as a user. I have been using AZURITE

for my own development of FLUORITE and AZURITE since the field trial version. First of all, there

was no measurable performance loss while using the Eclipse IDE with AZURITE installed. In ad-

dition, I could analyze my FLUORITE logs to see how frequently I used each AZURITE feature and

reflect on how I used the features. Table 9-4 summarizes the execution count for each AZURITE

command in 2014. Note that all the log files created while testing or debugging are excluded

from the analysis, because they do not reflect my normal use of AZURITE as a user. Excluding all

the testing and debugging logs, my logs contained 146 hours of coding activities.

The timeline interactions (36 times) were used for understanding the recent code edit histories,

or jumping to the code location associated with some rectangle in the timeline, or selecting rec-

tangles to be undone. The most basic form of selective undo – selecting rectangles from the

AZURITE Feature Count

Timeline interactions 36

Selective undo (from the timeline) 9

Regional undo 21

Code history diff view 17

Interactive selective undo 7

History search 5

Undo all files to this point 3

Table 9-4. Frequency of all the AZURITE commands that I used during 2014.

130

timeline and invoking the selective undo command – was only used 9 times. The regional undo

(21 times) and the code history diff view (17 times) were the two most frequently used forms

of selective undo. The regional undo shortcut was the most convenient when I knew the exact

location of code that I wanted to undo. I used the code history diff view instead in several situ-

ations: (1) when I wanted to see the preview of the undo result, (2) when I only wanted to check

how the code looked in the past, and (3) when I wanted to restore some deleted code, but

wanted it to be restored in a different location. In the last situation, I first launched the code

history diff view, navigated backwards through the history to find the code that I wanted, cop-

ied the desired code to the clipboard, and then pasted the code to the desired location. I used

the interactive selective undo (7 times) and the history search (5 times) less frequently, com-

pared to the regional undo features. This was because most of the backtrackings that I per-

formed were simple enough to be completed with the regional undo. Finally, I occasionally used

the “Undo All Files to This Point” command from the timeline (3 times) to revert multiple source

files to a certain point in the past.

Excluding the timeline interactions and the history search invocations which were used only to

select what to undo, I performed selective undo a total of 57 times over the course of 146 hours

of coding. In other words, my average backtracking rate using AZURITE was 0.40/hour. Although

this rate is smaller than the selective backtracking rate of 0.98/hour that I obtained from the

longitudinal study, I personally found AZURITE to be useful for my own development overall.

9.6. CONCLUSION

The selective undo mechanism for code editors described in Chapter 5 was implemented in

our prototype tool AZURITE, with all the user interfaces introduced in Chapters 6, 7, and 8. In

this chapter, I evaluated its usability, usefulness, and performance feasibility. The field trial

and the interviews showed that users liked the features in AZURITE, and also provided valua-

ble insights on what features should be improved and how. The formal user study suggests

that this selective undo tool for code editors can make programmers more effective and effi-

cient when they are performing backtracking tasks. The performance was measured to

demonstrate the feasibility in various aspects: edit history collection, maintaining the dy-

namic segment information to be used for selective undo, and the timeline visualization. In

addition, I showed various situations where selective undo mechanism could be useful while

coding, and also shared my own positive experience of using AZURITE for my development.

These results show that the selective undo mechanism helps programmers when they face

some backtracking tasks. Combining these results with the observations from the empirical

studies of backtracking which showed that programmers backtrack a lot (Chapter 4), it can

be concluded that the selective undo mechanism would improve the general productivity of

programmers.

The idea of selective undo could be applied to many fields other than programming. As an

example, the next chapter will discuss our investigation of design issues around applying se-

lective undo in painting applications.

Chapter 9: Evaluation of Azurite 131

 133

10.
SELECTIVE UNDO SUPPORT FOR

PAINTING APPLICATIONS49

Although the previous chapters discussed our selective undo mechanism in the context of

code editing, there are many other types of applications where selective undo could be useful.

In order to see if the selective undo idea can be applied to other domains and if the knowledge

about selective undo issues can be transferred between different domains, we investigated

selective undo in the painting domain.

10.1. MOTIVATION

The undo operation has long been understood to be a required command in applications, es-

pecially to support creative exploration. Studies have shown that when users have the ability

to undo, they are more comfortable exploring and trying new commands [Kuttal 2011].

Ideally, any previous operation should be able to be undone. However, as discussed earlier,

most applications use the same restricted linear undo model [Berlage 1994] which has limi-

tations. A key reason more elaborate models have not become more popular is primarily due

to the user interface challenges of presenting a more powerful undo model in a way that it is

easy for the user to understand.

The limitations of linear undo have motivated research on selective undo, where the user can

specifically select which of the previous operations to undo and which to keep (Section 2.1.1).

However, this prior work has primarily focused on object-oriented drawing programs, like

PowerPoint or Adobe Illustrator [Berlage 1994][Myers 1998], where selective undo is more

easily achieved by selecting objects and restoring their properties. New work has started to

address selective undo in text as in the previous chapters and in [Li 2003], but there is little

work on selective undo in painting applications like Photoshop which lack the structures used

by object editing programs, and where operations tend to affect overlapping spans of pixels.

This makes it much more difficult for users to identify which operations to undo (since there

may be many small edits) and to predict the outcome of selectively undoing something in the

49 Significant portions of this chapter appeared in [Myers 2015]. Ashley Lai and Tam Minh Le conducted the initial

semi-structured interviews, and mainly implemented the Aquamarine prototype. Throughout this chapter, I
intentionally use the pronoun “we” instead of “I” to indicate the work was highly collaborative.

134

past. Furthermore, it is challenging to provide understandable user interfaces for any selec-

tive undo model. Note that throughout this chapter, we are deliberately distinguishing the

term drawing from painting. Drawing programs have identifiable objects in the picture that

can be selected and manipulated later, whereas painting programs convert objects into pixels

immediately, and subsequent selections and operations are at the pixel level. Many painting

operations cannot be naturally converted into objects with a distinct shape. For example, the

paint bucket tool and filters do not create or even necessarily modify objects; instead they

manipulate pixels. Note that modern image manipulation programs like Photoshop actually

have a mixture of drawing and painting features. The prototype described in this chapter fo-

cuses on painting only.

Another interesting issue is the distinction between the inverse and script models of selective

undo (Section 2.1.1). In the inverse model, supported by most previous selective undo systems

[Berlage 1994][Myers 1998] and AZURITE, a selective undo causes the inverse of the selected

operations to be added to the end of the history. For example when the user selectively un-

does a delete, a create operation is performed and added to the end of the history. In contrast,

the script model removes the selected operation from the history and performs all subsequent

operations as if that operation had never been performed [Kurlander 1988]. This can cause

semantic problems in drawing programs (for example, what is the meaning of a change-size

operation applied to an object if the previous creation of that object is selectively undone, and

thereby removed from the history?), but may be more appropriate when painting (since there

are no objects to which operations are applied). We are not aware of any previous research

on supporting selective undo in a paint program using the script model.

We created Aquamarine50 (Figure 10-1) to study these issues. Aquamarine is a new prototype

painting program that supports selective undo using the scripting model. We first performed

semi-structured interviews with student and professional graphic artists to see what they

would want and expect in such a tool. We then implemented the Aquamarine prototype based

on those findings, and ran usability evaluations to assess its features and design decisions.

50 Aquamarine is a gemstone, and here it stands for: Allowing Quick Undoing of Any Marks And Repairs to Im-

prove Novel Editing

Chapter 10: Selective Undo Support for Painting Applications 135

The contributions of this chapter include:

 Results of semi-structured interviews, which show that users have a significant need

for selective undo capabilities in painting programs, and compensate with worka-

rounds such as using many layers, saving the whole file to disk, or just starting over.

 A discussion of the design space for selective undo and tradeoffs among the design

decisions.

 A design and implementation for a selective undo mechanism using the script model

in a prototype paint program called Aquamarine, which explores the design space for

how the script model should operate.

 A usability evaluation that demonstrates the aspects of the selective undo mechanism

which are most usable and useful, and areas where more research is required. All us-

ers expressed a desire to have a form of selective undo in their everyday programs.

10.2. INITIAL SEMI-STRUCTURED INTERVIEWS

In order to get a better idea about how people might use a selective undo mechanism in paint-

ing applications, we first performed semi-structured interviews of nine people. Our collabo-

rator from Adobe (Joel Brandt) reports that there are three primary uses of Photoshop: (1)

to design and prototype user interfaces, (2) as a painting tool to create art, and (3) to edit and

retouch photographs. We were careful to recruit participants from all three groups (see Table

10-1).

Figure 10-1. Aquamarine’s history panel with operation #10 (brush stroke for the nose) selectively undone.

136

All of our participants were frequent users of Photoshop, with four self-rating as expert users,

four as intermediate and one as novice. Four were professionals and five were students. Pho-

toshop provides four undo mechanisms: an old-fashioned toggle undo (Ctrl-Z), which undoes

and then redoes the last operation, a normal linear undo, which it calls “Step Backwards” and

“Step Forwards” (Shift/Alt-Ctrl-Z), a history panel which enables undoing back multiple steps

(with a fixed maximum limit that defaults to 20), and a “history brush” where users select a

point in the history panel and then paints, which restores the pixels back to that point in time,

as a form of regional undo. As previously mentioned in Section 2.1.5, Photoshop provides an

optional non-linear history mode. No participant (in this or the final study of Aquamarine)

had ever used or had even heard of this feature, which is turned off by default. Three of the

participants reported using the toggle undo, five reported using step-backwards and step-

forwards, three used the history panel, and one reported using the history brush.

In the first part of our interviews, we asked participants to work on one of their own tasks

using Photoshop, as a form of contextual inquiry [Beyer 1997], and they were encouraged to

think aloud. We told them we were particularly interested in situations where they would

“explore different ideas and test out different alternatives.”

The more experienced users exclusively used the shortcut keystrokes to invoke commands.

Only two participants had the history panel displayed, but both of them used it to undo mul-

tiple operations. We did not see any use of the history brush. Some participants erased areas

rather than using undo, whereas others made significant use of the step-backwards com-

mands. They recognized the limitations:

I don’t want to use the undo button if there’s a part that I drew after that I like.

Another said:

It’s more of a short-term memory [issue] for me. I don’t usually undo more than five

steps back.

ID Experience
Student

or Prof.
Des? Art? Photo? Ctrl-Z

Step-

Back

Hist.

Panel
Hist. Brush

1 Intermediate student Yes Yes Yes Yes Yes

2 Intermediate student Yes Yes Yes

3 Intermediate student Yes Yes

4 Expert student Yes Yes Yes

5 Expert prof. Yes Yes Yes Yes

6 Novice student Yes Yes

7 Expert prof. Yes Yes

8 Expert prof. Yes Yes

9 Expert prof. Yes Yes

Table 10-1. Participants in our semi-structured interviews.

Chapter 10: Selective Undo Support for Painting Applications 137

Participants used the layer mechanism to group items together when they anticipated a need

to selectively change an area or a shape, and experienced users grouped and named layers to

keep the large number of layers organized. When beginning a creative exploration, partici-

pants often duplicated layers or saved a version of the whole picture, to facilitate backtrack-

ing. Users often hid layers instead of deleting them;51 one said:

I don’t like deleting things; it feels too permanent—even if it was a mistake.

In the second part of our interviews, we gave the participants a series of tasks designed to

elicit selective backtracking behaviors and strategies. We told them to imagine they were cre-

ating images for a company that is run by a very indecisive boss. We would repeatedly in-

struct them to create something, then change it, then do other things, and finally to change it

back. This cannot be supported with any of Photoshop’s existing undo mechanisms. As in the

first part, when participants anticipated that something would need to be undone, they put it

on a separate layer. If we asked them to undo something that was not on a separate layer,

they expressed regret that it was not separated and usually started over from scratch. Users

considered using advanced editing tools such as Photoshop’s Color Replacement Tool, but

often decided it would not work sufficiently well, and just painted over items, or deleted and

redrew them from scratch. These results reveal the reliance on layers to simulate selective

undo, and the need to start over and lose desired work when undesired operations precede

the desired ones.

In the third part of our interviews, we explained the concept of selective undo and asked if

they thought it would be useful in their own work. Six participants said it would be useful

frequently or almost every day, and the other three said maybe not since they achieved the

same functionality with layers or by frequently saving their work to disk.

In the fourth part of our interviews, we asked a series of questions about what they thought

would happen as a result of performing a selective undo. In particular, we were exploring

whether they expected the script model or the inverse model of behavior. For example in Fig-

ure 10-2, if the stars were created by duplicating the original star, what should happen if the

creation of the original star was selectively undone? All participants thought the other stars

should not disappear, so they were endorsing the inverse model in this case, since under the

script model, there would be nothing to duplicate. On the other hand, if we added a recolor

step for the star between steps 1 and 2, and then selectively undid the recoloring, all but one

of the participants expected the stars in step 2 to also change color, requiring the script model

to hold. When this inconsistency was pointed out, most participants agreed that their prefer-

ence would change based on the situation.

51 This is consistent with the observations from our lab study of programmers’ backtracking (Section 4.1.5.2).

Hiding layers is comparable to commenting out existing code.

138

Finally, we explored a number of features that might be used in a selective undo mechanism.

Most participants agreed that the ability to identify which operations had contributed to a

selected region of the picture would be useful, as a way to find which operations to selectively

undo. About half thought the reverse operation was needed – to select an operation in the

history panel and highlight what area of the picture it affected. Few participants saw any need

to search for commands in the history by name (to enable searches like “find the last time I

used the brush tool”). Also deemed unnecessary would be a need to view different versions

of a picture side-by-side, or automatic version control tools, as are commonly used for source

code and which are provided for painting applications by third party tools like LayerVault52

and Pixelapse53.

10.2.1. DISCUSSION

In an object-oriented drawing program, users can generally get the effect of undoing opera-

tions by manually performing the opposite operation. Thus, the “undo” of resizing can be

achieved by just resizing it back, which can generally be performed at any time. Photoshop

and other painting programs try to provide this capability for as many operations as possible

by having many operations act like they are object-oriented instead of pixel based (that is,

like a drawing program instead of a painting program). For example, text in Photoshop is kept

as objects on its own layer until the user explicitly flattens it into a bitmap. However, this

means that many bitmap operations, like blurring or erasing, would not be available until the

image is flattened, and changing the text would not be possible after blurring.

Similarly, in our study, we saw participants using layers to try to make painting operations

have the ability to be selectively edited. However, layers do have significant limitations. We

saw frequent errors where participants would accidentally draw into the wrong layer, merge

layers and regret it later, or realize too late that a new layer should have been created. Also,

the large number of layers became difficult to manage.

52 https://layervault.com/
53 https://www.pixelapse.com/

Figure 10-2. Multiple steps to create a drawing.

https://layervault.com/
https://www.pixelapse.com/

Chapter 10: Selective Undo Support for Painting Applications 139

In addition, users were wary of the Photoshop history tool, since it only keeps a limited num-

ber of steps backwards, the history is not preserved when a document is closed, and it can be

difficult to identify which step to go back to. One participant noted:

If you rely on history, you’re asking to get burned by it.

Therefore, there is an opportunity to provide a new way for users to backtrack in painting

programs.

Participants agreed that there would be significant value in having a selective undo tool that

would provide the ability to change what was done in the past, without the requirements of

pre-planning to use layers and without giving up the advantages of bitmap editing.

10.3. DESIGN TRADEOFFS

In designing and implementing the selective undo feature, we had to make a large number of

design decisions, across a number of different dimensions. In many cases, we needed to de-

cide what a selective undo for painting applications should mean since this has never previ-

ously been explored. This section presents the design dimensions, the various options and

tradeoffs, and justifications for decisions implemented in Aquamarine.

10.3.1. WHICH OPERATIONS TO EXPLORE?

We classified all Photoshop operations into eight categories with respect to their interaction

with Undo (as has also been explored previously by others [Chen 2011]). The categories are:

1. Creation/painting, which cause pixels to be drawn

2. Local-adjustment tools, which change existing pixels

3. Global commands, which affect all pixels in the image

4. View control commands, which do not change pixels

5. Selection tools, which control subsequent operations

6. Mode changes, like picking a color or changing the current layer

7. Conversion tools, like Flatten and Convert to Smart Object

8. Miscellaneous, like 3D tools

The first three are the most relevant to selective undo, so we implemented at least two oper-

ations from each of these categories. We expect that operations in Photoshop or other full-

featured paint programs would have identical issues with respect to selective undo, so we

believe the HCI issues we have identified will generalize to all other commands.

10.3.2. SCRIPT MODEL VERSUS INVERSE MODEL?

The most important decision was which kind of selective undo model to support. As discussed

above, the primary choices are to use some form of script model or some form of inverse

model.

140

The inverse model seemed inappropriate for a painting program, since so many operations

cannot be undone by adding a new command to the end of the history. For example, take color

change. In a painting program, a color change using the Paint Bucket Tool (more formally

called flood fill), changes the color of the area defined by the contiguous pixels that match,

within a tolerance, the color of the clicked pixel. This operation often cannot be undone with

a new flood-fill at the end of the history (that is, “now”). For example, in Figure 10-3, the flood

fill of step 2 cannot be undone with another flood fill after all of the actions in step 3, because

flood-filling now will only change parts of the former blue t-shirt, and the long sleeves added

to the shirt might also be flood-filled. Similarly, other bitmap editing operations, like blurring

the image, cropping, etc. may be impossible to reverse in the current state. Other operations,

even creating new shapes, cannot necessarily be undone in the current state, because of other

paintings drawn on top of them may compute the new pixels using the existing pixels.

However, a script model can be used to selectively undo the flood fill operation—we can undo

all the operations back to before step 2 was done (so the image looks like step 1), skip doing

step 2, and then do the remainder of the operations.

Note that using layers to separate operations as in Photoshop and other programs, so the user

can simulate selective undo by turning off or deleting layers, will not help with selective un-

doing of painting-based operations like flood fill or blur, since these operations must work on

the same layer as the pixels to be modified.

Since Aquamarine specifically focuses on these painting operations, we decided to use the

script model. Another motivation is that the script model has rarely been investigated in pre-

vious research or commercial systems, and it brings up many more interesting and challeng-

ing design decisions, which are discussed next.

Note that providing selective undo with either model can work with the regular linear undo

command. Thus, the selective undo/redo commands can be ignored entirely if the user does

not use them, and the normal way of using undo/redo can be utilized.

Another issue is that some commands have side effects external to the editor. For example,

File Save should not be re-executed each time the system reruns the script to perform a se-

lective undo. Fortunately, it turns out that these operations are actually not put into the undo

stack anyway (see also the discussion of copy and paste below). For a few internal operations

(1) (2) (3)

Figure 10-3. In a painting program, (1) paint a shirt, (2) flood fill it with a new color, (3) then do a variety of

other actions.

Chapter 10: Selective Undo Support for Painting Applications 141

with side effects, like Create Layer, we must disable all the other operations on that layer if

the create is selectively undone.

10.3.3. HANDLING REGION CONFLICTS AMONG OPERATIONS

As discussed in Section 2.1.1, an important concern in object-oriented editing is dealing with

dependencies and conflicts [Berlage 1994][Myers 1998][Cass 2005]. Bitmap operations do

not have this kind of conflict, since they work on pixels, which will still be there. However, it

is possible to have region conflicts (Section 5.1.2), which are where a later operation’s scope

overlaps the selected operation in such a way that it is not clear what the selective undo

should do. For example, in Figure 10-3, if the user tried to selectively undo the painting oper-

ation (step 1), what should the flood fill (step 2) do, since the t-shirt is no longer on the screen?

There are a variety of possible outcomes for step 2 in a script model when step 1 is removed:

1. Cancel the selective undo due to the conflict. That is, do not perform the selective

undo at all.

2. Perform the selective undo, and also undo the conflicting operations, which includes

at least step 2.

3. Perform the conflicting operations as dictated by the script model with the selected

operation removed. In this case, it would probably flood-fill the whole canvas since

there would be nothing (only background) at the pixel where the flood fill operation

happened.

There is actually a 4th possibility, which we discuss in Future Work: allow the user to modify

the conflicting operation or add entirely new operations into the history. For example in Fig-

ure 10-3, the user might select a new pixel at which to apply the flood fill, or paint a brand

new shape where the shirt used to be as a replacement step 1.

We investigated providing a popup dialog to help the user resolve these conflicts and pick

one of the three options, as in AZURITE (Figure 8-4), but it proved quite difficult to identify

exactly which operations should be marked as conflicting with the undone operation, result-

ing in very expensive pixel operations and too many false positives. Therefore, we decided to

use a much simpler approach of just comparing bounding boxes of all subsequent operations,

and highlighting the operations in the history which might conflict, to help the user find them

if they want option 2 (see Figure 10-4).

142

To reduce the number of operations that are highlighted, we developed a set of heuristics for

the kinds of region conflicts that should be brought to the user’s attention based on the oper-

ation categories discussed above in Section 10.3.1. The heuristics are as follows: first, we do

not highlight creation/painting operations. For example, if a new shape is painted on top of

an old shape, and the painting of the old shape is selectively undone, even though overlapping

pixels are affected, we do not alert the user, and simply remove the old shape and repaint the

new shape. Similarly, global operations affect all pixels, but we do not alert users to these

region conflicts either. The main issue is when the later operation is a local-adjustment tool,

which modifies only some of the pixels of the picture. Flood-fill and smudge are examples of

this, and there are many others. When such operations affect the same area that the selective

undo will affect, we alert the user of all conflicting operations using orange highlights.

As future work, we plan to support allowing the user to select multiple operations to be se-

lectively undone together as in AZURITE. For example, the user might select both Steps 1 and

2 together in Figure 10-3. When all the region conflicts are internal to the selected operations,

there is no ambiguity of what to do, so the user does not have to be alerted. In our usability

evaluation, this was a much-requested feature.

10.3.4. COPY AND PASTE

Another interesting design issue revolves around copy and paste. In most existing applica-

tions, the copy operation is not put on the undo stack, and whatever is copied is retained

independent of what the user subsequently undoes. For example, in Microsoft Word, a user

can type some text and copy it, and then invoke undo one or more times so that the text is all

removed. However, the clipboard will still retain the text, which can be pasted later. Of course

a cut operation goes on the undo stack, but only the deleting part of the cut is undone—again

the clipboard is not affected by undoing the cut operation. Users have developed strategies

for clever ways to use this feature, so we decided to retain it in Aquamarine.

Therefore, Aquamarine makes what we call a deep copy of whatever is selected when the user

performs a copy operation, and the copy operation is not put into the undo stack. That means

that the script model will not re-execute the copy operation, so the clipboard will continue to

have a copy of the pixels as they were originally copied, no matter what happens subse-

quently to that part of the image. Similarly, the paste operation retains a deep copy of what

Figure 10-4. Highlighting operation 3 in orange since it conflicts with the selected operation 1 (shown in blue).

Chapter 10: Selective Undo Support for Painting Applications 143

was in the clipboard when the operation is first invoked, so it continues to paste the same

picture if it is reinvoked later due to the script model.

Consider this sequence of operations:

1. Paint a blue star

2. Recolor the star to be red with the paint brush

3. Copy the red star

4. Paste the clipboard into a new part of the screen

5. Selectively undo step 2

Given our model, the same picture will be pasted by step 4 even after the user in step 5 sub-

sequently selectively undoes step 2, so the original star is blue, but the new pasted star stays

red.

Another reason we felt that we needed to adopt this model for copy is that the clipboard is

globally shared by all programs, and the user might change the clipboard by doing a copy in

another program, and in that case, we would not want to change the clipboard as a result of

a selective undo.

In the above example, if the user copied a picture of a circle in PowerPoint between steps 4

and 5 above, when the system reruns the operations as part of the script model, we do not

want the clipboard to be changed, and we want the paste in step 4 to continue to paste a star

and not a circle.

10.3.5. SELECTIVE UNDO/REDO OPERATIONS IN THE HISTORY PANEL

In Topaz [Myers 1998] and AZURITE and many other systems that implement the inverse

model, the selective undo and redo operations themselves are added to the end of the undo

history, and shown in the history panel (see Figure 10-5). This seems to make sense in those

programs since the inverse operation is actually performed at that point in the history, and

so a representation like Figure 10-5 should reinforce this mental model for users. Another

advantage of this approach is that the selective undo operation itself can be selected and un-

done, which would then add another selective undo to the end of the history, restoring the

effect of the original operation. Alternatively, the user could select the original operation (#5

in Figure 10-5) and selectively redo that operation, which has the same effect as selectively

undoing the undo. A final advantage of this design is that it is clearer what a regular linear

undo command will do – it works up from the bottom, undoing each of the operations in turn

(selective and regular operations alike).

144

Given these advantages, we first tried adapting this style of history panel for the script model

of Aquamarine, as shown in Figure 10-5. In this design, the user can select an operation (e.g.,

#5), and invoke selective undo on it, which adds the selective undo operation to the end of

the history (shown as operation #7). Unlike in the inverse model, the selective undo is not

really on the history, but instead the referenced operation is skipped (in Figure 10-5, only

operations 1 through 4 and 6 are executed). We try to visualize this by graying out the refer-

enced operation. If the user wants to reverse this operation, the selective undo (#7) can be

selectively undone or the original operation (#5) can be selectively redone, and these opera-

tions would be also added to the history. However, we felt it was getting complicated to un-

derstand what was done and not done, and we also felt that this design might give the wrong

mental model to users, since the selective operations are not really in the history.

Therefore, we designed a different history panel, shown in Figure 10-1, where the original

operations can simply be unchecked to selectively undo them, or rechecked to be selectively

redone. This matches the design for the layers panel in Photoshop, where layers can be made

visible or not with a toggle button next to each layer’s name. This should do a better job of

matching the appropriate mental model for users: that the current picture results from the

operations being executed from the top down, skipping operations that are not checked. An-

other advantage is that we do not need explicit selective undo or selective redo commands,

but instead the user just toggles the appropriate checkbox.

It is less clear what the regular linear undo should do in this model. We decided linear undo

should undo the most recent operation shown in the history panel that is still in effect. There-

fore, the selective undo is not directly undoable by Ctrl-Z. This again mimics the default be-

havior of turning on and off layers, which are not put on the history stack by default (although

Figure 10-5. An alternative form of history panel where selective undo/redo operations are included in the his-

tory panel.

Chapter 10: Selective Undo Support for Painting Applications 145

Photoshop has a setting to enable this). Similarly, the regular linear redo moves down the

history stack re-enabling operations, no matter how they were undone. Thus, it redoes oper-

ations that were disabled either by selective undo or regular undo. Of course, the user can

always go to any individual operation and toggle its checkbox, no matter how it was disabled.

Since the “right” design for this feature is not clear, we decided to include questions about

this in our usability evaluation, discussed below, which came out strongly in favor of the

checkbox version shown in Figure 10-1.

10.3.6. THUMBNAIL IMAGES

One small design issue is what to display for each operation in the history panel. A common

complaint about Photoshop’s history panel from our initial semi-structured interviews was

that it only shows an icon for the tool used, so it is impossible to tell which operation is for

which part of the drawing, for example when there are many brush strokes. Therefore, we

wanted to show a thumbnail representation of what the operation did, along with some con-

text (i.e., surrounding pixels), as has been done in earlier systems [Kurlander 1988].

A new complication for Aquamarine that has not been previously reported arises from the

scripting model of selective undo—what should be shown in the thumbnail when a selective

undo causes a previous operation to be turned off? Should the thumbnails of the subsequent

operations be changed? Updating all the thumbnails to make them correctly represent what

the operation does in the current state should make it clearer the effect of undoing it. How-

ever, updating all the thumbnails might unduly slow down selective undo, especially when an

early operation is selected in a long history, and keeping the thumbnails constant might make

them more recognizable for users if they go back to find a remembered operations. We de-

cided to update all the thumbnails, since that is the more correct (and interesting) design.

Ironically, in the usability evaluation, users almost universally said they did not want any con-

text to be shown in the thumbnails, completely eliminating this problem. Instead, they pre-

ferred seeing only the specific output of the current operation. The preview window (the up-

per panel of Figure 10-5), however, should continue to show what the complete picture

would look like up to the selected operation.

10.3.7. IDENTIFYING DESIRED OPERATIONS

AZURITE provides elaborate ways to search for the operations that the user might want to

undo (Chapter 8). However, in our initial semi-structured interviews, the key way that users

wanted to search for operations in a painting program was by selecting an affected region on

the screen. Therefore, we provide commands in Aquamarine for identifying the set of opera-

tions that affect the selected region on the screen. We also provide the reverse operation

which shows the region on the screen that any operation affects. Note that both of these are

based on the specific pixels on the screen, which may no longer hold that operation’s result.

For example, if the user paints a shape, but later selects and moves it, the region for the orig-

inal painting operation will remain where the shape started. In a painting program, it seems

146

impossible to identify where the pixels that result from an arbitrary operation might have

gone, and it seems more useful to help users find where things used to be, in case they want

to get back to that state. Note that if the user selects the region on the painting where the

shape was originally painted, both the painting and the move operations will be identified, so

users can selectively undo/redo any operations that are desired.

10.4. IMPLEMENTED SYSTEM

Our original hope was to implement Aquamarine as a plugin to Photoshop since it supplies a

variety of APIs. Unfortunately, none of Photoshop’s APIs provided sufficient access to the

undo stack and the result of each operation to support the desired features. Therefore, we

needed to find an open-source paint program we could modify. We required sufficient func-

tionality so that the design issues discussed above would emerge (which eliminated simple

painting programs like the Java Paint program used in Section 4.1.2), and we needed access

to the full source to be able to implement the selective undo.

We selected Pixelitor 2.0.054 in Java by László Balázs-Csíki (see Figure 10-6). The original ver-

sion of Pixelitor used the built-in Java Swing undo model, which uses command objects

[Myers 1996][Gamma 1994]. We were able to replace this with our own undo implementa-

tion which supports our novel selective undo mechanism.

One complication is that Pixelitor, like other painting programs including Photoshop, imple-

ments undo by simply having most operations save a bitmap of the picture before the opera-

tion is executed. This is sufficient for the regular linear undo model, since it can always be

sure that when it places the bitmap into the correct position, that the context will be correct

and the full image will be restored. However, this is insufficient for any selective undo model,

especially for the script model, since we need to be able to re-execute all commands later.

Therefore, we had to modify each command to remember all of its parameters so it can be re-

executed when needed. For example, the Shape and Brush stroke tools must save the path

and all the properties of the pen (color, transparency, etc.). Similarly, the Paint Bucket tool

needs to remember the color, start pixel, etc. Further, we had to refactor the application so

all operations could get their parameters from the global widgets (like the current color) or

from the saved command objects. We still save the bitmaps so they can be used for regular

undo.

54 http://sourceforge.net/projects/pixelitor/

http://sourceforge.net/projects/pixelitor/

Chapter 10: Selective Undo Support for Painting Applications 147

Another implementation tradeoff was whether each operation should save the entire bitmap

of the whole picture, or only the portion affected by this operation. If each operation saved

the entire picture, then our script model could implement the selective undo of an operation

by simply reinstating the full picture before that operation, skipping the operation, and then

re-performing all enabled subsequent operations. However, saving the entire bitmap wastes

a lot of memory, since most operations only affect a tiny part of the picture. Pixelitor only

stores bitmaps for the regions affected by each operation (which it uses for undo), which we

retain. Therefore, implementing the script model selective undo does not require any signif-

icant amount of extra space. The tradeoff is that for selective undo, we must internally roll

back to the selected operation, by doing a linear undo all the way back, in order to restore the

picture to the original state. This is a classic space-time tradeoff, and in practice, we found it

to be sufficiently fast. If it turns out not to be fast enough in the future, there are many obvious

optimizations that could be implemented.

Some Photoshop operations can be quite slow and expensive, so there is a question about the

efficiency of re-applying all the operations each time a selective undo is invoked, which is

required for the script model. In our unoptimized prototype implementation, selective undo

slows down noticeably on a big image if there are over 100 operations. Although we focus on

the user interface aspects here, we have considered some performance optimizations that

could be applied in a real implementation. Obviously, the length of the history can be limited,

as is already the case in Photoshop, but that is not desirable from a UI standpoint. Instead,

Figure 10-6. Pixelitor modified with our history panel.

148

slow operations could be approximated on down-sized images, to show quick previews

which estimate what the results will be, with the real result calculated in the background once

the user stops undoing and redoing.

10.5. USABILITY EVALUATION

Since our initial semi-structured interviews and other prior work had clearly identified prob-

lems that our mechanism addresses, we felt the key issue to evaluate was whether users

could understand and successfully apply our new script-model selective undo, and whether

users can think of strategies that would make effective use of it. Therefore, we felt that the

appropriate evaluation would be to do think-aloud usability evaluations of various versions

of the features which embody the design decisions discussed above.

We recruited eight participants (see Table 2), one of whom was also part of our initial semi-

structured interviews (participant 5 in Table 1 is participant 2 in Table 2). We specifically

picked users across a wide range of experience. None of the new participants were students.

Four were professional graphic artists and the other four were professionals who only used

Photoshop or equivalent occasionally. All participants were familiar with conventional undo

models, as supported by Photoshop and most applications, but three participants were not

familiar with Photoshop’s special undo features.

We asked the participants to “try drawing a few things” with Aquamarine, and then undo

operations using a variety of commands. Most participants just drew random lines and

shapes, but p5 drew animals like Figures 10-1 and 10-6. We then asked them what they would

expect to happen with various undo commands (regular Ctrl-Z and our new selective undo)

and then to try them out to see what happens. We had about half of the participants use the

checkbox version of the history first (Figure 10-1), and the other half tried the in-history ver-

sion first (Figure 10-5). Then they tried the other version. The order had no effect, and all 8

participants strongly preferred the checkbox version. Everyone understood the operation of

the checkboxes and how they would affect the picture, although some expressed a preference

to using an “eyeball” icon as used to toggle layer visibility (see Figure 10-6). In the in-history

version, they found the presence of the “selective undo” and “selective redo” operations in

the history to be confusing, and also felt that this would clutter up the history without being

useful.[Hong 2000]

Chapter 10: Selective Undo Support for Painting Applications 149

All users found the script model to be understandable and preferable in general, but all users

were surprised by the operation of the paint bucket, when the area underneath where it was

applied was selectively undone (a situation in which there is a region conflict). In this case,

the paint would typically fill the whole background, which was not something anyone wanted.

Some participants wanted the paint bucket to just remember the shape it had filled and reuse

that, even if the area was no longer there, but most people wanted the system to be smarter

about undoing the paint bucket operation with the previous operation. In discussions, how-

ever, they agreed this would be tricky in practice, and that the orange highlighting of the con-

flicting operations (Figure 10-4) would be a reasonable way for users to manually find and

fix conflicts.

Interestingly, all but one participant was surprised by the operation of copy-and-paste, even

though everyone was familiar with the way copy-and-paste works in other programs (where

the copy ignores undo). However, participants agreed that our design was consistent and

would sometimes be useful.

The main requested feature was a way to group actions. For example, selecting multiple op-

erations together and undoing them all at once, or collecting operations into named groups,

like layers can be in Photoshop.

In summary, the evaluation showed that with the check-box version, the script-model selec-

tive undo was understandable and usable, and that people understood how the issues from

the semi-structured interviews would be addressed by our tool. All participants expressed a

strong desire to have this kind of selective undo in Photoshop, and even in their other editing

programs. They said that selective undo could substitute for some of the ways they now use

layers.

ID Experience Prof. Des? Art? Photo? Ctrl-Z Step-Back
Hist.

Panel

Hist.

Brush

1 novice other Yes Yes Yes

2 expert prof. Yes Yes Yes Yes

3 expert prof. Yes Yes Yes Yes

4 expert prof. Yes Yes Yes Yes Yes

5 intermediate prof. Yes Yes Yes Yes

6 novice other Yes Yes Yes

7 intermediate other Yes Yes Yes Yes

8 expert other Yes Yes Yes Yes

Table 10-2. Participants in our usability evaluation.

150

10.6. CONCLUSION

Providing selective undo in a painting program brings up a surprising number of design chal-

lenges. Aquamarine shows that UI research can address those challenges and usable inter-

faces can be provided that can have benefits for users. We hope this research will inspire

others to investigate providing selective undo in a variety of domains.

 151

11.
LIMITATIONS AND FUTURE WORK

This chapter investigates possible future work directions. The research ideas include exten-

sions to the methodologies and tools introduced throughout the dissertation, and applying

the selective undo idea to other programming tools and other domains (beyond painting de-

scribed in Chapter 10).

11.1. EXTENSIONS TO FLUORITE

FLUORITE enables us to detect complex code editing patterns from the log files as described in

Section 4.1. It is also possible to implement customized detection algorithms for each pattern

in which a researcher is interested, but it would be even better if there was a way of detecting

such patterns without writing code. For instance, researchers could express the coding pat-

terns that they want to detect in a state machine or a regular expression.

One of the limitations of the current version of FLUORITE is that it cannot tell how the com-

mands were executed (e.g., to distinguish whether a command was invoked using a keyboard

key, a menu item, or an icon). I speculate that FLUORITE might be useful for analyzing usability

problems if it was possible to distinguish the commands executed by keyboard shortcut from

the ones executed by clicking menu items for example.

Providing FLUORITE for other popular IDEs is a possible direction of future work. This would

enable the collection of usage data from a larger programmer pool and looking at issues that

cross IDEs and languages. To this end, FLUORITE is being ported to a cloud-based JavaScript

IDE called Cloud955 by Andrew Faulring at CMU. The ported logging tool is called CRYOLITE56,

and is currently used by the researchers of the Exploratory Programming Group57 for their

empirical studies of end-user programmers.

As mentioned in Section 2.3.1, there are growing number of tools like FLUORITE that capture

fine-grained coding behaviors in IDEs. Unfortunately, most of the tools were developed inde-

pendently, and the data formats are not compatible among the tools. In the future, creating a

public data corpus similar to EUSES spreadsheet corpus [Fisher 2005] would be a great re-

source to the software engineering research community. Moreover, having a standard data

55 https://c9.io/
56 Cryolite stands for: Cloud9 Recorder of Your Operations by Listening to Interactions in The Editor.
57 http://www.exploratoryprogramming.org/

https://c9.io/
http://www.exploratoryprogramming.org/

152

format for these kinds of loggers would make it possible to reuse certain log analyses across

multiple data collection tools.

11.2. EXTENSIONS TO AZURITE

11.2.1. USING STRUCTURAL CHANGES AS INPUT

While there are development tools which use the abstract syntax tree (AST) level changes of

the code as input [Robbes 2007][Omori 2008][Negara 2014], AZURITE uses the textual code

changes instead. There are trade-offs between these two choices. On the one hand, by using

textual changes as input, the mechanism becomes language agnostic, as is the conventional

undo command and most commercially available merge tools [Mens 2002]. Besides, there are

certain types of edits that cannot be captured at the AST-level, such as reformatting code or

changing a comment section. By using the textual input, our system can capture and undo

these types of changes as well.

On the other hand, by using AST-level changes, the selective undo mechanism could use the

additional information and better handle semantic conflicts. A semantic conflict can occur

when a set of edit operations are semantically related to each other in the code. For example,

when a method is renamed, its definition and all the call-sites must change together. Selec-

tively undoing only one of these rename operations would not cause any regional conflicts

because the changes were all made in totally different locations. However, this would result

in inconsistent code containing compile errors and thus could be considered to result in se-

mantic conflicts.

Since these edits are likely to have been performed close together in time, users may be able

to easily select them together in the timeline. However, if not, I believe the compile errors

would identify these kinds of problems and users would be able to perform the remaining

backtracking steps to complete what they wanted to achieve. This situation was observed

during the formal user study (Section 9.2), especially in the backtracking step of T5. In order

to keep the added GUI control correctly, the users had to keep both the member field decla-

ration and the code for creating the object and adding it to the panel. Some participants only

kept the creation code and forgot to keep the declaration, resulting in a compilation error. All

of them immediately realized their mistake by reading the error message and went to the

field declaration location and performed selective undo there to restore the code.

Even though it was found that these kinds of conflicts are easy to detect and fix, adding fea-

tures to AZURITE to handle them directly by augmenting the structural information of the

changes would be beneficial. In fact, as shown in the longitudinal study of backtracking (Sec-

tion 4.3) and the edit operation collapsing work (Chapter 7), the textual changes can easily

be transformed into AST-level changes with a parser, which means that the tool could use

both the textual and the structural changes as input.

Chapter 11: Limitations and Future Work 153

11.2.2. DEALING WITH MOVED OR COPIED CODE

The current selective undo mechanism does not treat “move” as a primitive operation; it

simply treats the move as separate delete and insert operations when a block of code is

moved from one place to another. The moved code then loses the fine-grained history in the

new location, which may not be desirable. To address this problem, the selective undo tool

could maintain the history of the moved code in the new place, and treat the move operation

as an undoable primitive operation. This would require the internal dynamic segment infor-

mation to be carefully updated.

Copying some block of code and pasting it in a new location is not treated in a special way,

either. For the copied code, it is not obvious whether the edit history of that region should

also be copied. This issue could be investigated with actual users as we did in the Aquamarine

project (Section 10.3.4).

11.2.3. COMBINING CODE EDIT HISTORY WITH REGULAR CODE SEARCHES

Modern IDEs provide a rich set of code search features such as “find references” to help pro-

grammers navigate the code base. Leveraging the code edit history information kept in

AZURITE into the code search mechanisms could be useful for the programmers. For instance,

programmers could search for all of the println statements and sort them by their last ed-

ited time to find recently added debugging statements.

In addition, I believe many of the semantic conflicts can also be detected with this approach.

For example, suppose that a variable name changes from foo to bar in multiple places. When

the user selectively undoes the variable renaming in only one place, there will be no regional

conflicts but the code will result in a state with compile errors. In order to mitigate this prob-

lem, the tool could 1) search for all occurrences of the bar variable using “find references”

feature of Eclipse, 2) search for all recent edit operations in all regions where bar appear

either by sorting them by edit time or using history search. This could detect the variable

renaming regardless of how it was done; whether it was renamed with the refactoring tool

or manually.

11.2.4. CODE RECYCLE BIN

One of the use cases of selective undo is restoring some deleted code that later turned out to

be needed, as observed in the preliminary lab study (Section 4.1) and from my own use case

(Section 9.5). In AZURITE, deleted code can be restored in various ways, depending on what

the programmer remembers about the deleted code. For example, the desired code could be

found using the timeline, history search, or code history view. However, if the programmer

wants to quickly review the recently deleted code blocks, a different user interface might

work better: a code recycle bin. Just like the recycle bins of the recently deleted files used in

most operating systems, the code recycle bin would collect all the deleted code blocks larger

than a minimum threshold size, and display them sorted by time or position in the file. Users

could review the deleted blocks of code with various filtering mechanisms, select one of the

154

deleted code block and ask to restore that code to its original location or to copy the code to

the clipboard.

11.2.5. IMPROVING HISTORY SEARCH

Our current timeline visualization displays an arbitrarily long edit history, and it can be diffi-

cult for the users to pick the right set of operations manually. Although the most common

kinds of searches are supported through the history already (Section 8.3), it would be even

more helpful if more kinds of search options were provided. The goal is to enable users to

express whatever they remember about the previous edits or situations that they want to

select in the history. I tried to gather possible search options from the actual users, but this

attempt was not very successful. When people were asked what they were looking for when

backtracking, they could not answer very well because they had forgotten the exact back-

tracking situation by the time they were being asked. In the future, the firehouse research

method [Rogers 2010] could be used to interview the people immediately after they back-

track their code, as used in a study of software bug fixes [Murphy-Hill 2013]. Moreover, a

diary study of backtracking could be conducted in order to capture the moments where pro-

grammers want to restore some code but do not actually perform backtracking, because they

think it might be too difficult to do.

Although there is currently no solid evidence, I believe that it would be useful to allow users

to search for points in the history when:

 the application was run or debugged,

 a specific unit test, or all tests, passed or failed,

 version control commands were executed,

 a particular point in real time (“last Thursday”), or a range of time (“last week”),

 a specific or a sequence of edit operations happened (e.g., copy-and-paste from the

web, an Extract Method refactoring),

 a particular task was being completed (e.g., as tracked by task management systems

such as Mylyn [Kersten 2006]), or

 any combination of these.

Note that the information for the first four bullet items are already available in the timeline,

but not integrated as history search options. Using these options, one could search for “all

edits since the last commit related to println statements,” for example.

11.2.6. SUPPORTING A TEAM DEVELOPMENT ENVIRONMENT

One limitation of AZURITE is that it only handles a single programmer’s edits. By storing who

made each change, and sharing the edit history among the team members, it could help with

answering more history related questions such as “who modified this piece of code most re-

cently?” [Fritz 2010]. In order to achieve this, it would be best if the edit history was kept in

Chapter 11: Limitations and Future Work 155

the version control system along with the code, and AZURITE would need to be able to deal

with the code merging situations.

11.2.7. SUPPORTING VARIATION MANAGEMENT

There are tools for managing multiple variations such as Juxtapose [Hartmann 2008] or Par-

allel Pies [Terry 2004], as discussed in Section 2.2.3. One of the limitations of these tools is

that users must know in advance when they want to add variants. AZURITE has potential to be

integrated with these variation management systems and overcome this problem. When a

user selectively undoes some edit operations, the tool could ask the user whether she wants

to create a new variant with the undo operation, in which case the version before and after

performing the undo operation would be considered as two variants. Such variation infor-

mation could be encoded using Choice Calculus [Erwig 2011] as the underlying model. The

tool could also support editing multiple variants at once while editing the code using the tech-

niques such as linked editing [Toomim 2004] or projectional editing [Walkingshaw 2014].

11.2.8. INTEGRATION WITH DYNAMIC EXECUTION INFORMATION

The timeline visualization of AZURITE displays an icon whenever the application under devel-

opment is run by the programmer. This feature could be improved by augmenting the run

events with the dynamic execution trace, for example, as recorded by Timelapse [Burg 2013],

to enable users to review different runs, replay the past runs, or to find out the output pro-

duced during those run events. Furthermore, the history search could also provide search

options to enable users to search for the code when the execution behaved in certain ways or

produced certain outputs, for example.

11.2.9. DEPLOYING AZURITE FOR GENERAL USE

Although I conducted a small field trial of AZURITE (Section 9.1) and made AZURITE publicly

available (see Section 12 for the URL), it has not been widely deployed for general use. Making

the tool more robust and having a long term field study to gather feedback from more users

would provide us better insight on how to improve the user interfaces for selective undo and

what other features could be implemented on top of the core selective undo mechanism of

AZURITE.

11.3. EXTENSIONS TO AQUAMARINE

Currently, Aquamarine is an early prototype, sufficient to explore the design issues discussed

in Chapter 10, but not yet ready for deployment. The current work includes making the rest

of the features of Pixelitor work with selective undo, and then releasing Aquamarine as open

source for general use and a full field test.

Photoshop has an option to add the operations that enable and disable layers onto the undo

history, and Topaz [Myers 1998] even could put changes of selections and the “find” opera-

tion into the undo history. Some of our participants expressed the desire to have state

156

changes that do not affect the current painting, such as changing the current color or the ra-

dius of the brush, included into the history so they could be undone. We propose to explore

these in the future.

We also want to investigate how to allow operations in the past to be modified. For example,

some participants in both studies expressed a desire to be able to change the color of an op-

eration done in the past, and see that propagated through the rest of the edits. The next step

is to enable new operations to be inserted into the past, or existing operations to be reordered,

for example to put something behind another painting in the stacking order. Although other

research systems have tried some of these [Kurlander 1988], a key usability challenge re-

mains of how the user would be able to understand, undo and selectively undo changes to the

history.

Another requested feature from our participants was some way to collapse long painting his-

tories. For example, text editors coalesce multiple keystrokes into a single undoable action,

and we would like to explore the ability to collapse and expand multiple small brush strokes,

similar to the real-time edit collapsing mechanism used in AZURITE (Chapter 7). This might be

supported both automatically and manually, so the user could achieve the desired level of

granularity when navigating.

Finally, we would like to explore saving and restoring histories. The history might be stored

in the image document, to enable cross session undoing. This could also enable someone later

to explore how an effect was achieved. Similarly, a saved script could be converted into a

tutorial [Chi 2012]. Sections of a history could also be selected and converted into parame-

terizable reusable macros, as in Topaz [Myers 1998].

11.4. APPLYING SELECTIVE UNDO TO OTHER TOOLS AND DOMAINS

The AZURITE tool is specifically implemented as an Eclipse plug-in. The selective undo mech-

anism presented in Chapter 5 is language agnostic and the selective undo features in Chapters

6 and 8 work well regardless of the programming language used in the source file. However,

the real-time edit collapsing mechanism presented in Chapter 7 only works for Java program-

ming language, because the collapse test logic involves parsing the source files and identify-

ing different parts of the code. Implementing AZURITE for other IDEs and languages would

benefit a greater pool of users. In addition, the selective undo mechanism and interfaces have

a great potential to be well integrated with other programming tools. For instance, it could

be integrated with a task management system like Mylyn [Kersten 2006], and then it could

retroactively map recent edits to a certain task, in case the user forgot to switch to another

task context. Another example would be integrating the idea with CodeBubbles [Bragdon

2010b][Bragdon 2010a] to show only the edits belonging to a certain bubble or allow selec-

Chapter 11: Limitations and Future Work 157

tively undoing operations within a bubble. In fact, the main author of CodeBubbles imple-

mented the regional undo feature (Section 8.2) in CodeBubbles after seeing the AZURITE sys-

tem.58

Throughout the dissertation, the idea of selective undo was investigated first in the context

of source code editing, and then in painting applications. Selective undo could also be applied

to many other types of editors, such as 3D graphic editors, word processors, web page editors,

audio editors, and so on. It is very likely that a different set of design issues would have to be

considered for each of these domains, and careful designs and user studies would be needed

in order to successfully build selective undo systems for these domains.

58 Steven Reiss, personal communication, March 17, 2015.

158

 159

12.
CONCLUSION

Identifying inefficiencies and pain points within the workflow of programmers and solving

those problems is important for improving programmer productivity. One way of doing it is

to treat the programmers as the users of programming tools, and apply the well-established

human computer interaction (HCI) methodologies to identify problems, develop solutions,

iteratively improve the solutions, and evaluate the results through user studies. This research

approach has been successfully used by our research group, and produced multiple PhD dis-

sertations (e.g., [Ko 2008a][Stylos 2009][LaToza 2012]).

Throughout this dissertation, I investigated the issue of programmers’ backtracking using the

research approach described above. There existed some evidence that programmers back-

track their code, but little was known about this backtracking behavior. I have conducted a

series of user studies to understand this behavior better. In the course of conducting these

studies, I have also developed a tool for recording all the coding activities of the participants.

The studies revealed that programmers face backtracking situations frequently, but the ex-

isting tools are providing only limited support for backtracking. The contributions from these

studies are summarized in the following list:

 FLUORITE: Fine-Grained Coding Event Logger for Eclipse (Chapter 3)

o Created FLUORITE as a logging tool that captures all the low-level coding activities

from Eclipse, including the invoked commands and the fine-grained code changes.

o Created a log analyzer for FLUORITE, which helps understanding the generated log files.

o Demonstrated its usefulness as a convenient data collection tool for all the user stud-

ies presented in this dissertation (except for the online survey presented in Section

4.2).

o Publicly released FLUORITE so that other researchers may use it for their own studies.

o Used it as the input source of our selective undo tool AZURITE.

 Findings from the Preliminary Lab Study of Backtracking (Section 4.1)

o The most frequently used commands are typing and code navigation commands (e.g.,

arrow keys), followed by the backtracking commands such as undo and delete.

o Programmers habitually comment out code instead of deleting, for the following

three purposes: 1) to re-enable the code later, 2) to keep the code as a template, 3) to

keep the code as a bad example.

o Even the programmers who said they often comment out code accidentally deleted

some code that turned out to be needed later.

160

o Programmers have difficulties in finding the right code to be backtracked, and in re-

storing some deleted code.

 Findings from the Online Survey of Backtracking (Section 4.2)

o Programmers report they face various backtracking situations at least sometimes.

o Different backtracking strategies are used for different backtracking situations.

 Findings from the Longitudinal Study of Backtracking (Section 4.3)

o Devised an analysis method which keeps the evolution history of individual abstract

syntax tree nodes separately, which was used to analyze 1,460 hours of coding logs.

o Programmers backtrack 10.3 times per hour on average.

o Size of a backtracking varies a lot: from 1 character to 1000+ characters, from simple

parameter changes to significant algorithmic changes.

o 34% of the backtrackings are performed manually with no tool support.

o 97% of the backtrackings are performed within the same editing session.

o 9.5% of the backtrackings are selective: linear undo could not handle them.

As a solution to the problem of lacking tool support for backtracking, I devised a selective

undo mechanism for code editors, which was challenging in many ways. The semantics of

selective undo was defined even in the presence of edit operation conflicts. In order to dis-

cover how to make the selective undo tool usable, I developed a plugin for Eclipse, and itera-

tively improved the user interface design through user feedback. The effectiveness of the se-

lective undo tool was evaluated through a formal comparative user study. The contributions

related to this selective undo tool are as follows:

 Selective Undo Mechanism for Code Editors (Chapter 5)

o Devised a novel selective undo mechanism for code editors, which involves correctly

maintaining the dynamic segments of the past edit operations and applying inverse

operations to the target operations when the selective undo is invoked.

o Defined the regional conflicts of text edit operations, and classified them into four

categories to correctly handle each case when the selective undo is invoked.

o Provided a user interface that supports undoing multiple operations at once, which is

not only convenient, but also greatly reduces the need for manual conflict resolution.

 Timeline Visualization of Fine-Grained Code Edit History (Chapter 6)

o Designed the timeline visualization which displays the fine-grained code edit history.

o Users can use the timeline to review the code changes, and to select some of the past

operations and invoke editor commands such as selective undo.

o The timeline has an IDE-independent implementation using the standard web devel-

opment technologies and an embedded browser widget.

 Real-Time Edit Operation Collapsing Mechanism (Chapter 7)

o Designed a real-time collapsing algorithm that takes a stream of code edits and

smartly collapses the fine-grained edits to abstract them to more conceptual edits.

o Designed a code change distillation algorithm that can always match the code ele-

ments between two versions correctly even in the presence of renaming, by taking

the actual edit operations into account, in addition to the two snapshots of code.

Chapter 12: Conclusion 161

o Supports a total of four collapse levels, which is tightly integrated with the timeline

using a semantic zooming feature.

 User Interfaces for Selective Undo (Chapter 8)

o Designed and implemented a set of user interfaces for selective undo, including the

code history diff view, the regional undo shortcut, the history search, and the interac-

tive selective undo dialog. These UIs were improved based on user feedback.

 Evaluation of AZURITE (Chapter 9)

o Conducted a field trial of our prototype selective undo tool AZURITE, which inspired a

number of new features and improvements to the existing user interfaces.

o Conducted a formal A vs. B evaluation study with 12 users, which showed that

AZURITE users can perform certain backtracking tasks twice as fast compared to just

using conventional Eclipse features.

o Analyzed the performance of different components of the tool which demonstrated

its feasibility for real, long-term use: the log file size, edit history management, edit

collapsing, and the various operations in the timeline visualization.

We took it one step further and applied the idea of selective undo in the context of graphical

painting applications, which gave us a new set of challenges and design issues. Again, we first

conducted formative semi-structured interviews to understand the problem better, devel-

oped the prototype tool implementing selective undo in a painting application, and then eval-

uated how usable the tool is for different groups of users. This shows that ideas from pro-

gramming tool research can even be extended to other domains (as was also done with Crys-

tal [Myers 2006] from the Whyline [Ko 2004][Ko 2008b]). The contributions of this work are

summarized below:

 Selective Undo for Painting Applications (Chapter 10)

o The results from our initial contextual inquiries, showing the need for better undo

support in painting applications such as Adobe Photoshop.

o Investigated the script-based selective undo model for painting applications, and

built the Aquamarine prototype tool.

o Identified various design issues from the user studies and during our implementation

of the Aquamarine prototype.

o Conducted a usability study with the prototype showing that users can understand

and use the selective undo feature.

My hope is that these selective undo tools, combined with other existing programming tools,

will help programmers achieve their daily programming tasks more effectively. By having the

selective undo tools, programmers would be able to explore different code designs with con-

fidence, since they know they can always revert those changes later whenever they want. In

turn, I would expect this would make the programmers more creative and productive, and

facilitate exploratory programming, which is believed to be a good way of learning or design-

ing APIs or software systems [Fritzson 1986][Gundel 2005].

162

I also hope that the techniques and methods from research on the human aspects of program-

ming are applied to more and more software engineering problems, so that programmers

may be more productive with improved programming tools that are actually useful for them.

Two of the prototype tools introduced in this dissertation, FLUORITE and AZURITE, are open-

source and publicly available at the following locations. The hope is that these tools will be

useful for the community.

FLUORITE: Eclipse logging plug-in for capturing code edits and IDE interactions

 Project Page: http://www.cs.cmu.edu/~fluorite/

 Source Code: https://github.com/yyoon/fluorite-eclipse/

 Analyzer: https://github.com/yyoon/fluorite-analyzer/

AZURITE: Selective undo tool for Eclipse code editors

 Project Page: http://www.cs.cmu.edu/~azurite/

 Source Code: https://github.com/yyoon/azurite-eclipse/

http://www.cs.cmu.edu/~fluorite/
https://github.com/yyoon/fluorite-eclipse/
https://github.com/yyoon/fluorite-analyzer/
http://www.cs.cmu.edu/~azurite/
https://github.com/yyoon/azurite-eclipse/

 163

APPENDIX A: MATERIALS FROM THE

PRELIMINARY LAB STUDY

A.1. TASK INSTRUCTIONS FOR GROUP 1

Introduction

You are going to add new features on a simple 'Paint' program, which is written in the

Java language and using the Swing toolkit. This program is composed of 10 Java files,

and the project is already open in the Eclipse IDE on the screen.

You can run the program by clicking the Run button (), or by pressing Ctrl + F11 key.

Try running the program and see how the program works.

Now, you will be given several tasks. While you are performing these tasks, you should

THINK ALOUD. This means that you should tell me about whatever you are looking at,

thinking, doing, and the reasons why you are doing that.

If you do not think aloud for a while, I will remind you to do so.

164

Task 1.

Suppose that your boss asked you to add a thickness control to the Paint program, using a

slider widget. The user should be able to set the thickness value from 1 to 9, inclusive.

It should work with both the Pencil tool and the Line tool.

The following is an example screenshot of what it should look like when you are done.

Please implement this feature, test it enough to make sure that it works correctly, and tell

me when you think it is done.

Appendix A: Materials from the Preliminary Lab Study 165

Task 2.

After seeing your implementation, your boss changes her mind and asks you to imple-

ment the thickness control in an alternative way. This time, implement the thickness con-

trol by providing thickness buttons, each previews the corresponding thickness. There

should be 5 buttons, of which representing the thicknesses of 1, 3, 5, 7, 9.

The following is an example screenshot of what it should look like when you are done.

Please implement this new design instead, test it enough to make sure that it works cor-

rectly, and tell me when you think it is done.

166

Task 3.

Your boss decides to adopt the first version, which was implemented using the slider con-

trol.

Please make it look like this again, test it enough to make sure that it works correctly, and

tell me when you think it is done.

Appendix A: Materials from the Preliminary Lab Study 167

Task 4.

This time, you are asked to implement a totally new feature:

an (x, y) coordinates indicator.

The (x, y) coordinate values should be updated whenever the mouse cursor is moved over

the canvas, and they should be measured relative to the upper-left corner of the canvas

area.

As you did in Tasks 1 & 2, your boss wants you to implement this feature in two different

ways. Since only one of them will be adopted, you are required to produce two different

versions of the code, each of which has only one of the implementations.

The first way of implementing the (x, y) coordinates indicator is placing a status bar at

the bottom of the window as following:

168

Appendix A: Materials from the Preliminary Lab Study 169

Task 5.

The second way of implementing the (x, y) coordinates indicator is using a modeless tool

dialog which can be moved by the user at any time.

Please implement these 2 versions, test them enough to make sure that they work cor-

rectly, and tell me when you think they are done.

 170

A.2. TASK INSTRUCTIONS FOR GROUP 2

Introduction

You are going to add new features on a simple 'Paint' program, which is written in the

Java language and using the Swing toolkit. This program is composed of 10 Java files,

and the project is already open in the Eclipse IDE on the screen.

You can run the program by clicking the Run button (), or by pressing Ctrl + F11 key.

Try running the program and see how the program works.

Now, you will be given several tasks. While you are performing these tasks, you should

THINK ALOUD. This means that you should tell me about whatever you are looking at,

thinking, doing, and the reasons why you are doing that.

If you do not think aloud for a while, I will remind you to do so.

Appendix A: Materials from the Preliminary Lab Study 171

Task 1.

Suppose that your boss asked you to add an (x, y) coordinates indicator to the Paint pro-

gram, by placing a status bar at the bottom. The (x, y) coordinate values should be up-

dated whenever the mouse cursor is moved over the canvas, and they should be measured

relative to the upper-left corner of the canvas area.

The following is an example screenshot of what it should look like when you are done.

Please implement this feature, test it enough to make sure that it works correctly, and tell

me when you think it is done.

172

Task 2.

After seeing your implementation, your boss changes her mind and asks you to imple-

ment the (x, y) coordinates indicator in an alternative way. This time, implement the (x,

y) coordinates indicator using a modeless dialog which can be moved by the user at any

time.

The following is an example screenshot of what it should look like when you are done.

Please implement this new design instead, test it enough to make sure that it works cor-

rectly, and tell me when you think it is done.

Appendix A: Materials from the Preliminary Lab Study 173

Task 3.

Your boss decides to adopt the first version, which was implemented using the status bar.

Please make it look like this again, test it enough to make sure that it works correctly, and

tell me when you think it is done.

174

Task 4.

This time, you are asked to implement a totally new feature:

a thickness control.

The user should be able to set the thickness value from 1 to 9, inclusive. It should work

with both the Pencil tool and the Line tool.

As you did in Tasks 1 & 2, your boss wants you to implement this feature in two different

ways. Since only one of them will be adopted, you are required to produce two different

versions of the code, each of which has only one of the implementations.

The first way of implementing the thickness control is using a slider widget as following:

Appendix A: Materials from the Preliminary Lab Study 175

Task 5.

The second way of implementing the thickness control is providing thickness buttons,

each previews the corresponding thickness. There should be 5 buttons, of which repre-

senting the thicknesses of 1, 3, 5, 7, 9.

Please implement these 2 versions, test them enough to make sure that they work cor-

rectly, and tell me when you think they are done.

 176

A.3. QUESTIONNAIRE

Gender / Age

□ Male □ Female Age:

How long have you been programming in general?

□ None □ < 1 year □ 1-3 years □ 3-5 years □ 5-7 years □ 7-9 years □ >= 9 years

Are you majoring (or did you) in Computer Science or an equivalent discipline?

□ Yes □ No

Have you ever worked for a company as a professional programmer?
If so, please specify how long you have worked.

□ Yes: □ No

How much experience do you have with the Java programming language?

□ None □ < 6 mon. □ 6-12 mon. □ 12-18 mon. □ 18-24 mon. □ >= 2 years

How long have you used the Eclipse IDE?

□ None □ < 6 mon. □ 6-12 mon. □ 12-18 mon. □ 18-24 mon. □ >= 2 years
If you normally use other IDEs or text editors for code, please specify:

How much experience do you have with Java Swing toolkit?

□ None □ < 6 mon. □ 6-12 mon. □ 12-18 mon. □ 18-24 mon. □ >= 2 years
If you have experience with other GUI toolkits, please specify:

Have you ever used the JSlider class before?

□ Yes □ No

Appendix A: Materials from the Preliminary Lab Study 177

Have you ever used the JButton class before?

□ Yes □ No

Have you ever tried subclassing a GUI widget before?

□ Yes □ No

We are studying the issue of backtracking in general (removing typing that was recently put in,
because you decided it was not appropriate for some reason).

How often do you think you do backtracking when you are doing the following coding activities?
What techniques do you think you use for each kind of backtracking?

When typing in code, backtracking due to typos, mistyping, or other small mistakes:

This happens to me:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

When this happens, I use the following strategy to fix it: (for each strategy, check how often you think you use it. Feel free to

check as strategies as apply):

Undo (^Z):

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Backspace and/or delete keyboard keys:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Selecting with the mouse, and deleting or overtyping:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Commenting out the code:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Using file save before the change, and then loading in the old version of the file:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Using a version control system like CVS to revert to an older version of the file:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

What other strategies do you use to fix typos:

178

Backtracking due to trying to figure out how to use API calls (trying different API calls or different parame-
ters to API calls, to learn how they work):

This happens to me:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

When this happens, I use the following strategy to fix it: (for each strategy, check how often you think you use it. Feel free to

check as strategies as apply):

Undo (^Z):

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Backspace and/or delete keyboard keys:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Selecting with the mouse, and deleting or overtyping:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Commenting out the code:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Using file save before the change, and then loading in the old version of the file:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Using a version control system like CVS to revert to an older version of the file:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

What other strategies do you use to figure out APIs:

Backtracking due to trying to figure out how which algorithm to use (trying different algo-
rithms):

This happens to me:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

When this happens, I use the following strategy to fix it: (for each strategy, check how often you think you use it.

Feel free to check as strategies as apply):

Undo (^Z):

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Backspace and/or delete keyboard keys:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Selecting with the mouse, and deleting or overtyping:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Commenting out the code:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Using file save before the change, and then loading in the old version of the file:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Using a version control system like CVS to revert to an older version of the file:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

What other strategies do you use to figure out which algorithm to use:

Appendix A: Materials from the Preliminary Lab Study 179

Backtracking due to design flaws in the code base (a new feature cannot be easily added in a
modularized way):

This happens to me:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

When this happens, I use the following strategy to fix it: (for each strategy, check how often you think you use it.

Feel free to check as strategies as apply):

Undo (^Z):

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Backspace and/or delete keyboard keys:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Selecting with the mouse, and deleting or overtyping:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Commenting out the code:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Using file save before the change, and then loading in the old version of the file:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

Using a version control system like CVS to revert to an older version of the file:

 □ Pretty much every time □ Frequently □ Sometimes □ Rarely □ Never

What other strategies do you use to fix the design flaws in the code base:

What are some other reasons you end up backtracking when you are coding?

180

 181

APPENDIX B: QUESTIONNAIRE USED FOR

THE ONLINE SURVEY

182

Appendix B: Questionnaire Used for the Online Survey 183

184

Appendix B: Questionnaire Used for the Online Survey 185

186

Appendix B: Questionnaire Used for the Online Survey 187

188

Appendix B: Questionnaire Used for the Online Survey 189

190

Appendix B: Questionnaire Used for the Online Survey 191

192

Appendix B: Questionnaire Used for the Online Survey 193

194

Appendix B: Questionnaire Used for the Online Survey 195

196

 197

APPENDIX C: MATERIALS FROM THE

AZURITE EVALUATION LAB STUDY

C.1. TASK SHEETS GIVEN TO THE PARTICIPANTS59

59 Tasks 1, 4, 7 are missing because they were interactive training tasks lead by the experimenter.

198

Appendix C: Materials from the Azurite Evaluation Lab Study 199

200

Appendix C: Materials from the Azurite Evaluation Lab Study 201

202

 203

BIBLIOGRAPHY

[Abowd 1992] G. D. Abowd and A. J. Dix, "Giving Undo Attention," Interacting with
Computers, vol. 4, 1992, pp. 317-342.

[Akers 2012] D. Akers, R. Jeffries, M. Simpson, and T. Winograd, "Backtracking Events as
Indicators of Usability Problems in Creation-Oriented Applications," ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 19, ACM, 2012, pp. 1-40.

[Appert 2012] C. Appert, O. Chapuis, and E. Pietriga, "Dwell-and-Spring: Undo for Direct
Manipulation," In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI'12), ACM, Austin, Texas, USA, 2012, pp. 1957-1966.

[Archer 1984] J. E. Archer, Jr., R. Conway, and F. B. Schneider, "User Recovery and Reversal
in Interactive Systems," ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 6, ACM, 1984, pp. 1-19.

[Aversano 2007] L. Aversano, L. Cerulo, and M. Di Penta, "How Clones are Maintained: An
Empirical Study," In Proceedings of the 11th European Conference on Software Maintenance
and Reengineering (CSMR'07), IEEE, Amsterdam, Netherlands, 2007, pp. 81-90.

[Bates 1990] M. J. Bates, "Where Should the Person Stop and the Information Search
Interface Start?," Information Processing & Management, vol. 26, Elsevier Ltd., 1990, pp. 575-
591.

[Beck 2002] K. Beck, "Test-Driven Development: By Example," Addison-Wesley
Professional, 2002.

[Berlage 1993] T. Berlage and A. Genau, "A Framework for Shared Applications with a
Replicated Architecture," In Proceedings of the 6th Annual ACM Symposium on User Interface
Software and Technology (UIST'93), ACM, Atlanta, Georgia, USA, 1993, pp. 249-257.

[Berlage 1994] T. Berlage, "A Selective Undo Mechanism for Graphical User Interfaces Based
on Command Objects," ACM Transactions on Computer-Human Interaction (TOCHI), vol. 1,
ACM, 1994, pp. 269-294.

[Bettenburg 2009] N. Bettenburg, S. Weyi, W. Ibrahim, B. Adams, Z. Ying, and A. E. Hassan,
"An Empirical Study on Inconsistent Changes to Code Clones at Release Level," In
Proceedings of the 16th Working Conference on Reverse Engineering (WCRE'09), IEEE, Lille,
France, 2009, pp. 85-94.

[Beyer 1997] H. Beyer and K. Holtzblatt, "Contextual Design: Defining Customer-Centered
Systems," 1st ed., Morgan Kaufmann, 1997.

[Bird 2009] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu, "The
Promises and Perils of Mining Git," In Proceedings of the 6th IEEE International Working
Conference on Mining Software Repositories, IEEE, Vancouver, BC, Canada, 2009, pp. 1-10.

204

[Bragdon 2010a] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan, C.
Coleman, F. Adeputra, and Joseph J. LaViola, Jr., "Code Bubbles: Rethinking the User
Interface Paradigm of Integrated Development Environments," In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1 (ICSE'10), ACM,
Cape Town, South Africa, 2010, pp. 455-464.

[Bragdon 2010b] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan, C.
Coleman, F. Adeputra, and Joseph J. LaViola, Jr., "Code Bubbles: A Working Set-Based
Interface for Code Understanding and Maintenance," In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI'10), ACM, Atlanta, Georgia, USA,
2010, pp. 2503-2512.

[Burg 2013] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst, "Interactive Record/Replay for Web
Application Debugging," In Proceedings of the 26th Annual ACM Symposium on User Interface
Software and Technology (UIST'13), ACM, St. Andrews, Scotland, United Kingdom, 2013, pp.
473-484.

[Card 1980a] S. K. Card, T. P. Moran, and A. Newell, "Computer Text-Editing: An
Information-Processing Analysis of a Routine Cognitive Skill," Cognitive Psychology, vol. 12,
Elsevier Inc., 1980a, pp. 32-74.

[Card 1980b] S. K. Card, T. P. Moran, and A. Newell, "The Keystroke-Level Model for User
Performance Time with Interactive Systems," Communications of the ACM (CACM), vol. 23,
ACM, 1980b, pp. 396-410.

[Cass 2007] A. Cass and C. Fernandes, "Using Task Models for Cascading Selective Undo," In
Proceedings of the 5th International Conference on Task Models and Diagrams for Users
Interface Design (TAMODIA'07), Springer Berlin / Heidelberg, 2007, pp. 186-201.

[Cass 2005] A. G. Cass and C. S. T. Fern, "Modeling Dependencies for Cascading Selective
Undo," In Proceedings of the IFIP INTERACT 2005 Workshop on Integrating Software
Engineering and Usability Engineering, 2005.

[Cass 2006] A. G. Cass, C. S. T. Fernandes, and A. Polidore, "An Empirical Evaluation of Undo
Mechanisms," In Proceedings of the 4th Nordic Conference on Human-Computer Interaction:
Changing Roles (NordiCHI'06), ACM, Oslo, Norway, 2006, pp. 19-27.

[Chen 2011] H.-T. Chen, L.-Y. Wei, and C.-F. Chang, "Nonlinear Revision Control for Images,"
In Proceedings of the ACM SIGGRAPH 2011 papers (SIGGRAPH'11), ACM, Vancouver, BC,
Canada, 2011, pp. 1-10.

[Chi 2012] P.-Y. Chi, S. Ahn, A. Ren, M. Dontcheva, W. Li, and B. Hartmann, "MixT: Automatic
Generation of Step-by-Step Mixed Media Tutorials," In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology (UIST'12), ACM, Cambridge,
Massachusetts, USA, 2012, pp. 93-102.

[Chii 1998] M. Chii, M. Yasue, A. Imamiya, and M. Xiaoyang, "Visualizing Histories for
Selective Undo and Redo," In Proceedings of the 3rd Asia Pacific Computer Human
Interaction, IEEE, Shonan Village Center, 1998, pp. 459-464.

Bibliography 205

[Choudhary 1995] R. Choudhary and P. Dewan, "A General Multi-User Undo/Redo Model,"
In Proceedings of the 4th European Conference on Computer-Supported Cooperative Work
(ECSCW'95), Springer Netherlands, 1995, pp. 231-246.

[Coman 2008] I. D. Coman and A. Sillitti, "Automated Identification of Tasks in Development
Sessions," In Proceedings of the 16th IEEE International Conference on Program
Comprehension (ICPC'08), IEEE, Amsterdam, Netherlands, 2008, pp. 212-217.

[Conradi 1998] R. Conradi and B. Westfechtel, "Version Models for Software Configuration
Management," ACM Computing Surveys (CSUR), vol. 30, ACM, 1998, pp. 232-282.

[Cormen 2009] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to
Algorithms," 3rd ed., 2009.

[Cubitt 2010] T. Cubitt, "undo-tree.el version 0.3.1 --- Treat undo history as a tree," 2010;
http://www.dr-qubit.org/emacs.php.

[Dörner 2014] C. Dörner, A. R. Faulring, and B. A. Myers, "EUKLAS: Supporting Copy-and-
Paste Strategies for Integrating Example Code," In Proceedings of the 5th Workshop on
Evaluation and Usability of Programming Languages and Tools (PLATEAU'14), ACM,
Portland, Oregon, USA, 2014, pp. 13-20.

[Ellis 1989] C. A. Ellis and S. J. Gibbs, "Concurrency Control in Groupware Systems," SIGMOD
Record, vol. 18, ACM, 1989, pp. 399-407.

[Erwig 2011] M. Erwig and E. Walkingshaw, "The Choice Calculus: A Representation for
Software Variation," ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 21, ACM, 2011.

[Fisher 2005] M. Fisher and G. Rothermel, "The EUSES Spreadsheet Corpus: A Shared
Resource for Supporting Experimentation with Spreadsheet Dependability Mechanisms," In
Proceedings of the 1st Workshop on End-User Software Engineering, ACM, St. Louis, Missouri,
2005, pp. 1-5.

[Fluri 2006] B. Fluri and H. C. Gall, "Classifying Change Types for Qualifying Change
Couplings," In Proceedings of the 14th IEEE International Conference on Program
Comprehension (ICPC'06), Athens, Greece, 2006, pp. 35-45.

[Fluri 2007] B. Fluri, M. Wursch, M. Pinzger, and H. C. Gall, "Change Distilling:Tree
Differencing for Fine-Grained Source Code Change Extraction," IEEE Transactions on
Software Engineering (TSE), vol. 33, IEEE, 2007, pp. 725-743.

[Fogarty 2005] J. Fogarty, A. J. Ko, H. H. Aung, E. Golden, K. P. Tang, and S. E. Hudson,
"Examining Task Engagement in Sensor-Based Statistical Models of Human Interruptibility,"
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'05),
ACM, Portland, Oregon, USA, 2005, pp. 331-340.

[Fraser 2012] N. Fraser, "google-diff-match-patch - Diff, Match and Patch libraries for Plain
Text," 2012; http://code.google.com/p/google-diff-match-patch/.

http://www.dr-qubit.org/emacs.php
http://code.google.com/p/google-diff-match-patch/

206

[Fritz 2010] T. Fritz and G. C. Murphy, "Using Information Fragments to Answer the
Questions Developers Ask," In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering (ICSE'10), 2010, pp. 175-184.

[Fritzson 1986] P. Fritzson, "Systems and Tools for Exploratory Programming: Overview
and Examples," D. o. C. a. I. Science, Linköping University TR LiTH-IDA-R-86-36, 1986.

[Fuchs 2014] M. Fuchs, M. Heckner, F. Raab, and C. Wolff, "Monitoring Students' Mobile App
Coding Behavior Data Analysis Based on IDE and Browser Interaction Logs," In Proceedings
of the IEEE Global Engineering Education Conference (EDUCON'14), IEEE, Istanbul, Turkey,
2014, pp. 892-899.

[Gamma 1994] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, "Design Patterns: Elements
of Reusable Object-Oriented Software," Pearson Education, 1994.

[Ge 2012] X. Ge, Q. L. DuBose, and E. Murphy-Hill, "Reconciling Manual and Automatic
Refactoring," In Proceedings of the 34th International Conference on Software Engineering
(ICSE'12), IEEE, Zurich, Switzerland, 2012, pp. 211-221.

[Ginosar 2013] S. Ginosar, L. F. D. Pombo, M. Agrawala, and B. Hartmann, "Authoring Multi-
Stage Code Examples with Editable Code Histories," In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology (UIST'13), ACM, St Andrews, United
Kingdom, 2013.

[Grigoreanu 2010] V. I. Grigoreanu, M. M. Burnett, and G. G. Robertson, "A Strategy-Centric
Approach to the Design of End-User Debugging Tools," In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI'10), ACM, Atlanta, Georgia, USA,
2010, pp. 713-722.

[Grossman 2010] T. Grossman, J. Matejka, and G. Fitzmaurice, "Chronicle: Capture,
Exploration, and Playback of Document Workflow Histories," In Proceedings of the 23nd
Annual ACM Symposium on User Interface Software and Technology (UIST'10), ACM, New
York, New York, USA, 2010, pp. 143-152.

[Gundel 2005] C. Gundel, "Exploratory Programming and BASIC," Blog Article, 2005;
http://basicprogramming.blogspot.com/2005/01/exploratory-programming-and-
basic.html.

[Harrison 2006] W. Harrison, "Eating Your Own Dog Food," IEEE Software, vol. 23, IEEE,
2006, pp. 5-7.

[Hartmann 2008] B. Hartmann, L. Yu, A. Allison, Y. Yang, and S. R. Klemmer, "Design as
Exploration: Creating Interface Alternatives through Parallel Authoring and Runtime
Tuning," In Proceedings of the 21st Annual ACM Symposium on User Interface Software and
Technology (UIST'08), ACM, Monterey, CA, USA, 2008, pp. 91-100.

[Hattori 2010a] L. Hattori, "Enhancing Collaboration of Multi-Developer Projects with
Synchronous Changes," In Proceedings of the 32nd International Conference on Software
Engineering - Volume 2 (ICSE'10), ACM, Cape Town, South Africa, 2010, pp. 377-380.

http://basicprogramming.blogspot.com/2005/01/exploratory-programming-and-basic.html
http://basicprogramming.blogspot.com/2005/01/exploratory-programming-and-basic.html

Bibliography 207

[Hattori 2010b] L. Hattori and M. Lanza, "Syde: A Tool for Collaborative Software
Development," In Proceedings of the 32nd International Conference on Software Engineering
- Volume 2 (ICSE'10), ACM, 2010, pp. 235-238.

[Hattori 2011] L. Hattori, M. D'Ambros, M. Lanza, and M. Lungu, "Software Evolution
Comprehension: Replay to the Rescue," In Proceedings of the 19th IEEE International
Conference on Program Comprehension (ICPC'11), IEEE, Kingston, Ontario, Canada, 2011, pp.
161-170.

[Hayashi 2012] S. Hayashi, T. Omori, T. Zenmyo, K. Maruyama, and M. Saeki, "Refactoring
Edit History of Source Code," In Proceedings of the 28th IEEE International Conference on
Software Maintenance (ICSM'12), IEEE, Trento, Italy, 2012, pp. 617-620.

[Hayashi 2015] S. Hayashi, D. Hoshino, J. Matsuda, M. Saeki, T. Omori, and K. Maruyama,
"Historef: A Tool for Edit History Refactoring," In Proceedings of the 22nd IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER'15), Tool Tracks,
IEEE, Montréal, Québec, Canada, 2015.

[Hindle 2007] A. Hindle, J. Zhen Ming, W. Koleilat, M. W. Godfrey, and R. C. Holt, "YARN:
Animating Software Evolution," In Proceedings of the 4th IEEE International Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT'07), IEEE, Banff, Alberta,
Canada, 2007, pp. 129-136.

[Hong 2000] J. I. Hong and J. A. Landay, "SATIN: A Toolkit for Informal Ink-Based
Applications," In Proceedings of the 13th Annual ACM Symposium on User Interface Software
and Technology (UIST'00), ACM, San Diego, California, USA, 2000, pp. 63-72.

[Kagdi 2007] H. Kagdi, M. L. Collard, and J. I. Maletic, "A Survey and Taxonomy of
Approaches for Mining Software Repositories in the Context of Software Evolution," Journal
of Software Maintenance and Evolution: Research and Practice, vol. 19, John Wiley & Sons,
Ltd., 2007, pp. 77-131.

[Kawasaki 2004] Y. Kawasaki and T. Igarashi, "Regional Undo for Spreadsheets," In
Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology
(UIST'04), ACM, Santa Fe, New Mexico, 2004.

[Kersten 2006] M. Kersten and G. C. Murphy, "Using Task Context to Improve Programmer
Productivity," In Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE'06), ACM, Portland, Oregon, USA, 2006, pp. 1-11.

[Kim 2004] M. Kim, L. Bergman, T. Lau, and D. Notkin, "An Ethnographic Study of Copy and
Paste Programming Practices in OOPL," In Proceedings of the International Symposium on
Empirical Software Engineering (ISESE'04), IEEE, Redondo Beach, CA, USA, 2004, pp. 83-92.

[Kim 2005a] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, "An Empirical Study of Code
Clone Genealogies," In Proceedings of the 10th European Software Engineering Conference
held jointly with the 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE'05), ACM, Lisbon, Portugal, 2005, pp. 187-196.

208

[Kim 2006] M. Kim and D. Notkin, "Program Element Matching for Multi-Version Program
Analyses," In Proceedings of the 2006 International Workshop on Mining Software
Repositories (MSR'06), ACM, Shanghai, China, 2006, pp. 58-64.

[Kim 2009] M. Kim and D. Notkin, "Discovering and Representing Systematic Code
Changes," In Proceedings of the 31st International Conference on Software Engineering
(ICSE'09), IEEE, Vancouver, British Columbia, Canada, 2009, pp. 309-319.

[Kim 2011] M. Kim, D. Cai, and S. Kim, "An Empirical Investigation into the Role of API-Level
Refactorings During Software Evolution," In Proceedings of the 33rd International
Conference on Software Engineering (ICSE'11), ACM, Honolulu, HI, USA, 2011, pp. 151-160.

[Kim 2005b] S. Kim, P. Kai, and E. J. Whitehead, "When Functions Change Their Names:
Automatic Detection of Origin Relationships," In Proceedings of the 12th Working Conference
on Reverse Engineering (WCRE'05), IEEE, Pittsburgh, PA, USA, 2005, p. 10 pp.

[Klemmer 2002] S. R. Klemmer, M. Thomsen, E. Phelps-Goodman, R. Lee, and J. A. Landay,
"Where Do Web Sites Come From?: Capturing and Interacting with Design History," In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'02),
ACM, Minneapolis, Minnesota, USA, 2002, pp. 1-8.

[Ko 2003] A. J. Ko and B. A. Myers, "Development and Evaluation of a Model of Programming
Errors," In Proceedings of the IEEE Symposium on Human Centric Computing Languages and
Environments (HCC'03), IEEE, Auckland, New Zealand, 2003, pp. 7-14.

[Ko 2004] A. J. Ko and B. A. Myers, "A Framework and Methodology for Studying the Causes
of Software Errors in Programming Systems," Journal of Visual Languages & Computing, vol.
16, Elsevier Ltd., 2004, pp. 41-84.

[Ko 2005a] A. J. Ko, H. Aung, and B. A. Myers, "Eliciting Design Requirements for
Maintenance-Oriented IDEs: A Detailed Study of Corrective and Perfective Maintenance
Tasks," In Proceedings of the 27th International Conference on Software Engineering
(ICSE'05), ACM, St. Louis, MO, USA, 2005, pp. 126-135.

[Ko 2005b] A. J. Ko, H. H. Aung, and B. A. Myers, "Design Requirements for More Flexible
Structured Editors from a Study of Programmers' Text Editing," In Proceedings of the
Extended Abstracts on Human Factors in Computing Systems (CHI'05 EA), ACM, Portland, OR,
USA, 2005, pp. 1557-1560.

[Ko 2006] A. J. Ko and B. A. Myers, "Barista: An Implementation Framework for Enabling
New Tools, Interaction Techniques and Views in Code Editors," In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI'06), ACM, Montréal, Québec,
Canada, 2006, pp. 387-396.

[Ko 2007] A. J. Ko, R. DeLine, and G. Venolia, "Information Needs in Collocated Software
Development Teams," In Proceedings of the 29th International Conference on Software
Engineering (ICSE'07), IEEE, Minneapolis, MN, 2007, pp. 344-353.

Bibliography 209

[Ko 2008a] A. J. Ko, "Asking and Answering Questions about the Causes of Software
Behavior," PhD Dissertation, Human-Computer Interaction Institute, School of Computer
Science, Carnegie Mellon University, 2008.

[Ko 2008b] A. J. Ko and B. A. Myers, "Debugging Reinvented: Asking and Answering Why
and Why Not Questions about Program Behavior," In Proceedings of the 30th International
Conference on Software Engineering (ICSE'08), ACM, Leipzig, Germany, 2008, pp. 301-310.

[Kojouharov 2004] C. Kojouharov, A. Solodovnik, and G. Naumovich, "JTutor: An Eclipse
Plug-in Suite for Creation and Replay of Code-Based Tutorials," In Proceedings of the 2004
OOPSLA Workshop on Eclipse Technology eXchange, ACM, Vancouver, BC, Canada, 2004, pp.
27-31.

[Kuhn 2012] A. Kuhn and M. Stocker, "CodeTimeline: Storytelling with Versioning Data," In
Proceedings of the 2012 34th International Conference on Software Engineering (ICSE'12),
IEEE, Zurich, Switzerland, 2012, pp. 1333-1336.

[Kurlander 1988] D. Kurlander and S. Feiner, "Editable Graphical Histories," In Proceedings
of the 1988 IEEE Workshop on Visual Languages, 1988, pp. 127-134.

[Kurlander 1990] D. Kurlander and S. Feiner, "A Visual Language for Browsing, Undoing,
and Redoing Graphical Interface Commands," Visual languages and visual programming,
Plenum Press, 1990, pp. 257-275.

[Kuttal 2011] S. K. Kuttal, A. Sarma, and G. Rothermel, "History Repeats Itself More Easily
When You Log It: Versioning for Mashups," In Proceedings of the 2011 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC'11), IEEE, Pittsburgh, PA, USA,
2011, pp. 69-72.

[Kwan 2013] I. Kwan, "Timeline_InformationForagingForks," 2013;
https://github.com/IrwinKwan/Timeline_InformationForagingForks.

[Lanza 2001] M. Lanza, "The Evolution Matrix: Recovering Software Evolution Using
Software Visualization Techniques," In Proceedings of the 4th International Workshop on
Principles of Software Evolution, ACM, Vienna, Austria, 2001, pp. 37-42.

[LaToza 2010] T. D. LaToza and B. A. Myers, "Hard-to-Answer Questions about Code," In
Proceedings of the Workshop on Evaluation and Usability of Programming Languages and
Tools (PLATEAU'10), ACM, Reno, Nevada, 2010, pp. 1-6.

[LaToza 2012] T. D. LaToza, "Answering Reachability Questions," PhD Dissertation, Institute
for Software Research, School of Computer Science, Carnegie Mellon University, 2012.

[Lee 2013] Y. Y. Lee, N. Chen, and R. E. Johnson, "Drag-and-Drop Refactoring: Intuitive and
Efficient Program Transformation," In Proceedings of the 2013 International Conference on
Software Engineering (ICSE'13), IEEE, San Francisco, CA, USA, 2013, pp. 23-32.

[Levenshtein 1966] V. I. Levenshtein, "Binary Codes Capable of Correcting Deletions,
Insertions and Reversals," Soviet Physics Doklady, vol. 10, 1966, p. 707.

210

[Li 2003] R. Li and D. Li, "A Regional Undo Mechanism for Text Editing," In Proceedings of
the International Workshop on Collaborative Editing Systems (IWCES'03), 2003.

[Lieberman 1992] H. Lieberman, "Dominoes and Storyboards Beyond `Icons on Strings'," In
Proceedings of the IEEE Workshop on Visual Languages, IEEE, Seattle, WA, 1992, pp. 65-71.

[Losh 2012] S. Losh, "Gundo - Visualize your Vim Undo Tree," 2012;
http://sjl.bitbucket.org/gundo.vim/.

[MacKenzie 2002] I. S. MacKenzie and R. W. Soukoreff, "Text Entry for Mobile Computing:
Models and Methods, Theory and Practice," Human-computer interaction, vol. 17, Taylor &
Francis, 2002, pp. 147-198.

[Martie 2013] L. Martie and A. Van der Hoek, "Toward Social-Technical Code Search," In
Proceedings of the 6th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE'13), IEEE, San Francisco, CA, 2013, pp. 101-104.

[Maruyama 2012] K. Maruyama, E. Kitsu, T. Omori, and S. Hayashi, "Slicing and Replaying
Code Change History," In Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering (ASE'12), ACM, Essen, Germany, 2012, pp. 246-249.

[Mens 2002] T. Mens, "A State-of-the-Art Survey on Software Merging," IEEE Transactions
on Software Engineering (TSE), vol. 28, IEEE, 2002, pp. 449-462.

[Moonen 2001] L. Moonen, "Generating Robust Parsers Using Island Grammars," In
Proceedings of the 8th Working Conference on Reverse Engineering (WCRE'01), IEEE,
Stuttgart, Germany, 2001, pp. 13-22.

[Murphy-Hill 2009] E. Murphy-Hill, C. Parnin, and A. P. Black, "How We Refactor, and How
We Know It," In Proceedings of the 31st International Conference on Software Engineering
(ICSE'09), IEEE, Vancouver, British Columbia, Canada, 2009, pp. 287-297.

[Murphy-Hill 2013] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, "The Design
of Bug Fixes," In Proceedings of the 35th International Conference on Software Engineering
(ICSE'13), IEEE, San Francisco, CA, 2013, pp. 332-341.

[Murphy 2006] G. C. Murphy, M. Kersten, and L. Findlater, "How Are Java Software
Developers Using the Elipse IDE?," IEEE Software, vol. 23, IEEE, 2006, pp. 76-83.

[Myers 1996] B. A. Myers and D. S. Kosbie, "Reusable Hierarchical Command Objects," In
Proceedings of the CHI'96 SIGCHI Conference on Human Factors in Computing Systems, ACM,
Vancouver, BC, Canada, 1996, pp. 260-267.

[Myers 1998] B. A. Myers, "Scripting Graphical Applications by Demonstration," In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'98),
ACM, Los Angeles, California, United States, 1998, pp. 534-541.

[Myers 2006] B. A. Myers, D. A. Weitzman, A. J. Ko, and D. H. Chau, "Answering Why and
Why Not Questions in User Interfaces," In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI'06), ACM, Montréal, Québec, Canada, 2006, pp. 397-406.

http://sjl.bitbucket.org/gundo.vim/

Bibliography 211

[Myers 2015] B. A. Myers, A. Lai, T. M. Le, Y. Yoon, A. Faulring, and J. Brandt, "Selective Undo
Support for Painting Applications," In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI'15), ACM, Seoul, Korea, 2015.

[Myers 1986] E. W. Myers, "An O (ND) Difference Algorithm and Its Variations,"
Algorithmica, vol. 1, 1986, pp. 251-266.

[Neamtiu 2005] I. Neamtiu, J. S. Foster, and M. Hicks, "Understanding Source Code Evolution
Using Abstract Syntax Tree Matching," In Proceedings of the 2005 International Workshop on
Mining Software Repositories (MSR'05), ACM, St. Louis, Missouri, 2005, pp. 1-5.

[Negara 2012] S. Negara, M. Vakilian, N. Chen, R. Johnson, and D. Dig, "Is It Dangerous to Use
Version Control Histories to Study Source Code Evolution?," In Proceedings of the 26th
European Conference on Object-Oriented Programming (ECOOP'12), Springer Berlin
Heidelberg, Beijing, China, 2012, pp. 79-103.

[Negara 2014] S. Negara, M. Codoban, D. Dig, and R. E. Johnson, "Mining Fine-Grained Code
Changes to Detect Unknown Change Patterns," In Proceedings of the 36th International
Conference on Software Engineering (ICSE'14), ACM, Hyderabad, India, 2014, pp. 803-813.

[Ogawa 2010] M. Ogawa and K.-L. Ma, "Software Evolution Storylines," In Proceedings of the
5th International Symposium on Software Visualization (SOFTVIS'10), ACM, Salt Lake City,
Utah, USA, 2010, pp. 35-42.

[Omar 2012] C. Omar, Y. S. Yoon, T. D. LaToza, and B. A. Myers, "Active Code Completion," In
Proceedings of the 2012 34th International Conference on Software Engineering (ICSE'12),
IEEE, Zurich, Switzerland, 2012, pp. 859-869.

[Omori 2008] T. Omori and K. Maruyama, "A Change-Aware Development Environment by
Recording Editing Operations of Source Code," In Proceedings of the 2008 International
Working Conference on Mining Software Repositories (MSR'08), ACM, Leipzig, Germany,
2008, pp. 31-34.

[Parnin 2009] C. Parnin and S. Rugaber, "Resumption Strategies for Interrupted
Programming Tasks," In Proceedings of the 17th IEEE International Conference on Program
Comprehension (ICPC'09), IEEE, Vancouver, British Columbia, Canada, 2009, pp. 80-89.

[Parnin 2012] C. Parnin and S. Rugaber, "Programmer Information Needs after Memory
Failure," In Proceedings of the 20th IEEE International Conference on Program
Comprehension (ICPC'12), IEEE, Passau, Germany, 2012, pp. 123-132.

[Prakash 1994] A. Prakash and M. J. Knister, "A Framework for Undoing Actions in
Collaborative Systems," ACM Transactions on Computer-Human Interaction (TOCHI), vol. 1,
ACM, 1994, pp. 295-330.

[Reiss 2008] S. P. Reiss, "Tracking Source Locations," In Proceedings of the 30th
International Conference on Software Engineering (ICSE'08), ACM, Leipzig, Germany, 2008,
pp. 11-20.

[Reitman 1965] W. R. Reitman, "Cognition and Thought," John Wiley & Sons, 1965.

212

[Ren 2004] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, "Chianti: A Tool for Change
Impact Analysis of Java Programs," In Proceedings of the 19th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA'04), ACM,
Vancouver, BC, Canada, 2004, pp. 432-448.

[Robbes 2007] R. Robbes and M. Lanza, "A Change-Based Approach to Software Evolution,"
Electronic Notes in Theoretical Computer Science (ENTCS), vol. 166, 2007, pp. 93-109.

[Rogers 2010] E. M. Rogers, "Diffusion of innovations," Simon and Schuster, 2010.

[Sametinger 1992] J. Sametinger and A. Stritzinger, "Exploratory Software Development
with Class Libraries," In Proceedings of the 7th Joint Conference of the Austrian Computer
Society, Springer, 1992.

[Sandberg 1988] D. W. Sandberg, "Smalltalk and Exploratory Programming," SIGPLAN
Notices, vol. 23, 1988, pp. 85-92.

[Servant 2012] F. Servant and J. A. Jones, "History Slicing: Assisting Code-Evolution Tasks,"
In Proceedings of the 20th ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE'12), ACM, Cary, North Carolina, 2012, pp. 1-11.

[Simon 1973] H. A. Simon, "The structure of ill structured problems," Artificial Intelligence,
vol. 4, 1973, pp. 181-201.

[Stylos 2009] J. Stylos, "Making APIs More Usable with Improved API Designs," PhD
Dissertation, Computer Science Department, School of Computer Science, Carnegie Mellon
University, 2009.

[Sun 1998] C. Sun and C. Ellis, "Operational Transformation in Real-Time Group Editors:
Issues, Algorithms, and Achievements," In Proceedings of the 1998 ACM Conference on
Computer Supported Cooperative Work (CSCW'98), ACM, Seattle, Washington, USA, 1998, pp.
59-68.

[Sun 2002] C. Sun, "Undo as Concurrent Inverse in Group Editors," ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 9, ACM, 2002, pp. 309-361.

[Terry 2004] M. Terry, E. D. Mynatt, K. Nakakoji, and Y. Yamamoto, "Variation in Element
and Action: Supporting Simultaneous Development of Alternative Solutions," In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI'04), ACM, Vienna,
Austria, 2004, pp. 711-718.

[Toomim 2004] M. Toomim, A. Begel, and S. L. Graham, "Managing Duplicated Code with
Linked Editing," In Proceedings of the IEEE Symposium on Visual Languages and Human
Centric Computing (VL/HCC'04), IEEE, Rome, Italy, 2004, pp. 173-180.

[Vakilian 2012] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and R. E.
Johnson, "Use, Disuse, and Misuse of Automated Refactorings," In Proceedings of the 34th
International Conference on Software Engineering (ICSE'12), IEEE, Zurich, Switzerland,
2012, pp. 233-243.

Bibliography 213

[Vakilian 2014] M. Vakilian and R. E. Johnson, "Alternate Refactoring Paths Reveal Usability
Problems," In Proceedings of the International Conference on Software Engineering
(ICSE'14), ACM, Hyderabad, India, 2014.

[Vitter 1984] J. S. Vitter, "US&R: A New Framework for Redoing (Extended Abstract),"
SIGSOFT Software Engineering Notes, vol. 9, ACM, 1984, pp. 168-176.

[Walkingshaw 2013] E. Walkingshaw, "The Choice Calculus: A Formal Language of
Variation," PhD Dissertation, Oregon State University, 2013.

[Walkingshaw 2014] E. Walkingshaw and K. Ostermann, "Projectional Editing of Variational
Software," In Proceedings of the 13th International Conference on Generative Programming:
Concepts and Experiences (GPCE'14), ACM, Västerås, Sweden, 2014.

[Xing 2006] Z. Xing and E. Stroulia, "Refactoring Practice: How it is and How it Should be
Supported - An Eclipse Case Study," In Proceedings of the 22nd IEEE International
Conference on Software Maintenance (ICSM'06), IEEE, Philadelphia, PA, 2006, pp. 458-468.

[Yang 1988] Y. Yang, "Undo Support Models," International Journal of Man-Machine Studies,
vol. 28, 1988, pp. 457-481.

[Yoon 2011] Y. Yoon and B. A. Myers, "Capturing and Analyzing Low-Level Events from the
Code Editor," In Proceedings of the 3rd Workshop on Evaluation and Usability of
Programming Languages and Tools (PLATEAU'11), ACM, Portland, Oregon, USA, 2011, pp.
25-30.

[Yoon 2012] Y. Yoon and B. A. Myers, "An Exploratory Study of Backtracking Strategies Used
by Developers," In Proceedings of the 2012 5th International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE'12), IEEE, Zurich, Switzerland, 2012, pp.
138-144.

[Yoon 2013] Y. Yoon, B. A. Myers, and S. Koo, "Visualization of Fine-Grained Code Change
History," In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC'13), IEEE, San Jose, California, USA, 2013, pp. 119-126.

[Yoon 2014] Y. Yoon and B. A. Myers, "A Longitudinal Study of Programmers' Backtracking,"
In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC'14), IEEE, Melbourne, Australia, 2014, pp. 101-108.

[Yoon 2015] Y. Yoon and B. A. Myers, "Supporting Selective Undo in a Code Editor," In
Proceedings of the International Conference on Software Engineering (ICSE'15), Florence,
Italy, 2015.

[Zhang 2009] Y. Zhang, G. Huang, N. Zhang, and H. Mei, "SmartTutor: Creating IDE-Based
Interactive Tutorials via Editable Replay," In Proceedings of the 31st International
Conference on Software Engineering (ICSE'09), IEEE, Vancouver, British Columbia, Canada,
2009, pp. 559-562.

[Zhongxian 2012] G. Zhongxian, "Capturing and Exploiting Fine-Grained IDE Interactions,"
In Proceedings of the 34th International Conference on Software Engineering (ICSE'12), IEEE,
Zurich, Switzerland, 2012, pp. 1630-1631.

	Abstract
	Acknowledgements
	Table of Contents
	Figures
	Tables
	1.
	Introduction
	1.1. Problem: Limited Support for Backtracking
	1.2. Motivating Example
	1.3. An Approach: Selective Undo in Code Editors
	1.3.1. Challenges of Providing Selective Undo in Code Editors

	1.4. Azurite: A Selective Undo Tool for Programmers
	1.5. Thesis
	1.6. Contributions
	1.7. Outline

	2.
	Related Work
	2.1. Undo Models
	2.1.1. Selective Undo Models
	2.1.2. Regional Undo in Text Editors
	2.1.3. Tree-Based Undo Models
	2.1.4. Operational Transformation in Collaborative Editing
	2.1.5. Other Undo Models

	2.2. Version Control and Variation Management Systems
	2.2.1. Features of Git Related to Selective Undo
	2.2.2. Local History Features of Integrated Development Environments
	2.2.3. Other Variation Management Systems
	2.2.4. Formal Representations of Variations

	2.3. Collecting and Utilizing Fine-Grained Interaction Data
	2.3.1. Fine-Grained Interaction Data Collection Tools
	2.3.2. Replaying Fine-Grained Interaction Data
	2.3.3. Use of Fine-Grained Code Edits in Refactoring
	2.3.4. Analyzing Fine-Grained Interaction Data to Discover Usability Problems

	2.4. Edit History Visualizations & Search Tools
	2.5. Empirical Studies of Source-Code Editing
	2.6. Conclusion

	3.
	Capturing Fine-Grained Coding Events from the Code Editor
	3.1. Related Work
	3.2. Fluorite: Fine-Grained Coding Event Logger for Eclipse
	3.3. Fluorite Implementation
	3.3.1. Types of Logged Events
	3.3.2. Parameters
	3.3.3. Merging Consecutive Events

	3.4. Fluorite Analyzer
	3.4.1. Event List
	3.4.2. Code Editing Pattern Detection
	3.4.3. Code Length Graph
	3.4.4. Keystroke & Command Distribution Report

	3.5. Discussion
	3.5.1. Detecting Code Changes Made Outside of the IDE
	3.5.2. Coding Events not Captured By Fluorite
	3.5.3. Writing Log Entries as the Events are Captured
	3.5.4. Evaluation

	3.6. Conclusion

	4.
	Empirical Studies of Backtracking
	4.1. Preliminary Lab Study of Backtracking
	4.1.1. Study Design
	4.1.2. The Paint Program
	4.1.3. Tasks
	4.1.4. Results
	4.1.5. RQ1-1: How do programmers backtrack?
	4.1.5.1. Command Statistics & Keystroke Distribution
	4.1.5.2. Deleting vs. Commenting Out
	4.1.5.3. Common Reasons for Commenting Out
	4.1.5.4. When They Know They Need to Backtrack Later

	4.1.6. RQ1-2: How do programmers know where to backtrack to?
	4.1.7. RQ1-3: What are the barriers to successful backtracking?
	4.1.8. Limitations

	4.2. Online Survey
	4.2.1. Demographics / Traits of Their Work
	4.2.2. RQ2-1: What is the perceived frequency of backtracking?
	4.2.3. RQ2-2: What are the common backtracking tactics used by programmers
	4.2.4. Limitations

	4.3. Longitudinal Study of Programmers’ Backtracking
	4.3.1. Analysis Method
	4.3.1.1. Log Data
	4.3.1.2. AST-Node Base Change History Tracking
	4.3.1.3. Data Preparation & Removing Duplicated Results

	4.3.2. Results
	4.3.2.1. RQ3-1: Frequency of Backtracking
	4.3.2.2. RQ3-2: Size of Backtracking
	4.3.2.3. RQ3-3: Backtracking Tactics
	4.3.2.4. RQ3-4: Cross-Run Backtracking Instances
	4.3.2.5. RQ3-5: Cross-Session Backtracking Instances
	4.3.2.6. RQ3-6: Selective Backtracking Instances
	4.3.2.7. RQ3-7: Repeat-Count

	4.3.3. Limitations

	4.4. Conclusion

	5.
	A Selective Undo Mechanism for Code Editors
	5.1. Internal Edit History Representation for Selective Undo
	5.1.1. Definitions
	5.1.2. Regional Conflicts of Edit Operations
	5.1.2.1. Insert → Insert Conflict
	5.1.2.2. Insert → Delete Conflict
	5.1.2.3. Delete → Delete Conflict
	5.1.2.4. Delete → Insert Conflict (Cannot Occur)

	5.1.3. Keeping the Dynamic Segments Up To Date
	5.1.4. Segment Closing / Reopening

	5.2. Selective Undo Algorithm
	5.2.1. Phase #1: Determining Code Chunks
	5.2.2. Phase #2: Performing Selective Undo for Each Chunk
	5.2.2.1. If rcExists = false
	5.2.2.2. If rcExists = true

	5.3. Discussion
	5.3.1. Ensuring the Correctness of the Dynamic Segments
	5.3.2. High-Level Architecture
	5.3.3. Granularity of Edit Operations

	5.4. Conclusion

	6.
	Timeline Visualization of Code Edits
	6.1. File Rows and Edit Operation Rectangles
	6.2. Coding Events Displayed Along the Timeline
	6.3. Layout Modes
	6.4. Selecting Rectangles
	6.5. Selecting Times or Time Ranges
	6.6. IDE-Independent Implementation of the Timeline
	6.7. Discussion
	6.7.1. Linear vs. Tree/Graph Based History
	6.7.2. Limitations

	6.8. Conclusion

	7.
	Real-time Edit Collapsing and Semantic Zooming
	7.1. The Four Collapse Levels
	7.1.1. Raw Level (No Collapsing)
	7.1.2. Parse Level
	7.1.3. Method Level
	7.1.4. Type Level

	7.2. Collapsing Algorithm
	7.2.1. Overall Collapse Mechanism
	7.2.2. Collapse Test For the Method Level and Type Level

	7.3. Integration with the Timeline Visualization
	7.3.1. Semantic Zooming
	7.3.2. Width of a Group Rectangle in the Compact Layout Mode
	7.3.3. Selection of the Group Rectangles
	7.3.4. Summarizing the Collapsed Edits in the Tooltips

	7.4. Log Analysis
	7.5. Limitations and Future Work
	7.6. Conclusion

	8.
	User Interfaces for Selective Undo
	8.1. Code History Diff View
	8.1.1. Scope of Code Snippets

	8.2. Regional Undo Shortcut
	8.3. History Search
	8.4. Interactive Selective Undo
	8.5. Reading the History of Past Sessions
	8.6. Limitations and Future Work
	8.7. Conclusion

	9.
	Evaluation of Azurite
	9.1. Field Trial with the Initial User Interface Design
	9.2. Evaluation Study
	9.2.1. Participants
	9.2.2. Tasks
	9.2.3. Study Procedure
	9.2.4. RQ1: Is Azurite usable?
	9.2.5. RQ2-1: Can Azurite users perform backtracking tasks more accurately?
	9.2.6. RQ2-2: Can Azurite users perform backtracking tasks more quickly?
	9.2.7. RQ2-3: Is Azurite perceived as useful?
	9.2.8. Summary of the Evaluation Study

	9.3. Performance Feasibility
	9.3.1. RQ3: Disk Space Used by Fluorite Logs
	9.3.2. RQ4-1: Performance of the Edit History Management Algorithm
	9.3.3. RQ4-2: Performance of the Real-Time Edit Collapsing Algorithm
	9.3.4. RQ4-3: Performance of the Timeline Visualization
	9.3.5. RQ4: Putting It All Together

	9.4. Example Use Cases
	9.4.1. Answering History-Related Questions Programmers Ask
	9.4.2. Selective Undo Scenarios
	9.4.2.1. Reverting to a Previously Used LayoutManager
	9.4.2.2. Restoring Deleted Code in General
	9.4.2.3. Removing Temporary Debugging Code
	9.4.2.4. Aborting or Undoing a Manual Refactoring

	9.4.3. Other Benefits

	9.5. My Own Experience of Using Azurite
	9.6. Conclusion

	10.
	Selective Undo Support for Painting Applications
	10.1. Motivation
	10.2. Initial Semi-Structured Interviews
	10.2.1. Discussion

	10.3. Design Tradeoffs
	10.3.1. Which Operations to Explore?
	10.3.2. Script Model versus Inverse Model?
	10.3.3. Handling Region Conflicts among Operations
	10.3.4. Copy and Paste
	10.3.5. Selective Undo/Redo Operations in the History Panel
	10.3.6. Thumbnail Images
	10.3.7. Identifying Desired Operations

	10.4. Implemented System
	10.5. Usability Evaluation
	10.6. Conclusion

	11.
	Limitations and Future Work
	11.1. Extensions to Fluorite
	11.2. Extensions to Azurite
	11.2.1. Using Structural Changes as Input
	11.2.2. Dealing with Moved or Copied Code
	11.2.3. Combining Code Edit History with Regular Code Searches
	11.2.4. Code Recycle Bin
	11.2.5. Improving History Search
	11.2.6. Supporting a Team Development Environment
	11.2.7. Supporting Variation Management
	11.2.8. Integration with Dynamic Execution Information
	11.2.9. Deploying Azurite for General Use

	11.3. Extensions to Aquamarine
	11.4. Applying Selective Undo to Other Tools and Domains

	12.
	Conclusion
	A Appendix A: Materials from the Preliminary Lab Study
	A.1. Task instructions for Group 1
	A.2. Task instructions for Group 2
	A.3. Questionnaire

	B Appendix B: Questionnaire Used for the Online Survey
	C Appendix C: Materials from the Azurite Evaluation Lab Study
	C.1. Task Sheets Given to the Participants

	Bibliography

