
Efficient Learning of Sparse Gaussian Mixture
Models of Protein Conformational Substates

Ji Oh Yoo

CMU-CS-15-124

July 2015

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Christopher James Langmead, Chair

Wei Wu, Faculty

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright c© 2015 Ji Oh Yoo

Keywords: conformational substates, Molecular Dynamics simulation, Gaussian Mixture
Model, Nonparanormal Mixture Model, coreset approximation

Abstract
Molecular Dynamics (MD) simulations are an important technique for studying

the conformational dynamics of proteins in Computational Structural Biology. Tra-
ditional methods for the analysis of MD simulation assumes a single conformational
state underlying the data. With recent developments in MD simulation technologies,
MD simulation now can produce massive and long time-scale trajectories across
multiple conformational substates, and new efficient methods to analyze these tra-
jectories and to learn structural dynamics of the substates are needed.

In this thesis, we develop new methods to learn parametric and semi-parametric,
sparse generative models from the positional fluctuations of amino acid residues
in the simulation. Specifically, our methods learn a mixture of sparse Gaussian or
nonparanormal distributions. Each mixing component encodes the statistics of a
different substate. L1 regularization is used to produce sparse graphical models that
are easier to interpret than a simple covariance analysis, because the topology of
the graphical model reveals the coupling structure between different parts of the
molecule. Our method also employs coreset sampling to enhance scalability.

We demonstrate that our methods produce models that have a number of advan-
tages over traditional Gaussian Mixture Models (GMM). Experiments on synthetic
data show substantial improvements over GMMs on the recovery of the true network
structure, while remaining competitive in terms of test likelihood and imputation er-
ror. Experiments on a large real MD data set are consistent with the results on
synthetic data. We also demonstrate the benefits of using semi-parametric models in
terms of likelihood and imputation metrics.

iv

Acknowledgments
First of all, I would like to express my sincere gratitude to my advisor, professor

Christopher Langmead, for his continuous support for my study in the Fifth Year
Masters Program. Without his guidance and advice, it would not have been possible
to finish this research. What I learned from him during this research will be one
of the most valuable assets in my future life and career. I would also like to thank
professor Wei Wu for her service as a thesis committee member and her valuable
feedbacks and suggestions for my research.

When there was a problem with my research, it was sometimes difficult to move
forward. I would like to thank all of my wonderful friends who have helped me
overcome the obstacles during these difficult times. Every conversation, coffee, and
game we had together helped me regain my energy so I could concentrate and finish
my study.

Finally, I would like to thank my parents and my sisters for their support. Look-
ing back, it was not an easy decision to leave my home country and to study abroad
for many years. My family supported my decision and encouraged me over the
distance between us, and I am deeply grateful for their unconditional love.

vi

Contents

1 Introduction 1

2 Background 3
2.1 Structural Dynamics of Proteins . 3
2.2 Molecular Dynamics Simulations . 3
2.3 Analysis of Molecular Dynamics Simulation Data 4
2.4 Markov Random Field . 6
2.5 Gaussian Graphical Model . 7
2.6 Multivariate Gaussian Representations of Protein Dynamics 7

3 Methods 9
3.1 Gaussian Mixture Model . 9
3.2 Sparse Gaussian Mixture Model Using BIC . 10
3.3 Sparse Gaussian Mixture Model using Cluster Approximation with Coreset Sam-

pling . 12
3.3.1 Coreset Sampling for Gaussian Mixture Model 12
3.3.2 Learning Sparse Gaussian Mixture Model for Clusters Approximated by

Coreset Sampling . 14
3.4 Sparse Nonparanormal Mixture Model using Cluster Approximation 16
3.5 Summary . 17

4 Experiments and Results 19
4.1 Performance Metrics . 19

4.1.1 Performance Metrics on Test Dataset 19
4.1.2 Performance Metrics against the True Model 20

4.2 Synthetic Experiments . 20
4.2.1 Generation of Synthetic Data . 21
4.2.2 Synthetic Experiments on Sparse Gaussian Mixture Models Using Core-

set Approximation . 21
4.2.3 Synthetic Experiments on Sparse Nonparanormal Mixture Models Using

Coreset Approximation . 37
4.3 Learning Sparse Mixture Models for Conformational Substates of Engrailed Home-

odomain . 40

vii

4.3.1 Learning Sparse Gaussian Mixture Model for Conformational Substates
of Engrailed Homeodomain . 40

4.3.2 Learning Sparse Nonparanormal Mixture Model for Conformational Sub-
states of Engrailed Homeodomain . 44

5 Conclusion & Future Work 49

Bibliography 51

viii

List of Figures

2.1 Three Dimensional Structure of Myoglobin (1MBO) 4
2.2 Free Energy Landscape of a Protein According to its Virtual Conformational

Coordinate. 5
2.3 Approximation of a protein by Elastic Network Model 8

3.1 Diagram of the learning process of a sparse Gaussian Mixture Model using clus-
ter approximation with coreset sampling . 13

4.1 Negative Log-Likelihood of learned models usingMgmm, Sbic, Score, Score2 meth-
ods. 21

4.2 Average imputation errors of learned models using Mgmm, Sbic, Score, Score2
methods. 22

4.3 Edge recovery accuracy of learned models usingMgmm, Sbic, Score, Score2 methods. 23
4.4 Edge recovery F1 score of learned models using Mgmm, Sbic, Score, Score2 methods. 23
4.5 Recovered edges in precision matrices of learned models using Mgmm, Sbic,

Score, Score2 methods . 24
4.6 Recovered edges in precision matrices of learned models using Mgmm, Sbic,

Score, Score2 methods . 25
4.7 Edge recovery accuracy and F1 score of thresholded precision matrices learned

using Mgmm method. 25
4.8 Negative log-likelihood, imputation error, and edge recovery rate of learned

models using Mgmm, Score, Score2 methods. 27
4.9 Average imputation errors of learned models using Mgmm, Score, Score2 methods. 27
4.10 Edge recovery accuracy in precision matrices of learned models using Mgmm,

Score, Score2 methods. 28
4.11 Edge recovery F1 score in precision matrices of learned models using Mgmm,

Score, Score2 methods. 28
4.12 Negative log-likelihood, imputation error, and edge recovery rate of learned

models using Mgmm, Score, Score2 methods. 29
4.13 Average imputation errors of learned models using Mgmm, Score, Score2 methods. 30
4.14 Edge recovery accuracy in precision matrices of learned models using Mgmm,

Score, Score2 methods. 30
4.15 Edge recovery F1 score in precision matrices of learned models using Mgmm,

Score, Score2 methods. 31

ix

4.16 Negative log-likelihood, imputation error, and edge recovery rate of learned
models using Mgmm, Score, Score2 methods. 32

4.17 Average imputation errors of learned models using Mgmm, Score, Score2 methods . 32
4.18 Edge recovery accuracy in precision matrices of learned models using Mgmm,

Score, Score2 methods. 33
4.19 Edge recovery F1 score in precision matrices of learned models using Mgmm,

Score, Score2 methods . 33
4.20 Negative log-likelihood of learned models using Score, Sunif , Score2, and Sunif2

methods . 34
4.21 Imputation errors of learned models using Score, Sunif , Score2, and Sunif2 methods 35
4.22 Edge recovery accuracy in precision matrices of learned models using Score,

Sunif , Score2, and Sunif2 methods . 36
4.23 Edge recovery rate in precision matrices of learned models using Score, Sunif ,

Score2, and Sunif2 methods . 36
4.24 Runtime cost for parameter learning using Score, Sunif , Score2, and Sunif2 methods 37
4.25 Negative Log-Likelihood of learned models using Mgmm, Score, Snpn methods. . 38
4.26 Average imputation errors of learned models using Mgmm, Score, Snpn methods. . 38
4.27 Edge recovery accuracy of learned models using Mgmm, Score, Snpn methods. . . 39
4.28 Edge recovery F1 score of learned models using Mgmm, Score, Snpn methods. . . 39
4.29 Engrailed homeodomains of Drosophila melanogaster (1DU0) bound to DNA

double helix. 41
4.30 Negative log-likelihood of learned models using Mgmm, Score, Sunif methods on

engrailed homeodomain. 41
4.31 Average imputation error of learned models using Mgmm, Score, Sunif methods

on engrailed homeodomain. 42
4.32 BIC score of learned models using Mgmm, Score, Sunif methods on engrailed

homeodomain. 42
4.33 Edges recovered using Mgmm, Score, Sunif methods on engrailed homeodomain. . 43
4.34 Average runtime cost of learned models using Mgmm, Score, Sunif methods on

engrailed homeodomain. 44
4.35 Average imputation error of models learned using Snpn method on engrailed

homeodomain with different Winsorization parameters. 45
4.36 Negative log-likelihood of models learned using Mgmm, Score, Snpn method on

engrailed homeodomain. 45
4.37 Average imputation error of models learned using Mgmm, Score, Snpn method on

engrailed homeodomain. 46
4.38 Edges recovered using Mgmm, Score, Snpn methods on engrailed homeodomain. . 46
4.39 Recovered precision matrices by Snpn for 5 conformational substates with their

weight probabilities and selected patterns matched with residues of Engrailed
Homeodomain (1ENH). 47

x

List of Tables

4.1 Average runtime cost in learning models using Mgmm, Sbic, Score, Score2 methods 26

xi

xii

Chapter 1

Introduction

In statistics and machine learning, extracting the underlying patterns in data and predicting the
future behaviors of the target object are often the primary research goals. With the improvements
in computational power and increase in storage, developing efficient algorithms for the analysis
of large-scale data has become an equally important goal. These goals are especially important
in the natural sciences where modern experimental platforms produce massive amount of data.
In this thesis, we focus on the analysis of large-scale data from the simulation of molecular
structures, including proteins.

Proteins are among the most important molecules in Biology because they participate in vir-
tually every biological process and structure. It is well established that the three dimensional
structure and dynamics of proteins ultimately governs their behavior. Therefore, it is useful to
understand and to model the structure and dynamics of proteins. Traditional methods for ana-
lyzing the structure of proteins involve crystallizing the protein samples and conducting various
types of spectroscopy. In Computational Structural Biology, the motions of proteins are often
studied using a technique known as Molecular Dynamics (MD) simulations [1]. MD simula-
tion can provide 3-dimensional coordinates of atoms in user-specified environments including
different settings of temperatures and solvents. Informally, starting with an initial set of atomic
coordinates, MD simulations involve iteratively adjusting the positions of the atoms of the system
using Newton’s laws of motion. The output of a MD simulation is a time-series of frames, known
as a trajectory, reporting the positions of the atoms at different points in time. The goal of this
thesis is to introduce new algorithms for analyzing the MD simulation trajectories. Specifically,
we employ techniques from Machine Learning to produce mixture models of protein structures.
These models will reveal and characterize the conformational substates of the proteins (i.e., the
highly probables structures) [2, 3]. These substates, in turn, can be used by Biologists to better
understand how each protein performs its tasks.

The primary motivation for this research are advances in the technologies for performing
MD simulations. Traditional methods for the analysis of MD simulation implicitly assume that
there is a single conformational substate in the data. This assumption was once valid, when MD
simulation technologies were less powerful and could only produce simulations from a single
substate. Today, however, that assumption is no longer valid, in general. The technological
advances in MD now make it possible to produce massive and long time-scale trajectories that
often cover multiple substates of a protein [4, 5, 6, 7, 8]. Therefore, methods capable of modeling

1

multiple substates simultaneously are needed. Our methods use probabilistic graphical models
to identify the conformational substates of a protein and to learn the underlying distributions of
the substates. The output models of our methods result in generative models that can be further
applied for prediction studies of the substates, given small perturbations of partial structure of
the protein. Specifically, our approach is based on Gaussian Mixture Models with sparsity con-
straints for better interpretability. To address the issue of scalability, we use coreset sampling
methods to approximate the clusters (i.e., substates) in the data. Finally, we extend the approach
with a semi-parametric method to cover the richer family of distributions than simple multivariate
Gaussian distributions.

This thesis is structured as follows. In Chapter 2, we give a brief overview of dynamics of
proteins, Molecular Dynamics simulations, and the traditional methods for the analysis of the
simulated data. We also include a brief introduction of probabilistic graphical model that we
apply in our proposed methods. In Chapter 3, we present our methods for efficient learning of
structures and parameters of sparse Gaussian Mixture Models for identification of the substates
and the semi-parametric extension of our methods. In Chapter 4, we show the evaluations of our
methods in various metrics, including likelihood and imputation errors of the learned models that
are widely used in machine learning along with the runtime costs of the methods.

2

Chapter 2

Background

In this chapter, we give a brief overview of the structural dynamics of proteins and the identifi-
cation of conformational substates of proteins from Molecular Dynamics simulation data. Then,
we review the existing methods and the background of our methods using Gaussian Graphical
Model to overcome the shortness of existing methods.

2.1 Structural Dynamics of Proteins
A protein is a polypeptide, a linear chain of amino acids. The structure of a protein has been
the main subject of studies in biochemistry and molecular biology as the structural properties are
closely related to a wide range of functions in biochemical reactions in living organisms. The
overall shape of a protein is a three dimensional structure as in Figure 2.1, rather than a linear
chain, constructed by local interactions including hydrogen bonds among local amino acids and
non-local interactions among the partial structures of the protein. Also, the structure of a working
protein is neither rigid nor static but fluctuating and dynamic as each molecule in a protein
behaves according the laws of thermodynamics. The motions of a protein and its molecules
visit an ensemble of states that can be partitioned into conformational substates, which share the
similar overall structure and the biochemical functions but have different local structures or the
rate of the functions [2, 3]. The study of these conformational substates and their relationships to
the various functions is one of the active area of research, and the multiple techniques including
nuclear magnetic resonance (NMR), neutron spectroscopy, and X-ray crystallography have been
introduced [9, 10, 11]. However, these experimental techniques, at present, cannot capture all of
the details of dynamics in each conformational substate or across the substates.

2.2 Molecular Dynamics Simulations
Molecular Dynamics (MD) simulation is a computer simulation of the movements of the atoms in
a given molecular object. Given the initial three dimensional coordinates and the initial velocities
of the atoms in the system, MD repeats updating the coordinates of the atoms after a short time
step and storing the conformation of the atoms. For each time step, MD numerically solves
the Newton’s equations of motions using the interatomic potential energy, and the length of the

3

Figure 2.1: Three dimensional structure of myoglobin (1MBO) with bounded oxygen molecule.
Myoglobin is a polypeptide with 153 amino acids and has a three-dimensional structure rather
than a linear or planar structure.

time step is usually set to 1-2 femtoseconds (10−15 sec). For reasonable size of the data for
later analysis, every 1,000th to 10,000th simulation (1-100 picoseconds, 10−12 sec) is stored for
further analysis as a time series of frames, the conformations of the system.

MD is one of the popular computational methods for studies of conformational substates of
proteins as it can capture the details in biomolecular functions of proteins, and user can control
the degree of the accuracy and the approximation of the simulation [1]. Recently, by the develop-
ment of algorithms with higher simulation throughput and the advance in hardware, MD now can
generate trajectory of the system for longer time-scale, from microseconds to milliseconds (10−6

to 10−3 seconds) [4, 5, 6, 7, 8]. As the transitions among the conformational substates occur
in microseconds to milliseconds time-scale (Figure 2.2), such long time-scale simulations can
contain multiple conformational substates. Instead of manually identifying substates among the
frames, we need efficient algorithms to identify the substates and learn the structural properties
of each state from a large-scale data.

2.3 Analysis of Molecular Dynamics Simulation Data
Our goal is to model an underlying distribution of the given Molecular Dynamics (MD) simu-
lation data. We assume that the user provides a trajectory containing the atoms of interest (e.g.,
α-carbons of the amino acid residues of a protein). Given the trajectories from MD simulation,
we can model the distribution over several kinds of variables. In this thesis, we model the joint
distribution over atomic fluctuations, the distance of each atom from its average position, by
learning a generative model from the data.

4

Figure 2.2: Free energy landscape of a protein according to its virtual conformational coordinate.
The populations of different protein conformation follow Boltzmann distribution, and the ratio
of populations varies exponentially to the free energy difference of the conformations. The tran-
sitions across the smaller energy barriers take picoseconds to nanoseconds, and the transitions
among the larger energy barriers take nanoseconds to microseconds. The Molecular Dynam-
ics simulation data of longer than microseconds time-scale can contain multiple conformational
substates and requires an algorithm to identify the substates.

5

The methods for the study of the conformational substates have been developed mainly using
two strategies. The first is using clustering algorithms on the physical properties of proteins
(coordinates of atoms or dihedral angles of bonds) to identify the substates [12, 13, 14]. However,
the pair-wise comparison in the clustering algorithms makes it hard to be scalable for the massive
long time-scale trajectories we want to analyze, and the methods give non-generative models,
which have limits on the study of the behaviors of the system given local perturbations. The
second strategy is using Principle Component Analysis (PCA) to reduce the dimensionality of
the problem [13, 15, 16]. The PCA-related methods give a generative model, but the change of
basis in PCA gives an output that is hard to interpret in terms of the original molecular system
and utilize in further studies. Recently, a method for learning probabilistic graphical models with
generative property for fluctuations of proteins was proposed to overcome these issues [17]. In
this thesis, we extend this method to scale up to very large trajectories for multiple substates
and to semi-parametric models. Our method uses the approximation step in the clustering of the
frames for identification of the substates for the better scalability, does not change the basis for
the better interpretability of the results, and gives a generative model based on graphical models
for the applicability in further prediction studies of the target system.

2.4 Markov Random Field

The methods we introduce in this thesis consist of a mixture of Gaussian distributions where
each component is encoded as a sparse Markov Random Field. Markov Random Field (MRF) is
a graphical model M = (G,Ψ) based on the undirected graph G = (V,E) with a set of potential
functions Ψ. Each node in V = {v1, v2, ..., vn} represents the corresponding random variable
in X = {X1, X2, ..., Xn}, and each potential function ψc in Ψ is defined on the nodes in clique
c of G. The joint distribution of X is defined to be the product of all potential functions after
normalization:

P (X1, X2, ..., Xn) =
1

Z

∏
c

ψ(Xc)

where Xc ⊆ X is the random variables encoded in a clique c, and Z is a normalization factor
called partition function.

The graphical representation of MRF with the definition of joint distribution makes it easier
to interpret the conditional independencies between the variables without evaluating the marginal
or conditional distributions. For two nodes vi and vj with the corresponding random variables
Xi and Xj , if vi and vj are connected by an edge in the graph G, then the two random variables
Xi and Xj are dependent. Conversely, if vi and vj are not connected by an edge, then Xi and Xj

are conditionally independent, given their respective Markov Blankets. This property gives us
an informal but useful interpretation of the pair-wise relationships between the variables; if the
nodes vi and vj are connected by an edge, then the correlation between Xi and Xj are due to a
direct relationship in the system, and if vi and vj are not connected by an edge but are connected
by a path in G, then the correlation between Xi and Xj is due to an indirect relationship. There
are existing algorithms for inference and learning of the structure and parameters of MRFs, but

6

these methods, in general, give approximate solutions because exact inference and learning is
NP-hard on MRFs with loops [18].

2.5 Gaussian Graphical Model
Gaussian Graphical Model (GGM) M = (µ,Σ) is a Markov Random Field with continuous
random variables distributed in a single multivariate Gaussian distribution with the mean vector
µ and the covariance matrix Σ. The pair-wise conditional independency between Xi and Xj is
captured by the zero (i, j)th entry in the precision matrix Θ = Σ−1. The potential functions of
GGM are encoded in µ and Σ, and the joint distribution is the multivariate Gaussian distribution:

P (X1, X2, ..., Xn) = P (X) =
1

Z
exp

(
− 1

2
(X − µ)ᵀΣ−1(X − µ)

)
where Z =

√
(2π)n|Σ| is a partition function.

One of the key benefits to using a GGM is that, unlike most other MRFs, learning and infer-
ence are analytically tractable. The marginal distribution P (Xa) of a subsetXa ⊆ X of variables
is simply a multivariate Gaussian distribution with the mean vectors and the covariance matrix
with corresponding rows and columns of Xa. The conditional distribution P (Xa|Xb = Zb) of
Xa given values of Xb = Zb is also a Gaussian distribution with parameters:

µa|b = µa + ΣabΣ
−1
bb (Zb − µb)

Σa|b = Σaa − ΣabΣ
−1
bb Σba

where µa and µb are sub-vectors with corresponding rows in the original mean vector µ, and
Σaa,Σab,Σba, Σbb are sub-matrices with corresponding rows and columns in the original covari-
ance matrix Σ.

2.6 Multivariate Gaussian Representations of Protein Dynam-
ics

Most methods for the analysis of Molecular Dynamics simulation data assume some variation of
Elastic Network Model (ENM) for simplified representation of interactions between the atoms.
In ENM, a subset of atoms in the system are represented as masses, and the direct relationships
between the masses are represented as springs. When a folded protein is approximated with
an elastic network of masses (α-carbons of various residues) and springs (pair-wise direct rela-
tionship among residues), as in Figure 2.3, the positional fluctuations of the α-carbons follow a
multivariate Gaussian distribution [19, 20]. ENM can be analyzed via Normal Mode Analysis,
which uses Principle Component Analysis and thus models the system with a single multivariate
Gaussian distribution [21]. In contrast, our method identifies the multiple conformational sub-
states and models the data using a mixture of sparse GGMs. By learning a mixture of GGMs,
our method produces a model with the power to represent more complicated distributions than
Normal Mode Analysis. The use of sparse models improves the interpretability of the output
models and reduces the likelihood of overfitting the data.

7

Figure 2.3: Approximation of a protein by Elastic Network Model. If the α-carbons of amino
acid residues are represented as masses and pair-wise direct relationships between residues are
presented as springs, the fluctuation of the masses from the equilibrium follows a multivariate
Gaussian distribution.

8

Chapter 3

Methods

For large-scale Molecular Dynamics simulations data, a single multivariate Gaussian distribution
is not suitable to represent multiple conformational substates of proteins, and an algorithm that
can encode more than one Gaussian distribution is needed. In this chapter, we first present tradi-
tional Gaussian Mixture Model and its parameter learning, and introduce methods to learn sparse
Gaussian Mixture Model for better interpretability. We then discuss methods for scaling to large
datasets via coreset sampling. Finally, we discuss methods for increasing the representational
power of our models by learning mixtures of semi-parametric models.

3.1 Gaussian Mixture Model
A Gaussian Mixture Model (GMM) M = {(πk, µk,Σk)}Kk=1 is an extension of the Gaussian
Graphical Model to represent a mixture of K multivariate Gaussian distributions. Each Gaussian
Graphical Model (µk,Σk) is associated with a weight probability πk that represents the prob-
ability of the k’th component is chosen, and the sum of the probabilities satisfies the unitarity
condition

∑
k πk = 1. For a mixture withK components, the joint probability can be represented

as:

p(X|M) =
K∑
k=1

πkp(X|Mk) =
K∑
k=1

πkN (X|µk,Σk)

and the log-likelihood of this model given the data D = {X(1), ..., X(N)} is:

L(M |D) =
N∑
i=1

log
(
p(X(i)|M)

)
=

N∑
i=1

log
(K∑
k=1

πkN (X(i)|µk,Σk)
)

Unlike the GGM with a single Gaussian distribution, GMM does not have a closed-form
expression for maximum likelihood estimators. The popular way for parameter learning of GMM
is using an Expectation-Maximization (EM) algorithm [22]. This algorithm repeats updating 1)
the ‘responsibility’ of each datapoint to each component and 2) the parameters M in turn. The
t’th iteration can be expressed as:

γ
(t)
i,k = p(k|X(i),M (t))

9

π
(t+1)
k =

1

N

N∑
i=1

γ
(t)
i,k

µ
(t+1)
k =

∑N
i=1 γ

(t)
i,kX

(i)∑N
i=1 γ

(t)
i,k

Σ
(t+1)
k =

∑N
i=1 γ

(t)
i,k(X(i) − µk)(X(i) − µk)ᵀ∑N

i=1 γ
(t)
i,k

This algorithm stops when the change of log-likelihood for every step is less than a pre-
defined tolerance. As the likelihood function for a mixture of Gaussian distribution is not convex
and it might converge to a local optimum, this EM algorithm is usually run many times with
random initialization of parameters in M , and the estimator giving the maximum likelihood is
chosen. Each iteration of the algorithm takes O(NK) time, but the number of iteration is highly
dependent on the initial parameters of M and the stopping criterion.

3.2 Sparse Gaussian Mixture Model Using BIC
The EM algorithm for Gaussian Mixture Model usually results in a very dense model, where
the entries in the precision matrix of each component Θk = Σ−1

k are mostly non-zero. Denser
models usually suffer from overfitting problem, and are hard to interpret the relationships and
the degree of interactions in the original problem. To reduce the density of GMM, we introduce
L1 regularization term to the likelihood of GMM:

Lp(Θ|D) =
N∑
i=1

log
(c∑
k=1

πkN (X(i)|µk,Σk)
)
− λ

c∑
k=1

‖Σ−1
k ‖1 (3.1)

Ruan and coworkers [23] proposed an EM-style algorithm from Eq. 3.1:

γ
(t)
i,k = p(k|X(i),Θ(t))

π
(t+1)
k =

1

N

N∑
i=1

γ
(t)
i,k

µ
(t+1)
k =

∑N
i=1 γ

(t)
i,kX

(i)∑N
i=1 γ

(t)
i,k

Σ
(t+1)
k = argmax

Σk�0

{
− log |Σk|+ Tr(Σ−1

k A
(t+1)
k)− λ‖Σ−1

k ‖1

}
(3.2)

where

A
(t+1)
k =

∑N
i=1 γ

(t)
i,k(X(i) − µk)(X(i) − µk)ᵀ∑N

i=1 γ
(t)
i,k

10

Eq. 3.2 assumes a single regularization parameter for all components. As we expect different
modes of interactions among parts of a protein for different conformational substates, it is more
appropriate to introduce different regularization parameter λk for each component:

Σ
(t+1)
k = argmax

Σk�0

{
− log |Σk|+ Tr(Σ−1

k A
(t+1)
k)− λk‖Σ−1

k ‖1

}
(3.3)

Solving Eq. 3.3 to get the covariance matrix for each iteration is exactly the same as the sparse
inverse covariance estimation of a multivariate Gaussian, and we can use efficient algorithms
including graphical lasso [24]. The regularization parameters λk’s can be selected by cross-
validation using the Bayesian Information Criterion (BIC), which penalizes the likelihood with a
function that is linear in the number of parameters. The BIC of our model is defined as follows:

BIC(Θ) = L(D|Θ)− log(N) df(Θ) (3.4)

where df is the degree of freedom in the model:

df(Θ) =
K∑
k=1

[
p+

∑
i≤j

I((Σ−1
k)ij 6= 0)

]
and higher BIC values are better than lower ones.

Algorithm 1: Learning Sparse GMM with L1 Regularization using BIC
Data: input data D, number of components K, reference model m
Result: Σk, µk, πk for each component
split data D into training set Dtrain and cross-validation set Dcv. ;
for Every combination of regularization parameters λ1, ...λc do

randomly initialize K component centers ;
while not converged within criteria do

evaluate each γ(t)
i,k using Dtrain;

update π(t+1)
k , µ(t+1)

k , Σ
(t+1)
k with λ1, ..., λc using Dtrain;

align components with reference model m and relabel components ;
end
calculate BIC using Dcv ;
store the model with best BIC score so far ;

end

Algorithm 1 shows the pseudo-code for learning Sparse GMM with L1 Regularization with
BIC using the update equations for each parameters. One subtlety in this algorithm is the aligning
and relabeling step with respect to the given reference model m. Each iteration in this algorithm
is an EM algorithm with different regularization parameter λk for each component k, so it needs
to preserve the ordering of the learned components for every iteration. As the EM algorithm
starts from the randomly initialized parameters in M and the trajectories of those centers until
convergence are not predictable, it is necessary to relabel the component indices in each EM

11

step. For relabeling, measuring the differences in weights, means, or covariance matrices alone
is not appropriate as there can be more than one clusters having the similar weights or means. We
use Kullback-Leibler divergence (KL-divergence) as a measure of distance between clusters to
find the closest reference cluster for each learned cluster. The KL-divergence of two multivariate
Gaussian distributions can be evaluated analytically as in Eq. 3.5.

DKL(N0,N1) =
1

2

{
Tr(Σ−1

1 Σ0) + (µ1 − µ0)ᵀΣ−1
1 (µ1 − µ0)− dim+ ln

|Σ1|
|Σ0|

}
(3.5)

where dim is the number of variables in the component. For reference model, we can use ground-
truth model for synthetic experiments or a model learned from traditional GMM for real datasets.

3.3 Sparse Gaussian Mixture Model using Cluster Approxi-
mation with Coreset Sampling

As the methods presented in the previous section use all of the given data to refine the clus-
ter centers and the cluster assignments of the datapoints, it is not scalable for large-scale MD
simulations. Also, as Algorithm 1 for sparse GMM using BIC tries to solve graphical lasso opti-
mization problem for every EM iteration, it costs significant amount of time for the regularization
parameter search. Instead of refining clusters for every iteration using EM style algorithm, we
can simplify the problem by first approximating the K cluster centers and then learning a sparse
GGM for each cluster, as represented in Figure 3.1. In this section, we introduce an approxima-
tion method for identifying the clusters of the data using coreset sampling method [25]. Then,
we propose a learning method of a mixture of sparse GGMs based on the approximated clusters.

3.3.1 Coreset Sampling for Gaussian Mixture Model
A coreset C = {(γ(1), X ′(1)), ..., (γ(M), X ′(M))} of the given data is a subset of the data with
a set of weights representing the degree of contribution to the original data. The negative log-
likelihood of C can be extended by weighting each term in the summation by the corresponding
weight γ(j):

L(C|Θ) = −
M∑
j=1

log
c∑

k=1

πkγ
(j)√

(2π)d|Σ−1
k |

exp
(
− 1

2
(X ′(j) − µk)ᵀΣ−1

k (X ′(j) − µk)
)

and the accuracy of the coreset C can be measured by the difference between the approximated
L(C) and the original L(D).

Instead of the whole term L(C), Feldman and coworkers [25] focus on the most important
term in the negative log-likelihood. The negative log-likelihood of the dataD can be decomposed
to:

12

Figure 3.1: Diagram of the learning process of a sparse Gaussian Mixture Model using clus-
ter approximation with coreset sampling. We use coreset sampling method to approximate the
clusters, and use either the original data or the coreset samples to learn a sparse GGM for each
cluster.

L(D|Θ) = −
N∑
i=1

log
c∑

k=1

πk√
(2π)d|Σ−1

k |
exp

(
− 1

2
(X(i) − µk)ᵀΣ−1

k (X(i) − µk)
)

= −N logZ(Θ) +
N∑
i=1

log
c∑

k=1

πk

Z(Θ)
√

(2π)d|Σ−1
k |

exp
(
− 1

2
(X(i) − µk)ᵀΣ−1

k (X(i) − µk)
)

= −N logZ(Θ) + φ(D|Θ)

where Z(Θ) =
∑

k
πk√

(2π)d|Σ−1
k |

is a normalizer. The first term in the equation above is indepen-

dent of the given data D and the second term φ(D|Θ) contains all the dependencies on the data
D. The coreset sampling algorithm constructs a weighted subset of the given data that can give
(1 + ε)-approximation of φ(D|Θ).

For coreset C, this φ can be extended to:

φ(C|Θ) =
M∑
j=1

log
c∑

k=1

πkγ
(j)

Z(Θ)
√

(2π)d|Σ−1
k |

exp
(
− 1

2
(X ′(j) − µk)ᵀΣ−1

k (X ′(j) − µk)
)

and the coreset algorithm gives (1 + ε)-approximation on φ(D|Θ) with probability 1− δ:

(1− ε)φ(D|Θ) ≤ φ(C|Θ) ≤ (1 + ε)φ(D|Θ)

13

Algorithm 2: Coreset Sampling for Gaussian Mixture Model
Data: input data D, δ, number of component c, size of coreset M
Result: coreset C
D′ := D, B := ∅ ;
β = 10dk ln(1/δ) ;
while |D′| < β do

sample set S with size β uniformly at random from D′ ;
remove d|D′|/2e points from |D′| that are closest to S ;
B = B ∪ S ;

end
B = B ∪D′ ;
for each b ∈ B do

assign Db that is closest point to b in D ;
end
for each b ∈ B do

x = Db ;

assign m(x) =
⌈

5
|Db|

+ d(x,B)2∑
X′∈D d(X′,B)2

⌉
;

end
pick coreset samples of size M from D with probability proportional to m(x) ;

for each coreset sample X(j), assign weight γ(j) =
∑

X∈Dm(X)

|C|m(X(j))
;

The original algorithm by Feldman and coworkers gives a coreset with size independent of
the size of the original data and theoretical guarantees. But the size of the constructed coreset
is O(dk3/ε2), and the implementation of this algorithm sometimes gives coreset with size larger
than the original data. For the problem setting with d = 30 variables and k = 5 components
and ε = 0.1, the original algorithm samples more than 11 million samples. For the purpose of
examining the behavior and the performance of coreset algorithm for sparse GMM models, we
modify the algorithm to sample the given number of coreset samples. Algorithm 2 shows the
pseudo-code for coreset algorithm we use in our analysis.

3.3.2 Learning Sparse Gaussian Mixture Model for Clusters Approximated
by Coreset Sampling

For efficient learning of a sparse Gaussian Mixture Model, instead of repeating refining cluster
assignments of datapoints and solving optimization problem for parameters, we can construct
approximated clusters and learn a single sparse Gaussian distribution for each cluster. From
coreset samples C with size of M from the given data, we use weighted version of K-means
algorithm for approximating the clusters shown in Algorithm 3.

After approximating the clusters using the weighted K-means algorithm, we learn a mixture
of sparse GGMs based on the approximated clusters. For each cluster, we select the datapoints
that belong to the cluster, and learn a sparse GGM by using the graphical lasso algorithm. For

14

Algorithm 3: Weighted K-means Algorithm using Coreset Samples

Data: Coreset samples C = {(X ′(1), γ(1)), ..., (X ′(M), γ(M))}, number of clusters K,
cluster centers p1, ..., pK

Result: Cluster assignments f : {X ′(1), ..., X ′(M)} → {1, ..., K} of coreset samples
Randomly initialize K cluster centers picked from coreset samples C ;
while not converged within criteria do

Update mapping f (t) for each X ′(i) that gives the label of the closest cluster center ;
for each cluster k do

Update p(t+1)
k =

∑
X′(i):f (t)(X′(i))=k γ

(i)X ′(i)
/∑

X′(i):f (t)(X′(i))=k γ
(i) ;

end
end

the datapoints to be used in the learning process, we have two options. The first option is that we
use the original datapoints that belong to the cluster, and the second is we use the coreset samples
of the cluster. The first option gives us more datapoints for learning, and the second option has
advantage in runtime cost as it is using a smaller set of samples. Both options are explained in
this section, and their behaviors are analyzed in Chapter 4.

Learning Sparse GMM from Original Datapoints Divided in Approximated Clusters

We first assign the original datapoints to the approximated clusters, and then learn a sparse GMM
for each cluster. As we reduce the original problem of learning Gaussian mixture to separate
problem of learning a single Gaussian distribution, we can use graphical lasso algorithm for each
cluster. The pseudo-code for this algorithm is in Algorithm 4.

For model selection, we can use exhaustive search on candidates of the regularization param-
eter λk’s, but we use a simple heuristic method to reduce the runtime cost for model selection.
The optimal regularization λk we want is small enough to capture the relationship in precision
matrix Σ−1

k but large enough to give sparse Σ−1
k . For datapoints matrix Dk in the cluster k, if

we randomly shuffle the columns of Dk, then all the pairwise correlations between the rows and
the columns are diminished. Thus, to find the optimal λk, we randomly shuffle the columns of
Dk and apply graphical lasso with parameter candidates of λk from smallest to largest until the
learned precision matrix is diagonal. For more accurate choice of λk, we can repeat this selection
process and take the average value for our final optimal λk. Also, this algorithm can be easily
parallelized for each cluster k and for each candidate for λk.

Learning Sparse GMM from Coreset samples Divided in Approximated Clusters

To further exploit the coreset sampling approximation, we can learn a sparse Gaussian for each
cluster using the coreset samples instead of using the original datapoints. By reducing the number
of samples for each clusters, we can reduce the runtime cost for learning a model for each cluster
while it might sacrifice some degree of accuracy of the model. For this method, we modify
Algorithm 4, to use the coreset samples C instead of the original input data D, and the rest of the

15

Algorithm 4: Learning Sparse GMM from Datapoints Divided to Approximated Clusters
Data: original input data D, cluster centers p1, ..., pK
Result: sparse Gaussian Mixture Model with K clusters
for X(i) ∈ D do

Assign the cluster assignment c(X(i)) = label of the closest cluster to X(i);
end
for each cluster k do

Dk = {X(i) : c(X(i)) = k} ;
D′k = randomly shuffled columns of Dk ;
for each candidate for regularization parameter λk do

Apply graphical lasso with λk for D′k ;
if learned Σ−1

k is diagonal matrix then
break ;

end
end
Apply graphical lasso with the last λk for Dk ;

end

algorithm is the same.
The methods we discussed in this section mainly consist of two parts. The first part is to

approximate the cluster centers and the assignments of the datapoints to the clusters where we
use coreset sampling to accelerate the process. The second part is to learn a sparse GGM for
each cluster, and we use either the original datapoints for larger size of samples or the coreset
samples to further reduce the runtime cost.

3.4 Sparse Nonparanormal Mixture Model using Cluster Ap-
proximation

The models introduced in the previous sections assume that fluctuations of proteins in each con-
formational substate follow a Gaussian distribution. This assumption makes the problem of pa-
rameter learning and inference easier, but it is limiting the representational power of the model.
Liu and coworkers [26] proposed a semi-parametric method to extend standard Gaussian distribu-
tions to cover more families of distributions with richer representational power. A random vector
X = (X1, X2, ..., XP) follows a nonparanormal distribution if there exists a set of functions
{f}P1 such that f(X) = (f1(X1), f2(X2), ..., fP (XP)) follows a Gaussian distribution N (µ,Σ),
and we write X follows a nonparanormal distribution NPM (µ,Σ, {f}P1). By the flexibility of
the choices of {f}P1 , the family of nonparanormal distributions has richer representational power
than Gaussian distributions.

Assuming that the given dataset D = {X1, X2, ..., XN} follows a nonparanormal distribu-
tion, the estimator of {f}P1 is given by:

16

f̂p(Xp) = µ̂p + σ̂ph̃p(Xp)

where µ̂p and σ̂p are empirical mean and covariance for normalization:

µ̂p =
1

N

N∑
i=1

X(i)
p

σ̂p =

√√√√ 1

N

N∑
i=1

(X
(i)
p − µ̂p)2

and h̃p is an inverse standard Gaussian distribution function (quantile function) applied to the
estimated empirical distribution of Xp:

h̃p(Xp) = Φ−1(F̃p(Xp))

For high-dimensional problem settings, the proposed estimator for Fp is a Winsorized esti-
mator to truncate the outliers for the extreme values Xp:

F̃p(Xp) =


δN if F̂p(Xp) < δN

F̂p(Xp) if δN ≤ F̂p(Xp) ≤ 1− δN
1− δN if F̂p(Xp) > 1− δN

(3.6)

where F̂p(Xp) is an empirical cumulative distribution function F̂p(x) = 1
N

∑N
i=1 I(X

(i)
p ≤ x).

The choice of δN gives the bias-variance trade-off of the Winsorized estimator.
Using this proposed semi-parametric method, we can modify the Algorithm 4 to learn non-

paranormal distributions after dividing datapoints to the approximated clusters. The modified
algorithm is in Algorithm 5.

Another advantage of the sparse Nonparanormal Mixture Model is that it can be used in the
further prediction studies. The transformation functions {fp}P1 do not involve projecting the data
to another space with smaller dimensions, and they are invertible. For predicting the missing
values given other coordinates, we can do inference on the missing values from the learned
Gaussian Mixture Model given the evidence, and apply the inverse transformation functions to
get the values in the original problem space.

3.5 Summary
In this chapter, we introduced methods to learn a sparse Gaussian Mixture Model from the data
along with the traditional method. The method for a sparse GMM with L1 regularization with
BIC score is an extension of the traditional EM-style learning method, and it involves solving
a graphical lasso optimization for every step in the EM-style algorithm. For efficiency in the
learning process, we divide the problem into identifying the clusters and learning a sparse model
for each cluster separately. For the identification of clusters, we use an approximation method
using coreset sampling and weighted K-mean algorithm. For learning a sparse GGM, we use

17

Algorithm 5: Learning Sparse Nonparanormal Mixture Model from Datapoints Divided to
Approximated Clusters

Data: original input data D, cluster centers p1, ..., pK
Result: sparse Nonparanormal Mixture Model with c clusters
for xi ∈ D do

Assign the cluster assignment c(xi) = label of the closest cluster ;
end
for each cluster k do

Dk = {xi : c(xi) = k} ;
Estimate transformation function {fp}Pp=1 using Winsorized estimator ;
Transform the data: Tk = f(Dk) ;
T ′k = randomly shuffled columns of Tk ;
for each candidate for regularization parameter λk do

Apply graphical lasso with λk for T ′k ;
if learned Σ−1

k is diagonal matrix then
break ;

end
end
Apply graphical lasso with the last λk for Tk ;

end

either all of the original samples or the coreset samples as a training set with a heuristic method
to find the optimal regularization parameter for graphical lasso algorithm. Finally, we extend
our method to a semi-parametric method using nonparanormal distributions while learning the
transformation functions involved in this method requires extra space complexity.

18

Chapter 4

Experiments and Results

In this chapter, we present the results of our experiments using methods in the previous chapter
on various performance metrics compared to the baseline methods. Our experiments are on
both synthetic data and Engrailed Homeodomain protein data generated by Molecular Dynamics
simulations. We use traditional Gaussian Mixture Model (without sparsity constraints) for our
baseline method, and analyze the performances varying the problem settings including number
of mixtures, dimensions for each mixture, and number of sample datapoints.

4.1 Performance Metrics
In this section, we list the performance metrics that are used to evaluate our method, along
with the baseline approach. The performance metrics include both quantitative and qualitative
measures to compare the characteristics of the learned models. Some of the metrics are against
the test dataset, and the others are against the true model in the case we know the true model.

4.1.1 Performance Metrics on Test Dataset
After learning the model with training set, we measure performances on a separate test dataset
using the following metrics:
• Negative log-likelihood of test dataset Dtest.

LL = −
∑

X∈Dtest

log p(X|M)

• Average imputation error of test dataset Dtest.
Imputation is a process of predicting missing values, when the model is conditioned on
partial observations. The average accuracy of imputed values is an indication of the quality
of the model. We compute the average imputation error by iteratively conditioning on n−1
variables and imputing the value of the remaining variables:

Errorimputation =
1

P |Dtest|
∑

X∈Dtest

P∑
j=p

|Xj − Vj|

19

where Vk is the predicted value on j’th coordinate from the learned model given the other
coordinates of each datapoint X as evidence. The predicted value Vj is sampled from
the learned model and this inference problem is analytically tractable with our choice of
Gaussian distribution for each component. The inference is done in the following process:

1. Evaluate the probability of each component (responsibility) p1, p2, ..., pK given the
evidence using the each component’s marginal distribution.

2. Multiply the probability of each component’s with the component’s weight.

3. Sample the component index k with the probability according the the evaluated prob-
abilities for components p1, p2, ..., pK .

4. Sample the predicted value for missing coordinate Vj from the conditional distribu-
tion of k’th component given the evidence.

4.1.2 Performance Metrics against the True Model
In synthetic experiments, we know the true model of the generated data, so we can measure the
performance by comparing the learned model to the true model. For the comparison, we use the
following metrics against the true model:
• Edge recovery accuracy.

One of the ultimate goals of our methods is to identify the pair-wise direct interaction
between the variables (amino acid residues in proteins). For each component, we measure
the accuracy in recovering edges.

Accuracy =
true positive + true negative

total possible number of edges

• Edge recovery F1 score.
When the true model has sparse precision matrices, accuracy might not be the best met-
ric for edge recovery as methods producing any fairly sparse models could achieve high
accuracy. Thus, we measure the F1 score, which is a harmonic mean of precision and
recall.

F1 score =
2× true positive

2× true positive + false positive + false negative

4.2 Synthetic Experiments
In this section, we present the results of our methods on synthetic experiments to analyze the
performances of three sparse Gaussian Mixture Models and the sparse Nonparanormal Mixture
Model introduced in the previous chapter. Specifically, the models are denoted as following:
• SBIC : sparse GMM learned with regularization parameter search with BIC
• Score: sparse GMM learned from all datapoints using coreset-approximated clusters
• Score2: sparse GMM learned from coreset subsamples using coreset-approximated clusters
• Snpn: sparse Nonparanormal Mixture Model learned from all datapoints using coreset-

approximated clusters

20

4.2.1 Generation of Synthetic Data

For generating a mixture of Gaussian distribution, we generate mean vectors and precision ma-
trices for each component, and the weights for clusters. Mean vectors are generated by sampling
from the interval [0, 5) uniformly at random for each coordinate. For precision matrices, we
generate real positive definite matrix with specified edge-density. Weights for components are
chosen from 2% to 40%. The training dataset and test dataset are generated from the true model
by choosing a component following the weights and sampling from the selected multivariate
Gaussian distribution for each datapoint.

4.2.2 Synthetic Experiments on Sparse Gaussian Mixture Models Using
Coreset Approximation

In this section, we compare SBIC , Score, and Score2 with the baseline model, which is a traditional
GMM, denoted as Mgmm.

Experiments on Synthetic Data with Varying Number of Variables

We conduct experiments on synthetic data varying the number of variables for the mixture of
Gaussian distributions, 10, 30, and 50 variables. The ground-truth models have 5 components
in the mixture and 10,000 samples are used for learning. The edge-density in each component
is 30% for all models. To measure the performance, 100 samples are used as a test dataset and
the learning is repeated 10 times to calculate the average and the 95% confidence interval. For
coreset approximation of clusters, we use δ = 0.1 with coreset sizeM = 1000 (10% of samples).

Figure 4.1: Negative Log-Likelihood of learned models using Mgmm, Sbic, Score, Score2 methods.

21

Results using log-likelihood metrics Figure 4.1 shows the negative log-likelihood usingMgmm,
SBIC , Score, Score2 methods on on the three different datasets. Overall, the negative log-likelihood
of all models increases as the number of variables increases, and this is because the number of pa-
rameters to learn increases proportionally to the square of the number of variables for covariance
matrix of each component. Models learned by Mgmm show the best likelihood of the test data.
However, the differences between Sbic and Score and the baseline method are small. The negative
log-likelihood of Sbic is 0.48% to 4.8% worse than Mgmm, and the likelihood of Score is 0.48%
to 5.3% worse than Mgmm. We note that the confidence intervals of the likelihoods of Sbic and
Score overlap those of the baseline methods for datasets with 10 and 30 variables. Score2 method
shows the worst performance with likelihood 3.2% to 26% worse than the baseline method. We
conclude that Sbic and Score are nearly equivalent to the baseline model, in terms of likelihood.

Figure 4.2: Average imputation errors of learned models usingMgmm, Sbic, Score, Score2 methods.

Results using imputation error metrics Figure 4.2 shows the average imputation error of test
set using Mgmm, Sbic, Score, Score2 methods on the three different datasets. For all experiments,
the imputation errors of Mgmm is the smallest. The difference between the baseline model and
Sbic and Score are small, and sometimes insignificant. The imputation error of Sbic is 2.2% to 6.6%
higher than Mgmm, and that of Score is 2.2% to 7.9% higher than Mgmm. Like the likelihood, The
Sbic and Score imputations are within the confidence intervals of the baseline model for the 10
and 30 variable datasets. Score2 shows the highest imputation error with 8.6% to 22% larger than
Mgmm method. Unlike the log-likelihood, there was no significant trend in the imputation error
with the increased number of variables. We conclude that Sbic and Score are nearly equivalent to
the baseline model, in terms of imputation error.

Results using edge recovery-related metrics Figure 4.3 and 4.4 show the accuracy and F1
score on edge recovery in each learned clusters using the different methods. As expected, the
sparse models show significant improvements over the baseline model, in terms of F1 score.

22

Figure 4.3: Edge recovery accuracy of learned models using Mgmm, Sbic, Score, Score2 methods.

Figure 4.4: Edge recovery F1 score of learned models using Mgmm, Sbic, Score, Score2 methods.

23

Score shows the best accuracy (85% to 90%) and F1 score (0.72 to 0.86). Sbic shows accuracy
from 79% to 87% and F1 score from 0.67 to 0.74. While the accuracy of Score2 method shows
accuracy higher than 70% for all experiments, the F1 score for 30 and 50 variable are less than
0.50. We conclude that Sbic and Score are superior to Score2 and the baseline model in terms of
edge recovery.

Figure 4.5: Recovered edges in precision matrices of learned models using Mgmm, Sbic, Score,
Score2 methods.

Recovered edges from the methods Figure 4.5 and 4.6 show the edges recovered in the mod-
els on 10 variable datasets and 30 variable datasets using Mgmm, Sbic, Score, and Score2 methods.
Mgmm model learns a fully connected for all components, and this explains the worst accuracy
and F1 score in edge recovery. Score and Score2 methods recover many edges correctly but the
learned models have sparser precision matrices than the true model.

Thresholding-based method for sparse models As the low accuracy and F1 score in edge
recovery ofMgmm model is due to the full precision matrices, one possible method to increase the
recovery performance is to threshold the absolute values of the entries in the precision matrices
learned fromMgmm model, which is treating the small entries as a noise in the parameter learning
process. Figure 4.7 shows the accuracy and F1 score in edge recovery under various threshold
values. As the smallest threshold (0.0001) gives the full non-zero precision matrices and the
largest threshold (1.0) gives the diagonal precision matrices, the accuracy changes from 0.3 to
0.7. The accuracy under all threshold values are lower than 85% of Score method. The best F1
score is achieved at threshold value 0.01, but this is still less than F1 score 0.72 by Score method.
Thus, we conclude that the sparse methods are superior to any simple thresholding-based method
to deriving sparse models.

24

Figure 4.6: Recovered edges in precision matrices of learned models using Mgmm, Sbic, Score,
Score2 methods.

Figure 4.7: Edge recovery accuracy and F1 score of thresholded precision matrices learned using
Mgmm method.

25

Runtime (sec) 10 vars 30 vars 50 vars
Mgmm 1.02 1.34 2.03
Sbic 2052 5012 18000
Score 4.65 13.40 33.38
Score2 1.51 2.98 13.37

Table 4.1: Average runtime cost in learning models using Mgmm, Sbic, Score, Score2 methods.

Results using runtime metrics Table 4.1 shows the runtime costs in learning models using the
different methods on datasets. The Sbic algorithm takes significantly larger amount of time for
learning mainly for two reasons. First, the Algorithm 1 searches for the optimal regularization
parameters by exhaustively attempting all possible combinations of parameters. So, Sbic method
takes O(lK) number of iterations where l is the number of candidates for regularization param-
eters and K is the number of components. Secondly, each iteration in the algorithm involves
solving the optimization problem in estimating Σ

(t+1)
k using graphical lasso algorithm. While

graphical lasso is an efficient algorithm for single optimization problem, but nesting it in EM-
style algorithm takes significant number of iterations for single iteration for searching regular-
ization parameters. Score method shows about 5 to 16 times of runtime cost compared to Mgmm,
and this is due to the coreset algorithm for approximating clusters and the search for the optimal
regularization parameters. As in Algorithm 4, we use heuristic method for the search which in-
volves searching smallest regularization parameter that gives diagonal precision matrices in the
column-shuffled data. As the method Sbic takes hours to several days for learning, we exclude
Sbic for further experiments and analyses. We conclude that Score is the best method among those
we considered. It has similar likelihood and imputation errors as the baseline method, but per-
forms much better in edge recovery. This improvement comes at a modest increase in runtime,
which could potentially be mitigated by a parallel implementation of the algorithm.

Experiments on Synthetic Data with Varying Number of Components

We conduct experiments on synthetic data varying the number of components in the Gaussian
mixtures, 3, 5, 10 components. The ground-truth models have 30 variables in the mixture and
10,000 samples are used for learning. The edge density in each component is 30% for all models.
For all learning methods, 100 samples are used as a test dataset and the learning is repeated 10
times to calculate average and 95% confidence interval. For coreset approximation of clusters,
we use δ = 0.1 with coreset size M = 1000 (10% of samples).

Results using log-likelihood and imputation error metrics Figure 4.8 and 4.9 show the neg-
ative log-likelihood and average imputation error of learned models using the methods on three
different test set. Generally speaking, performance degrades as the number of components in-
creases. As in the previous experiment, the log-likelihood and imputation error of Score is larger
than Mgmm for all experiments, and Score2 shows the worst performance. The log-likelihood of
Score is 3.2% to 13% worse than the baseline method, Mgmm, and Score2 is 20% to 23% worse
thanMgmm. Imputation error of Score is 1% to 6.3% worse thanMgmm, and Score2 is 20% to 23%

26

Figure 4.8: Negative log-likelihood, imputation error, and edge recovery rate of learned models
using Mgmm, Score, Score2 methods.

Figure 4.9: Average imputation errors of learned models using Mgmm, Score, Score2 methods.

27

Figure 4.10: Edge recovery accuracy in precision matrices of learned models using Mgmm, Score,
Score2 methods.

Figure 4.11: Edge recovery F1 score in precision matrices of learned models using Mgmm, Score,
Score2 methods.

28

worse than Mgmm.

Results using edge recovery-related metrics Figure 4.10 and 4.11 show the edge recovery
accuracy and F1 score of the models, and Score shows significant improvements over the Mgmm

model in both accuracy and F1 score. Score performs best on datasets with 3 components as
number of samples for each component increases as the number of components decreases un-
der fixed size of total samples. The baseline method Mgmm learns fully connected or densely
connected model (edge density > 97% in precision matrices) and this explains the low accuracy
and F1 score. Score2 shows significant improvements over Mgmm, but the F1 score in 5 and 10
component datasets do not show any improvement or even less than Mgmm. These results further
support the claim that Score is the best alternative to the baseline method, although it is perhaps
best suited to distributions with about 5 or fewer mixing components.

Experiments on Synthetic Data with Varying Number of Training Samples

We conduct experiments on synthetic data varying the size of the training set, from 5,000 to
100,000. The ground-truth models have 5 components, 30 variables in each mixture and the
edge density in each component is 30%. For all learning methods, 100 samples are used as a test
dataset and the learning is repeated 10 times to calculate average and 95% confidence interval.
For coreset approximation of clusters, we use δ = 0.1 with coreset size M = 10% of the size of
the samples.

Figure 4.12: Negative log-likelihood, imputation error, and edge recovery rate of learned models
using Mgmm, Score, Score2 methods.

Results using log-likelihood and imputation error metrics Figure 4.12 and 4.13 show the
negative log-likelihood and average imputation error of the models learned by Mgmm, Score,

29

Figure 4.13: Average imputation errors of learned models using Mgmm, Score, Score2 methods.

Score2 methods. Overall, as the size of training samples and coreset size increases, the log-
likelihood of all models improves. The log-likelihood of Score improves from 7.1% worse to
1.1% worse thanMgmm method, and Score2 improves from 26% worse to 9.2% worse thanMgmm.
The imputation errors of Mgmm are all within the confidence interval and do not show any im-
provements, but imputation errors of Score and Score2 show improvements with increase number
of samples. Score method improves from 9.8% worse to 2.6% worse than Mgmm method, and
Score2 improves from 25% worse to 11% worse than Mgmm.

Figure 4.14: Edge recovery accuracy in precision matrices of learned models using Mgmm, Score,
Score2 methods.

30

Figure 4.15: Edge recovery F1 score in precision matrices of learned models using Mgmm, Score,
Score2 methods.

Results using edge recovery-related metrics Figure 4.14 and 4.15 show the edge recovery
accuracy and F1 score of Mgmm, Score, and Score2 methods. As in the previous experiments,
the edge recovery accuracy and F1 score of Score method shows significant improvements over
Mgmm method, and both accuracy and F1 score of Score is higher than Score2 in all experiments.
As the size of the training samples increases, Score shows improvements in both accuracy (from
83% to 89%) and F1 score (from 0.67 to 0.83), but Mgmm method do not show any difference
among the experiments. Score2 shows improvements in accuracy for all sample sizes, but F1
score shows improvements only in sample size greater than 100,000. These results are consistent
with the previous results. Namely, that Score is the best alternative to Mgmm.

Experiments on Synthetic Data with Varying Edge Density in Precision Matrices

We conduct experiments on synthetic data varying the edge density in precision matrices from
10% to 50%. The ground-truth models have 30 variables in 5 components, and 10,000 samples
are used for learning. For all learning methods, 100 samples are used as a test dataset and the
learning is repeated 10 times to calculate average and 95% confidence interval. For coreset
approximation of clusters, we use δ = 0.1 with coreset size M = 1000 (10% of samples).

Results using log-likelihood and imputation error metrics Figure 4.16 and 4.17 show the
negative log-likelihood and imputation error of the models learned by Mgmm, Score, and Score2
methods. As previous experiments, the log-likelihood and imputation error of Score and Score2
are worse than Mgmm. As the edge density of the true model increases, the relative difference in
both metric gets bigger for both Score and Score2 models.

31

Figure 4.16: Negative log-likelihood, imputation error, and edge recovery rate of learned models
using Mgmm, Score, Score2 methods.

Figure 4.17: Average imputation errors of learned models using Mgmm, Score, Score2 methods.

32

Figure 4.18: Edge recovery accuracy in precision matrices of learned models using Mgmm, Score,
Score2 methods.

Figure 4.19: Edge recovery F1 score in precision matrices of learned models using Mgmm, Score,
Score2 methods.

33

Results using edge recovery-related metrics Figure 4.18 and 4.19 show the edge recovery
accuracy and F1 score of Mgmm, Score, Score2 methods. As the edge density of the true model
increases, accuracy of Score method drops from 96% to 72%, and the F1 score of Score drops
from 0.84 to 0.64. Score method shows better performance when the underlying Gaussian dis-
tribution for each component has sparser distribution and this explains the best performance in
log-likelihood and imputation error of 10% edge density model. The Score2 method shows about
the same or worse F1 score as Mgmm method in datasets with 30% and 50% edge densities. For
Mgmm method, both edge recovery accuracy and F1 score show improvements with higher den-
sity datasets, but this is because Mgmm learns almost fully connected models and the accuracy
increases along with the density of the true models. As expected, these results demonstrate that
the sparse methods are best used for distributions that are truly sparse.

Experiments on Synthetic Data with Varying Size for Coreset

We conduct experiments on synthetic data varying the size of the coreset in cluster approxima-
tion in coreset algorithm, from 100 to 700 coreset samples. The ground-truth models have 10
components in the mixture and 10,000 samples are used for learning. The edge-density in each
component is 30%. For all learning methods, 100 samples are used as a test dataset and the
learning is repeated 10 times to calculate average and 95% confidence interval. For coreset ap-
proximation of clusters, we use δ = 0.1. To further analyze the benefits of coreset sampling in
our methods, we use two more baseline methods, Sunif and Sunif2, where they sample the sub-
samples uniformly at random instead of coreset sampling algorithm. From those random sub-
samples, Sunif and Sunif2 both identify the approximated clusters, then Sunif uses all original
samples to learn a Gaussian distribution for each cluster, but Sunif2 uses only those sub-samples
to learn the Gaussian distributions.

Figure 4.20: Negative log-likelihood of learned models using Score, Sunif , Score2, and Sunif2

methods.

34

Figure 4.21: Imputation errors of learned models using Score, Sunif , Score2, and Sunif2 methods.

Results using log-likelihood and imputation error metrics Figure 4.20 and 4.21 show the
log-likelihoods and the average imputation errors of Score, Sunif , Score2, and Sunif2 methods. For
log-likelihoods and imputation errors, Score2 and Sunif2 are worse than Score and Sunif methods,
and this is due to the less size of the training data set in the learning of Gaussian distributions.
The performances of Score2 and Sunif2 increase as the size of the sub-samples increases, did not
perform better than their counterparts, Score and Sunif , when the most sub-samples are used.
The baseline method Sunif shows similar average log-likelihoods and imputation errors to Score
method, but the variance is larger than Score and the variance gets smaller as the size of the sub-
samples increases. This is due to the uniformly random sampling of original data for cluster
approximation of Sunif where the randomly chosen sub-samples can misrepresent the heavily
or lightly weighted clusters of the true distribution. For Sunif2 method, its log-likelihoods and
imputation errors are competitive or sometime better than Score2 method. While the coreset
sampling algorithm gives a better representation of the distribution of the original dataset, the
graphical lasso in Score2 does not use the weights of the coreset samples. This can explain the
competitive performance of Sunif2 method compared to Score2 method.

Results using edge recovery-related metrics Figure 4.22 and 4.23 show the edge recovery
accuracy and F1 score of Score, Sunif , Score2, and Sunif2 methods. The edge recovery accuracy
and F1 score of Score with less than or equal to 500 coreset sub-samples (5% of the original data)
shows high variance, but both metrics are stabilized with more than 1,000 subsamples (10% or
the original data). The accuracy and F1 score of Sunif method shows similar performance with
Score, but it still shows high variance with the most subsamples used (50% of the original data).
Both accuracy and F1 score of Score2 and Sunif2 are worse than Score and Sunif in all experiments
as in the log-likelihoods and the imputation errors. The accuracy of Score2 and Sunif2 show the
similar average and variance, but Score2 shows the better F1 score than Sunif2.

35

Figure 4.22: Edge recovery rate in precision matrices of learned models using Score, Sunif , Score2,
and Sunif2 methods.

Figure 4.23: Edge recovery F1 score in precision matrices of learned models using Score, Sunif ,
Score2, and Sunif2 methods.

36

Figure 4.24: Runtime cost for parameter learning using Score, Sunif , Score2, and Sunif2 methods.

Results using runtime metrics The runtime cost of the four methods is shown in 4.24. As
Score and Sunif uses the whole dataset for parameter learning, the runtime cost of the two methods
takes 3 to 6 times more than Score2 and Sunif2. As Score and Score2 uses additional coreset
algorithm for coreset sampling, it takes more runtime cost than Sunif and Sunif2. Score takes 12%
to 15% longer time than Sunif , and Score2 takes 13% to 20% longer time than Sunif2 method.

Summary These results suggest that the coreset samples have benefits that it reduces the vari-
ance of performance metrics and produces more stable results when used in the learning process,
compared to the random sub-samples. Score tends to have lower variance than Sunif in the met-
rics we considered. Score2 and Sunif2 show worse performance than Score and Sunif as Score2 and
Sunif2 use only the sub-samples for learning each Gaussian distribution, but when small portion
of the sub-samples is used, Score2 shows lower variance than Sunif2. However, These benefits of
the coreset sampling algorithm come at the cost of a modest increase in runtime. Also, Score2 has
the advantage of reducing the runtime costs in the learning process compared to Score, but as the
graphical lasso does not utilize the weights of the coreset sub-samples, the performance of Score2
does not show noticeable improvements over its counterpart, Sunif2.

4.2.3 Synthetic Experiments on Sparse Nonparanormal Mixture Models
Using Coreset Approximation

Our final experiments on synthetic data examine the impact of the use of sparse Nonparanor-
mal Mixture Model, Snpn. We compare the performance of Snpn with the traditional Gaussian
Mixture Model Mgmm and the previously proposed Score as baseline methods.

37

Experiments on Synthetic Data with Varying Number of Variables

We conduct experiments on synthetic data varying the number of variables for the mixture of
Gaussian distributions, 10, 30, and 50 variables. The ground-truth models have 5 components
in the mixture and 10,000 samples are used for learning. The edge-density in each component
is 30% for all models. To measure the performance, 100 samples are used as a test dataset and
the learning is repeated 10 times to calculate the average and the 95% confidence interval. For
coreset approximation of clusters, we use δ = 0.1 with coreset sizeM = 1000 (10% of samples).
For Winsorization parameter, we use δn = 1

4n1/4
√
π logn

with n = 10000 as suggested [26].

Figure 4.25: Negative Log-Likelihood of learned models using Mgmm, Score, Snpn methods.

Figure 4.26: Average imputation errors of learned models using Mgmm, Score, Snpn methods.

38

Results using log-likelihood and imputation error metrics Figure 4.25 and 4.26 show the
negative log-likelihood and the average imputation error of learned models using Mgmm, Score,
Snpn methods on the three different datasets. For log-likelihood, Snpn shows better performance
than Score method in all experiments, and shows better performance than Mgmm in 10 variable
dataset. For imputation errors, Snpn method shows smaller errors than Score and larger than
Mgmm for all experiments. Score method shows 2.2% to 7.9% larger imputation error thanMgmm,
and Snpn shows 1.5% to 7.2% larger than Mgmm. Thus, Snpn shows a slight improvement over
Score.

Figure 4.27: Edge recovery accuracy of learned models using Mgmm, Score, Snpn methods.

Figure 4.28: Edge recovery F1 score of learned models using Mgmm, Score, Snpn methods.

39

Results using edge recovery-related metrics Figure 4.27 and 4.28 show the accuracy and F1
score on edge recovery in each learned clusters using the different methods. For all datasets, Snpn
shows significant improvements over Mgmm in both accuracy and F1 score, but its performance
is lower than or even to Score method. While the true model is still a mixture of Gaussian
distribution, the increased representational power of Snpn achieves the better performance in
log-likelihood and imputation error, but as Mgmm still has a maximum degree of freedom in
parameters, Snpn shows lower performance than Mgmm.

4.3 Learning Sparse Mixture Models for Conformational Sub-
states of Engrailed Homeodomain

We apply our methods of learning sparse Gaussian Mixture Model and sparse Nonparanormal
Mixture Model on the simulation data of engrailed homeodomain. Homeodomain, a protein with
53 amino acids shown in 4.29, is a DNA-binding sub-structure of a larger protein that regulates
specific genes as a transcription factors of the genes, and is shared across all the analyzed species
under kingdom animalia [27]. Engrailed homeodomain is a protein of interest for Molecular
Dynamics simulation and its application in research due to its fastest folding and unfolding rate,
which is predicted and corroborated in experiments [28, 29]. The engrailed homeodomain is ex-
pected to have significant fluctuations at equilibrium and to visit many conformational substates.
The data of the Molecular Dynamics simulation is performed on ANTON, a machine specifi-
cally designed for long time-scale simulation, [8]. The simulated homeodomain has 46 amino
acids (from residue 8 to 53) and the simulation is under 350 degrees Kelvin. The total time-
scale of the simulation is for 50 microseconds with more than 500,000 frames, each of which
contains 3-dimensional coordinates of α-carbons of the protein. To eliminate the conformational
changes due to translations and rotations, all of the frames are aligned to the average positions
of α-carbons, and the displacement of each α-carbon of each frame from the averaged position
is evaluated for our studies.

4.3.1 Learning Sparse Gaussian Mixture Model for Conformational Sub-
states of Engrailed Homeodomain

We use a sparse Gaussian Mixture Model with coreset approximation (Score) for learning sub-
states of engrailed homeodomain. For baseline methods, we use the traditional GMM (Mgmm)
and a sparse GMM using cluster approximation using uniformly sampled subsamples (Sunif).
500,000 frames are used training dataset, and 1,000 frames are used as a test dataset. For coreset
approximation of clusters, we use δ = 0.1, and coreset sizeM = 50000, 10% of the total number
of samples.

Selection of the number of components using BIC score Figure 4.30 and 4.31 show the neg-
ative log-likelihood and the average imputation error of Mgmm, Score, and Sunif with the number
of components from 3 to 10. Overall, the models with more components show better likelihood
and imputation error, and this is mainly due to the increased number of parameters when more

40

Figure 4.29: Engrailed homeodomains of Drosophila melanogaster (1DU0) bound to DNA dou-
ble helix.

Figure 4.30: Negative log-likelihood of learned models using Mgmm, Score, Sunif methods on
engrailed homeodomain.

41

Figure 4.31: Average imputation error of learned models using Mgmm, Score, Sunif methods on
engrailed homeodomain.

Figure 4.32: BIC score error of learned models using Mgmm, Score, Sunif methods on engrailed
homeodomain.

42

clusters are used. As in the synthetic experiments, both of the likelihood and the imputation er-
ror of Mgmm are smaller than Score and Sunif as it learns fully connected model with the highest
degree of freedom. The performance of Score and Sunif are all within the confidence interval
for all number of components. To select the appropriate number of components to avoid over-
fitting problems, we evaluated BIC scores for each number for components in 4.32. As Mgmm

learns fully connected models, the BIC score of Mgmm decreases as the number of components
increases. For both Score and Sunif methods, the highest BIC score is achieved at 5 components.

Figure 4.33: Edges recovered using Mgmm, Score, Sunif methods on engrailed homeodomain.

Recovered edges from the methods Figure 4.33 shows edges recovered in precision matrices
in models learned using Mgmm, Score, and Sunif methods. Mgmm learns almost fully connected
model for all components, and Score and Sunif methods learn sparse models with 51.3% and
50.5% edge density, respectively.

Results using runtime metrics Figure 4.34 shows the average runtime cost in parameter learn-
ing of Mgmm, Score, Sunif methods. For models with number of components less than 5, the
runtime cost for learning Mgmm is less than or similar to Score and Sunif methods, but for 5 or
more components, the runtime cost of learning Mgmm is greater than both of the other models.
Score method takes longer time for models with more number of components. Sunif method is
fastest among the all methods for 4 or more components, and the learning time does not vary
much with the number of components.

Summary These results suggest that, on real data, Score and Sunif are essentially equivalent.
Thus, there may be no benefit of employing coreset sampling compared to random sampling.
The results on synthetic data, however, suggest that the Sunif edge recovery metrics have higher
variance than those of Score. Since the true set of edges for real data are unknown, we cannot

43

Figure 4.34: Average runtime cost of learned models using Mgmm, Score, Sunif methods on
engrailed homeodomain.

confirm this directly on the Engrailed Homeodomain data. Therefore, the choice between Sunif
and Score may, in practice, be determined by the user’s tolerance for the higher runtime costs of
Score.

4.3.2 Learning Sparse Nonparanormal Mixture Model for Conformational
Substates of Engrailed Homeodomain

Finally, we use a sparse Nonparanormal Mixture Model with coreset approximation (Snpn) for
learning substates of engrailed homeodomain. For baseline methods, we use the traditional
GMM (Mgmm) and a sparse GMM using cluster approximation (Score). 500,000 frames are
used training dataset, and 1,000 frames are used as a test dataset. For coreset approximation of
clusters, we use δ = 0.1, and coreset size M = 50000, 10% of the total number of samples.

Selection of Winsorization parameter using imputation error metrics To find the best Win-
sorization parameter δn, we evaluate the imputation error using parameter candidates, and the
result is shown in 4.35. The smallest imputation error is achieved at 0.0976, and this is larger
than the supposed Winsorization parameter (0.00146) [26]. This can be explained by that while
conformational fluctuations of a protein from equilibrium can be assumed to be Gaussian dis-
tribution, the substates are not entirely separated as in GMM; the distributions for substates can
be superposed, so the conformations in the transition between substates can be not well approxi-
mated by a mixture of Nonparanormal distribution.

Results of Snpn method Figure 4.36 and 4.37 are the negative log-likelihood and the aver-
age imputation error of test set using Mgmm, Score, and Snpn methods using 5 components and
the selected Winsorization parameter. For log-likelihood, while Score method shows 9.1% worse

44

Figure 4.35: Average imputation error of models learned using Snpn method on engrailed home-
odomain with different Winsorization parameters.

Figure 4.36: Negative log-likelihood of models learned using Mgmm, Score, Snpn method on
engrailed homeodomain.

45

Figure 4.37: Average imputation error of models learned using Mgmm, Score, Snpn method on
engrailed homeodomain.

Figure 4.38: Edges recovered using Mgmm, Score, Snpn methods on engrailed homeodomain.

46

performance thanMgmm, Snpn method shows 3.0% improvement fromMgmm and 11% improve-
ment from Score. For imputation error, Score shows 20% larger error thanMgmm, Snpn shows 17%
larger error than Mgmm and 2.9% improvement from Mgmm. The better performance of Snpn is
due to the increased representational power of Snpn from the semi-parametric model than the
original Score method. The edges recovered in precision matrices of models using the methods
are shows in 4.38, and density of models learned by Snpn method is 51.3%.

Figure 4.39: Recovered precision matrices by Snpn for 5 conformational substates with their
weight probabilities and selected patterns matched with residues of Engrailed Homeodomain
(1ENH).

Figure 4.39 shows the recovered precision matrices of conformational substates with their
weight probabilities learned by Snpn method. The last substate has the highest weight probability
(60.6%) than the other four substates, and it has the most densest precision matrix (69.5%) than
that of other four states. Some of the blocks of edges in the precision matrices are marked in the
Figure 4.39 with the corresponding amino acids residues of Engrailed Homeodomain (1ENH).
A block of edges among the residues from 13 to 24 are recovered in the second and the fifth
substates, and another block of edges from residues from 28 to 38 are recovered in the third and
the fifth substates. These blocks of edges represent the direct interactions among those residues,
and those residues are in the first and the second alpha helices of Engrailed Homeodomain. These
results suggest that the different substates are partially differentiated by the degree of intra-helical
couplings in the first and the second alpha helices.

47

Summary We find that the Snpn model is slightly better than Score on the real data. This is not
surprising, since the real data are more likely to violate the assumptions of Gaussian distributions
than the synthetic data.

48

Chapter 5

Conclusion & Future Work

Molecular Dynamics simulations are an important technique for studying the conformational dy-
namics of proteins. Recent developments in MD simulation technologies enable long timescale
simulations (up to miliseconds) which, in turn, produce massive and complex data sets. Thus,
new computational methods are needed to analyze these trajectories. In this thesis we have
developed, implemented, and tested several methods capable of producing parametric and semi-
parametric, sparse generative models from MD trajectories. Specifically, our methods learn mix-
ture models of L1 regularized GGMs or sparse nonparanormal models. Coreset sampling and
k-means clustering is used to accelerate the process of learning the models.

We have demonstrated that a mixture model consisting of sparse GGMs is competitive with a
traditional GMM, in terms of test likelihood and imputation errors for distributions of roughly 5
mixing components, or fewer. The real advantage of these models, however, lies in their ability to
identify the most relevant couplings among the variables. This produces a model that is far easier
to interpret than a traditional GMM, which produces very dense models. The runtime cost of
learning a mixture model consisting of sparse GGMs shows modest increase from the traditional
GMM in synthetic experiments, and modest improvements on the real MD data of Engrailed
Homeodomain. We have further demonstrated that on real MD data, the use of a mixture of
sparse nonparanormal distributions has benefits in terms of likelihoods and imputation errors.
This demonstrates the benefits of the increased representational power of the nonparanormal.
The primary disadvantage of the nonparanormal is the extra space complexity needed to encode
the transformation from the original problem space.

Our methods are based on the assumption that the structural fluctuations of a protein from
its equilibrium follow a multivariate Gaussian distribution. While we propose a semi-parametric
method using Nonparanormal distribution as real data might violate the assumption, fully non-
parametric graphical models can be developed [30]. This would likely increase the representa-
tional power beyond the nonparanormal distributions. Additionally, one might address the space
complexity issues of the nonparanormal distribution by subsampling the data, perhaps using the
coreset samples.

The cluster approximation based on the coreset sampling method assumes that the equilib-
rium for substates are well-separated in the problem space, and the magnitudes of the eigenvalues
of covariance matrices are in a reasonable range. However, in a problem where either assumption
fails to hold, the approximation of cluster centers and assignments of datapoints will not perform

49

very well.
In addition, our methods assume that the given data are independent and identically dis-

tributed samples, but the data generated by MD simulation are trajectories, which is a time series
of conformations. In a long enough time-scale simulation, this assumption might hold if the
simulation covers all of the possible substates and the weight for each cluster is well reflected in
the dataset, but the simulation cannot guarantee any of these conditions. One might address to
model this time-series using delay embedding (i.e., constructs a higher dimensional data matrix
with overlapping samples) [31].

Finally, the parallelized implementation of the coreset sampling algorithm and the parameter
learning of sparse GGMs would reduce the runtime especially for massive and long time-scale
trajectories. Analyzing the behaviors of our methods with such large-sized trajectories with
more components and variables than tested in this thesis is also needed to better understand the
representational power and the limitations of our methods.

Implementation
The implementation of the methods we developed is released in PyPI, and the source code is
available at https://github.com/yoojioh/gamelanpy.

Funding Acknowledgement
This work was supported by NSF Grant IIS-0905193 and NIH Grant US NIH P41 GM103712.

50

https://github.com/yoojioh/gamelanpy

Bibliography

[1] Martin Karplus and J Andrew McCammon. Molecular dynamics simulations of
biomolecules. Nature Structural & Molecular Biology, 9(9):646–652, 2002. 1, 2.2

[2] Hans Frauenfelder, Gregory A Petsko, and Demetrius Tsernoglou. Temperature-dependent
x-ray diffraction as a probe of protein structural dynamics. 1979. 1, 2.1

[3] Hans Frauenfelder, Fritz Parak, and Robert D Young. Conformational substates in proteins.
Annual review of biophysics and biophysical chemistry, 17(1):451–479, 1988. 1, 2.1

[4] James C Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid, Eliza-
beth Villa, Christophe Chipot, Robert D Skeel, Laxmikant Kale, and Klaus Schulten. Scal-
able molecular dynamics with namd. Journal of computational chemistry, 26(16):1781–
1802, 2005. 1, 2.2

[5] Kevin J Bowers, Edmond Chow, Huageng Xu, Ron O Dror, Michael P Eastwood, Brent A
Gregersen, John L Klepeis, Istvan Kolossvary, Mark A Moraes, Federico D Sacerdoti, et al.
Scalable algorithms for molecular dynamics simulations on commodity clusters. In SC
2006 Conference, Proceedings of the ACM/IEEE, pages 43–43. IEEE, 2006. 1, 2.2

[6] Vijay S Pande, Ian Baker, Jarrod Chapman, Sidney P Elmer, Siraj Khaliq, Stefan M Larson,
Young Min Rhee, Michael R Shirts, Christopher D Snow, Eric J Sorin, et al. Atomistic
protein folding simulations on the submillisecond time scale using worldwide distributed
computing. Biopolymers, 68(1):91–109, 2003. 1, 2.2

[7] John E Stone, James C Phillips, Peter L Freddolino, David J Hardy, Leonardo G Trabuco,
and Klaus Schulten. Accelerating molecular modeling applications with graphics proces-
sors. Journal of computational chemistry, 28(16):2618–2640, 2007. 1, 2.2

[8] David E Shaw, Martin M Deneroff, Ron O Dror, Jeffrey S Kuskin, Richard H Larson,
John K Salmon, Cliff Young, Brannon Batson, Kevin J Bowers, Jack C Chao, et al. Anton,
a special-purpose machine for molecular dynamics simulation. ACM SIGARCH Computer
Architecture News, 35(2):1–12, 2007. 1, 2.2, 4.3

[9] Katherine Henzler-Wildman and Dorothee Kern. Dynamic personalities of proteins. Na-
ture, 450(7172):964–972, 2007. 2.1

[10] David D Boehr, Ruth Nussinov, and Peter E Wright. The role of dynamic conformational
ensembles in biomolecular recognition. Nature chemical biology, 5(11):789–796, 2009.
2.1

[11] James S Fraser, Michael W Clarkson, Sheena C Degnan, Renske Erion, Dorothee Kern,

51

and Tom Alber. Hidden alternative structures of proline isomerase essential for catalysis.
Nature, 462(7273):669–673, 2009. 2.1

[12] Jianyin Shao, Stephen W Tanner, Nephi Thompson, and Thomas E Cheatham. Clustering
molecular dynamics trajectories: 1. characterizing the performance of different clustering
algorithms. Journal of Chemical Theory and Computation, 3(6):2312–2334, 2007. 2.3

[13] Stephan Frickenhaus, Srinivasaraghavan Kannan, and Martin Zacharias. Efficient evalua-
tion of sampling quality of molecular dynamics simulations by clustering of dihedral torsion
angles and sammon mapping. Journal of computational chemistry, 30(3):479–492, 2009.
2.3

[14] Xavier Daura, Wilfred F van Gunsteren, and Alan E Mark. Folding–unfolding thermody-
namics of a β-heptapeptide from equilibrium simulations. Proteins: structure, function,
and bioinformatics, 34(3):269–280, 1999. 2.3

[15] Arvind Ramanathan, Pratul K Agarwal, Maria Kurnikova, and Christopher J Langmead.
An online approach for mining collective behaviors from molecular dynamics simulations.
Journal of Computational Biology, 17(3):309–324, 2010. 2.3

[16] Arvind Ramanathan, Ji Oh Yoo, and Christopher J Langmead. On-the-fly identification
of conformational substates from molecular dynamics simulations. Journal of Chemical
Theory and Computation, 7(3):778–789, 2011. 2.3

[17] Narges S Razavian, Hetunandan Kamisetty, and Christopher J Langmead. Learning gener-
ative models of molecular dynamics. BMC genomics, 13(Suppl 1):S5, 2012. 2.3

[18] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and tech-
niques. MIT press, 2009. 2.4

[19] Ivet Bahar, Ali Rana Atilgan, and Burak Erman. Direct evaluation of thermal fluctuations in
proteins using a single-parameter harmonic potential. Folding and Design, 2(3):173–181,
1997. 2.6

[20] Turkan Haliloglu, Ivet Bahar, and Burak Erman. Gaussian dynamics of folded proteins.
Physical review letters, 79(16):3090, 1997. 2.6

[21] RM Levy, AR Srinivasan, WK Olson, and JA McCammon. Quasi-harmonic method for
studying very low frequency modes in proteins. Biopolymers, 23(6):1099–1112, 1984. 2.6

[22] Jeff A Bilmes et al. A gentle tutorial of the em algorithm and its application to parame-
ter estimation for gaussian mixture and hidden markov models. International Computer
Science Institute, 4(510):126, 1998. 3.1

[23] Lingyan Ruan, Ming Yuan, and Hui Zou. Regularized parameter estimation in high-
dimensional gaussian mixture models. Neural computation, 23(6):1605–1622, 2011. 3.2

[24] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estima-
tion with the graphical lasso. Biostatistics, 9(3):432–441, 2008. 3.2

[25] Dan Feldman, Matthew Faulkner, and Andreas Krause. Scalable training of mixture models
via coresets. In Advances in Neural Information Processing Systems, pages 2142–2150,
2011. 3.3, 3.3.1

52

[26] Han Liu, John Lafferty, and Larry Wasserman. The nonparanormal: Semiparametric esti-
mation of high dimensional undirected graphs. The Journal of Machine Learning Research,
10:2295–2328, 2009. 3.4, 4.2.3, 4.3.2

[27] Walter J Gehring, Markus Affolter, and Thomas Burglin. Homeodomain proteins. Annual
review of biochemistry, 63(1):487–526, 1994. 4.3

[28] Ugo Mayor, Christopher M Johnson, Valerie Daggett, and Alan R Fersht. Protein folding
and unfolding in microseconds to nanoseconds by experiment and simulation. Proceedings
of the National Academy of Sciences, 97(25):13518–13522, 2000. 4.3

[29] Ugo Mayor, J Günter Grossmann, Nicholas W Foster, Stefan MV Freund, and Alan R Fer-
sht. The denatured state of engrailed homeodomain under denaturing and native conditions.
Journal of molecular biology, 333(5):977–991, 2003. 4.3

[30] Narges Sharif Razavian. Continuous graphical models for static and dynamic distributions:
Application to structural biology. 2013. 5

[31] Emil Eirola and Amaury Lendasse. Gaussian mixture models for time series modelling,
forecasting, and interpolation. In Advances in Intelligent Data Analysis XII, pages 162–
173. Springer, 2013. 5

53

	1 Introduction
	2 Background
	2.1 Structural Dynamics of Proteins
	2.2 Molecular Dynamics Simulations
	2.3 Analysis of Molecular Dynamics Simulation Data
	2.4 Markov Random Field
	2.5 Gaussian Graphical Model
	2.6 Multivariate Gaussian Representations of Protein Dynamics

	3 Methods
	3.1 Gaussian Mixture Model
	3.2 Sparse Gaussian Mixture Model Using BIC
	3.3 Sparse Gaussian Mixture Model using Cluster Approximation with Coreset Sampling
	3.3.1 Coreset Sampling for Gaussian Mixture Model
	3.3.2 Learning Sparse Gaussian Mixture Model for Clusters Approximated by Coreset Sampling

	3.4 Sparse Nonparanormal Mixture Model using Cluster Approximation
	3.5 Summary

	4 Experiments and Results
	4.1 Performance Metrics
	4.1.1 Performance Metrics on Test Dataset
	4.1.2 Performance Metrics against the True Model

	4.2 Synthetic Experiments
	4.2.1 Generation of Synthetic Data
	4.2.2 Synthetic Experiments on Sparse Gaussian Mixture Models Using Coreset Approximation
	4.2.3 Synthetic Experiments on Sparse Nonparanormal Mixture Models Using Coreset Approximation

	4.3 Learning Sparse Mixture Models for Conformational Substates of Engrailed Homeodomain
	4.3.1 Learning Sparse Gaussian Mixture Model for Conformational Substates of Engrailed Homeodomain
	4.3.2 Learning Sparse Nonparanormal Mixture Model for Conformational Substates of Engrailed Homeodomain

	5 Conclusion & Future Work
	Bibliography

