Making Contribution-Aware P2P Systems
Robust to Collusion Attacks Using Bandwidth

Puzzles
Michael K. Reiter? Vyas Sekar
Zhenghao Zhang

Sep 23, 2008
CMU-CS-08-156

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

1Department of Computer Science, University of North CaraliChapel Hill, NC, USAr ei t er @s. unc. edu

2Computer Science Department, Carnegie Mellon UniverBitisburgh, PA, USAyyass@s. cnu. edu

3Computer Science Department, Florida State Universitiafiassee, FL, USAzzhang@s. f su. edu

We thank Hui Zhang for initial feedback and discussions @ phoject. This work was supported in part by Na-
tional Science Foundation grant number 0756998. Zhenghan@was supported in part by the Planning Grant from
Florida State University (Project #022684). The views aodotusions contained here are those of the authors and
should not be interpreted as necessarily representingffic@bpolicies or endorsements, either express or implied
of NSF, Carnegie Mellon University, Florida State Universor the U.S. Government or any of its agencies.

Keywords: Peer-to-Peer, Collusion, Ballot Stuffing, Reputationgiméves, Security

Abstract

Many peer-to-peer (P2P) content-distribution systemsardva peer based on its contribution to
the system, specifically the amount of data that this pegeséo others. However, validating that
a peer did so is, to our knowledge, an open problem; e.g., impls form of “ballot stuffing”
attack, a group of colluding attackers can earn rewardsdiynahg to have served content to one
another, when they have not. We propose a simple puzzle misch# make contribution-aware
P2P content distribution systems robust to such collugbam.construction is novel in that it both
ties solving the puzzle to possession of content and, byngquwzzle challenges simultaneously
to all parties claiming to have the same content, prevengscontent-holder from solving many
others’ puzzles. We provide two bounds (in the random oraédel) for adversaries’ ability to
defeat our puzzle scheme, one closed-form bound and oneprecise, efficiently computable,
but non-closed-form bound. We additionally evaluate owiglein the context of the Maze P2P
file-sharing architecture.

1 Introduction

Content distribution via peer-to-peer overlays is becaniirtreasingly popular; it has even been
reported that peer-to-peer file-sharing contributes nraféd volume to the Internet than any other
application [14]. Many such systems measure peer conioiband incentivize participation by
either providing the peers who contribute more with betterfgomance (e.g., by giving them
higher priority in the distribution overlay [41, 36] or prioNng priority service through server-
assisted downloads (e.g., [27, 40]), or through out-ofdbar@chanisms (e.g., discount coupons,
frequent-flier-like rewards [40]). We refer to such P2P eyst asontribution-awareP?2P systems
in that they actively measure the contribution of peers aagrd them accordingly.

Unfortunately, to our knowledge, all known mechanisms femanstrating how much data a
peer has served are vulnerable to a simple form of “balldtistyi [16, 10]. A group of colluding
attackers can report receiving service from each otherowtthctually transferring content among
themselves. In some systems, this enables these peeradk Hie system, e.g., by gaining a
powerful position in the distribution overlay and then lahimg a denial-of-service attack [41, 36].
In others, this enables these peers to get preferentiakseir to get high-quality service while
contributing only a limited amount of upload bandwidth. Battacks are not merely hypothetical,
but occur frequently in widely used P2P systems (e.g., [8143, 39, 32, 5]). Fundamentally,
what makes the problem difficult is that with today’s networkastructure, it is impossible for a
third party to verify if a specific data transfer occurredvieetn two colluding entities.

In this paper, we propose lzandwidth puzzlenechanism to make contribution-aware P2P
content distribution systems robust to such collusiorc&taMore specifically, in this mechanism,
averifier can confirm that claimed transfers of content actually aezlirFor example, in content-
streaming from a distinguished server through a tree ofspeeg., [41, 15, 13]), or in P2P systems
that incorporate a distinguished, trusted node for tragkiontent-transfer transactions (e.g., [44,
31, 40]), this distinguished node could additionally plag tole of the verifier.

There are two key insights behind our design. First, to thpeses (or “provers”) claiming to
have the file, the verifier presents puzzles for which thetewiwepends on the content of the file.
More specifically, the solution is computationally simpde & prover who has the file, but more
difficult for a prover who does not. In this respect, our pezaitsign bears relationshipspgmofs
of data possessiqge.g., [6, 22]) and similar mechanisms; we detail the sintitss and differences
of our design in Section 2. Second, the veriBanultaneouslyresents these puzzles to all peers
who currently claim to have the file, so as to make it difficolt & few peers who have the file to
quickly solve both their own puzzles and puzzles for coltabars who do not. This simultaneity
is a strategy borrowed from detectors for Sybil attacks P9j; again, we detail the similarities
and differences of our design in Section 2. The verifier chébk puzzle solutions and also notes
the time taken by the provers to report the solutions. Any pg®se solution is incorrect or whose
solution time is greater than a threshél@ a suspect for engaging in fake transactions.

Our puzzle design is relatively simple and, due to its casion using only hash functions
and pseudorandom functions, is efficient for both the veré#ied for provers who do possess the
files they claim. The security analysis of our design, howeasanore subtle than its design might
at first suggest. An analysis must account for any strategyhigh adversaries might allocate
portions of each puzzle's search space so as to optimaliyauthe timef that each has to invest

1

and, more importantly, the file bits that each possesses.rvede (in the random oracle model)
a closed-form bound on the expected number of puzzles thatextion of adversaries can solve
in 6 time (using any such strategy), as a function of the numbdrash computations that each
adversary can perform in that time and the number of file ldtheossesses. For example, this
bound implies that for a file of size, an instance of our puzzle construction ensures that all
adversaries claiming to have a file must download an averbg¥:9’ log, n) file bits in order to
solve their puzzles for this file in expectation. Moreovhrstinstance of our puzzle construction
is very efficient: It enables the verifier to construct eachzbeiina log, n pseudorandom function
computations and two hash function computations, for soomstanto > 1, and to verify each
puzzle in one comparison of hash function outputs. An hopester must invesO(n®/log, n)
time to solve this puzzle. We also provide a second, moreagfiound on the expected number
of puzzles that a collection of adversaries can soluwetime (again in the random oracle model).
While this bound is not a closed-form solution, it is effidigrcomputable and tighter, and thus
applies to smaller file sizes.

We demonstrate the benefits of our bandwidth puzzles usimglations of the Maze P2P file-
sharing system [44]. We choose Maze to guide our evaluatiotwio reasons. First, attacks of the
type that we seek to defend against here have been documenitsze [31], and so we can use
these documented attacks to inform our evaluation. Seddade is a type of P2P system that can
easily be adapted to use our bandwidth puzzles, owing ttritstare utilizing a distinguished node
to receive reports of which peers transferred files to whitleis and to reward peers accordingly.
Our evaluations demonstrate that bandwidth puzzles prexdluding attackers from benefiting
in the Maze system by either reducing the number of attadkguests satisfied by up to 95%
or by increasing the attackers’ download time by up to 2009%0Athe puzzle scheme limits the
impact of such attacks on legitimate client downloads, lmyjaling honest peers with performance
identical to the scenario when there are no attackers inytsters.

To summarize, the contributions of this paper are: (i) Thestigpment and implementation
of bandwidth puzzles (Section 4, Appendix B), a practicdkedse against a documented form
of attack on P2P systems; (ii) analyses of our bandwidth lpuzanstruction (in the random ora-
cle model) that bounds the success attainable by advessaganst it (Section 5, Appendix A);
and (iii) an evaluation of our construction using simulat®f the Maze P2P file-sharing system
(Section 6).

2 Related Work

P2P and reputation systemsP2P protocols have been widely used for file distribution rauud
timedia streaming. While P2P systems offer tremendousbit&y compared to single server
systems, they suffer from the fundamental problem of mamtpgicentives. Several works have
demonstrated the limitations of P2P protocols in the preseri selfish or malicious users and
free-riders [21, 39]. Measuring peer contributions havenbsuggested as mechanisms for mit-
igating these limitations (e.g., [41, 21]). Similarly, faxchange and proof-of-service protocols
(e.g. [30, 40]) ensure that a mutually distrusting sender raceiver can engage in a P2P trans-
action (i.e., guaranteeing that the sender receives srédand only if the receiver receives the

file). However these existing mechanisms cannot preveathksts fronfreely granting each other
credits for fake transactions. Our mechanism limits fakaegactions to ensure that attackers can-
not achieve arbitrarily high rewards. Tit-for-tat contrilon-awareness mechanisms such as those
used in BitTorrent [2] are evidently not vulnerable to theds of collusion attacks we seek to
mitigate in this paper. However, several studies (e.g, §51,28]) have pointed out the need to
look beyondpairwisemechanisms such as tit-for-tat, and in particular make aéise éor designing
moreglobal contribution-aware mechanisms. Bandwidth puzzles ses\alzasic building block
for implementing robust P2P systems with global contrifmiaware mechanisms.

Client puzzles: Client puzzles (e.g., [20, 25, 4, 19, 17, 43]) force clieotslé¢monstrate a certain
proof-of-work to a server before they can receive servidee goal of such puzzles is to throttle
the number of requests clients can issue to the server todlefgainst spam and denial-of-service
attacks. Our bandwidth puzzle scheme is an adaptation®&gproach, in order to “throttle” the
reward that a client can receive for claimed content trasstey tying puzzle solving to content
and issuing puzzle challenges simultaneously (see below).

Sybil attacks: Our adversary model involving colluding attackers claighto have contributed
more resources than they actually have is similar to th@nati a Sybil attack, which Douceur [18]
suggests can be detected using simultaneous puzzle desdlehevine et al. [29] provide a sur-
vey of known solutions to defend against Sybil attacks. €hmszles validate that each claimed
Sybil “identity” possesses a certain minimum amount of catapon resources. Bandwidth puz-
Zles instead validate that collaborators expend a certamuat of communication resources, by
leveraging the computational limits of each individuallabbrator to force the collaborators to
distribute puzzle solving and hence the file.

Proofs of data possession (PDP) and Proofs of retrievabilit(POR): Proofs of data possession
(e.g., [6, 22, 7]) and proofs of retrievability (e.g., [261,138]) enable a client to verify that a
remote store has not deleted or modified data the clientdstbexe. There are several conceptual
differences between the goals of a PDP/POR scheme and omlemcheme. First, PDP/POR
schemes only focus on the interaction between a single pemet verifier, and do not deal with
the case of colluding adversaries trying to claim crediféde transactions. Second, PDP schemes
minimize the communication interaction between the pravet the verifier, without specifically
requiring that there be an asymmetry in the computatiorrieffeey expend. However, such an
asymmetry (and the ability to tune that asymmetry) is cildfoiaour goals: the solving cost must
be sufficiently high — even with the claimed content — to preévene prover with the content
from solving puzzles for many others, and at the same timelpugeneration and verification
must be very efficient since the verifier must do these simattasly for potentially many provers.
One driving consideration in PDP/POR design is that thdieemno longer possesses the file about
which it is querying. In contrast, we allow our verifier to gess the file, since the verifier can
download it or might even be its origin (e.g., in a streamicgy&rio), and we leverage this to yield a
design that is more efficient or flexible on certain axes thanyPDP/POR designs. For example,
most PDP schemes depend on cryptographic operations ingohodular exponentiations (versus
only hash functions and pseudorandom functions in our caesd)existing POR constructions only
allow a prespecified limited number of challenges. Alsotezlds the work by Golle et al. [24]
on communication enforcing signatures and storage emigrcommitment schemes. However,

their work provides a weaker guarantee than PDPs in that rinepexpends some storage or
communication cost proportional to the message size, ldutewessarily the actual data.

3 System Model and Goals

We presume a system model consisting of a designeefier and a collection of untrustqueers
also calledorovers Any node can play the role of a verifier, provided that it chitam the list of
peers that purport to possess certain content at a poinhan &nd provided that it has access to
that content (or to a peer who has the content and that isjtuBeers transfer files between one
anothet; we are not concerned with the manner by which peers chotsesotor downloading.
We require that peers are motivated to report to the vertiefites they claim to have downloaded
from or uploaded to others, and consequently the files ttat bas. The goal of our mechanism
is to enable the verifier to verify that the claimed bandwiekipenditures to transfer those files
actually occurred.

The verifier does this by simultaneously presenting puzidethe peers claiming to have a
given file, and then recording the durations required by gaoler to report its solution. We
presume that the network latencies for transmitting puzated solutions between the verifier and
the provers are sufficiently small that they do not contetgignificantly to the puzzle solving time
recorded by the verifier. On the basis of solution correctra®l the puzzle-solving time that it
records and compares to a threshylthe verifier generates a list of suspected colluders peers
suspected of not contributing the bandwidth claimed.

The puzzles presented by the verifier should have propeawmsal of puzzle schemes: (i)
Provers should be unable to precompute puzzle solutionsseprevious puzzle solutions to gen-
erate new puzzle solutions. (ii) The verifier should incuw lcomputational costs to generate
puzzles and check puzzle solutions, and should incur lovdwatih costs to send the puzzles
and receive the solutions. (iii) The verifier should be abladjust the difficulty of the puzzle, as
appropriate.

Unlike previous puzzle constructions, however, our badtlwpuzzles must additionally en-
sure that for colluding provers to all solve their puzzleshn time 0, the file bits each receives
in doing so, on average (and possibly before receipt of tlzzlputself), is roughly proportional
to the size of the file. Were it not for tremultaneityin issuing puzzles, this would be impossible
to achieve: each challenged prover could forward its putzzke designated solving prover who
had the file, who could solve the puzzle and return it to thélehged prover. By (ii) above, both
the puzzle and the solution would be small, implying thatlthadwidth exchanged between the
challenged prover and the solving prover would be small. UBeneous puzzle challenges pre-
clude such a strategy, since the solving prover is limitethenamount of work it can do (hence,
the number of puzzles it can solve) in tirfie

The above goal comes with two caveats, however. First, withetwork monitoring support,
it is not possible for the verifier to correctly ascertain @h(if any) of multiple colluders actually

In the interest of clarity, we will focus on a file-sharing ned@nd present our discussion in terms of files. Note
that this can be easily applied to media streaming deploysri®nconsidering a contiguous sequence of data chunks
in the stream as a logical “file”.

has the file, even if it detects one or more of them as colludarsur bandwidth puzzle scheme.
For example, one prover with the file could invest its timeatvieg another prover’s puzzle, even
at the expense of solving its own. As such, the verifier detpodvers who collude, but cannot
ascertain who may or may not have the file. Second, to achievaliove goal, it is necessary
that the file not be substantially compressible. If it wehent colluding provers could exchange
the compressed version in lieu of the original file, and owal @ould not be achieved. As such,
in the remainder of this paper we treat the file as a randomi #g,in which each bit is selected
uniformly at random.

4 The Construction

We use “— " to denote assignment, and £~ X" to denote the selection of an element from set
X uniformly at random and its assignmentitoConcatenation is denoted bjy™

Security parameters: There are three security parameters that play a role in austagction.
We usex to denote the length of hash function outputs and keys todmsandom functions (see
below). A reasonable value today might be= 160. The other two security parameters are
denotedk and L, and together combine to dictate the difficulty of puzzlesswj, and the costs that
the verifier and prover incur in generating and solving peztespectively.

Hash functions: Our construction employs two hash functiortash : {0,1}* x {1,..., L} x
{0,1}* — {0, 1}* is one such hash function. While hash functions typicakgta single string as
input, it is convenient to specifyash as taking three inputs (which can obviously be encoded in an
unambiguous fashion as a string input to a one-input hasttibmsuch as SHA-1 [3]). In order to
prove security of our construction in Section 5, we mddsh as a random oracle [8]. The other
hash function we use iss : {0,1}* — {0, 1}*, though our proof does not require this to have the
properties of a random oracle; e.g., collision-resistdaag, see [37]) suffices.

Pseudorandom functions:A pseudorandom function familyf } is a family of functions param-
eterized by a secret key € {0,1}*. Informally, the family has the property that it is infedsib
to distinguish between an oracle f¢x where K < {0,1}*, and an oracle for a perfectly ran-
dom function with the same domain and range; see Goldreiah §3] for a formal definition.
Our construction uses two pseudorandom function familigg, : {1,...,L} — {0,1}*} and
{f&: {1,....k} — {1,...,n}}; we require that eacliZ be injective, and thus thdt < n.
(Recall thatn is the file size in bits.) A practical example of a pseudorandonction family is
AES [1].

Construction: In our construction, a puzzle verifier generates puzzlel witich to challenge a
collection of provers simultaneously. Generally we wilepume that the verifier generates one
puzzle per prover, though there is no obstacle to sendingipteupuzzles to each prover. Each
puzzle consists of a hash valieoutput fromhash and, intuitively, a collection ofndex-sets
I,...,I;. Each index-set is a set éfrandom file indices, i.e., uniformly random samples from
{1,...,n}, without replacement. The verifier computeas the hash of the file bits indexed by a
randomly chosen index-set, appended together in an unamisgrder. Solving the puzzle means

2Minimizing reliance on random oracles is desirable, sitney tare not a standard cryptographic assumption [12].

finding which of theL index-sets has this property and, more specifically, thegsthat hashes to
h. Note that this requires at mostcomputations ofash for a prover who possesses the file, but
could require substantially more for a prover who is missiame number of the file bits indexed
by the index-sets in the puzzle.

This construction, as described, would
be inefficient in a number of ways. First,
for the verifier to transmitl. index-sets of R .
k indices each would require computation{{}lzH 101}
proportional tokL to generate the sets andff_ {5 LL}
then communication costs proportional oz < fx, ({)
kL log, n to transmit them. To reduce thesestr < file(f7 (1)) | ...
costs, the verifier generates index-sets pseu- . file(f§2(k))
dorandomly; see Figure 1. First, it ran-j — hash(K, /, sir)
domly selects a keyx; for the family f! | 4 ans(str)

verifier prover

~

and an index’ & {1,..., L} to denote the Ky,h

index-set from which the challenge will .

bp genera;ed. Second, it generates a key for¢ e {1,...,L}

Ky f11<1 (¢) from which it generates index: Ky — f11<1 (0)

setl; = {fz,(1),.... f¢,(k)}. Note that _ str — file(f2,(1))]| ...

the verifier never needs to generate the othépeasure this - [file(fx, (K))
L— 1 index-sets, reducing its computation todurationdur if (hash(K1, 0, str) = h)
costs proportional té alone. Simply send- a — ans(str)

ing K; and h suffices to enable the prover return a

to search for/, and incurs communicatior a

costs proportional only te:. Becausef!
and f? are pseudorandom, the prover is unif (a # aVdur>0)
able to predict the index-sets better than rgn- suspecprover
dom guessing prior to receiving,. Another
way in which we reduce the communication Figure 1: One bandwidth puzzle

costs in practice is to have the prover return

ans(str) for the stringstr satisfyingh = hash(K7, ¢, str)3, rather tharstr itself. As we will see,
it is generally necessary far(and hencetr) to grow as a function of, whereas there is no such
need forx (the size ofans outputs).

5 Proof of Security

In order to prove the security of our construction, we firgiag@the properties we assume of the
primitives we use. We assume tHat\. } and{f%} are pseudorandom function families [23], and
thatans is a collision-resistant hash function [37]. These priv@si achieve their desired properties

3Including K, and/ as inputs tchash ensures that the results of one puzzle-solving procestherused in the
solving process of another puzzle, regardless of thekfjlandL.

— indistinguishability from a random function in the firstsea and collision-resistance in the
second — with all but negligible probability as a function«of As such, in the remainder of this
section, we simply assume that these properties hold, ilggewvents that occur with probability
negligible ink.
Another primitive, namehhash, is modeled as a random oracle in our proof. Modelagh
in this way enables us to quantify the security of our schesn fainction of the number dfash
computations. That is, we cap the numbgt, of hash queries that angrover can complete in
0 time, and then quantify the probability with which thever returnsa as a function ofy, ..
Moreover, modelincghash as a random oracle enables us to exploit the property in aaof pinat
one such computation provides no information about the edatipn ofhash on any other value.
Of course, the probability that an adversapiaver succeeds in returningwithin 6 time (i.e.,
after making at most;.s, queries tohash) also depends on the number of file bits it receives
before and during the puzzle-solving process. To modeléheipt of file bits in our proof, we
also find it convenient to model @over’s retrieval of file bits as calls to a random oraéile :
{1,...,n} — {0,1}. As discussed in Section 3, our construction requires tmatfite being
exchanged have sufficient empirical entropy to be incongiéss as otherwise adversaries could
“defeat” our verification by exchanging (in full) the compsed file. Consequently, we model the
file as a random string of length and track the number of file bits that an adversary retripvies
to returning a puzzle solution by the number of queries it@sab itsfile oracle.

5.1 A closed-form bound
In this section we present a closed-form bound for adversaability to solve puzzles:

Theorem 5.1. Let hash andfile be random oracles. Consider adversaries working in collabo-
ration, each permitted,.s, queries tahash, collectively permittedig;. queries tdfile, and collec-
tively challenged to solve a sftof P puzzles. For any > log,(ghash /P + L) + 2 andé > 0, the
expected number of puzzles that these adversaries cancsleetively is at most

; | s PkL/n
AP?(1 + 0)kgsie n AP P —° 1)
n(k - 1OgZ(Qhash/P + L) - 1) L (1 + 6)1+6

To see an example of Theorem 5.1 when, say, sending one pazdeh prover ang,.., = L,
consider settind = n/k for somea > 1 andk = a'log, n, which is at leaslog, (gnash / P+ L) +2
(a requirement of Theorem 5.1) far > 256. Then, by instantiating (1) with these values and
simplifying, the number of puzzles thdtadversaries can solve in expectation, out of fhe- A
that they receive, is at most

a(l+9) A L0 P + A? o logy + An 766 "
log, A n) e ne (14 0)H+o

4A function g(-) is negligibleif for any positive polynomiap(-), there is axo such thatg(x) < 1/p(x) for all
K > KQ.

for n > 256. TreatingA andgs . as constants, note that each of the three terms in this sustgoe
zero asn — oo. Moreover, in order for thel adversaries to solve theit puzzles in expectation,
we can solve for.:

S 1 log, A n -y alogyn e° Ant _Q n
(hile = al(l+49) \ A2 logy n ne " (14 0)HH9 B logy, n

Though we defer the full proof of :
Theorem 5.1 to Appendix A, we next EXPt<,;4>-
present one part of that proof, as ogr file = Func({1,...,n} —{0,1})
tighter bound in Section 5.2 buildg hash <~ Func({0,1}* x {1,..., L} x {0,1}* — {0,1}")
from it. This result is stated in terms K, <~ {0,1}"

of the experiment in Figure 2 fora /& {1,...,L}

single adversaryd. Aside fromthe | f, L ()

random oraclefile andhash, this ex- str — file(f2 (1))]]...|[file(f2 (k))
Ko Ko

periment exactly tracks theerifier's
actions in the protocol in Figure 1
In the experiment, leFunc(Dom —
Rng) denote the set of all functions

h «— hash(K, {, sir)
a < ans(str)
Q — Afile,hash(Kl’ h)

with domainDom and rangeRng. if (a = a) .
In the proofs of Theorems 5.1 retwn
return 0

and 5.2, a property of a puzzle thatin
fluences how easy it is for adversaries Figure 2: Experiment for Theorem 5.2

to solve is how “spread out” the in-

dices are that comprise its index-sets. Thus, we define #r@®pread(/, s), wherel is a multiset
(a set allowing repetition of elements) of indices fréi . . ., n} ands is an integer, to denote that
noi € {1,...,n} appears or more times ir/.

Theorem 5.2. Letfile andhash be random oracles, and let be an adversary making;. queries
to file and g.sn, queries tohash. For anys > 1 and anyk > log,(ghash + L) + 2,

1 Sfile
[Expt(A) =1 Spread(, s)] < <k:—log2(qhash -1)

where[is the multiset = |J;_, I, and I, is the setl, = {fZ,(1),..., fz,(k)} for Ky = f (£).

Proof.

P [Expt(A) = 1| Spread (/, s)] = Z P [Expt()=1|¢=10ASpread (I, s)} P [é = (| Spread (1, s)]

~

L
Z [Expt =1] { = ¢ A Spread (1, s)} (2)

h |

We now focus on bounding [Expt(A) = 1|0 =¢ASpread(], s)] from above. Letonfirm be

the event that thel performs a query tbash that returns the challenge valéie within the ¢hash
oracle queries available to it. Then,

P [Expt(.A) —1|{=¢ASpread (I, s)}
= P [Expt(A) — 1| confirm A £ = ¢ A Spread (I, s)] P [confirm | ¢ = ¢ A Spread (I, s)} +
P [Expt(A) = 1| —confirm A £ = ¢ A Spread (I, s)} P [ﬂconfirm | ¢ = ¢ A Spread (I, 31@8)

Let y, be a random variable denoting the number of queries of the fash(K, ¢,) that A
makes in an execution. Let, be a binary random variable such that = 1if ¢« € I, and A
queriesfile(i), andwy; = 0 otherwise. Leto, = > | wy;. We now take

P [Expt(A) — 1| confirm A £ = ¢ A Spread (I, s)- < 1 4)
P [confirm | ¢ =0 A Spread (I, s) < 2ky_éwé (5)

P [Expt(.A) — 1| =confirm A £ = ¢ A Spread (I, s) < m (6)
P [ﬂconfirm | 0 = A Spread (I, s) < % (7)

(5) and (7) follow fromA queryinghash(K7, ¢, str) for only y, valuesstr of the2*~*¢ such possi-
ble values for thé — w; bits it did not retrieve frondile. In the event-confirm, the probability that
A producesi is simply that with which it guesses correctly from the renirag 2+ — 1, values
and submits thistr to ans, leading to (6). Plugging these into (3), we get

P Expt(A)zl|é=€/\5pread([,s)] < min{yz——i_1 1}

2k—w[’

and then plugging this into (2), we get

L L
1 . Jye+1 1 Z . we ok
p [EXpt(.A) =1 | Spread (I, S)] S E E min {W,]_} = ﬁ £ min {(yg +]_)2 l, 2 }

{=1
(8)
Consequently, we now focus on bounding
L
> " min {y;2, 2"} 9)
/=1
from above where;, = y, + 1, subject to the constraints
L L
Z Yy < qhash + L (10) Z W < SGfile (11)
(=1 (=1

where (10) follows fromZZL:1 Yo < Qnash- 10 dO SO, we first note that for any fixed, ..., w;, a
choice ofy;, ..., y; that maximizes (9) is one that maximizggor the largest values,. That is,

if we orderwy, ..., wz, in nonincreasing order, then settipg= 2"~ for { = 1,2, ..., m where
m m+1

Z 2k_w£ S Ghash + L < Z 2k—wg (12)
(=1 /=1

and setting/),, .1 = qnash + L — >_,, 2"7*¢ maximizes (9), and the maximum value for (9) is then

Z min {yz2“’l 2'“} (m+1)2 (13)

Consequently, to obtain bounds on the maximum value of (9& fgivengs. andgyash, it suf-
fices to findw,, . .., w;, so as to maximize: subject to (11) and (12). For any fixed »_," 27
is minimized by settingu, = [sgne/m]| for 1 < ¢ < (sgme mod m) andw, = |sgse/m| for
(sgsie mod m) + 1 < ¢ < m. As such, the maximum value of is

arg min
m>0

Ghash + L — m2k~(same/m) if m | sqrie
Ghash + L — (2m — (sgse mod m))2F~[sae/m1 otherwise

If the maximum suchn divides sgse, thenm2k=Gaie/m) < ¢ o + L impliesm < sgge/(k —
log,(ghash + L)), and otherwisen < sgsie/(k — logy(gnash + L) — 1). Combining this with (13),
we get that

w Sqfile E
min {y,2%¢, 2"} < (m +1)2% < (+1)2
Z {ye } k —10gy(Ghash + L) — 1

and so the result follows by combining this with (8). O

5.2 Atighter, computable bound

We now provide an efficiently computable (albeit non-clegmun) bound that can be used in
place of that in Theorem 5.1. We first revisit the proof of Tieeo 5.2 to get a bound for
P [Expt(A) = 1]. First, note that (4)—(8) do not depend Bpread (/, s), and thus we can re-
state (8) as:

L
1 : w k
P[Expt(A) = 1] < ﬁ;mln{(y5+ 1)2v¢, 2%} (14)
Now, define a binary variablé that takes the value 1 il makes a query to thiée for index

1 and 0 otherwise. Also, let; denote the number of times indéappears in. As in the proof of
Theorem 5.2, we focus on bounding (9) from above, subjecttetm:onstraints

L
D Ui < thash + L (15) Z we = Z (16)
(=1

=1

10

The only difference between the analysis here and the asalfy$heorem 5.2 is between (11)
and (16). Specifically, we cou@f:1 w, exactly in terms ob; andd; instead of using the (loose)
upper boundg;... The rest of the analysis follows identically except thatreyglace the termgs.
with >~ | 0;d;. With this, we now have

1 TLOZ‘CZZ'
P [Expt(A4) = 1] < = 2 1 17
Expt(4)]_L<k—log2(qhash+L)—1+) (a7)

We can now extend the result in (17) to

the scenario of Theorem 5.1, whefeadver- os

%Analytlcal (Theorem 5.1)
saries are working in collaboration, each pek o.s ~- LP-based (Section 5.2) |
mitted gn.sn Queries tohash, collectively per- € o,
mitted Agsqe queries tofile, and collectively :0357]
challenged to solve a s@t of P puzzles. As £ oijwk///”k/%é
in the proof of Theorem 5.1 (see Appendix A)g 025! |
index the adversaries by, A and the puz-
zles byl,..., P. Let S be a binary random
variable such that“? = 1 if adversarya pro-
duces the solution for puzzle andS* = 0
otherwise. Lettings = Y., 320 S, we
want to bounck [S] from above.

Now, define a binary variablé,; that takes
the value 1 if adversary makes a query to the
file for index: and O otherwise. Also, let,; denote the number of times indéappears in puzzle
p. Letg?, denote the number of queries of the fohash (K7, *, x) made by adversary, and let
qf,. denote the number of queries by adversaty file. Under the constraints

A =5, dfile/n = 0.001

o
[N}
T

Fraction of puzzle
I r—'
= al

°

=)

a
T

(=]

s s s s
2 4 6 8 10
File size (n) in bits x 10"

o

Figure 3: Example for bounds of Section 5

P

q%e:de’forlgagA qufshSQhashforlgaiA
i=1 A p=1
(18) D dfie < Agae (19) (20)
a=1
we now seek to bound

i i E [Sap Z Z (Z‘ Opzdaz) < 1 (Z— Opidm- + 1)
10g2 qhash + L -1 1 L 10g2 Ghash L) -1

a=1 p=1 a=1 p=1 a=1 p=
(21)

The second equality just applies (17) to each puzzle-adweiombination, and the inequality
follows since we are only decreasing the denominator bygugin, instead ofg, >, .

Now, consider the optimization problem defined by the olpjediunction (21) subject to the
constraints (18)—(20). For any fixe#d, this optimization problem is an integer linear program
with binary variables/,;. While it is hard to solve such large integer linear programetaxing
the integer constraints on the variables (and bounding tdme fractional variables in the range
[0, 1]) can only increase the optimum value and renders the proéfiéciently solvable. Thus, by
solving this linear program we get an upper bound on the dégdetumber of puzzles solved.

11

An example of the benefit of this approach to bounding the egoenumber of puzzles that
A adversaries can together solve, versus the closed-formdoaffered in Theorem 5.1, is shown
in Figure 3. This figure plots the bound of Theorem 5.1 and thend computed via the method
detailed in this section, for parameter settings- 1.5, k = alogyn, L = n*/log, n, ¢fe/n =
0.001, gnash = L, andA = P = 5. As we can see, the bound in this section achieves roughly a
factor of 4-5 improvement over the bound of Theorem 5.1 feséchoices of parameters.

6 Benefits in a P2P File-Sharing System

We evaluate the practical system impact of the bandwidtlzlpuzcheme in the context of the
Maze [44, 31] P2P file sharing system. Our choice of Maze wativated by two factors. First,
the Maze system uses a centralized authority for auditiry pentributions. This is a natural
choice to serve as the verifier in charge of issuing and vegfpuzzles. Second, the Maze system
incentivizes peers to upload content based on a “pointgenyshat we describe briefly below.
Such incentive mechanisms are important for the viability2P systems to encourage uploaders.
However, a subsequent measurement study demonstratecaamige of collusion attacks [31].
Our goal is to minimize the impact of collusion in such sysseming bandwidth puzzles.

Maze system modelThe Maze system has a centralized server to which every pdezreticates
and actively reports the set of files it possesses. In aaditigoroviding query and search func-
tions, the server maintains a “points system”. Peers coaquomts while downloading files and
earn points while uploading files. Uploads add more poiras tthownloads consume: each peer
earns 1.5 points for every 1MB of content uploaded, but coresuless than 1 point per MB of
download. (The actual number of points consumed is a funcifdile size, but in our evaluation
we use a simplified model assuming a fixed consumption ratepoirit per MB). New users are
bootstrapped with a prespecified number of points allowomesinitial “free” downloads before
they can contribute. The system incentivizes peers to dptoatent by prioritizing download re-
guests based on the number of points the requesting peentyrhas. (Specifically, requests are
queued with priorityrgsttime — 3 log p, wherep is the current number of points the requester has.)
In addition, the system rate limits the upload rate to peéils vss tharb12 points.

Adding bandwidth puzzles to Maze: In the traditional Maze system, upon receiving a report of
a completed file exchange, the server subtracts points fnendd@wnloader and credits points to
the uploader. With a system augmented with bandwidth pazhlendling transactions is slightly
different. The server debits points from the downloadecsocant as before. However, it does
not immediately credit the uploader for the transactiorstdad, it records pending transaction
identified by the 4-tuple{uploader, downloader, filename, credits).

The server sends puzzle challenges, in the role of the werifiee refer to the time between
puzzle challenges aspaizzle epochand assume that the duration of a puzzle epoch is signifjcant
larger than the per-puzzle timeofit At the start of each puzzle epoch, for each file for which
an exchange was reported during the previous puzzle epbelserver retrieves the set of all
peers that currently claim to have the file and generatedgmifizr these clients. One subtle issue
here is in setting the puzzle timeout for each client: sonments might receive multiple puzzles
during a single puzzle epoch since they might claim to passesre than one file. Thus, the

12

timeout for a puzzle should depend on the total number oflpazent to that client in this epoch.
Specifically, for clientz, thep-th puzzle is issued with threshaold = (p — 1) x 6, whered is the
per-puzzle duration threshold. (We assume that legitirolggats prioritize their received puzzles
based on the timeout indicated in the puzzle descriptor.)ré@miving a response for a puzzle
sent tox for file filename, the server verifies if the answer is correct and if the resparame
within the puzzle-specific timeout. If so, the servatidatesall pending transactions of the form
(uploader = x, x, filename, credits = %), thereby crediting the uploaders in these transactions
with the corresponding credits.

Attack Model: We specify attacks by eollusion graph A collusion graph is a directed graph,
where each vertex is a malicious peer (either an actual af 8gthe). An edger — y represents
anfake uploaderelationship wherein pearreports “fake” transactions to the server on behalf of
peery. In other wordsy requests the server to cregifor uploading a file, even thoughdoes not
actually spend any bandwidth for the transfer. In our moel@th suchr will periodically report
fake transactions to the server in addition to its actuglitfleate) transactions.

The notion of a collusion graph is general enough to captiffereint collusion patterns. For
example, in the Maze measurement study [31], the authorgHatdnost collusion patterns com-
prise two or three mutually colluding nodes. This is repnéseé as a directedique Other forms
of observed collusion patterns incluskar topologies (similar to a Sybil attack). Instartopology,
the only role of the Sybil identities is to grant points toithmaster node and they do not generate
any real file requests. In our evaluation, we focus on twosygfgraphscliquesandstars
Simulation Framework: We implemented an event-driven simulator (three thousaed bf C++
code) to model file exchanges, transaction reports, andguballenges. We make some simpli-
fying assumptions to make our simulation framework scalapld tractable. In particular, we do
not model network congestion effects, and instead assuatehta only bandwidth bottleneck is
the upstream bandwidth bottleneck of the peers [9]. Alsoassume that all files are split into
1MB chunks, and that all file exchanges and transaction tefp@ppen at the granularity (or an
integral multiple) of this chunk size. To simplify the regtigueue dynamics, each peer queues
file transfer requests based on the downloader’s pointadubie same prioritization as in Maze)
and serves one at a time, without preemption.

Our simulation framework differs from the actual Maze syste a few ways. First, we assume
that peers request files only via the server whereas in thee idggtem, peers can also “browse”
and request their “friends™ files. This assumption doesim@act our results; it merely represents
an alternative file request pattern. Second, the Maze sya$somes a single uploader for each
file exchange. In contrast, we assume that files are splitdhtmks (similar to BitTorrent) and
each peer can request different chunks of the same file froltipheuavailable uploaders. Again,
this has no impact on the strength of the collusion attaécksesve assume that the attackers’ fake
transactions deviate from this assumption (fake transasttredit a single colluding partner with
the entire upload). Third, Maze serves requests from pgergisfree-riders” (clients with scores
lower than a prespecified threshold) with lower upstreandidith compared to other requests.
We do not model this, to avoid undesirable effects arisiogifthe fact that each peer uploads to
one peer at a time. Instead, we evaluate two configuratiamsirowhich peers allow free-riders
(but give their requests very low priority), and another imieh peers deny service to free-riders.

13

18000 ! ! ! ! 9000

I Allow, NoPuzzle
[Allow, WithPuzzle
[CIDeny, NoPuzzle ||
[__IDeny, WithPuzzle

16000

e
-
B
1<)
Q
=]

120001

10000

8000

6000+ @ 30001

40001

Number of requests satisfied

I Allow, NoPuzzle
I Allow, WithPuzzle || 1000F
[Deny, NoPuzzle
[__peny, WithPuzzle

(a) Legitimate clients (b) Attackers
Figure 4: Number of requests satisfied. Each bar represastefdour Maze configurations. We
can either “Allow” or “Deny” free-riders and can choose toglement/not implement bandwidth
puzzles. Each cluster represents a specific attack cortigiura

20001

1 = 1
Clique 100,10 Clique 200,20 Star 1000,19

Each of our simulations runs fdi® units of simulation time where each unit of simulation
time corresponds to 100ms of real time. There are 100 filesedhaith file request popularity
following a Zipf distribution. The simulation consists o®Q0 legitimate clients. Each legitimate
client chooses an arrival time uniformly at randoni(inl0°] and has an average lifetimef, 000
units. Each client is bootstrapped on arrival with an ihisiet of files. Attackers arrive at time
20, 000 and persist until the end of the simulation. For each resdtrepeat the simulation over 5
random initial seeds and present the averages across thiplenuins.

To model attackers’ responses to puzzle challenges, wenashiat a puzzle sentto a peer who
does not have the file (or a fake peer) is solved with a fixedaisiity 0.1. We specify attacks
by a graph, e.g., Clique(100,10) denotes that there aretifkars organized in colluding cliques
each of size 10. Similarly, Star(1000,19) implies that¢heme 1000 attackers in total, organized in
50 star graphs each with 19 leaf nodes representing the $gkwl) identities. In our experiments,
we evaluate three attack scenarios: Clique(100,10), €(2f20,20), and Star(1000,19). We focus
on collusions of moderate size since the Maze measuremaiyt 1] found that most collusion
patterns involved a small number of attackers.

Results: We focus on two metrics in our simulations: number of requisatisfied and the average
request completion time. In each case, we measure the nfmthoth legitimate clients and for
attackers. Attackers impact the performance of legitinghémts in two ways. First, each attacker
request served decreases the total bandwidth availabégitiniate client requests. Second, at-
tackers can get better, faster service by boosting themtpaiia fake transactions. This means
that requests from legitimate clients may end up with lowgorfgy. The goal of the bandwidth
puzzle scheme in the context of Maze is to ensure that attedkenot degrade the performance of
legitimate clients and attackers do not receive undue ddgarfrom fake transactions.

Figure 4(a) shows the number of legitimate clients’ requesttisfied. Bandwidth puzzles
boost the performance by 11-70%. The benefit is slightlyebethen free-rider requests are not
serviced. Also, across Clique(100,10) and Clique(200,29the number of attackers increases,

SAdditionally, in some content-distribution systems (etgee-based streaming), there are bounds on the number
of peers that any peer can interact with, thus inherentlititignthe size of collusion attacks that can be launched.

14

4500

I Allow NoPuzzle
[Allow, WithPuzzle
[Deny, NoPuzzle |]
[__IDeny, WithPuzzle

[T Deny, NoPuzzl

uzzle 40001
[_IDeny, WithPuzzle

@

=3

S
w
a
=3
=]

30001

o
=3
S

25001

@ 2000F

w
=3
=}

15001

Average file download time
§
Average file download time

N
=3
=]

10001

[
5]
=]

500

o

0 ! ! ! 0
No Attack Clique 100,10 Clique 200,20 Star 1000,19 Clique 100,10 Clique 200,20 Star 1000,19

(a) Legitimate clients (b) Attackers
Figure 5: Mean file download time

the benefit provided by the puzzle mechanism increases digo-fin Figure 4(b) we see that
bandwidth puzzles decrease the total number of attacleggests satisfied by 50-75% in the case
when free-riders are allowed, and by 60-95% when free-rieignests are deniéd.

Figures 5(a) and 5(b) show the average completion time tptiteate and attacker requests.
Bandwidth puzzles improve the mean download time of legiterclient requests by 12-50%. Fig-
ure 5(b) shows that in the allow free-rider configuratiore thean download time for attacker
requests increases by 60-200%. Surprisingly, for some fiteayrider configurations, the average
attacker completion time is lower when bandwidth puzzleswsed. This anomaly can be ex-
plained by referring back to Figure 4(b) and the Maze systesigth. Recall that in Maze, each
peer is given some initial credits that it can use to downfdesd. In the case of the deny free-rider
configuration (with bandwidth puzzles), the only attackegjuests satisfied correspond to these
initial free downloads. Since attackers have credits initially, thesgiests see smaller queueing
delays.

For reference, we also show the results when there are rakatsain Figures 4(a) and 5(a).
When bandwidth puzzles are used, the number of legitimartalequests satisfied and the mean
download time with and without the attack are almost idextid his shows that attackers have
little or no impact on the performance of legitimate clieints. system with bandwidth puzzles.

7 Discussion

Choosingd: In a real-world deployment, provers may have heterogeneongputational capa-
bilities. Thus,f should be set such that the slowest machine can solve bathdpudzle within

0 time. However, choosing too largefgor alternatively a determined adversary running a large
server farm for solving puzzles) opens the possibility tdvwaing one adversary on a fast machine
to solve multiple puzzles. This is not a specific limitatidnooir bandwidth puzzle scheme; this
is a broader limitation of client puzzle schemes. Puzzlesas are most effective when attack-
ers have difficulty in gaining access to vast computing resgsiand when the disparity between

6]t may appear anomalous that Star(1000,19) has fewer attaefjuests satisfied even though the total number of
attackers is greater. However, recall that the Star(1@)@&ftack has only 50 active nodes generating file requests.
The fake identities are passive peers and do not generatequgsts.

15

verifiers is not too large. Memory-bound puzzles [4, 19, 1f] belp mitigate moderate levels of
heterogeneity. We plan to explore if our bandwidth puzzheeste can be extended to possess such
properties.

Ease of deployment:Our experience with extending a Maze-like system to incafaobandwidth
puzzles (Section 6) required only a few hundred lines oftaatthl code to the server and client im-
plementations. This suggests that the overhead to moditgs)s that have a distinguished trusted
node and have access to the content (e.g., [41, 15, 13, 440Blis minimal. For scenarios in
which it is not feasible to have a central authority, we ptaaxplore more distributed architectures
(e.g., [35, 42]) in future work.

8 Conclusions

Peer-to-peer systems have long been plagued by the prolbleralicious or selfish adversaries
exploiting weaknesses in the underlying incentive andtamn mechanisms. In particular, it has
been observed that a group of colluding adversaries careimmgait a “ballot stuffing” attack (i.e.,
by reporting having received service from one another witlspending any actual resources) to
enhance their reputations to get preferential service.

Our work provides a simple, yet powerful primitive to thwauich collusion attacks in P2P sys-
tems. Itis based on the key insight of simultaneously chgllgg the adversaries withandwidth
puzzleso demonstrate that the purported data transfers actwalkyflace. We provide a security
analysis of our scheme in the random oracle model (both &adtésm and a tighter, non-closed-
form bound). We also demonstrate the practical impact ofschieme in the context of a P2P
file-sharing system via simulation experiments. Our expents demonstrate that the bandwidth
puzzles prevent colluding attackers from gaining undueathge via ballot stuffing attacks and
from impacting the performance of honest peers.

References

[1] Advanced encryption standard. http://csrc.nist.gov/publications/fips/fipsl97/
fips-197. pdf.

[2] Bittorrent.htt p://ww. bittorrent.com
[3] Secure hash standardt t p: //ww. i tl . nist.gov/fipspubs/fipl80-1.htm

[4] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Modehateard, memory-bound function®a\CM Trans-
actions on Internet Technology:299-327, 2005.

[5] E. Adar and B. A. Huberman. Free riding on Gnutelidrst Monday 5, 2000.

[6] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissre Peterson, and D. Song. Provable data possession
at untrusted stores. Froc. of ACM CCS2007.

[7] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik.agble and Efficient Provable Data Possession. IACR
eArchive 2008/114 at http://eprint.iacr.org/2008/114,2008.

[8] M. Bellare and P. Rogaway. Random oracles are practibgbaradigm for designing efficient protocols. In
Proceedings of the 1st ACM Conference on Computer and Coinatioms Securitypages 62—73, Nov. 1993.

16

[9] A. Bharambe, C. Herley, and V. Padmanabhan. Analyzirdyienproving a BitTorrent network’s performance
mechanisms. IProceedings of IEEE INFOCOMO006.

[10] R. Bhattacharjee and A. Goel. Avoiding Ballot StuffirgéBay-like Reputation Systems. Rroc. of ACM
SIGCOMM P2P-ECON2005.

[11] K. Bowers, A. Juels, and A. Oprea. Proofs of RetrievigbilTheory and Implementation. IACR eArchive
2008/175 at http://eprint.iacr.org/2008/175.pdf, 2008.

[12] R. Canetti, O. Goldreich, and S. Halevi. The random leratethodology, revisited. IRroceedings of the 30th
ACM Symposium on Theory of Computipgges 209-218, May 1998.

[13] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A.Wsiron, and A. Singh. SplitStream: High-bandwidth
multicast in a cooperative environment.Rroc. of ACM SOSF2003.

[14] K. Cho, K. Fukuda, and H. Esaki. The impact and implicas of the growth in residential user-to-user traffic.
In Proc. ACM SIGCOMM2006.

[15] Y. Chu, S. Rao, and H. Zhang. A case for end system masttidaProc. of ACM SIGMETRICS000.

[16] C. Dellarocas. Immunizing online reputation repogtsystems against unfair ratings and discriminatory behav-
ior. In Proceedings of the ACM Conference on Electronic Comme@eo0.

[17] S. Doshi, F. Monrose, and A. Rubin. Efficient memory boguzzles using pattern databasesPtaceedings
of the International Conference on Applied Cryptographg &letwork Security2006.

[18] J. Douceur. The Sybil attack. FProceedings of the 1st International Workshop on PeerderfSystemdMar.
2002.

[19] C. Dwork, A. Goldberg, and M. Naor. On memory-bound ftioas for fighting spam. IrProceedings of
CRYPTO 2003Aug. 2003.

[20] C. Dwork and M. Naor. Pricing via processing, or, contingtjunk mail. InAdvances in Cryptology — CRYPTO
'92 (Lecture Notes in Computer Science 748)ges 139-147, 1993.

[21] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust htise Techniques for Peer-to-Peer NetworksPhoc.
of ACM E-Commerce Conferen@904.

[22] D. L. G. Filho and P. S. L. M. Barreto. Demonstrating dptsssession and uncheatable data transfer. IACR
eArchive 2006/150 att t p: / / epri nt. i acr. or g/ 2006/ 150. pdf, 2006.

[23] O. Goldreich, S. Goldwasser, and S. Micali. How to camgtrandom functionslournal of the ACM33(4):792—
807, 1984.

[24] P. Golle, S. Jarecki, and I. Mironov. Cryptographiapitives enforcing communication and storage complexity.
In Proc. of Financial Cryptography2002.

[25] A. Juels and J. Brainard. Client puzzles: A cryptogiaptefense against connection depletion attacks. In
Proceedings of the 6th ISOC Network and Distributed Systrur@y Symposiupkeb. 1999.

[26] A.Juelsand B. S. K. Jr. PORSs: Proofs of retrievabildylarge files. InProceedings of the 14th ACM Conference
on Computer and Communications Secyr@gt. 2007.

[27] K. Kong and D. Ghosal. Mitigating server-side congastin the Internet through pseudoserviiBEE Trans-
actions on Networking7(4):530-545, Aug. 1999.

[28] K. Lai, M. Feldman, I. Stoica, and J. Chuang. Incentifggscooperation in peer-to-peer networks.Rroc. of
Workshop on Economics of Peer-to-Peer Syst@dg4.

[29] B. N. Levine, C. Shields, and N. B. Margolin. A survey aflgtions to the sybil attack. Technical Report
2006-052, University of Massachusetts Amherst, Oct. 2006.

17

[30] J.Liand X. Kang. Proof of service in a hybrid P2P envirant. InProc. of ISPA Workshop2005.

[31] Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li. Aempirical study of collusion behavior in the
Maze P2P file-sharing system. Broceedings of the 2007 International Conference on Disted Computting
SystemsJune 2007.

[32] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. ExplogiBitTorrent for fun (but not profit). IfProceedings
of the Fifth International Workshop on Peer-to-Peer Systérab. 2006.

[33] M. Mitzenmacher and E. UpfaRrobability and Computing: Randomized Algorithms and Rimibstic Analysis
Cambridge University Press, 2005.

[34] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, addVenkataramani. Do incentives build robustness in
BitTorrent? InProceedings of the 4th USENIX Symposium on Networked SyBlesign and Implementatipn
Apr. 2007.

[35] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderso@ne hop reputations for peer to peer file sharing
workloads. InProceedings of the 5th USENIX Symposium on Networked SyBtesign and Implementatipn
Apr. 2008.

[36] D. Purandare and R. Guha. BEAM: An Efficient FramewonkNtedia Streaming. IProc. of IEEE LCN 2006.

[37] P. Rogaway and T. Shrimpton. Cryptographic hash-fiondbasics: Definitions, implications, and separations
for preimage resistance, second-preimage resistancepdisibn-resistance. Ikast Software Encryption, 11th
International Workshop, FSE 2004 (Lecture Notes in Compsitéence 3017)pages 371-388, 2004.

[38] H. Shacham and B. Waters. Compact Proofs of Retrieabil IACR eArchive 2008/073 at
http://eprint.iacr.org/2008/073.pdf, 2008.

[39] M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Freangdn BitTorrent networks with the large view exploit.
In Proc. of IPTP$2007.

[40] M. Sirivianos, J. H. Park, X. Yang, and S. Jarecki. Ddimhe Cooperative Content Distribution with Robust
Incentives. InProc. of USENIX ATC2007.

[41] Y. Sung, M. Bishop, and S. Rao. Enabling Contributionaf®ness in an Overlay Broadcasting SystenPrc.
ACM SIGCOMM 2006.

[42] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARN secure economic framework for P2P resource
sharing. InP2P Econ 2003.

[43] X.Wang and M. K. Reiter. Defending against denial-efygce attacks with puzzle auctions. Pnoceedings of
the 2003 IEEE Symposium on Security and Privadgy 2003.

[44] M. Yang, H. Chen, B. Y. Zhao, Y. Dai, and Z. Zhang. Deplamof a Large-scale Peer-to-Peer Social Network.
In Proc. of WORLDS2004.

[45] M.Yang, Z.Zhang, X. Li, and Y. Dai. An Empirical Study Bfee-Riding Behavior in the Maze P2P File-Sharing
System. InProc. of IPTPS$S2005.

A Proof of Theorem 5.1

Consider a seP of P puzzles [P| = P), and let puzzle, 1 < p < P, be denoted byK?”, h?).
Define setd? = {ff(g(l), : ..,ff(g(k:)} for K = f}(f(ﬁ); multisets/? = (Ji_, I?; and multiset

17 = J,, I". Recalling the definition oBpread(I”, s) from Section 5.1, we have:

18

Lemma A.1. For any setP of P puzzles and any > 0,

66 PkL/n
< -
=" ((1 - 5>1+5)

Proof. Letb}, = 1if i € I} andby, = 0 otherwise. So, the number of occurrencgsf i in 17 is
P L
Ci =D e Dar Uy THEN,

P [—Spread (IP, (1+ 5)@)

n

L
(=

- EP:XL:E[UZ,J = XP:ZP[I)ZZ,— ii% _ PkL

p=1 /=1 p=1 1 p=1 /=1

Now, using Chernoff bounds (e.g., see [33, Theorem 4.4]),

Ple, > (14+0)E[¢]] < ((1%;)1%)&%} _ ((17:37;)1%;)13’%/71

and so

P [-Spread (17, (1 + 6)E[c])]

n

n o PkL/n
- P \/(ciz(1+5)E[cz-])] < D Pl > (1+0)E[]] < "<W>

i=1 i=1
[

The significance of Lemma A.1 is that it limits the number aler-sets for which a file bit
obtained by an adversary can be useful. That is, any indexdversary queries die is contained
in only fewer than(1 + §) =~ PrL jndex-sets, with probability specified in Lemma A.1.

Proof of Theorem 5.1Index the adversaries by . . ., A and the puzzles by, ..., P. Let S°? be
a binary random variable such th&f?” = 1 if adversarya produces the solution for puzzte and
S = (otherwise. Lettings = >/ 25:1 S, we want to bound [S] from above. For any

§ > 0ands = (1 +§)LEL,
E[S] = E[S|Spread(I”,s)] P [Spread(I”,s)] + E [S | =Spread(I”,s)| P [~Spread(I”, s)]

o PkL/n
< E[S|Spread(I”,s)] + Pn (W) (22)

The second term is obtained by taking

o5 PkL/n
E[S | ~Spread(I”,5)] <P and P [~Spread(I”,)] < ”((1—+5>1+6)

with the latter resulting from Lemma A.1.

19

Let ¢.2,, denote the number of queries of the foliash(K7, *, *) made by adversarny, and let
¢f,. denote the number of queries by adversaty file. Under the constraints

A P
> g < Agge > g, < grsforl<a<A
a=1 p=1
we now seek to bound
A P
E[S|Spread(I”,s)] = ZZ P[S® =1 Spread(I”,s)]
a=1 p=1
A P sqt
S file 1) (23)
; ; (— 108y (Ghasy + L) — 1

A P
1 AP
< E Sqmez ke — 10g2 Qhash + L) N 1> " L ()

where (23) follows from Theorem 5.2 and the fact tBgtead (17, s) = Spread(/?, s). In order to
bound this, we first focus on

25
Zk log, qhash+L)—1 (25)

Using the technique of LaGrangian multipliers, define

P P
1
A(qﬁlh’”"qﬁph’A): z : a +)\ qafs — Ghash
as as o k— 10g2(Qh§sh + L) —1 ;:1: hash as

Since settingA/dgp>, =0 yields an identical constraint for eath< p < P, the summation (25)
is maximized whem™”, = ¢, foranyl < p,p’ < P, i.e.,q"’,, = qnasn/P for eachl < p < P.
So, the maximum value of (25) B/(k — log,(ghash/ P + L) — 1) and the maximum value of (24)
is

AP (SGfile + 1)
L k — logz(qhash/P -+ L) —1
Plugging this into (22) gives the result. O

B Microbenchmarks

We implement the puzzle generation, verification, and pugalution algorithms in C++ using the
OpenSSL libray SHA and AES implementations for hash and g@umdom functions, respec-
tively. We analyze performance on various node configunatipc600 (600MHz Intel Pentium IlI

“Coppermine” processor, 256MB PC100 ECC SDRAM), pc2000 @Hz Pentium IV processor,

20

Fixed index set size (k) = 256, filesize (n) = 16 * 10 bits Fixed index set size (k) = 256, filesize (n) = 16 * 10" bits Fixed index set size (k) = 256, filesize (n) = 16 * 10’ bits

2
- 3
B F * g % pe600 ® —%-pc600
g g1 = pc2000 B = Pc2000
2 oo g, -A-pe3ooo § -4 pc3000
g 5 2
£ E ¢
c 300 5 12 =12
< °
e —k—pc600 e %= & g
] -7~ pc2000 s)
§ 9 A pc3000 Sos S 8
3] S
T K] H v
S 200 5 06 26
s o 04 g 4 N
2 = o
S 7§
a a o2 2
2 @ 5 6 18 9 10 T2 s 4 5 & 1 s s 1 I T 1
Number of index sets (L) x10° Number of index sets (L) x 10" Number of index sets (L) x10"
(a) Generation (b) Verification (c) Solution
X _ " —16+ 10 = = Y
Fixed number of index sets (L)= 20000, filesize (n) = 16 * 10’ bits Fixed number of index sets (L)= 20000, flesize (n) = 16 * 10 bits Fixed number of index sets ()= 20000, flesize (n) = 16 * 10' bits
B 1000} [¢ pes00 g —-pc600 —-pc600
g La00] | Y PC2000 QS, b ~</-pc2000 7 ~7 pc2000
2 A pe3000 g, -A-pc3000 g -A-pc3000
S 1200 2 & 10
£ E c
E c 12 £
= 1000 ° 2
2 R &2 £ £
< 800 c 2
S S o8 =
3 8 3
§ 9 'é 06 ; N
3 H S
) g]
o 40 204 &
° S
B]
& 20 £ 02
100 200 300 400 500 600 700 800 900 1000 1100 100 200 300 400 500 600 700 800 900 1000 1100 100 200 300 400 500 600 700 800 900 1000 1100
Index set size (k) Index set size (k) Index set size (k)
(a) Generation (b) Verification (c) Solution

Figure 7: Microbenchmarks for puzzle operations on difie@PU platforms as a function &f

512MB 400Mhz RAMBUS RAM), and pc3000 (3.0 GHz 64-bit Xeon gessor, 2GB 400Mhz
DDR2 RAM).

For each experiment, we generate 100 puzzles and reporvéhage time taken to generate,
verify, and solve the puzzles on the different hardware gomditions as a function df andk in
Figures 6 and 7, respectively. First, note that the germratnd verification times are orders of
magnitude smaller than the puzzle solution time on the iiffeplatforms. Second, the generation
and verification times are independent/af These satisfy our original system requirements in
Section 3: the verifier incurs low cost for generation andfioation, and the verifier can adjust
the difficulty of the puzzle by increasingwithout incurring additional cost.

21

