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Abstract

We study scheduling algorithms for problems arising in client-server systems. In the client-server setting,
there are multiple clients that submit requests for service to the server(s) over time. Typical examples
of such systems include operating systems, web-servers and database query servers. As there could be
multiple clients requesting a service, the goal of a scheduling algorithm is to provide service to the clients
in some reasonable way. A natural measure of the quality of service received by a client is its flow time,
defined as the time since the client submits a request until it is completed. In this thesis, we study some
fundamental problems related to minimizing flow time and its variants. These include `p norms of flow time,
weighted flow time, stretch (flow time divided by its service requirement) and completion time. We consider
these problems in various settings, such as online, offline, scheduling when the processing requirements are
unknown and scheduling when jobs can be rejected at some cost.
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Chapter 1

Introduction

Scheduling can be described as allocating resources over time. The resources are modeled as machines
and the requests for resources are modeled as jobs with a service requirement. Given this broad definition,
scheduling has been studied in various scenarios such as practical computer systems, production planning
in factories, load balancing and so on. Scheduling problems constitute a substantial part of optimization,
and have been studied by researchers in various communities such as operations research, algorithms and
queueing theory.

In the last ten years or so, a major focus has been to study the performance of scheduling algorithms for
client-server systems. In a client-server system, there are multiple clients that submit requests for service
to the server(s) over time. Typical examples of such systems include operating systems, web-servers and
database query servers. In such systems, the most natural measure of the quality of service received by a
client is the flow time, defined as the time since the client submits a request until it is completed. Flow time
closely relates to the user experience as it measures the amount a user has to wait to get his jobs serviced. In
this thesis we look at some fundamental problems related to minimizing flow time and its variants.

1.1 Motivation

Our central motivating question is: What is a good scheduling algorithm for a client-server system? There
is no single answer to this question. The answer would depend on the particular type of scenario, such as

• Is a single machine or multiple machines used to serve the requests? For example, a CPU may consist
of a single processor or multiple processors. Similarly, a web site might use several servers to serve
its content instead of a single one.

• Is the processing requirement of a job known upon its arrival? For example, in a web server serving
static documents, the time to serve a request is reasonably modeled by the size of the file which is
known to the server. On the other hand, an operating system typically has no idea of long it would
take to serve a request.

• Can the execution of a job be interrupted arbitrarily and resumed later from the point of interruption
without any penalty? There might be a significant overhead in some systems to switch between jobs.

• Are all jobs equally important? It might be important to give some jobs preferential treatment relative
to other jobs.

1



2 CHAPTER 1. INTRODUCTION

However, in spite of the specifics of the model, one can usually give some general guidelines.
First, one would like that the average time that users experience to finish their jobs is not too high. One

way to formalize this goal is to minimize the total flow time. Similarly, one might wish that most users re-
ceive similar performance, that is, it should not be the case that one set of users receives significantly worse
performance than others. This can be formalized by requiring that maximum flow time be minimized. Opti-
mum algorithms are known both for minimizing the total flow time and for minimizing the maximum flow
time. However, these algorithms are totally “incompatible” with each other. The algorithm for minimizing
the total flow time might lead to extremely high maximum flow time and similarly the algorithm for mini-
mizing the maximum flow time might lead to extremely high total flow time. Our first motivating problem
is to study algorithms which perform reasonably well on both the measures simultaneously. We formalize
this goal by introducing the problem of trying to minimize the `p norms of flow time. We study this problem
is different settings. In particular, whether the service requirement of a job is known upon its arrival or not,
whether all jobs are equally important or not and finally where is goal is to minimize the `p norms of a
related measure known as stretch (defined as the ratio of a job’s flow time to its service requirement).

Often in the real world, not all jobs are equally important. For example, some users might pay a higher
amount of money to their Internet service providers to receive a better quality of service, or a website
serving some content might have different quality of service guarantees for different classes of users and so
on. Sometimes such priorities might simply be inherent in the system. For example in operating systems,
the basic kernel operations receive the highest priority and similarly the I/O related jobs receive a higher
priority than jobs involving a lot of processing. A standard way in the scheduling literature to formalize
the notion of varying degrees of importance is to associate a weight with a job which is indicative of its
priority. The goal then is to optimize some weighted measure of the flow times. Unfortunately, scheduling
in the weighted scenario is much less understood than in the unweighted scenario. A fundamental problem
that is not well understood is that of minimizing the total weighted flow time on a single machine. Prior
to our work, no “truly” online algorithm was known for the problem. Moreover no algorithm with an
O(1) approximation ratio was known even when there are just two different weights. In this thesis, we

give an O(1) approximation for the case where there are O(1) weights, and more generally an O(logW )

competitive algorithm where W is the ratio of the maximum to the minimum weight.
A third fundamental and open problem is understanding the approximability of the problem of minimiz-

ing the total flow time (unweighted) on multiple machines. Even for two machines, the best known result
is an O(log n) approximation algorithm, where n is the number of jobs. On the other hand, it might be
possible that there is a polynomial time approximation scheme even for the case of arbitrary number of ma-
chines. In this thesis, we give a quasi-polynomial time approximation scheme for the problem when there
are a constant number of machines. This suggests that a polynomial time approximation scheme is likely to
exist for this case.

In this thesis, we describe our progress on the problems mentioned above and some other related ques-
tions. A detailed summary of our work is given in Section 1.5. We begin by describing the model formally.

1.2 Model and Preliminaries

An instance of a scheduling problem consists of a collection of jobs J = {J1, . . . , Jn} which arrive dy-
namically over time. The time when a job Jj arrives is its release time and is denoted by rj . Each job has
a service requirement, also known as its size and is denoted by pj . We will also consider problems where
the jobs are weighted according to their importance, in this case the weight of a job Ji is denoted by wi. B
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will always denote the ratio of the maximum to minimum job size and W will always denote the ratio of the
maximum to minimum weight. The number of jobs is always denoted by n, and the number of machines
is always m. A schedule for a problem instance specifies, for each job, various intervals of time where this
job is executed. Figure 1.1 shows a possible schedule for n = 3 jobs and m = 1 machine. A scheduling
algorithm is a procedure to construct a schedule from an input instance.
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Figure 1.1: An example of a schedule

Typically scheduling problems are studied in three paradigms based on how the input is revealed.

Offline: In this paradigm, the entire input instance is known in advance and the goal usually is to give
an efficient (polynomial time) algorithm that produces the optimum or close to optimum schedule.

Online: In this paradigm, the existence of a job is revealed to the algorithm only when it arrives (i.e.
Ji becomes known at time ri). Thus the online algorithm at any time has to make decisions based on the
partial knowledge of the jobs that have arrived by that time. This paradigm is perhaps the most natural
and appealing one in the context of scheduling as far as real world applications are concerned. The online
paradigm is further classified into two paradigms based on what information is revealed about a job when it
arrives.

• Online Clairvoyant Scheduling: In this paradigm, the size pi of a job Ji is revealed to the algorithm
when it arrives at time ri. This models well for example the scenario in a web-server serving static
documents. Typically, the time to serve a request can be reasonably modeled by the size of the file
requested, which is known to the web-server.

• Online Non-clairvoyant Scheduling: In this paradigm, only the existence of the job Ji is revealed to
the algorithm at time ri, and in particular the size of the job is unknown. The algorithm learns the
size of the job only when it meets its service requirement and terminates. This paradigm was first
introduced formally and studied by Motwani, Philips and Torng [59]. It closely models the scenario
faced for example by operating systems, since the system typically will have no idea of the amount of
processing required by a job.
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Objective Functions

Given a schedule, the completion time cj for a job is the time at which it completes its service requirement.

The flow time fj of a job is time a job spends in the system. i.e. it is the difference between the completion

time and the release time (fj = cj − rj). Figure 1.1 shows the flow times of jobs J1 and J3. The term flow
time unfortunately is not a standard one, often flow time is also referred to as response time, sojourn time,
latency or waiting time in the literature.

Another measure closely related to flow time is stretch. Given a schedule, the stretch sj of a job is the

ratio of its flow time and its size i.e. sj = fj/pj . Stretch can be thought of as normalized flow time, and
relates the waiting time of the users to their demands. In particular, it models the fact that users are usually
willing to wait longer for large jobs as opposed to short jobs. Again, stretch is sometimes referred to as
slowdown or normalized flow time in the literature.

Preemption

A schedule is non-preemptive if a job cannot be interrupted once it is started. In a preemptive schedule a job
can be interrupted arbitrarily and the execution can be resumed from the point of interruption without any
penalty (for example in Figure 1.1, the job J2 preempts J1).

Being unable to preempt places a serious restriction on the quality of schedules with respect to the flow
time and stretch metrics. For online algorithms in the non-preemptive setting, one can usually construct a
simple example showing that any algorithm will be arbitrarily bad. Similarly, for approximation algorithms
one can usually construct a hard instance based on a standard construction due to Kellerer, Tautenhahn and

Woeginger [48], who use it to show an inapproximability result of Ω(n1/3) for minimizing total flow time
non-preemptively on a single machine. Thus, flow time and stretch related objectives functions are almost
always studied in the preemptive model. In the thesis, we focus only on preemptive scheduling.

1.3 Analysis Framework

Throughout this thesis, we will use the standard worst case analysis.

1.3.1 Offline Analysis

For offline problems, the goal is to give an efficient (polynomial time) procedure to construct an optimum
solution. However, often the problems that arise are NP-Hard and it is unlikely that optimum solutions
for these can be computed exactly in polynomial time. The goal then is to construct an algorithm which is
efficient and computes a solution that is provably close to optimum for every instance I . Formally,

A (deterministic)1 algorithm Alg for a minimization problem Π is called a ρ-approximation algorithm
if

Alg(I) ≤ ρOpt(I)

holds for every instance I of Π, whereAlg(I) denotes the cost ofAlg on I andOpt(I) denotes the optimum
cost on I . The number ρ is called the approximation ratio of the algorithm Alg. Usually one requires an

1One can also define randomized approximation algorithms, however in this thesis we will only consider deterministic approx-

imation algorithms.
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approximation algorithm to run in time polynomial in the input parameters such as the number of jobs. A
nice introduction to approximation algorithms can found in [37, 74].

1.3.2 Online Analysis

We use the standard technique of competitive analysis introduced in the seminal paper of Sleator and Tarjan
[71]. An online algorithmAlg is called c-competitive if the objective function value of the solution produced
by Alg on any input sequence is at most c times that of the optimum offline algorithm on the same input.
Here, the optimum offline algorithm has complete knowledge about the whole input sequence in advance.
Formally,

A deterministic2 online algorithm is called c-competitive if

Alg(I) ≤ c Opt(I)

holds for every instance I . The number c is called the competitive ratio of the algorithm Alg. Sometimes,
the definition is relaxed to allow a constant b (independent of the input sequence) such that

Alg(I) ≤ c Opt(I) + b

Observe that there is no restriction on the computational resources of an online algorithm. Competitive
analysis of online algorithms can be imagined as a game between an online player and a malicious adversary.
If the adversary knows the strategy of the online player, he can construct a request sequence that maximizes
the ratio between the player’s cost and the optimum offline cost. A nice and in-depth treatment on online
algorithms and competitive analysis can be found in [19].

In the non-clairvoyant setting, the performance is measured in a similar way. In particular, an algorithm
is c-competitive if the objective function value of the solution produced by Alg on any input sequence is at
most c times that of the optimum offline algorithm (and hence clairvoyant) on the same input.

1.3.3 Resource Augmentation

Sometimes competitive analysis turns out be overly pessimistic and the adversary is simply too powerful
and allows only trivial competitiveness results. An alternative form of analysis that has proven very useful
in the context of scheduling is resource augmentation, introduced by Kalyanasundaram and Pruhs [46]. The
idea here is to augment the online algorithm with extra resources in the form of faster processors.

Formally, let Algs denote an algorithm that works with processors of speed s > 1. An online algorithm
is called s−speed, c−competitive if

Algs(I) ≤ c Opt1(I)

holds for all input instances I . Another way to view resource augmentation is that while we would like our
algorithm to perform almost as well as the optimum, we may be unable to do so if we allow the optimum the
same amount of resources. Thus, we compare the performance of our algorithm to that of the optimum where
the optimum is only allowed an s times slower processor. The typical goal in the resource augmentation
setting is to find an algorithm which is O(1) competitive with a modest amount of speed up. To understand
this goal, we first need to understand how client-server systems typically behave.

2Again, one can define randomized online algorithms, and various notions of an adversary based on the kind of information

about the online algorithm available to it. However, we will only focus on deterministic online algorithms.
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Average
QoS

Load

Average
QoS

OptimalOnline

Load

(a) (b)

Figure 1.2: (a) Standard QoS curve, and (b) The worst possible QoS curve of an (1 + ε)-speed O(1)-
competitive online algorithm.

Average QoS curves such as those in figure 1.2(a) are ubiquitous in server systems [51]. That is, there
is a relatively modest degradation in average QoS as the load increases until some threshold is reached —
this threshold is essentially the capacity of the system — after which any increase in the load precipitously
degrades the average QoS. The concept of load is not so easy to formally define, but generally reflects
the number of users of the system. If A is an (1 + ε)-speed, c-competitive server scheduling algorithm,

and Opt1(I) ≤ d · Opt1+ε(I) then A is at worst (c · d)-competitive on input I . The loads in the usual

performance curve shown in figure 1.2(a) where Opt1(I) is not approximately Opt1+ε(I) are those points

near or above the the capacity of the system. Thus the performance curve of a (1 + ε)-speed, c-competitive
online algorithm A should be no worse than shown in figure 1.2(b). That is, A should scale reasonably well
up to quite near the capacity of the system. Thus an ideal resource augmentation result would be to prove
an algorithm is (1 + ε)-speed, O(1)-competitive. More detailed discussion on resource augmentation and
its uses can be found in [46, 61, 63].

1.4 Preliminaries

A local view of Flow Time

Often while studying the performance of an algorithm Alg for some flow time related measure, it is helpful
to think of how the measure changes as a function of time. This usually has a nice physical description. For
example, at any time the rate of change of total flow time under Alg is simply the number of unfinished jobs
under Alg at that time. Similarly for weighted flow time

∑
j wjfj , it is easily seen that the rate of change is

equal to the total weight of unfinished jobs at that time.

This leads to a simple and often useful technique known as local-competitiveness. The idea is that, to
prove c-competitiveness of Alg it suffices to show that at all times t, the rate at which Alg increases is no
more than c times the rate at which any algorithm Opt can increase at that time. For example, to prove
that an algorithm is c competitive for weighted flow time, it would suffice to show that at any time the total
weight of unfinished jobs under the proposed algorithm never exceeds c times the weight under any schedule
at that time.

The advantage of local-competitiveness is that it is often easier to show some local property of an
algorithm than to argue against globally optimum schedules. Of course, local-competitiveness is not always
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applicable, it could be the case that no matter how good the online algorithm is globally, there are short
periods during which the adversary can perform significantly better.

Typical Scheduling Algorithms

Most often in scheduling, there are only a few algorithms which end up being analyzed for different prob-
lems. We now describe these and some associated basic results.

1. First In First Out (FIFO): At any time, work on the job which arrived the earliest.

It is a folklore result that FIFO is optimal for minimizing the maximum flow time on a single machine.

2. Shortest Job First (SJF): At any time, work on the job that has the shortest size (pi).

3. Shortest Remaining Time First (SRPT): At any time, work on the job that has the least remaining
processing requirement at that time.

It is a folklore result that SRPT is optimal for minimizing the total flow time on a single machine.
Recently, it was shown that SRPT is 2-competitive for minimizing total stretch on a single machine
[60].

4. Shortest Elapsed Time First (SETF): At any time, work on the job that has received the least amount
of service at that time. Note that by the nature of the algorithm, at any time if two of more jobs
have the least amount of service, then they continue to have the least amount of service and share the
processor equally until a new jobs arrives.

A celebrated result of Kalyanasundaram and Pruhs is that SETF is (1+ε)-speed, (1+1/ε)-competitive
for minimizing total flow time non-clairvoyantly on a single machine [46].

5. Round Robin (RR): At any time, share the processor equally among all the jobs present at that time.
This policy is also referred to as Processor Sharing in the literature.

Algorithms when jobs have weights:

1. Highest Density First (HDF): At any time work on the job that has the largest weight to processing
time ratio. The ties are broken in favor of the partially executed job.

It is known that HDF is a (1 + ε)-speed, (1 + 1/ε)-competitive algorithm for minimizing the total
weighted flow time [16].

2. Weighted Shortest Elapsed Time First (WSETF): For a job Ji with weight wi , let pi(t) denote the

amount of work done on Ji by time t. We define the normalized service of Ji as ‖Ji‖t = pi(t)/wi.
At all times, WSETF splits the processor among the jobs that have the smallest normalized service in
the ratio of their weights. For example, if J1, . . . , Jk are the jobs that have the smallest normalized

service. Then Jj , for i = 1, . . . , k, will receive wj/(
∑k

i=1wi) fraction of the processor. Note that for
all jobs Ji that WSETF executes, the normalized service increases at the same rate and thus stays the
same.

One of the results of this thesis is that WSETF is (1 + ε)-speed, (1 + 1/ε)-competitive for minimizing
the total weighted flow time non-clairvoyantly [7].
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Non-Clairvoyant Scheduling

Finally, to place our results in the proper perspective we give a quick (and incomplete) history of non-
clairvoyant scheduling. Non-clairvoyant scheduling was first introduced in the context of online algorithms
by Motwani, Philips and Torng [59]. They studied the problem of minimizing the total flow time on a sin-

gle machine and showed that any deterministic algorithm is Ω(n1/3) competitive and that any randomized

algorithm is Ω(log n) competitive. On the positive side, Kalyanasundaram and Pruhs gave a randomized al-

gorithm with an almost matching competitive ratio ofO(logn log log n) [45]. Later, Becchetti and Leonardi

improved the analysis of [45] to show that their algorithm in fact achieves a competitive ratio of O(logn)

[13]. Resource augmentation was also first introduced to deal with the problem of non-clairvoyance and
was used to show that SETF is (1 + ε)-speed, (1 + 1/ε)-competitive [46].

1.5 Overview of Results

We now outline the problems considered in this thesis.

Minimizing the `p Norms of Flow Time

It is well known that SRPT is optimal for minimizing the total flow time. Similarly, FIFO is optimal of
minimizing the maximum flow time. However, each of the algorithms has its drawbacks. FIFO might have
a very poor average behavior (for example, consider n − 1 small jobs stuck behind a large job). Similarly,
a commonly cited reason against using SRPT in a real system is the fear that it may “starve” large jobs (i.e.
even though the average performance is good, there might be a few large jobs with extremely high flow
times). To strike a compromise between the sum and the maximum, we propose the `p norms of flow time

as a measure of good average performance and fairness. While `p norms of measures such as completion
time and load have been considered previously [30, 3, 5], no previous work has been done on flow time.

To get a feel for the problem, let us consider the case when p = 2. In this case, at any time, the
contribution of an unfinished job to the flow time squared is equal to two times its age (which is defined as
the time spent by the job thus far). Thus, at any time, the total flow time squared increases at the rate of the
total age of all the unfinished jobs at that time. This suggests that any reasonable algorithm for the problem
must try to avoid a lot of “old” jobs from building up.

We obtain the following results:

• We first show that there cannot be any randomized online algorithm with a competitive ratio of no(1)

for 1 < p <∞. This is perhaps surprising as it may be tempting to believe that a suitable combination
of SRPT (keeps total number of jobs low) and FIFO (gets rid of old jobs) should yield a good online
algorithm.

• Motivated by the lower bounds above, we consider the problem in the resource augmentation model.
We show that SJF and SRPT are (1 + ε)-speed, O(1)-competitive algorithms for minimizing all `p
norms of flow time.

Our proofs for these results use local competitiveness. We show that with a slight speed up, SJF and
SRPT not only keep the total number of jobs low, but also do not allow a buildup of old jobs. The
proof requires a careful accounting of the number of jobs of various ages at all times.
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Algorithm Speed Competitive Ratio

Any Clairvoyant Algorithm 1 nΩ(1) for 1 < p <∞
SJF (1 + ε) O(1/ε)

SRPT (1 + ε) O(1/ε)

SETF (1 + ε) O(1/ε
2+ 2

p )

RR (1 + ε) Ω(n(1−2εp)/p)

Any Non- clairvoyant Algorithm (1 + ε) -

Table 1.1: Results for `p norms of Flow Time

Somewhat surprisingly, we also show that the policy RR which is aimed at giving a fair performance
to all jobs, does not have the above property. In particular, we show that even with a (1 + ε) speed up

(for ε sufficiently small), RR has a competitive ratio of Ω(n(1−2εp)/p).

• Finally, we consider this problem in a non-clairvoyant setting. We show that SETF is a (1 + ε)-speed,

O(1)-competitive algorithm.

It can be shown that local-competitiveness does not yield useful results in this setting. To prove
this result for SETF we introduce a technique where, by a series of transformations we reduce the
problem of proving the result for SETF to a result about SJF. This technique is fairly general and
turns out to be useful to prove other results about non-clairvoyant algorithms. For example, we will
use this later to show non-trivial results about minimizing the total stretch and the `p norms of stretch
non-clairvoyantly.

These results are summarized in Table 1.1 below.
Our results argue that the concern, that the standard algorithms aimed at optimizing average QoS might

unnecessarily starve jobs, is unfounded when the server is less than fully loaded. Results similar in spirit are
found in a series of papers, including [9, 27, 35, 65]. These papers argue that SRPT will not unnecessarily
starve jobs any more than Processor Sharing does under “normal” situations. In these papers, “normal”
is defined as there being a Poisson distribution on release times, and processing times being independent
samples from a heavily tailed distribution. More precisely, these papers argue that every job should prefer
SRPT to Round Robin under these circumstances. So informally our results and these papers reach the same
conclusion about the superiority of SRPT. But in a formal sense the results are incomparable.

Minimizing Weighted Flow Time

In many settings jobs have varying degrees of importance and this is usually represented by assigning
weights to jobs. A natural problem that arises in this setting is to minimize the total weighted flow time.
This problem is known to be NP-Hard [53].

Since SRPT at any time has the minimum possible number of jobs in the system, it easily follows that
SRPT is an O(W ) competitive algorithm for weighted flow time. Similarly, the policy that works on the

highest weight job at any time is easily seen to be an O(B) competitive algorithm. These were essentially
the best known guarantees for the problem until the recent work of Chekuri, Khanna and Zhu [23], who
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gave an O(log2B) competitive semi-online3 algorithm. There also show a lower bound of 1.61 on the
competitive ratio of any online algorithm. However, their work left some questions open. In particular, is
there an O(1) competitive algorithm for minimizing weighted flow time with arbitrary weights? A simpler

problem left open was whether there is an O(1) competitive algorithm even if there are only two different
job weights? Finally, they also ask if a there is “truly” online algorithm with a non-trivial competitive ratio.

In our work, we answer some of these questions. We give a “truly online” algorithm that is k competitive
if there are k different job weights. Thus, this gives the first algorithm that isO(1) competitive for 2 different

job weights. Rounding the weights to powers of 2, it is easy to see that our algorithm gives an O(logW )

competitive algorithm for arbitrary weights.

Our algorithm is quite simple. We divide the jobs into O(logW ) classes. At any time, the algorithm
works on the weight class with the greatest weight of unfinished jobs. Within a class jobs are processed in
the SRPT order. Thus, in a sense it tries to keep the total weight in each class low. However, the crucial
point to show is that the algorithm does not end up performing badly as it moves between various classes.
Our proof uses local competitiveness: We show that at any time, the total weight of unfinished jobs in our
algorithm is O(logW ) times that under any other algorithm.

While the above algorithm has a guarantee in terms of W , using a standard trick, we show how this
algorithm can be modified to give an O(logn+ logB) semi-online algorithm for the problem.

Interestingly, our results described above and those of [23] are also the best known guarantees for the
offline version of the problem. On the other hand, we do not even know if the problem is APX -Hard.
Though a recent result of Chekuri and Khanna gives a quasi-polynomial time approximation scheme for
this problem [21], which suggests that a polynomial time approximation scheme is likely to exist for this
problem.

We next consider an extension of the problem where we seek to minimize the weighted `p norms of

flow time, defined as (
∑

iwif
p
i )1/p. We study this problem both in the clairvoyant and non-clairvoyant

setting. From the lower bounds on minimizing the `p norms of unweighted flow time (mentioned in Table

1.1), it easily follows that there do not exist any no(1) competitive clairvoyant (and hence non-clairvoyant)
algorithms for this problem, where 1 < p <∞.

We show that HDF and WSETF, the natural generalizations of SJF and SETF to the weighted case
are (1 + ε)-speed, O(1)-competitive for minimizing the weighted `p norms of flow time. To prove these
results, we give a general technique which reduces a weighted problem to an unweighted one, but requires
an additional (1 + ε) speed up in the process.

Stretch Scheduling

Stretch as a measure of system performance has gained a lot of popularity in recent years. Stretch is very
appealing as it directly quantifies the time spent waiting by a user per unit amount of received service.
Often computer system designers consider stretch as a measure while demonstrating the superiority of their
system over others. Theoretically, stretch is reasonably well understood, at least in the clairvoyant setting. It
is known that SRPT is 2-competitive for minimizing the total stretch on a single machine [60]. On multiple
machines, O(1) competitive algorithms for minimizing total stretch in various settings [60, 23] are known.
In the offline setting, a PTAS is known for minimizing total stretch on a single machine [18, 21].

In this thesis we study this problem in the non-clairvoyant setting. The problem was posed in [13], and

3Their algorithm is semi-online as it requires the knowledge of B while scheduling the jobs.
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arises naturally is systems such as Operating systems, where the jobs sizes are unknown and where stretch
is considered to an important measures of user satisfaction.

Minimizing total stretch can be thought of as a special case of minimizing total weighted flow time,
where the weight of a job is inversely proportional to its size. However, what makes the problem interesting
and considerably harder in a non-clairvoyant setting is that the sizes (hence weights) are not known. Hence
not only does the online scheduler have no idea of job sizes, it also has no idea as to which job is more
important (has a higher weight). Formally, this hardness is seen by the fact that any randomized algorithm
is Ω(min(n,B)) competitive for this problem.

To get a feel for minimizing stretch non-clairvoyantly, suppose there are n jobs of size 1, 2, 4, . . . , 2n−1

all of which are released at time t = 0. By scheduling these in the order of increasing job sizes, the optimal
clairvoyant algorithm has a total stretch of O(n). However, the non-clairvoyant has no way of figuring out
the size 1 job until it has spent at least 1 unit of time on all the size 1 jobs (or on about half the jobs if
the algorithm is randomized). Thus the size 1 job will have a stretch of Ω(n). Arguing similarly for other

jobs implies that the total stretch is Ω(n2), hence giving a lower bound of Ω(n) on the competitive ratio.
Moreover, since all jobs arrive at t = 0, a speed up of k implies that the flow time reduces by k times and
hence with an O(1) speed up the competitive ratio is still Ω(n). The fact that neither resource augmentation

nor randomization seems to help is in sharp contrast to total flow time where a (1+ ε)-speed gives a (1+ 1
ε )-

competitive algorithm [46], and randomization allows us to obtain an O(logn) competitive non-clairvoyant
algorithm [45, 13].

The only case where resource augmentation seems to help is when the job sizes are bounded. In this
case, we show the following results:

• SETF is a (1+ε)-speed,O(log2B)-competitive algorithm for minimizing total stretch non-clairvoyantly.
We also also extend the results to the problem of minimizing `p norms of stretch.

The best lower bound with a (1 + ε)-speed processor that we know of is Ω(logB). The above result
on the competitiveness of SETF uses the technique of relating SETF to SJF.

• Finally, we also consider the static case, that is when all the request arrive at time t = 0. In this case,
for the problem of minimizing the `p norms of stretch, we give algorithms with matching upper and

lower bounds of Θ(logB) on the competitive ratio.

Our results for stretch scheduling are summarized in Table 1.2 below.

Lower bound Lower bound
Problem Scenario Speed SETF without speed up with O(1) speed up

Static 1 O(n), O(logB) Ω(n), Ω(logB) Ω(n),Ω(logB)

Dynamic (1 + ε) O(log1+1/pB) Ω(n),Ω(B) Ω(n),Ω(logB)

Table 1.2: Summary of results for minimizing the `p norms of stretch non-clairvoyantly.

Minimizing Flow Time on Multiple Machines

Scheduling on multiple machines has been an extensive area of research for several decades and an enormous
amount of literature exists of this topic. Two fundamental problems in this area whose offline complexity is
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very well understood by now are the following:

1. Minimizing Makespan: Given m machines and n jobs all released at time t = 0, assign jobs to the
machines such that maximum amount of work assigned to any machine is minimized.

Various efficient approximation schemes with running times polynomial in n and m are known for
this problem [41, 38, 44].

2. Minimizing total weighted completion time: Given m machines and n jobs with arbitrary releases
times, sizes and weights, find the schedule that minimizes the total weighted completion time.

A relatively recent paper [1] gives various efficient approximation schemes for this problem (and
several of its variants). Again the running time of these schemes in polynomial in n and m.

The natural extensions of these problems to the flow time case are minimizing the maximum flow time,
and minimizing the total (weighted) flow time. Unfortunately, these problems are not very well understood.
In this thesis, we make some progress in this direction. We begin by describing the prior work, and then our
work.

We first look at minimizing the total flow time. In the online setting, a celebrated result of Leonardi
and Raz [55] is that SRPT is O(log(min{ nm , B})) competitive on identical parallel machines. They also

show a matching lower bound of Ω(log(min{ nm , B})) on the competitive ratio on any online algorithm. The

algorithm of [55] has been extended to various other restricted settings (such as eliminating migrations [6]
or immediately dispatching a job to a machine as it arrives [4]). Interestingly however, even in the offline
case these algorithms remain the best known algorithms for the problem. Even for the case of m = 2, it
is not known where an O(1) approximation algorithm for minimizing total flow time exists. On the other
hand, the only NP-Hardness of the problem is known. In particular, it is not even known if the problem is
APX -Hard. Obtaining an O(1) approximation for this problem (even for the case of m = 2) has been a
major open problem in scheduling [67, 55, 6].

We obtain the following results:

• We give a quasi-polynomial time approximation scheme (QPTAS) for minimizing total flow time on
a constant number of machines. In particular, our algorithm produces a (1 + ε) approximate solution

and has running time O(nm log n/ε2). Our result suggests that a PTAS is likely for this problem for
constant m.

While elegant approximation schemes are known for minimizing total completion time and makespan,
not many results are known for flow time. One difficulty in getting efficient approximation schemes is
that flow time is very sensitive to small changes in the schedule. For example, the usual techniques of
rounding the job sizes or release dates to powers of (1 + ε) do not work. Our main idea is a technique

which allows us to store the approximate state under SRPT for any subset of jobs usingO(log2 n) bits

of information4. Moreover, this state description has sufficient information to allow us to compute the
new state as time progress and jobs are worked upon or when new jobs arrive.

• Next, we consider the problem of minimizing the total weighted flow time on multiple machines.
Recently, Chekuri and Khanna made the first break through for the weighted case by giving an el-
egant QPTAS in the single machine case [21] (As mentioned earlier, there is no PTAS known for

4Reducing this to O(log n) would imply a polynomial time approximation scheme.
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minimizing total weighted flow time even for the case of a single machine). However, their results do
not carry over to m > 1. The main difficulty is that if we consider a particular machine, an arbitrary
subset of jobs could be assigned to be processed on it. It was unclear how to encode this information
in sufficient detail using few bits. Our technique above, allows us to extend the result of [21] to a
constant number of machines.

• In our quasi-polynomial time approximations schemes, the running time depends exponentially on
the number of machines. This seems exorbitant given the existence of approximation schemes with
running times polynomial in m for the makespan and completion time problems. However, we show
that this dependence on m is unlikely to be improved for the flow time problem. In particular, we

show that obtaining an no(1) approximation algorithm with running time 2polylog(n,m) for the weighted
flow time problem (even when all the weights are polynomially bounded in n) would imply that

NP ⊆ DT IME(npolylog(n)).

Finally, we consider the problem of minimizing the maximum flow time on m machines. Notice that
if all the jobs are released at time 0, this reduces to the classical problem of makespan minimization, for
which a lot of previous work has been done [41, 38, 54, 44]. However, minimizing the maximum flow time
with general release times the only result known is a 3 − 2/m online algorithm [17], which in fact works
for arbitrary m. Obtaining a PTAS has been open for this problem [17, 67]. We partially solve the problem
by obtaining a PTAS for the special case where the number of machines m is a constant.

Combining Flow time Scheduling and Call Admission

We consider the problem of scheduling on a single machine to minimize flow time where the jobs can be
rejected at some cost. Formally, for each job, the processor pays for each time unit the job is present in
the system, and additionally a rejection cost is charged if this job is ever rejected. One motivation for this
problem arises from trying to formalize the scheduling decisions faced by a person in real life, where one
also has the flexibility to accept or reject a request. Ideally, one would like not to have too many jobs on ones
list of things to do (as this causes jobs to be delayed), or equivalently, one would like to have a small flow
time, and rejecting some fraction of jobs might be necessary for this to happen (but of course one cannot
ignore all work one is asked to do).

Scheduling problems with rejection costs have been considered previously in other settings. In particu-
lar, there has been work on minimizing makespan with rejection [12, 68, 39] and on minimizing weighted
completion time with rejections [29]. However, for the case of flow time, we do not know of any prior work.

We show the following results:

• First, we consider the simplest case where all jobs have the same rejection cost. We give a 2-
competitive algorithm for this case.

• In the more general setting where the rejection costs are allowed to be arbitrary, we show that no

randomized algorithm can be no(1) competitive. This motivates us the consider the problem with
arbitrary rejection costs in the resource augmentation setting.

• In fact, we consider a more general setting where the jobs have arbitrary weights and arbitrary rejec-
tion costs. Here a job pays its weight for each time unit it is present, and a rejection cost if this job is

ever rejected. We give a (1+ε)-speed, O((logW +logC)2)-competitive algorithm, where C denotes
the maximum to minimum rejection cost ratio.
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To solve this problem, we first consider the special case where jobs have arbitrary weights but same

rejection costs. We give an O(log2W ) competitive algorithm for this case and show that the previous

problem can be reduced to this while losing a factor of (1 + ε) in the speed.

Most of the techniques used to prove the results stated above are a combination of the techniques used
for the weighted flow time problem discussed previously.

Results for Completion Time Scheduling via Flow Time

Finally, we show how results for flow time problems (which possibly use excessive resource augmentation),
can be used to prove results about completion time problems (without any resource augmentation). While
completion time as a measure of performance is perhaps not very useful in the context of client-server
systems. It is of significant academic interest and has been studied extensively.

Our contribution is a technique to transform an algorithm for a flow time problem which possibly uses
resource augmentation to obtain an algorithm for the corresponding completion time problem which does
not use resource augmentation. Our transformation carries online algorithms to online algorithms and also
preserves non-clairvoyance. As a corollary of this result we will obtain O(1)-competitive online clairvoyant
and non-clairvoyant algorithms for minimizing the weighted `p norms of completion time.

1.6 Related Areas

We wish to point out that the results considered in this thesis comprise a very small portion of the problems
considered in scheduling theory in general. Scheduling problems encompass a variety of different optimiza-
tion problems and are studied in a variety of settings such as worst case analysis and average case analysis.
Some books on the subject which provide a broad overview of the results and techniques are [20, 62, 58, 25].

We now describe some topics that have been extensively studied in the computer science literature, but
not considered in this thesis:

• Makespan Minimization: In these problems, typically there are multiple machines and the jobs are all
available starting at time t = 0. The goal is to find a schedule such that all jobs can be finished by
some time T . Often there are various other restrictions, such as jobs might have machine dependent
processing times, there might be various dependency constraints on when a job might be executed,
jobs can be migrated (i.e., same job can be executed on different machines) and so on. Another
widely studied class of makespan minimization problems are what are known as shop scheduling
problems. Here each job consists of various operations which must be executed sequentially. Often
there are constraints on how these operations might be scheduled, these different constraints give rise
to different types of “shop” scheduling problems.

• Scheduling with deadlines: This is also known as real time or due date scheduling. Here, in addition
to release times and sizes, job also have a deadline, before which the job must be executed. A nice
introduction to such problems can be found in [20, 26]. The goal typically in such problems is to com-
plete the maximum number of jobs by their deadlines, or to minimize various functions of tardiness
(defined as the amount by which a job exceeds its deadline).
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Scheduling to Minimize `p norms of Flow
Time

2.1 Introduction

The algorithms Shortest Remaining Processing Time (SRPT) and Shortest Elapsed Time First (SETF) are
generally regarded as the best clairvoyant and nonclairvoyant server scheduling policies for optimizing
average Quality of service (QoS). SRPT is optimal for average flow time. SETF is an (1+ε)-speed, (1+1/ε)-

competitive algorithm for average flow time [46] — no O(1)-competitive nonclairvoyant algorithm exists
for average flow time [59] — and a randomized variation RMLF of SETF is known to be asymptotically
strongly competitive amongst randomized algorithms for average flow time [13, 45, 59].

In spite of this, SRPT and SETF are generally not implemented in server systems. Apache, currently
most widely used web server [43], uses a separate process for each request, and uses a First In First Out
(FIFO) policy to determine the request that is allocated a free process slot [42]. The most commonly cited
reason for adopting FIFO is a desire for some degree of fairness to individual jobs [35], i.e. it is undesirable
for some jobs to be starved. In some sense FIFO is the optimally fair policy in that it optimizes the maximum
flow time objective. Operating systems such as Unix don’t implement pure SETF, or even pure MLF, the
less preempting version of SETF. Once again this is out of fear of starving jobs [72, 73]. Unix systems
adopt compromise policies that attempt to balance the competing demands of average QoS and fairness. In
particular, Unix scheduling policies generally raise the priority of processes in the lower priority queues that
are being starved [72].

The desire to optimize for the average and the desire to not have extreme outliers generally conflict. The
most common way to compromise is to optimize the `p norm, generally for something like p = 2 or p = 3.
For example, the standard way to fit a line to collection of points is to pick the line with minimum least
squares, equivalently `2, distance to the points, and Knuth’s TEXtypesetting system uses the `3 metric to
determine line breaks [49, page 97]. The `p, 1 < p <∞, metric still considers the average in the sense that

it takes into account all values, but because xp is strictly a convex function of x, the `p norm more severely

penalizes outliers than the standard `1 norm.
This leads us to consider server scheduling algorithms for optimizing the `p norms, 1 < p <∞, of flow

time. Formally, the `p norms of flow time is defined as
∑

i(f
p
i )1/p. We will use F p(A) to denote the sum of

the pth powers of flow time under an algorithm A.

In section 2.3, we show that that are no no(1)-competitive online server scheduling algorithms for any

15
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Algorithm Speed Competitive Ratio

Any Clairvoyant Algorithm 1 nΩ(1) for 1 < p <∞
SJF (1 + ε) O(1/ε)

SRPT (1 + ε) O(1/ε)

SETF (1 + ε) O(1/ε
2+ 2

p )

RR (1 + ε) Ω(n(1−2εp)/p)

Any Non- clairvoyant Algorithm (1 + ε) -

Table 2.1: Results for `p norms of Flow Time

`p metric, 1 < p < ∞ of flow time. Perhaps this is a bit surprising, as there are optimal online algorithms,

SRPT and FIFO, for the `1 and `∞ norms. This negative result motivates us to fall back to resource aug-
mentation analysis. We first consider the standard online algorithms aimed at average QoS, that is, Shortest
Job First (SJF), SRPT, and SETF. We show that the clairvoyant algorithms, SJF and SRPT, are O(1 + ε)-

speed, O(1/ε)-competitive for the `p norms of flow. We show that the nonclairvoyant algorithm SETF is

O(1 + ε)-speed, O(1/ε(2+2/p))-competitive for the `p norms of flow. We summarize our results in table 2.1.
Note that all of the results assume that p is constant, so that multiplicative factors, that are a function of p
alone, are absorbed into the constant in the asymptotic notation.

These resource augmentation results argue that the concern, that the standard algorithms aimed at opti-
mizing average QoS might unnecessarily starve jobs, is unfounded when the server is less than fully loaded.
It might be tempting to conclude that all reasonable algorithms should have such guarantees. However, we
show that this is not the case in section 2.7. More precisely, the standard Processor Sharing, or equivalently
Round Robin, algorithm is not (1 + ε)-speed, O(1)-competitive for any `p norm of flow, 1 < p < ∞ and
for sufficiently small ε. This is perhaps surprising, since fairness is a commonly cited reason for adopting

Processor Sharing [72]. 1

2.2 Related Results

The results in the literature that are closest in spirit to those here are found in a series of papers, includ-
ing [9, 27, 35, 65]. These papers also argue that SRPT will not unnecessarily starve jobs any more than
Processor Sharing does under “normal” situations. In these papers, “normal” is defined as there being a
Poisson distribution on release times, and processing times being independent samples from a heavily tailed
distribution. More precisely, these papers argue that every job should prefer SRPT to Round Robin (Proces-
sor Sharing) under these circumstances. Experimental results supporting this hypothesis are also given. So
informally our results and these papers reach the same conclusion about the superiority of SRPT. But in a
formal sense the results are incomparable.

There have been some prior results on scheduling problems with `p norms. Load balancing in the `p
norm is discussed in [2, 3, 5]. PTAS for `p norms of completion times, without release times, is given in
[30].

A seemingly related problem is that of minimizing the weighted flow time, studied recently by [23, 21,
7]. Observe that minimizing the sum of squares of flow time is equivalent to minimizing the weighted flow

1The results in this chapter are from [11].
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time where the weight of a job at any time is equal to its age (hence the weights are linearly increasing
with time). However, the fact that the weights are changing makes our problem substantially different. For
example, [7] give an O(logW ) competitive algorithm for weighted flow time (which would correspond

to an O(logn + logB) competitive algorithm in our case, since the maximum weight W in our case is
at most nB). However, our lower bounds in section 2.3 show that any randomized online algorithm is

Ω(max{n1/5, B1/5}) competitive for minimizing flow time squared.

2.3 General Lower Bounds

Theorem 2.1 The competitive ratio of any randomized algorithm A against an oblivious adversary

for F p, 1 < p < ∞, is nΩ(1). In particular, the competitive ratio of any randomized algorithm is

Ω(n(p−1)/(p(3p−1))).

Proof. We use Yao’s minimax principle for online cost minimization problems [19] and lower bound
the expected value of the ratio of the objective functions for A and Opt on input distribution which
we specify. The inputs are parameterized by integers L, α, and β in the following manner. A long
job of size L arrives at t = 0. From time 0 until time Lα − 1 a job of size 1 arrives every unit of

time. With probability 1/2 this is all of the input. With probability 1/2, Lα+β short jobs of length

1/Lβ arrive every 1/Lβ time units from time Lα until 2Lα − 1/Lβ .

Let α = p+1
p−1 , and β = 2. We now compute F p(A) and F p(Opt). Consider first the case that A

doesn’t finish the long job by time Lα. Then with probability 1/2 the input contains no short jobs.

Then F p(A) is at least the flow of the long job, which is at least Lαp. In this case the adversary could

first process the long job and then process the unit jobs. Hence, F p(Opt) = O(Lp + Lα · Lp) =

O(Lα+p). The competitive ratio is then Ω(Lαp−α−p), which is Ω(L) by our choice of α.

Now consider the case that A finishes the long job by time Lα. Then with probability 1/2 the
input contains short jobs. One strategy for the adversary is to finish all jobs, except for the big job,

when they are released. Then F p(Opt) = O(Lα · 1p + Lα+β · (1/Lβ)p + Lαp). It is obvious that

the dominant term is Lαp, and hence, F p(Opt) = O(Lαp). Now consider the subcase that A has

at least L/2 unit jobs unfinished by time 3Lα/2. Since these unfinished unit jobs must have been

delayed by at least Lα/2, F p(A) = Ω(L · Lαp). Clearly in this subcase the competitive ratio is

Ω(L). Alternatively, consider the subcase that A has at most L/2 unfinished jobs by time 3Lα/2.

Since, the total unfinished by time 3Lα/2 is L, there must be at least L1+β/2 unfinished small jobs,

and hence at least L1+β/4 small jobs that have been delayed for at least L/4 time units. By the

convexity F p, the optimal strategy for A from time 3Lα/2 onwards is to delay each small job by

the same amount. Thus A delays Lα+β/2 small jobs (that arrive during 3Lα/2 and 2Lα) by at least

L/2. Hence in this case, F p(A) = Ω(Lα+β ·Lp). This gives a competitive ratio of Ω(Lα+β+p−αp),

which by the choice of β is Ω(L).

2.4 Analysis of SJF

In this section we show that SJF is a (1 + ε)-speed, O(1/εp)-competitive for the F p objective function.
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We fix a time t. Let U(SJF, t) and U(Opt, t) denote the unfinished jobs at time t in SJF and Opt

respectively, and D = U(SJF, t) − U(Opt, t). Let Agep(X, t) denote the sum over all jobs Ji ∈ X of

(t− ri)p−1. We will demonstrate the following local competitiveness condition for all times t

Agep(D, t) ≤ O(1/εp)Agep(U(Opt, t), t)

This will establish our desired results because F p(A) = p
∫
t Agep(U(A, t), t)dt.

Before proceeding we introduce some needed notation. Let V (t, α) denote the aggregate unfinished
work at time t among those jobs Jj that satisfy the conditions in the list α. So for example, in the next

lemma we consider V (ri, Jj ∈ U(Opt, ri), rj ≤ ri, pj ≤ pi), the amount of work that Opt has left on jobs

Jj that arrived before Ji, are shorter than Ji and that Opt has not finished by time ri. Let P (α) denote the
aggregate initial processing times of jobs Jj that satisfy the conditions in the list α.

We prove local competitiveness in the following manner. Let 1, . . . , k denote the indices of jobs in D
such that p1 ≤ p2 . . . ≤ pk. Consider the jobs in D in the order in which they are indexed. Assume that we
are considering job Ji. We allocate to Ji an εpi/4(1+ε) amount of work from V (t, Jj ∈ U(Opt, t), rj ≤ t−
ε(t−ri)/(4(1+ ε)), pj ≤ pi) that was previously not allocated to a lower indexed job inD. This establishes

O(1/εp) local competitiveness for F p for the following reasons. The total unfinished work in each Jj ∈
U(Opt, t) is associated withO(1/ε) longer jobs inD. Since the jobs Jj are Ω(ε) as old as Ji, the contribution

of to Agep(U(Opt, t), t) for Jj is Ω(εp−1) as large as the contribution of Ji to Agep(U(SJF, t), t).
We now turn to proving that this association scheme works, that is, the scheme never runs of work to

assign to the jobs in D. Consider a fixed job Ji ∈ D. Let t′ denote the time t − ε
4(1+ε)(t − ri). If this

scheme is going to fail on job Ji then, informally, the amount of work on jobs of size ≤ pi that Opt had left

at time ri, plus the work made up by jobs of size ≤ pi that arrived during (ri, t
′], minus the work that Opt

did during (ri, t], minus the work that is allocated to J1, . . . , Ji should be negative. The amount of work in

V (t, Jj ∈ U(Opt, t)) that is allocated to J1, . . . , Ji is at most

ε

4(1 + ε)
P (Jj ∈ D, rj ≤ ri, pj ≤ pi) +

ε

4(1 + ε)
P (Jj ∈ D, rj > ri, pj ≤ pi)

Moreover, as Opt can finish at most (t− ri) work during time (ri, t], it is sufficient to show that

V (ri, Jj ∈ U(Opt, ri), rj ≤ ri, pj ≤ pi) + P (rj ∈ (ri, t
′], pj ≤ pi)− (t− ri)

− ε

4(1 + ε)
P (Jj ∈ D, rj ≤ ri, pj ≤ pi) +

ε

4(1 + ε)
P (Jj ∈ D, rj > ri, pj ≤ pi) ≥ 0

Or equivalently,

V (ri, Jj ∈ U(Opt, ri), rj ≤ ri, pj ≤ pi) + P (rj ∈ (ri, t
′], pj ≤ pi)

− ε

4(1 + ε)
P (Jj ∈ D, rj ≤ ri, pj ≤ pi) +

ε

4(1 + ε)
P (Jj ∈ D, rj > ri, pj ≤ pi) ≥ (t− ri) (2.1)

The rest of this section will be devoted to establishing equation 2.1. We know that

(t− ri) ≥ P (Jj ∈ D, rj > ri, pj ≤ pi) (2.2)
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since Opt had to finish all such jobs considered on the right hand side between time ri and time t. Then by
substitution, to prove equation 2.1 it suffices to prove:

V (ri, Jj ∈ U(Opt, ri), rj ≤ ri, pj ≤ pi) + P (rj ∈ (ri, t
′], pj ≤ pi)

− ε

4(1 + ε)
P (Jj ∈ D, rj ≤ ri, pj ≤ pi) ≥ (

4 + 5ε

4(1 + ε)
)(t− ri) (2.3)

We now concentrate on replacing the term V (ri, Jj ∈ U(Opt, ri), rj ≤ ri, pj ≤ pi) in equation 2.3.

This is where the (1 + ε) speed up is crucially used.

Lemma 2.2 For all times u and for all values pi,

V (u, Jj ∈ U(Opt, u), rj ≤ u, pj ≤ pi)

≥ ε

1 + ε
(P (Jj ∈ U(SJF, u), pj ≤ pi) +

ε

1 + ε
V (u, Jj ∈ U(SJF, u), pj ≤ pi)

Proof. The proof is by induction on the time u. Whenever there is a job Jj ∈ U(SJF, u) with
pj ≤ pi, then the right hand side of the inequality decreases at least as fast as the left hand side since

SJF has a (1 + ε)-speed processor. If the is no such job Jj , then the right hand side of the inequality
is zero.

Using lemma 2.2 with u = ri, then to prove equation 2.3 it is sufficient by substitution to prove:

ε

1 + ε
P (Jj ∈ U(SJF, ri), pj ≤ pi) +

1

1 + ε
V (ri, Jj ∈ U(SJF, ri), pj ≤ pi)

+P (rj ∈ (ri, t
′], pj ≤ pi)−

ε

4(1 + ε)
P (Jj ∈ D, rj ≤ ri, pj ≤ pi)

≥ (
4 + 5ε

4(1 + ε)
)(t− ri) (2.4)

Since obviously, P (Jj ∈ U(SJF, ri), pj ≤ pi) ≥ P (Jj ∈ D, rj ≤ ri, pj ≤ pi) and also V (ri, Jj ∈
U(SJF, ri), pj ≤ pi) ≤ P (Jj ∈ U(SJF, ri), pj ≤ pi), to prove equation 2.4 it suffices to show that

4 + 3ε

4(1 + ε)
V (ri, Jj ∈ U(SJF, ri), pj ≤ pi) + P (rj ∈ (ri, t

′], pj ≤ pi) ≥ (
4 + 5ε

4(1 + ε)
)(t− ri) (2.5)

During [ri, t
′], SJF does (1 + ε)(t′ − ri) work on jobs shorter than Ji. By algebraic simplification

(1 + ε)(t′ − ri) = 4+3ε
4 (t− ri). The jobs that SJF worked on during [ri, t

′] either had to arrive before ri or

during [ri, t
′]. Therefore, it trivially follows that

4 + 3ε

4
(t− ri) = V (ri, Jj ∈ U(SJF, ri), pj ≤ pi)− V (t′, Jj ∈ U(SJF, ri), pj ≤ pi)

+P (rj ∈ (ri, t
′], pj ≤ pi)− V (t′, rj ∈ (ri, t

′], pj ≤ pi)

By dropping the negative terms on the right hand side we get that:

4 + 3ε

4
(t− ri) ≤ V (ri, Jj ∈ U(SJF, ri), pj ≤ pi) + P (rj ∈ (ri, t

′], pj ≤ pi)
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or equivalently,

(t− ri) ≤
4

4 + 3ε
V (ri, Jj ∈ U(SJF, ri), pj ≤ pi) +

4

4 + 3ε
P (rj ∈ (ri, t

′], pj ≤ pi) (2.6)

Hence by substitution using equation 2.6, to prove equation 2.5 it suffices to prove:

4 + 3ε

4(1 + ε)
V (ri, Jj ∈ U(SJF, ri), pj ≤ pi) + P (rj ∈ (ri, t

′], pj ≤ pi)

≥ 4 + 5ε

(4 + 3ε)(1 + ε)

[
V (ri, Jj ∈ U(SJF, ri), pj ≤ pi) + P (rj ∈ (ri, t

′], pj ≤ pi)
]

(2.7)

Now, it is easy to see that equation 2.7 is true since,

1 ≥ 4 + 5ε

(4 + 3ε)(1 + ε)

and
4 + 3ε

4(1 + ε)
≥ 4 + 5ε

(4 + 3ε)(1 + ε)

Thus we have proved our main theorem for this section.

Theorem 2.3 SJF is (1 + ε)-speed, O( 1
ε )-competitive for the `p norms of flowtime, for p ≥ 1.

2.5 Analysis of SRPT

In this section we prove identical results for SRPT. The analysis is somewhat more involved than that for
SJF because we need to handle the remaining times of jobs under SRPT more carefully.

Let us define the relaxed age, denoted by rAgep(Ji, t), of a job Ji at time t to be 0 if (t − ri) ≤ 8pi/ε

and (t− ri)p−1 otherwise.

Note that if F (Ji) ≤ 8pi/ε, then p
∫
t rAge

p(Ji, t) = 0 and if F (Ji) > 8pi/ε, then p
∫
t rAge

p(Ji, t) =

F p(Ji)− (8pi/ε)
p. Thus, we always have that

F p(Ji) ≤ p
∫

t
rAgep(Ji, t) + (8pi/ε)

p

Define rAge(X, t) and rSAge(X, t) for a set of jobs X as the sum of rAge’s and sAge’s of jobs in X .
Now, if we show that for all t,

rAgep(U(SRPT, t) \ U(Opt, t), t) ≤ O(1/εp)Agep(U(Opt, t), t)

then it follows that,
rAgep(U(SRPT, t), t) = O(1/εp)Agep(U(Opt, t), t)

and hence that ∫

t
rAgep(U(SRPT, t), t) = O(1/εp)

∫

t
Agep(U(Opt, t), t)
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Now since the flow time of Ji it at least pi, it is easy to see that F p(SRPT ) ≤
∫
t rAge

p(U(SRPT, t), t) +∑
i(8pi/ε)

p = O(1/ε)pF p(Opt).

To prove these, we modify the analysis for SJF as follows: Given a time t, define D to consist of only
those jobs which have age more that 8/ε times their size, and which Opt has finished but are present under

SRPT. Mimicking the proof for SJF, for every job Ji in D will we show that we can associate εpi/4(1 + ε)

units of work (which has not been already allocated to a lower indexed job in D) from some job of size≤ pi
in Opt and which has age at least ε(t−ri)4(1+ε) . Clearly, this implies that

rAgep(U(SRPT, t)− U(Opt, t), t) ≤ O(1/εp)Agep(U(Opt, t), t)

For job Jj , let rem(j, t) denote its remaining processing requirement at time t. We begin by a result
similar to Lemma 2.2.

Lemma 2.4 For all times u and values of pi,

V (u, Ji ∈ U(Opt, u), rj ≤ u, pj ≤ pi) ≥
ε

1 + ε
P (Jj ∈ U(SRPT, u), pj ≤ pi)

+
1

1 + ε
[V (u, Jj ∈ U(SRPT, u), pj ≤ pi)− pi](2.8)

Proof. First observe that by the nature of SRPT, at any time u and any value p, there can be at most
one which has size greater than p and remaining time less than p. Thus the term

V (u, Jj ∈ U(SRPT, u), rem(j, u) ≤ pi, pj > pi)

never exceeds pi.
We now prove the lemma by induction on the time u. Whenever there is a job in with size less

than pi or remaining time less than pi then the right hand side of the inequality decreases at least as
fast as the left hand side. If the is no such job Jj , then the right hand side of the inequality is −pi
where as the left hand side is 0. Now, it might happen that SRPT works on some job of size > pi
and its remaining time becomes pi or less. However, it is easy to see that in this case the right hand
side is no more than 0.

We now apply Equation 2.8 with u = ri to Lemma 2.3. We also use the obvious facts that

P (Jj ∈ U(SRPT, ri), pj ≤ pi) ≥ P (Jj ∈ D, rj ≤ ri, pj ≤ pi)

and

P (Jj ∈ U(SRPT, ri), pj ≤ pi) ≥ V (ri, Jj ∈ U(SRPT, ri), pj ≤ pi)

Thus it suffices to show that

4 + 3ε

4(1 + ε)
P (Jj ∈ U(SRPT, ri), pj ≤ pi) + P (rj ∈ (ri, t

′], pj ≤ pi)−
1

1 + ε
pi

≥ (
4 + 5ε

4(1 + ε)
)(t− ri) (2.9)
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Since SRPT does not finish Ji by time t (and hence by time t′). It must be the case that (1+ε)(t′−ri) ≤
V (ri, Jj ∈ U(SRPT, ri), rem(j) ≤ pi) + P (rj ∈ (ri, t

′], pj ≤ pi). Since,

V (ri, Jj ∈ U(SRPT, ri), rem(j) ≤ pi) ≤ V (ri, Jj ∈ U(SRPT, ri), pj ≤ pi) + pi

we get that

4 + 3ε

4
(t− ri) ≤ V (ri, Jj ∈ U(SRPT, ri), pj ≤ pi) + P (rj ∈ (ri, t

′], pj ≤ pi) + pi

Now, since pi ≤ ε
8(t− ri) (this is where we use that we are considering relaxed ages) we have that,

4 + 2ε

4
(t− ri) ≤ V (ri, Jj ∈ U(SRPT, ri), pj ≤ pi) + P (rj ∈ (ri, t

′], pj ≤ pi)− pi (2.10)

Using 2.10, to prove 2.9 it suffices to show that

4 + 3ε

4(1 + ε)
V (Jj ∈ U(SRPT, ri), pj ≤ pi) + P (rj ∈ (ri, t

′], pj ≤ pi)−
1

1 + ε
pi

≥
(

4 + 5ε

2(1 + ε)(2 + ε)

)[
V (ri, Jj ∈ U(SRPT, ri), pj ≤ pi) + P (rj ∈ (ri, t

′], pj ≤ pi)
]
− pi(2.11)

However, comparing term by term, it is easy to see that equation 2.11 always holds. Thus we get that,

Theorem 2.5 SRPT is (1 + ε)-speed, O( 1
ε )-competitive for the `p norms of flowtime, for p ≥ 1.

2.6 Flow Analysis of SETF

Our goal is to show that SETF is (1 + ε)-speed, O(1/ε2+2/p)-competitive for the `p norm of flowtime.
Recall that SETF is the non-clairvoyant algorithm that at any time works on the job that has received the
least amount of processing thus far. It can be seen that the local-competitiveness technique used in the
previous sections on clairvoyant scheduling does not work in the non-clairvoyant case. To prove our result,
we will consider a series of intermediate steps where we relate various scheduling algorithms to each other,
while losing a (1 + ε) factor speed up at each step.

There are two steps in the analysis: Suppose first that we knew the value of ε (i.e. our non-clairvoyant
algorithm could use the value of ε while scheduling), for this case we give a non-clairvoyant algorithm
that we call MLF (described below) and relate it to Opt. We show that if MLF has a (1 + ε) times faster

processor then F p(MLF) = O(1/ε2p+2)F p(Opt). Next, we show that we can remove our dependence on

the knowledge of ε. To do this we show that the performance of SETF with a (1 + ε) faster processor is no
worse than that of MLF. Since SETF does not require any knowledge of ε, this will imply the result.

To compare MLF with Opt we will introduce a somewhat general technique which will also be used
later in Chapter 4 to prove results about minimizing the `p norms of stretch non-clairvoyantly. The main
idea is the following: We first relate the behavior of MLF on an arbitrary instance J to the behavior of SJF
on another instance L derived from J . The crucial step is then to relate the behavior of SJF on L to the
behavior of SJF on J . This reduces the problem of relating MLF to Opt to that of relating SJF to Opt. The
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latter problem is usually easier. For our problem, we will simply use the result from the previous section
that SJF is (1 + ε)-speed, O(1/ε)-competitive for minimizing `p norms of flow time. We now describe the
details.

Our MLF is a variation of the standard Multilevel Feedback Queue algorithm where the quanta for the

queues are set as a function of ε. Let `i = ε((1 + ε)i − 1), i ≥ 0, and let qi = `i+1 − `i = ε2(1 + ε)i, i ≥ i.
In MLF a job Jj is in level k at time t if the work done on Jj by time t is ≥ `k and < `k+1. MLF maintains
the invariant that it is always running the earliest arriving job in the smallest nonempty level.

Let SETFs (resp. MLFs) denote the algorithms SETF and MLF executed with an s speed processor. We
first show the relation between SETF and MLF.

Lemma 2.6 For any instance I, and for any Jj ∈ I, Jj completes in SETF1+ε before Jj completes

in MLF1.

Proof. For any job Jj ∈ I and any time t, let w(j, t) denote the work done on Jj by time t.

For a job with w(j, t) ≤ x, let rem≤x(j, t) = min(pj , x) − w(j, t), that is, the amount of work
that must be done on Jj until either Jj completes or until Jj has been processed for x units. Let

U(A, t, w(j, t) ≤ x) denote the set of unfinished jobs in algorithm A at time t which have less than

x work done on them. Let W≤x(A, t) denote
∑

Jj∈U(A,t,w(j,t)≤x) rem≤x(j, t). Now, as SETF is

always working on the job with least work done, it is easy to see that for all x and for any algorithm
AW≤p(SETF, t) ≤W≤p(A, t).

Suppose to reach a contradiction that there is some job Jj which completes earlier in MLF1

than in SETF1+ε. Clearly MLF1 must finish the work W≤pj (MLF1, rj) before time CMLF1
j since

MLF1 will either complete or give pj units of processing by time CMLF1
j to jobs arriving before rj .

Moreover, at time CMLF1
j all the jobs in U(MLF1, t) have at least pj/(1 + ε) amount of work done

on them, otherwise Jj wouldn’t be run by MLF1 at time CMLF1
j since there would be a lower level

job than Jj at this time. Consider the schedule A1+ε that at all times t, runs the job that MLF1 is
running at time t (and idles if this job is already completed). Hence, A1+ε would have completed Jj ,

and all previously arriving jobs with processing time less that pj , by time CMLF1
j since A1+ε has

a (1 + ε)-speed processor. Hence, by the property of SETF from the previous paragraph, SETF1+ε

completes Jj by time CMLF1
j , which is our contradiction.

Lemma 2.6 implies that

F p(SETF(I), s) ≤ F p(MLF(I), s/(1 + ε)) (2.12)

Now our goal will be to relate MLF and Opt. Let the original instance be I. Let J be the instance obtained

from I as follows. Consider a job Jj and let i be the smallest integer such that pj + ε ≤ ε(1 + ε)i. The

processing time of Jj in J is then ε(1 + ε)i. Let K be the instance obtained from J by decreasing each job

size by ε. Thus, each job in K has size `k = ε((1 + ε)k − 1) for some k. Note that in this transformation

from I to K, the size of a job doesn’t decrease, and it increases by at most a factor of (1 + ε)2. Since MLF
is has the property that increasing the length of a particular job will not decrease the completion time of any



24 CHAPTER 2. SCHEDULING TO MINIMIZE `P NORMS OF FLOW TIME

job, we can conclude that

F p(MLF(I), s/(1 + ε)) ≤ F p(MLF(K), s/(1 + ε)) (2.13)

Finally we create an instance L by replacing each job of size ε((1 + ε)k − 1) job in K by k jobs of size
q0, q1, . . . , qk−1. Note that `k = q0 + q1 + . . . , qk−1. For a job of Jj ∈ K, we denote the corresponding
jobs in L by Jj0 , Jj1 , . . . , Jjk−1

.

Notice that any time t, SJF(L) is working on a job Jjb ∈ L if and only if MLF(K) is working on job

Jj ∈ K that is in level b at time t. In particular, this implies that the completion time of Jj in MLF(K) is

exactly the completion time of some job Jjb ∈ SJF(L). Hence,

F p(MLF(K), s/(1 + ε)) ≤ F p(SJF(L), s/(1 + ε)) (2.14)

By Theorem 2.3, we know that

F p(SJF(L), s/(1 + ε) = O(1/εp)F p(Opt(L), s/(1 + ε)2) (2.15)

We relate the optimal schedule for L back to the optimal schedule for I. To do this we first relate L to J
as follows. Let L(k) denote the instance obtained from J by multiplying each job size in J by ε/(1 + ε)k.

Next, we remove from L(k) any job whose size is less than ε2. We claim that L = L(1) ∪ L(2) ∪ . . . . To

see this, let us consider some job Jj ∈ J of size ε(1 + ε)i. Then, L(1) contains the corresponding job Jji−1

of size ε/(1 + ε) · ε(1 + ε)i = ε2(1 + ε)i−1 = qi−1. Similarly L(2) contains the job Jji−2 of size qi−2 and so

on. Thus, L is exactly L(1) ∪ L(2) ∪ . . . . Summarizing, we have that the L(k)′s are geometrically scaled

down copies of J and that L is exactly the union of these L(k)′s.
Our idea at a high level is as follows: Given a good schedule of J , we obtain a good schedule for L(k).

This will be easy to do as L(k) is a scaled down version of J . Finally, we will superimpose the schedules

for each L(k) to obtain a schedule for L. This will give us a procedure to obtain a good schedule for L given

a good schedule for J . To put everything in place, we need the following lemma which relates J and L(k).

Lemma 2.7 Let L(k) be as defined above. Let F (s, Ji,G)) denote the flow time of job Ji ∈ G when
SJF is run on G with a speed s processor. Then, for all x ≥ 1,

F (ε(1 + ε)−k · x · s, Jik ,L(k)) ≤ 1

x
F (s, Ji,J )

Proof. We first show that for all jobs Jj ∈ J , F (s, Jj ,J ) ≤ (1/s)F (1, Jj ,J ). Let w(x, s, Jj)

denote the work done on job Jj , after x units of time since it arrived, under SJF using an s speed

processor. We will show a stronger invariant that for all jobs Jj and all times t,w((t−rj)/s, s, Jj) ≥
w(t− rj , 1, Jj).

Consider some instance where this condition is violated. Let Jj be the job and t be the earliest

time for which w((t − rj)/s, s, Jj) < w(t − rj , 1, Jj). Clearly, SJFs is not working on Jj at
time t, due to minimality of t. Thus, SJFs is working on some other smaller job i. Since SJF1

is not working on i, SJF1 has already finished i by some time t′ < t. However, this means that

w((t′ − ri), s, Ji) < w(t′ − ri, 1, Ji), which contradicts the minimality of t.
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We now show the main result of the lemma. It is easy to see that the flow time of every job

Jj(k) ∈ L(k) (where Jj(k) is job corresponding to Jj ∈ J but scaled down by ε(1 + ε)−k times)

under SJF with a speed ε(1 + ε)−k processor is at most that of the corresponding job Jj ∈ J , under

SJF with a unit speed processor. Thus by the fact above, running SJF on L(k) with an x · ε(1+ ε)−k-

speed processor yields a 1/x times smaller flow time for each job in L(k) than the corresponding
job in J .

Lemma 2.8
F p(Opt(L), 1 + 2ε) = O(1/ε2)F p(SJF(J ), 1)

Proof. Given the schedule SJF(J ), we construct a following schedule A for L as follows. The jobs

in L(k) are run with a speed xk = ε(1 + ε
1+ε)

−k processor using the algorithm SJF. Note that the

total speed required by A is at most

∞∑

i=1

xi =
∞∑

i=1

ε
1

(1 + ε
1+ε)

i
=

ε

1− 1+ε
1+2ε

= 1 + 2ε

By Lemma 2.7, F p(A(L(k)), 1 + 2ε) will be at most
(
ε(1+ε)−k

xk

)p
=
(

(1+2ε)
(1+ε)2

)kp
times F p(SJF(J , 1). Hence,

F p(A(L), 1 + 2ε)

F p(SJF(J ), 1)
≤

∞∑

i=1

(
1 + 2ε

(1 + ε)2

)ip

≤
∞∑

i=0

(
1− ε2

(1 + ε)2

)i

= O(1/ε2)

The proof then follows because Opt is at least as good as A.

Hence by Lemma 2.8, Theorem 2.3, and the fact that that jobs lengths in J are at most (1 + ε)2 times
as long as they are in I, we get that

F p(Opt(L), s/(1 + ε)2)

= O(1/ε2) · F p(SJF(J ),
s

(1 + 2ε)(1 + ε)2
)

= O(1/εp+2) · F p(Opt(J ),
s

(1 + 2ε)(1 + ε)3
)

= O(1/εp+2) · F p(Opt(I),
s

(1 + 2ε)(1 + ε)5
) (2.16)

By stringing together the inequalities 2.12, 2.13, 2.14, 2.15, 2.16, we find that

F p(SETF(I), s) = O(1/ε2p+2)F p(Opt(I),
s

(1 + 2ε)(1 + ε)4
)

Hence, we obtain the result that
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Theorem 2.9 SETF is (1+ ε)-speedO(1/ε2+2/p)-competitive non-clairvoyant online algorithm for
minimizing the `p norm of flowtime.

2.7 Lower Bound for Round Robin

We now show that for every p ≥ 1, there is an ε > 0 such that Round Robin (RR) is not an (1 + ε)-speed,

no(1)-competitive algorithm for the `p norm of flow time. In particular we show that

Theorem 2.10 For any p ≥ 1, there is an ε > 0 such that even with a (1 + ε) times faster processor

RR is not no(1) competitive for the `p norms of flow time. In particular, for ε < 1/2p, RR is

(1 + ε)-speed, Ω(n(1−2εp)/p)-competitive for the `p norms of flow time.

Proof. Suppose 0 < ε < 1/2p and RR has a processor of speed (1 + ε). Consider the following
instance. Two jobs of size p0 = 1 arrive at r0 = 0. Next we have a collection of n jobs whose

release times and sizes are defined as follows. The first job of size p1 = p0(1− 1+ε
2 ) arrives at time

r1 = p0. In general the ith job has size pi = (1− 1+ε
i+1 )pi−1 and ri =

∑i−1
j=0 pj . The instance has the

following properties which are easily verified:

1.Except for one job of size 1 which arrives at time 0, each job under SRPT has a flow time equal

to its size. The job of size 1 has flow time t′ = 1 +
∑n

j=0 pj .

2.Under RR with a (1 + ε)-speed processor, at each time ri, all jobs (including the newly intro-
duced job) have exactly the same remaining processing time. In particular this means that, all

the jobs keep accumulating and finish simultaneously at time t = (2p0 +
∑n

j=1 pi)/(1 + ε).

We now consider the relevant quantities. First observe that pi = Πi
j=1

(j−ε)
j+1 = 1

i+1Πi
j=1(1−ε/j).

Using the fact that for all x ≥ 0, 1 − x ≤ e−x we get that pi ≤ 1
i+1e

−H(i)ε where H(i) is the ith

Harmonic number. Finally using that H(i) ≥ ln i, we get that pi ≤ 1
i+1 i

−ε ≤ i−(1+ε).

We now upper bound F p(SRPT, 1), and hence F p(Opt, 1). Observe that the flow time of the

the jobs that finishes the last is 1 +
∑n

j=0 pj ≤
∑∞

j=0 pj ≤
∑∞

j=0 j
−(1+ε) = O(1). For all other

jobs, their flow time is exactly equal to their processing time, and hence the sum of the pth powers

of the the flow time of all these jobs is
∑n

j=0 p
p
j ≤

∑∞
j=0 j

−(1+ε)p = O(1), thus we get that

F p(SRPT, 1) = O(1).

On the other hand, in RR each job with size pi has flow time at least (i + 2)pi (since this job
time-shares with at least i + 2 jobs throughout its execution). We now lower bound pi. Using the

fact that e−2x ≤ 1 − x for x ≤ 1
2 , we get that pi = 1

i+1Πi
j=1(1 − ε/j) ≥ 1

i+1e
−2εH(i). Since

H(i) ≤ ln i + 1 we get, pi ≥ 1
i+1(ei)−2ε = Ω(i−(1+2ε)). Thus (i + 2)pi = Ω(i−2ε). This gives us

that F p(RR, 1 + ε) is at least
∑n

i=1 i
−2εp which is Ω(nδ) for 2εp ≤ 1− δ.

As a simple corollary, Theorem 2.10 implies that for p = 2, then RR is not O(1)-competitive even with

an (1 + ε) speed up if ε < 1
4 .
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2.8 Concluding Remarks

It is interesting to note that the schedule produced by SJF using an (1 + ε)-speed processor is O(1) com-
petitive for all `p norms simultaneously. On the other hand if no resource augmentation is allowed, one can
show (by slightly modifying the example in Theorem 2.1) that there does not exist single schedule for which

the `p norm of flow time is within no(1) times that of the optimum schedule for all values of p. Hence, if one

considers the offline problem of trying to find an no(1) approximate schedule, then there has to be a different
schedule for each value of p. In this sense, this is another nice property of resource augmentation that it
allows us to prove a statement about a single schedule, which is otherwise not possible.

The results of this chapter for the clairvoyant case have recently been extended to the case of multiple
machines by Chekuri, Khanna and Kumar [22]. They show that a simple load balancing scheme developed
by Avrahami and Azar [4] is a (1 + ε)-speed, O(1/ε)-competitive algorithms for minimizing the `p norms
of flow time and stretch on multiple machines.

Some problems that remain open are the following:

Open Problem 2.1 What is the offline complexity of minimizing the `p norms of flowtime? Is the
problem NP-Hard?

Open Problem 2.2 Given a fixed p, 1 < p < ∞. Is there a polynomial time algorithm with

approximation ratio no(1) for minimizing the `p norm of flow time?
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Chapter 3

Scheduling to Minimize Weighted Flow
Time

3.1 Introduction

Often in server systems, not all jobs are treated equally. Some jobs might be more important than others.
For example, the Unix operating system has a priority parameter for jobs which can be set by the system
call nice [72]. Moreover, some operations such as keystrokes, or other input-output operations inherently
receive a higher priority as compared with other background or passive operations. Similarly in the pro-
posed differentiated services architecture for the Internet (known as Diffserv) [50], clients are classified into
premium or economy class based on the type of service level desired by them. The goal in such a setting is
to give better performance to the clients in higher priority classes, possibly at the expense of those in lower
priority classes.

Perhaps the simplest and most natural way to formalize setting with different priority classes is to assign
weights to jobs and then consider some weighted function of the flow time or a related measure that one is
interested in. In this chapter, we consider algorithms for several variants of the weighted flow time measure.

We first consider the most basic problem of minimizing the total weighted flow time on a single machine.
While SRPT is optimal for minimizing the total unweighted flow time, the weighted case is known to be
NP-Hard [53]. The first non-trivial result for this problem was due to Chekuri, Khanna and Zhu [23] who

gave an O(log2B) competitive semi-online1 algorithm, where B is the ratio of the maximum and minimum
processing times of the jobs. They also show a lower bound of 1.61 on the competitive ratio of any online
algorithm. However, the work of [23] left a questions open. First, is there an O(1) competitive algorithm
for minimizing weighted flow time with arbitrary weights? A simpler problem left open was whether there
is an O(1) competitive algorithm even if there are only two different job weights? Finally, they also ask if
there a “truly” online algorithm with a non-trivial competitive ratio.

Our main result is the first “truly” online algorithm that is k competitive if the job weights belong to at
most k different arbitrary weight classes. Our result also gives the first O(1) competitive algorithm for the

case when there areO(1) different job weights. As a corollary, this gives aO(logW ) competitive algorithm,
since we can simply round the weights up to a power of 2 which affects the quality of the solution by a factor
of at most 2. While the bounds of our algorithm are in terms of W , we also show how this algorithm can be
modified to give a semi-online algorithm with competitive ratio O(log n+ logB). This modified algorithm

1It is semi-online in the sense that it uses the knowledge of B while scheduling the jobs.

29
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is semi-online in the sense that it assumes the knowledge of n,B and W while scheduling the jobs.

Next we consider the more general problem of minimizing the weighted `p norms of flow time (i.e.

(
∑

iwif
p
i )1/p). Our motivation arises in trying to formalize the goals in CPU scheduling that arise in a

typical operating system such as Unix:

Goal A: Amongst jobs of the same priority, there should be some balance between optimizing for average QoS
and optimizing for worst case QoS.

Goal B: Higher priority jobs should get a greater share of the CPU resources, but lower priority jobs should
not be starved.

We consider this problem both in the clairvoyant and non-clairvoyant setting. The impossibility of

achieving an no(1) competitive ratio for minimizing the weighted `p norms of flow time in the clairvoyant
setting (and hence the non-clairvoyant setting), for 1 < p < ∞, follows from Theorem 2.1. Thus we
consider these problems in the resource augmentation model. We show thatHDF , the natural generalization

of SJF to the weighted case, is (1 + ε)-speed, O(1/ε2)-competitive for minimizing the weighted `p norms

of flow time in the clairvoyant setting. Similarly, WSETF , the natural generalization of SETF is (1 + ε)-

speed, O(1/ε2+2/p)-competitive for minimizing the weighted `p norms of flow time in the non-clairvoyant
setting. For the special case of minimizing total weighted flow time non-clairvoyantly (i.e., p = 1), the

general results above give only a (1 + ε)-speed, O(1/ε4)-competitive algorithm. However, we can improve

the result to give a (1 + ε)−speed, (1 + 1/ε)-competitive algorithm2 The results for the weighted `p norms
of flow time are summarized in Table 3.1 below:

Algorithm Speed p Competitive Ratio

HDF 1 + ε p = 1 1 + 1/ε [16]
HDF 1 + ε 1 < p <∞ O(1/ε2)

WSETF 1 + ε p = 1 1 + 1/ε

WSETF 1 + ε 1 < p <∞ O(1/ε2+2/p)

Table 3.1: Resource augmentation results for the weighted `p norms of flow time.

The results for the case 1 < p < ∞ in Table 3.1 above are obtained from results in Chapter 2. To do
this, we introduce a general technique where the weighted problem is reduced to the unweighted case at the
expense of a (1 + ε) faster processor and a 1/ε factor additional loss in the competitive ratio.

This chapter is organized as follows: We first describe the related work in Section 3.2. In Section 3.3 we
give some intuition for the weighted flow time problem. In particular, we describe some simple algorithms
and show why they do not perform well. In Section 3.4 we present and analyze our O(logW ) competitive
algorithm for weighted flow time. We then consider algorithms for the weighted `p norms of flow time in

Section 3.5 and finally conclude with some open problems in Section 3.6. 3

2This result first appeared in [7], however we give a much simpler proof of this result in this thesis.
3The results in this chapter are from [7] and [10].
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3.2 Related Work

The first non-trivial result for the problem of minimizing weighted flow time on a single machine was due to

Chekuri, Khanna and Zhu [23] who gave an O(log2B) competitive semi-online (it requires the knowledge
of B beforehand) algorithm. They also show a lower bound of 1.618 on the competitiveness of any online
algorithm. If resource augmentation is allowed, it is known that HDF is a (1+ε)-speed,O(1/ε)-competitive
algorithm [16].

In the context of offline approximation, Chekuri and Khanna [21] give a (1+ε) approximation algorithm

which has running time O(nO(lnW lnB/ε3)). Thus, their result gives a quasi-polynomial time approximation
scheme (QPTAS) when both W and B are polynomially bounded in n. Moreover, they also give a QP-
TAS for the case when only one of either W or B is polynomially bounded in n. Interesting however, no
polynomial time algorithm with o(n) approximation ratio is known for the case of arbitrary W and B.

No prior work is known for the problem of minimizing the weighted `p norms of flow time.

3.3 Preliminaries

To get a feel for minimizing weighted flow time, we first describe some simple algorithms and give reasons
for their poor performance. Next, we show by an example that the algorithm of Chekuri et al. [23] has a
competitive ratio of Ω(logB) even in the case when the job weights are either 1 or 2. This motivates the

goal of an O(1) competitive algorithm for a constant number of weight classes. We begin by showing that
local-competitiveness is necessary for obtaining a good algorithm for weighted flow time.

Local Competitiveness is Necessary:

Let O be the optimum algorithm and A some other algorithm. Let Wo(t) and Wa(t) denote the total weight
of jobs present in O’s and A’s system respectively at time t. It is easy to see that for any algorithm A, the

total weighted flow time under A can also be expressed as
∫∞

0 Wa(t)dt. Wa(t) ≤ cWo(t) for some c at all

times t (i.e. locally competitive), then clearly A is c-competitive. It turns out that local-competitiveness is
also necessary for obtaining a globally competitive algorithm [16]. The idea is that if Wa(t) > cWo(t) at
some time t, then the adversary can start giving a stream of jobs of size ε→ 0 and weight 1 every ε units of
time. This forces both O and A to work on the new stream. By making the stream long enough, adversary
can force the competitive ratio to be greater than c.

Thus any algorithm with a non-trivial competitive ratio must keep the total weight of alive jobs low at all
times. A natural strategy to consider is greedy, which at any time instant schedules the job with the highest

weight to remaining processing time. However this is easily shown to be Ω(
√
B) competitive [23]. The

problem is that the algorithm does not distinguish between a job with a high weight and correspondingly
high processing time and a small weight job with a small processing time (for example, a job of weight 1 and
size 1, and another job of weightW and sizeW ). Breaking ties badly, the naive greedy algorithm may be left
with a single job with a large weight and a small remaining processing time, while the optimum algorithm
only has the single job of small weight. On the other extreme, the algorithm which simply disregards the
size of the job and works on the highest weight job is easily shown to be B − competitive [23].

The O(log2B) competitive algorithm of [23] deals with the two problems above by striking a balance
between them. It processes a large weight job without regard to its ratio as long as the total weight of jobs
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with a strictly better weight to remaining processing time ratio does not get too large.
However, even for the case when the job weights are either 1 or 2, the algorithm of [23] can be shown

to be Ω(logB) competitive4. Consider the following scenario: At time t = 0 two jobs, one of size B and

weight 2 and other of size B/2 and weight 1 are released. For i ranging from 1 to logB − 1, at each time

instant B(1 − 2−i), one job of weight 1 and size B/2i+1 is released. Finally, at time t = B(1 − 2i+1),

another job of size B/2i+1 is released.
At time t = 0, their algorithm will schedule the job of weight 2 and continue executing till time B. At

this stage the weight of the unfinished jobs will be (logB + 1). The optimum algorithm on the other hand
works only on jobs of weight 1 and hence finishes all jobs except the one of weight 2 by time B. Thus the

algorithm is locally 1
2(logB + 1) competitive, and hence Ω(logB) competitive.

The reason for the bad performance of the algorithm above is that it continues to work on the high weight
job even when a lot of smaller weight jobs keep accumulating. Our algorithm will be careful in this respect
and will in fact be 2-competitive for the 2 weight case. We next describe our algorithm and analyze it.

3.4 Algorithm

We now present our algorithm that we call Balanced SRPT, for minimizing weighted flow time. We then
analyze it and show that its analysis is tight. Finally we show that this algorithm can be modified to give an
O(logn+ logB) competitive semi-online algorithm.

We assume that the weights of the jobs are drawn from the set {w1, w2, . . . , wk}, where w1 < w2 . . . <

wk. We will refer to these as weight classes 1, . . . , k. Without loss of generality5, we also assume that
wi/wi−1 is integral for 1 < i ≤ k. Let Qj(t) (or just Qj when the time t is evident from the context) denote

the set of alive jobs of class j at time t. For a collection of jobs X , we use W (X) to mean the sum of the
weights of the jobs in X .

Balanced SRPT: At all times, consider the class j, that has maximum W (Qj(t)), breaking ties in favor
of the higher weight class. Within Qj execute the job with shortest remaining processing time.

Intuitively, the algorithm tries to balance the weight in various weight classes, while giving priority to
larger weights. It runs SRPT within each weight class. Note in particular that the algorithm favors jobs with
a higher weight. For example, if there are W − 1 (or even W ) jobs of weight 1 and one job of weight W .
The algorithm works on the W weight job first.

3.4.1 Analysis

We now prove the k competitiveness of Balanced SRPT.
First we give notation for describing some useful quantities. We denote our Balanced SRPT algorithm

by Bal and the optimum algorithm by Opt. The tuple (j, l) denotes job in weight class j that has the lth

largest remaining processing time among jobs in that class under Bal.

Define an order on 2-tuples of integers: We say that (j, l) ≺ (j ′, l′) if and only if either of the following
two conditions is satisfied.

4The algorithm of [23] rounds up the weights of incoming jobs to an integral power of 4(logB + 1). Hence, it is trivially loses

a 4(logB + 1) factor in competitive ratio. However, our example does not use this rounding to prove Ω(logB) competitiveness.
5Arbitrary weights can be rounded up to an integral power of 2 and we get the required property of integral ratios, while losing

only a factor of 2 in the competitive ratio.
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1. wj · l < wj′ · l′

2. wj · l = wj′ · l′ and j < j′

Also, we say (j ′, l′) � (j, l) if (j, l) 6≺ (j ′, l′). Note that (j ′, l′) � (j, l) and (j, l) � (j ′, l′) holds iff

j = j′ and l = l′, and that � defines a total order on the 2-tuples. Intuitively, the notion ≺ formalizes the
order in which Bal executes the jobs. In particular, at any time Bal executes the job which has the highest
priority according to the ordering ≺.

Let B(j, l, t) be the set of jobs that are alive at time t under Bal and have priority no more than

that of job (j, l). Thus, B(j, l, t) consists of all jobs (j ′, l′) such that (j ′, l′) � (j, l) Let |B(j, l, t)| =∑
J∈B(j,l,t) rem(J, t), where rem(J, t) is the remaining time of job J at time t. Figure 3.1 below describes

the sets of jobs B(j, l, t) for various of j and l.

The main proof idea will be to compare the “prefixes” |B(j, l, t)| with suitable prefixes of Opt. We now

define the prefix for Opt. Consider the jobs under Opt that are alive at time t, a valid packing P (j, l, t) is a

sub-collection of jobs alive under Opt at time t, such that the total weight of the jobs in P (j, l, t) is at most

wj · l. Let |P (j, l, t)| denote the total remaining time of jobs contained in P (j, l, t).
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W3=4 

Figure 3.1: An example illustrating the notation used. We have dropped the third argument from B.

We begin by observing some properties of these prefixes.

Observation 3.1 For h ≤ j and any l, |B(j, l, t)| ≥ |B(h,wj/wh · l, t)|.

Proof. It follows directly from the definition of the ≺ relation that B(h,wj/wh · l, t) ⊆ B(j, l, t),

for h ≤ j, and hence |B(h,wj/wh · l, t)| ⊆ |B(j, l, t)|. For example, in Figure 3.1 B(1, 4, t) ⊂
B(2, 2, t).

Let V (t) denote the total amount of work remaining at time under Bal (this is also equal to the work
under any conserving policy and hence equal to the work under Opt at time t).

Observation 3.2 At any time t, if Bal works on some job in B(j, l, t), then |B(j, l, t)| = V (t)
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Proof. At any time t, Bal works on the job with the highest priority. Thus, if B(j, l, t) decreases at

time t, then the highest priority job must be in some position (j ′, l′) such that (j ′, l′) � (j, l). Thus,

all the alive jobs lie in B(j, l, t).

Observation 3.3 Suppose a job J of weight wi and size |J | arrives at time t, and that it is inserted

in position h based on the remaining processing times among the weight wi jobs under Bal. Let t−

denote the time just before J arrives, then

1.For all j and l, |B(j, l, t)| ≥ |B(j, l, t−)|.
2.For all j and for all l such that l > wi/wj

|B(j, l, t)| ≥
{
|B(j, l − wi/wj , t−)|+ |J | if i > j
|B(i, wj · l/wi − 1, t−)|+ |J | if i ≤ j

Proof. Let fi be the smallest number for which (j, l) ≺ (i, fi). Let |J ′| denote the remaining

processing time of the job at position (i, fi − 1) at time t− (|J ′| = 0 if there is no job at position

(i, fi − 1)). Observe that if l > wi/wj , then for i > j, (j, l − wi/wj) ≺ (i, fi − 1) ≺ (j, l) and
hence

|B(j, l, t)| ≥ |B(j, l − wi/wj , t)|+ |J ′| (3.1)

Similarly, for i ≤ j, we have that fi = wj · l/wi + 1 and hence (i, wj · l/wi − 1) ≺ (i, fi − 1) and
thus

|B(j, l, t)| ≥ |B(i, l · wj/wi, t) ≥ |B(i, l · wj/wi − 1, t)|+ |J ′| (3.2)

We first show that |B(j, l, t)| ≥ |B(j, l, t−)|. We have two cases.

1.If J /∈ B(j, l, t), then clearly, B(j, l, t) = B(j, l, t−) and hence |B(j, l, t)| = |B(j, l, t−)|.
2.In the case when J ∈ B(j, l, t), we argue as follows. Since J ∈ B(j, l, t) by our assumption,

we must have that h < fi. Then, the only way in which B(j, l, t) differs from B(j, l, t−) is

that J is inserted in position (i, h) and the jobs previously in positions (i, h), . . . , (i, fi − 1)

move to positions (i, h + 1), . . . , (i, fi) respectively. Again, let |J ′| denote the remaining

processing time of the job at position (i, fi − 1) at time t−. Thus, we have that |B(j, l, t)| =

|B(j, l, t−)| − |J ′|+ |J |. Since, h ≤ fi− 1 , it must be the case that |J ′| ≤ |J |. Thus, we have

that |B(j, l, t)| ≥ |B(j, l, t−)|.
For the second part of the observation, we again have two cases.

1.First, if J /∈ B(j, l, t), then it must be the case that |J | ≤ |J ′|. Now it follows that, for i > j,

|B(j, l, t)| ≥ |B(j, l − wi/wj , t)|+ |J ′|
≥ |B(j, l − wi/wj , t)|+ |J |
= |B(j, l − wi/wj , t−)|+ |J |
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Similarly, for i ≤ j,

|B(j, l, t)| ≥ |B(i, l · wj/wi, t)| (by Observation 3.1)

≥ |B(i, l · wj/wi − 1, t−)|+ |J ′| (by Equation 3.2)

≥ |B(i, l · wj/wi − 1, t−)|+ |J | (as |J | ≤ |J ′|)

2.Next, if J ∈ B(j, l, t), it must be that |J | ≥ |J ′|. Thus, we have that for i > j,

|B(j, l, t)| ≥ |B(j, l, t−)| − |J ′|+ |J |
≥ |B(j, l − wi/wj , t−)|+ |J | (by Equation 3.1)

Similarly, for i ≤ j,

|B(j, l, t)| ≥ |B(i, l · wj/wi, t)|
= |B(i, l · wj/wi, t−)| − |J ′|+ |J |
≥ |B(i, l · wj/wi − 1, t−)|+ |J |

Recall that a valid packing P (j, l, t) is any sub-collection of jobs alive under Opt at time t, such that the

total weight of the jobs in P (j, l, t) is at most wj · l.
Lemma 3.4 At all times t, for all 1 ≤ j ≤ k and l ≥ 1, and any packing P (j, l, t) the following
invariant holds

|B(j, l, t)| ≥ |P (j, l, t)| (3.3)

Proof. We will prove Equation 3.3 by induction on the arrivals in the system. First, by perturbing
the arrival times of jobs by an infinitesimal amount we can assume without loss of generality that
all the arrival times are distinct. Let 0 = t1 ≤ t2 ≤ . . . ≤ tn denote the arrival times of the n jobs.
Clearly, the invariant is true at t1 = 0.

Suppose the invariant is true at some ti. We then show that the invariant 3.3 is true at all times
in the interval [ti, ti+1). For the sake of contradiction, let t ∈ [ti, ti+1) be the first time when the

invariant 3.3 fails to hold. Let t′ ∈ (ti, t] be the last time when B(j, l, t′) was decreasing.

If t = t′, we know that |B(j, l, t)| = V (t), and hence |B(j, l, t)| ≥ P (j, l, t)|.
If t′ < t, and since |B(j, l, t)| did not decrease during (t, t′], and as there were no arrivals during

this time, we know that |B(j, l, t)| = |B(j, l, t′)| = V (t′). Moreover, we also have that for any

collection of jobs P (j, l, t), |P (j, l, t)| ≤ |P (j, l, t′)|, because Opt could have worked on some of

these jobs during [t′, t]. Since |P (j, l, t′)| ≤ V (t′), if |B(j, l, t)| < |P (j, l, t)|, then we have that

|B(j, l, t′)| = |B(j, l, t)| < |P (j, l, t)| ≤ |P (j, l, t′)|, contradicting the fact that t was the earliest
time when the invariant 3.3 fails to hold.

We now consider the case of job arrivals. Let t− denote the time instance just before time t.
Suppose there is an arrival at time t and that the invariant 3.3 fails to hold at time t then we show

that it could not be true for some packing at time t−.
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Let P (j, l, t) denote the packing for which |B(j, l, t)| < |P (j, l, t)| and let J denote the job that
arrived at time t.

First we note that if J /∈ P (j, l, t) then P (j, l, t) is also a valid packing at time t−, and

that |P (j, l, t)| = |P (j, l, t−)|. Also, by Observation 3.3 |B(j, l, t)| ≥ |B(j, l, t−)|, hence if

|B(j, l, t)| < |P (j, l, t)|, then this would contradict the fact that |B(j, l, t−)| ≥ |P (j, l, t−)|.
We now consider the case, when the new job is included in the packing P (j, l, t). We i denote

the class of the job which arrives at time t. We consider two cases depending on whether i > j or
i ≤ j.

i > j: By Observation 3.3 we know that, B(j, l, t) ≥ B(j, l − wi/wj , t
−) + |J |. Consider the

packing P ′(j, l − wi/wj , t−) at time t− which is obtained from P (j, l, t) by removing the job

J . Then we have that |P (j, l, t)| = |P ′(j, l−wi/wj , t−)|+ |J |. Thus, ifB(j, l, t) < P (j, l, t),

then this would contradict the fact that |B(j, l − wi/wj , t−)| ≥ |P ′(j, l − wi/wj , t−)|.

i ≤ j: By Observation 3.3 we know that, B(j, l, t) ≥ B(i, wj/wil − 1, t−)| + |J |. Again, we

consider the packing P ′(i, wjl/wi − 1, t−) at time t′ which is obtained from P (j, l, t) by

removing the job J . Then we have that |P (j, l, t)| = |P ′(j, l − wi/wj , t
−)| + |J |. Thus,

if B(j, l, t) < P (j, l, t), then this would contradict the fact that |B(i, wjl/wi − 1, t−)| ≥
|P ′(j, wjl/wi − 1, t−)|.

Theorem 3.5 The Balanced SRPT algorithm is k competitive for k weight classes.

Proof. For any arbitrary time t, let opt(t) denote the total weight of alive jobs under the optimum

algorithm. Clearly, opt(t) is a multiple of w1, since wi/wi−1 is an integer for each 1 < i ≤ k.

Choosing j = 1 and l = opt(t)/w1 and considering the packing P (j, l, t) which contains all the

jobs present under the optimum algorithm. We get that |P (j, l, t)| = V (t), where V (t) is the total

volume of jobs at time t. By Lemma 3.3, we have that |B(j, l, t)| ≥ |P (j, l, t)| = V (t). However,

since Bal is work-conserving we have that |B(j, l, t)| ≤ V (t) and hence |B(j, l, t)| = V (t). Thus,

B(j, l, t) contains all the jobs, and since wt(B(j, l, t)) ≤ k · wj · l = k · opt(t), this implies the k
competitiveness.

Analysis of Balanced SRPT is tight

We now show that the competitive ratio for the Balanced SRPT algorithm is tight. Consider following job

instance, in which for 1 ≤ j ≤ k, 2k−j jobs of weight 2j arrive at time 0. The job of weight 2k has size 1

while rest of them have sizes ε = 2−k. Since all weight classes have an equal amount of weight, Balanced

SRPT would start working on the job of weight 2k and continue working on it till the job finishes.

Consider the scenario at time t = (2k − 2)ε < 1. At t, Balanced SRPT is still working of the job of

weight 2k, hence the total weight under Balanced SRPT is k2k. Where as, the optimal algorithm can finish

all the jobs of size ε first by time t. In this case, the optimal algorithm has a weight of 2k. Thus Balanced
SRPT is locally k competitive at time t, now we can make it globally k competitive, but giving a long stream

of weight 2k and size 2−k jobs.
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The example above also suggests that any O(1) competitive algorithm for the weighted flow time prob-
lem must be designed to carefully balance the number of jobs with high densities and the jobs with high
weights.

3.4.2 A Semi-Online Algorithm

Given an instance I , assume without loss of generality that the job sizes are integers and that the smallest
job weight is 1. Suppose we know the values of the largest weight, largest job size and the total number of
jobs (i.e. W , B and n). Then we can modify the Balanced SRPT algorithm in the following way: Round the

weights up to the nearest power of 2. Consider only the jobs with weights between W
Bn2 and W . Call these

jobs heavy. Run the Balanced SRPT algorithm on the heavy jobs, if at some time no heavy job is present,
work on any arbitrary job.

Let us the denote the instance when restricted to heavy jobs as Ih. Let Opt(Ih) and A(Ih) denote the
weighted flow time of the optimum algorithm and our algorithm on Ih respectively.

When restricted to heavy jobs, by Theorem 3.5, the performance of the Balanced SRPT is no worse than
4(log n+ logB) times the optimum (restricted to Ih). Thus,

A(Ih) ≤ 4(log n+ logB)Opt(Ih) ≤ 4(log n+ logB)Opt(I)

Each non-heavy job can be delayed by at most by nB. Since its weight is no more than W/n2B, it adds

at mostW/n to the total weighted flow time. Since there are at most n non-heavy jobs, the total contribution

of these is no more than W . Since Opt(I) is lower bounded by W , we get.

A(I) ≤ A(Ih) +W

≤ 4(log n+ logB)Opt(I) +W

≤ 4(log n+ logB)Opt(I) +Opt(I)

Thus we get a semi-online algorithm which is O(log n+ logB) competitive.

3.5 Weighted `p norms of Flow Time

We now consider the problem of minimizing the weighted `p norms of flow time. We first define some

needed notation. For an algorithm A on an input instance I with an s speed processor, let F p(A, I, s)
denote the sum of the pth powers of the flow time of all jobs. Similarly, WF p(A, I, s) will denote the

sum of weighted pth powers of the flow time (i.e.
∑

iwif
p
i ) of all jobs. Finally, for the measure F p, let

Opt(F p, I, s) denote the value of the optimum schedule for the F p measure on I with a speed s processor.

Let Opt(WF p, I, s) denote the optimum value for the WF p measure.
We now define the general transformation that we will use throughout this section.

Transforming a weighted to an unweighted instance: Given an instance I, we define an instance I ′
as follows:
Consider a job Ji ∈ I. The instance I ′ is obtained by replacing Ji by wi identical jobs each of size pi/wi
and weight 1, and release time ri. We denote these wi jobs by J ′i1, . . . , J

′
iwi

. Let Xi = {J ′i1, . . . , J ′iwi}
denote this collection of jobs obtained from Ji. Note that all jobs in I ′ have the same weight.
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3.5.1 The Clairvoyant Case

In this section we show that HDF, a natural generalization of SJF is a (1 + ε)-speed, O(1/ε2)-competitive
online algorithm for minimizing the weighted `p norms of flow time.

The main idea of the proof will be to reduce the weighted problem to an unweighted problem using the
transformation described above and then invoke the result for `p norms of unweighted flow time.

Lemma 3.6 For I and I ′ as defined above,

Opt(F p, I ′, 1) ≤ Opt(WF p, I, 1) (3.4)

Proof. Let S be the schedule which minimizes the weighted `p norm of flow time for I. Given

S, we create a schedule for I ′ as follows. At any time t, work on a job in Xi if and only if Ji is
executed at time t under S. Clearly, all jobs in Xi finish when Ji finishes execution, thus no job

in Xi has a flow time higher than that of Ji. By definition, the contribution of Ji to WF p is wif
p
i .

Also, the contribution to the measure F p of each of the wi jobs in Xi will be at most fpi , and hence

the total contribution of jobs in Xi to F p is at most wif
p
i . Since the optimum schedule for I ′ can

be no worse than the schedule constructed above, the result follows.

From Theorem 2.3 in Chapter 2 we know that SJF is (1 + ε)-speed, O(1/ε)-competitive for the (un-

weighted) `p norms of flow time , or equivalently SJF is (1 + ε)-speed, O(1/εp)-competitive for the F p

measure. This implies that,

F p(SJF, I ′, 1 + ε) = O(
1

εp
)Opt(F p, I ′, 1) (3.5)

We now relate the performance of HDF on I with a (1 + ε) times faster processor to that of SJF on I ′.
Recall that HDF is the algorithm that any time works on the job with the small ratio of service received to
its weight.

Lemma 3.7

WF p(HDF, I, 1 + ε) ≤ (1 +
1

ε
)pF p(SJF, I ′, 1) (3.6)

Proof. We claim that for every job Ji ∈ I and every time t, if Ji is alive at time t under HDF with

a (1 + ε) speed processor, then at least ε
1+εwi jobs in Xi ∈ I ′ are alive at time t under SJF with a 1

speed processor.
The claim above immediately implies the result for the following reason. Consider the time

t− = (fi + ri)
− just before Ji finishes execution under HDF. Then Ji contributes exactly wif

p
i to

WF p(HDF, I, 1 + ε), while the ≥ εwi/(1 + ε) jobs in Xi that are unfinished by time t contribute at

least εwi/(1 + ε)fpi to F p(SJF, I ′, 1). Taking the contribution over each job, the result follows.

We now prove the claim. Suppose for the sake of contradiction that t is the earliest time when
Ji is alive under HDF and there are fewer than ε/(1 + ε)wi jobs from Xi left under SJF. Since Ji
is alive under HDF and HDF has a (1 + ε) faster processor, it has spent less than pi/(1 + ε) time

on Ji, whereas SJF has spent strictly more than pi/(1 + ε) time on Xi. Thus there was a some time

t′, such that ri ≤ t′ < t during which HDF was running Jj 6= Ji while SJF was working on some
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job from Xi. Since t′ ≥ ri, it follows from the property of HDF that Jj has higher density than that

of Ji. This implies that jobs in Xj have smaller size than Xi. Since SJF works on Xi at time t′, it

must have already finished all the jobs in Xj by t′. Since Jj is alive at time t′, this contradicts our
assumption of the minimality of t.

By Equations 3.5 and 3.6 we have that

WF p(HDF, I, (1 + ε)2) = O(1/ε)2pOpt(F p, I ′, 1)

Combining this with Equation 3.4 we obtain that,

Theorem 3.8 HDF is (1 + ε)-speed, O(1/ε2)-competitive for minimizing the weighted `p norms of

flow time.

3.5.2 The Non-Clairvoyant Case

As in the analysis of HDF the main step of our analysis will be to relate the behavior of WSETF on an

instance I with weighted jobs to that of SETF on another instance I ′ which consists of unweighted jobs.
We then use the results about (unweighted) `p norms of flow time under SETF to obtain results for WSETF.

Given an instance I consisting of weighted jobs, let I ′ denote the instance defined as in Section 3.5.1

which consists of unweighted jobs. Suppose we run WSETF on I and SETF on I ′ with the same speed pro-
cessor. Then the schedules produced by WSETF and SETF are related by the following simple observation.

Lemma 3.9 At any time t, a job Ji ∈ I is alive and has received pi(t) units of service if and only if

each job in Xi ∈ I ′ is alive and has received exactly pi(t)/wi amount of service. In particular, this

implies that if Ji has flow time fi then each J ′ik ∈ Xi for k = 1, . . . , wi has flow time fi.

Proof. We view the execution of WSETF on I as follows: If at any time WSETF allocates x units
of processing to a job of weight wi, then we think of it as allocating x/wi units of processing to
each of the wi jobs in the collection Xi. Thus the normalized service of job Ji under WSETF is
exactly equal to the amount of service received by a job in Xi. Since WSETF at any time shares
the processor among jobs with the smallest normalized service in the ratio of their weights, this is

identical to the behavior of SETF on I ′ which works equally on the jobs which have received the
smallest amount of service.

Theorem 3.10 WSETF is a (1 + ε)-speed, O(1/ε2+2/p)-competitive non-clairvoyant algorithm for
minimizing the weighted `p norms of flow time.

Proof. By Lemma 3.9 we know that if Ji ∈ I has flow time fi, then the wi jobs in Xi have flow

time fi. Thus the `p norm of unweighted flow time for I ′ is (
∑

iwif
p
i )1/p which is identical to the

weighted flow time for I under WSETF, this implies that

WF p(WSETF, I, 1) = F p(SETF, I ′, 1) (3.7)

By Lemma 3.4 we know that Opt(F p, I ′, 1) ≤ Opt(WF p, I, 1). By the main result of Section
7 in [11] about the competitiveness of SETF for unweighted `p norms of flow time we know that

F p(SETF, I ′, (1 + ε)) = O(1/ε2p+2)Opt(F p, I ′, 1) (3.8)
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Now, by Equations 3.7, 3.8 and 3.4 we get that

WF p(WSETF, I, 1 + ε) = O(1/ε2p+2)Opt(WF p, I, 1)

Thus the result follows.

Improved bounds for p = 1

Theorem 3.10 implies that for p = 1, WSETF is a (1 + ε)-speed, O(1/ε4) competitive algorithm. We now

show that WSETF is in fact (1 + ε)-speed, O(1/ε) competitive for p = 1.

To see this, we simply use the fact that SETF is (1 + ε)-speed, O(1/ε)-competitive for minimizing
total unweighted flow time [46]. Combining this with Equation 3.7 we have that

WF 1((WSETF, I, 1 + ε) = F 1(SETF, I ′, 1 + ε) ≤ 1

ε
Opt(F 1, I ′, 1)

Finally, since Opt(F p, I ′, 1) ≤ Opt(WF p, I, 1) (by Lemma 3.4) the result follows.

3.6 Conclusion and Open Problems

In this chapter we gave an O(logW ) competitive online algorithm for minimizing the total weighted flow
time on a single machine with preemptions. We also saw how resource augmentation results for weighted
flow time can often be obtained directly using results for the unweighted case.

An outstanding open problem is the following:

Open Problem 3.3 Is there an O(1) competitive online or a polynomial time O(1) approximation
algorithm for minimizing the weighted flow time on a single machine with preemptions?



Chapter 4

Scheduling to Minimize Stretch

4.1 Introduction

In this chapter we study problems related to minimizing stretch on a single machine with preemptions. We
will consider two problems:

1. Minimizing the total stretch.

2. Minimizing the `p norms of stretch.

Even though the first problem is a special case of the second (with p = 1), we discuss them separately
because the case of p = 1 is special and has also been studied prior to our work. Also, the first problem
is easier from the second in the sense: While a 2-competitive clairvoyant online algorithm is known for
minimizing the total stretch [60], however, as we shall see, there cannot be any online clairvoyant algorithm

that is no(1) competitive for minimizing the `p norms of stretch for p > 1.
Stretch is a special case of weighted flow time where the weight of a job is inversely proportional to

its size. Hence, a (1 + ε)-speed, O(1)-competitive algorithm for minimizing the `p norms of stretch in the

clairvoyant setting follows directly from the more general results on minimizing the weighted `p norms of
flowtime (Theorem 3.8 in Chapter 3).

Minimizing stretch becomes more interesting the non-clairvoyant case. In this setting, the problem is
considerably harder than the weighted flow time problem. Not only does the online scheduler have no idea
of job sizes, it also has no idea as to which job is more important (has a higher weight). This is reflected in
the strong lower bounds for this problem. We will show that any algorithm is Ω(n) and Ω(B) competitive
for minimizing total stretch. Even with randomization and a factor k speed up the stretch problem is at least
Ω(n/k) competitive. Note especially that neither resource augmentation nor randomization seems to help.

This is in sharp contrast to weighted flow time where a (1 + ε)-speed gives a (1 + 1
ε )-competitive algorithm

[7]. Similarly, for flow time there is a lower bound of n1/3 for any deterministic algorithm, whereas using
randomization, algorithms which are O(logn) competitive can be obtained [45, 13]. The only case where
resource augmentation seems to help is when the job sizes are bounded. Our main result is that,

Theorem 4.1 SETF is a (1 + ε)-speed, O( 1
ε3+1/p · log1+1/pB)-competitive algorithm for the `p

norm of stretch.

This result is almost tight, as also show that any randomized non-clairvoyant algorithm with an O(1)

speed is Ω(logB) competitive for any `p norm of stretch.

41
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For the case of p = 1, Theorem 4.1 implies that SETF is a (1 + ε)-speed, O(log2B)-competitive
algorithm for minimizing total stretch non-clairvoyantly. This is currently the best known upper bound for

this problem. The (1 + ε)-speed, O(log2B) competitiveness of SETF for p = 1 was first shown in [8]. The
analysis technique from [8] was later simplified and extended in [11] for the case of general p ≥ 1. The
table 4.1 summarizes our results for non-clairvoyant scheduling.

Lower bound Lower bound
Problem Scenario Speed SETF without speed up with O(1) speed up

Static 1 O(n), O(logB) Ω(n), Ω(logB) Ω(n),Ω(logB)

Dynamic (1 + ε) O(log1+1/pB) Ω(n),Ω(B) Ω(n),Ω(logB)

Table 4.1: Summary of results for minimizing the `p norms of stretch non-clairvoyantly.

This chapter is organized as follows: In Section 4.2 we discuss the previous work. In Section 4.3 we

show various lower bounds. We first show that there cannot exist any no(1) competitive clairvoyant online
algorithm for minimizing the `p norms of stretch for p > 1. Later we consider the lower bounds for non-
clairvoyant algorithms. Next, we give the positive results. In Section 4.4 consider the static case, (i.e., when
all requests arrive at time t = 0) and show that SETF is the optimal algorithm up to constant factors. In

Section 4.5 we consider the dynamic case and prove Theorem 4.1. 1

4.2 Related Work

Stretch of a job was first considered by Bender et al. [17]. Stretch as a metric has received much attention
lately [27, 75, 60, 16, 15, 6, 18], since it captures the notion of “fairness”. Note that a low stretch implies
that jobs are not delayed disproportionately to their size, hence smaller jobs are delayed less and large jobs
are delayed proportionately more. Muthukrishnan et al. [60] first studied total stretch, and showed that the
shortest remaining processing time (SRPT) algorithm achieves a competitive ratio of 2 for the single machine
and 14 for the multiple machine case. Note that SRPT requires the knowledge of job sizes and hence cannot
be used in the non-clairvoyant setting. In the offline case, there a PTAS is known for minimizing total stretch
on a single machine [18]. Recently, there have been various extensions and improvements [23, 6, 15, 18] to
the problem. However, all previous work looks at the problem in the clairvoyant setting. Since clairvoyant
scheduling does not accurately model many systems, there is significant interest in the non-clairvoyant
version of stretch.

4.3 Lower Bounds

4.3.1 Clairvoyant Scheduling

Theorem 4.2 The competitive ratio of any randomized algorithm A against an oblivious adversary

for F p, 1 < p < ∞, is nΩ(1). In particular, the competitive ratio of any randomized algorithm is

Ω(n(p−1)/3p2
).

1The results in this chapter are combined from [8, 11, 7, 10].
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Proof. We use Yao’s minimax principle for online cost minimization problems [19] and lower bound
the expected value of the ratio of the objective functions of A and Opt on input distribution which
we specify. The inputs are parameterized by integers L, α, and β in the following manner. A long
job of size L arrives at t = 0. From time 0 until time Lα − 1 a job of size 1 arrives every unit of

time. With probability 1/2 this is all of the input. With probability 1/2, Lα+β short jobs of length

1/Lβ arrive every 1/Lβ time units from time Lα until 2Lα − 1/Lβ .

We now consider the Sp objective. In this case, α = 2p+1
p−1 , and β = 1. We now compute

Sp(A) and Sp(Opt). Consider first the case that A doesn’t finish the long job by time Lα. Then with

probability 1/2 the input contains no short jobs. Then Sp(A) is at least the stretch of the long job,

which is at least (Lα/L)p = Lp(α−1). In this case the adversary could first process the long jobs and

then process the unit jobs. Hence, Sp(Opt) = O(1 +Lα ·Lp) = O(Lα+p). The competitive ratio is

Ω(Lαp−α−2p), which is Ω(L) by our choice of α.

Now consider the case that A finishes the long job by time Lα. Then with probability 1/2 the
input contains short jobs. One strategy for the adversary is to finish all jobs, except for the big

job, when they are released. Then Sp(Opt) = O(Lα · 1p + Lα+β · 1p + (Lα/L)p). Algebraic
simplification shows that α + β ≤ αp − p for our choice of α and β. Hence dominant term is

Lαp−p, and Sp(Opt) = O(Lαp−p). Now consider the subcase that A has at least L/2 unit jobs

unfinished at time 3Lα/2. Since these unfinished unit jobs must have been delayed by at least Lα/2,

Sp(A) = Ω(L · Lαp). Clearly in this subcase the competitive ratio is Ω(Lp+1). Alternatively,

consider the subcase that A has finished at least L/2 unit jobs by time 3Lα/2. Then A has at least

L1+β/2 released, and unfinished, small jobs at time 3Lα/2. By the convexity of Sp when restricted

to jobs of size 1/Lβ , the optimal strategy for A from time 3Lα/2 onwards always delays each small

job by the same amount (we can gift A the competition of the unit jobs at time 3Lα/2). Thus A

delays Lα+β/2 short jobs by at least L/2. Hence in this case, Sp(A) = Ω(Lα+β · L(β+1)p). This

gives a competitive ratio of Sp(A) = Ω(Lα+β+βp+2p−αp). By the choice of α and β, this gives a

competitive ratio of Ω(L2p+1). Using that n = O(Lα+β) we obtain the desired lower bound.

We note that Theorem 4.2 is not particularly tight. In particular, as p approaches infinity Theorem

4.2 does not yield any substantial lower bounds, however for p = ∞, a lower bound of Ω(n1/2) on the
competitive ratio of any deterministic online algorithm was shown by Bender et al [17].

4.3.2 Non-clairvoyant Scheduling

We now give lower bounds for the non-clairvoyant case. These lower bounds suggest that the only mean-
ingful parameter for which interesting results can be obtained is B, the bound on job sizes.

Bounded job sizes without resource augmentation

We show that any non-clairvoyant algorithm without speed up, deterministic or randomized is at least Ω(B)

competitive for minimizing total stretch (hence it is Ω(B) competitive for general `p norms of stretch).

Theorem 4.3 Any non-clairvoyant algorithm, deterministic or randomized is at least Ω(B) com-
petitive for total stretch, where B is the ratio of job sizes.
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Proof. Consider an instance where nB jobs of size 1, and n jobs of size B, arrive at time t = 0. At
time t = nB, the adversary gives a stream of m jobs of size 1 every unit of time.

The optimum algorithm finishes all jobs of size 1 by nB and continues to work on the stream of
size 1 jobs. The stretch incurred due to jobs of size B is at most n(2nB+m)/B and due to the jobs
of size 1 is nB+m. The deterministic non-clairvoyant algorithm, on the other hand, has to spend at
least one unit of processing on each job to determine if it has size 1 or B. Thus, by choosing the first
n jobs on which the non-clairvoyant algorithm works at least 1 unit to be of size B, it can be made
to have at least n jobs of size 1 remaining at time t = nB. For the next m units after time t = nB,
there will be at least n jobs of size 1. Thus, total stretch incurred is at least nm. Choosing n > B

and m > nB, it is easy to see that the competitive ratio is at least Ω(B).
For the randomized case, we use Yao’s Lemma, and the input instance consists of nB + n jobs,

n of which are chosen randomly and have size B while the rest have size 1. Again, since any non-
clairvoyant algorithm has to spend at least 1 unit of processing to distinguish between at job of size

1 and B, it follows that by time t = nB, the algorithm will have at least B
B+1n ≈ n jobs of size 1

remaining in expectation. Thus the result follows.

Lower bound with bounded size and resource augmentation

We now consider lower bounds when resource augmentation is allowed. We first consider a static (all jobs
arrive at time t = 0) scheduling instance, and give an Ω(logB) lower bound without resource augmentation.
While this in itself is weaker than Theorem 4.3, the scheduling instance being static implies that even
resource augmentation by k times can only help by a factor of k.

Lemma 4.4 For minimizing the total stretch, no deterministic or randomized algorithm can have
performance ratio better than Ω(logB) for a static scheduling instance, where B is the ratio of the
largest to the smallest job size.

Proof. We consider an instance with logB jobs j0, . . . , jlogB such that job ji has size 2i.

We first look at how SJF behaves on this problem instance. The total stretch for SJF is

logB∑

i=0

1

2i




i∑

j=0

2j


 = O(logB)

This basically follows from the fact that SJF has to finish jobs j1, . . . , ji−1 before it finishes ji by
the definition of our instance.

Now we show that for any non-clairvoyant deterministic algorithm A, the adversary can force

the total stretch to be Ω(log2B). The rough idea is as follows: We order the jobs of our instance

such that for all 0 ≤ i ≤ logB, A spends at least 2i work on jobs ji+1, . . . , jlogB before it finishes

job ji. In this case, the theorem follows because the total stretch of A on the given instance is

logB∑

i=1

1

2i
(log(B)− i+ 1) 2i = Ω(log2(B)).

It remains to show that we can order the jobs in such a way. Since A is a deterministic algorithm
that does not use the size of incoming jobs, we can determine the order in which jobs receive a
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total of at least 2i work by A. We let ji be the (log(B) − i + 1)th job that receives 2i work for all
0 ≤ i ≤ logB. It is clear that this yields the claimed ordering.

The example can be randomized to prove that even a randomized algorithm has total stretch no
better than Ω(logB). The idea is to assume that the instance is a random permutation of the jobs

j0, j1, . . . , jlogB . Then to finish job ji, the scheduler has to spend at least 2i work on at least half of

ji+1, . . . , jlogB (in expectation). Thus its expected stretch is 1
2(logB − i + 1) and the total stretch

is Ω(log2B). We now use Yao’s Minimax Lemma to obtain the result.

As the input instance in Lemma 4.4 is static, a k-speed processor can at most improve all the flow times
by a factor of k. Hence the total stretch can go down by the same factor. This gives us the following theorem.

Theorem 4.5 Any k-speed deterministic or randomized, non-clairvoyant algorithm has an Ω(logB/k)

competitive ratio for minimizing total stretch, in the static case (and hence in the online case).

Scheduling with general job sizes

The previous result also implies the following lower bound when job sizes could be arbitrarily large. In
particular, we can choose the job sizes to be 1, 2, . . . 2n which gives us the following theorem.

Theorem 4.6 Any k-speed non-clairvoyant algorithm, either deterministic or randomized, has
Ω(n/k) performance ratio for minimizing total stretch.

4.4 Static scheduling

Static scheduling is usually substantially easier than the usual dynamic scheduling (where jobs have arbitrary
release times), and the same is the case here. We do not need resource augmentation here, and we show that
the SETF is O(logB) competitive for all `p norms of stretch, hence matching the lower bound shown in the
previous section. We will prove this in two steps: We first show that Sp for the optimum algorithm on any

input instance with n jobs is Ω(np+1/ logpB). Then we show that Sp for SETF on any input instance with

n jobs is O(np+1).
In the static case, it is easily seen by a simple exchange argument that SJF is the optimal algorithm for

`p norms of stretch for every p ≥ 1. We now show a general lower bound on the `p norms of stretch under
SJF on any input instance.

Lemma 4.7 For any scheduling instance with n jobs all arriving at time 0, SJF has Sp at least

Ω(np+1/ logpB).

Proof. We first show that without loss of generality we can consider an input instance where the job
sizes are powers of 2. To see this, given instance I , We lower bound the total stretch under SJF as

follows: For a job of size x, we require SJF to work only 2blg xc amount in order to finish the job and

we divide the flow time by 2dlg xe to get the stretch. Thus, we can round down all the job sizes to a
power of 2 and have the new stretch of each job within a factor of 4 of its stretch in original instance.

Given an instance I consisting of n jobs. Let x1, x2 . . . , xlogB denote the number of jobs of

sizes 2, 4 . . . , B respectively. We also have that
∑
xi = n. Now, as there are at least xi jobs of size

2i, the sum of the pth powers of flow time of the jobs of size 2i under SJF is at least
∑xi

k=1 k
p2ip ≥
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xp+1
i 2ip/(p + 1). Thus the sum of the pth powers of stretch of such jobs is at least xp+1

i /(p + 1).

Thus summing up over all job sizes the sum of the pth powers of stretch is at least
∑

i x
p+1
i /(p+ 1).

By convexity of the function f(x) = xp+1 for p ≥ 0, this is at least logB(
∑

i xi/ logB)p+1 which

is Ω(np+1/ logpB).

Lemma 4.8 For a scheduling instance with n jobs, the `p norms of stretch under SETF isO(n1+1/p).

Proof. For any job of size 2i, the job waits at most for n other jobs to receive at processing of at

most 2i. Thus the stretch of any job is at most n and hence the sum of the pth power of stretch of all

the jobs is at most np+1 which implies the result.

Combining the results of Lemmas 4.7 and 4.8, we get the following result:

Theorem 4.9 For static scheduling with bounded job sizes, the SETF algorithm is O(logB)-
competitive for minimizing the `p norms of stretch.

4.5 Dynamic Scheduling

We now prove Theorem 4.1. The analysis technique is similar to the analysis for flow time in Chapter 2,
Section 2.6.

We first compare SETF to an intermediate policy MLF, and then compare MLF to Opt. The variant of
MLF that we use is similar to that in Section 2.6. We describe it again below for completeness. Our MLF
is a variation of the standard Multilevel Feedback Queue algorithm where the quanta for the queues are set

as a function of ε. Let `i = ε((1 + ε)i − 1), i ≥ 0, and let qi = `i+1 − `i = ε2(1 + ε)i, i ≥ i. In MLF a job
Jj is in level k at time t if the work done on Jj by time t is ≥ `k and < `k+1. MLF maintains the invariant
that it is always running the earliest arriving job in the smallest nonempty level.

Let SETFs (resp. MLFs) denote the algorithms SETF and MLF executed with an s speed processor. By
Lemma 2.6, it follows that

Sp(SETF(I), 1 + ε) ≤ Sp(MLF(I), 1) (4.1)

We now transform the input instance. Let the original instance be I. Let J be the instance obtained

from I as follows. Consider a job Jj and let i be the smallest integer such that pj + ε ≤ ε(1 + ε)i. The

processing time of Jj in J is then ε(1 + ε)i. Let K be the instance obtained from J by decreasing each job

size by ε. Thus, each job in K has size `k = ε((1 + ε)k − 1) for some k. Note that in this transformation

from I to K, the size of a job doesn’t decrease, and it increases by at most a factor of (1 + ε)2. Since MLF
is has the property that increasing the length of a particular job will not decrease the completion time of any
job, we can conclude that

Sp(MLF(I), 1) ≤ (1 + ε)2pSp(MLF(K), 1) (4.2)

Equations 4.1 and 4.2 together give us that

Sp(SETF(I), 1 + ε) ≤ (1 + ε)2pSp(MLF(K), 1) (4.3)
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We now create an instance L by replacing each job of size ε((1 + ε)k − 1) job in K by k jobs of size
q1, . . . , qk−1. Note that `k = q0 + q1 + . . . , qk−1. For a job of Jj ∈ K, we denote the corresponding jobs in

L by Jj0 , Jj1 , . . . , Jjk−1
. Notice that any time t, SJF(L) is working on a job Jjb ∈ L if and only if MLF(K)

is working on job Jj ∈ K that is in level b at time t. In particular, this implies that the completion time of

Jj in MLF(K) is exactly the completion time of some job Jjb ∈ SJF(L). Hence,

F p(MLF(K), s/(1 + ε)) ≤ F p(SJF(L), s/(1 + ε)) (4.4)

For a job of size ε[(1+ ε)k−1] inK, the corresponding job of size ε2(1+ ε)k ∈ L has equal flow time. Thus

the ratio of the contributions to the pth power of stretch for L and K will be at least ( ε2(1+ε)k

ε[(1+ε)k−1]
)p, which is

at least ( ε
1−(1+ε)−k )p. Now since ε[(1+ ε)k−1] ≥ 1 for all valid job sizes inK, we get that (1+ ε)−k ≤ ε

1+ε

and hence that ( ε
1−(1+ε)−k )p ≤ (ε(1 + ε))p. Thus we get that

Sp(MLF(K), 1) ≤ (ε(1 + ε))pSp(SJF(L), 1)

Now, applying Theorem 2.3 it follows that Sp(SJF(L), 1 + ε) = O(1/εp)Sp(Opt(L), 1). Thus we get
that

Sp(MLF(K), 1) = O((1 + ε)p)Sp(Opt(L), 1) (4.5)

Let L(k) denote the instance obtained from J by multiplying each job size in J by ε/(1 + ε)k. Next,

we remove from L(k) any job whose size is less than ε2. We claim that L = L(1)∪L(2)∪ . . . . To see this,

let us consider some job Jj ∈ J of size ε(1 + ε)i. Then, L(1) contains the corresponding job Jji−1 of size

ε/(1 + ε) · ε(1 + ε)i = ε2(1 + ε)i−1 = qi−1. Similarly L(2) contains the job Jji−2 of size qi−2 and so on.

Thus, L is exactly L(1) ∪ L(2) ∪ . . . .
Lemma 4.10 Let L(k) be as defined above. S(s, Ji,G) denote the stretch of job Ji ∈ G when SJF
is run on G with a speed s processor. Then, for all x ≥ 1,

S(ε(1 + ε)−k · x · s, Jik ,L(k) ≤ (1 + ε)k

εx
S(s, Ji,J )

Proof. Let F (s, Ji,G)) denote the flow time of job Ji ∈ G when SJF is run on G with a speed s
processor. By Lemma 2.7, we have that

F (ε(1 + ε)−k · x · s, Jik ,L(k)) ≤ 1

x
F (s, Ji,J )

Since the size of jobs in L(k) are ε(1 + ε)−k times smaller than in J , the result follows.

We now prove the crucial result (similar to Lemma 2.8) that connects the performance of the optimum
algorithm on L to the performance of SJF on J .

Lemma 4.11

Sp(Opt(L), 1 + ε) = O(
logp+1

1+ε B

εp
)Sp(SJF(J ), 1)
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Proof. We will construct a schedule for L using the SJF schedule for J .

Set xi = ε(1 + ε)−i for i = 1, . . . , log1+ε log1+ε(B/ε), and xi = ε/ log1+ε(B/ε) for i >

log1+ε log1+ε(B/ε).

We run the jobs in L(i) using SJF on a speed xi processor, and imagine that all these executions

take place in parallel. Notice that the total speed up required is
∑log1+ε(B/ε)

i=1 xi which is at most

1 + ε. By, lemma 2.7, Sp(SJF(L(i)), xi) is at most (1/xpi )S
p(SJF(J ), 1). By simple algebraic

calculation it can be seen that
∑

i

(
1

xi
)p = O(

1

εp
logp+1

1+ε B)

Since the optimum schedule for L is no worse than the schedule constructed above the result
follows.

Combining equations 4.3, 4.5 and lemma 4.11, we get that

Sp(SETF(I), (1 + ε)2) = O(
(1 + ε)3p

εp
· logp+1

1+ε B)Sp(SJF(J ), 1) (4.6)

Now by Theorem 2.3 we have that

Sp(SJF(J ), 1 + ε) = O(1/εp)Sp(Opt(J ), 1) (4.7)

Also, since each job Ji ∈ J has size at most (1 + ε)2 times more than the corresponding job Ji ∈ I (and is
not smaller), we trivially have that

Sp(Opt(J ), (1 + ε)2) ≤ Sp(Opt(I), 1) (4.8)

Now combining equations 4.6, 4.7 and 4.8 it follows that

Sp(SETF, (1 + ε)5, I) = O(
1

ε2p
· logp+1

1+ε B)Sp(Opt(I), 1)

or equivalently that

Sp(SETF, (1 + ε)5, I) = O(
1

ε3p+1
· logp+1B)Sp(Opt(I), 1)

This proves Theorem 4.1.

4.6 Concluding Remarks

Our result that SJF is a (1 + ε)-speed, O(1/ε)-competitive algorithm for minimizing the `p norms of stretch
in the clairvoyant setting has been recently extended by Chekuri, Khanna and Kumar [22]. They show that
load balancing scheme of [4] is a (1 + ε)-speed, O(1/ε)-competitive algorithm for minimizing `p norms of
stretch clairvoyantly on multiple machines.

The important open problems related to minimizing stretch are the following:
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Open Problem 4.4 Does there exist a (1+ε)-speed,O(logB)-competitive algorithm for minimizing
the total stretch non-clairvoyantly?

Open Problem 4.5 Does there exist an offline polynomial time exact algorithm for minimizing
stretch on a single machine?

Minimizing the `p norms of stretch in the offline case is totally open.

Open Problem 4.6 Is there an approximation algorithm with non-trivial guarantees for minimizing
the `p norms of stretch in the clairvoyant setting?

A polynomial time approximation scheme for minimizing total stretch on a single machine is known
[18]. However nothing is known for the multiple machine case.

Open Problem 4.7 Is there a polynomial time approximation scheme for minimizing stretch on
multiple machines?
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Chapter 5

Minimizing Flow Time on Multiple
Machines

5.1 Introduction

In this chapter we consider the offline problems of minimizing the total flow time and minimizing the
maximum flow time on multiple machines.

While SRPT is the optimum algorithm for minimizing the total flow time on a single machine, the
problem is NP-Hard for the case of m ≥ 2 machines. The first non-trivial result for the problem was
an O(log(min(n/m,B))) competitive algorithm for identical parallel machines due to Leonardi and Raz

[55]. They also show a tight lower bound of Ω(min(log n/m, logB)) on the competitive ratio of any online
algorithm. The algorithm of [55] has been extended to various other restricted settings (such as eliminating
migrations [6] or immediately dispatching a job to a machine as it arrives [4]). Interestingly however, even
in the offline case these algorithms remain the best known algorithms for the problem. Even for the case of
m = 2, it is not known whether an O(1) approximation algorithm for minimizing total flow time exists. On
the other hand, only the NP-Hardness of the problem is known. In particular, it is not even known if the
problem is APX -Hard. Obtaining an O(1) approximation for this problem (even for the case of m = 2)
has been a major open problem in scheduling [67, 55, 6].

Our main result is an algorithm for minimizing total flow time which produces a (1 + ε) approximate

solution and has running time nO(m logn/ε2). Thus for a fixed m, this gives a quasi-polynomial time approx-
imation scheme. Our result suggests that a polynomial time approximation scheme is likely for minimizing
total flow time on O(1) machines.

The above result assumes that the machines are identical and that all jobs have equal weight. We extend
it to the case when the machines are unrelated (a job could have different processing time on different
machines) and additionally jobs are weighted. In this case, we give an approximation scheme with running

time nO(mmin(log2 nW,log2 nB)/ε3). Prior to our work, Chekuri and Khanna gave an approximation scheme

with a running time of O(nlogB logW/ε3) for a single machine. Thus our result extends the result of [21] to
the case of multiple machines with almost matching running time.

The main idea used to obtain the above results is a technique which allows us to store the approximate

state under SRPT for any subset of jobs using O(log2 n) bits of information1. Moreover, this state descrip-

1Reducing this to O(log n) would imply a polynomial time approximation scheme.
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tion has sufficient information to allow us to compute the new state as time progress and jobs are worked

upon or when new jobs arrive. Thus, for each time t (we show later we only need to consider O(n3) values
of time) and for each possible configuration, we can compute the best possible total flow time achievable
using dynamic programming.

The running time in the above algorithms has an exponential dependence in m. We show that it is
unlikely that this can be improved substantially (at least for the weighted case). In particular, we show that,

ifm is part of the input, then obtaining an no(1) approximation algorithm with running time npolylog(n,m) for
weighted flow time (even for the special case when W and B are polynomially bounded in n) would imply

that NP ⊆ DT IME(npolylogn).

Finally, we consider the problem of minimizing the maximum flow time on multiple machines. Again,
while FIFO is optimal for the single machine case, the problem is NP-Hard for m ≥ 2. Our main result
is a polynomial time approximation scheme for a constant number of unrelated machines. In particular, our

algorithm produces a (1 + ε) approximate solution and has running time nO(m/ε). The only directly related
work is for the problem of minimizing the maximum flow time on identical machines. For this problem
Bender et al [17] give a 3− 2/m competitive online algorithm, that in fact works for arbitrary m.

Observe that in the special when all the release times are 0, the problem of minimizing the maximum
flow time reduces to the classic problem of minimizing the makespan on multiple unrelated machines (also
referred to as the Generalized Assignment Problem in the literature). It is known that minimizing makespan
on multiple unrelated machines is APX -hard, when m is a part of the input [54]. This implies that depen-
dence on m in the running time of our algorithm cannot be improved substantially.

Before we begin, we describe some extra terminology used in the multiple machine setting. In the
unrelated machines setting, a job could possibly have different processing requirement on each machine.
In this case, the processing time of a job Jj is described by an m-tuple (pj1, . . . , pjm), where pjk is the

processing time of Jj on machine k. An important issue while scheduling on multiple machines is that of
migration. A schedule is called migratory if it can move partially executed jobs from one machine to another.
Migration of jobs is usually considered unattractive as it incurs a huge overhead in practice. Throughout this
chapter we only consider non-migratory algorithms.

5.2 Total Flow Time

In this section we consider the problem of minimizing the total flow time on multiple machines when all
machines are identical and all jobs are unweighted.

Our high level idea is the following, we first show that the input instance can be rounded such that all

job sizes are integers in the range [1, n2/ε] and all the release times are integers in the range [1, n3/ε]. We

then show how to store the approximate state under SRPT for any subset of jobs using O(log2 n) bits of
information. Finally, we show how this implies an approximation scheme for the problem.

Let I be a problem instance with largest job size B. Without loss of generality we can assume that all
release dates are at most nB and that all jobs finish execution by time 2nB (otherwise we could reduce the
problem into two disjoint problems). Let Opt denote the optimal schedule, we also abuse notation and use
Opt to denote the total flow time under the optimal schedule.

Lemma 5.1 Given I, rounding up the job sizes and release dates to a multiple of εB/n2 only

increases the optimal cost of this rounded instance by a factor of (1 + 2ε).
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Proof. Given a schedule for the original instance, rounding up the job sizes adds at most n·εB/n2 =

εB/n to the flow time of each job. Similarly rounding up the release dates adds at most εB/n2 to
the flow time of each job. Thus, the total flow time is affected by at most 2εB ≤ 2εOpt.

Let I ′ denote this rounded instance. By Lemma 5.1 we can assume that all job sizes are integers in the

range [1, n2/ε]. Similarly, as no release date in I is more than 2nB, and the time is rounded to a multiple

εB/n2, all release dates in I ′ are integers in the range [1, n3ε]. We will obtain a schedule S(I ′) with

optimum total flow time for I ′. Clearly, all events (arrivals and departures) under S(I ′) at integral times

in the range [1, 2n3/ε]. Also, a schedule S(I) for I follows from S(I ′) and that the total flow time under

S(I) is at most that under S(I ′). To see this, obtain S(I) from S(I ′) by a scheduling a job in I only when

the corresponding job in I ′ is scheduled. If the job in I finishes before the corresponding job in I ′ (since

the job in I ′ could be larger), then the scheduler idles for that time. Finally, since the release times for a job

in I ′ is no earlier than the corresponding job in I, the schedule produced thus is a feasible schedule for I.

Henceforth, we only consider I ′.
We now describe how to compute an approximately optimal schedule (i.e. up to a factor of 1 + O(ε))

for I ′. We say that a job with size pj lies in class i, iff (1 + ε)i−1 ≤ pj < (1 + ε)i. This divides the jobs into

O(1
ε logn) classes. Note that the class of a job depends only on its initial processing time and hence does

not change with time. Consider the optimum algorithm. Let Sk(i, t) denote the jobs of class i on machine j
which are alive at time t. The lemma below gives an important property of the optimal schedule.

Lemma 5.2 For all k = 1, . . . ,m and at all times t, at most one job in Sk(i, t) has a remaining

processing time that is not in the range (1 + ε)i−1 and (1 + ε)i.

Proof. As the shortest remaining processing time (SRPT) is optimal for minimizing the total flow
time on a single machine, we can assume that on each machine, the jobs assigned to it are processed
in the SRPT order.

Let us consider the class i jobs on a machine k. Since at any time we execute the job with
least remaining time, if a job from this class is executed, clearly it must be the one which has the
least remaining time in Sk(i, t). Suppose for the sake of contradiction that there are two jobs with

remaining time less than (1 + ε)i−1, say J1 and J2. Consider the time t′ when J1 was worked upon

and its remaining became less than (1 + ε)i−1. If J2 had remaining time less then (1 + ε)i−1 at t′,

then J1 should not have been worked upon (according to SRPT). If J2 has not arrived by t′ or its

remaining time was greater than (1 + ε)i−1, then the algorithm must have worked on J2 during t′

and the current time even though J1 has remaining processing time less then J2.

We now define the state of the algorithm Q(t) at time t. For each class i and each machine j, we store
1
ε + 1 numbers: the first 1

ε are the remaining processing times of the 1
ε jobs in Sj(i, t) with the largest

remaining processing time; the last entry is the sum of the remaining processing times of the rest of the jobs

in Sj(i, t). Notice that as each job has size at most n2/ε, there are at most (n2/ε)1/ε = O(n2/ε) possible

choices for the first 1/ε entries and n3/ε possible choices for the sum of remaining sizes. Finally, since

there there are at most O(logn/ε) classes and m machines, the total number of distinct states at any step is

at most nO(m log n/ε2).
The following lemma shows how this information helps us in estimating the number of unfinished jobs

at any point of time.
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Lemma 5.3 We can estimate the number of jobs in the system at time t to within a factor of (1 + 2ε)

using the information in Q(t).

Proof. If there are fewer than 1/ε jobs in level i, we know their number precisely because we store
their remaining processing times precisely. Let us now consider the case when there are more than
1/ε jobs in some level i.

Suppose at first that the remaining processing times of all these jobs lies between (1 + ε)i−1 and

(1 + ε)i. Then, by assuming that all the jobs have size (1 + ε)i−1 and computing the number of jobs
using the total remaining processing time, our estimate is off from the correct number by at most a
factor of (1 + ε).

Finally, as at most one job in every level i lies outside the range (1 + ε)i−1 and (1 + ε)i. Thus

our estimate above could be off by another job. However, there are at least 1/ε unfinished jobs. Thus

we get an estimate within a factor of (1 + 2ε).

Thus the algorithm to compute the approximately optimal schedule will be a large dynamic program
which will have a state for each time unit and each of the possible configurations of Q(t) at that time. Thus

there will be at most O(n3/ε) times nO(m logn/ε2) states. As usual, with each state we store the value of the
least total flow time incurred to reach that state.

To complete the description of the dynamic program, we only need to show how to update the state of
the algorithm with time. When a new job arrives, we have m choices for the machine to which this job can
be assigned. Once a machine is decided, the size of the job determines the class to which it belongs. Also,
it is straightforward to update the state, as either the job is added to the first 1/ε jobs in Sj(i, t), or else if it

is smaller that the 1/ε largest jobs in its class, then its size is added to the (1/ε + 1)th entry. Now consider
the case when there are no arrivals. When the algorithm works on a job in level i on machine j, if there are
1/ε or fewer jobs in level i, then we simply decrement the smallest of the remaining time entries by 1. Else,

if there are more than 1/ε jobs, we decrement the total remaining processing time entry by 1. In general, we
will not know in which level the job with the least remaining processing time is present (as we do not have
this information in our state description). However, we can try out all possible O(log n/ε) choices for the

different levels for each machine j. The we have O(logn/ε)m total possible choices at each time step.
Finally, have computed the approximately optimal value of flow time, it is straightforward to compute

the path used to reach this value, which gives us the (1 + 2ε) optimal schedule for I ′. Finally by Lemma 5.1
this implies that

Theorem 5.4 The above algorithm gives a (1 + ε) approximation for the problem of minimizing

total flow time on m identical machines and runs in time nO(m logn/ε2).

5.3 Extensions

We now give an algorithm for the more general case when the machines are unrelated and our measure is
weighted flow time. Let p∗j denote mink pjk. Thus p∗j denotes the minimum size of j among all the machines.

Let Q =
∑

j p
∗
j , and suppose that the weights are integers in the range 1, . . . ,W . For unrelated machines,

we define B = maxi6=j p∗i /p
∗
j . Note that if the machines are identical, this definition of B corresponds

exactly to the maximum of minimum job size ratio. Also it is easily seen that Q ≤ nBmini p
∗
i .
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We will give an algorithm that produces a (1 + ε) approximate solution and has running time

nO(mmin(lognB,log nW )2/ε3). Our algorithm will consist of two different algorithms. First is an algorithm

which has running time nO(m log2 nW/ε3) for the case when W ≤ B. The other algorithm has running time

nO(m log2 nB/ε3) for the case when W ≥ B
We first consider the case when W ≤ B. By assigning each job to the machine where it takes the least

time, it is clear that nWQ is an upper bound on Opt. Similarly, Q is a lower bound on Opt. Hence we will
assume that our algorithm simply never assigns a job Jj to machine k if pjk ≥ 2nWQ.

Next, as in lemma 5.1, it easily follows that rounding each pij and release date up to the next multiple

of εQ/(Wn2) affects the total flow time of each job by at most εQ/Wn. Since the maximum weight of any
job is at most W , this affects the total weighted flow time by at most εQ ≤ εOpt. Moreover, we can also
assume that the release date of any job is at most 2nQ (otherwise the problem can be decomposed into two

disjoint instance). Thus after rounding the release dates and sizes to multiples of εQ/(Wn2), our algorithm

needs to consider only O(n3W/ε) time steps.

Next we round up the weights to powers of (1 + ε). Clearly, this affects the solution by at-most a (1 + ε)

factor. Finally, observe that in the optimal schedule for this rounded instance, if we consider a particular
machine and restrict our attention to time intervals when jobs from a particular weight class are executed,
then these jobs are executed in the SRPT order.

With these observations we can directly give an algorithm based on the ideas in Section 5.2. For each
machine and each weight class, we maintain the states under SRPT. Since there are O(logW/ε) weight

classes, and there are O(log nW/ε) size classes the number of states at each time step is bounded by

nO(m log2 nW/ε3). When a job arrives, there are m choices corresponding to the machines it can be as-
signed. If there are no arrivals, for each machine, we need to decide which weight class to work on, and

with each weight class which size class to work on. Thus there (log2 nW/ε2)m choices to choose from

at each time step. Finally, since all the release dates and sizes are integers between 1 and O(n3W/ε), our

algorithm can be implemented directly as a dynamic program of size Wn3/ε times nO(m log2 nW/ε3). This
gives the desired bound on the running time.

We now consider the case when B ≤ W . Defining Q as previously we see that again Opt is at most
nQW . Since Q ≤ nBmini p

∗
i , it follows that each job has size at least Q/nB on each machine. Finally,

since the maximum weight is W , it follows that Opt is also lower bounded by WQ/nB.

Our algorithm now is as follows. We only consider jobs with weights between εW/n2B and W . Jobs

with weight below εW/n2B will be added to the schedule arbitrarily. Since each job has flow time at most

Q, this adds at most εWQ/nB ≤ εOpt. Similarly, rounding the job sizes and release dates to multiples of

εQ/n3B affect the total weighted flow time by at most n2W · εQ/n3B = εWQ/nB ≤ εOpt.
Thus after rounding we have an instance where the job sizes and release dates are integers between 1 and

O(n3B) and the job weights are in the range W/n2B and W . Thus there are O(lognB/ε) weight classes

and O(lognB/ε) sizes classes. Applying the algorithm described above for the case W ≤ B and observing

that all release dates are bounded by nB, we get that the running time of the algorithm is nO(m lognB2/ε3)

Thus we have shown that

Theorem 5.5 There is an algorithm for minimizing weighted flow time on multiple machines that

produces a (1 + ε) approximate solution and runs in time nO(mmin(lognB,lognW )2/ε3).
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5.4 Dependence on the number of machines

It is known that both total unweighted flow time and maximum flow time on unrelated machines are APX -
Hard for arbitrary m [40, 54]. However, an approximation scheme with a polynomial dependence on m
might be possible for identical parallel machines. We show a related but weaker negative result that, if m
is a part of the input, minimizing total weighted flow time is APX -hard, even when both B and W are
polybounded in n.

Consider an instance of 3-Partition (SP15) in [31]. This consists of a set A of 3m elements, an integer
bound B > 0; for each x ∈ A a integer size s(x) s.t. B/4 < s(x) < B/2 and s.t.

∑
x∈A s(x) = mB. The

question is whetherA can be partitioned intom disjoint setsA1, A2, . . . , Am such that, for each 1 ≤ i ≤ m,
Ai has 3 elements and

∑
a∈Ai s(a) = B. 3-Partition is known to be strongly NP-Complete. In particular,

it is NP-complete for B = O(m4).

Given an instance of 3-Partition, we transform it as follows. There aremmachines. Each element x ∈ A
corresponds to a job, with size s(x), weight m and is released at time t = 0. Next at each time instance

t = B + i/m2, for i = 0, 1, 2, . . . , Bm5, m jobs each with size 1/m2 and weight 1/m are released. Thus

the total number of these small jobs is Bm6.

If the instance of 3-partition has a solution, then we construct a schedule as follows: We schedule the
jobs that arrive at t = 0 according to the solution to the instance of 3-partition. Since each job finishes by
time t = B, we can schedule the jobs of weight 1/m as they arrive. Now, each of the weight m job has flow

time at most 3B, and each of the Bm6 jobs of weight 1/m has flow time 1/m2. Thus the total weighted

flow time is 3m · 3B ·m+ 1/m3 ·Bm6 = O(Bm3).

On the other hand if there is no solution to the 3-partition instance, there is at least one weight m job
(call it J) unfinished by time B. In particular, the job J has at least one unit of work unfinished by time B.

Consider the situation by time Bm3/2, if J is still there, it contributes at least Bm4/2 to the flow time, else

there are least m2 jobs of size 1/m2 and weight 1/m piled up during the time interval [Bm3/2, Bm3], thus

contributing O(Bm4) to the total weighted flow time.

As B = O(m4) and and W = m2 and n = Bm6 = O(m10), W and B are polybounded in the number

of jobs, and we have an inapproximability factor of Ω(n1/10).

This implies that,

Theorem 5.6 There does not exist an no(1) approximation for minimizing weighted flow time on
multiple machines if m is a part of the input, even if W and B are polynomially bounded in n.

As a corollary, we also obtain that,

Theorem 5.7 There cannot exist an algorithm for weighted flow time on multiple machines (with

W and B polynomially bounded in n) that runs in time 2polylog(n,m) and is an no(1) approximation

unless NP ⊆ DT IME(npolylog(n)).

This shows that for the problem of minimizing of minimizing the total weighted flow time on multi-
ple machines (Theorem 5.5), the dependence of the running time on m in our algorithm is unlikely to be
improved.
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5.5 Maximum Flow Time

In this section we consider minimizing the maximum flow time on m unrelated machines. We give an

algorithm that runs in time O(nm/ε) and produces a (1 + ε) approximation. We begin with some easy
observations.

1. As FIFO is optimum for minimizing the maximum flow time on a single machine. It follows that for
every machine, the jobs assigned to that machine are executed in FIFO order.

2. As in Section 5.3, let p∗j denote mink pjk and Q =
∑

j p
∗
j . By assigning each job to the machine

where it takes the least time, it is clear that Q is an upper bound on Opt. Furthermore, we can assume
that all the release dates are at most Q and all jobs finish execution by time 2Q (else, the problem
can be reduced to two smaller problems). Finally, since there are n jobs, there is some j such that
p∗j ≥ Q/n and hence this job has size at least Q/n on every machine. Thus Q/n is a lower bound on

Opt.

3. Let δ > 0 be an arbitrary real number. Note that rounding up the release date of each job to the next
multiple of δ increases the maximum flow time by at most δ. Similarly, rounding up each pij to the

next multiple of δ and increase the maximum flow time by at most nδ.

We now describe the algorithm. If some pjk > 2Q for some j, k, we just set pjk = ∞. Choose

δ = εQ/4n2. Round each pjk and rj up to the next multiple of δ. Time increases in multiples of δ, and all

events take place only at multiples of δ. Thus, we need to consider only O(n2) time steps.

The algorithm maintains a state of the (val, t, w1, w2, . . . , wm) where t denotes the time, wj represents

the total work present on each machine j, 1 ≤ j ≤ m at time t, and val is minimum value of the maximum
flow time that can be achieved at time t and for the particular values of wi.

It is trivial to update the state of the algorithm, at each time step or event. If there is an arrival Ji at time
t, and if the algorithm assigns it to machine j, then the algorithm updates the state as wj = wj + pij and

val = max{val, wj + pij}. If no arrival takes place, the algorithm simply decrements wi for each non-zero
wi.

Thus the algorithm is a dynamic program of size O(n3/ε) times nO(m/ε) and updating an entry for a

state requires O(m) time. Thus we have that

Theorem 5.8 The maximum flow time on multiple unrelated machines and arbitrary release dates

can be approximated to within a factor of (1 + ε) in time nO(m/ε).

5.6 Open Problems

The outstanding open problem is the following:

Open Problem 5.8 Is there a constant factor polynomial time approximation algorithm, or even
better, a PTAS, for minimizing the total flow time on multiple identical machines?

The above problem is open even for m = 2.
Our QPTAS for a constant number of machines suggests that a PTAS is likely for this problem. How-

ever, it could be the case that there is no polynomial time approximation scheme, or not even a constant
factor approximation algorithm, when m is part of the input. Settling this would be interesting.
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Open Problem 5.9 Is the problem of minimizing unweighted flow time on multiple machines
APX -Hard, if m is a part of the input?

For minimizing the maximum flow time, the obvious open question is

Open Problem 5.10 Does there exist a polynomial time approximation scheme for minimizing the
maximum flow time on m identical machines when m is a part of the input?



Chapter 6

Scheduling for Flow-Time with Admission
Control

6.1 Introduction

In this chapter, we consider the problem of scheduling on a single machine to minimize flow time where
the jobs can be cancelled at some cost. Formally, for each job, the processor pays for each time unit the
job is present in the system, and additionally a cancellation cost is charged if this job is ever cancelled.
For instance, if a job arrives at time 0, and then at time 3 we decide to cancel it, we pay c + 3, where c is
the job cancellation cost of this job. Equivalently, at each time step we pay for the number of unfinished
jobs currently in the system plus any cancellations we decide to perform. One motivation for this problem
arises from trying to formalize the scheduling decisions faced by a person in real life, where one also has
the flexibility to accept or reject a request. Ideally, one would like not to have too many jobs on ones list of
things to do (as this causes jobs to be delayed), or equivalently, one would like to have a small flow time,
and rejecting some fraction of jobs might be necessary for this to happen (but of course one cannot ignore
all work one is asked to do).

We also consider a more strict measure called job-idle time. In the job-idle time measure, we pay at
each time step for the number of jobs currently in the system minus one (the one we are currently working
on), or zero if there are no jobs in the system. Because job idle time is smaller than flow time, it is a strictly
harder problem to approximate, and can even be zero if jobs are sufficiently well-spaced. Note that for the
flow time measure, we can right away reject jobs that have size more than c, because if scheduled, these add
at least c to the flow-time. However, this is not true for the job-idle time measure.

One issue with our definition of job-idle time is that it gives the machine credit for time spent on pro-
cessing jobs that are later rejected. For example, if we get a job at time 0, work on it for 3 time units, and
reject it at time 5, we pay c + 2 rather than c + 5. A natural alternative would be to define the cost so that
no credit is given for time spent processing jobs that end up getting rejected. Unfortunately, that definition
makes it impossible to achieve any finite competitive ratio. In particular, if a very large job arrives at time
0, we cannot reject it since it may be the only job and Opt would be 0; but, then if unit-size jobs appear at
every time step starting at time tc, we have committed to cost tc whereas Opt could have rejected the big
job at the start for a cost of only c. In any case, our definition of job-idle time is a strictly harder measure to
approximate than flow time, and in some cases it produces cleaner results.

Our results are organized as follows: In section 6.2, we first consider a simpler problem where all the jobs
have the same rejection costs. We call this the Uniform Penalty Model. For this case, we give a 2-competitive

59
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online algorithm for flow time and job-idle time with penalty. We also give a matching lower bound for job-
idle time. In Section 6.3, we consider the setting where jobs have weights and we consider weighted flow
time. We look at this problem in two models: In the first model, the cancellation costs are identical no matter
what the weight of the jobs. In the second model, the rejection costs are proportional to the job’s weight.

For both these cases we give an O(log2W ) competitive algorithm. In Section 6.4, we consider the case
when jobs could have arbitrary penalties. We show that there cannot be any randomized algorithm which is

no(1) competitive in this setting. We thus consider the problem in the resource augmentation model. In fact,
we consider a more general problem where we allows jobs to have arbitrary weights and arbitrary rejection

penalties. For this case we give a (1 + ε)-speed, O( 1
ε (logW + logC)2)-competitive algorithm, where C is

the ratio between the maximum to minimum rejection penalty.

Related Previous Work

Admission control has been studied for a long time in circuit routing (see, e.g., [19]). In these problems, the
focus is typically on approximately maximizing the throughput of the network. In scheduling problems, the
model of rejection with penalty was first introduced by Bartal et al [12]. They considered the problem of
minimizing makespan on multiple machines with rejection and gave a 1 + φ approximation for the problem
where φ is the golden ratio. Variants of this problem have been subsequently studied by [68, 39]. Seiden
[68] extends the problem to a pre-emptive model and improves the ratio obtained by [12] to 2.38.

More closely related to our work is the model considered by Engels et al [29]. They consider the problem
of minimizing weighted completion time with rejections. However, there are some significant differences
between their work and ours. First, their metric is different. Second, they only consider the offline problem
and give a constant factor approximation for a special case of the problem using LP techniques.

Preliminaries

To get a feel for this problem, notice that we can model the classic ski-rental problem as follows. Two unit-
size jobs arrive at time 0. Then, at each time step, another unit-size job arrives. If the process continues for
less than c time units, the optimal solution is not to reject any job. However, if it continues for c or more time
units, then it would be optimal to reject one of the two jobs at the start. In fact, this example immediately
gives a factor 2 lower bound for deterministic algorithms for job-idle time, and a factor 3/2 lower bound for
flow time.

To get a further feel for the problem, consider the following online algorithm that one might expect to
be constant-competitive, but in fact does not work: Schedule jobs using SRPT, but whenever a job has been
in the system for more than c time units, reject this job, incurring an additional c cost. Now consider the
behavior of this algorithm on the following input: m unit size jobs arrive at time 0, where m < c, and
subsequently one unit size job arrives in every time step for n steps. SRPT (breaking ties in favor of jobs
arriving earlier) will schedule every job within m time units of its arrival. Thus, the proposed algorithm
does not reject any job, incurring a cost of mn, while Opt rejects m − 1 jobs in the beginning, incurring a
cost of only n+ (m− 1)c. This gives a competitive ratio of m as n→∞.

We now state some properties of the optimal solution (Opt) which will be useful in deriving our results.

Fact 6.1 If Opt rejects a job j, it is rejected the moment it arrives.

Fact 6.2 Given the set of jobs that Opt rejects, the remaining jobs must be serviced in the SRPT
order.
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Fact 6.3 In the uniform penalty model, if a job j is rejected, then it must be the job that currently
has the largest remaining time.

6.2 An Online Algorithm

In this section, we give online algorithms for minimizing flow time and job idle time in the uniform penalty
model.

6.2.1 Minimizing Flow Time

Flow time of a schedule can be expressed as the sum over all time steps of the number of jobs in the system
at that time step. Let φ be a counter that counts the flow time accumulated until the current time step. The
following algorithm achieves 2-competitiveness for flow time with rejections:

The Online Algorithm. Starting with φ = 0, at every time step, increment φ by the number of active
jobs in the system at that time step. Whenever φ crosses a multiple of c, reject the job with the largest
remaining time. Schedule active jobs in SRPT order.

Let the schedule produced by the above algorithm be S and the set of rejected jobs be R.

Lemma 6.4 The cost of the algorithm is ≤ 2φ.

Proof. This follows from the behavior of the algorithm. In particular, F (S) is equal to the final

value in the counter φ, and the total rejection cost c|R| is also at most φ because |R| increases by
one (a job is rejected) every time φ gets incremented by c.

The above lemma implies that to get a 2-approximation, we only need to show that φ ≤ Opt. Let us use
another counter ψ to account for the cost of Opt. We will show that the cost of Opt is at least ψ and at every
point of time ψ ≥ φ. This will prove the result.

The counter ψ works as follows: If Opt rejects a job, ψ gets incremented by c. Else, if φ = ψ, then
φ and ψ increase at the same rate (i.e. ψ stays equal to φ). Else ψ stays constant. By design, we have the
following:

Fact 6.5 At all points of time, ψ ≥ φ.

Let k = bψc c−b
φ
c c. Let no and na denote the number of active jobs in Opt and A respectively. Arrange

and index the jobs in Opt and A in the order of decreasing remaining time. Let us call the k longest jobs of
A marked. We will now prove the following:

Lemma 6.6 At all times no ≥ na − k.

Lemma 6.6 will imply Opt ≥ ψ (and thus, 2-competitiveness) by the following argument: Whenever ψ
increases by c, Opt spends the same cost in rejecting a job. When ψ increases at the same rate as φ, we have
that ψ = φ. In this case k = 0 and thus Opt has at least as many jobs in system as the online algorithm.
Since the increase in φ (and thus ψ) accounts for the flow time accrued by the online algorithm, this is less
than the flow time accrued by Opt. Thus the cost of Opt is bounded below by ψ and we are done.

We will prove Lemma 6.6 by induction over time. For this we will need to establish a suffix lemma. We
will ignore the marked jobs while forming suffixes.
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Let Po(i) (called a suffix) denote the sum of remaining times of jobs i, . . . , no in Opt. Let Pa(i) denote
the sum of remaining times of jobs i + k, . . . , na in A (i, . . . , na − k among the unmarked jobs). For
instance, Figure 6.1 below shows the suffices for i = 2 and k = 2.

oP (2) = {Total rem.
size of jobs 2 ... no
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Jobs arranged in decreasing order of remaining processing time

aP (2) = {Total
rem. size of 
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jobs k+2 ... n  }
an  = 6 on  = 5 

Figure 6.1: Notation used in proof of Theorem 6.9

Lemma 6.7 At all times, for all i, Pa(i) ≤ Po(i).

Proof. (of Lemma 6.6 using Lemma 6.7) Using i = na−k, we have Po(na−k) ≥ Pa(na−k) > 0.
Therefore, no ≥ na − k.

Proof. (Lemma 6.7) We prove the statement by induction over the various events in the system.
Suppose the result holds at some time t. First consider the simpler case of no arrivals. Furthermore,
assume that the value of k does not change from time t to t+ 1. Then, as A always works on the job
na, Pa(i) decreases by 1 for each i ≤ na − k and by 0 for i > na − k. Since Po(i) decreases by at
most 1, the result holds for this case.

If the value of k changes between t and t + 1, then since there are no arrivals (by assumption),
it must be the case that A rejects some job(s) and k decreases. However, note that rejection of jobs
by A does not affect any suffix under A (due to the way Pa(i) is defined). Thus the argument in the
previous paragraph applies to this case.

We now consider the arrival of a job J at time t. If J is rejected by Opt, the suffixes of Opt
remain unchanged and the value of k increases by 1. If J gets marked under A, none of the suffixes
under A change either, and hence the invariant remains true. If J does not get marked, some other
job with a higher remaining time than J must get marked. Thus the suffixes of A can only decrease.

If J is not rejected by Opt, we argue as follows: Consider the situation just before the arrival of
J . Let C be the set of unmarked jobs under A and D the set of all jobs under Opt. On arrival of J ,
clearly J gets added to D. If J is unmarked under A it gets added to C else if it gets marked then

a previously marked job J ′ ∈ A, with a smaller remaining time than J gets added to C. In either
case, the result follows from Lemma 6.8 (see Proposition A.7, Page 120 in [56] or Page 63 in [36]),

which is a result about suffixes of sorted sequences, by setting C = C, D = D, d′ = J and c′ = J or

J ′.

Lemma 6.8 Let C = {c1 ≥ c2 ≥ . . . } and D = {d1 ≥ d2 ≥ . . . } be sorted sequences of non-

negative numbers. We say that C ≺ D if
∑

j≥i cj ≤
∑

j≥i di for all i = 1, 2, . . . . Let C ∪ {c′} be
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the sorted sequence obtained inserting c′ in C. Then, C ≺ D and c′ ≤ d′⇒ C ∪ {c′} ≺ D ∪ {d′}.

Thus we have the following theorem:

Theorem 6.9 The above online algorithm is 2-competitive with respect to Opt for the problem of
minimizing flow time with rejections.

6.2.2 Minimizing Job Idle Time

Firstly note that the job idle time of a schedule can by computed by adding the contribution of the jobs
waiting in the queue (that is, every job except the one that is being worked upon, contributes 1) at every time
step.

The same online algorithm as in the previous case works for minimizing job idle time with the small
modification that the counter φ now increments by the number of waiting jobs at every time step. The
analysis is similar and gives us the following theorem:

Theorem 6.10 The above online algorithm is 2-competitive with respect to Opt for the problem of
minimizing job idle time with rejections.

6.2.3 Varying Server Speeds

For a researcher managing his/her to-do list, one typically has different amounts of time available on differ-
ent days. We can model this as a processor whose speed changes over time in some unpredictable fashion
(i.e., the online algorithm does not know what future speeds will be in advance). This type of scenario can
easily fool some online algorithms: e.g., if the algorithm immediately rejected any job of size≥ c according
to the current speed, then this would produce an unbounded competitive ratio if the processor immediately
sped up by a large factor.

However, our algorithm gives a 2-approximation for this case as well. The only effect of varying pro-
cessor speed on the problem is to change sizes of jobs as time progresses. Let us look at the problem from
a different angle: the job sizes stay the same, but time moves at a faster or slower pace. The only effect
this has on our algorithm is to change the time points at which we update the counters φ and ψ. However,
notice that our algorithm is locally optimal: at all points of time the counter ψ is at most the cost of Opt,
and φ ≤ ψ, irrespective of whether the counters are updated more or less often. Thus the same result holds.

6.2.4 Lower Bounds

We now give a matching lower bound of 2 for waiting time and 1.5 for flow time, on the competitive ratio
of any deterministic online algorithm.

Consider the following example: Two jobs of size 1 arrive at t = 0. The adversary gives a stream of unit
size jobs starting at t = 1 until the algorithm rejects a job.

Let x be the time when the algorithm first rejects a job. In the waiting time model, the cost of the
algorithm is x+ c. The cost of the optimum is min(c, x), since it can either reject a job in the beginning, or
not reject at all. Thus we have a competitive ratio of 2.

The same example gives a bound of 1.5 for flow time. Note that the cost of the online algorithm is
2x+ c, while that of the optimum is min(x+ c, 2x).
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Theorem 6.11 No online algorithm can achieve a competitive ratio of less than 2 for minimizing
waiting time with rejections or a competitive ratio of less than 1.5 for minimizing flow time with
rejections.

6.3 Weighted flow time with weighted penalties

In this section we consider the minimization of weighted flow time with admission control. We assume that
each job has a weight associated with it. Without loss of generality, we can assume that the weights are
powers of 2. This is because rounding up the weights to the nearest power of 2 increases the competitive
ratio by at most a factor of 2. Let a1, a2, . . . , ak denote the different possible weights, corresponding to
weight classes 1, 2, . . . , k. Let W be the ratio of maximum to minimum weight. Then, by our assumption,
k is at most logW . We will consider the following two models for penalty. The general case of arbitrary
penalties is considered in the next section.

Uniform penalty: Jobs in each weight class have the same penalty c of rejection.

Proportional penalty: Jobs in weight class j have rejection penalty ajc.

For both these cases, we give an O(log2W ) competitive algorithm. This algorithm is based on the
Balanced SRPT algorithm described in Chapter 3, Section 3.4 . We modify their algorithm to incorporate
admission control. The modified algorithm is described below.
Algorithm Description: As jobs arrive online, they are classified according to their weight class. Consider
the weight class that has the minimum total remaining time of jobs. Ties are resolved in favor of higher
weight classes. At each time step, we pick the job in this weight class with smallest remaining time and
schedule it.

Let φ be a counter that counts the total weighted flow time accumulated until current time step. For each
weight class j, whenever φ crosses the penalty c (resp. ajc), we reject a job with the largest remaining time
from this class.
Analysis: We will imitate the analysis of the weighted flow time algorithm. First we give an upper bound
on the cost incurred by the algorithm. Let F (S) be the final value of counter φ. The cost of rejection, c|R|,
is bounded by kφ, because rejections |Rj | in weight class j increase by 1 every time φ increases by cj . Thus
we have,

Lemma 6.12 The total cost of the algorithm is ≤ (k + 1)φ

In order to lower bound the cost of optimal offline algorithm, we use a counter ψ. The counter ψ works
as follows: Whenever Opt rejects a job of weight class j, ψ gets incremented by cj . At other times, if

φ = ψ, then φ and ψ increase at the same rate (i.e. ψ stays equal to φ), otherwise, ψ stays constant. By
design, we have the following:

Fact 6.13 At all points of time, ψ ≥ φ.

Now we show that ψ is a lower bound on k · Opt. Let mj = b ψkcj c − b
φ
kcj
c. In both Opt and our

algorithm, arrange active jobs in each weight class in decreasing order of remaining processing time. We
call the first mj jobs of weight class j in our algorithm as marked. Now ignoring the marked jobs, we can
use Theorem 3.5 from Chapter 3. We get the following:
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Lemma 6.14 The total weight of unmarked jobs in our algorithm is no more than k times the total
weight of jobs in Opt.

Proof. The proof is essential similar to that of Lemma 3.4. However, due to rejections, we need to
check a few more cases.

We first restate that lemma in terms suitable for our purpose. Let B(j, l) and P (j, l) denote
a prefix of the jobs in our algorithm and Opt algorithm respectively. Then, we define the suffixes

B(j, l) = Ja − B(j, l) and P (j, l) = Jo − P (j, l), where Ja and Jo are the current sets of jobs in
our algorithm and the Opt algorithm respectively.

Lemma 6.15 ([7]) The total remaining time of the jobs in the suffix B(j, l) is smaller than

the total remaining time of the jobs in P (j, l).

We now consider the cases that are not handled by Bansal et al.’s proof. If a job of weight class
j arrives and Opt rejects it, then the set of jobs with Opt does not change. On the other hand, mj

increases by at least 1. In our algorithm, if the new job is among topmj jobs in its weight class, then
it is marked and set of unmarked jobs remains the same. If the new job does not get marked, the
suffixes of our algorithm can only decrease, since some other job with higher remaining time must
get marked.

Similarly, when our algorithm rejects a job of class j, then the number of marked jobs mj

reduces by 1. However, the rejected job had highest remaining time in the class j. Hence none of
the suffixes change.

Thus, we have established that the suffixes in our algorithm are smaller than the corresponding
suffixes in the Opt algorithm at all times. The argument from Theorem 3.5 gives us the result that
weight of unmarked jobs in our algorithm is at most k ·Opt.

To finish the argument, note that when the Opt algorithm rejects a job of weight class j, Opt increases
by cj . And ψ increases by kcj . On the other hand, when ψ and φ increase together, we have ψ = φ. There

are no marked jobs, since mj = 0 for all j. The increase in ψ per time step is same as the weight of all

jobs in our algorithm. As we saw in the Lemma 6.14, this is at most k times the total weight of jobs in Opt
algorithm. Thus, the total increase in ψ is bounded by k ·Opt.

In conjunction with Lemma 6.12, this gives us that

Theorem 6.16 For both the “Proportional Penalty Model” and the “Uniform Penalty Model”,

the algorithm described in Section 6.3 is an O(log2W ) competitive algorithm for minimizing the
weighted flow time with rejection costs.

6.4 Weighted Flow time with Arbitrary Penalties

In this section we will consider the case when different jobs have different weights and different penalties
of rejection. First we will show that even for the simpler case of minimizing unweighted flow time with two

different penalties, no algorithm can obtain a competitive ratio of o(n
1
4 ) or o(C

1
2 ). A similar bound holds

even if there are two different penalties and the arrival times of high penalty jobs are known in advance.

Then we will give an online algorithm that achieves a competitive ratio of O( 1
ε (logW + logC)2) using a

processor of speed (1 + ε).
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6.4.1 Lower Bounds

Theorem 6.17 For the problem of minimizing flow time or job idle time with rejection, and arbitrary

penalties, no (randomized) online algorithm can achieve a competitive ratio of o(n
1
4 ) or o(C

1
2 ).

Even when there are only two different penalties and the algorithm has complete knowledge of the
high penalty jobs (i.e., it knows the release times and sizes of these jobs in advance), no online

(randomized) algorithm can achieve a competitive ratio of o(n
1
5 ).

Proof. Consider the following scenario for a deterministic algorithm. The adversary gives two

streams, each beginning at time t = 0. Stream1 consists of k2 jobs, each of size 1 and penalty k2.
Stream2 consists of k jobs each of size k and penalty infinite.

Depending on what the online algorithm does by time k2, the adversary will decide whether it

should give a third stream of jobs. Stream3 consists of m = k4 jobs, each of size 1 and penalty
infinite.

Let y denote the total remaining work of jobs of Stream2 that are left at time t = k2. The

adversary gives Stream3 if y ≥ k2/2.

First consider the case when y ≥ k2/2. Observe that at time t = k2, there are at least k/2 jobs
remaining. At this time, the online algorithm will work on jobs of Stream3 (using SRPT, since none

of these will be rejected). Thus we get a cost of at least mk/4 = k5/4. On the other hand, the
optimal offline algorithm rejects all the jobs of Stream1 and finishes jobs of Stream2 during the first

k2 time steps. After time t = k2 it can work on Stream3. Thus the total cost incurred by Opt is

k · k + k2 · k2 +m · 1 = O(k4). Thus, in this case the ratio of the optimal cost to the online cost is

at Ω(k).

Second, if y < k2/2, the adversary does not give Stream 3. Note that if y < k2/2, this means

that algorithm has spent more than k2/2 time on Stream2, so less than k2/2 jobs of Stream 1 could

have been finished by t = k2. Now suppose that the online algorithm rejects more than k2/4 jobs.

Then it incurs a penalty of at least k4/4. On the other hand, if it rejects fewer than k2/4 jobs, then

at least k2/4 jobs remain at time k2, and finishing these adds up at least 1
2(k

2

4 )2 to the flow time. So

the online algorithm incurs at least a cost of Ω(k4). In this case, the offline algorithm can first finish

Stream1 and then work on Stream2. Note that flow time of each Stream2 job is k2 + k. Thus the

total cost here is k2 · 1 + k · (k2 + k) = O(k3), which again implies a ratio of Ω(k) as compared
with the optimal offline.

To obtain a lower bound on competitive ratio in terms ofC, we simply replace the infinite penalty

by a penalty of k4 (thus, both jobs is Stream2 and Stream3 have a penalty of k4). Note that if the

online algorithm rejects Ω(k) jobs of Stream2 (penalty k4), then it incurs a cost of at least Ω(k5)

and we get a a lower bound of k. If it does not reject Ω(k) jobs of Stream2, the argument above

works exactly like before. Now since C = k4/k2 = k2, we get a lower bound of Ω(C1/2). Clearly,
the lower bound extends to the randomized case, as the adversary can simply send Stream3 with
probability 1/2.

Now consider the case of known high penalty jobs. We consider an instance with two types

of penalties: k2 and infinity. The sizes and arrival times of the infinite penalty jobs are known

in advance. Our example uses O(k5) jobs, and gives a lower bound of Ω(k) = Ω(n1/5) on the
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competitive ratio.

Let Stream1 consist of k2 jobs of size 1 and penalty k2, and Stream2 consist of k jobs of size

k and infinite penalty, as before. Both arrive at time t = 0. We redefine Stream3 to consist of k5

jobs, each of size 1/k and penalty k2. Note that the only infinite penalty jobs are in Stream 2, which
by assumption are known to the algorithm in advance. Jobs in both Stream1 and Stream3, have the
same penalty.

As before, it is easy to see that if Stream3 is not given, the optimum cost is O(k3). If the stream
is given, it is optimal to reject all jobs in Stream1 and work only on Stream2 and Stream3, which

gives a cost of O(k4).

In the online scenario, the adversary gives Stream3 at time t = k2, if and only if the total

remaining work of Stream2 jobs at that time is more than k2/2. As before, if the remaining work of

Stream2 is less than k2/2, then the algorithm has either rejected Ω(k2) jobs of Stream1, or delays

them by Ω(k2) time. In either case, the cost of the algorithm is at least Ω(k4), implying a competitive

ratio is at least Ω(k). If the remaining work of Stream2 is greater than k2/2 and Stream3 is given,

then either Ω(k3) jobs of Stream3 need to be rejected, giving a penalty of Ω(k5), or else, Ω(k) jobs

of Stream2 are delayed for the duration of Stream3 i.e. Ω(k4), which gives a cost of Ω(k5). Thus,

the ratio is again at least Ω(k).

6.4.2 Algorithm with Resource Augmentation

Now we will give a resource augmentation result for the weighted case with arbitrary penalties. Consider
first, a fractional model where we can reject a fraction of a job. Rejecting a fraction f of job j has a penalty
of fcj . The contribution to the flow time is also fractional: If an f fraction of a job is remaining at time t, it

contributes fwj to the weighted flow time at that moment.

Given an instance of the original problem, create a new instance as follows: Replace a job j of size pj ,

weight wj and penalty cj , with cj jobs, each of weight wj/cj , size pj/cj and penalty 1.

Using the O(log2W ) competitive algorithm for the case of arbitrary weights and uniform penalty, we

can solve this fractional version of the original instance to within O((logW + logC)2). Now we use a

(1 + ε) speed processor to convert the fractional schedule back to a schedule for the original metric without
too much blowup in cost, as described below.

Denote the fractional schedule output in the first step by SF . The algorithm works as follows: If SF
rejects more than an ε/2 fraction of some job, reject the job completely. Else, whenever SF works on a job,

work on the same job with a (1 + ε) speed processor. Notice that when the faster processor finishes the job,

SF still has 1− ε/2− 1/(1 + ε) = O(ε) fraction of the job present.

We lose at most 2/ε times more than SF in rejection penalties, and at most O(1/ε) in accounting for
flow time. Thus we have the following theorem:

Theorem 6.18 The above algorithm is O( 1
ε (logW + logC)2)-competitive for the problem of min-

imizing weighted flow time with arbitrary penalties on a (1 + ε)-speed processor.
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6.5 Conclusion

In this chapter, we give online algorithms for the problems of minimizing flow time and job idle time when
rejections are allowed at some penalty, and examine a number of problem variants. There are a couple of
problems left open by our work.

Open Problem 6.11 It would be interesting to close the gap between the 1.5 lower bound and our
2-competitive algorithm for minimizing flow time with uniform penalties.

Open Problem 6.12 Is the offline version of the problemNP-Hard for arbitrary rejection penalties?



Chapter 7

Results for Completion Time Scheduling via
Flow Time

7.1 Introduction

In this chapter we consider online algorithms for minimizing objective functions which depend on the com-
pletion times of jobs. While a performance guarantee on a measure based on completion time is not as useful
as a guarantee on flow time, this line of research has been of significant academic interest and often leads
to interesting insights and algorithmic techniques. A lot of these results can be found in the nice surveys on
the topic [47, 69, 52, 33, 62, 64]. More recent results which also simplify and unify the previous work can
be found in [1, 32, 24, 66, 57].

The completion time measure is usually quite robust with respect to various perturbations and changes
in the input instance such as changes in the release dates or the processing times of jobs. This robustness has
been exploited to give very general techniques which allow us to convert a result from a restricted setting to
a more general setting. Two previous results which fall in this paradigm are the following:

• Shmoys, Wein and Williamson [70] consider the problem of scheduling jobs on parallel machines to
minimize the maximum completion time in the online non-clairvoyant setting. They give a technique
for converting an existing offline ρ−approximation for a problem into a 2ρ−competitive online and
non-clairvoyant algorithm.

• Hall, Symoys and Wein [34] consider the problem of minimizing the weighted sum of completion
times in the online setting. They give a technique that converts a ρ−approximation algorithm for a
related problem called the Maximum Scheduled Weight Problem (see [34] for the problem definition)
into a 4ρ− approximation for the online completion time problem.

In this chapter, we give a result of similar flavor. We will give a technique to transform an algorithm for a
flow time problem which possibly uses resource augmentation to obtain an algorithm for the corresponding
completion time problem which does not use resource augmentation. Our transformation carries online
algorithms to online algorithms and also preserves non-clairvoyance. As a corollary of this result we will
obtain O(1)-competitive online clairvoyant and non-clairvoyant algorithms for minimizing the weighted `p

norms of completion time. 1

1The results in the chapter are from [10].
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7.2 Preliminaries

We first make precise the notion of a completion time measure corresponding to a flow time measure. Given
a schedule S for n jobs, this determines the flow times f1, . . . , fn and the completion times c1, . . . , cn. Let
G be some function that takes as input n real numbers and outputs another real number. Given a schedule
S, we define the functions F and C as follows:

F(S) = G(f1, f2, . . . , fn)

C(S) = G(c1, c2, . . . , cn)

For example, if G(x1, . . . , xn) = (
∑

iwix
p
i )

1/p, then F and C are simply the weighted `p norms of flow

time and completion time respectively.
Our technique for converting a flow time result to a completion time result will require two properties

from the function G.

Definition 7.1 A function is said to be scalable if for any positive real number k, G(kx1, . . . , kxn) =

kG(x1, . . . , xn). In particular, if we scale all the flow times in a schedule by k times then F(S)

increases by k times.

We now motivate the next property that we require from the function G. We first point out a somewhat
surprising property of the `p norms of the completion time measure. While it is easy to see that minimizing

the total weighted flow time (i.e. `p norm with p = 1) is equivalent to minimizing the total weighted
completion time, this is not the case for p > 1. In particular, it could be the case that a schedule which is

optimum for the
∑

i f
2
i measure is sub-optimal for

∑
i c

2
i measure and vice versa.

Consider the following instance with just two jobs. The first job has size 10 and arrives at t = 0, the
second job has size 1 and arrives at t = 8. A simple calculation shows that in order to minimize the total
flow time squared, it is better to first finish the longer job and then the smaller job. This incurs a total flow

time squared of 102 + 32 = 109, where as the other possibility which is to finish the small job as soon as

it arrives an then finish the big job incurs a total flow time squared of 112 + 12 = 122. On the other hand,

if we consider completion time squared, finishing the larger job first incurs a cost of 102 + 112. If instead

if finish the smaller job first, this incurs a cost of 92 + 112. Thus the optimal schedule for `p norms of flow

time need not be optimal for `p norms of completion time and vice versa.

Definition 7.2 We say that a function G is ρ-good if is satisfies the following condition:

Given a problem instance I and any two arbitrary schedules S and S ′ for I. If F(S) ≤ cF(S ′),

then C(S) ≤ ρcC(S ′).

7.3 Results

Our main result is the following:

Theorem 7.3 Let G be a ρ-good function. If there is an s-speed, c-competitive online algorithm with
respect to the measure F (derived from G), then this algorithm can be transformed into another on-
line algorithm which is 1-speed, ρcs-competitive with respect to the corresponding completion time
measure C. Moreover, non-clairvoyant algorithms are transformed into non-clairvoyant algorithms.
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We now describe the transformation:
Let A be a s-speed, c-competitive algorithm for a flow time problem. Let I be the original instance

where job Ji has release date ri and size pi. The online algorithm (which we call B) is the defined as
follows:

1. When a job arrives at time ri, pretend that it has not arrived till time sri.

2. At any time t, run A on the jobs for which t ≥ sri
Proof. (of Theorem 7.3) Let I ′ be the instance obtained from I by replacing job Ji ∈ I by a job J ′i
that has release date sri and size spi. Also, let I ′′ be the instance from I by replacing the job Ji ∈ I
with a job J ′′i that has release date sri and size pi.

Let Opt(F , I, x) (resp Opt(C, I, x)) denote the flow time cost (resp completion time cost) of
the optimum schedule on I run using an x speed processor. We first relate the values of the optimum

schedules for I and I ′.
Fact 7.4 Opt(C, I ′, 1) = sOpt(C, I, 1)

Proof. (of Fact 7.4:) Since the release times and sizes in I ′ are scaled by s times that

of I, given a schedule S for I, we can construct a schedule S ′ for I ′ such that if some

event happens at time t in I, then the corresponding event in I ′ happens at time st. By the

scalability property of the function G, the value of the schedule S ′ is exactly s times more

than that for S. Similarly, given any schedule for I ′ we can construct a schedule for I with
value exactly s times smaller. Thus the result follows.

By our resource augmentation guarantee for the algorithm A, we know that

F(A, I ′, s) ≤ cOpt(F , I ′, 1)

By the ρ-goodness of G the above guarantee on flow time implies that

C(A, I ′, s) ≤ cρOpt(C, I ′, 1) (7.1)

We now relate I ′ to I ′′.
Fact 7.5 C(A, I ′, s) = C(A, I ′′, 1)

Proof. (of Fact 7.5:) This follows as jobs in I ′ are s times longer than jobs in I ′′, and

have exactly the same release times. So the schedule produced by A on I ′ using an s speed

processor is indistinguishable by schedule produced by A on I ′′ using a 1 speed processor.

Now, by definition of the algorithmB, executing the algorithmA on I ′′ with a speed 1 processor
is exactly the schedule produced by B on I using a 1 speed processor. So the completion times are
identical. This implies that

C(B, I, 1) = C(A, I ′′, 1) (7.2)

Now using Facts 7.4 and 7.5 and Equations 7.1 and 7.2 it follows that

C(B, I, 1) ≤ cρsOpt(C, I, 1)

Thus we are done.
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Weighted `p Norms of Completion Time

For G(x1, . . . , xn) = (
∑

iwix
p
i )

1/p, it is easily seen that the scalability property is satisfied. We now show

that G is 2-good.

Lemma 7.6 G(x1, . . . , xn) = (
∑

iwix
p
i )

1/p is 2-good for all p ≥ 1.

Proof. Let S and S ′ be two schedules and let f1, . . . , fn (resp. c1, . . . , cn) and f ′1, . . . , f
′
n (resp.

c′1, . . . , c
′
n) be the flow times (resp. completion times) under S and S ′.

We know that, (
∑

iwif
p
i )1/p ≤ c(

∑
iwif

′p
i )

1/p. The weighted `p norms of completion times

under S (resp. under S ′) can be written as (
∑

iwi(fi + ri)
p)1/p (resp. (

∑
iwi(f

′
i + ri)

p)1/p).
By convexity, we have that

∑

i

wi(fi + ri)
p ≤

∑

i

2p−1wi(f
p
i + rpi )

≤ cp2p−1
∑

i

wif
p
i + 2p

∑

i

wir
p
i

≤ cp2p−1
∑

i

wi(f
′p
i + rpi )

≤ cp2p−1
∑

i

wi(f
′
i + ri)

p

Thus the result follows.

Thus by Theorems 3.8, 3.10 and 7.3 and Lemma 7.6 we get that,

Corollary 7.7 There exist O(1)-competitive clairvoyant and non-clairvoyant algorithms for mini-
mizing the weighted `p norms of completion time.

7.4 Concluding Remarks

The results obtained by using this technique are unlikely to be the tightest possible. For example, for the
problem of minimizing the weighted completion time on a single machine, our technique only gives a 4-
competitive algorithm while the best known deterministic algorithm achieves a competitive ratio of 2 [24].
Our results should be best viewed as providing a proof of existence of an O(1) competitive algorithm for a

completion time problem, if there exists anyO(1)-speed ,O(1) competitive algorithm for the corresponding
flow time problem.
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Possibilities for Improvement and Future
Directions

8.1 Possibilities for Improvement

Two outstanding open problems that still remain in the area of flow time scheduling are

1. Is there an O(1) competitive algorithm (or even an approximation algorithm) for minimizing the total
weighted flow time on a single machine?

2. Is there an O(1) approximation algorithm for minimizing the total flow time on multiple machines?

It is widely believed that there should be anO(1) competitive online algorithm for minimizing weighted
flow time. This belief is primarily based on two reasons. First, the inability to find an example that implies
a non-constant lower bound on the competitive ratio. Second, that there exist two algorithms which have

totally “different” guarantees, the first is the algorithm of Chekuri et al [23] that gives a bound ofO(log2B),

which is purely in terms of job sizes, irrespective of the weights involved. The second is our O(logW )

competitive algorithm, the guarantee of which does not depend on job sizes at all. It seems that both these
algorithms are not the right answers to the problem.

One approach that seems promising is based on the recent work of Becchetti et al [14]. They give an
O(1) competitive algorithm for minimizing total flow time in the model where the size of a job is not known

exactly but only within an interval [2i, 2i+1) (formally this is known as semi-clairvoyant scheduling). The
interesting property of this algorithm is that at any time only a constant fraction of the unfinished jobs are
partially executed (unlike other algorithms like say SRPT or SJF where all jobs could be partially executed at
some time). In fact, it satisfies a stronger property that if there are two or more jobs, then for every partially
executed job there exists a unique larger job that is total i.e., not partially executed. If we could somehow
extend this algorithm to the weighted case, then there is hope that this gives an O(1) competitive algorithm
by the following argument: First we can charge the weight of the partially executed jobs under the online
algorithm to the total jobs, since this weight is only a constant factor of the weight of total jobs, we only
need to worry about the weight in total jobs. Second, using some kind of work conservation argument, we
can perhaps argue that the optimum algorithm too has at least a constant fraction of the weight contained in
the unfinished total jobs under the online algorithm.

Our quasi-polynomial time approximation scheme for minimizing total flow time on O(1) machines
suggests that there should be a PTAS for this problem. The reason for the extra log n in the exponent of the
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running time of the algorithm presented in this thesis roughly comes for the following reason: We round

jobs sizes such that they range from 1 to n2. It seems that this cannot be avoided, in particular if we only
have a constant range for the sizes then we seem to lose too much in the approximation, as there errors could
build up over the n jobs. Thus we have Ω(log n) job classes. Next, there does not seem a reasonable way
to look at the job classes separately while constructing the schedule. This type of idea works for obtaining
a PTAS for minimizing total stretch on a single machine [18] (essentially, since small jobs have a relatively
larger weight than large jobs, it suffices to schedule the small jobs optimally before moving on to jobs of a
higher size class). However, it is not clear if something similar could be done for flow time.

The algorithm SETF is (1 + ε)-speed, O(log2B/ε4)-competitive for minimizing the total stretch non-

clairvoyantly (Chapter 4, Theorem 4.1). It seems that the right answer should be a (1 + ε)-speed, O(logB)-
competitive algorithm. The main reason why we lose an additional factor of logB is that in our analysis is
that while considering the contribution to stretch, we replace the size of a job by the amount of processing
received by it (which could be much smaller). So, suppose if the input instance only had a single job of size

B, then while the stretch would be 1, our analysis would yield Ω(logB) (as each time interval (2i, 2i+1]

yields a constant amount to the total stretch). Since a non-clairvoyant algorithm cannot distinguish between
a small job and a big one until it has given some service to both the jobs, it is not clear how to avoid this in
the analysis.

8.2 Some Future Directions

Theoretical research in scheduling is closely tied with practice. Often new computer system architec-
tures/technologies and new performance measures used to experimentally evaluate a system lead to new
directions and problems in scheduling. For example, with the recent popularity of multicast and satellite
broadcasting systems such as Direct-TV, broadcast scheduling has received a lot of theoretical interest in
the last couple of years. As far as measures of performance are concerned, we believe that flow time will
continue to be of fundamental importance. Some issues that will need to be addressed however, to make the
theoretical results more relevant to practitioners seem to be the following:

1. Understanding the trade-off between preemptions and flow time: While it is known of non-preemptive
algorithms are not good at all, it might be interesting to see if almost optimal flow times can be
achieved via algorithms that requires “very” few preemptions. Some work in this direction has been
in [28].

2. Incomplete knowledge of jobs sizes: Often in a real system, while job sizes may not be known exactly
in advance, it is usually possible to get a rough idea of the job size by learning from past data etc.
This naturally leads to a setting that lies between the clairvoyant and the non-clairvoyant model. An
attempt at this has been recently made via the study of semi-clairvoyant scheduling [18, 14].
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