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Abstract

This paper describes a programming model and system support for clean construction of disk maintenance applica-
tions. Such applications expose the disk activity to be done, and then process completed requests as they are reported.
The system ensures that these applications make steady forward progress without competing for disk access with a
system’s primary applications. It opportunistically completes maintenance requests by using disk idle time and free-
block scheduling. In this paper, three disk maintenance applications (backup, write-back cache destaging, and disk
layout reorganization) are adapted to the system support and evaluated on a FreeBSD implementation. All are shown
to successfully execute in busy systems with minimal (e.g., �2%) impact on foreground disk performance. In fact, by
modifying FreeBSD’s cache to write dirty blocks for free, the average read cache miss response time is decreased by
15–30%.
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1 Introduction

There are many disk maintenance activities that are required for robust system operation and,
yet, have loose time constraints. Such “background” activities need to complete within a reason-
able amount of time, but are generally intended to occur during otherwise idle time so as to not
interfere with higher-priority application progress. Examples include write-back cache flushing,
defragmentation, backup, integrity checking, virus scanning, report generation, tamper detection,
and index generation.

Current systems use a variety of ad hoc approaches for such activities. Most trickle small
amounts of work into the storage subsystem, either periodically or when an idle period is de-
tected.When sufficient idle time is not available, these activities either compete with foreground
requests or are not completed. More importantly, trickling work into a storage subsystem wastes
significant disk scheduling opportunities—it restricts the scheduler to only considering a small
subset of externally-chosen requests at externally-chosen points in time. Most background ac-
tivities need to read or write substantial portions of the disk, but do not have particular ordering
requirements. As a result, some implementors try hard to initiate the right requests at the right
times, introducing substantial complexity but, usually, only minor improvement.

This paper describes an alternate approach, wherein background activities are exposed to the
storage subsystem so that it can schedule associated disk accesses opportunistically. With the
storage subsystem explicitly supporting priorities, background applications can safely expose work
and trust that it will not interfere with foreground activity. Doing so allows the scheduler to use
freeblock scheduling and idle disk time to complete background disk accesses in the most device-
efficient manner. Freeblock scheduling [24] predicts rotational latency delays and tries to fill them
with media transfers for background tasks. As the set of desired disk locations grows, so does the
ability of a freeblock scheduler to utilize such latency delays. The same is true for non-intrusive
use of short periods of idle time. Combining rotational latency gaps with short and long periods
of idle time, programs designed to work with storage-determined ordering can make consistent
progress, without affecting foreground access times, across a wide range of workloads and levels
of activity.

This paper describes a framework for background disk activities, including application pro-
gramming interfaces (APIs) and support for them in FreeBSD. In-kernel and system call APIs
allow background applications to register “freeblock tasks.” Our freeblock subsystem replaces
the generic SCSI driver’s disk scheduler, utilizing both freeblock scheduling and any idle time to
opportunistically complete freeblock requests. The APIs are explicitly asynchronous, and they
encourage implementors to expose as much background work as possible. For example, dynamic
buffer management allows freeblock tasks to register a desire to read more disk space than fits in
main memory. Just-in-time locking avoids excessive holding of buffers, since freeblock writes may
be pending for a long time. Rate control avoids memory exhaustion and wasted disk scheduling
efforts for applications with low priority on the CPU.

We describe the conversion of three disk maintenance tasks to use of this infrastructure: scan-
ning of disk contents for backup, flushing of write-back caches, and reorganizing disk layouts.
Well-managed systems perform periodic backups, preferably without interfering with foreground
activity. Backup is a great match for our framework, often reading large fractions of the disk; a
“physical” backup does so without interpreting the file system structures and can be made order-
agnostic. We implemented such a physical backup application that uses the freeblock subsystem
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to read disk blocks. Physical backup of a snapshot that covers more than 70% of an always-busy
18GB disk can be completed in a little over one hour with less than 2% impact on a foreground
workload.

Almost all file servers and disk array controllers use write-back caching to achieve acceptable
performance. Once updates are decoupled from application progress, they become a background
activity appropriate for our framework. In our evaluations, we find that approximately 80% of
the cache flushes can usually be eliminated, even when there is no idle time, reducing the average
disk read response time by 15-25%. For low read-write ratios (e.g., 1:3–1:1), only 30–55% of
the flushes are eliminated, but the read response time reductions are still 15–30%. Interestingly,
when emulating a non-volatile cache, which eliminates FreeBSD’s 30-second limit on time before
write-back, almost all flushes can be eliminated, improving read response times by almost 50%.

Over time, allocated storage space becomes fragmented, creating a desire for defragmentation.
Also, there have been many proposals for periodically reorganizing disk layouts to reduce future
access times. Both require that disk blocks be shuffled to conform to a new, preferred layout. In
our evaluations, we show that using our framework it is possible to reorganize the layouts quickly
and with minimal impact on the foreground workloads.

This paper makes four main contributions: First, it describes in-kernel and system call APIs for
background disk maintenance tasks. Second, it describes and evaluates three real examples using
these APIs to cleanly and effectively function across a range of foreground usage models; each
example and evaluation is interesting in and of itself. Third, it describes a general infrastructure
for supporting these APIs. Fourth, it describes memory management and rate control practices
necessary for robust operation.

The remainder of this paper is organized as follows. Section 2 discusses disk maintenance
tasks, freeblock scheduling, and related work. Section 3 describes in-kernel and application-level
APIs for background disk tasks. Section 4 describes three disk maintenance applications and how
they use the APIs. Section 5 briefly describes the freeblock subsystem and its integration into
FreeBSD. Section 6 evaluates how well the three applications work when using the framework.

2 Background and related work

There are many disk maintenance activities that need to eventually complete, but that ideally
progress without affecting the performance of foreground activity. This section describes how such
activities are commonly implemented, how a freeblock subsystem can help, and related work.

Characteristics and approaches: Disk maintenance activities generally have long time hori-
zons for completion, allowing them to have lower priority at any instant than other applications
running on a system. As a result, one common approach is to simply postpone such activities until
expected off hours; for example, desktop backups are usually scheduled for late nights (or, early in
the morning for CS researchers). For less sporadically-used systems, however, the lower priority
must be handled in another way.

Another common approach is to spread background requests over time so as to reduce inter-
ference with foreground work; for example, some caches flush a fraction of the dirty blocks each
second to reduce penalties associated with periodic full cache flushes [9]. More aggressive im-
plementations explicitly identify periods of idle time and use them to service background work.
Of course, identifying idle times requires effort—the background activity must be invoked in the
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system’s critical path—and assumptions about any pro-active storage-internal functions. When
using a detected idle period, background activities usually provide only a few requests at a time to
the storage subsystem in order to avoid having a lengthy queue when the next foreground request
arrives. This is necessary because current storage systems provide little-to-no support for request
priorities or preemption.

By providing only a few requests at a time, these implementations rob the disk scheduler of
opportunities to reduce positioning times. In fact, disk maintenance applications usually need to
access many disk locations and many could be quite flexible in their operation ordering. Some
implementors attempt to recapture at least a portion of the lost efficiency by providing requests
expected to be fast; for example, a disk array reconstruction task can, after a foreground request
completes, generate background requests for locations near the recent foreground request rather
than near the most recent background request [17]. Such tricks can provide marginal gains, but
still lose out on much of the opportunity and often increase complexity by breaking abstraction
boundaries between the application and the disk.

Freeblock scheduling: Since disk platters rotate continuously, a given sector will reach the
disk head at a given time independent of what the disk head is doing until that time. Freeblock
scheduling [24] consists of squeezing background media transfers into foreground rotational la-
tencies. A freeblock scheduler predicts how much rotational latency would occur before the next
foreground media transfer and inserts additional media transfers, while still leaving time for the
disk head to reach the destination track in time for the foreground transfer. The additional media
transfers may be on the current or destination tracks, on another track near the two, or anywhere
between them. In the two latter cases, additional seek overheads are incurred, reducing the time
available for the additional media transfers, but not completely eliminating it.

Freeblock scheduling, as originally proposed, combines nicely with idle time usage to provide
disk bandwidth to background tasks across a wide range of foreground usage patterns. In addition
to detecting and using lengthy idle time periods, low-level scheduling can allow short, sporadic
idle periods to be used with minimal penalty. Throughout this paper, we use the term freeblock
scheduling to refer to this more complete scheduling combination.

Freeblock scheduling is a good match for many disk maintenance activities, which desire large
numbers of disk blocks without requiring a predetermined order of access. Properly implemented,
such activities can provide much freedom to a scheduler that opportunistically matches rotational
latency gaps and idle time bursts to desired background transfers.

Related work: Lumb et al. [24] first evaluated the use of rotational latency gaps for back-
ground work and evaluated the system via simulation. The simulations indicated that 20–50%
of a never-idle disk’s bandwidth could be provided to background applications with no effect on
foreground response times. This bandwidth was shown to be more than enough for free segment
cleaning in a log-structured file system or for free disk scrubbing in a transaction processing sys-
tem.

Later work by different groups [23, 37] demonstrated that outside-the-disk freeblock schedul-
ing works, albeit with more than 35% loss in efficiency when compared to the hypothetical inside-
the-disk implementation assumed in Lumb et al.’s simulations. In both cases, the freeblock sched-
uler was tailored to a particular application, either background disk scans [23] or writes in eager
writing disk arrays [37]. In both cases, evaluation was based on I/O traces or synthetic workloads,
because system integration was secondary to the main contribution: demonstrating and evaluating
the scheduler. This paper builds on this prior work by describing a general programming frame-
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work for background disk tasks and evaluating several uses of it.
Dimitrijević et al. [12] describe semi-preemptible I/O, which breaks up disk requests into

small steps and thereby minimizes the amount of time that a higher-priority request would have to
wait. Our approach to using short idle-time periods is a restricted form of this general approach.

Several interfaces have been devised to allow application writers to expose asynchronous and
order-independent access patterns to storage systems. Dynamic sets [32], disk-directed I/O [21],
and River [4] all provide such interfaces. We borrow from these, and asynchronous networking
interfaces like sockets, for the APIs described in the next section.

3 Background disk I/O interfaces

To work well with freeblock scheduling, applications must be designed explicitly for asyn-
chronous I/O and minimal ordering requirements. An application should describe to the freeblock
subsystem sets of disk locations that they want to read or write. Internally, when it can, the free-
block subsystem inserts requests into the sequence sent to the disk. After each desired location is
accessed, in whatever order the low-level disk scheduler chooses, the freeblock subsystem informs
the application and provides any data read.

This section describes two generic application APIs for background activities. The first is an
in-kernel API intended to be the lowest interface before requests are sent to the storage device.
The second API specifies system calls that allow user-level applications to tap into a freeblock
subsystem. These APIs provide a clean mechanism for registering background disk requests and
processing them as they complete. Applications written to these interfaces work well across a
range of foreground usage patterns, from always-busy to frequently-idle. Both APIs talk in terms
of logical block numbers (LBNs) within a storage logical unit (LUN); consequences of this choice
are discussed in Section 3.4.

3.1 In-kernel API

Table 1 shows the in-kernel API calls for our freeblock scheduling subsystem. It includes calls
for registering read and write freeblock tasks, for aborting and promoting registered tasks, and for
suspending and resuming registered tasks. As a part of the high-level device driver, there is one
instance of the freeblock scheduler per device in the system; the standard driver call switch mech-
anism disambiguates which device is intended. This section explains important characteristics of
the API.

Applications begin an interaction with the freeblock subsystem with fb open, which creates
a freeblock session. fb read and fb write are used to add freeblock tasks, registering interest in
reading or writing specific disk locations, to an open session.1 Sessions allow applications to
suspend, resume, and set priorities (values between 1 and 100, with a default of 20) on collections
of tasks.

No call into the freeblock scheduling subsystem waits for a disk access. Calls to register
freeblock tasks return after initializing data structures, and subsequent callbacks report subtask
completions. The freeblock scheduling subsystem promises to read or write each identified disk

1The term freeblock request is purposefully being avoided in the API to avoid confusion with disk accesses sched-
uled inside the freeblock subsystem.
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Function Name Arguments Description

fb open priority, callback fn, getbuffer fn Open a freeblock session (ret: session id)
fb close session id Close a freeblock session
fb read session id, addr range, blksize, callback param Register a freeblock read task
fb write session id, addr range, blksize, callback param Register a freeblock write task
fb abort session id, addr range Abort parts of registered tasks
fb promote session id, addr range Promote parts of registered tasks
fb suspend session id Suspend scheduling of a session’s tasks
fb resume session id Resume scheduling of a session’s tasks
*(callback fn) session id, addr, buffer, flags, callback param Report that part of task completed
*(getbuffer fn) session id, addr, callback param Get memory address for selected write

Table 1: In-kernel interface to the freeblock subsystem. fb open and fb close open and close a freeblock session
for an application. Tasks can be added to a session until the application closes it. fb read and fb write register one
or more freeblock tasks. fb abort and fb promote are applied to previously registered tasks, to either cancel pending
freeblock tasks or convert them to foreground requests. fb suspend and fb resume disable and enable scheduling for
all tasks of the specified session. *(callback fn) is called by the freeblock subsystem to report data availability (or
just completion) of a read (or write) task. The freeblock subsystem reclaims the buffer when *(fb callback) returns,
meaning that the callee must either process the data immediately or copy it to another location before returning control.
When a write subtask is selected by the scheduler, *(getbuffer fn) is called to get the source memory address.

location once and to call callback fn when freeblock requests complete. On the last callback for a
given session, the flags value is set to the appropriate value indicating completion.

Each task has an associated blksize, which is the unit of data (aligned relative to the first
address requested) to be returned in each callback fn call. This parameter of task registration exists
to ensure that reads and writes are done in units useful to the application, such as file system blocks
or database pages. Having only a portion of a database page, for example, may be insufficient
to process the records therein. The blksize value must be a multiple of the LBN size (usually
512 bytes). In practice, it must be small to allow scheduling flexibility; for modern disks, blksize
values above 64 KB substantially reduce the effectiveness of freeblock scheduling when there is
no idle time [33].

Calls to register freeblock tasks do not specify memory locations. For reads, the freeblock
scheduling subsystem passes back, as a parameter to callback fn, pointers to buffers that it owns.
When callback fn returns, the buffer is reclaimed; so, if a copy is desired, the application’s call-
back fn is responsible for creating one. For writes, the associated getbuffer fn is called when the
freeblock scheduler selects a part of a write task. The getbuffer fn either returns a pointer to the
memory locations to be written or indicates that the write cannot currently be performed. In this
latter case, the freeblock request is not generated and that part of the freeblock task waits for a
future opportunity.

The original reason for getbuffer fn was to avoid long-held locks on buffers associated with
registered freeblock write tasks. Commonly, file systems and database systems lock cache blocks
for which disk writes are outstanding in order to prevent them from being updated while being
DMA’d to storage. With freeblock scheduling, writes can be waiting in the freeblock task list for
a long time; such locks could easily be a system bottleneck. The getbuffer fn callback allows the
lock to be acquired at the last moment and held only for the duration of the actual disk write. For
example, the free write-backs described in Section 4.2 actually hurt performance when they do not
utilize this functionality. Since adding it to the API, we have found that the getbuffer fn function
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cleanly supports other uses. For example, it enables a form of eager writing [35, 37]: one can
register freeblock write tasks for a collection of unallocated disk locations and bind unwritten new
blocks to locations in getbuffer fn. The disk write then occurs for free and the relevant metadata
can be updated with the resulting location.

The non-blocking and non-ordered nature of the interface is tailored to match freeblock schedul-
ing’s nature. Other aspects of the interface help applications increase the set of blocks asked for at
once. Late-binding of memory buffers allows registration of larger freeblock tasks than memory
resources would otherwise allow. For example, disk scanning tasks can simply ask for all blocks
on the disk in one freeblock task. The fb abort call allows task registration for more data than
are absolutely required (e.g., a search that only needs one match). The fb promote call allows one
to convert freeblock tasks that may soon impact foreground application performance (e.g., a space
compression task that has not made sufficient progress) to foreground requests. The fb suspend and
fb resume calls allow registration of many tasks even when result processing sometimes requires
flow control on their completion rate.

3.2 Application-level API

The application-level API mirrors the in-kernel API, with a system call for each fb xxx function
call. The main differences are in notification and memory management. Because the kernel must
protect itself from misbehaving applications, the simple callback mechanisms of the low-level API
are not feasible in most systems. Instead, a socket-like interface is used for both.

As with the in-kernel API, an application begins by calling sys fb open to get a session id.
It can then register freeblock tasks within the session. For each block read or written via these
tasks, a completion record is inserted into buffers associated with the session. Applications get
records from these buffers via the one new call: sys fb getrecord (buffer); each call copies one
record into the specified application buffer. Each record contains the session, addr and flags fields
from callback fn in the in-kernel API, as well as the data in the case of freeblock reads. Like with
sockets, the sys fb getrecord call can be used for both blocking and polling programming styles.2

A timeout parameter in the sys fb getrecord function dictates how long the application will wait if
no completion record is currently available. A value of 0 will return immediately (polling), and a
value of -1 will wait indefinitely.

3.3 Consistency model

Freeblock tasks may have long durations; for example, a background disk scan can take over
an hour. Therefore, a clear consistency model is needed for overlapping concurrent freeblock and
foreground requests.

Like most low-level storage interfaces, our APIs opt for maximum scheduling flexibility by
enforcing a minimalistic semantic with three rules. First, no ordering guarantees are enforced
among pending tasks, whether they overlap or not. Second, data returned from a read should have
been on the disk media at some point before being returned. Third, a block write can be reported

2Our experiences indicate that full integration with existing system call mechanisms would be appropriate. Specif-
ically, using the standard file descriptor mechanism would allow integrated use of select() with sockets, from
which this interface borrows many characteristics. For example, given such integration, an application could cleanly
wait for any of a set of sockets and freeblock sessions to have made progress.
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complete when it is on disk or when a concurrent write to the same disk location completes; the
latter case is rationalized by the fact that the non-written blocks could have been put on the disk
just before the ones actually put there.

Given these semantics, a freeblock scheduler can coalesce some overlapping tasks. Of course,
data fetched from media can be replicated in memory and passed to all concurrent readers. In
addition, completion of a write task to location � allows completion of all pending reads or writes
to � because the newly written data will be the current on-disk data once the write completes. As
a result, a write is given preference when a set of overlapping reads and writes are pending; a read
could be done before the write, but doing so is unnecessary given the consistency model.

3.4 Consequences of LBN-based interface

The freeblock scheduling APIs described interact with driver-level scheduling in terms of LBNs.
This simplifies implementation of the scheduler and of low-level disk maintenance tasks, such
as RAID scrubbing and physical backup. But, most utilities that access structured storage (e.g.,
files or databases) must coordinate in some way with the software components that provide that
structure. For example, consider a file-based backup application. It could read a directory and
register freeblock tasks to fetch the files in it, but it will not know whether any given file is deleted
and its inode reallocated between the task being registered and the inode eventually being read
from disk. If this happens, the application will backup the new file under the old name. Worse
problems can arise when directory or indirect blocks are reallocated for file data.

Three options exist for maintenance tasks that interact with structured storage. First, the task
could coordinate explicitly with the file system or database system. Such coordination can be
straightforward for integrated activities, such as segment cleaning in an LFS [27] or index gener-
ation in a database system. Second, the task could insist that the file system or database system
be temporarily halted, such as by unmounting the file system. Although heavy-handed, a sys-
tem with many file systems could have individual ones halted and processed one-by-one while
the others continue to operate on the storage devices. Third, the task could take advantage of an
increasingly common mechanism in storage systems: the snapshot [16]. A snapshot provides an
instance of a dataset as it was at a point in history, which is useful for backup [10] and remote repli-
cation [26]. Since the contents of a snapshot remain static, update problems are not an issue for
tasks using the freeblock scheduling APIs. In addition to traditional backup tasks, snapshots offer a
convenient loose coordination mechanism for disk maintenance tasks like integrity checking, virus
scanning, report generation, tamper detection, and garbage collection. Section 4 shows an example
of how a backup application interacts with the snapshot system and the freeblock subsystem.
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Figure 1: Snapshot-based backup application. The backup application interacts with the snapshot subsystem to
learn which blocks comprise the snapshot in question. It uses the freeblock subsystem to read these blocks from disk.

4 Example applications

Many disk maintenance applications can be converted to the programming model embodied in
our APIs. This section describes the conversion of three such applications that are evaluated in
Section 6.

4.1 Snapshot-based backup

Most systems are periodically backed-up to ensure that the data stored is not lost by user error or
system corruption. In general, it is accepted that either the system will be otherwise idle during the
backup time or the backup will have some performance impact on foreground activity [13, 15, 19].

Backup strategies fall into two categories: logical and physical backup. Logical backup is a
file-based strategy. It first needs to interpret the file system’s metadata and find the files that need to
be backed-up. The files are then stored to the backup media in a canonical representation that can
be restored at a later time. The advantages of logical backup include the ability to restore specific
files and to backup only live data. Physical backup is a block-based strategy. Physical backup does
not interpret the file structure that it is backing up. Uninterpreted raw blocks are copied from one
media to another. The main advantages of physical backup are its simplicity and scalability. In
particular, physical backup can achieve much higher throughput while consuming less CPU [19].

Physical backup fits well with our programming model. No ordering among blocks is required.
Instead, blocks are copied from one device to another as they are read. The blocks could be written
to the backup media out of order (and reorganized during restore), or a staging device could be
used to reorder before writing to tape.

Physical backup can take advantage of snapshots, which are on-line read-only copies of a
volume of storage. Snapshots allow consistent backup from an active on-line system. Snapshots
were added to the 5.x release of FreeBSD [25].

Our backup application uses FreeBSD’s snapshot infrastructure and our system call API. No
changes are required to the FreeBSD snapshot implementation. After a snapshot is taken, the
backup application interacts with the snapshot subsystem as shown in Figure 1. First, it gets the
list of blocks that belong to the snapshot file. Then, the backup application registers freeblock
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tasks, via sys fb read, to read them. It interactively calls sys fb getrecord to wait for reads to
complete and get the data. Each successfully read block is sent to the back-up destination, together
with its address. The backup application can also be used to create a replica by writing each block
directly to the corresponding LBN on the destination LUN.

FreeBSD’s approach to handling modifications to blocks “owned” by a snapshot creates an
additional complexity for the backup application. A snapshot implementation can do one of two
things when a block is modified. In the first option (“application-copy-on-write”), a new location is
chosen for the updated blocks and the snapshot map stays unchanged. Network Appliance’s WAFL
file system, for example, uses this method [19]. In the second option (“snapshot-copy-on-write”),
the original data is copied to a newly allocated block and the snapshot map is modified. FreeBSD
uses this second option to avoid disrupting carefully chosen disk assignments. In the evaluation
section, we explore the effects of both methods on the backup application.

To handle FreeBSD’s snapshot-copy-on-write, the backup application needs to check with
the snapshot system whether each returned block still has the original desired contents. If not,
a new freeblock task to read the relocated block is registered. This procedure continues until
all original blocks have been read. Note that we could have changed the snapshot subsystem to
automatically abort and re-register tasks for modified blocks, but our intention is to show that the
backup application works well even with an unmodified snapshot system.

4.2 Buffer cache cleaner

Caches are part of all storage systems, and most are write-back in nature. Data blocks written
to the cache are marked dirty and must eventually make their way to the storage device. In most
operating systems, including FreeBSD, the cache manager promises applications that data written
to the cache will propagate to persistent storage within a certain fixed window of time, usually 30
seconds. This persistence policy tries to bound the amount of lost work in the face of a system
crash. In many file servers and disk array controllers, cache persistence is not a concern because
they utilize battery-backed RAM or NVRAM. But, dirty buffers must still be written to storage
devices to make room in the cache for new data. Although these systems do not necessarily need
a persistence policy, they still need a cache write-back replacement policy.

Cache write-back is a good application for a freeblock subsystem. In most cases, there are
no ordering requirements and no immediate-term timeline requirements for dirty blocks. Until a
persistence policy or cache space exhaustion is triggered, they are background activities that should
not interfere with foreground disk accesses (i.e., cache misses).

We modified FreeBSD’s cache manager to utilize our in-kernel API. It registers all dirty
buffers to be written for free through the use of the fb write call. Cache blocks are not locked
when the writes are registered; when its getbuffer fn is called by the freeblock subsystem, the
cache manager returns NULL if the lock is not free. When its callback fn is called, the cache
manager marks the associated block as clean. If the freeblock subsystem still has not written a
buffer for free when the cache manager decides it must be written (as a consequence of the cache
replacement or persistence policies), then the cache manager can convert the associated write to a
foreground request via fb promote. If a dirty buffer dies in cache, for example because it is part of
a deleted file, the task registered to flush it to disk can be aborted through fb abort.
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Figure 2: Sample dependency graph for disk layout reorganization. This diagram illustrates the dependency
graph that results from changing the disk layout. The gray boxes represent empty physical locations. The white boxes
present physical locations that have been mapped to a particular LBN (given by the number on the box). Dashed
arrows present dependencies whereas solid lines show movements that do not have any dependencies.

4.3 Layout reorganizer

Disk access times are usually dominated by positioning times. Various layout reorganization
heuristics have been developed to reduce access times. For example, blocks or cylinders may be
rearranged in an organ pipe fashion, as in [29]. Files or blocks may be replicated so each read can
access the closest replica, as in [22, 36]. Blocks may be rearranged to make disk accesses more
sequential, as in [3, 29].

Layout reorganization is a background activity that can be made to fit our programming model.
But, doing so requires that the implementer think differently about the problem. In the traditional
approach, most work focuses on planning an optimal movement pattern. Because a freeblock
subsystem is opportunistic, extensive forward planning is not useful, since one cannot predict
when freeblock opportunities will be available.

Planning movement patterns is a focus because there are dependencies between block move-
ments. If a block is to be moved to a location that currently contains live data, the live data must
first be read and either moved or buffered. Although no block can directly depend on more than
one other block, dependency chains can be arbitrarily deep. Figure 2 illustrates an example of
these dependencies.

Our layout reorganizer, illustrated in Figure 3, respects these dependencies, of course, but does
so without trying to create a plan based on the dependency graph. Instead, it attempts to maximize
the freeblock subsystem’s flexibility while ensuring that deadlock cannot occur. To do so, it uses
an NVRAM staging area3 and three distinct freeblock sessions. The pool of staging buffers is
logically partitioned into two parts: writable and unwritable.

The “read-staged” session registers read tasks for all blocks that could not yet be written,
due to a dependency; these blocks, when read, become part of the unwritable portion of the staging
pool. The “read-writable” session registers read tasks for all blocks that can be immediately written
(i.e., they have no dependencies) or that clear a dependency for a currently buffered block; when
read, a read-writable block either becomes a writable buffer or becomes an unwritable buffer but

3Our experimental system does not actually have NVRAM. Instead, the layout reorganizer just allocates a block
of memory and pretends it is non-volatile. This emulates how the reorganizer might work in many modern file servers
and disk array controllers
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Figure 3: Layout reorganizer architecture. This diagram illustrates the design of the layout reorganizer imple-
mented using our framework. The read-staged session manages blocks whose dependencies have not yet been solved.
The read-writable session manages all blocks that can be read because their dependencies have been solved. The
write-session manages all block writes. All data is temporarily stored in the NVRAM staging area.

also converts an unwritable buffer to writable.
Whenever a completed read creates a writable buffer, the “write” session registers a write

task for it. If a current read-staged task depended upon it, that task no longer has a dependency.
Therefore, it is aborted (sys fb abort) and re-registered as a read-writable task. When a write
completes, its buffer can be released from the staging area and reclaimed.

In order to avoid deadlocking, the reorganizer ensures that the number of unwritable blocks in
the cache never exceeds a threshold percentage of the cache. If the number of unwritable buffers
reaches the threshold, the reorganizer suspends (sys fb suspend) the read-staged session, allowing
only the read-writable and write sessions to continue. Since read-writable read tasks are either
immediately writable or will allow an in cache block to be immediately writable, reading them
cannot consume the remaining staging space without allowing forward progress. When unwritable
space falls below the threshold, because of writes and/or cleared dependencies, the read-staged
session can be restarted.

The combined size of the unwritable and writable pools in the staging area is also limited.
The reorganizer suspends both read sessions if the staging area fills, until blocks in the cache are
written out to disk. When buffer space becomes available, the reorganizer uses the sys fb resume
call to resume the scheduling of read tasks.

5 The freeblock subsystem

This section briefly describes the freeblock subsystem infrastructure implemented in FreeBSD
to experiment with our background applications. This infrastructure supports all the background
disk I/O APIs described in Section 3. Details and evaluation of this infrastructure are available
in [33].

5.1 Architecture and integration

Figure 4 illustrates the major components of our freeblock subsystem. The background sched-
uler exports the in-kernel API, and a system call translator component translates the application-
level API calls to in-kernel calls. This section describes these pieces and their integration into
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Figure 4: Freeblock subsystem components.

FreeBSD.
Foreground and background schedulers: Our scheduling infrastructure replaces FreeBSD’s

C-LOOK scheduler. The foreground scheduler uses Shortest-Positioning-Time-First (SPTF), and
the background scheduler uses freeblock scheduling (rotational latency gaps and any idle time).
Both schedulers use common library functions, which are much like other recent software-only
outside-the-disk SPTF models [1, 5, 6, 23, 31, 36], for modeling the disk to predict positioning
times for requests. In our case we use DIXtrac [30] to extract the disk parameters shown in Fig-
ure 4.

Like the original scheduler, our foreground scheduler is called from FreeBSD’s dastrategy()
function. When invoked, the foreground scheduler appends a request onto the driver’s device
queue, buf queue, which is the dispatch queue in Figure 4. It then invokes the background sched-
uler, which may create and insert one or more freeblock requests ahead of the new foreground
request.

When a disk request completes at the disk, FreeBSD’s dadone() function is called. Into this
function, we inserted calls to the background and foreground schedulers. The background sched-
uler code determines whether the completed request satisfies any freeblock tasks and does associ-
ated processing and clean-up. The foreground scheduler selects a new foreground request, if any
are pending, adds it to the dispatch queue, and invokes the background scheduler to possibly add
freeblock requests. Then, dadone() proceeds normally.

Freeblock system call translator: The system call translator implements the application-
level API. Doing so consists of translating system calls to in-kernel calls and managing the flow
of data between the freeblock subsystem and the user-level application. When a freeblock task
completes, the translator’s callback fn appends a record to the associated session’s buffers and, if
the buffers were empty, awakens any waiting application processes. When the freeblock subsys-
tem reads data faster than the application processes it, the buffers associated with the session fill
up and flow control is needed. When this happens, the translator uses the fb suspend call, sus-
pending subsequent freeblock requests for the tasks associated with the given session. When the
application fetches records and thereby clears space, the translator uses fb resume to re-enable the
associated freeblock tasks. When an application exits or calls sys fb close, the translator clears all
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state maintained by the freeblock system on behalf of the application’s session(s).

5.2 Background scheduler algorithms

The background scheduler includes algorithms for utilizing otherwise wasted rotational latency
gaps and for detecting and using disk idle time.

Rotational latency usage: Recall that during busy disk periods rotational latency gaps can be
carefully filled with background media transfers. Our freeblock subsystem uses algorithms similar
to those described by Lumb et al. [23, 24], modified to use less non-idle CPU time and to support
fairness and priorities among freeblock sessions.

The search for suitable background transfers proceeds in two phases. The first phase checks
only a few tracks for potential background transfers adding an insignificant amount of computation
(��5%) to a busy CPU. The second phase only runs when the CPU is otherwise in the idle loop.
It searches all other options in order to refine the best choice found until the request needs to be
sent.

Prior algorithms greedily scheduled freeblock requests, assuming all were equal. As shown
in Section 6.6, this can lead to poor behavior when freeblock sessions are mixed. In particular,
full disk scans can starve other sessions. We introduce fairness, as well as support for priorities,
using a simple form of lottery scheduling [34]. The initial tickets allocated to each session are
proportional to its assigned priority.

The lottery determines both which pending tasks are considered, since there is limited CPU
time for searching, and which viable option found is selected. During the first phase, four cylinders
worth of pending tasks from the winning session are considered: the two closest to the source and
the two closest to the destination. Any option from the winning session found will be selected.
In addition, all pending tasks on the destination cylinder and within one cylinder of the source
are considered; these are the most likely locations of viable options, reducing the odds that the
rotational latency gap goes unused. During a second phase, all pending tasks from the winning
session are considered and given strict priority over pending tasks from other sessions.

Idle time detection and usage: Previous research [14, 28] reports that most idle periods are
a few milliseconds in length and that long idle time periods come in multi-second durations. Our
freeblock subsystem utilizes both.

When the last pending foreground request completes, the scheduler considers pending free-
block reads on the same track. Such data can be read and cached in the device driver with mini-
mal impact on foreground access patterns, because no mechanical delays are induced and no disk
prefetching is lost.

Borrowing from prior work [14], a simple threshold (of 20ms) is used to identify likely long
idle periods. For each quanta of a long idle period, a session is selected via the lottery. Pend-
ing tasks of the winning session are scheduled, starting with the most difficult to service using
rotational latency gaps: those near the innermost and outermost cylinders.

Algorithm summary: Our outside-the-disk freeblock scheduler has the same “imperfect
knowledge and control” limitations described by Lumb et al. [23], and thereby loses about 35% of
the potential free bandwidth. An implementation embedded in a disk drive could be expected to
provide correspondingly higher free bandwidth to applications. The introduction of conservative
CPU usage further reduces free bandwidth utilization by 5–10%. In our evaluations we show that
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this bandwidth is adequate for most background applications. More detailed description of the data
structures and algorithms, and evaluation of them, are available in [33].

6 Evaluation

This section evaluates how effectively the framework supports the three background applica-
tions.

6.1 Experimental setup

All experiments are run on a system with a dual 1GHz Pentium III, 384MB of main memory,
an Intel 440BX chipset with a 33MHz, 32bit PCI bus, and an Adaptec AHA-2940 Ultra2Wide
SCSI controller. Unless otherwise stated, the experiments use a Seagate Cheetah 36ES disk drive
with a capacity of 18GB. Two implementations of the freeblock subsystem are used: one in the
FreeBSD device driver, one in user-level Linux. The user-level Linux implementation can either
do direct SCSI reads and writes or communicate with a simulated storage device implemented by
DiskSim [7]. All implementations use the same scheduling core and conservatism factors used in
the FreeBSD implementation.

Three benchmarks are used throughout the evaluation section. The synthetic benchmark is
a multi-threaded program that continuously issues small (4KB-8KB) read and write I/Os to disk,
with a read-write ratio of 2:1, keeping two requests at the disk queue at all times.

The TPC-C benchmark simulates an on-line transaction processing database workload, where
each transaction consists of a few read-modify-write operations to a small number of records [11].
The disk locations of these records are pseudo-random. We ran TPC-C on the Shore database stor-
age manager [8]. It includes a volume manager for storing individual pages, a buffer pool manager,
lock and transaction managers, and a recovery subsystem. We configured Shore and TPC-C to use
8KB pages, a 64MB page buffer pool, 50 warehouses (covering approximately 70% of the Seagate
disk’s capacity) and 10 clients-per warehouse. The Shore volume is a file stored in FreeBSD’s FFS
file system. Thus, an I/O generated by Shore goes through the file system buffer cache. Perfor-
mance of a TPC-C benchmark is measured in TPC-C transactions completed per minute (TpmC)

The Postmark benchmark was designed to measure the performance of a file system used
for electronic mail, netnews and web-based services [20]. It creates a large number of small files
and performs a specified number of transactions on them. Each transaction consists of two sub-
transactions, with one being a create or delete and the other being a read or append. The de-
fault configuration used for the experiments consists of 200,000 transactions on 800,000 files in
10,000 directories. File sizes range from 10KB to 20KB. The biases are Postmark’s default ones
(read/append=5, create/delete=5).

6.2 Freeblock subsystem effectiveness

This section briefly evaluates the freeblock subsystem’s effectiveness. Figure 5 shows the effi-
ciency of the freeblock subsystem as a function of disk utilization.

The synthetic benchmark is used. A background disk scan registers a freeblock task to read
every block of the disk. The callback fn is instrumented so that no part of this task is ever satisfied
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Figure 5: Freeblock subsystem efficiency. This diagram illustrates the free bandwidth extracted for a background
disk scan as a function of the disk’s utilization. When the foreground workload is light, idle time is the main source of
free bandwidth. When the foreground workload intensifies, the free bandwidth comes from rotational gaps

(whenever blocks are read, they are re-registered to be read again). This guarantees that at all times
there is a constant amount of blocks wanted to be read in the background (in this case the whole
disk). The synthetic benchmark is modified slightly so that the number of I/Os per second can be
varied, and the request arrival rate is uniformly distributed.

The freeblock subsystem ensures that background applications make forward progress, irre-
spective of the disk’s utilization. As expected, the progress is fastest when the disk is mostly idle.
The amount of free bandwidth is lowest when the system is 40-60% utilized. This is due to the
scheduling algorithms used. Regardless of utilization, foreground requests are affected by less than
2%. For a full evaluation of the freeblock infrastructure and algorithms, please refer to [33].

6.3 Snapshot-based backup

This section evaluates our backup application described in section 4.1. We evaluate both the
application-copy-on-write (application-COW) and snapshot-copy-on-write (snapshot-COW) strate-
gies in the FreeBSD kernel. When application-COW is used, all subsequent modifications to a
block that the snapshot claims are sent to a new location. When snapshot-COW is used, all subse-
quent modifications go to the original location of the block and the snapshot system makes a private
copy of the block which it then claims. The native snapshot implementation in FreeBSD supports
only snapshot-COW; we instrumented the kernel so that we could evaluate application-COW as
well.

Figure 6 shows the performance of our backup application when sharing the system with the
three foreground benchmarks. The table beneath the graph shows that the impact of the concurrent
backup on foreground performance is less than 2%. Under the synthetic benchmark, the backup
is performed faster than under Postmark or TPC-C. This is so because the synthetic benchmark’s
requests are uniformly distributed around the disk, maximizing the scheduler’s opportunities. The
backup is slightly faster under TPC-C than under Postmark for several reasons. First, due to
frequent file deletes, a large percentage of dirty blocks die in cache. Thus less foreground I/O is
generated and fewer freeblock opportunities arise. Although not enough idle time is detected, the
disk is not fully utilized (see Figure 5). Second, the cache manager successfully coalesces many
small dirty buffers for Postmark and thus issues fewer larger I/Os to the device, which reduces the
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Figure 6: Snapshot-based backup efficiency. This diagram illustrates the efficiency of the backup application
when backing up 70% of the Cheetah 36ES disk (18GB). The foreground workload is affected less than 2% during
the background backup as a result of access time mispredictions that result from the outside-the-disk implementation
of freeblock scheduling.

effectiveness of freeblock scheduling further.
In the idle time case the streaming bandwidth is about 35MB,4 and the backup completes in

little over 8 minutes.
The graph also shows that the application-COW results in more efficient use of free bandwidth.

This is because snapshot-COW wastes some of the bandwidth reading blocks that have been mod-
ified. Snapshot-COW then needs to re-register reads for the new locations of those blocks. The
overall effect however, is less then a 15% increase in the time to complete the backup.

6.4 Buffer cache cleaner

We measure the efficiency of the buffer cache cleaner designed using our framework using
both controlled experiments (using the Linux user-level implementation with a simulated cache
and direct SCSI reads and writes on the Seagate disk) and the implementation in FreeBSD. The
controlled experiments are used to understand the relationship between the efficiency of the cache
cleaner and the size of the cache, the workload presented and the replacement and persistence
policies. The metrics we are interested in are the percentage of dirty blocks cleaned for free and
the reduction in average response time of other requests as a result of the free write-backs. In all
buffer cache experiments, the idle-time detector does not detect enough idle time to be helpful.

For our controlled experiments, we use a version of the synthetic benchmark. We vary the
read-write ratio and the simulated cache size while keeping the size of the requests the same (4KB-
8KB).

Figure 7 shows the efficiency of the cleaner and its impact on the overall response time as a
function of the workload’s read-write ratio and the cache size. The replacement policy is least-
recently used (LRU), and the persistence policy guarantees that no dirty buffer will stay dirty for
longer than 30 seconds. High and low water-marks are used to address space exhaustion: whenever
the number of dirty buffers in the cache hits the high water-mark, the cache manager cleans up as

4The reported streaming bandwidth of the disk is 40MB/s. But, due to head switch delays when changing tracks,
the observed streaming bandwidth is about 35MB/s.
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Figure 7: LRU replacement policy with syncer daemon. These graphs illustrate the efficiency of freeblock
scheduling and the impact it makes on the average response time of a system with LRU replacement policy and
with a syncer daemon that guarantees no dirty block will stay dirty for longer than 30 seconds. The x-axis contains
the cache size and the read-write ratio. A read-write ratio of 0 means that all requests are writes.

many buffers as needed until the low water-mark is reached. Mimicking the notation used by
the FreeBSD’s cache manager, a syncer daemon implements the persistence policy, and a buffer
daemon implements the logic that checks the high and low water-marks.

Several observations can be made from Figure 7. First, as the read-write ratio increases, a
larger percentage of the dirty buffers can be cleaned for free. This is because having more reads
in the system means that more requests are hitting the disk immediately and thus more freeblock
opportunities are created. Writes do not go to disk immediately because of write-back caching.
Instead, they go to disk as a result of the syncer’s work or buffer daemon’s work. In both cases,
they go to disk in large bursts. Hence, the foreground scheduler (using SPTF) does a good job in
scheduling, reducing freeblock scheduling’s chances of finding rotational gaps to use.

Second, as the read-write ratio increases (beyond 1:2), the impact of free cleaning on the
average response time decreases. This is a direct consequence of the decreasing number of writes
(and hence, dirty buffers) in the system.

Third, the efficiency of the freeblock subsystem slightly decreases with increasing cache size.
The reason is that every time the syncer or buffer daemons wake up, they have a larger amount of
dirty buffers to flush. Again, the foreground scheduler reduces the freeblock scheduler’s chances
of finding rotational gaps to use.

Figure 8 examines the efficiency of the cache cleaner and its impact on the average response
time under different replacement policies. The cache size is kept fixed (512MB) and the read-write
ratio is 1:1. Apart from LRU, two other replacement policies are used. The SPTF-Evict policy is
similar to LRU, but instead of replacing dirty entries in an LRU fashion, the entries closest to the
disk head position are replaced first. The FREE-CLEAN (FC) policy chooses to replace a clean
entry that has been recently cleaned for free (if none exists, it reverts to LRU). By replacing a clean
entry from the cache, FREE-CLEAN attempts to let the remaining dirty buffers stay a little longer
in the system so that they may be written out for free.
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Figure 9: Cache cleaner efficiency. This diagram illustrates the efficiency of the FreeBSD cache cleaner under
various workloads.

All three replacement policies are evaluated with, and without, a syncer daemon. A syncer
daemon places a hard limit (30 seconds in our case) on the time the freeblock subsystem has to
clean any dirty buffers for free. Hence, fewer buffers are cleaned for free under this policy, irre-
spective of the replacement policy used. However, as mentioned in Section 4.2 a cache comprised
of non-volatile RAM does not need such a persistence policy.

The SPTF-Evict policy reduces the effectiveness of the freeblock subsystem most, thereby
reducing its benefit to the average response time. This is because no write task can be satisfied
during write I/Os that happen as a result of the buffer daemon (because the dirty buffer closest
to the disk head is written first there are no other dirty buffers freeblock scheduling can squeeze
in between foreground requests). Write tasks can still be satisfied during write I/Os that happen
because of the syncer daemon. In the case when no syncer daemon is used, all writes happen
due to the buffer daemon, hence dirty buffers can be cleaned for free only during foreground read
requests.

The FC is the best policy as far as the cache cleaner is concerned. By leaving the dirty buffers
in the cache a little longer, it can clean more of them for free. But, there could be a detrimental
effect on cache hit rate, and the cache cleaning benefit observed is quite small.

Figure 9 illustrates the efficiency of the real cache cleaner, implemented as part of FreeBSD’s
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Figure 10: Layout reorganizer efficiency. This diagram illustrates the efficiency of the layout reorganizer for
different reorganization heuristics.

cache manager. At most, 3/4 of the system’s 384MB of RAM are devoted to the I/O buffering
subsystem. FreeBSD uses a syncer daemon, which places a 30 limit on the time a buffer can stay
dirty in the system. The read-write ratio of the synthetic benchmark is 1:1, the observed read-write
ratio of TPC-C is approximately 1:1, whereas Postmark has a read:write ratio of approximately
1:3. In all three cases, a large percentage of the dirty buffers are cleaned for free and the respective
improvement in application throughput ranges from 9 to 20%. Postmark lags behind the other
benchmarks for the same reasons it lagged in the backup evaluation: write-back clustering and
deletion of dirty blocks.

6.5 Layout reorganizer

To evaluate the effectiveness of our reorganizer, we performed a variety of controlled experi-
ments. The foreground workload is the synthetic benchmark mentioned. In all cases, the system is
100% utilized. To avoid corruption of the FFS file system in FreeBSD, the experiments are run in
the user-level Linux environment, with DiskSim as the backend storage device. In all experiments,
the base unit the reorganizer is interested in moving at any time is 8KB (this is specified by the
blksize parameter).

Three different reorganization actions are explored.
Random reorganization: This method chooses random 8KB blocks on the disk to move them

to another random location. Few blocks have dependencies using this method.
Circular random reorganization: The method creates a list of unique random 8KB blocks,

and then moves each block to the location of the next block in the list. This way we have the
longest dependency chain possible; one including every block to be reorganized.

Track shuffling: This method is similar to the random block reorganization method above,
but whole tracks instead of blocks are shuffled.

We evaluated each method reorganizing from 1% to 20% of the disk. The research on re-
organization techniques has shown that this range is generally the most effective amount of the
disk to reorganize [2, 18, 29]. The results are shown in Figure 10. Tests with more dependencies,
like circular, take longer than those with few dependencies, and benefit more from an increase in
buffer size. Track shuffling performs slightly worse than the random movement because while
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Figure 11: Disk scrubbing and cache cleaning. This figure shows two background applications, disk scrubbing
and cache cleaning, in a system with and without fairness.

track aligned operations are efficient, the higher locality is less ideal for freeblocks, as described
in [33].

The results are encouraging, showing that up to 20% of the disk can be reorganized in a few
hours on a fully busy disk.

6.6 Application fairness and priorities

This section briefly evaluates the fairness of the scheduling algorithms. Two applications com-
pete for the free bandwidth: a simple disk scrubber and the cache cleaner evaluated above. The
disk scrubber simply tries to read all blocks of the disk once, without worrying about consistency
issues (hence it doesn’t use the snapshot system). The experiment is run until the disk scrubber has
read all blocks of the 18GB Seagate disk.

The bandwidth dedicated to the scrubber and cache cleaner applications is measured. In the
original case, the freeblock scheduler’s fairness mechanisms are disabled and the scheduling al-
gorithms lean toward a greedy approach. In the fair system, lottery scheduling makes sure that
both applications are treated fairly. The priorities assigned to both applications are equal DE-
FAULT PRIORITY. The cache size is fixed to 512MB, the replacement policy is LRU, and the
persistence policy is implemented using the 30-sec syncer daemon. The read-write ratio of the
foreground workload is 1:1.

Figure 11 shows the distribution of bandwidth with and without fairness. The bandwidth given
to the cache cleaner increases from almost nothing to about 0.3MB/s when priorities are used. This
bandwidth is very close to 0.34MB/s, which is the bandwidth the cache cleaner would get if it were
the only background application in the system. The bandwidth of the scrubber, on the other hand,
falls by a little more than the gained bandwidth of the cache cleaner. This 2-5% loss in efficiency
can be attributed to the scheduler’s decision to treat the cache cleaner in a fair manner, thereby
spending an equal time searching for opportunities that satisfy tasks of that application. These
opportunities are smaller when compared to the opportunities of the scrubber.
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7 Summary

This paper describes a programming framework for developing background disk maintenance
applications. With several case studies we show that such applications can be adapted to this
framework effectively. A freeblock subsystem can provide disk access to these applications, using
freeblock scheduling and idle time with minimal impact on the foreground workload.

We are currently exploring extensions to the freeblock subsystem to allow background applica-
tions to specify by how much they are willing to impact the performance of foreground applications
(currently, the subsystem tries to enforce a strict priority). We are also building a simple library on
top of the system call APIs to allow applications to use the usual file-based read(), write() calls for
background access to snapshots.
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