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Abstract

A layer is a 2D sub-image inside which pixels share common appar-
ent motion of some 3D scene plane. Representing videos with such layers
has many important applications, such as video compression, 3D scene
and motion analysis, object detection and tracking, and vehicle naviga-
tion. Extracting layers from videos involves solving three subproblems:
1) segment the image into sub-regions (layers); 2) estimate the 2D mo-
tion of each layer; and 3) determine the number of layers. These three
subproblems are highly intertwined, making the layer extraction problem
very challenging. Existing approaches to layer extraction are limited by
1) requiring good initial segmentation, 2) strong assumptions about the
scene, 3) unable to fully and simultaneously utilize the spatial and tem-
poral constraints in video, and 4) unstable clustering in high dimensional
space. This thesis presents a subspace approach to layer extraction which
does not have the above limitations. We first show that the homographies
induced by the planar patches in the scene form a linear subspace whose
dimension is as low as two or three in many applications. We then for-
mulate the layer extraction problem as clustering in such low dimensional
subspace. Each layer in the input images will form a well-defined clus-
ter in the subspace, and a simple mean shift based clustering algorithm
can reliably identify the clusters thus the layers. A proof is presented to
show that the subspace approach is guaranteed to increase significantly
the layer discriminability, due to its ability to simultaneously utilize spa-
tial and temporal constraints in the video. We present the detailed robust
algorithm for layer extraction using subspace, as well as experimental re-
sults on a variety of real image sequences.
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Chapter 1

Introduction

In this thesis, we develop a novel subspace approach to derive a mid-level video rep-

resentation, the layer(ed) representation. Centering around subspace, we will present

what subspace is, why use subspace, how to compute the subspace, and how to use

subspace to extract layers from video.

(a) (b)

Figure 1.1: Layer segmentation of a sample frame in a short video sequence where
there persons are walking on a road in front of a building. (a): One frame in the
walking-people sequence. (b) Layer segmentation.

1



2 CHAPTER 1. INTRODUCTION

1.1 Layer representation as a mid-level video rep-

resentation

An image is worth a thousand words. Fig 1.1(a) shows one single video frame of a

scene. Human beings are able to understand the basic content in this image, i.e.,

three persons walking on a road in front of a building. Given only one image, such

image understanding task seems easy for human beings, yet it actually involves high

level processes that are usually very difficult for computers to perform, such as object

recognition (person, road, building) and action recognition (walking).

Towards the ultimate goal of image understanding, the central issue is the image

or video representation problem. In computer vision community, image represen-

tation has been divided into three levels: low-level, mid-level, and high-level [66].

Low-level representation focuses on local aspects of images, such as pixels, corners

or edges output by local operators, the well-known multi-scale image representation

(i.e., pyramid), optical flows, etc. High-level representation, on the other hand, fully

describes the image content including objects and events. While low-level represen-

tation has been well defined and studied, the suitable “computer vocabulary” for

general high-level representation remains unsolved except in some very constrained

domain (e.g., face detection [75, 78]). Mid-level representation is somewhere between

low-level and high-level representation. It contains information more global than low-

level representation, such as global motion, lighting, camera motion, etc. Perhaps one

of the most important task of mid-level representation is to bridge the gap between

the computer-capable low-level representation and the human-capable high-level rep-

resentation.

Motion information is one of the most important information to be extracted and

represented in mid-level representation. An important characteristic of video is that

it contains temporal redundant information by recording multiple frames of the same

scene at different time instances, i.e., a scene point in the scene is imaged at multiple

frames across time. Such redundant information contains the motion information of

camera and the objects in the scene. When given more consecutive frames of the same

scene in Fig 1.1(a), human beings do not gain much more information from the ad-

ditional frames. However, the motion information provided by the additional frames

can be utilized by computers to derive an efficient mid-level video representation.

Such efficient mid-level video representations are not only useful for video coding and
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editing, but also important for high level vision tasks, since such high level tasks would

require efficient information storage/retrivel and communication between processing

units. In the following we will review two such compact mid-level representations:

mosaic representation and layer representation. The mosaic representation can be

considered as a special case of layer representation with only one layer.

1.1.1 Mosaic representation

A popular example of mid-level video representation is video mosaic [86]. Given the

video of a static scene, if the camera optical center does not move during recording

the video, or if the camera is far away from the scene (e.g., airborne video), then the

image motion between video frames can be modelled by a single 2D transformation

H (homography):




x′

y′

1


 ∼= H3×3




x

y

1


 (1.1)

where (x′, y′, 1) and (x, y, 1) are the homogeneous image coordinates in two different

images, and H is a 3×3 non-singular matrix. The eight parameters in H capture the

motion information of all pixels between two images.

The video mosaic is obtained by warping video frames to a common coordinate

frame using the 2D homography, and then stitching the warped images together.

Video mosaic is a compact representation since the temporal redundancy in the video

has been identified and modelled by the homography, and removed by the image

stitching. Examples of important applications of video mosaic are video coding [44],

virtual reality (Apple quicktimer VR), environmental texture mapping [87], etc.

1.1.2 Layer representation

In real scenarios, we often can not meet the requirements for constructing video

mosaic. The camera optical center may translate; the distance between camera and

scene may not be far away enough; the objects may move in the scene. In such

cases, parallax information presents in the video, and a single homography H3×3 is

no longer enough to describe the motion of all pixels between two video frames. We
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Figure 1.2: Two frames (t = 10 and t = 15) in the flower garden sequence. The
camera is translating to the right. Notice the occlusion relationship between the tree
and the background objects (garden and house).

are no longer able to build a single mosaic representation for the given video. Fig. 1.2

shows two frames of the flower garden sequence, where the scene is static, and the

camera is translating to the right. The tree appears moving to the left and occludes

the background scene (garden and house). A single homography can not capture the

motion information for both the tree and the background objects.

Layer representation [1, 28] extends the mosaic representation in an important way

that explicitly represents the parallax information. A layer consists of one or more

2D regions in the image domain, inside which the pixels share the same 2D motion

model. When 2D homography is used as the motion model, a layer will correspond to

a 3D plane in the scene. An image sequence containing parallax information can be

decomposed into multiple layers, where each layer can be considered as a single planar

mosaic with other information such as depth ordering. These layers may overlapped

or occluded with each other. According to [1], a layer representation consists of several

layers with depth ordering. Each layer contains a set of registered maps. The three

basic maps are:

• intensity map Ei(x, y): the color of each point (x, y) in the i-th layer;

• alpha map αi(x, y, t): transparency of each point (x, y) in the i-th layer at time

t;

• velocity map Vi(x, y, t): the motion of each point (x, y) in the i-th layer at time

t.
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In many applications, Vi(x, y, t), the motion at time instance t, can be represented by

a few parameters, such as the 2D affine transformation with 6 parameters.

Fig. 1.3 and 1.4 show a layer representation example. Fig. 1.3 shows the layer

intensity map of the flower garden sequence. Four layers are used to represent this

sequence: tree, tree-branch, garden, and house. Fig. 1.4 shows two layer masks at

t = 10 and t = 15. It is a {0, 1} alpha map, where for each layer, α = 1 for the pixels

assigned to it, otherwise α = 0. The motion model used in this example is 2D affine

transformation.

Ideally, the layer representation should contain all information in the original

video, and the original video frame can be re-synthesized from the layer representa-

tion, in a way similar to the cel animation. Indeed, layer representation borrows the

ideas from cel animation (also known as 2D animation, cartoon animation). In cel

animation, characters are painted on sheets of transparent plastics. These painted

sheets are placed over a background to build up the scene, which is then photographed

in succession to give the illusion of movement in the final film. More specifically, given

layer representation, we can synthesize the video frame at time t by painting the layers

one over another in a back-to-front order using the composition operator [15]:

F ¯B = αF + (1− αF )B

where F and B are foreground layer and background layer, and αF is the alpha map

of the foreground layer. Denote Li(x, y, t) = Ei(x, y, t)∗αi(x, y, t), where Ei(x, y, t) is

obtained by warping Ei(x, y) using the motion Vi(x, y, t). Then the image composition

from multiple layers can be represented by:

I(x, y, t) =
⊙

i

Li(x, y, t) (1.2)

For example, using the layer representation in Fig. 1.3 and 1.4, we can re-synthesize

the two frames in Fig. 1.2. The synthesis results are shown in Fig. 1.5.

1.1.3 Why layer representation?

Just like mosaic representation, layer representation is compact and has important

applications in video coding and video editing. As shown in the flower garden example,

the size of layer representation (layer intensity maps, layer masks, and layer motion)
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Figure 1.3: The layer intensity map for the flower garden sequence. Four layers are
used to represent the flower garden sequence.
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Figure 1.4: The masks of layers for the frames shown in Fig. 1.2. The masks show
the pixel assignment. It represents the {0, 1} alpha map, where for each layer, α = 1
for the pixels assigned to it, otherwise α = 0.

Figure 1.5: Re-synthesize the video frames from layer representation.
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is about 40KB, which can used to re-synthesize the original 30 frames that is 7MB in

file size.

Yet the implications of layer representation are far beyond the mosaic represen-

tation. In layer representation, each layer is an intermediate“object” that moves

coherently according to some layer motion model. A single object, especially rigid

object, tends to move together in a coherent way, and is likely to become one single

layer in the layer representation. Therefore, layer representation gives a first cut in

scene segmentation which facilitates following higher level tasks. The applications of

layer representation to higher level vision tasks are recently attracting more and more

researchers. In the following we give some examples:

• In motion analysis [102, 51, 43], layer representation explicitly represents the

occlusion relationship, which is the hardest part in motion analysis. Image

motion estimation is inherently an ill-posed problem [92] due to the aperture

problem, which requires additional constraints in order to estimate the motion,

such as regularization [71, 72], or parametric model that assumes some pixels

share a common model with a few parameters [63]. However, it is undesirable to

apply such constraint across motion boundaries, which are not known prior to

the motion estimation. In layer representation, we can enforce such smoothness

constraint only inside each layer, and explicitly represent the non-smoothness

at the boundaries among layers.

• In object tracking [89], layer representation enables modelling both foreground

objects (being tracked) and background objects. By maintaining both the tar-

gets and background objects in a layer representation, the often encountered

drift problem in tracking can be reduced. Also by enforcing constraints (color

model, smooth motion model, etc) inside each layer, the tracking is more reli-

able.

• In scene analysis, layer representation provides a powerful scheme similar to

“plane+parallax” [61]. For example, layer representation was used in stereo

reconstruction [9]. Layer representation can also be used in structure from

motion (SFM) analysis, and camera self-calibration. While traditional SFM

algorithms use feature points and compute a sparse scene representation, layer

based SFM algorithm uses image regions as features and computes a dense

scene representation. Moreover, due to the fact that regularity (smoothness)
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constraints can be safely applied, SFM based on layer representation is expected

to be more robust.

• In object detection and recognition, layer representation gives the first cut to

locate the desirable objects. For example, the layer segmentation in Fig 1.1(b)

lends guidelines for the task of detecting humans in video.

• In visual navigation, layer representation can be used to extract and represent

the ground layers, and objects (cars, pedestrians, etc). Ground layer is useful

in estimating the car ego-motion [58] and navigating the vehicles.

In summary, the world is regular to some extent instead of purely chaotic. When

captured in video, such regularity leads to the regularity in image motion. Layers

are powerful mid-level primitives to capture such regularity, and therefore provide

efficient mid-level representations that facilitate higher level vision tasks.

1.2 Layer extraction problem

This thesis focuses on deriving the layer representation from video by utilizing the

temporal and spatial redundant information in the video.

The core of layer extraction task is to segment the images into some number of

sub-images, in such a way that pixels within each sub-image share some common 2D

parametric transformation (or nonparametric model defined by dense smooth flow

field [104]). The three major issues of layer extraction are:

• Segmentation: which portion of the image corresponds to one layer?

• Motion: what motion does a layer undergo?

• Number of layers: how many layers exist in the given image?

Layer extraction is a non-trivial task since the above three sub-problems are coupled

together. On one hand, spatial layer supports (including number of layers) are re-

quired to estimate the motion model for each layer. On the other hand, assigning

pixels to layers requires the knowledge of layer motion model.

In this thesis, the layer motion is modelled by 2D homography (e.g., 2D affine

transformation or projective transformation). Given such motion model, a layer in
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the image domain corresponds to a plane in the 3D scene. Therefore, segmenting

the images into 2D layers can be considered as approximating the scene with some

number of 3D planes.

1.3 Previous approaches to layer extraction

Various approaches have been proposed for layer extraction. In this section, we review

the most often used approaches including EM approach, dominant motion approach,

and grouping approach.

1.3.1 EM approach

A natural approach to solve the coupled problems in layer extraction is the Expectation-

Maximization (EM) algorithm [51, 8, 105, 104, 96, 59]. In such approach, the like-

lihood of the video data is formulated as some mixture model, such as the mixture

of Gaussians, with each mixture component represents a layer. The EM algorithm

iteratively performs the E-step and M-step to maximize the likelihood function, where

the E-step assigns pixels to layers, and the M-step computes the motion of each layer

given the result of E-step. Followed by each EM iteration is the application of MDL

principle [73] to determine the number of layers, which is realized as an exhaustive

search in [8].

Initialization (the number of models and the motion for each model) is an im-

portant but difficult step for EM approach [81, 96]. Without good initialization,

EM algorithm may not converge to desired optimal solutions. A typical initializa-

tion method [8] is to divide the image into a fixed number1 of tiles, and use them

as the initial layers for the EM algorithm. However, the initial regular tiling does

not guarantee the existence of dominant motion inside each initial or intermediate

layer2, which is required for the robust motion estimation of each intermediate layer

in the M-step [8]. Moreover, if one real layer is divided into different parts, each part

belonging to a different initial tile with different dominant motion (or without any

dominant motion at all), then it becomes hard to extract such unlucky layer.

1This number can not be too large due to the expensive computation in EM iteration and MDL
step

2Unlike dominant motion approach, the presence of dominant motion of the whole image is not
required.
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1.3.2 Dominant motion approach

The dominant motion approach is a top-down approach. It assumes that the current

image contains a dominant layer, which means the majority of the image pixels are

from the same plane in the scene. The approach consists of multiple passes. Each

pass determines the current dominant layer through dominant motion estimation [47,

11, 77] using robust estimator [74, 14]. The dominant layer is then removed from the

current remaining image. The remaining portion of the image becomes the input of

the next pass where another dominant layer will be sequenced out. The algorithm

stops until all image pixels have been assigned to layers.

The dominant motion approach is effective only if the dominant layer assumption

is held at each pass. However, such assumption is often violated in real scenarios.

For example, in the walking-people sequence (Fig 1.1(a)) and flower garden sequence

(Fig 1.2) there is not any clear dominant layer.

1.3.3 Grouping approach

The grouping approach is a bottom-up approach that avoids the dominant layer

assumption. The image is first divided into small blocks (segments). For each block,

its 2D homographies (local measurements) from the reference frame (being segmented

into layers) to other frames in the video are estimated. Since a plane in the scene

undergoes a unique 2D homography, image blocks belonging to the same layer should

share similar homography parameters, and therefore form a cluster in the motion

parameter space. By grouping local measurements into clusters in the parameter

space, we can identify the 2D layers in the image domain. Methods used to group

these local blocks into layers include the k-means algorithm [103, 5] and normalized

graph cut [81].

Grouping local measurements (pixels or local blocks) does not have the initializa-

tion difficulty encountered in EM approach. However, grouping purely based on local

measurements ignores the global spatial-temporal constraints. Moreover, grouping

in high dimensional space is often unreliable given noisy local measurements. For

example, if we are given a short image sequence containing 11 frames. Suppose we

use 2D affine transformation (6 parameters) as the layer motion model. The local

measurement of each block contains 6 × 10 parameters! Grouping in such a high

dimensional (60 dimensional) parameter space will be unstable.
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1.4 Subspace approach to layer extraction

1.4.1 What is subspace approach?

In this thesis, we present a low dimensional linear subspace approach that can natu-

rally exploit the global spatial-temporal constraints existing in the video simultane-

ously. Our approach is base on the fact that the parametric motions (local measure-

ments) across multiple frames reside in a low dimensional linear subspace, as a result

of scene regularity and the geometry of camera imaging process. We formulate the

layer extraction problem as grouping in the low dimensional subspace, where clusters

(layers) of local measurements become denser and better-defined. Therefore, such

clusters can be more reliably identified in the subspace.

1.4.2 Why subspace approach?

The first stage of our approach is a bottom-up grouping process that avoids both the

initialization difficulty in EM-based approach and the dominant motion assumption

in top-down approach.

Compared to previous grouping approaches, grouping in the low dimensional space

is more stable. We use statistical analysis to show the merits of subspace approach

resulting from its ability to naturally exploit the global spatial-temporal constraints

existing in videos. Specifically, we prove that 1) layers are more discriminative in the

subspace, and 2) increasing the frame number in the input video increases the layer

discriminability in the subspace, but not in the original high dimensional space. In

summary, our subspace approach has the following advantages:

• Clusters in the subspace become denser and better-defined.

• Global optimality is achieved by simultaneously taking into account all valid

regions.

• Noise in estimated motion is reduced by subspace projection, and global geom-

etry constraint is enforced.

• The subspace by itself provides a constraint to detect outliers in the local mea-

surements, therefore making the layer extraction robust.
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SubspacekNND R−SVD

Figure 1.6: Three integrated components in semi-progressive layer extraction algo-
rithm. Subspace is the centering component.

1.4.3 How to robustly compute the subspace?

Outliers in local measurements occur due to multiple motions in one local region,

non-rigid motions, lighting changing, occlusions, etc. In layer extraction, good local

measurements follow two rules. First, they form clusters in the motion parameter

space. Second, they lie in a low dimensional subspace. Data items far away from the

clusters are defined as extreme outliers. An extreme outliers may lie in the subspace.

Data items violating the subspace constraint are defined as structure outliers. A

structure outlier has large projection values in the residual space. The reason we

classify outliers into these two types is that extreme outliers are more influential on

the subspace computation. Therefore, we need to apply non-parametric method to

detect the extreme outliers. Once they are detected and removed, a relatively good

initial subspace model will be available. We can therefore apply parametric approach

to detect the structure outliers.

Two important issues arise in order to fully exploit the subspace constraint for

a reliable layer extraction algorithm: 1) to achieve low dimensional subspace, espe-

cially for dynamic scenes; 2) to make subspace computation robust to outliers that

often exist in real data. We achieve the above goals by naturally integrating the

following three components in our layer extraction algorithm: subspace, kNND, and

robust-SVD, with subspace the centering component, as shown in Figure 1.6. The

kNND component, a simple and non-parametric approach based on the k-th Nearest

Neighbor Distance (kNND) metric, implicitly utilizes the intrinsic cluster structure

to detect extreme outliers and small layers (cluster size less than k), without knowing

the clustering information. The remaining large layers are guaranteed to reside in

a low dimensional subspace, which in turn provides constraints for the robust-SVD

(RSVD) component to detect the structure outliers that violate the correlation struc-

ture imposed by subspace. The RSVD component computes an accurate subspace

model, due to 1) the removal of influential extreme outliers by kNND and 2) its ability

to detect the remaining structure outliers.
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1.5 Semi-progressive layer extraction

In our approach, a layer is identified as a cluster in the parameter subspace. A well

defined cluster should have enough data items to form an identifiable cluster. For a

small foreground layer in the scene, it usually does not form a well-defined cluster,

due to: 1) it does not have enough number of local measurements, and 2) its local

measurements tend to be un-stable since foreground objects tend to have complex

motion. It is therefore much harder to detect the small foreground layers than to

detect the large background layers. Moreover, if the small foreground layers into

account in the measurement matrix are moving independently, the dimension of the

subspace will be increased due to the complex motion of the foreground layers.

It is therefore desirable to first detect the large layers that form dense clusters in

low dimensional subspace, then use the information or constraints provided by those

large layers to guide the detection of the small layers.

We use semi-progressive layer extraction strategic, where the large layers are simul-

taneously extracted using subspace approach. The small layers are then progressively

extracted against the extracted layers in a layer competition frame work. Excluding

the small layers at the very beginning reduces the dimension of the subspace and

therefore increases the reliability of the extraction of the large layers in the subspace.

Such semi-progressive scheme is more like a feed-back process, where information

readily available provides feedback to the subsequent harder tasks.

We use the kNND procedure to exclude small layers. The idea is simple. For a

small layer whose number of local measurements is less than k, it either forms a cluster

with cluster size less than k, or does not form a cluster at all if its local measurements

are not good enough. Therefore for any item in such cluster, its distance to its k-

th nearest neighbor will be large since its k-th nearest neighbor is either in another

cluster or a sparse item far away. On the other hand, for any data item resides in a

cluster with size larger than k, its k-th nearest neighbor is in the same cluster, and

therefore its kNND will be small. In the 1D histogram of the kNND of all data items,

local measurements from large layers will have small kNND and form the first peak.

Other local measurements not in the first peak will be excluded either as outliers

or small layers. In summary, kNND can exclude the small foreground layers at the

very beginning using the intrinsic cluster structure of the large layers, but without

knowing the clustering result.
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Our overall semi-progressive layer extraction algorithm is summarized in Fig. 1.7.

Its major steps are:

1. Estimate the local measurements (e.g., 2D parametric motions for each local

blocks) and construct the local measurement matrix.

2. Robustly compute the low dimensional subspace and project the local mea-

surements onto the subspace. Outliers and small layers are excluded in this

step.

3. Cluster the inliers in the subspace into initial layers, which are large layers.

4. Progressively extract the excluded small layers, and refine layers using layer

competition.

1.6 Contributions

In this thesis, we present novel approach to layer extraction, with solid theoretical

analysis and experiments using both synthetic and real data. We make contribu-

tions in both theory and practice. More specifically, this thesis makes the following

contributions:

• We present a novel subspace approach to layer extraction problem [55]. Our

approach can naturally utilize the spatial-temporal constraints in the video. We

prove the merits of subspace approach by both statistical analysis and experi-

ments on real image sequences.

• In layer extraction, we observe that inliers form clusters and lie in the sub-

space. Robust subspace computation with outlier detection is based on the

above observation. We present kNND approach to detect the extreme outliers

by implicitly using the intrinsic cluster structure, but without knowing the clus-

tering results. The subspace by itself provides a constraint that enables us to

detect the structure outliers through robust SVD algorithm.

• To extract small foreground layers that undergo complex motion, we present

the semi-progressive layer extraction algorithm. It guarantees a low dimensional

subspace for the extraction of larger layers, which provide feedbacks to guide
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Figure 1.7: The procedure of layer extraction algorithm.
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the extraction of small layers that may undergo complex motion and hard to

extract before the larger layers are identified.

• In video-based car ego-motion estimation and ground detection where the cam-

era mounted on the car is calibrated, a subspace constraint is explicitly available

due to planar motion constraint. We use a virtual downward-looking camera to

explicitly exploit such constraint to robustly estimate the car ego-motion and

detect the ground plane [58].

1.7 Related work on subspace

Linear subspace constraints have been successfully used in computer vision. The

subspace may come from the scene regularity and the geometric relationship between

the scene and the camera. In such cases, the subspace dimension is usually pre-

determined. Tomasi and Kanade [95] used the rank-3 constraint in structure from

motion (SFM), where the local measurements are translations of feature points, and

the factorization of measurement matrix according to the subspace constraint leads

to the structure of the feature points and the motion of the camera. Costeira and

Kanade [25] used the subspace constraint to segment the tracked feature points into

independently moving objects. Irani [45] used the subspace constraint in Lucas-

Kanade [63] method to estimate the optical flows of an image sequence. Bregler [16]

extended the above approach to recover the shape and motion of non-rigid moving

objects. Shashua and Avidan [80] derived the 4-dimensional linear subspace of planar

homographies induced by multiple planes between a pairs of views. Zelnik-Manor

and Irani [107, 108] extended such results to multiple planes across multiple views,

and applied such constraints to estimate the homographies of predefined small regions.

Fig 1.8 summarizes some of the related work that utilizes subspace constraints coming

from the geometry or physical constraints of the problems under consideration.

In some cases, subspace is represented by the principal components of the input

data (training data), where the subspace dimension depends on the statistics of the

input training data. Such parametric subspace is often used to represent the shape,

appearance, and motion, which can then be used for tasks like object detection and

recognition, and tracking [69, 100, 13, 30].

In a wider perspective, subspace constraint has been used to recover the shape and

reflectance of static objects, given its images under different lighting directions [76].
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Measurement Subspace
(2D model) Rigidity Camera model dimension Applications

Translation Rigid Affine 3 SFM [95],
Flow estimation [45]

Translation Rigid Perspective 9 Flow estimation [45]
Translation Non Affine 4N Motion segmentation [25]
Translation Non Affine 3K Nonrigid object

modeling/tracking [16]
Projective Rigid Perspective 4 Homography estimation

Color N/A N/A 2 Shape/reflectance recovery [76]
Force Sensor N/A N/A DoF Sensor calibration [101]

Figure 1.8: Summary of previous work using subspace constraints coming from the
geometry or physical constraints of the problems.

In [101], subspace constraint is used to calibrate the force sensor without using any

known reference.

1.8 Thesis outline

This thesis centers around the concept of subspace. In Chapter 2, we show that the

2D homographies induced by planar patches in the scene reside in a low dimensional

linear subspace. The dimension of the subspace is bound by the scene regularity and

the geometry of imaging process. We study the subspace dimensionality in different

scenarios, including static and dynamic scenes.

We then formulate the layer extraction as clustering in the subspace. In Chap-

ter 3, we use statistical analysis to verify the merits of the subspace approach to

layer extraction. Specifically, we prove that 1) layers are more discriminative in the

subspace, and 2) increasing the frame number in the input video increases the layer

discriminability in the subspace, but not in the original space.

To robustly compute the subspace from noisy local measurements, we need to deal

with outliers. In Chapter 4, we classify outliers into extreme and structure outliers.

We then present different methods to deal with these two types of outliers. We present

kNND (non-parametric metric) to detect the extreme outliers. The subspace by itself

provides a constraint that we use to detect the structure outliers through robust SVD
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algorithm.

Once we derive the subspace, we can extract the layers by clustering the local

measurements in the subspace. Chapter 5 presents the details of layer extraction

algorithm. We also present the semi-progressive approach to deal with small lay-

ers undergoing complex motion. We present experimental results on several image

sequences.

In the typical setup of video-based car navigation, the camera is calibrated and

fixed w.r.t. the car. The car is moving on the ground plane, i.e., undergoes planar

motion. In such setup, the subspace constraint due to planar motion is explicit.

In Chapter 7, we use a virtual downward-looking camera to explicitly utilize such

constraint for robust car ego-motion estimation and ground plane detection.

We conclude the dissertation in Chapter 8, and presents future work along and

beyond the line of this thesis.
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Chapter 2

Subspace of 2D Homographies

2.1 Introduction

In this chapter, we show that the 2D homographies induced by planar patches in the

scene reside in a low dimensional linear subspace. The dimension of the subspace is

bound by the scene regularity and the geometry of imaging process. We study the

subspace dimensionality in different scenarios, including static and dynamic scenes.

In the framework of bottom-up approach to layer extraction, the reference image

to be segmented into layers is first divided into small local blocks. For each local

block, its 2D parametric motion (e.g., affine transformation) from the reference frame

to every other frame is estimated. The local measurement of one block is obtained by

reshaping its estimated motion parameters into a column vector, and the measurement

matrix W is formed by stacking all local measurements (reshaped column vectors)

into a matrix of dimension 6F × K, if we are given F + 1 frames and use affine

transformation model. K is the number of local blocks or local measurements. We

show that the measurement matrix W is rank deficient. In other words, there is a

lower dimensional linear subspace of the original 6F dimensional column space. Based

on the geometry relationship between the scene planes and the camera, we will prove

the existence of the linear subspace by factorizing the measurement matrix W:

W6F×K = U6F×dV
>
d×K (2.1)

where d is the dimension of the linear subspace, and the columns of matrix E forms

the bases of the linear subspace.

21
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x x’

X
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C
C’H

Figure 2.1: The homography induced by a plane. For any point X on the plane π, its
image points x and x′ in the two camera views are related by a unique and common
non-singular 3×3 matrix H such that x′ = Hx. The matrix H is called homography.

2.2 Planar homography

Suppose we are given a plane π that does not contain the camera optical center, and

two camera views of π. A point X on the plane π is projected onto x and x′ on

the two views respectively, where x and x′ are homogeneous coordinates (3-vectors).

There exists a unique non-singular 3×3 matrix H such that x′ ∼= Hx, where ∼= means

equal up to an unknown scale. This 3× 3 matrix H is called the homography induced

by the plane π. The explicit parametric represnetation of H is given by the following

theorem [37]:

Theorem 2.1. Given a plane defined by π>X = 0 with π = (v>, 1)> , and its two

projective views with projection matrix P3×4
∼= [I3×3 | 03×1] and P′ ∼= [A | a], then the

homography induced by plane π is x′ ∼= Hx with H ∼= A− av>

Proof: Consider a point X on plane π which projects onto x and x′ on the image

planes of the two cameras, respectively. We have:

λx = X (2.2)

λ′x′ = AX + a (2.3)

where λ and λ′ are the projective depth of X in the two camera coordinate frames,

respectively.
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Substitute Eq.(2.2) into Eq.(2.3), we have:

λ′

λ
x′ = Ax +

1

λ
a (2.4)

Since X is on the plane π, it satisfies:

v>X + 1 = 0 (2.5)

Substitute Eq.(2.2) into Eq. (2.5), we have:

1

λ
= −v>x (2.6)

Substitute Eq.(2.6) into Eq.(2.4), we have:

x′ ∼= Ax− v>xa

∼= (A− av>)x

∼= Hx

where H = A− av>. ¤

If we are given the fundamental matrix F = [e]′×A between two views, then we

can choose the two cameras to be [I | 0] and [A | e′]. The homography induced by the

3D plane in the scene can then be described as [37]:

H3×3
∼= A3×3 − e′v> (2.7)

Here v = (v1, v2, v3)
> defines the 3D plane1. [e′]×A = F is any decomposition of

the fundamental matrix F, where e′ is the epipole in the second view and A is a

homography matrix induced by some plane ([37], pp.316).

Given K planes in the scene, we have K homography matrices {Hi|i = 1, 2, ..., K},
one for each plane. The measurement matrix W9×K is constructed by reshaping each

Hi into a 9-dimensional column vector, and then stack them together. The rank

of W is known to be at most four [80]. In other words, all homographies between

two projective views span a four dimensional linear subspace of <9. This result was

extended to the case of multiple projective views, and has been used to accurately

1We ignore the degenerate case where a plane is projected into a line in the image.
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estimate the homographies for small pre-segmented planar patches [107].

2.3 Parametric representation of affine transfor-

mation

Affine camera [68] is an important model usable in practice. One advantage of affine

camera is that it does not require calibration. Moreover, when perspective effect is

small or diminishes, using affine camera model avoids computing parameters that are

inherently ill-conditioned [79, 36].

In Section 2.2, the derivation of parametric homography representation H ∼= A− av>

assumes that the camera projection matrix has the canonical form of [I3×3 |03×1] (see

Eq. (2.2)), which does not apply to affine camera. The canonical form of affine camera

projection matrix is:

P =




1 0 0 0

0 1 0 0

0 0 0 1




As we can see, the left 3 × 3 matrix in the affine camera matrix has rank two. As a

result, non-homogeneous projection matrix is often used in affine cameras:

x = M2×3X + T2×1 (2.8)

where the image point x is the projection of the scene point X , both are in non-

homogeneous coordinates, and {M,T} is the affine camera projection matrix.

In this section, we first show that a plane in the scene viewed by two affine cameras

induces an affine homography. Then we will show the parametric representation of

affine transformation.

2.3.1 Planar affine transformation

The following theorem shows that a 3D plane in the scene induces an affine homog-

raphy between two affine cameras.

Theorem 2.2. Given a static 3D plane π and a pair of affine cameras (or equiva-

lently, a single static camera with the 3D plane undergoes 3D affine transformation),
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the two images of plane π is related by a 2D affine transformation m2×3 = [a2×2, t2×1].

Proof: Since three non-collinear points uniquely determine an affine transforma-

tion, we only need to show that all three-point triplets from the same plane share

the same affine transformation. Specifically, we need to show that for any point

P ∈ π, its imaging points p and p′ in two cameras is related by p′ = ap + t, where

m2×3 = [a2×2, t2×1] is the affine transformation induced by π.

Let {P1, P2, P3} denote three non-collinear points on plane π. Let {p1, p2, p3} and

{p′1, p′2, p′3} denote the image points of {P1, P2, P3} under affine camera [M2×3,T2×1]

and [M′
2×3,T

′
2×3] respectively. We have:

[p1, p2, p3] = M [P1, P2, P3] + T1 (2.9)

[p′1, p
′
2, p

′
3] = M′ [P1, P2, P3] + T′

1 (2.10)

A 2D affine transformation m2×3 = [a2×1, t2×1] is uniquely determined by these

three non-collinear matched pairs:

[p′1, p
′
2, p

′
3] = a[p1, p2, p3] + t (2.11)

For any point P ∈ π, we have:

P = αP1 + βP2 + γP3 (2.12)

where α + β + γ = 1 2. The image of P under camera {M′,T′} is:

p′ = M′P + T′

= M′(αP1 + βP2 + γP3) + (α + β + γ)T′ (Eq. 2.12)

= αp′1 + βp′2 + γp′3 (Eq. 2.10)

= a(αp1 + βp2 + γp3) + t (Eq. 2.11)

= a(αMP1 + βMP2 + γMP3 + (α + β + γ)T) + t (Eq. 2.9)

= ap + t

Therefore, the image of any point on plane π undergoes the same 2D affine motion

2Let P1 be the origin and P2 − P1 and P3 − P1 the two bases of the plane. Then for any point
P , we have P − P1 = β(P2 − P1) + γ(P3 − P1). It turns out P = (1− β − γ)P1 + βP2 + γP3.
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m. ¤

2.3.2 Parametric representation of affine transformation

The affine transformation induce by a plane in the scene can be represented by the

parameters of plane equation and camera geometry, as shown in the following theorem:

Theorem 2.3. Given a pair of affine cameras ψr, ψ
′, and a reference plane πr, we

can represent any other affine transformation m2×3 induced by a plane πm by: m =

mr + e′v>, where mr is the affine transformation induced by reference plane πr,

e′ = (e1, e2)
>, and the homogeneous coordinates (e1, e2, 0) is the direction of epipolar

lines in camera ψ′. v> = (v1, v2, v3) is a 3-vector independent of camera ψ′.

In the following we provide an illustrative geometric-base proof. In Appendix 2.7.1

we provide a general algebraic proof that applies to both perspective camera and affine

camera.

p0

p1

p2

P1 P2

P0

P’0 P’2
P’1

p0

p’1
p’2 p"0

p"1 p"2

ψ’

πr

πm

ψ r

Figure 2.2: The relationship between 3D planes and affine cameras.

Proof: Without loss of generality, let us choose three non-collinear points [P0, P1, P2]

on 3D plane πr. We ignore the degenerate case where a plane projects onto a line in the

camera imaging plane. [P0, P1, P2] projects onto three non-collinear points [p0, p1, p2]

in camera ψr, and [p′0, p
′
1, p

′
2] in camera ψ′, where pi = (x, y)> and p′i = (x′, y′)> are

2D image coordinates. There exist three non-collinear points [P ′
0, P

′
1, P

′
2] on plane

πm that will also project onto [p0, p1, p2] in camera ψr. Denote the image points of

[P ′
0, P

′
1, P

′
2] in camera ψ′ as [p′′0, p

′′
1, p

′′
2], as shown in Fig.(2.2).
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Since an affine transformation is uniquely determined by three pairs of non-

collinear corresponding points, we have:

[
p′0 p′1 p′2
1 1 1

]
=

[
mr

0 0 1

]
∗

[
p0 p1 p2

1 1 1

]
(2.13)

[
p′′0 p′′1 p′′2
1 1 1

]
=

[
m2×3

0 0 1

]
∗

[
p0 p1 p2

1 1 1

]
(2.14)

Since affine camera has parallel projection,
[
P0P ′

0, P1P ′
1, P2P ′

2

]
are three parallel

line segments. Parallelism is preserved by affine camera. Therefore,
[
P0P ′

0, P1P ′
1, P2P ′

2

]

will project onto parallel line segments
[
p′0p

′′
0, p

′
1p
′′
1, p

′
2p
′′
2

]
(epipolar lines) in affine cam-

era ψ′ whose projection matrix is {M′
2×3,T

′}. Denote pipj = pj − pi. We have:

[
p′0p

′′
0, p

′
1p
′′
1, p

′
2p
′′
2

]
= M′ ∗ [

P0P ′
0, P1P ′

1, P2P ′
2

]

= M′ ∗D ∗ [k0, k1, k2] , (2.15)

where D (unit 3-vector) denotes the direction of parallel lines P0P ′
0, P1P ′

1, P2P ′
2, and[

P0P ′
0, P1P ′

1, P2P ′
2

]
= D∗ [k0, k1, k2], with ki denoting the length of line segment PiP ′

i .

[k0, k1, k2] is independent of camera ψ′.

Denote e′ = [e1, e2]
> = M′ ∗ D (It is obvious that [e1, e2, 0]> is the direction of

epipolar lines in homogeneous coordinates in camera ψ′). From Eq.(2.15) we have:

[p′′0, p
′′
1, p

′′
2] = [p′0, p

′
1, p

′
2] +

[
p′0p

′′
0, p

′
1p
′′
1, p

′
2p
′′
2

]

= [p′0, p
′
1, p

′
2] + e′ ∗ [k0, k1, k2] (2.16)

Substitute Eq.(2.16) and Eq.(2.13) into Eq.(2.14), we have:

[
m2×3

0 0 1

]
∗

[
p0 p1 p2

1 1 1

]

=

[
mr

0 0 1

]
∗

[
p0 p1 p2

1 1 1

]
+

[
e′

0

]
∗ [k0, k1, k2]

(2.17)

Since [p0, p1, p2] are non-collinear points, the matrix P3×3 =

[
p0 p1 p2

1 1 1

]
is non-
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singular and P−1
3×3 exists. Therefore, from Eq.(2.17), we have:

m = mr + e′ ∗ [v0, v1, v2] (2.18)

Here
[
e′>, 0

]
is the direction of epipolar lines in homogeneous coordinate in camera

ψ′, and

v> = [v0, v1, v2] = [k0, k1, k2] ∗ P−1
3×3

It is obvious that the 3-vector v> is independent of the second camera ψ′. ¤

2.4 Relative affine homographies

Given uncalibrated cameras, it is known that the projective homography can only be

determined up to an unknown scale. This is not the case for affine cameras. In affine

camera, the 2D affine transformation can be uniquely determined, and we can rewrite

Eq.(2.7) as (see Theorem 2.3):

m2×3 = mr + e′v>. (2.19)

Here mr is the affine transformation induced by the reference plane. e′ = (e1, e2)
>,

where (e1, e2, 0) is the direction of epipolar lines in homogeneous coordinate in the

second camera. The 3-vector v representing the plane is independent of the second

affine camera.

Notice an important difference between Eq.(2.7) and (2.19). Eq.(2.7) has an un-

known scale while Eq.(2.19) does not. Therefore, we can define relative affine trans-

formation as:

∆m = m−mr = e′v>. (2.20)

where mr is the affine transformation induced by the reference plane, which can be

either a real plane or a virtual plane. A convenient choice of the reference affine

transformation is the average affine transformation:

Result 2.1. If {mi | i = 1, ..., N} are N affine transformations induced by N plane

in the scene, then the average affine transformation mr = 1
N

∑N
i mi is induced by

some real or virtual world plane.

Proof: An affine transformation m is induced by some world plane if and only if
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m is consistent with the fundamental matrix. Since each mi corresponds to a world

plane, we have m>
i F + F>mi = 0 where F is the fundamental matrix defined by the

two cameras. It follows m>
r F + F>mr = 0, which means that mr is consistent with

the fundamental matrix. Therefore, mr is induced by some (virtual) world plane. ¤

2.5 Subspace of relative affine homographies: static

scene

In this section, we study the subspace dimension of relative affine homographies in-

duced by planar patches in the scene, where either the scene is static and the camera

is moving, or vise versa.

Result 2.2. We are given two views of a static scene consisting of K planar patches.

The collection of all relative affine transformations induced by these K planar patches

resides in a linear subspace with dimension d = min(3, L− 1), where L is the number

of different planes in the scene.

Proof: From Eq.(2.19) we have ∆mi = mi −mr = e′v>i . Here mi is the affine

transformation induced by the i-th planar patch; mr is the reference affine transfor-

mation; and vi = [v1,i, v2,i, v3,i]
> defines the i-th planar patch. Reshape each ∆mi

into a 6 × 1 column vector, and stack them into a matrix W6×K . The following

factorization is obvious [80]:

W6×k =




e1 0 0

0 e1 0

0 0 e1

e2 0 0

0 e2 0

0 0 e2




6×3

∗




v1,1 ... v1,K

v2,1 ... v2,K

v3,1 ... v3,K




3×K

= E6×3 ∗V3×K (2.21)

We have

rank(W) ≤ min(rank(E), rank(V)) = min(3, rank(V))

where rank(V) depends on the configuration of the planes in the scene, and is no
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more than L, the number of different planes in the scene.

If one of the plane in the scene is selected as the reference plane, then columns

in V from patches in the reference plane will become zero, and rank(V) ≤ L− 1. If

the average affine transformation is selected as the reference motion, then summing

all columns in V together will result in a zero column vector, which means that

rank(V) ≤ L − 1. In the following of this chapter regarding to rank(W), the above

argument applies, and we always have rank(W) ≤ L− 1. ¤

We now show that the collection of all relative affine transformations across more

than two views still resides in a low dimensional (no more than 3) linear subspace.

Result 2.3. Given a static scene with K planar patches, a reference view ψr and

another F (F ≥ 1) views {ψf |f = 1, ..., F} of this scene, the collection of all relative

affine transformations induced by these K planar patches between the reference view ψr

and any other view ψf resides in a linear subspace with dimension d = min(3, L− 1),

where L is the number of different planes in the scene.

Proof: Denote the K affine transformations between reference view and view f

as mf,1, ...,mf,k. From Eq.(2.19) we have ∆mf,i = mf,i − mf,r = e′fv
>
i , where

vi = [v1,i, v2,i, v3,i]
>. Reshape each ∆mi into a 6 × 1 column vector, and stack them

into a matrix Wf
6×K . We have:

Wf
6×K =




ef,1 0 0

0 ef,1 0

0 0 ef,1

ef,2 0 0

0 ef,2 0

0 0 ef,2




6×3

∗




v1,1 ... v1,K

v2,1 ... v2,K

v3,1 ... v3,K




3×K

= Ef
6×3 ∗V3×K (2.22)

where V is common to all views. Therefore, we have:

W6F×K =




W1

W2

...

WF




6F×K

=




E1

E2

...

EF




6F×3

∗V3×K (2.23)
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The matrix dimension on the right-hand side of Eq.(2.23) implies that

rank(W) ≤ min(3, L− 1)

¤

From Eq.(2.23) we can see that the subspace comes from both the spatial and

temporal redundancy in the image sequence. The spatial redundancy is due to the

fact that multiple planes share the common camera geometry, i.e., the direction of

parallel epipolar lines. The temporal redundancy is due to the fact that multiple

cameras share the same scene. The actual dimension of the subspace, i.e., the rank of

W in Eq.(2.23), depends on the scene and the camera geometry, and could be lower

than three.

Result 2.4. If all of the planes in the scene different only in depth, i.e., they are

parallel to each other, then rank(W) = 1.

Proof: We just need to show that any two of the relative affine motions are linear

dependent, i.e., ∆mi = λ∆mj.

Since all planes are parallel to each other, we denote the i-th plane equation as

πi = (n>, µi)
>, where n> is the common plane normal. According to Eq.(2.36):

mi = P′P+ − e′
(n>, µi)

>P+

(n>, 0)>C
(C = (c1, c2, c3, 0)> is at infinity.)

We choose the average affine transformation as the reference transformation:

mr = P′P+ − e′
(n>, µ̄)>P+

(n>, 0)>C

where µ̄ = 1
K

∑K
i=1 µi, K is the number of collected affine transformations.

∆mi = αi
e′p+

3

(n>, 0)>C

where αi = 1/(µ̄− µi), p+
3 is the third row of P+.

Therefore,
∆mi

∆mj

=
αi

αj
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(a) (b) (c)

449.0 261.2 0.006 0.0007 0.0002 0.0001
(d)

Figure 2.3: Results on synthetic sequence, where both camera and objects are moving
independently: (a) and (b) two frames of the synthetic sequence; (c) the layer map
by clustering in the 2-D subspace; (d) the eigenvalues of matrix W6×31.

¤

Note that the proof of Result 2.4 uses the fact that the optical center of an affine

camera is at infinity. For a finite camera, when the camera motion is in plane motion

(not translation in depth direction; not out-of-plane rotation), the 2D image motion

is also affine. In this case, if we set the optical center of the first camera as the origin

of the world coordinate frame, then π>i C = 1 (independent of plane πi), therefore

Result 2.4 still holds.

2.6 Subspace dimensionality: dynamic scene

The assumption of static scenes for deriving Eq.( 2.23) is a sufficient condition but

not a necessary one. This means that even with moving objects in the scene, we may

still have a low dimensional linear subspace.

To verify the above observation, let us consider the following situations. A 3D

scene consists of three planes, with the table plane stationary and foreground and

background planes moving upward and downward independently. At the same time,

a pinhole camera is undergoing simultaneously zooming out, translating horizontally,

and rotating about its optical axis. Under such camera motion, each plane in the scene

will induce an affine transformation. Fig.(2.3) shows the two rendered frames. Notice

each plane is made of many color patches (each color patch is a planar patch). With

two views (F = 1), and k = 31 patches (1 on foreground plane, 15 on background

plane, 15 on table plane), the eigenvalues of W6×31 are computed and shown in

Fig.(2.3d). They clearly show that the dimension of subspace is two. Please see
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Appendix 2.7.2 for an analytic explanation of why the subspace dimension is two.

This section studies the subspace dimensionality for dynamic scenes.

2.6.1 General motion

Suppose there are L planes in the scene, each moving independently. We are given two

views of the scene, with one view being the reference view. Between the reference view

and the other view, there is one fundamental matrix associated with each independent

moving plane.

The homography induced by the i-th plane in the scene is:

Hi
∼= Ai − e′iv

> (2.24)

where F = [e′i]×A is any decomposition of the fundamental matrix associated with the

i-th plane. The epipole e′i is determined by the relative motion between the camera

and the i-th plane. The reference homography Ai is induced by some unknown plane

that is static w.r.t. the i-th plane.

We first study the rank condition in general case where the planes in the scene

move arbitrarily.

Result 2.5. Suppose there are B “bodies” in the scene. Each body Bi contains Li

different planes. While each body moves independently, planes inside each body are

static w.r.t. each other. The single camera is moving by itself too. We are given two

views of the scene, and K affine transformations of local planar patches. These K

affine transformations reside in a linear subspace of dimension d = min(4B,L − 1),

where L =
∑B

i=1 Li.

Proof: Reshape each affine transformation into a column vector. Eq.(2.24) can be
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rewritten as:

hi =




ai

e1 0 0

0 e1 0

0 0 e1

e2 0 0

0 e2 0

0 0 e2




6×4

∗




1

v1

v2

v3




= Ei ∗ vi (2.25)

Planes in the same “body” share the same matrix E. Stack all of the reshaped

affine transformation into a single measurement matrix W. For the i-th “body”, we

have Wi = EiVi, where Vi is a 4 ×Ki matrix with Ki the number of local patches

in Body Bi and
∑B

i=1 Ki = K. We have:

W6×K = [W1, ...,WB] = [E1, ...,EB]6×4B




V1

V2

. . .

VB




4B×K

= EV

where K is the total number of local measurements (affine transformation). From the

above matrix factorization, we have:

rank(W) ≤ min(6, rank(E), rank(V))

Since rank(V) =
∑B

i=1 rank(Vi) ≤ L, we have:

rank(W) ≤ min(6, 4B, L)

If we subtract the column average of W from every column in W , we further reduce

the rank of W by one if its rank is bound by L. Therefore we have: rank(W) ≤
min(6, 4B, L− 1). ¤

We have similar result for multiple frame case:

Result 2.6. Given multiple frames of the scene described in Result 2.5, we have

rank(W) ≤ min(4B, L− 1).
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Proof: Denote Ef
i the epipole matrix of the i-th “body” at Frame f . We have:

W6F×K =




E1
1, ..., E1

B

...

EF
1 , ..., EF

B




6F×4B




V1

V2

. . .

VB




4B×K

= EV

It is obvious that

rank(W) ≤ min(4B, L− 1)

¤

2.6.2 Special motions

In real life, objects do not move pure randomly. This subsection examines a practical

special motion, the instantaneous motion.

Suppose the relative motion between the i-th plane and the camera is instanta-

neous motion. In other words, the object has small rotation relative to the camera, and

its relative forward motion is small compared to its depth. The image motion of the

plane between two views can be modelled by an 8-vector hi = (p1, ..., p8)
>(see [41]),

where:
p1 = f ′(γe1 + ω2) p2 = f ′

f
(1 + αe1)− γe3 − 1

p3 = −f ′
f
(ω3 − βe1) p4 = f ′(γe2 − ω1)

p5 = f ′
f
(ω3 + αe2) p6 = f ′

f
(1 + βe2)− γe3 − 1

p7 = 1
f
(ω2 − αe3) p8 = − 1

f
(ω1 + βe3),

(2.26)

where π = (α, β, γ)> is the parameters of plane π (πX = 1, for all X on the plane),

ω = (ω1, ω2, ω3)
> and e = (e1, e2, e3)

> are the rotation and translation of the plane

w.r.t. the camera, f and f ′ are camera focus length at the two views.

The image motion vector (between view j and the reference view) of the i-th plane
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can be represented as:

hi =




fej
1 0 0 fωj

2

−ej
3 ej

1 0 0

0 0 ej
1 −ωj

3

fej
2 0 0 −fωj

1

0 ej
2 0 ωj

3

−ej
3 0 ej

2 0

0 − 1
f
ej
3 0 1

f
ωj

2

0 0 − 1
f
ej
3 − 1

f
ωj

1







γ

α

β

1


 = Ej

ivi (2.27)

where f is the camera focus length which is assumed to be fixed, (ωj, ej) is the

instantaneous motion of the i-th plane w.r.t. camera at time j.

If we stack the image motions all local planar patches across all frames into a

measurement matrix, we have:

Result 2.7. Suppose there are B “bodies” in the scene. Each body Bi contains Li

different planes. While each body moves independently, planes inside each body are

static w.r.t. each other. The single camera is moving by itself too. Suppose the relative

motion between camera and bodies are instantaneous. We are given F + 1 views of

the scene (with one of them being the reference view), and K instantaneous image

transformations of local planar patches across all frames. These K transformations

reside in a linear subspace of dimension d = min(4B, L− 1), where L =
∑B

i=1 Li.

Proof: According to equation (2.27), we have:

W8F×K =




E1
1 ... E1

B

...

EF
1 ... EF

B




8F×4B




V1

V2

. . .

VB




4B×K

= EV (2.28)

From the above factorization, it is obvious that:

rank(W ) ≤ min(4B, L− 1)

¤
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If we can model the object motion, we can further discover a lower dimensional

subspace. Suppose the instantaneous motion of the i-th plane can be modelled as:

ei =
N∑

j=1

αjt
j =




α1,1 ... α1,N

α2,1 ... α2,N

α3,1 ... α3,N




3×N




t
...

tN


 = At (2.29a)

ωi =
N∑

j=1

βjt
j =




β1,1 ... β1,N

β2,1 ... β2,N

β3,1 ... β3,N




3×N




t
...

tN


 = Bt (2.29b)

where αj = (αj,1, αj,2, αj,3)
> and βj = (βj,1, βj,2, βj,3)

>, and t is time parameter.

Equation (2.29) can model most of the rigid motion in the real world (many non-

rigid motion too), where N is the number of bases. A lot of object motion in a short

time period can be well modelled with N = 2. Two special cases are useful in our

case, including N = 1 (constant speed), and N = 2 (acceleration/deceleration).

Result 2.8. If the motions (w.r.t. camera) of the planes in the scene can be modelled

by equation (2.29), then the image motions (8-parameter model) of the planar patches

across all frames reside in a linear subspace with dimension d = min(8N, 4B, L− 1).

For affine cameras, d = min(6N, 4B, L− 1).

Proof: We just need to show rank(W) ≤ 8N . Substitute equation (2.29) into

(2.27), we have:

hi = diag(f, 1, 1, f, 1, 1, 1/f, 1/f)




t>

. . .

t>




8×8N




a>1 0 0 b>2
−a>3 a>1 0 0

0 0 a>1 −b>3
a>2 0 0 −b>1
0 a>2 0 b>3
−a>3 0 a>2 0

0 −a>3 0 b>2
0 0 −a>3 −b>1




8N×4

vi

= F8×8T8×8NE8N×4vi (2.30)

where ar is the r-th row of matrix A, br is the r-th row of matrix B (see (2.29) for
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the definition of A and B). The measurement matrix W can be factorized as:

W8F×K =




T1

...

TF




8F×8N

[E1 · · ·EB]8N×4B




V1

. . .

VB




4B×K

(2.31)

Therefore, rank(W) ≤ 8N . For affine cameras, the image motion has only six pa-

rameters and rank(W) ≤ 6N . Proof done by combining with Result 2.7. ¤

Given a short image sequence, constant speed assumption is valid in many cases,

and the following result shows that under such assumption, the subspace dimension

is low (6 for affine cameras) no matter how complex the scene is.

Result 2.9. If every plane in the scene moves independently but with a constant

speed (different planes can have different speed), then the image motions (8-parameter

model) of the planar patches across all frames reside in a linear subspace with dimen-

sion d = min(8, 4B, L). For affine cameras, d = min(6, 4B, L− 1).

2.7 Appendix

2.7.1 Appendix 1: Algebraic proof of Theorem 2.3

Algebraic proof: Assuming the projection matrix of the two cameras are, respectively,

P and P′, with P the reference camera. Notice that we do not assume any canonical

form of the cameras, i.e., P and P′ are 3× 4 matrix with rank 3. For any point X on

the plane π, it projects onto the two cameras as (using homogeneous coordinate):

x ∼= PX (2.32)

x′ ∼= P′X (2.33)

From (2.32), the ray corresponding to the line joined by C (the optical center of

the first camera) and the point X is:

X(λ) = P+x + λC (2.34)
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where λ parameterizes this 1D line, and P+ = P>(PP>)−1 is the pseudo-inverse

of P. Note that (PP>)−1 exists since rank(PP>) = 3 3. Since X is on both the ray

and the plane πX = 0, we can determine λ:

λ = −π>P+

π>C
x (2.35)

where π>C 6= 0 since we ignore the degenerate case where the plane π contains C.

From Eq.(2.33), (2.34) and (2.35), we have:

x′ ∼= P′X

∼= P′P+
x−P′C

(π>P+)

π>C
x

∼= (P′P+ − e′v>)x

∼= Hx (2.36)

where e′ = P′C is the epipole in the second camera (the image point of the first

camera center); v> = π>P+

π>C
parameterizes the plane and is independent of the second

camera; P′P+ is the homography corresponding to some plane 4. ¤

2.7.2 Appendix 2: Notes on the subspace dimension of the

synthetic case of Figure (2.3)

Let’s go back to see why the rank is two in the synthetic example of Figure (2.3),

where the input are two frames of a scene with two planes (Body 1 and 2) moving

up and down, and the ground plane (Body 3) fixed w.r.t. the camera. The camera is

translating, rotating (around optical axis), and zooming.

From the point of view of scene regularity, we have rank(W ) ≤ (L−1) = 2, where

L = 3 is the number of layers in the scene. In the following, we show it via the

geometry relationship between the scene and camera.

The motion of a plane is exact affine (since there is not forward/backward trans-

3Since rank(P) = 3,P = UΣV>, the first three singular values in Σ are larger than 0. PP> =
UΣ2U> ⇒ rank(PP>) = 3.

4The fundamental matrix is F = [e′]×P′P+ ([37], pp.224). A transformation H is the homogra-
phy between two images induced by some world plane if and only if the fundamental matrix F for
the two images has a decomposition of F = [e′]×H ([37], pp.316).
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lation w.r.t. camera, and not out of plane rotation). The rotational component is the

same for all planes in the scene since only the camera is rotating. Such rotation is

cancelled when it is chosen as the reference motion. Therefore we have:

W6×K = [E1,E2,E3]




V1

V2

V3


 (2.37)

where Vi contains all the planar patches in the i-th body. Since Body 1 and 2 moves

in opposite direction (up and down), their corresponding epipolar matrix satisfies

E1 = −E2. Therefore, we can rewrite equation (2.37) as:

W6×K = [E1,E3]

[
V1 −V2

V3

]
(2.38)

Since Body 1 and 2 has the same plane normal (only differs in depth), we know

that V1 = λV2, with λ some constant. And since the bodies are all planes, we have

rank(Vi) = 1. Therefore:

rank(W) ≤ rank([V1,−V2]) + rank(V3) = 2



Chapter 3

Subspace Clustering for Extracting

Layers from Image Sequences

3.1 Introduction

The major task for layer extraction is to segment the images into some number of

sub-images, in such a way that pixels within each sub-image share some common 2D

parametric transformation (or nonparametric model defined by dense smooth flow

field [104]). The three major issues of layer extraction are:

• Segmentation: which portion of the image corresponds to one layer?

• Motion: what motion does a layer undergo?

• Number of layers: how many layers exist in the scene?

These three subproblems are coupled together, making layer segmentation a nontrivial

task. On one hand, the model based motion estimation requires knowing the portion

of image pixels that can be used to estimate the motion parameters, i.e., the segmen-

tation result. On the other hand, segmentation is to assign pixels to appropriate layer

models, which requires knowing the layer model parameters.

EM approach [51, 8, 105, 104, 96, 59] formulates the layer segmentation as a

maximum likelihood or maximum a posterior (MAP) estimation. It solves the layer

segmentation problem by iteratively solving the above three subproblems, with each

41



42CHAPTER 3. SUBSPACE CLUSTERING FOR EXTRACTING LAYERS FROM IMAGE SEQUENCES

iteration dealing with only one subproblem by fixing the other two. Specifically, EM

approach consists of:

• E-step solves the segmentation subproblem, assuming motions are known (in-

cluding number of motion models/layers).

• M-step solves the motion estimation problem, assuming the layer segmentation

is known.

• MDL-step determines the number of layers, assuming segmentation and motion

are known.

Initialization (the number of models and the motion for each model) is an important

but difficult step for EM approach [81, 96]. A good initialization is required in order

for the iterations in the EM algorithm to converge to a desirable solution.

An alternating approach is to solve the layer extraction problem via grouping [103,

81, 106, 55, 56] in a bottom up way without the difficulty of initialization. The

assumption is that the motion parameters of local blocks from the same layer will be

similar to each other, and form a cluster in the parameter space. Layers can therefore

be extracted by grouping local features (blocks or optical flows) into clusters in the

parameter space.

Simply applying grouping algorithm to the local features tends to ignore the global

constraints existing in the given image sequence, including spatial and temporal con-

straints. In this chapter, we show that subspace approach can naturally utilize the

global spatial-temporal constraints to improve the cluster discriminability, therefore

improve the reliability of subsequent clustering algorithm for layer extraction.

3.2 Clustering for layer extraction

According to Theorem 2.1, a plane π>X = 0 in the scene induces a 2D homography

H between two camera views. The parameters of the homography H are determined

by both the camera geometry and the plane parameters:

H = A− av>
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where A and a are camera parameters, and v the plane parameters (π = (v>, 1)>).

In the following we consider affine cameras, where the plane π induces a 2D affine

homography between two affine cameras (Theorem 2.3).

In the bottom-up frame work, the image is divided into local blocks, and each

local block is assumed to be the image of a planar patch in the scene. Denote mi

the local measurement of the i-th planar patch. Given F + 1 frames in the input

video, mi is a 6F dimensional column vector, which consists of the affine motion

parameters between the reference image and every other image in the given image

sequence. Suppose the number of local measurements (planar patches) is K, we have:

mi = ml + εi i = 1, 2, ..., K (3.1)

where ml is the hidden true affine homographies of the l-th plane in the scene that

contains patch i, and εi is the measurement noise. We assume that the random

variables {εi | i = 1, ..., K} are independently and identically distributed (i.i.d.), with

zero mean and covariance of Σε.

Ideally, local measurements of planar patches in the l-th scene plane are identical,

since they share the same camera geometry and plane parameters. In reality, due to

the measurement noise εi, local measurements from one common plane will form a

cluster centered around ml in the parameter space. The shape of the cluster depends

on the noise. The task of layer extraction can therefore be formulated as clustering

in the motion parameter space.

3.3 Subspace clustering

According to the results in Chapter 2, the true homographies {ml, l = 1, ..., L} reside

in a low dimensional subspace. Instead of grouping in the original high dimensional

space, we formulate the layer extraction as clustering in the low dimensional subspace.

Denote the columns of U6F×6F as a set of orthonormal bases of the original 6F -

dimensional parameter space R6F , which consists of the signal space (homography

subspace) US and the noise space U⊥:

U = [US |U⊥]
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Here U is an orthonormal matrix. US and U⊥ are orthogonal (U>
S U⊥ = 0).

According to Eq. (3.1), the local measurement mi can be decomposed into two

components: the signal component ml and the noise component εi. The true homo-

graphies {ml | l = 1, ..., L} of the scene planes (layers) resides strictly in the signal

subspace. Therefore the projection of ml on the noise space vanishes:

U>
⊥ml = 0

The signal decomposition can be achieved by projecting the local measurements onto

the signal space and noise space:

mi = ml + εi

= UU>ml + UU>εi

= USvl + [US|U⊥]ni (3.2)

where vl = U>
S ml, ni = U>εi.

Since εi’s are i.i.d. zero mean Gaussian noise, {ni | i = 1, 2, ..., K} are K i.i.d.

multivariate random variables with zero mean and covariance of (see [52]):

Σn = U>ΣεU (3.3)

Denote vi as the projection of mi onto the signal subspace defined by US. From

equation (3.2) we have:

vi = U>
S mi = vl + (Id×d |0)ni (3.4)

where d is the dimension of the signal subspace. vi’s are the subspace projection

of local measurements mi’s. It consists of projected signal component vl and noise

component (Id×d |0)ni. When projecting the local measurements onto the subspace,

the signal component is essentially unchanged since it strictly resides in the subspace,

but the noise component will be reduced greatly. Intuitively, by subspace projection

each cluster in the parameter space pull its data items towards its cluster center. The

clusters will become denser in the subspace, and therefore easier to identify.
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3.4 Why subspace clustering?

In this section, we use statistical analysis to show the merits of subspace approach

resulting from its ability to naturally exploit the global spatial-temporal constraints

existing in videos. Specifically, we prove that 1) layers are more discriminative in the

subspace, and 2) increasing the frame number in the input video increases the layer

discriminability in the subspace, but not in the original space.

3.4.1 Layer discriminability

A data configuration is easier to cluster if data items in the same cluster are closer to

each other, while at the same time data from different clusters are further away. Such

criteria can be quantified by the within-cluster scatter matrix Sw and between-cluster

scatter matrix Sb [31]:

Sw =
L∑

l=1

πlE[(mi − m̄l)(mi − m̄l)
> | i ∈ Cl] (3.5)

Sb =
L∑

l=1

πl(m̄l −m0)(m̄l −m0)
> (3.6)

where L is the total number of clusters, and πl is the prior probability of the l-th

cluster Cl with
∑L

l=1 πl = 1. In general, we use equal prior probability πl = 1/L. m̄l

is the expected cluster center of the r-th cluster Cl:

m̄l = E[mi | i ∈ Cl]

m0 is the overall mean:

m0 = E

[
1

K

K∑
i=1

mi

]

=
L∑

l=1

Kl

K
m̄l

where Kl is the number of local measurements from plane r that forms the l-th cluster,

and
∑L

l=1 Kl = K.

The overall cluster tightness (noise strength) can be characterized by the trace of
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Sw, denoted by Tr(Sw). The overall distance among cluster centers (signal strength)

can be characterized by the trace of Sb, denoted by Tr(Sb). Layer discriminability is

defined by the overall cluster discriminability, which is in turn defined by q, the signal

to noise ratio [31]:

q =
Tr(Sb)

Tr(Sw)
(3.7)

3.4.2 Subspace projection increases layer discriminability

Layers are more discriminative in the signal subspace than in the original parameter

space:

Result 3.1. Projecting local measurements onto the signal subspace improves the

layer discriminability q, since it reduces Tr(Sw), while at the same time maintains

Tr(Sb). If we further assume that εi is uncorrelated isotropic Gaussian noise, then

subspace projection maximizes the cluster discriminability. Specifically, subspace pro-

jection improves the cluster discriminability by qs

q0
= 6F

d
, where d is the subspace

dimension, and q0, qs are the cluster discriminability before and after subspace pro-

jection, respectively.

When we increase the number of frames in the input video, the cluster signal

strength Tr(Sb) increases, i.e., the clusters are further away from each other, which

is desirable for the clustering algorithm. However, increasing the frame number also

increases the noise level Tr(Sw) in the original space, which is not the case in the

subspace:

Result 3.2. In the subspace, the cluster discriminability q is proportional to the frame

number F in the input video (q ∝ F ), while in the original space, q maintains at the

same average level when F increases. In other words, increasing the frame number

in the input video increases the layer discriminability in the subspace, but not in the

original space.

Proof of Result 3.1

The between-cluster scatter matrix Sb2 in the subspace is given by:

Sb2 =
L∑

l=1

πl(v̄l − v0)(v̄l − v0)
>
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Here v0 is the overall mean in the subspace:

v0 = E

[
1

K

K∑
i=1

vi

]
=

L∑

l=1

Kl

K
vl

where Kl is the size of cluster Cl.

From equation (3.2) and (3.4), we have the expectations of ml and vl:

m̄l = E[mi | i ∈ Cl] = Usvl (3.8)

v̄l = E[vi | i ∈ Cl] = vl (3.9)

From equations (3.6,3.2, 3.8,3.9), the between-cluster scatter matrix Sb1 in the original

space is given by:

Sb1 =
L∑

l=1

πl(US U⊥)

(
v̄l − v0

0

) (
v̄l − v0

0

)> (
U>

S

U>
⊥

)

= U

(
Sb2 0

0 0

)
U> (3.10)

The derivation of equation (3.10) uses the fact:

m0 = E

[
1

K

K∑
i=1

mi

]
= Usv0

Since U is orthonormal, its multiplication does not change matrix trace. Therefore:

Tr(Sb1) = Tr

(
Sb2 0

0 0

)
= Tr(Sb2) (3.11)

In other words, the subspace projection doest not change the overall distance between

cluster centers.

By substituting equation (3.1) into (3.5), we have the within-cluster scatter matrix

Sw1 in the original space R6F :

Sw1 =
L∑

l=1

πlE[εiε
>
i |C(i) = r] = Σε (3.12)
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Since The trace of the matrix A is equal to the sum of all eigenvalues of the matrix

A , we have:

Tr(Sw1) = Tr(Σε) =
6F∑
i=1

λi

where {λi | i = 1, ..., 6F} are the non-negative eigenvalues of Σε in non-increasing

order.

The within-cluster scatter matrix for the projected data in the subspace is denoted

as Sw2. From equation (3.5) and (3.4), we have:

Sw2 =
L∑

l=1

πlE[(vi − v̄l)(vi − v̄l)
> | i ∈ Cl]

= (Id×d |0)Σn(Id×d |0)> (3.13)

Since the orthonormal matrix U does not change the eigenvalues of Σε, from equa-

tion (3.3) we have:

Tr(Σn) = Tr(Σε) =
6F∑
i=1

λi

Since λ1 ≥ λ2 ≥ · · · ≥ λ6F , from equation (3.13) we have:

Tr(Sw2) ≤
d∑

i=1

λi <

6F∑
i=1

λi = Tr(Sw1)

If the noise ε is assumed to be uncorrelated isotropic Gaussian noise, then Σε = λI.

We have:

Σn = U>λIU = λI

From equation (3.12) and (3.13), We have:

Tr(Sw1) = 6Fλ (3.14a)

Tr(Sw2) = dλ (3.14b)

From equation (3.14), the cluster discriminability q0 in the original space and qs in
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the subspace are:

q0 =
Tr(Sb)

6Fλ

qs =
Tr(Sb)

dλ

Therefore the improve of layer discriminability by subspace projection is:

qs

q0

=
6F

d

Proof of Result 3.2

Denote the 6F -dimensional vector al = m̄l −m0 = (al,1, ..., al,6F )>, then:

Tr(ala
>
l ) = a>l al =

6F∑

f=1

a2
l,f

Therefore:

Tr(Sb) =
L∑

l=1

Tr(ala
>
l )

=
L∑

l=1

6F∑

f=1

a2
l,f (3.15)

Adding one additional frame into the input video will append additional six num-

bers to the vector al, therefore increases Tr(Sb) according to equation (3.15). If we

assume that, on average, each frame in the video contributes the same “energy” λs

to Tr(Sb). From equation (3.11), the overall signal level for both the subspace and

the original space is Fλs. Together with equation (3.14), we have the cluster discrim-

inability for the subspace and the original space:

qs =
Fλs

dλ
∝ F

q0 =
Fλs

6Fλ
= const

Therefore, increasing the frame number F of the input image sequence increases
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the layer (cluster) discriminability in the subspace, but not in the original parameter

space.



Chapter 4

Robust Subspace Computation

4.1 Introduction

The local measurements reside in a low dimensional subspace (Chapter 2), where

the clusters of the local measurements become denser and therefore easier to iden-

tify(Chapter 3). To compute the subspace, we need to factorize the measurement

matrix W :

WP×K = UP×dV
>
d×K (4.1)

where P is the length of each local measurement (column vector); K is the number

of local measurements; d is the dimension of the linear subspace. The columns of

matrix U are the bases of the linear subspace that we want to compute.

SVD algorithm is the most popular algorithm to the task of Eq.(4.1):

WP×K = UP×dΣd×dV
> (4.2)

where the columns of U are orthonormal bases of the subspace. It can be shown

that the SVD algorithm finds the global minimum (the least squared solution) of the

following matrix approximation problem:

min ‖W −UV>‖2 (4.3)

where ‖ · ‖2 is the matrix Frobenious norm (L2 norm).

It is well known that such least squared solution to the problem of Eq. (4.3) is

51
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sensitive to outliers. Therefore the SVD algorithm, while effective in dealing with

Gaussian noise, is sensitive to outliers in the local measurements. This chapter ex-

plores several methods to make the subspace computation robust to outliers. We will

show that the subspace not only provides a space where clusters are denser and easier

to identify, but also a global constraint that is useful for detecting outliers.

4.2 Probabilistic view of subspace computation

In [93, 94], it was shown that principal subspace can be computed by maximum

likelihood estimation, which in turn can be computed by EM algorith [29]. In a sim-

ilar way, in this section we formulate the subspace computation from a probabilistic

view of point, where the subspace computation is viewed as a maximum likelihood

estimation problem under different noise model. We will show that maximizing the

likelihood is equivalent to minimization some cost function. The format of the cost

function is determined by the distribution of the noise in the data.

In general, the observed data (local measurement) mi is is a P -dimensional column

vector contaminated by additive noise:

mi = θi + εi i = 1, · · · , K (4.4)

where θi is the unobservable (fixed but unknown) true value of the observed (mea-

sured) mi, and εi is the additive noise. We know that θi resides in a d dimensional

linear subspace (d < P ) such that:

θi = Uvi (4.5)

where vi is the projection of mi on the subspace defined by the columns of U.

Assuming that local measurements are independent, the log likelihood of the total

K measurements is:

l(θ;m) = log p(m1, ...,mK | θ1, ..., θK) =
K∑

i=1

log p(mi | θi) (4.6)

Therefore, the goal of subspace computation from measurement data is to find the

true values θi’s that maximize the likelihood of the measurements l(θ;m), subject to
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the condition that these θi’s reside in a low dimensional subspace (defined by U in

Eq. (4.5) ).

Gaussian noise

If the noise εi follows zero-mean normal distribution with common standard deviation

of σ, then mi v N(θi, Σ). By further assuming that the elements of each vector (mi

or θi) are independent, the probabilistic distribution of mi conditioned on θi is:

p(mi | θi) v exp{−‖mi − θi‖2
2

2σ2
} (4.7)

where ‖x‖2 is the L2 norm of vector x:

‖x‖2 =

(∑
i

x2
i

)1/2

(4.8)

The data log likelihood can be written as:

l(θ;m) = −c

K∑
i=1

‖mi − θi‖2
2 (4.9)

where c is some positive constant. Maximizing the data log likelihood is therefore

equivalent to minimizing the term in the r.h.s. of Eq. (4.9), which is called the cost

function or energy function:

E(θ) =
K∑

i=1

‖mi − θi‖2
2 (4.10)

Substitute Eq. (4.5) into Eq. (4.10), we can rewrite Eq. (4.10) in matrix format

as:

E(U,V) = ‖W −UV>‖2
2 (4.11)

where W is the measurement matrix with mi its i-th column, vi is the i-th column

of V>, and ‖ · ‖2 is the matrix Frobenius norm (L2 norm). The assumption of i.i.d.

Gaussian noise model transfers the maximum likelihood problem of maxθ l(θ;m) into

a L2-norm cost function which is convex in U and V , and has a closed formed

solution (SVD algorithm) to compute its global minimum.
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Laplacian noise

If we assume the noise ε follows Laplacian distribution instead of normal distribution,

we have:

p(m1, · · · ,mK | θ1, ..., θK) ∼ exp{−
∑K

i=1 ‖mi − θi‖1

s
} (4.12)

Therefore the maximum likelihood of the observed data is given by minimizing the

following L1 norm cost function:

E(θ) =
K∑

i=1

‖mi − θi‖1 (4.13)

Written in matrix form, we have:

E(U,V) = ‖W −UV>‖1 (4.14)

where W is the measurement matrix with mi its i-th column. Unlike the L2 norm

cost function, the L1 norm cost function is in general non-convex in U and V .

General case

In general, when the noise distributions follow same model but with different model

parameters for different data points, the data likelihood is:

p(m1, · · · ,mK | θ1, ..., θK) ∼ exp{−
K∑

i=1

P∑
j=1

d(mij − θij)

sij

} (4.15)

where d(·) is some distance function, and sij is related to the parameter of the noise

distribution.

The maximum likelihood of the observed data is given by minimizing the following

weighted cost function:

E(θ) =
∑

i

∑
j

sijd(mij − θij) (4.16)

Notice that each data item is weighed by different component sij. If we use the

Euclidean distance d(x) = cx2, the above cost function can be simplified as a weighted
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sum:

E(θ) =
∑

i

∑
j

sij(mij − θij)
2 (4.17)

Written in matrix format, we have:

E(U,V) = ‖S⊗ (W −UV)‖2 (4.18)

where ⊗ denotes the component wise multiplication. In the low rank approximation

context, the above cost function has been studied in robust PCA in [32], and recently

in [84]. Unlike the L2 norm cost function, the above weighted cost function is in

general non-convex in U and V , due to the weight matrix S .

Summary

The maximum likelihood (ML) solution to the matrix factorization (subspace com-

putation) depends on the assumed noise distribution. When the noise follows inde-

pendent and identical Gaussian distribution, the ML solution is achieved by mini-

mizing a L2 norm cost function. When the noise follows independent and identical

Laplacian distribution, the ML solution is achieved by minimizing a L1 norm cost

function. In general when the noise distributions are no longer identical, the ML

solution is achieved by minimizing a non-convex weighted cost function [32, 84], with

the weights set according to some problem dependent distance function. Both the

cases of L1 norm and weighted cost function can be used to deal with outliers, as will

be shown in the following sections.

For other noise distributions, such as the generalized exponential family, corre-

sponding cost functions can also be derived [19].

4.3 L2-norm based subspace computation

Gaussian distribution is the most often assumed noise model. Under such noise

model assumption, the problem of estimating the subspace is equivalent to minimize

the following L2-norm cost function:

E(U,V) = ‖WP×K −UP×dV
>
d×K‖2

2 (4.19)



56 CHAPTER 4. ROBUST SUBSPACE COMPUTATION

where d is the dimension of the subspace defined by U , and d < P .

Singular Value Decomposition (SVD) is a popular approach to minimize E(U,V).

The following theory of SVD explains how SVD can be used to minimize E(U,V) [34]:

Theorem 4.1. Let the SVD of matrix W be

WP×K = AP×P ΣP×PB>
P×K (4.20)

where Σ = diag(λ1, · · · , λP ) , λ1 ≥ · · · ≥ λP ≥ 0, and A and B orthonormal matrix.

Then for 1 ≤ d ≤ P , we have:

min E(U,V) =
P∑

i=d+1

λ2
i (4.21)

The above theorem states that the first d columns of A in Eq. (4.20) defines

the subspace that minimizes the L2-norm cost function defined in Eq. (4.19), i.e.,

U = A(:, 1 : d). Similarly V = B(:, 1 : d).

The SVD algorithm essentially finds a least-squared solution to the L2 norm cost

function in Eq. (4.19). The problem with L2 norm cost function is that it is sensitive

to outliers. With even a single influential outliers, the resulted subspace could be

completely different from the desired solution.

4.4 Outlier detection

The local measurements are the 2D affine transformations of predefined local image

regions estimated using the algorithm in [10]. For the planar patches belonging to

a common plane in the scene, their corresponding affine transformations will ideally

share the same 2D image motion parameters, and therefore form a distinct data

cluster in the motion parameter space. In real data, some affine motion estimations

may become unpredictable due to lighting change, motion or depth discontinuity,

and/or non-rigid motions. Instead of forming distinctive clusters, such unpredictable

affine motions are often isolated or sparse in the motion parameters. In other words,

they are outliers to the major clusters formed by planes in the scene. It is necessary

to apply robust methods to detect the outliers for subspace computation.

Outliers are data items that do not follow the global behaviors of the majority of
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Figure 4.1: Structure outliers and extreme outliers. The 3-dimensional data points
reside in a 2-dimensional subspace. Point A,B, and D are extreme outliers, but B is
in the subspace. Point C is a structure outlier.

the data (inliers). In our case of layer extraction, the behaviors of inliers are:

• form dense clusters;

• reside in a low dimensional subspace.

According to these two rules, in layer extraction, the outliers can be classified into

two types, namely the extreme outliers and the structure outliers. Extreme outliers

are those data points that are far away from the data clusters, and will inflate the

covariance matrix of local measurements. Structure outliers are data points that do

not inflate the variance and covariance, but violate the correlation structure imposed

by subspace. Note that an outlier could belong to both extreme outliers and structure

outliers. Fig 4.1 shows a 2D subspace in a 3D space, where Point A, B, and D are

extreme outliers, but B is in the subspace. Point C is a structure outlier.

Approaches to outlier detection includes parametric approaches and non-parametric

approaches. Parametric approaches are suitable for structure outlier detection, and

non-parametric approaches are suitable for extreme outlier detection.

4.4.1 Parametric approach

The parametric approaches define a global parametric model that inliers should follow.

Outliers are those items that do not follow such parametric model. Specifically, in
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parametric approaches, a parametric model is first fit to the data, and then outliers

are identified as the data that violate the fit model. A more general scheme is to

give each data item a weight in the range of [0, 1] according to the degree that such

data item violates the global parametric model. A zero weight indicates an outlier.

Robust estimator is often used to weight each data item, where the objective function

in Eq. (4.3) is rewritten as:

min
∑
i,j

ρ(mij − ui·v·j) (4.22)

where mij is the ij-th element of W, U and V are the global parametric model

(subspace model), ui· is the i-th row of U, and v·j is the j-th column of V>. The

contribution to the cost function of each data element is controlled by the robust

M-estimator ρ(·) based on the distance between the data element and the current

subspace model, i.e., the residual (mij − ui·v·j). For example the Geman-McClure

robust function ρ(x, σ) = x2

x2+σ2 is used in [97], where σ is the parameter that controls

convexity of the robust estimator.

The use of robust M-estimator in Eq. (4.22) changes the convexity of the cost

function. In general, there are many minimums in Eq. (4.22), and iterative procedures

are often used to derive a good local minimum. In each iteration, each data item is

first weighted based on its distance to the current parametric model, and then a new

model is recomputed using the weighted data. When the dimension of the data is too

high to afford computing the subspace model multiple times, gradient decent can be

used to compute a local minima [97].

The convergence of the above iterative process depends on the model initializa-

tion. When a reasonably good initialization is available, the parametric method is

highly effective since it takes the global data into account in detecting the outliers.

Parametric approaches are effective for detecting structure outliers, since such out-

liers are not influential and a good initial model is possible if there are not extreme

outliers. On the other hand, in the presence of influential extreme outliers, it would

be hard, before the removal of the extreme outliers, to obtain a good initial model as

the starting point for the iterative procedure.
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4.4.2 Non-parametric approach

In some cases, it may be hard to define or compute a global model to detect the

outliers. For example, it may be hard to compute a reasonably good subspace model

if there are too many extreme outliers in the data. In such cases, we need to explore

some local non-parametric criteria. In layer extraction, inliers form clusters, which can

be used to define some non-parametric metric that could implicitly use the intrinsic

cluster structure of the data, but without knowing the clustering information.

In non-parametric approaches, an outlier is detected based on some distance met-

ric without any model fitting. Such approaches implicitly use the intrinsic cluster

structure of the data to detect the outliers. In other words, we want to ignore the

isolated data points in the parameter space, and retain only the data points that form

clusters to compute the subspace.

A natural non-parameter metric is the kernel-based point density metric [7]. The

density of a given data point is computed using the points inside the kernel window

centered at the given data point. A data point with low density is declared as an

outlier.

Another metric is to use the kNN distance metric, i.e., the distance between the

data point under consideration and its k-th nearest neighbor. The intuition of using

kNN distance is that for a data point inside a cluster with size larger than k, its

kNN distance is small. On the other hand, an extreme outlier will have large kNN

distance since they do not form distinctive clusters, and are usually isolated or sparsely

distributed.

We prefer kNN distance metric since it has the following advantages over kernel-

based density metric:

• The parameter k is much more intuitive than the parameter of kernel window

size for users to set. k is the smallest data cluster that users want to declare

as inliers. It can be set according to user’s requirement without examining the

input data. It can be thought of as a kernel-based method, but with kernel size

adapted locally to the input data. On the contrary, in kernel-based method the

kernel window size (or scale) is data dependent, and is not intuitive for users to

set.

• kNN distance metric is more suitable than density-based method in low statis-
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tic when the number of data points is small, which is often the case in layer

extraction application.

• kNN distance metric is adaptive to the shape of data clusters, which is not the

case for kernel-based based.

The kNN distance metric is one dimensional, which can be easily characterized

by its histogram. The inliers have smaller kNN distance, and form the first peak in

the histogram. Detecting the first significant peak is trivial in the one dimensional

histogram.

Finally, we note that non-parametric approaches are effective for detecting extreme

outliers, but not as effective for detecting structure outliers. The reason is that

structure outliers often reside at the boundaries of the clusters.

4.5 Robust subspace computation with outlier de-

tection

SubspacekNND R−SVD

Figure 4.2: Three integrated components in our layer extraction algorithm. Subspace
is the core component.

Two important issues arise in order to fully exploit the subspace constraint for a

reliable layer extraction algorithm: 1) to achieve low dimensional subspace, especially

for dynamic scenes; 2) to make subspace computation robust to outliers that often

exist in real data. We achieve the above goals by naturally integrating the following

three components in our layer extraction algorithm: subspace, kNND, and robust-

SVD, with subspace the centering component, as shown in Figure 4.2. The kNND

component, a simple and non-parametric approach based on the k-th nearest neighbor

distance metric, implicitly utilizes the intrinsic cluster structure to detect extreme

outliers and small layers (cluster size less than k), without knowing the clustering

information. The remaining large layers are guaranteed to reside in a low dimensional

subspace, which in turn provides constraints for the robust-SVD (RSVD) component
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to detect the structure outliers that violate the correlation structure imposed by

subspace. The RSVD is a parametric approach that iterates between subspace model

computation and data item weighting. The RSVD component computes an accurate

subspace model, due to 1) the removal of influential extreme outliers by kNND and

2) its ability to detect the remaining structure outliers.

4.5.1 kNND: detecting extreme outliers and assuring low-

dimensional subspace

The kNND procedure implicitly utilizes the intrinsic cluster structure to detect ex-

treme outliers and small clusters (size less than k), without knowing the cluster struc-

ture. We use a simple example to illustrate the kNND procedure. In Figure 4.3, there

are 35 data points reside in a 2D parameter space, with two large clusters, five sparse

points, and two small clusters. For each data point i, its distance to its k-th nearest

neighbor is denoted as dk(i). If point i resides in a cluster with size larger than k,

then its dk(i) will be small. Otherwise, dk(i) will be large. The points in all clusters

with size larger than k will form the first dominant peak in the one dimensional his-

togram of {dk(i) | i = 1, · · · , K}. If points not in this peak are removed as outliers,

then the size of any remaining cluster must be larger than k. In the example shown

in Figure 4.3, if we set k = 5, the two clusters with sizes larger than 5 will form the

first peak in the 1D histogram of dk(i). The sparse points and the two small clusters

will be removed as outliers. From this example, we see that kNND a data-driven

procedure for detecting and removing outliers without parametric modelling.

We now show how to choose k in kNND to assure a desired low dimensional

subspace using Result 2.6, which is especially useful for dynamic scenes. Suppose

the image size (pixel number) is w, and each local patch contains b pixels. After the

kNND procedure, the size of a survived cluster is expected to be larger than k, and its

corresponding layer in the image will have more than kb pixels. Therefore, the number

of survived clusters (layers), denoted as L, must be bound by: L ≤ w
kb

. According to

Result 2.6, the dimension of the subspace d is no more than (L − 1). Therefore, via

kNND, we are guaranteed a linear subspace whose dimension d is bound by:

d ≤ L− 1 ≤ w

kb
− 1

We can assure the subspace dimension to be lower than a pre-defined value d0 by
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Figure 4.3: kNND example.

setting the parameter k as:

k ≥ w

(d0 + 1)b
(4.23)

In real scenes, it is often the case that the large layers are from static backgrounds,

in which case the subspace dimension is no more than three.

kNND metric was used to model point process in clutter backgrounds [17]. It was

also used to determined the window size in kernel density estimation [39], which can

also be used to detect sparse points. We prefer directly using kNND metric because

of its following advantages:

• kNND transforms high dimensional data into one dimensional data, where ex-

treme outliers are clearly distinguished from inliers.

• the parameter k is directly related the expected size of large layers, and therefore

can be used to guarantee a low dimensional subspace.

• kNND is non-parametric and has high break-down point, suitable for detecting

influential extreme outliers.

• kNND is adaptive to cluster shape.

4.5.2 Robust SVD with structure outliers detection

Structure outliers may survive the kNND procedure since they may reside nearby

to cluster boundaries. They are less influential than extreme outliers on subspace

computation. However, structure outliers affect the accuracy of subspace computation
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and obscures the boundaries among clusters. It is therefore desirable to detect such

structure outliers before the subspace clustering.

After the influential extreme outliers are removed, the remaining data are used to

construct the measurement matrix W, and the SVD algorithm 1 can be safely applied

to obtain an initial subspace model:

W6F×K = U6F×6FΣ6F×6FV>
6F×K (4.24)

The diagonal elements of Σ are the singular values λi of W in non-increasing order.

The actual rank of W depends on the camera and the planes in the scene, and is

detected by [45]:

d = min(du, dt) (4.25)

where du is the user-defined upper-bound of the subspace dimension that is guaranteed

by choosing k according to equation (4.23), and dt is the rank bound by the expected

noise in the input data. dt is computed using the singular values λi’s. There are

several methods to determine dt [53]. The one that used in [45] is to use the ratio of

the signal energy to total energy:

dt = arg min
m

(∑m
i=0 λ2

i∑6F
i=0 λ2

i

> t

)
(4.26)

Here (1 − t) determines the noise level we want to tolerate. The other often used

method is to compute the difference of adjacent singular values [53]:

δi = λi − λi+1

The rank of W is determined as the place where δi is big, i.e., the singular values

have a sharp jump.

If we assume that the measurement noise εi in equation 4.4 follows a zero-mean

multivariate Gaussian distribution, then the d dimensional homography subspace is

optimally approximated by the signal subspace defined by the first d columns of U in

equation (4.24).

Once the rank is determined, the data can then be decomposed into the signal

1SVD is the most often used algorithm to compute subspace. Classic SVD is least-squared based
and is sensitive to outliers.
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component and the noise component:

W = (USU⊥)

(
ΣS

Σ⊥

)
(VSV⊥)>

= USΣSV
>
S + U⊥Σ⊥V>

⊥

= S + N

Since U>U = I, we have:

(
U>

S

U>
⊥

)
(USU⊥) =

(
U>

S US 0

0 Ubot
>U⊥

)
= I

Therefore, we have:

U>
⊥U⊥ = I (4.27)

The noise component N also follows zero-mean Gaussian distribution [52]. The

sampled covariance matrix C of N is:

C =
1

K − 1
NN>

=
1

K − 1
U⊥Σ2

⊥U>
⊥ (4.28)

The noise component in the i-th data point is ni = U⊥Σ⊥vi, where v>i is the i-th

row of V⊥, a (6F − d) dimensional vector. The Mahalanobis distance z2
i of ni is:

z2
i = n>i C−1ni

= (K − 1)v>i vi (Eq. 4.27)

= (K − 1)
6F−d∑
p=1

v2
i,p (4.29)

Since the noise components follow Gaussian distribution, z2
i follows χ2

N distribu-

tion [53], with N = (6F−d) degrees of freedom 2. A data point with z2
i lies outside the

p-th confidence interval of the corresponding χ2
N distribution is marked as a structure

outlier.

2In reality, the elements in the noise vector ni may not be independent, which means that the true
degree of freedom of the χ2 distribution is less than (6F − d). We perform another rank detection
based on equation (4.26) to detect the effective degree of freedom.
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Our algorithm for robust subspace computation with structure outliers detection

consists of the following steps:

1. Use SVD to compute an initial subspace using all remaining data points.

2. Compute Mahalanobis distance z2
i for each data point. Data whose z2

i are

outside the p-th confidence interval of χ2 distribution are marked as structure

outliers.

3. Apply SVD to the set of inliers to recompute the subspace, including the di-

mension of the subspace.

4. Repeat Step 2 and 3 until the set of inlier stabilizes.

Since kNND procedure removes the influential extreme outliers, the initial subspace

model in Step 1 is reasonably good, and the above iterative procedure will converge

quickly to a good subspace model that is defined by the first d columns of the matrix

U.

The above algorithm is a special case of the weighted cost function (see Sec-

tion 4.2). Here the weight is binary ({0,1}), and every item in the same column of

the measurement matrix receives the same weight. In such special case, the weighted

cost function has a global minimum that can still be computed by the singular value

decomposition of the weighted measurement matrix [34, 49, 84].

4.5.3 Experimental results

Fig. 4.4 and 4.5 show the experimental results of robust subspace computation on

the mobile & calendar sequence. The input image sequence has 11 frames, with the

middle frame the reference frame. Fig. 4.4(a) & (b) show the first and last frames of

the sequence. The reference frame is divided into 48×48 blocks, with adjacent blocks

overlap by half. The local measurements are the affine transformation estimated for

each block from the reference frame to other frames.

For the i-th local measurement mi, its distance to its k-th nearest neighbor mk is

computed as:

di(k) = ‖mi −mk‖2 (4.30)

where ‖ · ‖2 is the L2 norm. Fig. 4.4(c) shows the histogram of di(k). As we can

see, the inliers form the first peak. The extreme outliers are identified as those data
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(a) input: first frame (b) last frame
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(c) histogram of kNND (d) excluded outliers by kNND

Figure 4.4: Robust subspace computation on Mobile sequence. (a) & (b): two frames
of the 11-frame input image sequence; (c): the 1-D histogram of the kNND; (d): the
outliers excluded as not on the first peak in the histogram in (c);
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Figure 4.5: Subspace. (a): projecting data onto signal subspace; (b) projecting data
onto noise subspace. Blue • and ◦ are inliers. Red ×’s are extreme outliers. Black
+’s are structure outliers.



68 CHAPTER 4. ROBUST SUBSPACE COMPUTATION

items not on the first peak. Fig. 4.4(d) shows the detected extreme outliers. They

correspond to the blocks strapping over different layers, or small moving objects in

the scene.

After the extreme outliers are detected and excluded by the kNND procedure,

the remaining data are processed by robust-SVD to compute the subspace, as well as

detect the structure outliers. In this example, a 2D subspace is derived. Fig. 4.5(a)

shows the projected data on this 2D subspace. As we can see, the inliers (blue “•” and

“◦”) form two distinct dense clusters in this subspace. Extreme outliers are shown

in red “×”, and structure outliers are shown in black “+”. Fig. 4.5(b) shows the

projected data on the first two dimension of the noise subspace. The projected inliers

on the noise subspace form Gaussian cloud.

4.6 Discussion: L1-norm based subspace computa-

tion

We have shown a robust method to compute the subspace using kNND and robust

SVD. The cost function of the robust SVD is essentially L2 norm with special weight-

ing. In this section, we discuss the potential advantages of using L1 norm metric for

subspace computation [57]. Minimizing the L1 norm metric corresponds to the maxi-

mum likelihood estimation under Laplacian noise model. We first show that L1 norm

metric is more robust than L2-norm through a simple illustrative line-fitting exam-

ple. We then propose two algorithms to compute the subspace using L1 norm metric:

alternating weighted-median algorithm and alternating convex quadratic program-

ming. These two algorithms are efficient: weighted median has fast algorithm [90],

and convex quadratic programming (see [65]) is well studied and has very efficient

software package available. More extensive experiments of these above two approaches

to subspace computation is part of the future work.

4.6.1 Robust L1 norm metric

One important advantage of using L1 norm is that it is more robust to outliers than

L2 norm in statistical estimation, as can be seen from the following simple line fitting

example. We are given 10 two-dimensional points {(xi, yi)|i = 1, ..., 10} where the

response variable y is corrupted by Gaussian noise. We want to fit a line y = kx to
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these 10 points, where k is the parameter (slope) that we need to estimate. More

specifically, we use the following linear model:

y = kx + ε (4.31)

where k is the parameter to estimate and ε is the noise that corrupts the response

variable y.

If ε is assumed to be Gaussian noise, then the ML estimation of the parameter k

is given by minimizing the follow L2-norm cost function (sum of squared difference):

E(k) =
10∑
i=1

(yi − kxi)
2 (4.32)

The least squared solution to minimize the above cost function is:

k =

∑10
i=1 xiyi∑10
i=1 x2

i

If ε is assumed to have Laplacian distribution, then the ML estimation of the

parameter k is given by minimizing the follow L1-norm cost function:

10∑
i=1

|yi − kxi| =
10∑
i=1

|xi||yi

xi

− k| (4.33)

The global minimum is the weighted median of { yi

xi
|i = 1, ..., 10}, with |xi| the corre-

sponding weights. If xi = 0, then its corresponding data point is removed from the

accumulation in Eq. (4.33), since the weight is equal to zero too.

Fig.4.6 shows the results when there is NOT any outlier in the given data. As we

can see, the L1 norm and L2 norm cost function give similar estimation of k.

When there are outliers in the data, the results are different. In Fig.4.7 there are

two outliers. The L1 norm cost function still gives good results, while the L2 norm

cost function gives erroneous estimation.

In summary, we have the following well-known result [90]:

Result 4.1. The global minimum of the L1-norm cost function E(u) =
∑K

i=1 ‖yi −
uxi‖1 is given by the weighted median of { yi

xi
| i = 1, ..., K}, where |xi| is the weight of

the i-th cost item.
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Figure 4.6: Fit a line to 10 given data points. All data points are inliers. The result
of using L2 norm cost function is similar to that of using L1 norm.
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Figure 4.7: Fit a line to 10 given data points. Two data points are outliers. Using
L2 norm cost function gives erroneous result, while using L1 norm cost function still
gives correct result.
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4.6.2 L1-norm based robust subspace computation

We have shown that by assuming Laplacian noise distribution, the maximum likeli-

hood estimation of matrix factorization or linear model fitting corresponds to L1-norm

based statistical estimation, which is more robust to outliers than L2-norm based. In

this section, we present algorithms on how to maximize the likelihood, i.e., minimize

the L1-norm based cost function:

E(U,V) = ‖W −UV>‖1 (4.34)

WP×K is the measurement matrix with Column i the observed (measured) data

xi. The columns of UP×d are the d bases of the subspace to be estimated, with

d < min(P,K).

Alternative minimization by weighted-median

While Eq.(4.33) has a global minimum that can be computed via the weighted median,

the cost function for matrix factorization in Eq.(4.34) is in general non-convex, since

both U and V are unknown. It requires some iterative scheme to achieve a good local

minimum.

If U or V is known, then we can use weighted median to compute the global

minimum of Eq.(4.34). Such fact suggests an scheme that minimizes the cost function

alternatively over U or V, each time optimizing one argument while keeping the other

one fixed.

We use the alternating minimization procedure [26]. To simplify the presentation,

we first consider the case where the dimension of the subspace is one. The alternating

minimization problems are:

For i = 1 · · ·P, u
(t)
i = arg min

u
‖mi· − uV(t−1)>‖1 (4.35a)

For j = 1 · · ·K, v
(t)
j = arg min

v
‖m·j − vU(t)‖1 (4.35b)

where u
(t)
i is the i-th element of the column vector U (similar definition of v

(t)
i ) , t is

the index of the iteration steps. The solutions (global minimums) to Eq. (4.35) can

be obtained through weighted median according to Result 4.1.

When the subspace dimension d is more than one, U and V contain more than one
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//Initialization
Set U = 0 and V = 0
//Cycle through d columns of U for N times
For n = 1, · · · , N, c = 1, · · · , d:

//Optimize u·c, the c-th column of U with other columns fixed

If n = 1, initialize v
(0)
·c randomly

Set W = W −∑
k 6=c uikvkj

For t = 1, · · · , convergence

For i = 1 · · ·P, u
(t)
i = arg min

u
‖mi· − uv(t−1)>

·c ‖1

For j = 1 · · ·K, v
(t)
j = arg min

v
‖m·j − vu(t)

·c ‖1

Figure 4.8: Algorithm of using iterative weighted median to minimize the L1 norm
cost function, and therefore to compute the subspace.

column. Our algorithm cycles through the d columns of U and V, optimizing each

column while fixing the others. The problem is therefore broken into d subproblems

of Eq. (4.35). The overall algorithm is shown in Fig 4.8.

Alternative minimization by convex quadratic programming

We have presented the approach that cycle through the principal vectors (subspace

bases) by optimizing over one principal vector while fixing the others. Such approach

is simple to implemented by weighted median. In this subsection, we convert the

subspace computation problem to alternative convex optimization problem, which

updates all principal vectors instead of only one in each iteration. Potentially alter-

native convex optimization might be faster and achieve better local minimum than

the alternative weighted median approach presented above.

The alternative optimization can be written as:

U(t) = arg min
U

‖W −UV(t−1)>‖1 (4.36a)

V(t) = arg min
V

‖W −U(t)V>‖1 (4.36b)

In the following we show how to solve Eq. (4.36b). Eq. (4.36a) can be solved similarly.
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The cost function of Eq. (4.36b) can be written as:

E(V) = ‖W −U(t)V>‖1

=
K∑

j=1

‖m·j −U(t)v·j‖1

where m·j is the j-th column of W , v·j is the j-th column of V>. The problem of

Eq. (4.36b) is therefore decomposed into K sub-problems, each one optimizing v·j.

Each sub-problem has the following general formulation:

x = arg min
x

‖Ax− b‖1 (4.37)

This problem can be reduced to a simple convex quadratic programming problem

whose global minimum can be computed efficiently [65]:

min
x,z,t

1

2
‖z‖2

2 + γe>t

s.t.− t ≤ Ax− b− z ≤ t (4.38)

where e is a column vector of ones. γ is a small positive constant.

In summary, the L1 norm formulation of subspace computation minU,V ‖W −
UV>‖1 can be decomposed into two alternative minimization problem. Each al-

ternating problem is further divided into P + K independent sub-problems. Each

sub-problem can be in turn reduced to a simple convex quadratic problem whose

global minimum can be computed efficiently. Notice that while the global minimum

of each sub-problem can be derived by convex quadratic programming, the original

problem minU,V ‖W −UV>‖1 is in general non-convex.
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Chapter 5

Implementation and Experimental

Results

5.1 Introduction

In this chapter, we present the detailed algorithm of layer extraction using subspace.

We formulate the layer extraction as clustering in the subspace, where layers (clusters)

become denser and easier to classify. To assure a low dimensional subspace and to

extract small layers that do not have enough local measurements to form clusters in

the feature space, we propose a semi-progressive layer extraction algorithm, where

large layers are simultaneously extracted in the subspace. The large layers then

provides guidelines for the extraction of small layers. We present experimental results

of layer extraction on a variety of image sequences to demonstrate the effectiveness

of our layer extraction algorithm.

5.2 Layer extraction algorithm

We are given an image sequence consisting of F + 1 images. Denote I0 the reference

image that are being segmented, and { If | f = 1, 2, ..., F} the other F frames. The

core task of layer extraction algorithm is to segment the reference image I0 into some

number of 2D sub-images in such a way that pixels within each sub-image share

common 2D parametric motions. The segmentation result of the reference image I0

can then be used to initialize the layer segmentation of other images in the same

75
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sequence.

Fig. 5.1 shows the overall procedure of the layer extraction algorithm. Its major

steps are:

1. Divide the reference image into local regions, such as the homogeneous color

regions or pre-defined n × n blocks. Estimate the motion of each local region

between the reference frame and any other frame in the image sequence. Re-

shape the motion parameters of each local region into a column vector, and stack

all of such column vectors into a matrix, which is the measurement matrix.

2. Robustly compute the low dimensional subspace by factorizing the measurement

matrix. Outliers and small layers are excluded in this step.

3. Project the local measurements onto the subspace and cluster them the subspace

into initial layers, which are large layers;

4. Progressively extract the previously excluded small layers;

5. Refine final layers using layer competition.

In the following we present each major step in more details.

5.2.1 Measurement matrix construction

We divide the reference image (the image being segmented) into K small n× n over-

lapped blocks, where adjacent blocks are overlapped with each other by half of the

block size 1. The first step in our layer extraction algorithm is 2D image motion esti-

mation for each local block. We use hierarchical motion estimation algorithm [10] to

estimate an affine motion mf between the reference frame I0 (the middle frame of the

input images) and any other frame {If | f = 1, 2, ..., F}. We make use of the temporal

coherence by using mf as initialization when estimating mf+1. The reference affine

motion is computed using the trimmed mean of all local measurements. According to

Result 2.1, such trimmed mean corresponds to some (virtual) world plane. The local

measurement of each block is then set to the relative affine transformation:

∆mi = mi −mf (5.1)

1Overlapped blocks can effectively deal with occlusions or other noises.
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Figure 5.1: The procedure of layer extraction algorithm.
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Notice that outliers may appears in the local measurements due to various reasons

such as motion discontinuity, lighting change, non-rigid motion violating the assumed

model, etc. Such outliers will be detected in the step of robust subspace computation.

For each block, its total 6F motion parameters are reshaped into a 6F -dimensional

column vector. The total K vectors are stacked together to form the measurement

matrix W6F×K . We scale the different components in the relative affine transforma-

tion ∆mf such that a unit distance along any component in the parameter space

corresponds to approximately a unit displace at the image boundaries [103]. Such

scaling makes the parameter space approximately isotropic. We use the image width

w as the scale factor. Specifically, the matrix W6F×K is left-multiplied by the follow-

ing scale matrix S:

S6F×6F =




s6×6

. . .

s6×6




where s6×6 = diag(w, w, 1, w, w, 1). Such linear transformation does not change the

rank of W, or the dimension of the subspace. In practice, we found that S is not

a sensitive parameter. The final results do not change for a wide range of the scale

amount w in matrix S.

Frames nearer to the reference frame usually have better motion estimation.

Therefore, we add a time-dependent decay parameter α(f) to weight the motions

according to their frame distance to the reference frame: m̃f = α(f)mf . Again, such

weighting is equivalent to left multiplying W a non-singular diagonal matrix, a basic

matrix transformation, and therefore does not change the rank of W.

A local EM-like algorithm to improve local measurements

The affine motion directly estimated from a small block may over-fits the data inside

that block, and could differs greatly from the global optimal motion, i.e., the corre-

sponding layer model. Simply increasing the block size reduces over-fitting effect, but

at the same time increases the chance that such block contains multiple motions, and

therefore no longer corresponds to a planar patch in the scene.

To deal with the above problem, we design a local process to gradually expanding

each small block into a larger k-connected component (KCC). Each KCC should cover

the original starting block, while at the same time the residuals inside it should be less
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than some small pre-defined value ε. Being k-connected discards the thinly connected

pixels, which are usually textureless and are from other layers other than the layer

containing the starting block. The shape of a KCC could be irregular. Given a n×n

block r in the reference frame, its KCC is derived by the following local process:

• Step 1 (motion estimation): Compute the homography of current KCC w.r.t.

every frame in the sequence, and compute its motion compensated residuals

using temporal selection [54].

• Step 2 (expanding/shrinking): Remove pixels with residuals larger than ε from

current KCC. For each pixel p on the boundary of current KCC, a n×n (n = 5

in our experiments) test window w is centered at p. w is added to (removed

from) KCC if the majority of the pixels inside w have residuals less (larger)

than ε. In our experiments, Step 2 is repeat four times in one iteration to save

computation time.

• Step 3 (evaluation): Enforce the k-connected requirement. If the resulted KCC

becomes stable (the change of area or motion parameters is small enough) or the

maximum number of iterations has been reached, then the block r is declared

as an inlier. If the resulted KCC does not cover the original block r, then r is

marked as an outlier. Otherwise, goto Step 1.

The parameter ε specifies the noise level to be tolerated. It depends on the

geometry (the planarity) and the texture of the underlying layer, and is set to a

conservative small value (15 in our experiments, with the pixel intensity range of

[0, 255]). The above procedure is similar to EM algorithm, but the assignment of

pixels (expanding/shrinking) happens only along the current boundaries of each KCC.

Fig.(5.2) shows an example of the above local process, given a ten-frame sequence.

The small rectangle in Fig.(5.2a) shows the initial block r. Fig.(5.2b) shows the resid-

uals 2 after compensating the motion estimated based on pixels inside r. Although

pixels inside r are well compensated, those pixels outside r but inside the same layer

of r (flower bed) are not well compensated. Fig.(5.2c) shows the k-connected compo-

nent after five iterations of the above process. Fig.(5.2d) is the final converged result.

We can see that the pixels in the same layer are much better compensated in (c) and

(d) than that in (b), which indicates a better global motion estimation result under

2The residuals are scaled up for visualization.
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the tolerable noise level ε. In our experiments, we find that three to five iterations are

enough to obtain stabilized motion parameters. For our purpose, we do not require

the local process to converge. Three iterations are enough to produce the desired

local measurements. In Fig.(5.2e), the initial region r contains two motions (the tree

and the flower garden). The resulted KCC does not cover r, therefore r is marked

as an outlier.

5.2.2 Robust subspace computation

The subspace is computed by factorizing the measurement matrix W:

W = UV> (5.2)

where the columns of U are the orthonormal bases of the linear subspace. Due to the

outliers in the local measurements, robust method is necessary here. Small layers are

also excluded as outliers by the kNND procedure at this stage. The dimension of the

subspace can be bound by choosing appropriate value of k according to Eq. (4.23).

Please see Chapter 4 for details on how the subspace is computed.

5.2.3 Subspace clustering for initial layer models

Once we compute the subspace, we project the local measurements onto the subspace

by:

V = W>U (5.3)

where the i-th column of V> is the projected result of the i-th local measurement

(the i-th column in measurement matrix W).

We now apply a simple clustering algorithm to cluster the inliers in the d-dimensional

subspace for the initial layers. The clustering task becomes much easier in the low

dimensional space with outliers that have been detected. There are many existing

clustering algorithm (see [50]) available. We use the simple mean-shift [18] based

clustering algorithm. Mean-shift algorithm has also been successfully applied to color

segmentation, motion estimation, and non-rigid object tracking [21, 22, 23, 20, 24].

We adopt this algorithm in our clustering step because: (1) it is non-parametric and

robust; and (2) it can automatically derive the number of clusters and the cluster
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Deriving the k-connected component (k=5): (a) initial region r given by
the white rectangle; (b) residuals after compensation based on the motion estimated
using the initial region r; (c) residuals and k-connected component after five iterations
of the local process; (d) converged residuals and k-connected component; (e) outlier
region (final KCC does not cover the original block); (f) detected outlier blocks in
local measurements using local EM procedure.
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centers. Refer to [21, 22] for a clear description and details on this algorithm. Here

we just point out how we set the window radius r, a parameter that determines the

resolution of clustering, therefore determines the number of layers.

r can be set according to the covariance matrix of W [21]. In all of our experiments

it is set adaptively by:

r = 0.2

√
λ2

d + λ2
d+1

2
(5.4)

where d is the dimension of the subspace, and λi are the eigenvalues of W. In other

words, r is set to cover the noise variance, while be less than the smallest of signal

variances. We have found by experiments that a wide range of r produces the desired

results, due to the use of subspace and multiple frames, which verifies the theoretical

analysis of Result 3.1 and 3.2. In general, the parameter r is much more intuitive to

set the the “coding length” in the MDL approach that used to determine the number

of layers.

5.2.4 Layer competition and refinement

Once we are given the initial layers and their model, we can refine the layers by

re-assigning pixels to layers and re-compute the layer model.

To utilize the spatial coherence existing in single image, we assign color regions,

instead of individual pixels, to layers. The assumption we use here is that each

homogeneous color region is a planar patch. Such assumption is generally valid for

images of natural scenes, and has been used in motion analysis and stereo [12, 105,

33, 88]. Very fine-grained color over-segmentation [21] is used here to assure that each

homogeneous color segment is contained inside only one layer.

We use layer competition to assign each color segment s in the reference frame

to the layer L that best describes the motion of the pixels inside s. To deal with

occlusions, temporal selection [54] is used here to determine the best layer model

for a color region. The idea of temporal selection is based on the assumption that a

pixel occluded in one temporal direction is usually not occluded in the other temporal

direction. We use only the non-occluded frames to determine the ownership of each

segment s. The following steps are used to assign segment s to one of the current

layers using temporal selection:
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• Compute the motion-compensated image residuals e(f, L) for s:

e(f, L) =
∑

(x,y)∈s

[I0(x, y)− I ′f,L(x, y)]2 (5.5)

where I0 is the reference image, and I ′f,L is the resulted image of warping Frame

f towards the reference image using the motion of layer L from the reference

frame to Frame f .

• Sort {e(f, L) | f = 1, ..., F} in non-decreasing order.

• Use temporal selection to compute the cost c(L) of assigning s to Layer L as

the sum of the first half of the sorted sequence {e′(i, L) | i = 1, ..., F}:

c(L) =

F/2∑
i=1

e(i, L)

where e′(1, L) ≤ ... ≤ e′(F, L).

• s is assigned to Layer L, where L = arg minL c(L).

we may still observe some spurious regions, largely due to noises in the images,

or the disparities between color segment boundaries and motion boundaries in some

places. Such spurious regions appear at different random positions in different frames,

and can be removed by using the fact that each layer corresponds to a rigid and

consistent plane in the scene, such that its shape in the image domain is coherent or

changes gradually across time [89].

5.3 Layer depth ordering from visibility reasoning

For any two layers that share common boundaries, we can determine their depth

ordering using visibility reasoning. Suppose we are given the layer mask of the ref-

erence image, the following steps are used to determine the depth ordering between

two layers La and Lb:

1. Warp La and Lb from the reference image to other frames in the given image

sequence, using the layer motions.
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2. If La and Lb overlaps in the warped mask at the f -th frame If , then accumulate

the color difference at the overlapped pixels:

ea =
∑

i

[If (i)− I ′a(i)]
2

eb =
∑

i

[If (i)− I ′b(i)]
2

where i is the index of overlapped pixels, I ′a and I ′b are the warped image of La

and Lb respectively.

3. The layer with less color difference has smaller depther. For example, if ea < eb

then Depth(La) < Depth(Lb).

We derive the depth ordering for all layer pairs as long as they share common

boundaries. The overall depth ordering among layers can be deduced from all of the

depth relationship of layer pairs.

Note that if two layers do not overlap with each other, then we can not use the

above simple visibility reasoning to determine their depth ordering relationship. In

many applications we do not need the depth ordering between two un-overlapped

layers. Or we can apply structure from motion (SFM) using layer representation to

recover the projective depth of the layers. Projective depth is enough for the purpose

of determining depth ordering.

5.4 Progressive small layer extraction

Small layers are harder to identify, since (1) they do not have enough data points to

form distinctive clusters, and (2) they often have unreliable motion estimations. Large

layers, on the other hand, are easier to extract since (1) they reside in a low dimen-

sional subspace, and (2) they contain enough local measurements to form distinctive

clusters in the subspace. Therefore, in the low dimensional subspace, the large layers

form very discriminative clusters that can be reliably identified. Instead of trying to

extract the difficult small layers at the very beginning, our semi-progressive algorithm

first simultaneously extracts the large layers in the low-dimensional subspace. The

excluded small layers, previously hard to identify, are then progressively extracted

against the initial large layers. The final layer description is derived in a competition
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Figure 5.3: The overall procedure of semi-progressive layer extraction algorithm. The
initial layers are first derived by subspace clustering, then the integrated squared
residual image (ISRI) is computed according to Eq. 5.6. The large connected compo-
nents in the ISRI are detected and initialized as new layers, which compete with the
initial layers for final layer support to produce the final layer map.
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frame work where all existing layers compete for over-segmented color regions.

Fig. 5.3 shows the overall procedure of semi-progressive layer extraction algorithm.

The overall procedure is very similar to background modelling [98] for foreground ob-

ject detection, except that we uses multiple layers to model the background. In our

approach, the large layers are first extracted using the algorithm presented in Sec-

tion 5.2. The models (motions and supports) of large layers are used to compensated

the images in the input video, which produce one residual image Rf for each frame

If . Denote r(p, f) the pixel p in Rf , then the integrated squared residual image s(p)

is defined as as the sum of squared residuals across F frames at every pixel p:

s(p) =
F∑

f=1

r2(p, f) (5.6)

We assume the residual r(p, f) is drawn from a common zero-mean Gaussian distri-

bution (i.i.d.) 3, therefore s(p) follows χ2
F distribution. Pixel p is marked as an outlier

if its s(p) is outside the 95 percentile confidence interval of the χ2
F distribution.

The small layers excluded by the kNND procedure will form connected components

of outliers due to their large values in the integrated residual image. The largest

connected component is initialized as a new layer, which then competes with the

existing layers for layer support. The new layer survives only if the resulted layer

segmentation increases the overall likelihood according to some application dependent

criteria, or model selection criteria such as MDL (see [8]). The progressive procedure

stops when a newly initialized layer can not survive the layer competition.

5.5 Experimental Results

We show the experimental results of applying our subspace approach on several real

video sequences of dynamic and static scenes.

5.5.1 flower garden sequence

We use flower garden sequence to illustrate the steps in layer extraction algorithm.

The input image sequence contains the five images. Fig. 5.4 shows the first, middle

3Variance is estimated using median: σ̂ = 1.4826 mediani |ri|.
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(a) first frame (b) middle frame

(c)last frame

Figure 5.4: flower garden sequence. The scene is static and the camera is translating
to the right approximately horizontally

and last frames. In this sequence, the scene is static and the camera is translating to

the right approximately horizontally.

Local measurements and measurement matrix

The middle frame is chosen as the reference image to be segmented into layers. We

divide this image into 48×48 (pixels) small blocks, with adjacent blocks overlap with

each other by 24 pixels. We estimate the affine transformation for each block.

For each block, there are four affine transformations, one for each frame in the

image sequence (except the reference image). These four affine transformations are

reshaped into a 24-dimensional column vector. We derive the measurement matrix

W by collecting all of such column vectors from all blocks.

Robust subspace computation

We use the kNND metric to detect the extreme outliers. For each column in the

measurement matrix W, we compute di(k), the distance to its k-th nearest neighbor
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in the 24-dimensional parameter space. According to Eq. (4.23), we choose k = 6 to

assure that the subspace dimension will be less than 4. It also specifies that we expect

the layer size in the initial layer map will contain at least 6 local blocks (overlapped).

Fig. 5.5(a) shows the 1D histogram of all di(k)’s. As we can see, there is one obvious

peak which consists of di(k)’s of inliers. We simply detect the first peak by using the

first valley following the first peak, or the 90 percentile, whichever is smaller. The red

vertical line shows the boundary (threshold) to determine the extreme outliers, i.e.,

blocks whose corresponding di(k) is on the right of the line are declared as extreme

outliers. Notice that in this step, we are conservative in the sense that we want to

remove as many as possible the extreme outliers.

Fig. 5.5(b) shows the corresponding extreme outliers in the image domain. The

sources of extreme outliers are:

• The blocks containing multiple motions are excluded, such as the one that

contain tree trunk and background (garden or house).

• Blocks with few texture suffers aperture problem and also result in unreliable

motion estimation [82]. The textureless blocks, mostly from the sky, are ex-

cluded as extreme outliers.

• The tree branch has several places that self occludes, and result in bad motion

estimation.

• Some remaining blocks in the tree branch has good motion estimation. But the

cluster in the parameter space is too small, and is excluded as small layers. This

can also be seen from Fig. 5.7(b), where in the bottom a small cluster consisting

five data items is marked as extreme outliers.

Once the extreme outliers are identify, we can safely apply the robust SVD al-

gorithm to compute the subspace and detect the structure outliers. Fig. 5.6 shows

the singular values of the robust SVD result. It clearly indicates that there is a 2D

subspace of the original 24 dimensional space! Fig. 5.7 shows the subspace projection

in the 2D signal subspace. As we can see, the inliers form three distinct clusters in

the signal subspace. We also plot the components of projecting the data points onto

the first two dimensions of the noise subspace (22 dimensional). The projection of

the inliers in the noise subspace roughly forms a Gaussian cloud.
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Figure 5.5: Detecting outliers using kNND. (a) Histogram of the 1D kNND; (b)
Extreme outliers in the image domain.
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(b) difference between adjacent singular values.

Figure 5.6: Singular values of SVD algorithm applied to the measurement matrix
after removing outliers.
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Figure 5.7: Projecting local measurements on to the 2D signal space. (b) shows the
zoom-in of the data points in the rectangle in (a). The blue data points are inliers.
The red × indicates the extreme outliers. The black + shows the detected structure
outliers. The red ¤ shows the cluster centers of the mean shift clustering algorithm.
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Subspace clustering for initial layers

We apply the mean shift algorithm to the inliers in the 2D signal subspace. The

window size r of the mean shift algorithm is determined according to Eq. (5.4).

Fig. 5.7 shows the clustering result, where the red ¤ indicates the cluster center.

Three clusters are detected. Fig. 5.9(a) shows the three clusters in the image domain

(the masks of the initial layers).

In experiments, we find a wide range of r produces same results. Specifically,

r ∈ [1.5, 10] results in same clusters when using subspace clustering. The reason of

having a wide range of r is because the use of subspace and multi-frames, which result

in very discriminative clusters.

For comparison, we show the clustering result (r = 5.0) without using subspace

(i.e., clustering in the original subspace) in Fig. 5.9(b), where 16 layers are resulted.

Many layers are over-segmented, while some blocks from different layers are clustered

together as one same layer.

Layer competition

Once we have the initial layers, we can recompute the layer motion, and re-assign

pixels to layers, under the frame work of layer competition. The motion computation

and pixel assignment can be iterated multiple times. Fig. 5.10(b) shows the result of

just one iteration of layer competition, where layers compete for homogeneous color

regions shown in Fig. 5.10(a). The color segmentation is very fine grained. As we can

see, even visually homogeneous regions (sky, tree) are still segmented into many small

regions. Therefore it is generally assured that a homogeneous color region belongs to

one single layer.

Progressive small layer extraction

Fig. 5.11(a) shows the integrated residual image of the tree layer. It indicates that

the tree branch has different motion from the tree trunk. The reason is due to

different depth. Such motion difference is accumulated across frames. If desirable,

the progressive small layer extraction algorithm can be applied here. Fig. 5.11(b)

shows the progressive layer extraction result. The tree layer is further divided into

two layers: the tree trunk layer and the tree branch layer.
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Fig. 5.12 shows more final results of layer segmentation of the flower garden se-

quence. The segmentation result is consistent across the whole sequence.

5.5.2 Mobile & calendar Sequence

This sequence contains eleven frames, where there are three moving objects and one

static background plane. The calendar is moving upward, the train is pushing the

ball, and the camera is zooming and tracking the train. Figure 5.13(a-c) show three

frames.

The local measurement is 48 × 48 pixels in size, where adjacent blocks are over-

lapped by half. The histogram of kNND metric dk(i) is shown in Figure 5.13(d), with

k = 10 set according to equation (4.23). Measurements from all large layers form

the first dominant peak in this one-dimensional histogram. Outliers and small layers

have large dk(i), and therefore most of them are far away from the first peak. The

vertical dash line show the boundary of the detected peak. The excluded outliers and

small layers are highlighted in Figure 5.13(e). As we can see, these are measurements

of patches containing either discontinuous motion or small layers (ball and train).

We detect a two-dimensional signal subspace of R60 based on equation (4.25) with

t = 95%. In this subspace, the inliers from two distinctive clusters that can be re-

liably identified by the mean shift algorithm, as shown by the blue “•” and “◦” in

Figure 5.13(f) 4. For illustration, we also project outliers onto this subspace, with ex-

treme outliers shown by red “×”, and structure outliers by black “+”. Figure 5.13(g)

shows the noise subspace, where blue “•” represents the noise components of data

from the two different clusters. Note that the dimension of the noise subspace is

usually very high, and we only plot the first two dimensions. We can see that the

noise components of inliers follow Gaussian distribution quite well.

Figure 5.13(h) shows the result of color over-segmentation. Figure 5.13(i) shows

the two initial layers by assigning each color segment to its best initial layer model.

Figure 5.13(j) shows the integrated squared-residual image, which is also used to

indicate the uncertainty of layer ownership in (i). The small layers (ball and train) are

clearly outliers in this residual image. They are progressively extracted by initializing

new layers from the largest connected components of the residual outliers, and then

4The red “¤” in (f), visible if zoomed-in or printed in color, indicates the cluster centers derived
by mean shift algorithm.
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compete with the existing layers for layer support. Two such small layers are detected.

Figure 5.13(k) shows the final layer map. Note that in Figure 5.13(k), the ball casts

a shadow to its right on the white part of the calendar, which results in the “tail” of

the ball layer. Figure 5.13(l) shows another final layer result on the last image in this

sequence. As we can see, four layers (each has rigid motion) are extracted, including

the background, calendar, train, and ball.

Fig. 5.14 shows more final results of layer segmentation of the mobile and calendar

sequence. The segmentation result is consistent across the whole sequence.

5.5.3 Walking person sequence (I)

In this sequence, a hand-held camera is tracking three people walking in a static

background. Figure 5.15(a-c) show three frames in this eleven-frame sequence. The

human motions are non-rigid or articulated, and their corresponding local measure-

ments are often unreliable. Figure 5.15(d) shows the excluded outliers and small

layers by the kNND procedure with k = 10. A two-dimensional subspace is derived

based on the remaining data. The ground and building walls are simultaneously ex-

tracted as large layers, as shown in Figure 5.15(f). The integrated squared residual

image is shown in Figure 5.15(g), where the three walking people clearly form connect

components with large values, based on which we progressively extract three layers

of the walking people. Figure 5.15(g) also indicates the layer ownership uncertainty

in (f). Figure 5.15(h) shows the final layer extraction result. Some parts of the hu-

man (e.g.,feet) with articulated motions not modelled by the major human body are

mistakenly assigned to the ground layer or the building wall layer. Still, it clearly

indicates five layers in the scene: the three walking people, the ground, and the build-

ing. Such results are useful for subsequent image analysis for scene understanding

(such as human detection).

Fig. 5.16 shows more final layer segmentation results of the walking-people se-

quence. The segmentation result is consistent across the whole sequence.

5.5.4 Walking person sequence (II)

In this sequence (Fig. 5.17), two persons are walking together on a road in campus.

The kNND procedure effectively detect and remove the extreme outliers, including
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small layers (two walking person), blocks containing motion boundaries, textureless

blocks, as shown in Fig. 5.17(c). Three initial layers are extracted by clustering

small blocks in the subspace as shown in Fig. 5.17(e). The initial layers after layer

competition is shown in Fig. 5.17(f). The walking persons are assigned to tree layer,

which has big residual values in the integrated residual image shown in Fig. 5.17(g).

The progressive layer extraction algorithm identifies these large components, and

detect them as new layers, as shown in the final layer segmentation in Fig. 5.17(h).

Fig. 5.18 shows more results of this sequence.

5.6 Discussion

5.6.1 Planar approximation

Layer representation assumes that the 3D scene can be approximated by some number

of planes. In real world, perfect planes do not exist in general. In this section we

study when a portion of the scene can be approximated by a plane.

The factors we need to consider are:

1. the noises in 2D local measurements

2. the position of the cameras, including the distance from the camera to the scene,

and the distance between cameras

3. the 3D parallax of the scene

4. the size of the window (n× n block) used in local measurement

5. the size of the planes in the scene.

For example, consider the scene shown in Fig 5.19. There are two parallel planes

in the scene taken by two cameras. The 2D parallax is measured by the difference

between two planes ∆d (i.e., 3D parallax), and the translational distance between the

two cameras t. When the parallax is not measurable in the images, then the scene

can be well approximated by one plane. By measurable we mean the two clusters

corresponding to the two planes in the parameter space are distinctive.



96 CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

To simplify the analysis, let us assume that the internal camera matrix is diag(1, 1, 1).

The homography induced by a plane π = (v>, 1)> is:

H = R− tv>

The difference between these two homographies induced by two planes is:

∆H = t(v1 − v2)
>

The distance between these two homographies in the parameter space is:

e = ‖St(v1 − v2)
>‖2

where S = diag(s, s, 1) is the scaling matrix with s a constant, and ‖ · ‖2 is the

Frobenius norm (L2 norm). As we can see, e is determined by the 2D parallax, which

in turn is determined by the 3D scene parallax ∆v> = (v1−v2)
> and the translational

distance between cameras t .

Now assume the noises in the local measurements can be modelled by Gaussian

distribution with standard deviation σ. The cluster (layer) discriminability is then:

q =
e

σ
=
‖St(v1 − v2)

>‖2

σ
(5.7)

In the example shown in Fig. 5.19, the cluster discrininability is:

q =
1

σ

t

d

[
1

1− ∆d
d

− 1

]
(5.8)

As we can see from Eq. (5.8), there are several coupled factors that determine whether

the two layers is separable in the image domain: the measurement noise σ, the distance

between two cameras t, the 3D parallax ∆d, and the distance between the scene and

the camera. Fig. 5.20 shows the effect of changing the above parameters. As we can

see, in case (a) it is easy to separate the two layers shown in Fig. 5.19. When the

cameras are too far away from the scene, or the measurement noise is too big, the

two planes will be mixed together in the parameter space and will be extracted out

as one layer in the image domain. Similar effects have been seen in the experimental

results of the flower garden sequence (see Fig. 5.4) and the walking person sequence

(see Fig. 5.15), where the planes in the background are far away from the camera
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(i.e., large value of d in (5.8)), and can not be separated into different layers due to

measurement noise.

We also need to take into account the size of the planes. If the 3D planes are very

small (in the image domain, much smaller than the window size used to get the 2D

local measurements), then they will not be able to be separated into different planes.

The reason is that in the step of local measurement, one local block (region) in the

image will contain several planes in the scene, and the difference among planes in the

scene is not measurable. Fig. 5.21 shows such effect.

5.6.2 Evaluation

We have demonstrated the effectiveness of our layer extraction approach using real

data in a qualitative way. We also use some standard video sequences (e.g., flower

garden sequence and mobile & calendar sequence) to compare our approach against

other approaches. Our approach achieve much better results in terms of the quality

of layer boundaries, as well as the extraction of small layers that tends to be missed

in other approaches.

In general, how should one evaluate the quality of the result? Some quantitative

metric is desirable for comparing layered representations obtained by our approach

against other methods. Ideally, a quantitative measure would allow us to close the

loop of layer extraction. In other words, we could show the sensitivity of the result

to some of the parameters as the number of layers, the number of frames used, the

dynamic range of the imagery, sensor noise, etc. One possible quantitative measure

is the difference between the original video frames and the synthesized video frames

using the estimated layer model. This is part of our future work.
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Figure 5.8: Projecting local measurements on to the noise subspace. (b) shows the
zoom-in of the data points in the rectangle in (a). For the purpose of illustration, we
only plot the components of the first two dimensions in the subspace. The blue data
points are inliers. The red × indicates the extreme outliers. The black + shows the
detected structure outliers.
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(a) (b)

Figure 5.9: Initial layer segmentation from clustering. (a) initial layers from clustering
blocks in the subspace, where black pixels are those excluded as outliers; (b) initial
layers from clustering blocks in the original space.

(a) edges of color segments (b) result of layer competition

Figure 5.10: Layer segmentation after layer competition. (a) edge map of over color
segmentation; (b) result of initial layers competing for color segments.
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(a) (b)

Figure 5.11: Progressive layer extraction. (a) Integrated residual image of the tree
layer; (b) final layer segmentation.



5.6. DISCUSSION 101

Figure 5.12: Final layer segmentation of flower garden sequence.
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(a) input: first frame (b) middle frame (c) last frame
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Figure 5.13: Mobile sequence. (f)&(g): blue “•” and “◦” are inliers, red “×” are
extreme outliers, black “+” are structure outliers.
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Figure 5.14: Final layer segmentation of mobile and calendar sequence.
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(a) first frame (b) middle frame

(c) last frame (d) excluded outliers by kNND

(e) color over-segmentation (f) initial layers

(g) integrated squared residuals (h) five layers extracted

Figure 5.15: Walking-people sequence. Five layers are extracted, including three
walking people, ground, and building walls.
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Figure 5.16: Final layer segmentation of walking people sequence (I).
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(a) first frame (b) middle frame

(c) excluded outliers by kNND (d) color over-segmentation

(e) initial layers by clustering local blocks in the subspace (f) initial layers after layer competition

(g) integrated residual of the tree layer (h) final four layers

Figure 5.17: Walking-people sequence II. Four layers are extracted, including two
walking people, ground, and buildings.
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Figure 5.18: Final layer segmentation of walking people sequence (II).
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Figure 5.19: A simple scene contains two planes.
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Figure 5.20: Analysis of layer discriminability. (a) the original data distribution in
the parameter space; (b) effect of increasing distance d; (c) effect of increasing noise
σ.
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Figure 5.21: The effect of small 3D planes. One local region (shown in bold line
segment in the image plane) contains many small planar patches in the scene. The
estimated 2D motion of such local region is the result of averaging multiple planar
patches. As a result, even though the 3D parallax among these planar patches is
large, they are not measurable in the image domain and are likely grouped together
as one layer.



110 CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS



Chapter 6

Applications

Layer representation has been successfully used in many areas in computer vision, in-

cluding motion analysis [102, 51, 43], 3D scene analysis [9], video compression [62], etc.

In this chapter we exploit the potential application of our layer extraction approach

to object detection and recognition in image understanding, video compression, and

super-resolution.

6.1 Breaking the chicken-egg cycle in image un-

derstanding

Traditional analysis approach to image understanding faces a chicken-egg cycle. Im-

age analysis is usually formulated as a bottom-up process, where low level features

(edge, texture, motion, etc) are extracted and aggregated to higher level understand-

ing [66]. However, it is in general difficult to reliably extract and estimate low level

features for such bottom-up analysis. On the other hand, if some initial information

or understanding about the image is available, then the whole bottom-up process

becomes much easier. For example, the boundaries between meaningful objects, if

available, can greatly simplify the video analysis tasks including shape, motion, or

texture analysis. The subsequent higher level analysis for understanding therefore be-

comes easier. Unfortunately, the boundaries (segmentation) are usually not available

at the very beginning.

In the following, we will present how layer segmentation can help break such

111
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analysis-understanding cycle, using the following example sequences: the walking

person sequence, traffic sign sequence, desktop sequence, and Humanoid robot se-

quence.

6.1.1 Walking person sequence

As an example, given one single image shown in Fig. 6.1(a), humans can easily fig-

ure out that the scene consists of a ”horizontal ground” plane in the front, one or

two ”vertical building-wall” planes in the back, and three ”people”. Once such un-

derstanding is obtained, further analysis on the shape and texture will give more

information, such as that the three persons are walking instead of standing still, etc.

For machines, the prior knowledge at the very beginning is generally not available,

and therefore the above “easy” tasks for humans are currently tough image analysis

tasks for machines.

Given two or more frames of the same scene in Fig. 6.1(a), humans do not seem

to gain much more information because the content is already understood. However,

the additional frames provide critical temporal information that machines can utilize

to acquire some initial but useful information about the scene. One such informa-

tion is the layer segmentation. Fig. 6.1(b) is the layer segmentation result using our

subspace approach. Such initial segmentation breaks the vicious cycle of understand-

ing and analysis. It facilitates the subsequent video analysis task for understanding.

For example, by analyzing the shape and texture of the three foreground blobs, the

machine can eventually understand that they are humans.

6.1.2 Traffic sign sequence

Detecting traffic signs is important for vehicle navigation. Given five frames of a

scene shown in Fig 6.2(a), our algorithm extracts four layers as shown in Fig 6.2(b).

Further analysis on the foreground layer, such as video text detection, will lead to the

understanding that it is a stop-sign. Other layers in this example are two buildings

and the ground, which are also useful for vehicle navigation.
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(a) (b)

Figure 6.1: Layer segmentation of a sample frame in a short video sequence where
there persons are walking on a road in front of a building. (a): One frame in the
walking-people sequence. (b) Layer segmentation.

Figure 6.2: Layer extraction result on the traffic sign sequence. (a) The middle frame
of the five-frame sequence; (b) Layer extraction result.
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6.1.3 Desktop sequence

In some applications we want to detect and recognize the characters in video scene.

Characters in the scene can be distorted in different ways in the image, depending

on the camera view point. Such distortion makes character detection and recognition

even more difficult. Being able to bring the characters in the image to the frontal view

will greatly simplify the subsequent task of detecting and recognizing the characters

in the scene. Fig. 6.3 shows an example. The input video contains five frames of a

desktop scene. The layer extraction algorithm extracts two layers, one for the desktop

and one for the wall. We assume a rough calibration matrix (intrinsic) of diag(f, f, 1)

with f the focus length. Given the layers and their homographies, we can rectify the

layer images to the frontal view. Since characters are usually written on the planes,

they are also brought to the frontal view, where they are much easier to be detected

and recognized.

6.1.4 Humanoid image sequence: ground detection

Detecting obstacles on the ground is useful for robot navigation. Fig. 6.4(a) shows

one of the images taken by a Honda humanoid robot. Given five frames, the layer

extraction result is shown in Fig. 6.4(b). Again, further analysis on the layers will

lead to the detection of the ground, and the two obstacles (boxes) on the ground.

Once the ground plane is available, we can estimate robot’s ego-motion with respect

to the ground, which is useful in robot control.

6.2 Video compression

Layer representation extends the mosaic representation to compress videos that con-

tain multiple moving objects or parallax information due to the translational move-

ment of the cameras. Once the layer segmentation, we can construct a mosaic for

the corresponding layer across frames in the given video sequence. Such layer mosaic

removes the temporal redundant information, just as the ordinary mosaic does, and

can therefore significantly compress the video.

We show the preliminary results of applying layer representation to compress two

short video sequences. Each input video segment is compactly represented by layer
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(a) Input images (b) Layer segmentation

(c) Frontal view of layer 1 (d) Frontal view of layer 2

Figure 6.3: Bringing the layers to the frontal view to facilitate the task of detecting
and recognizing the characters in the scene.

Figure 6.4: Layer extraction results on the humanoid image sequence. (a) The middle
frame of the five-frame humanoid image sequence; (b) Layer extraction result. Note
the objects on the ground.
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mosaics 1. Fig.(6.5a & b) shows the four layer mosaics of the flower garden sequence

(30 frames). We are able to compress the original video sequence from about 7MB to

40KB. Fig.(6.5c) shows the recovered frame based on the layer representation, whose

original frame is shown in Fig.(6.5d). The remaining images in Fig.(6.5) show the

results for mobile & calendar sequence. We are able to compress it from about 9MB

(30 frames) to about 45KB. Note that higher compression ratio can be achieved with

longer sequence.

6.3 Super-resolution

Video super-resolution, such as the reconstruction-based algorithm [46], requires ac-

curate optical flow estimation that is in general hard to compute. But once we have

the layer segmentation, it is much easier to compute the accurate optical flows. The

reason is that the smoothness constraint can be safely applied inside each layer, but

not across the boundaries among layers.

To show the potential of layer representation in super-resolution application, we

simply fuse together the “stop-sign” layer extracted from five frames in the traffic-sign

sequence shown in Fig.6.2. The fusion contains the following two simple steps:

• Warp the “stop-sign” layer from each frame to the reference frame.

• Blend the overlapped pixels using median operator.

Fig. 6.6 shows the results. Such a simple fusion algorithm itself has already en-

hanced the resolution. It is doing better than the bi-cubic interpolation. This result

indicates that the layer motion model has provided a good optical flow estimation.

We anticipate better result if the reconstruction-based algorithm, instead of the above

simple fusion process, is applied.

1Sprite VOP in MPEG-4
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(a) Layer mosaic 1 & 2 (b)Layer mosaic 3 & 4

(c) rended frame (d) original frame

(e) Layer mosaic 1, 2, and 3 (f)Layer mosaic 4

(g) rended frame (h) original frame

Figure 6.5: Layer mosaics and synthesized frame. (a) & (b) layer mosaics of the
flower garden sequence; (c): a recovered frame based on the layer representation;
(d): original frame corresponding to (c); (e)–(h) same results on mobile & calendar
sequence.
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Figure 6.6: Supper-resolution result on the “stop-sign” layer (image shown by
zooming-in a factor of four). (a) The original image; (b) Fusion result; (c) Bi-cubic
interpolation.



Chapter 7

Explicit Subspace for Ego-motion

Estimation and Ground Layer

Segmentation

In previous chapters, the subspace is estimated from local measurements. In some

special platform, the subspace becomes explicit due to the setup of the camera and its

special motion. For example, in visual car navigation, the planar motion constraint

provides an explicit subspace. We use such explicit subspace constraint for robust

ego-motion estimation and ground layer segmentation.

This chapter presents a robust method to solve the two coupled problems: ground

layer detection and vehicle ego-motion estimation, which appear in visual navigation.

We virtually rotate the camera to the downward-looking pose in order to exploit the

fact that the vehicle motion is roughly constrained to be planar motion on the ground.

This camera geometry transformation, together with planar motion constraint, will:

1) eliminate the ambiguity between rotational and translational ego-motion param-

eters, and 2) improve the Hessian matrix condition in the direct motion estimation

process. The virtual downward-looking camera enables us to estimate the planar ego-

motions even for small image patches. Such local measurements are then combined

together, by a robust weighting scheme based on both ground plane geometry and mo-

tion compensated intensity residuals, for a global ego-motion estimation and ground

plane detection. We demonstrate the effectiveness of our method by experiments on

both synthetic and real data.
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7.1 Introduction

Ego-motion estimation and ground plane detection have many applications, such as

visual navigation, computer vision based driving assistance, and 3D environment map

reconstruction. In this paper we address the case of a single camera rigidly mounted on

a car moving in traffic scenes that includes cluttered background including other static

or moving objects on the ground plane. It is difficult to apply traditional Structure

from Motion algorithms here since they usually require estimating the depth for such

cluttered background. To overcome such difficulty, planes in the scene have been used

for ego-motion estimation [70, 48].

Ground plane is of special interest. Methods to obtain ground plane include 2D

dominant motion estimation [47] and layer extraction [51, 103, 8, 105, 104, 81, 96, 55,

59, 56]. These approaches can be classified into two categories: top-down approaches

and bottom-up approaches. Top-down approaches either assume that the ground

plane is a dominant plane, or assume that the scene can be approximated with a few

planar layers who simultaneously compete for layer support. In our traffic scenarios,

the ground plane is not necessary a dominant plane, and the cluttered background is

hard to be modelled with a small number of planar layers. It is therefore hard to apply

the top-down approaches here. In the bottom-up approaches, images are first divided

into small patches, and local measurement (such as 2D image transformation) for

each patch is then computed. These local measurements are then grouped into layers.

Due to the typical forward motion in vehicle moving, it is necessary to use projective

homography for local 2D measurements. Given small local support area and low

texture on the road (ground), the recovery of projective homography is not reliable

due to large number of unknown parameters, small field of view, and ambiguities

among its parameters.

In this chapter, we assume the camera is calibrated such that its focus length and

its relative pose with respect to the vehicle is known. In such a particular setup,

the ground plane normal is explicitly constrained too 1. We can therefore use ego-

motion, instead of projective homography, as the local measurement. Given an image

patch that is assumed to be on the ground, the estimated ego-motion is the local

measurement of such image patch. Using ego-motion as the local measurement is an

improvement over using projective homography, since it exploits the ground plane

1We do not need to know the distance from the camera to the ground due to the scale ambiguity
between the camera translation and scene depth.
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geometry. However, estimating ego-motion based on small image patch still suffers

from ambiguities among its parameters due to small field of view [3, 27].

To overcome the above difficulty, we exploit the fact that the vehicle motion can

be approximated by planar motion on the ground. Such planar motion is of great

practice importance and has been used in structure from motion and camera calibra-

tion [67, 6], and vehicle ego-motion estimation [85]. In this chapter, we use a virtual

downward-looking camera to exploit the planar motion constraint. Thinking of a

virtual downward-looking camera on planar motion has the following advantages: 1)

It eliminates the ambiguity between rotational and translational ego-motion param-

eters; 2) It improves the Hessian matrix condition in the direct motion estimation

process; 3) It induces image motions that are linear in terms of image coordinates,

and therefore can be reliably estimated.

The virtual camera is used to collect the local measurements, i.e., to estimate the

planar ego-motions based on small image patches. Such local measurements are then

combined together, by a robust weighting scheme for the global ego-motion estimation

and ground plane detection. Regularization is then applied for the recovery of the

remaining small non-planar motions.

7.2 Ego-motion estimation

In this section, we describe the direct method to estimate the vehicle ego-motion with

respect to a small image patch that is assumed to be on the ground.

7.2.1 Ego-motion model

Given a sequence of images I0, I1, ..., IN under a perspective camera with internal ma-

trix of diag(f, f, 1), we want to compute the camera ego-motion between the reference

image I0 and another image Ii, i = 1, 2, ..., N . The incremental image motion at an

image point p = (x, y)> in Ii is given by (see [42]):

vi(p) = BpΩi +
1

Z(p)
ApTi (7.1)
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where Ωi = (ωX , ωY , ωZ)>i and Ti = (TX , TY , TZ)>i are the camera rotational and

translational velocity, Z(p) is the 3D scene depth at Point p,

Bp =

[
−xy

f
(f + x2

f
) −y

−(f + y2

f
) xy

f
x

]
(7.2)

Ap =

[
f 0 −x

0 f −y

]
(7.3)

If we are given a 3D plane n>P + d = 0 with n = (n1, n2, n3)
> the plane normal

and P = (X, Y, Z)> the 3D coordinate of points on the plane, then we can rewrite

Eq.(7.1) as:

vi(p) = BpΩi +
n>F

d
ApTi (7.4)

where F = (−x
f
,− y

f
,−1)>.

Eq.(7.4) shows that there is a scale ambiguity between d and the camera transla-

tion Ti, which means that we can only recover the direction of the camera translation.

Without loss of generality, we set d = −1 in our experiments.

7.2.2 Direct estimation of ego-motion

As has been pointed out in [85], in typical traffic scenarios, direct method [42, 35, 10,

64] is more preferable than optical-flow based approach [2, 40, 91, 83] for ego-motion

estimation. The reason is that the road usually has weak texture or linear image

structure, while the cluttered background including moving objects often contains

many feature points.

Given calibrated camera and ground plane normal, we use direct method to esti-

mate the incremental ego-motion based on the brightness constancy assumption, by

minimizing the sum square difference (SSD) with respect to the incremental camera

motion parameters Θ = (Ωi,Ti):

E(Θ) =
∑

p

[Ii(p + vi(p, Θ))− I0(p)]2

≈
∑

p

[
g>p J>p Θ + ep

]2
(7.5)
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where ep = Ii(p) − I0(p) is the temporal difference at Pixel p, g>p = ∇Ii(p) is the

image gradient at Pixel p in image Ii, and Jp is the Jacobian at p:

Jp =
∂vi(p)

∂Θ
=

[
B>

p
1

Z(p)
A>

p

]
=

[
B>

p
n>F

d
A>

p

]
(7.6)

From Eq.(7.5), we can see that every pixel inside the image patch with non-

zero intensity derivative makes a contribution to the final solution of Θ. To achieve

robustness to outliers, the contribution of each pixel should be weighted according to

some robust criteria. For example, robust estimator uses the residual ep to determine

the weight wp = w(ep) = ρ̇(ep)

ep
, where ρ(·) is some robust M-estimator.

The weighted least square solution of Eq.(7.5) is given by:

Θ = L−1b (7.7)

where

L =
∑

p

wpJpgpg
>
p J>p (7.8)

is the Hessian,

b =
∑

p

(−wpepJpgp) (7.9)

is the accumulated residual.

Once we recover the incremental camera motion parameters Θ = (Ωi,Ti), we

perform an incremental update to the ego-motion Mi:

Mi ← Mi

[
R(Ωi) Ti

0 1

]
(7.10)

where R(Ωi) is the incremental rotation matrix given by the Rodriguez’s formula:

R(Ω) = I + [ñ]× sin θ + [ñ]2×(1− cos θ) (7.11)

where θ = ‖Ω‖, and

[ñ]× =
1

θ




0 −wz wy

wz 0 −wx

−wy wx 0


 . (7.12)
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The overall direct ego-motion computation is an iterative Gauss-Newton gradient

decent process. Each iteration consists of the following three steps:

1. Compute the incremental motion parameters (Eq.(7.7)).

2. Perform the incremental update to the ego-motion Mi (Eq.(7.10)).

3. Warp the image Ii towards the reference image I0, using the homography in-

duced by the ground plane (n, d) under current ego-motion: H = K(R(Ω) −
T
d n>)K−1, where K = diag(f, f, 1) is the camera internal matrix.

7.3 Camera models for planar ego-motion estima-

tion

There are several difficulties in estimating the full vehicle ego-motion based on a small

image patch:

• During a short period of time, the vehicle undergoes approximately planar mo-

tion. For a camera rigidly mounted on such vehicle 2, its ego-motion consists

of a rotation around an axis vertical to the ground plane, and two transla-

tions parallel to the ground plane. Therefore, full ego-motion model contains

more parameters than necessary. Estimating such diminishing parameters are

inherently ill-conditioned.

• There are inherent ambiguities between rotation and translation. Given a small

image patch, therefore small field of view (FOV), it is hard to differentiate

the wX-induced flow from the TY -induced flow, and the wY induced flow from

the TX-induced flow, respectively [3, 27]. These inherent ambiguities introduce

elongated valley in the SSD error function [4], resulting in slow convergence and

bad local minima.

It is therefore necessary to exploit the planar motion constraint. To do so, we

divide the six ego-motion parameters into two triples. The first triple consists of

the planar motion parameters, and the second triple consists of the diminishing non-

planar motion parameters that can be ignored at the stage of local measurement.

2The camera can have any orientation, but is otherwise fixed w.r.t. the vehicle body.
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In the following, we introduce two virtual cameras and analyze how the selection of

camera models affects the effectiveness in exploiting planar motion constraint.

Virtual cameras can be achieved by rectifying the images using the homography

induced by the ground plane and the relative pose between the original camera and

the virtual camera. Doing so requires camera calibration for the camera rotational

pose with respect to the vehicle. We assume the camera is fixed with respect to the

vehicle, which means that the calibration can be done before hand (see the Appendix

for a simple calibration method). It is important to keep the virtual cameras always

on the same plane so that the camera motions among the rectified images are still

planar motions.

7.3.1 Virtual forward-looking camera

In a typical setting, the camera is mounted on the vehicle looking at the ground at

some angle, as shown in Fig.(7.8). A simple way to make use of the planar motion

constraint is to virtually rotate the camera such that its optical axis (Z axis) points

forward horizontally and its XZ plane parallel to the ground plane, as has been done

in [85]. We will call it the forward-looking camera.

The planar ego-motion parameters are then reduced to Θf = (wY , TX , TZ). There

still exists ambiguity between wY and TX . In [85], the dominant camera motion set is

chosen to be (wX , wY , TZ). But in real experiments we have observed non-negligible

TX , especially when the vehicle is changing lanes or turning. Moreover, the camera

motion is not longer planar due to wX .

In the coordinate frame of the forward-looking camera, the normal of the ground

plane is (0, 1, 0), and the Jacobian w.r.t. Θf is:

Jp =
∂vi(p)

∂Θf

=

[
f + x2

f
y −xy

f
xy
f

0 −y2

f

]>
(7.13)

In addition to the ambiguity between wY and TX , the above Jacobian also indicates

the following problems:

• It is usually hard to estimate wY and TZ within a small FOV since they introduce

image motions that are second order polynomial terms of the image coordinate

(x, y).



126CHAPTER 7. EXPLICIT SUBSPACE FOR EGO-MOTION ESTIMATION AND GROUND LAYER SEGMENTATION

• The Hessian matrix is determined by both the image texture and the Jacobian.

When the texture is low,the second order terms in the Jacobian will contribute

to a badly-conditioned Hessian matrix.

Coordinate normalization and translation are useful technique to improve the

matrix condition number [38]. In our case, coordinate normalization does not change

the condition of the Hessian matrix, since every element in the Jacobian is multiplied

by a same constant 3. Translating the coordinates to center around (0, 0) will improve

the matrix condition. Doing so effectively translates the camera such that its optical

axis passes through the center of the input image patch. In the forward-looking

camera, it is impossible to do so given an image patch on the ground that is parallel

to the camera optical axis.

7.3.2 Virtual downward-looking camera

The above analysis on forward-looking camera geometry motivates us to rotate and

translate (parallel to the ground plane) the camera geometry such that we think of a

virtual camera whose optical axis is vertical to the ground plane and passing through

the center of input image patch. We call it the downward-looking camera.

In the coordinate frame of downward-looking camera, the normal of the ground

plane is (0, 0, 1). The dominant motion becomes Θd = (wZ , TX , TY ), and the Jacobian

w.r.t. Θd is:

Jp =
∂vi(p)

∂Θd

=

[
−y f 0

x 0 f

]>
(7.14)

The advantages of using the downward-looking camera are:

• The above Jacobian consists of only zero and first order polynomial terms,

which, together with the virtual camera translation so that its image coordinates

are center around (0, 0), will result in a well-conditioned Hessian matrix even

when the road has low texture.

• There is not inherent ambiguities among the parameters in Θd. It is easy to

differentiate the flow induce by wZ from the flow induced by (TX , TZ). Indeed,

3Notice that f also needs to be scaled according to the normalization to preserve the correctness
of Eq.(7.1).
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Θd can be reliably estimated since they induce image motions that are linear in

terms of image coordinate (x, y) (no perspective distortion).

Notice that equally treating the pixels in the rectified image is equivalent to give

larger weights to pixels (in the original un-rectified image) that correspond to points

further-away on the ground plane, due to the perspective distortion (front-shorten)

in the un-rectified image. We can adjust such scene-dependent weighting by non-

uniform image sampling. Also notice that translating the camera to look at the patch

center effectively enlarges the camera field of view (FOV). We avoid the degenerate

case of infinite rectified image area by using only the image pixels below the horizon

line (vanishing line of the ground plane), since pixels above the horizon line in the

image are obvious non-ground pixels. Given the camera pose relative to the vehicle,

it is straightforward to calculate the horizon line (see Appendix for details).

7.4 Ground plane detection and global ego-motion

estimation by virtual downward-looking cam-

era

This section describes a robust technique to combine locally estimated ego-motions

for ground plane detection and global ego-motion estimation. The general framework

of the algorithm is:

1. Bootstrap from local estimations: Divide the image into small n× n patches 4.

For each patch, estimate an ego-motion (Section 7.3.2) and compute its robust

weights based on both geometry and intensity residuals (Section 7.4.1).

2. Combine the local estimations according to their weights for global ego-motion

estimation, including the non-planar motions.

3. Recompute the robust weight based on current ego-motion.

Step 1 is an important bootstrap step to provide a good initialization for further

global estimation. Step 2 and 3 are the two iterative steps. In our experiments, we

have found one or two iterations are enough, due to the accurate local ego-motion

4We use overlap image patches.
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estimation by the downward-looking camera. The ground plane is detected based on

the final weights.

7.4.1 Geometry based robust weighting

Traditional robust weighting uses motion compensated pixel intensity residuals ep,

i.e., wp = w(ep) in Eq.(7.7). The residual ep depends on both geometry and texture.

Pixels not on the ground plane but with low texture will also have low residuals

when compensated by the motion corresponding to the ground plane, and will be

given large weights if weighting is purely based on intensity residuals. When the

ground layer has low texture, the inclusion of those false pixels will affect the final

ego-motion estimation. We should exclude such false pixels by exploiting the ground

plane geometry in the robust weighting.

For each patch in the image, we initialize its plane normal as the ground plane

normal, then refine its plane normal (Section 7.4.1) under the currently estimated

ego-motion. If the patch is in fact on the ground, the refined plane normal will be

close to the ground normal due to accurate initialization. Otherwise, we will end up

with a plane normal that is distinct from the plane normal of the ground 5.

Our final weighting scheme use both the intensity residuals, and the angle between

the re-estimated plane normal n and the ground normal ng:

wp = w(ep, θ) (7.15)

where ep is the intensity residual, θ = arccos
(

n>ng

‖n‖·‖ng‖

)
, and w(·, σ) is the robust

weighting with scale σ that is set to the robust standard deviation (see [8]) by σ =

1.4826 ·medianp|ep|.

Compute plane normal

This section describes the direct method to estimating the plane normal based on cur-

rent ego-motion. We re-use Eq.(7.7) and the corresponding algorithm in Section 7.2.2,

except that the unknowns are the plane normal n = (n1, n2, n3) instead of ego-motion

Θ. We therefore need to derive the new Jacobian Jp = ∂vi(p)
∂n

. Given the ego-motion

5We do not care if such non-ground plane normal is actually correct, as long as it is distinct from
the normal of the ground plane.
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and the ground plane equation, we prefer using the exact homography to represent

vi(p), instead of using the instantaneous representation in Eq.(7.4). The reason is the

following. In each step of incremental ego-motion estimation, the instantaneous repre-

sentation is a good approximation since the incremental ego-motion is very small. But

once the final ego-motion Θ is recovered, instantaneous representation is no longer a

good approximation, especially when multiple frames are used.

Suppose the initial plane normal is n, we want to compute the incremental plane

normal update m to n. The homography H induced by the updated plane (n +

m)P + d = 0 is:

H = K(R(Ω)− T

d
n>)K−1 −K

T

d
m>K−1

= R̃−K
T

d
m>K−1 (7.16)

where K = diag(f, f, 1) is the camera internal matrix.

Denote r>i the i-th row of R̃, and [x̃, ỹ] = [
r>1 p

r>3 p
,
r>2 p

r>3 p
]. The incremental image

motion at point p = (x, y, 1)> is:

vi(p) =

[
u

v

]
=




h>1 p

h>3 p
− x̃

h>2 p

h>3 p
− ỹ


 (7.17)

where h>i is the i-th row vector of H.

The Jacobian Jp with respect to m is: Jp = ∂vi(p)
∂m

=

diag(x, y, 1)

dr3
>p

[
x̃
f
TZ − TX

x̃
f
TZ − TX x̃TZ − fTX

ỹ
f
TZ − TY

ỹ
f
TZ − TY ỹTZ − fTY

]>

At each iteration, the plane normal is updated by:

n ← n + m

The new plane normal is then plugged into Eq.(7.16) to compute the new homography

for the next iteration.
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7.4.2 Recovering remaining non-planar motion parameters

After the planar ego-motions have been recovered, we can estimate other small non-

planar motions, which might exhibit due to vehicle bouncing or non-planar road

condition. Under the coordinate frame of the downward-looking camera, the non-

planar motion set is Θ2 = (wX , wY , TZ). The Jacobian Jp w.r.t. the non-planar

motion parameters Θ2 is:

Jp =
∂vi(p)

∂Θ2

=

[
−xy

f
f + x2

f
−xn>F

d

−(f + y2

f
) xy

f
−yn>F

d

]>

Estimating Θ2 is inherently ill-conditioned since it induces very small or diminished

image motions that are second order polynomial terms of image coordinates. Never-

theless, small or diminishing motions mean that it is safe to apply strong regulariza-

tion to improve the condition. The regularized cost function is: E(Θ2) =

∑
p

[
Ĩi(p + vi(p, Θ2))− I0(p)

]2

+ λ
∑
p

vi(p, Θ2)
2

where Ĩi is the image Ii warped by the homograpy induced by the ground plane under

current ego-motion Θ1. The second summation term is the regularization term, which

states that the image motion induced by parameter set Θ2 must be small. λ ≥ 0 is a

constant parameter. A larger λ enforces stronger regularization.

By setting ∂E(Θ2)
∂Θ2

= 0, the weighted least square solution is:

Θ2 =

[∑
p

wpJp(gpg
>
p + λI)J>p

]−1 ∑
p

(−wpepJpgp) (7.18)

Enforcing the regularization is equivalent to “virtually improve” the texture, as shown

by the diagonal matrix λI in Eq.(7.18), and will therefore improve the condition of

Hessian matrix.
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synthetic case (Fig.(7.1)) real case (Fig.(7.3))
condition num. ego-motion condition num. ego-motion

8-parameter 1.6312e+006 N/A 1.7618e+006 N/A

full ego-motion 3.0674e+003

[
0.2162

◦
-0.1360

◦
-1.5926

◦

-0.0301 0.0226 -0.1264

]
8.5083e+004

[
-0.7710

◦
-0.1182

◦
0.2130

◦

-0.2001 -0.2367 0.0636

]

forward-looking 2.1349e+002 [-0.4725◦, 0.0058, 0.0903] 4.5254e+003 [0.0108
◦, -0.0064, 0.0595]

downward-looking 8.4357e+000 [-0.9991◦, -0.0181, 0.1066] 5.5469e+001 [-0.0840
◦, -0.1222, 0.2497]

Table 7.1: Ego-motion estimation and condition of Hessian (larger condition num-
ber means worse condition). For synthetic case, the ground truth of ego-motion is:
(wY , TX , TZ) = (−1.0◦,−0.0175, 0.1), in the coordinate frame of forward-looking camera.
Translations are measured by the unit of image height. The motion parameters of
the 8-parameter model do not directly indicate the ego-motion parameters, and are
not shown here.

7.5 Experimental results

7.5.1 Local planar ego-motion estimation

This section presents the experimental results on estimating the planar ego-motion

based on small image patches, which is an important bootstrap step for further global

ego-motion estimation and ground plane detection. To deal with large motion, in the

experiments we use a multi-resolution Gaussian pyramid of the input images. In all

experiments, we only use the image pixels below the horizon line, since pixels above

the horizon line in the image are obvious non-ground pixels. We also compare the

results of our downward-looking model against the classical 8-parameter model and

full ego-motion model [10], and the recently proposed forward-looking model [85].

Synthetic case

To compare different motion models, we use a synthetic image sequence with ground

truth. Fig.(7.1) shows the two synthesized images, where the camera simulates a

moving vehicle on the ground plane by simultaneously moving forward and turning

left (around an axis at some distance to the vehicle and vertical to the ground). The

normal of the ground plane and the camera focus length are known.

The synthetic case in Table (7.1) quantitatively compares the condition number

of the Hessian matrix and the recovered ego-motion parameters using four different

motion models. The image patch used to compute the ego-motion is indicated by the
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Figure 7.1: Synthesized images where the ground plane has low textures. The rect-
angle shows one of the patch used to compute the camera ego-motion.

rectangle in Fig.(7.1a).

From Table (7.1), we can see that removing the diminishing parameters greatly

improves the condition of Hessian matrix, since diminishing parameters are inherently

ill-conditioned. As a result, the 8-parameter model has the worst condition since its

number of unknown parameters is far more than necessary. The downward-looking

camera improves the condition number by orders of magnitudes, and recovers the

most accurate ego-motion, which supports our observations in Section 7.3.2. The

forward-looking model performs better than the full ego-motion model. But it appears

that part of the left-turn has been confused by left-translation in the forward-looking

model.

Fig.(7.2) shows the motion-compensated residual images for qualitative compar-

ison. Given the global vehicle ego-motion with respective to the ground, we can

directly compute the 2D homography H of the ground plane between the given two

video frames (H = K(R − t
d
n>)K). We warp the second image towards the first

image using H . The residuals are defined as the difference between the original first

image and the warped result of the second image. The more accurate the estimated

ego-motion, the smaller the resulted residuals.

As we can see from Fig.(7.2), pixels inside the used rectangle are well-compensated

in all models, but only the downward-looking camera fully compensates all pixels in

the ground plane, which means that it actually recovers a better global motion model

based on a small image patch.
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(a): 8-parameter (b): full ego-motion

(c): forward-looking (d): downward-looking

Figure 7.2: Motion compensated residual images by motions from Table (7.1). The
residuals are scaled up by a factor of 4 for visibility.
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Figure 7.3: Real images with low textures on the ground plane, and moving cars/bus
in the background.

Real case

In this subsection, we use real images to compare the performance of ego-motion

estimation based on small image patches. Fig.(7.3) shows the images we use, where

the camera is put on a car that is simultaneously moving forward and turning left

(around an axis at some distance to the vehicle and vertical to the ground). The

rectangle shows the image patch we randomly select to compute the ego-motion. It is

quite a challenging task due to the very low texture of the road and the small image

patch.

The last two columns in Table (7.1) show the condition number of the Hessian

matrix and the recovered ego-motion. As we can see, the downward-looking camera

has the best condition number, and its recovered ego-motion correctly indicates that

the car is moving forward and turning left. The forward-looking camera model does

not recover the correct left-turn motion, which appears to be caused by the confusion

between wY and TX . The full ego-motion model has large non-planar motions, which

is obviously incorrect.

The motion compensated residual images in Fig.(7.4) qualitatively show the per-

formance. As we can see, all motion models well compensate the pixels inside the

rectangle that are used for estimation, but only the downward-looking camera com-

pensates all the pixels on the ground, as can be indicated by the yellow lane marks at

the bottom-left of the images. The darker pixels at the very bottom-left of the images

(right below the yellow lane marks) in Fig.(7.3) are part of the car dash-board, and

their corresponding residuals in the downward-looking camera model show correct
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(a): 8-parameter (b): full ego-motion

(c): forward-looking (d): downward-looking

Figure 7.4: Motion compensated residual images. The residuals are scaled up by a
factor of 4 for visibility. Notice the residuals of lane-marks at the bottom left, and
the residuals of car dash-board right below the lane-marks. The downward-looking
camera model compensates the lane marks best, and shows correct parallax on the
car dash-board.
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Figure 7.5: Traffic scene in city with cluttered background containing moving cars.
The road has weak or linear textures.

parallax. We also use the shape of the image boundaries to indicate the ego-motion.

As we can see, only the downward-looking camera has correct shape corresponding

to forward and left-turn motions.

7.5.2 Ground layer detection and global ego-motion estima-

tion

In this section, we show the results of ground layer detection and the global ego-

motion estimation. Fig.(7.3) and Fig.(7.5) show the two image sequences we used in

this experiment. The roads have either very weak texture, or linear image structure.

The backgrounds are cluttered and contain moving objects.

Fig.(7.6) and (7.7) shows the experimental results. The first row is the result on

Fig.(7.3), and the second row is the result on Fig.(7.5). Fig.(7.6b) shows the weights

(see Eq.(7.15)) indicating the ownership (ground layer or non-ground layer) of the

pixels. Outliers, such as moving cars (and their shadows), buildings, and trees on

the side, are clearly indicated by low weights. Fig.(7.6c) shows the detected ground

layer using a simple histogram-based threshold scheme. The lane marks on the road

are included in the ground layer although their colors are quite different from the

majority pixels of the road plane. The car dash-board at the bottom-left in the

first image sequence, and the trees and moving cars on the ground in both image

sequences, are excluded due to significantly lower weights. Notice that some of the

outliers, such as the trees at the right side of the road in the second sequence, have

very low texture and therefore low intensity residuals, but still be excluded due to the
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(a) (b)

(c) (d)

Figure 7.6: Ground layer detection and global ego-motion estimation. (a): reference
frame of the input images; (b): weights indicating the ownership of pixels (brighter
means larger weight); (c): detected ground layer using weights in (a); (d): motion
compensated residuals by the global ego-motion. The residuals are scaled up by a
factor of 4 for visibility.

fact that their geometries (plane normals) are significantly different from the ground

plane normal. Fig.(7.6d) shows the motion compensated residuals by the global ego-

motion estimated based on the weights in (b). As we can see, the pixels on the road

are well compensated, while pixels from other objects, such as the buildings, trees,

and the moving cars with their shadows, show correct parallax.

7.6 Conclusion

Vehicle ego-motion estimation and ground layer detection are challenging tasks due to

low texture on the road and the non-linear perspective distortion. By ways of virtual
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(a) (b)

(c) (d)

Figure 7.7: Ground layer detection and global ego-motion estimation. (a): reference
frame of the input images; (b): weights indicating the ownership of pixels (brighter
means larger weight); (c): detected ground layer using weights in (a); (d): motion
compensated residuals by the global ego-motion. The residuals are scaled up by a
factor of 4 for visibility.
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camera, we have made use of the constraint that the vehicle is undergoing planar mo-

tion on the ground. Enforcing such constraint is necessary to avoid the estimation of

diminishing parameters that are ill-conditioned. By using virtual downward-looking

camera, we further improve the condition of the Hessian matrix, and eliminate the

ambiguities among the unknown parameters, which are linear in terms of image co-

ordinates and can be reliably estimated. Together with a geometry-based robust

weighting scheme, we have shown promising results on vehicle ego-motion estimation

and ground layer detection.

We have assumed that the camera focus length is known. In practice, we only

require a rough initialization of the focus length, since the error in the focus length

only introduces systematic bias on the estimated ego-motion, but does not affect the

ground layer detection. We can therefore use the algorithm presented in this paper

to derive the ground plane. Then use the detected ground plane to calibrate the

camera [99, 60] to correct the bias in ego-motion.

Appendix: calibration of camera look-at point

Fig.(7.8) shows the coordinate frames of the vehicle (XW , YW , ZW ) and the camera

(XC , YC , ZC). We must know the camera look-at point 6w.r.t. the vehicle in order to

virtually rotate the camera desired pose. The look-at point is defined, in the frame

of (XW , YW , ZW ), as the intersection point of axis ZC and the plane ZW = 1. Since the

camera is fixed w.r.t. the vehicle, the look-at point is fixed too. To derive the look-at

point, we drive the car along a straight road with parallel lane marks, and take a

few images. If the optical axis ZC is identical to the axis ZW , the vanishing point

in each image, v = (xv, yv), of the parallel lane marks will be coincident with the

camera principal point c = (xc, yc)
7. Therefore the look-at point is

(
xv−xc

f
, yv−yc

f

)
,

where f is focus length. Each image gives an estimation of the look-at point. If using

multiple images, we use the mean of them. The horizon line is then defined as y =

yv. Automatic techniques have been developed by researchers to compute vanishing

points. In our experiments, the lane marks are semi-automatically identified.

6We assume XC is parallel to the ground plane. Violation of such assumption will only introduce a constant bias
in the rotation around the camera axis, which cancels out when computing the relative ego-motion among the views.

7Assumed to be at the image center.
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Figure 7.8: Coordinate frames.



Chapter 8

Conclusions and Future Work

8.1 Conclusion

A layer consists of one or more 2D regions in the image domain, inside which the pixels

share the same 2D motion model. Layer(ed) representation can be considered as the

first cut to the image/video analysis task. Layers are therefore useful mid-level video

representation for many applications in computer vision, including motion analysis,

object tracking, scene analysis, video coding, etc. In recent years, various approaches

have been proposed to extract layers from image sequences, including EM algorithm,

grouping (clustering), tensor voting, etc.

This thesis presented a novel subspace approach to layer extraction. It can nat-

urally utilize the spatial-temporal constraints existing in the video to improve the

reliability of layer extraction. Specifically, using statistical analysis we prove that 1)

layers are more discriminative in the subspace, and 2) increasing the frame number

in the input video increases the layer discriminability in the subspace, but not in the

original space.

Computing the subspace from the local measurements is a critical step. Such step

is usually performed via low rank matrix approximation, which in turn is achieved by

factorizing the measurement matrix. The L2-norm based matrix approximation leads

to the SVD algorithm, which is sensitive to outliers in local measurements. Based

on the fact that inliers form clusters and lie in the subspace, we present the kNND

metric to detect extreme outliers that are far away from clusters, and the robust

SVD algorithm to detect the structure outliers that violate the subspace constraint.

141
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We also discuss the use of L1-norm based metric for low rank matrix approximation,

which is intrinsically robust to outliers, and can be done via quadratic programming.

To deal with small layers that are harder to extract than the large layers, we

propose kNND and semi-progressive layer extraction algorithm. The idea behind is

that large (easier) layers should be extracted first and used to guide the extraction of

subsequent small (harder) layers.

We applied our approach to a variety of real image sequences, and achieve good

results of layer segmentation.

8.2 Future work

There are several lines of research that can be further conducted:

1. One important area is to exploit the applications of layer(ed) representation,

including navigation, layer-based structure from motion, camera self-calibration,

image-based modelling and rendering, video super-resolution.

2. The subspace computation (factorization of measurement matrix) can be for-

mulated as minimizing the following cost function:

E(U,V) = ‖S⊗ (W −UV)‖p

When the weighting matrix S has rank higher than 1, the cost function is

usually no longer convex in U and V . The local measurement for each patch

is the homographies between the reference frame against every other frame in

the video. For each patch, if one homography between the reference frame and

one single other frame is missed or has large error (outlier), we must discard

such patch even if the homographies related to all the other frames are good

measure. The reason is to guarantee the rank 1 condition of S , therefore to

guarantee a convex cost function.

If we want to use such patch, we will face the problem of optimizing a non-convex

function E(U,V). Iterative procedure such as alternating minimization over U

and V is usually required to obtain a good local minimum of E(U,V). The scale

space theory in computer vision can be applied here to obtain an approximated
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global minimum. The idea is to smooth the cost function E(U,V) through

smart formation of the weighting matrix S .

3. A closely related field is motion segmentation, where the local measurements

are the translation of feature points. Structure from motion using line segments

is also well studied in computer vision. Feature points, lines, and planar patches

(affine homographies) have their own pros and cons. A framework to unify these

different features to bring the pros together for layer extraction is desirable.

4. Although constraints from all frames in the given image sequence can be fused

together in the subspace approach to layer extraction, as far as we know, cur-

rently all of the layer extraction algorithms segment only one image at a time.

New framework that can simultaneously segment all frames in the input image

sequence is desirable, because existing (may be unknown) physical constraints

(such as the rigidity of the object in the scene) can be better utilized.

5. In the experiments we have used 2D affine motion model. Affine motion model

is generally used in practice. As we have presented in Chapter 2, the subspace

theory applies to projective motion model too. Our approaches can be used

as long as reasonable local measurements (the 2D projective motions) for local

patches are available. In the future, we will experiment with scenes with high

parallax where projective model may be more desirable at the very beginning.

In such case, for local measurements, we can still start from affine model. We

can then aggregate locally 2D affine motions into more global projective motions

in the loop of layer estimation. In other words, once the support of each 2D

region for local measurement is large enough, we can reliably estimative its 2D

projective motion.

6. In general, layer representation is well-suited for scenes that can be approx-

imated by some smooth surfaces. Some scenes may contain dense parallax

where part of the image may not be described using layers. In such case, we

would extract the possible layers, and then use the concept of plane + parallax

to describe the dense parallax. Layers will still be advantageous since existing

scene regularity can be exploited at the representation level.
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