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Abstract

In this paper we extend the higher-order critical pair criterion, as described in [9], to the LF framework
[10], a calculus with dependent. types. The notion of dependence relation is introduced, and used to restrict
rewriting to those cases where well-typedness is preserved.
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1. HISTORICAL BACKGROUND

In the study of Term Rewriting Systems (TRS), the two key properties that we are mostly interested with
are termination and confluence, which imply existence and uniqueness, respectively, of normal forms. In
presence of these conditions, the test for convertibility of two terms, undecidable in the general case, reduces
to a simple test for equality of their respective normal forms.

One of the central results in this study is certainly the Critical Pair Lemma. for first-order TRSes [6], which
provides a computational method to check for local confluence in a TRS, together with a way to extend any
TRS to an equivalent locally confluent one. This fact, in conjunction with Newman’s lemma [4], which says
that in presence of termination local confluence and confluence coincide, has led in the last decade to a series
of important breakthroughs in the field of automated equational reasoning,.

Until fairly recently, all attempts to lift the theory of TRSes to the higher-order case seemed to be
undermined by the presence of some well-known negative results in this setting, first among these the
undecidability of the general unification problem. The first important advance in order to overcome these
difficulties is due to D. Miller [8], who identified a subclass of higher-order terms, called higher-order patterns
for which the unification problem is decidable, and moreover uniqueness of most general unifiers hold. Making
use of this result, T. Nipkow [7, 9] was able to state and prove an analogous of the Critical Pair Lemma for
the case of higher-order, simply-typed TRSes. Nipkow’s Higher Order Term Rewriting Systems (HTRS) are
similar to Klop’s Combinatory Reduction Systems (CRS). For a detailed analysis of the relation between
these two, see [16]. In this paper we extend higher-order rewriting to a calculus with dependent types, as
presented in [3]. Our approach in the proof of most results, notably the Critical Pair Lemma, will follow
Nipkow’s one, though significant modifications are necessary due to the fact that here terms may appear
inside types.

2. PRELIMINARIES

Definition 2.1. The LF calculus is a three-level calculus for terms, type families, and kinds

Kinds K = type|llz: AK
Fomilies A = a|lz:AB|AM
Terms M = c|z|Xz:AM|MN

In the following, K denotes kinds, A, B families, M, N terms; a stands for constants at the level of type
families, ¢ for constants at the level of terms, z,y, = for variables.

We assume the usual notions of o, 3 and n-reduction. All these notions, although defined on terms,
extend naturally by congruence to type families and kinds. All objects will be considered equal modulo

a-conversion.

We denote by =57, =2 and =, the reflexive, reflexive-transitive, and reflexive-symmetric-transitive
closure, respectively, of 3y = {o, 3,n}; = is the smallest equivalence relation including =, =g, =,,.

By [N/z)M ([N/z]A, [N/z]K respectively) we intend, as usual, the replacement of all the free occurrences
of 2 by N inside M (A, K, respectively). As usual, o-conversion will be used, if necessary, to ensure the
that no free variable occurrence is captured inside the scope of a quantifier.

The notation FV(E) and BV(E) is used to denote the set. of free and bound variables, respectively, in E,
where E may be a term, a type family or a kind.

Definition 2.2. To define the class of well-typed kinds, type families, and terms we make use of signatures
and contexts:

Signotures L = |Tja: K |Z,c: 4
Conterts T := -|Iz:A

We will use I and A to range over contexts.
Well-formed terms of a given type, type families, and kinds are then formed accordingly to the judgements

TreM: AT Fe A K
Tty K Kind
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These in turn are defined in terms of the auxiliary judgements
F X Sig
Fo I Ctz

which specify how valid signatures and contexts are formed.
The rules for the calculus are listed bhelow:

E(e)=4 T(z)=A
I'kyeA Thea:d

IFeAitype DadbsM:B
TFeAz: AM IIn:A.B

ThsM:A A=B T'tgB:itype
F'—Eﬂf!B

s M:IIn:A.B THaN:A
P}‘g Af]\r:[.]\r/.’ll]B

E(a)=K
I'bsa: K

ThyA:lz:B.K TrpM:B
TrsAM:[M/z]K

T'FeAitype T'aAbsBitype
Dhgllz: A B:type

I'tsAitvpe DAl K Kind
Ikstype Kind Ihelle:A K Kind

Fel' Ctz ThsAitype
Fe- Ctx Fel')z:A Ctx

Pk A K=K' TheK' Kind
TregA:K!

k- Sig

Fel{ Kind FE Sig  FsAitype THE Sig
FX,a:K Sig FE,eA Sig

We will use M N to denote the repeated application M N, N, ... N,; similarly for type families. The
notation [NV /7] will stand for the repeated replacement [N, /z.,]...[Ni /2] rather than, as traditionally, for
the simultaneous one [N /24,..., N, /2,], which we will not need to use in this paper.

3. DEPENDENCY RELATIONS

Differently from the simply-typed lambda-calculus, in the LF calculus replacing a subterm with another
of the same type inside a term may affect the type of the overall expression. The reason for this lies in the

definition of the rule for application:

T M Ilz:A.B THeN:A
I"_E.Arf[ 17\7:[17\7/ .’I)]B
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If we replace N by another term I' s N’ : A we get an expression of a different (and not necessarily
equivalent) type:

TFsM:a:A.B TheN:A
I‘l"gﬂvf:\r':[.f\"’/ﬂ:]B
Worse than that, the resulting expression may not be well-typed at all. Suppose that the expression above
was in turn a subterm in the expression:

DM IIy:|N/2|B.C Tt M N N/2|B
I‘}_EAJ' (1’\/:[ A‘j:[(ﬂf N)/y]C
Since in general I' g M’ : Iy : [N'/2]B.C may not hold, the expression we obtain after the replacement
is ill-typed.
This problem is concretely illustrated by the following:

Ezample 1. Consider the following representation of a fragment of arithmetic:
nat : type

0: nat
s:nat = nat
+ :nat = (nat = nat)

where we used the notation 4 = B and A = K for the abstractions IIz : A.B and Ilz : A.K where
x ¢ FV(B) and 2 ¢ FV(K), respectively.

We want now to formalize the (first-order) predicate “n is even”, together with some inference rules that
allow us to decide if a number is even:

0 : type
proof: o = type

even :nat = o

even, : proof(even 0)

even,, : IIz : nat. proof(even ) = proof(even (s (s z)))

even, : IIz : nat. Ily : nat. proof(even z) = (proof(even y) = proof(even (4 z y)))
even,; : Iz : nat. Iy : nat. proof(even (+ z y)) = proof(even (+ (s z) (s y)))

In this signature, for example, the term
eveny 0 (+ 0 0) eveny (even, 00 even, even,)
is well typed, but rewriting (+ 0 0) — 0 : nat we get
event 00 eveng (eveny 0 0 even, eveny)
which is not.

In defining a notion of rewriting, we must therefore be careful to rule out all these pathological cases that
lead to ill-typed expressions. A natural way to do this is to make use of dependency relations.

A signature ¥ implicitly describes a hierarchy of type families: more complex families may depend on
terms belonging to simpler ones defined before. For example, formalizing a proof system, one may start by
defining basic type families, one for terms and the other for formulas; the family of proofs may depend on
formulas, and, if some predicate symbols are defined, through these on terms. Dependency relations formalize
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mathematically this idea by defining preorders over type constants, constructed by looking (recursively) at
the signature.

The idea of using dependency relations is not. completely new in LF. They have also been used in [13]
to prove well-foundedness of proofs by structural induction. In this paper, we will use them to obtain
information about the type of objects appearing inside types, and in turn we will use this information to
define a notion of rewriting which is sound with respect to type checking.

Definition 3.1. Define
head(ILz, : 4, ... Iz, : An.aH) =a,

let £y be a signature, a pair <o= (=<', <}’) of binary transitive relations over the set of type constants of
¥y is called a dependency relation if it satisfies the following conditions:

o a; < aif Bo(a) =Mz : A;.... Iz, : A,.type, head(A;) = a;, 1 <i <y
o a =< o if, for some b, a <3 b<} o' ora <} b<§ a';

o a =) bifa<] b
® "*0 S() Slg.

where =0 ¥ Sig is defined (recursively) by the judgements
F=o. Sig

FeK Kind F0E Sig  Fo® Aitype FX0E Sig
Fo¥ a:K Sig F=0X,c:d Sig

S(a)=K
I’I—g"a:K

T’ Adlz:B. K T3 M:B
THYA M:[M/2]K

Tl—;"A:t.ype I‘,m:AI—;"B:type
THoTlz: A. B:type

, wherehead(4)<("head(B) or head(A)=head(B)

TH'A: K=K' TR3VK' Kind
TH ALK

E(e)=A T(z)=A
I‘I—;"C:A I‘I—;“m:A

I‘I—;"A:t.ype I‘,m:Al—;"]W :B
I‘I—;" A A MIlzAB

, wherehead(4)=<}"head(B) or head(A)=head(B)

I‘I—g" MIlx:A.B I‘l—;" N:A
FI‘S“]\J A’T:[A’T/.‘I?]B

THOM:A A=A’ (T3 A'stype
THo M Al




IHa0 Atype T AFS'K Kind
T+0type Kind T+ A K Kind

FaT Ctz T3 Astype
k0. Cta Fa'T2:A Ctz

Notation. By abuse of notation, given two type families A, B, we will write 4 <* B and A <V B for
head(4) <4 head(B) and head(4) <™ head(B), respectively. We will use 4 <¥ B to say that 4 <M B or
head(A) = head(B).

The idea underlying the introduction of the relations <4 and <™ is to restrict, using the kS judgements,
the generation of valid terms and type families to those which preserve the dependencies generated by the
signature L; in particular, we want terms of type A to be allowed to appear inside B only if A <" B, and
similarly terms of type 4 will be subterms of terms of type B only if A < B.

When looking for a dependency relation, we will usually prefer coarser ones, so that the class of dependency-
preserving terms (i.e. terms well typed according to the -3 judgement) is as wide as possible. In practice,
given a derivation of - ¥ Sig, we will compute the minimum < such that = ¥ Sig holds.

Ezxample 1. In our previous example about even numbers, the following is easily seen to be a dependency
relation:
<= ({nat <" proof, 0 <" proof}, {nat <* o,nat <" proof,o <" proof})
The condition o <" proof comes from the type of proof; nat <M 0 is obtained from type checking on

even; finally nat <* proof since <2< . < 4, and all the others pair in < follow from <" D<A,

Erample 2. To demonstrate the gain in expressive power that the use of dependent types allows, we show
how the simply-typed lambda calculus can be formalized in this calculus. We will need two type families:
one, called type, for types, and the second, term, indexed by objects of the first, for terms.

type : type
arrow : type = (type = type)

term : type = type
lambda : Iz : type.Ily : type.((term z) = (term y)) => term(arrow 2 y))
app : IIz : typeIly : type.(term(arrow = y)) = ((term ) = (term y))
For this system, a dependency relation is simply
~= ({type <" term}, {type <" term})
Notation. In what follows, we will assume that a signature £ and a dependency relation < for £ have

been fixed. Moreover, wherever a context I' is mentioned, we will will tacitly assume it is well-typed and
dependency-preserving, i.e. -3 I' Cta.

We state below a few properties of the LF calculus that continue to hold when restricting ourselves to
dependency-preserving terms:
Proposition 3.2. IfI' +5 M : A and N is a subterm of M, then there is I' D T and type A’ such that
'S N AL
Proof. By induction on the derivation of I' 5 M : A. a
Notation. In the rest of this paper, we will write I'(M, N) and A(M, N) for the context I'' and type A’,
respectively, obtained by the Proposition above. Note that these are not unicue, but depend on the particular

derivation of I' F M : A considered. However, all these are easily seen to be equivalent when conversion
and variable renaming are taken into account.
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Proposition 3.3 (Weakening). Let ¥' C Z, IV CT, and b3 T Cta, then:

1L IfT'ES M : Athen T RS M @ Al
2 IfTVFS A K thenT RS A: K.
3. I3, K Kind then T+ K Kind.

Proof. By an easy induction on the derivations. (I}

Lemma 3.4 (Substitution). Let I' F5 N : C, then:

1 ifTy: C,AFS M : A then T, [Nfy]A B3 [N/y]M : [N/ylA;

2. ifTy: C,AFS A: K then T, [N/y]A £3 [N/y]A : [N/y|K:

3. ifT,y: C,AF3 K Kind then T',[N/y]A b3 [N/y]K Kind.
Proof. By (simultaneous) induction on the size of the derivations. For term and type abstractions, one has
to observe that head([N/y]A) = head(A). O

Lemma 3.5. We have:

1. THF M : A implies T F3 A : type;
2. T3 A: K implies T'+3 K Kind.

Proaof. Both are proved by induction on the derivation.

¢ Type constant:

S(a)=K
Fgak

By inversion on the derivation of F ¥ Sig and Weakening.

¢ Type application:

I3 Ad:B. K  THSM:B
TroA MM 2K

By inductive hypothesis we get I' 3 IIz : B.K Kind. By inversion I',z : B b5 K Kind, hence by
Substitution the result.

¢ Type abstraction:

TH5A:type DIa:AF3Bitype
I'FiIlz: A Bitype

A=Y B

Trivial.
o Kind conversion:
I‘}-§A:K’ K'=K P}—gK Kind

TFSAK
Trivial.
o Term constant:
T(e)=4
THSe:A

By inversion on the derivation of - £ Sig and Weakening.

e Term variable:

I(z)=A4
I'HgaA

By inversion on the derivation of F3 T’ C'tz and Weakening.



¢ Term application:
T3MIlz:B.A THIN:B
PF3M N:N/z]A
By inductive hypothesis we get I' -5 Iz : B.A : type. By inversion, I',z : B k3 A : type, hence by
Substitution the result.

e Term abstraction:
T3 Aitype T,z A-ZM:B
PE3Az:AM:II:AB

By inductive hypothesis we get I,z : A l—g B : type, and, applying the type abstraction rule, the
result. :

A oM
A=MB

¢ Type conversion:
MFSM:A" A'=A THS Aitype
I‘"gﬂd:fl

Trivial.

Corollary 3.6. The following holds:

L. fT 3 Oz : A.B : type then A <¥ B.
2. fTH3 M : Tz : A.B then 4 ¥ B.

Proof. (1) is obtained immediately by inversion. For (2) we use the Lemma to conclude I’ -3 Iz : A.B : type,
and hence by (1) the result. a

The following result clarifies the motivating property of the two relations <" and <

Lemma 3.7. Let FS T,z : C Cha,

1 ifT,z:C,AFS A K and x € FV(A) then C' <" 4
2. ifT,2:C,AF3 M : A and x € FV(M) then C =¥ 4

Proof. By (simultaneous) induction on both derivations. The cases when either A or M are constants, or M
is a variable are trivial. So are those for the conversion rules. The only interesting cases are, for both terms
and type families, application and abstraction:
e Type application:
Nr:CLAFSA:Ny:BK T,2:C,AFSM:B
T,z:C, AR AM : [M/ylK
If z € FY(A) we are done by inductive hypothesis on I', 2 : C,A k3 A: Iy : B.K, since head(4 M) =
head(A). Otherwise, if 2 € FY(M), then by the inductive hypothesis on I',z : C,A k5 M : B we get
C =¥ B. By inversion, we easily see A = aN for some terms NV and type family constant a = head(4);
then £(a) = Iz : Cy ...z, : Cp.type and head(B) = head(C;) for some i, so B <* A; hence, we
conclude C' <" A.
e Type abstraction:
Iz:C,AFS A:type TD,x:C,A,y: AFS B type
Iz:C,AFS Ty : A.B: type
If z € FV(B) we are done by inductive hypothesis on I,z : C, A,y : A g B : type, since head(Ily :
A.B) = head(B). Otherwise, if z € FV(A4), then by the inductive hypothesison ',z : C,A kg A : type
we get. C <" A, and hence by the side condition the result.
e Term application:

A<M B

D,z:C,LARS M :Mly: B.A T,z2:C,AFSN:B
Do C,AFS M N [N/yld




If + € FV(M) we are done by inductive hypothesis on Iz : C,A g M : Iy : B.A, since
head(|[N/y]4) = head(Ily : B.A4). Otherwise, if z € FV(N) by the inductive hypothesis on I',z :
C,A ks N : B we get C =¥ B. By Corollary 3.6, B <¥ A, and by transitivity we conclude
C'<¥ [N/ylA.
e Term abstraction:
Tr:CoLAbg Aitype Dyaz:C,Ay:Abs M B
TPk Ay: AM:Ily: AR

If x € FY(M) we are done by inductive hypothesis on I'yz : C,A,y : A bg M : B, since head(Ily :
A.B) = head(B). Otherwise, if z € FV(4), then by the inductive hypothesisonI', 2 : C,A ks A: type
we get C' < A, hence by the side condition and transitivity we conclude C' X¥ Iy : 4.B.

A<M B

O
Definition 3.8. Environments are expressions with a *hole”, which we will denote by o, constructed ac-

cording to the following syntax:

Environments E = o| X AE|ME|EN
Well-typed environments are constructed by means of the judgement
FFS E[fo ko Al : A4,

and the rules

LoFgAoitype T'oCT
I'FSo [ToboiAo] A

I3 Aitype D ARSE[CFo:AL]:B
TF3Am A E[Dobo:A ] M2 A.B

A=M B

ITH3E[Lo oA Iz A.B THIN:A

FF;(E[I‘OI_O:-‘LLQ]') i\r:[z\f/nt]B

TH3M:Il2:A.B THSE[Doto:d.]:A

A A
TF3M (B[ToroAL])B AA"B

IFSE[DFo:do):A A=B T'HEB:itype
THSE[T o A]:B

Erample 1. The environments

even, O (o] o : nat]),

eveny 0 (oft o : nat]) (even; 0 0 even, eveny)

are not well-typed. This because in the application

Fleven, 0:Ily:nat.proof(even 0)=>(proof(even y)=rproof(even (+ 0 y))) Fo [Fonat]:nat
Feven, O (o [Fomat]):proof(even 0)=>(proof(even o)=>proof(even (+ 0 0)))

the side condition nat 4" even is violated.
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Notation. Given an environment F and a term M, we will write E[A{] for the term obtained by replacing
the hole o with M. Conversely, let M be a term and N an occurrence of one of its subterm, we will write
M[o] n for the environment (not necessarily well-typed) obtained from AM by replacing that occurrence of
N by o.

The type of an environment depends, by the relation <
Proposition 3.9. IfT'Fg3 E[Do Fo: 4] : A then 4, <Y A.

Proof. By induction on the derivation of I' 3 Efl's F o : 4.] : A. All cases are trivial, except perhaps

M on the type of its hole:

IH3My: Iz B. A THIE)[Doko:Al]:B

TFIM (Ea|ToboiAL]):A
By inductive hypothesis, 4, < B. From I' b3 M; : IIz : B.A one concludes B < A. Hence by
transitivity 4, < A. a

AgAMA

As expected, when the hole is replaced by an expression of compatible type, environments produce well-
typed expressions:

Lemma 3.10. I[fTFS B[l b o: Ao]: A, and A 3 M : A, with A C T, then T -3 B[M] : A.

Proof. By induction on I g E[[s o : A,] : A. The only interesting case is, as before,

PHFIM M B.A THSEyDolo:A.]:B

/ A
TFSM, (Ea[Tobo: A, ): A A A4,

By induction hypothesis we get

THEM,TIs:B.A TF3E,[M]:B
oMy (B [M]):[E.[M] /2] A
We are left to show that 2 ¢ FV(A), so that [E,[M]/2]A = A. From I' +3 M, : Iz : B.A we deduce
I'Hg¢ Mz : B.A : type, and by inversion I',z : B b5 A : type. Suppose 2 € FV(A), then B <4 A4, and, since
from I'FS Byl Fo: 4] : A we get 4o -_<"S\" B, we conclude A, <" A, a contradiction. O

In general the composition of two well-typed environment does not produce a well-typed environment. A
sufficient condition for this to happen is given by the following:

Proposition 3.11. Let '8 F[I's Fo: A] : A, A+S E'[T' o A] + A’ two environments, if A <X 4,
then A b3 E'[E[Lo ko A} : A'.

Proof. By an easy induction on A b3 E'[T'F o: A] : 4'. We show the case

AFZM | dlz:B. A" AFZE|[Tto:A]:B’
AFSM, (EjTHo:A]):Af
By inductive hypothesis we obtain A +5 EJ[E[l, o : A]] : B If A, <* A’ from the assumption
A jg’ A, we get A <1 A’, a contradiction. Hence

AL

AFZM{ B’ A" ARSI EYE[TFo: A B’

A At
AFSM] (E[E[LFo: AL A7 AAMA

O

The following shows that environments behave nicely with respect to S-reduction:

Lemma 3.12. Let T,z : C,A F3 M : A be any term and T 3 E[Ts o 1 AJ] : C an environment, if
Ao AN A, then for any occurrence of x in M we have T,z : C,A FF M[E[Ds o1 4.]]. @ A.
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Proof. By induction on the derivation of ',z : C, A 3 M : 4. Most of the cases are trivial; one interesting
case is abstraction, since we have in particular to make sure that  cannot appear inside the type:

T,2:C AR Artype Ta:C, Ay AFSM:B
T2:C AFZ M A M:IIy: A.B

A=¥B

If 2 € FV(A) then C' <" 4, and, by the side condition C <4 IIy : A.B. From I' F5 E[lo Fo: A] : C
we get A, <M C, hence A, <4 Iy : A.B, contradiction to the assumptions. So it must be x € F V(M), and
the result follows by induction hypothesis.

Another interesting case is application, where 2 appears on the right-hand-side:

T,2:C, AFSM:ITy:B. A Ix:C,AFSN:B
T,2:C,AFZM N:N/y|A

Note that the side condition in the corresponding rule for environments is automatically guaranteed by
the hypotheses. We are left to show that y does not appear in A and that 4, A4 B.

Since we are assuming 2 € FY(N), ¢ 3¥ B. If y € FV(A) then B <" A, hence C' <" A, and, since
4, ¥ C, we obtain a contradiction. Similarly A, A" B, because otherwise we would get, from B <¥ A,
Ao <" A, again a contradiction. Having shown these two simple facts, the result follows by inductive
hypothesison I,z : C,A 5 N @ A O

Corollary 3.13. JfT 3 (Az: AM) (E[ls o AJ]) : B then for all the occurrences of x in M we have
T,z: AFS M[E[Ts b o: AJ]]. : B.

Proof. By inversion (and type conversion, if necessary), we get ',z : AFZ M : B, T'FS E[ls o1 4] : A,
and A, A" B. The result then follows by the Lemma. O

4. SUBSTITUTIONS

In [9], the definition of substitution makes use of the existence and uniqueness of long 31 normal forms.
In the LF calculus, these find an analogue in the concept of canonical form:

Definition 4.1. We define canonical forms for terms and type families by the judgements

F're My A M is canonical of type 4
Tty Al type A is a canonical type

PkeMJ A M is atomic of type A
s ALK A is atomic of type K
formed according to the following inference rules:

Ttsd § tvpe DA M ) B
TrgAz:AM | 112:A.B

TtxAd Ll type e L A
ThHeAM L A

TFeM | A A=B T'FnBitype
I'FeM | B
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S)=4 T(2)=A
Trocl A Trerl A

ThteM | Hrd B THeN U A
Ff‘zf\/f N ,L [1’\"/.’1)]3

TheM | A A=B T'tgBitype
TheM | B

S(a)=K
Trea L K

IHgA L Ie:B. K THxM Yy B
I'FrsAM] [Aj{/.’]}]ff

ThsAd | K K=K' TreK' Kind
TFeA | K

TtsA Y type TaziAbsB | type
Thellz:A.B | type

I'sA | type
I'ksA4 | type

Theorem 4.2. Let -y T Ctz, then

1. fTkrs M) A thenT g M A.

IfTbg ALK thenT g A: K.

[fF '—g M U— A then T }"g M : A.

IfT g A} type then I' Fg 4 : type.

IfT ks M : A then there is a unique M’ such thot M' = M and T bx M || A.
IfT ks A : type then there is a unique A’ such that A= A" and I s A’ || type.

Proof. See [1], [2], [15]. O

O T L

In light of the previous section, our goal is to show that if a well-typed term or type family respects the
dependencies, so does its canonical form.

Notation. We will make use of the following abbreviations:

THI MU ALE Tro My AandTHS M : A
THS Al type ETrsga Jtypeand I FF A : type
TFIMJ AL T M) AandTFZ M : 4
s AJ,K&I‘I—E AJKandTHS A K
The inversion properties for the judgements I'+35 M | 4 and T' k5 M | 4 are non-trivial enough to be

worth being stated and proved explicitly:

Proposition 4.3 (Inversion). We have:
1. Ifr l‘-g M:1lz: A.B,T !—g N: A, omdTrs M N [ C thenTHZ M Iz AB ond T I—g N Y A
2. fT,2: AFZM: B, and T ks (Az: AM) | C thenT,z: A3 M | B.
3T HFIM: A, A=A, Tk A L type, and Db M} C then T3 M | A.

Proof. (1) By induction on the derivation of I' b M N | €' . There are only two cases:



¢ Application:
TheM | Ta: A’ B THeNJA
I‘l“z]\rff N .L [A’Y/.’L']B'
FromT' 3 M : Iz : A.B we get I' H Iz : A.B : type, and by inversion I' -5 A4 : type. The result
then follows from I' g M [ TIz : A’ B’ and I' g N || A’ by conversion, since A = A’ and B = B'.

o Conversion:
TtHeM N | C' C'=C TrHsCitype
TFeM N LC

Immediate by inductive hypothesis.
The proofs of (2) and (3) are similar. O

The following (quite technical) lemmas show, that the class of dependency-preserving terms is closed with
respect to 3- and n-reduction, and also, under some circumstances, under n-expansion.

Lemma 4.4, IfTFZ3 M : A and M —g M’ then T F5 M’ : A.

Proof. By induction on the derivation of I' -3 M : A. Application is the only interesting case:

IS My:Ilz:B.A TH3My:B
TEIMy My:[M, [x]A
We have to distinguish three possible subcases:

e M, Afz —+3 M. ]’ M,

By inductive hypothesis I' 3 M| : Iz : B.A, hence the result.
o M 1 My — a M, ﬂ/fé

By inductive hypothesis I' b3 AL} : B. From I' b5 My M, : [M; /2] A we get T 5 [My/2]A : type,

and clearly [M}/2]4 = [M,/2]A, so

DMy I BA TRIMUB (o o
V23, MM Ja]A (M} /2] A=[M, /2]A THS[M, /2] Atype
PFSAJ 1 ﬂfé ![A:’[g / ,’I?] A

o (Ax: B.M{)M, =g [M,y/z]M]
By inversion and type conversion, I',z : B’ F3 M7 : A and T ¥ M, : B'. The result then follows
by Substitution.

O
Corollary 4.5. IfT -5 M : A and M —%5 M’ then T FZ M’ A.
Lemma 4.6. If TS M : A ond M —, M’ then T3 M’ : A.
Proof. By induction on the derivation of I' -3 A : A. Abstraction is the only interesting case:
THS Astype T,a:BFIM;:A o
S E—a e A=Y B
TEZ B My Ile:B.A b
We have to distinguish two possible subcases:
o Az : AM, =, Az A M,
By inductive hypothesis I', : B -3 M] : 4, hence the result.
o Au: AM; = Az B.(M] z) =, M,
By inversion (and type conversion, if necessary) I' F3 M] : Iz : B.A.
O

Corollary 4.7. IfT'F3 M : A and M =% M' then T3 M’ : A.
Lemma 4.8. IfT'F3 M | C, then there is M' =7 M such that T3 M' | C.
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Proof. The induction is on the structure of C':
o Case C'=1Ilz: A.B:
From the assumptions, one gets I' +3 Ilz : A.B : type, and by inversion, T' 3 A : type, so
T,z: A+F 2 | A and by inductive hypothesis we get a N =y zsuchthat 'z : A FS NV A
By inversion again, from I" 3 Iz : A.B : type one also gets I',z : 4 k3 B : type, and since
I'z: AFS M N | B, we can apply the inductive hypothesis once more to get a M’ —; M N such
that I,z : AFZ M’ ) B. Then Az : A.M’ is as required.
e CaseC=ANorC=a
From the assumptionsI' k3 C': type, and by Theorem 4.2 there is ¢’ = C' such that I' b5 C” | type.
By inversion then I' s €7 | type, and, since T' Fg M | C' by type conversion, we get I' g M || C".
By conversion again, we get finally I' - M |} C.
(|

Proposition 4.9. Let C = C', T 3 C" : type, then:
1. T,2: C,AFS MU AthenT,z: C',A S M § A.
2. IfT,2: C,AFS A type then T,z : C',A FS A § type.
3. IfT,z: CLAFS M L Athen T,z C'ARS M | A
4. IfT2: C, ARG ALK thenTy2: C' AR AL K.

Proof. By an easy induction on the derivations. Replace

Iaz:CArgz | C

with

C'=C T2:C,AFZCitype
I3zl C

Ia:C' AFZ2]C”

Theorem 4.10. We have:
1. IfT S M : A then there is o M’ = M such that THS M’ ) A.
2. IfT 3 A:type then there is o A' = A such that T3 4’ || type.
3. TS M : Aand M = hN where h constant or variable, then there is o M’ = M such that
T M' | A
4. TS A: K and A= aN, then there is a A’ = 4 such that TF3 A’ | K.

Proof. By (simultaneous) inductions on the derivations. By Corollary 4.5, in (1) and (3) we will furthermore
assume, without loss of generality, M in S-normal form.

e Type constant:
E(a)=K
TFoal
We have immediately I' -5 a | K. If K = type, we have also I' 3 a | type.

e Type application:
PFXAN:B.K THIM:B
Tr3A M[M/=K

By inversion we easily see A = aN, hence by inductive hypothesis we get A’ = A4 and M’ = M such
that T3 A’ | Tz : B.K and T'+3 M’ J B, and therefore I' -5 A'M’ | [M'/z]K.

FromT' k3 4 : Iz : B.K we get I' -3 Ilz : B.K Kind, and by inversion ',z : B +3 K Kind.
Therefore by Substitution I' b3 [M/2]K Kind, and hence by conversion I' 3 A'M' | [M/z]K. If
K = type, we have also I' F3 A’M’ || type.




Type abstraction:
I3 Aitype I'z:AFSBitype
I'+3IIz:A.B:type

From the inductive hypotheses we get A’ = A and B’ = B such that '-35 A’ | type and ',z : A +3
B’ || type. Using Proposition 4.9 we conclude I' F5 Iz : A”.B’ || type.

A=Y B

Kind conversion:
I‘I-SA:K K=K' I‘I—EK’ Kind

ThgAK!
Immediate from inductive hypothesis.
Term constant:
B(e)=A

We get immediately I' 5 ¢ | A; (1) then follows from Lemma 4.8.

Term variable:
T'(z)=4
TFex:d
We get immediately I' 5 2 ] 4; (1) then follows from Lemma 4.8.

Term application:
TH3M:IIx:B.A TH3N:B
TFIM N [N/z]A

Since M in S-normal form, by inductive hypothesis we get M’ = M and N’ = N’ such that I' -5 M’ |
Nz:B.AandTTF3 N’ | B, and hence I' b5 M'N' | [M'/z]A.

From I’ 3 M : Ilz : B.4 we get I' k3 Iz : B.4 type, and by inversion I',z : B +3 A type.
Therefore by Substitution I' -3 [M/2]A Kind, and hence by type conversion I' 5 M'N' | [Al/z]A.
Once again, (1) follows from Lemma 4.8.

Term abstraction:
'3 A:itype I'yz:AFIM:B
ISz A M I12:A.B

From the inductive hypotheses we get A’ = 4 and M’ = M such that T'F§ 4’ Y typeand ',z : AFJ
M’ | B. By Proposition 4.9 one obtain ' F3 Az : A’ M’ ) Iz : A'.B.

From I' b3 Az : AM : IIz : AB we get I' 5 Iz : A.B type, and therefore by type conversion
TS Az A M )11z : A.B.

A=Y B

Type conversion:
TF3AM:A A=A' THZA type
D-SM: A

Immediate by inductive hypothesis.

O

Corollary 4.11. [fT'F3 M : A then there are M', M" such that M —5 M/, M" =3 M/, TS M" § A

Proof. By inspection of the proof of Theorem 4.10 and commutativity of 3 reduction and n expansion. O

Notation. Given a well-typed term A or a type family 4, we will denote their canonical form by Ay and

Ay, respectively.

Lemma 4.12. Let T l—g E[ls bt o: Aj] : A an environment and I's I—g M : A, a compatible term.
1. THS E[M] Y AthenTo b3 M § Ao orTo b5 M } Ao Moreover, if Do b3 M U Ao (Do F5 M | A,)

then for allTo FS N U Ay (To b3 N | Ao) we have T +Z E[N] I A.
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2. IfTFS E[M] | AthenTo b3 M U Ao or Do S M | Ao, Moreover, if T FS MU Ao (T Fs M| A,)
then for allTo b N 4 4, (To F3 N | A) we have T' +3 E[N] | A.

Proof. By induction on I' 3 E's F o : 4] : A, using Lemma 3.10 and Inversion. O

Definition 4.13. Given two contexts I' and A, a substitution from I' to A is a type-preserving, finite-
support mapping from variables to terms 8 : I' — A formed according to the following rules:

{FM P T—A AbsNUYM /7] A
{F My N}(Ty:A)—A

Dependency-preserving substitution are defined by the rules:

=SA

{FoMPTSA AFINY[M/F)A
{Tr—)ﬂ_'f,yi—-)."\"}:(I',y:A)j,A
Definition 4.14. Given any well-typed term T' Fx; M : A and substitution § = {F+ N} : T — A, define
8M to be the (unique) canonical form of

Abs [N/7M : [N/7)A
Similarly, given I' g A : type we also define 6.4.

Note that here, in analogy to [9], we define the result of a substitution application to be a canonical term.
This will simplify considerably some proofs in the next section.
Definition 4.15. We define:

1. Given two substitutions 6; = {F ﬂ} : Ty — I'y and Ay : T'y — T'y, the composition 84 o 8y is the
substitution 6, 0 6y = {T+ G, M} : 'y — Ty.

2. A substitution @ = {T = M} : T — A is a renaming if all the terms A; are (convertible o) distinct
variables.

3. A substitution # : I’ — A is said to be more general than 8, : T' — A’ if thereis p : A — A’ such that
92 =po 91 .

4. Given two well typed terms I' kg M : A and ' by NV 1 A/, a substitution # : I' — A is said to be a
unifier of M and N if M = ON; M and N are then said to unify.

The class of dependency-preserving terms is closed with respect to substitution application:

Proposition 4.16. Let § = {T+— N} : T 5 A,

L IfTHS M : A then AFZS 0M : [N/7)A.

2. IfT'F5 A :type then A F5 04 [N/FK.
Proof. (1) First assume domI’Ndom A = §. Then by Weakening one gets A, T'+3 M : A and A +5 N; : B;
for all 7. By repeated applications of Weakening and Substitution from these one gets the result.

If domI'NdomA # 0, let p: A S Aa renaming into a set of fresh variables. Using the proof above,
one easily show, by induction on ¢ : T = A that ¢/ = pof: T = AL Moreover, it is immediate to see
p~V AT S Aand OM = p) (0" M), hence, by using again (twice) the proof above, one gets the result.

(2) Similar. a
Corollary 4.17. If 6, : T = Iy and 8, : Ty g Iy, then By 06, : I = Ty.

Proof. By induction on the derivation of 6; : Ty = I',. O
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Definition 4.18. A canonical term I' by M |} A is said to be a pattern if each 2 € domI' can appear in M
and A only applied to terms n-equivalent to distinet bound variables.

Theorem 4.19. Unification of poiterns is decidable; if two patterns unify, there is a unique (up to conver-
sion) most geneval unifier.

Proof. See [11]. O
5. HIGHER-ORDER. TERM REWRITING

In this section we extend the notion of term rewriting system and rewriting relation to a higher-order
setting with dependent types.
Definition 5.1. A rewriterule I' 57 — r: A is a pair of well typed terms such that

e 'FZ 1y Aisapattern, T FgS r: 4,

o I'F3 4 type,

o FV() 2 FV(r). _

A higher-order term rewriting system (HTRS) R is a finite set of rewrite rules, such that, for each pair of
rules I ]‘3 L—=nr: ‘4]‘,1—‘2 *‘3 Iy 5 ry: Ay € R, A 74/‘ Ay,

The condition above translates to the requirement that it is not possible to use a rewrite rule to rewrite
the type of another. This is therefore consistent with the original goal to define rewriting in such a way thas

it does not modify types, and hence preserve well-typedness of expressions.
Moreover, under this assumption, as we will see, the critical pair criterion will involve, precisely like the

first order case, a check for overlaps only among the left-hand-sides of the rules.

Ezxample 2. In the formalization of the simply-typed lambda calculus given before, 5 and n reductions can
be expressed as rewrite rules:

A:type,B: type, F : (term A) = (term B),U : term A3 (app (lambda F)U) - (F U) : term B
A:type, B : type,G : term (arrow A B) -3 lambda(Az : term A.app G z) = G : term(arrow A B)
The check that both rules are well-typed and preserve dependencies is left to the reader.
Definition 5.2. Given a HTRS R and two terms I' F5 A7 : 4 and T' 5§ N : 4 we define R-rewriting as
follows:
'eg M LAY P-N My = E[61], Ny = E[#r] for some (A1 —r:B) € R,6: A 5 T'(My, 01),
and I' -5 E[I(My,00) F o+ A(My,01)] : A.

We furthermore define R-conversion as the judgement I' F3 M &3 N ¢ A formed according to the following
rules:

TFIM:A M=N THIN:A FEM -5 N:A
THEM N4 THIM B N A
THEM <N A THIM 3N A THEIN SN A
THINE A A THEM e N:A

In addition to R-conversion, we introduce a more natural notion of equality modulo R, as a congruence
relation containing all instances of R, and closed with respect to conversion:

Definition 5.3. Let R be a HTRS, congruence modulo R is defined by the judgement
P M En.apD M, and N of type A are congruent modulo R

where D is a set of type constants used to keep track of the dependency constraints. The rules associated to
this judgement are the following;:



THIM:A THIMEN:ABD
THEMEM: AP0 THENEMABD

TFEIMEN"ADD THIN'ENADD
THIMEN: A (DUDY)

AFJIsrAeR #:AST
TH561267:6 A { head(A)}

I3 Aitype T ARSM En.BoD
I‘I—g)\.1::A..Mg)\m:A.."\":Ha::A.BDD

A<MB

THEMEM Tz A.Br-D THINENALD
THZM NEM' N':|N/z|Br(DUD’)

aAAB for all aeD’

THIMEN"APD N'=N THIN":A
TFIMEN:ABD

The only place the set of dependency D above plays a role is in the application rule: there, it restricts
the rule to those cases where well-typedness of both sides is guaranteed. An analogous set is defined for

R-rewriting:
Definition 5.4. The set of dependency constraints generated by a R-rewriting step is defined as
(T+5 M L5 N A) Ik {head(B)}

if (AF31— r: B) € R was the rewriting rule used in its definition.
This definition is extended to R-conversion:

THIM:4 M=N THIN:A (THIM - N:A)FD
(THEM<E N A)IHD (TFEM N AYFD
(THIM SN A)FD (TFIM &SN DD (THEN' S N A)IFD’
(THEN+ESM:A)FD (THEM 3 N:A)H(DUDY)

The main theorem of this section will be the following:
Theorem 5.5. Let R he a HTRS, then for all M, N,
CHME N AHFDoTFEMEN 4B D.

One direction is easy to prove:

Lemma 5.6. FT S BT Fo: A]: A and Ty b3 M £ N1 4, > {head(A)} then T +3 E[M] £ E[N] -

A {head(A,)}.

Proof. By an easy induction on the derivation of I' k3 E[['s o : A.] : A. We check the case:

THSM:Ile:B.A THZE)[Doto:4.]:B
P}‘SA«I] (E2 [FOF‘OA.O]])A.

AoAMA
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By reflexivity, I 3 M; £ M, : Tz : B.A > 0, and by inductive hypothesis T FS By [M] £ g, [N]: B>
{head(A,)}. By hypothesis 4, A" A, hence by the application rule:

T3M, E Al T B. A0 T+3E, |[M']|§E2 [N]:B>{head(A.)}
TF3(My Bo[MD)Z(M, Eo[N])[Eo[M]/2] A {head(A,)}

To conclude the proof we have to show that 2 ¢ FV(A), so that [E,y[M]/z]A = A. If not, then B <" A,
and since we know Ao <M B from T' 5 Byl F o : 45] : B, we conclude A, <4 A, a contradiction. O

Corollary 5.7. Let R be a HTRS, if T F3 M 29 N: A) D then THI M E N A D.
Proof. By induction on the derivation of (T' -3 M +%+ N : A) IF D. We consider two cases:

o Conversion:
I‘}‘gﬁ’fifl M=N FFEZ\"L‘I

(T3 M ES N A)IHD

From IT' b5 M : A by reflexivity we get I' b5 M EM:Ap0and by the term conversion rule the
result:
THIMEM:AB) M=N THIN:A
I‘I—*M N:ARD

e R-rewriting:
(THEM -5 N A)IFD
(THIM+ES N:A)FD

By definition, ' -5 M -2 N : Aif there are (A F$ 1 = r: B) € R, 0+ A = T(My,01), and
T3 E[T(My,01) F o : A(My,600)] : A such that My = E[0I], Ny = Efor].

By 1eﬁexiviry and conversion, like the previous case, we get I' 5 M £ E[6]] : A 0 and T' F3
Elér] EN:AD> 0 Also, I(My,00) 3 61 £ or . A(My,601) > D, where D = {head(B)} =
{head(A(My, 91))}, so applying the Lemma we get I' 3 E[81] L El6r] : A > {head(B)}, and by
transitivity the result.

0O

To prove the other direction of Theorem 5.5 we follow the same approach used in [9], which goes through
the definition of a weaker notion of rewriting:

Definition 5.8. For terms T'FS M : A and T F3 N @ A, we define weak R-rewriting as:

2L M = E[M,],N = E[N], Mo = 01, N, =, 0r, for some (A -1 —r: B) € R,

8:A S D(M,M,); and T -5 E[D(M, M) & o : A(M,M,)] : A.

rrim BN, 424

We furthermore define weak R-conversion as the judgement I' k5 M ¢ L7 N+ A formed according to the
following rules:

THIM:A M=N THEN:A T3 N A
oM N4 3 va
ARSI ) M d®ava mrasnvdBiaa
TN ArA rHimd N4



The set. of dependency constraints generated by a weak R-rewriting step is defined as
(CrE M B N A) I {head(B)}

if (A k31— r: B) € R was the rewriting rule used.
This definition is extended to weak R-conversion:

[FIM:A M=N THIN:A M BN A)FD
(ML N A & N Ay

3N aprp M N D g N )
(3N A1 A)FD (T8 N 4) - (DUDY)

One relation between these two notions of rewriting is easily derived from their respective definitions:

Proposition 5.9. (T'F3 M 2y N2 A) kD if and only if (T F3 My A, Ny:A)IFD.

Proof. By definition and Lemma 4.12, (I' 3 M —% N : A) I D if and only if (T F5 My <55 Ny : A) IF D,
and the result follows by a trivial induction on the two derivations. O

(R

Our next goal is to show that (T b5 M LN A) IF D whenever (I' b5 M > N : A) IF D. The proof

of this fact relies on a series of technical lemmas.

Lemma 5.10. If ',z : C,)IV k3 E[ls,z : C\TL F o1 As] : A then for all terms T' F3 N : C there is
an environment T, [N/z]IV b3 E'[Do, [N/z]T, F o : [N/ 1‘] Ao] t [N/2]A such that for all compatible terms
To,2: C,TL - M : A, we have [N/2|E'[M] = E'[[N/z]M].

Proof. By a trivial induction on the derivation of T,z : C\ IV +§ E[lo,z : C,T, F o : A] : A, using
Substitution. We consider the case:

DOV FSMy Il B.A T a:C IS BT, 2:C I Fo: Ao |- B

Fl—gf\/f] (Eg [FOFOL"loIl)Z}l
By Substitution, T, [N/2|T, +3 [N/z]M : [N/z]llz : B.4, and by inductive hypothesis T', [N/2]IV kg
ED., [N/z]T% + o : [N/2]Ao] & [N/2]B. Since head([N/z|A,) = head(4,), head([N/z]4) = head(4), and
[N/z]A, A4 [N/z]A, the result follows. O

A AMNA

Notation. In the sequel, we will denote the environment obtained from Lemma 5.10 by [N/2]E.

Corollary 5.11. If T,z : C +§ M — LNt A) I D then for all terms T' b5 M’ : C there is a term
T Fg N ¢ A such that [M'/a]N =% N and (T 5 [M /)M 55 N7 - (M7 /2] 4) - D.

Proof. By definition, I',2: C -3 M -y N': A means there are
(AFS1—>r:B)€ER,
:A = T(M,M,),

. CF3 E[T(M, M) b o A(M,M,)] : A

such that

M = E[M,], N = E[N,],
1110 = 91, ]\70 =y Or.
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By Lemma 5.10,
T RS ([M'/2)E)[D((M 2] M, [M [x]M) ¥ o : A(M'/2)M, [M' [z]M)] : [M'/z]A
Let 6 = 6 o {z = M'}, pick Nj =, 6'r such that [M'/2]Ny —5 Ny; then N' = ([M'/z]E)[N{] is as
required. O

Lemma 5.12. If I,z : C' +3 AI" A, (I‘ FS M — LN o C) I D, (mdaﬁ’“, z'faeD then there is a

Proof. By definition, T’ I—g M -£5 N : C if there are

(Argl1—=r:B)€R,
:A S D(M,M,),
TFE E[T(M, M) Fo: A(M,M,)]: C
such that

M = E[M,], N =E[N]],
M, =61, Ny =, 0r.

By progressively replacing all the occurrences of 2 in M by /N using Lemma 3.12, we get a sequence
of terms M’ (0 < i < n) such that (by Lemma 5.10) (I' -3 [M/2z]M( L PRI IGRI A) IF D,
MOY = M M = [N/2]M. a
Proposition 5.13. We have:

L@z ArS M S A1 BYIF D and A <Y Bthen (CFS Ax: AM 5 2p A M TIx . AB) I D.

2. IfTHS M ———]} M :Mz: AB)IFD and T +3 N : A then (T l—g MmN N [N/z]B) IF D.

3. JTHFS M :IIz: AB, THS N 178 A)IFD, and a £* B ifa € D, then (TTF5 M N 17 ar v

B) I+ D.
Proof. (3) By definition, I' F§ N 1% N7 . A means there are
(Arst—or:C)eR,
8:A 5 T(N,N,),
'S E[D(N,No) Fo: A(N,N)] + A

such that

N = E[N,], N'=E[N]

No=61," N] =, 0Or.
and D = {head(C)} = {head(4(N,N,))}. Then

THS M (EB[D(N,No) Fo: A(N,N,)]): B

and hence by definition (' F5 M N LY B)I-D.
The proofs of (1) and (2) are similar. a

Corollary 5.14. We have:

L@z Ars m
D.
2. BRI M M T ABYIFD and T FE N A then (TF3 M N & M N [N/2]B) I D.

3. FTFIM Tz: AB, (CFIN &5 N AV Ik D, and a A4 B ifa € D, then (T+3 M N <55 a1 &'
B) I D.

M :B)I-D and A<¥ B then (TF3 Ax: AM &% Azt AM' Tz : AB)IF



Proof. By an easy induction on the derivations.

Lemma 5.15. If (T+3 M m} N:CYWD and M -5 M', then there is a rewrite sequence (I' F3 M)

MU 4)IF D (0 < i < n) such that M' = MW, N -5 M.
In pictures:

M N

(] [
ﬁ'l ﬂ | *
\}

M

M) —— >

(7] Tm

Proof. By definition, I' F3 M 1B, N . Aif there are
(AFg§l1—>r:B)ER,
9:A S T(M,M,),
P E[D(M, M) Fo: A(M,M,)]: A

such that

M = E[M,], N = E[N,],
M, =61, N, =, Or.
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O

o,

The proof proceeds by induction on I' F3 E[['(M, M,) F o : A(M, M,)] : A. The most.interesting cases

are the two application rules:

e Case:
3E [Dolo:A M2 B.A TH3M,:B
P"S(E] [[Fo|_0144°]}) .17\11'2:‘4

There are three possible subcases:
— M = (B [M] My) = (B [M] M) =M
It is easily checked that

I l‘g (E] [I‘(ﬂ/f, AJO) Fo: ,4(111, Aﬂ[o)]l) .'7\{[5 : ‘4,
T F3 (B M) ML) 5 (5[N] M) - A,
N = (Ei[No] My) =5 (Ea[No] My) = M)

- M = (AJ]’ Afz) and E; [ﬂffo]l —+3 AJ{
Then, since

I3 EMo] B B[N, Tz B.A,

the result follows by inductive hypothesis and repeated applications of Proposition 5.13.(2).

- M= (Ay : B,.E] [11\/-'[0]') M, —+3 [AJQ/y]E] [17\/1'0]]

By inversion (and type conversion, if necessary) Iy : B’ b3 B[l Fo: A] : A, T H M, : B,

and the result. follows directly by Corollary 5.11.

o Case:
I‘FE.MI:Ha::B.A I3 EDotbo:4,]:B
Fl‘;ﬂf] (Ez[Pof—OZ/*lO]])!/i

A, AN A

There are again three possible subcases:
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- M= (ﬂrf] EQIIA{[O]]) -3 (AJ]' Ezl[l’\!jo]l) = A
It is easily checked that

TF3 M (By[T(M, M) o : A(M,M,)] : A,
= y L A E]) F A 7 . A
T k5 (M Bo[M,]) +5 (M) Eo[No]) : A,
N = (M B[N.]) = (M] Bu[No]) = MM

— M' = (M, M) and Ey[M,] =45 M,
Then, since

I3 BM.] B ByN.] - B,

the result follows by inductive hypothesis and repeated applications of Proposition 5.13.(3).
- M = (\y: B'.M]) Es[M,] =3 [Ea[M]/y)M]
By inversion and type conversion, I',y : B 3 M} : A, T3 Ey[To o : A] : B, and the resuit
follows directly by Lemma 5.12.
a

Lemma 5.16. Let —‘), —Z) and > be relations on some set S such that > is a terminating partial order,
syt implies s > t, and s 2t implies s > t. Then

2 1 1 % _x 2
vm’ml:y II?’ _-— Y = ayl 2:I —_—
implies
* 2 T % T * _x 2
v,‘)},ml,y J;'ml.(_m_).y :>3y' o — T .

In pictures

*

1
| !
2 2l = 2= 2| %
A v
* *
y— =y Yy——»=y
y—7=y Yy-5=>y

Proof. By a double induction argument. The primary induction is on (x,>), the secondary one on the length
of the derivation = —T> y.

The cases when 2 = 2/ or 2 = y are trivial. In the induction casg we have the following diagram:

where the existence of ' and w are given by hypothesis and secondary inductive hypothesis (2 > u but

#* : * . . . .
U——Y is shorter than = —Y ), respectively, while the existence of 4" and y’ come from primary

inductive hypothesis (2 > v > u/). O
- .[_i]) T ; p * T : N -
Corollary 5.17. If (T Fg M N : A) D and M —3 M', then there is o rewrite sequence (I -3

M® I A0 2 4Y - D (0 < < n) such that M = MOV, N 553 MO,
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Proof. Define, for any tems '3 M : Aand TS N @ 4]
m{M) = maximal length of F-reductions starting from M,
and M < N if and only if m(Af) < m(N), then
M — 3 N=>M>N
rrsM BN asMmMe>nN

and the result follows by the previous Lemma and 4.12. O

Lemma 5.18. If (T +§ M LIS A) Ik D then for all T +3 M’ : A such that M’ —, M there is a

T 5 N': A such that N' 52 N and (T kg M' 155 N7 2 4) 1 D.
In pictures:

M —[—] > N'

£
’I] HtRF
v

M - [E] =N

Proof. By definition, I' 3 A —[E]) N ¢ A if there are
(Arg1—=r:B)€R,
9:A S T(M,M,),
'3 BID(M, M) F o A(M,M,)]: 4

such that

M = E[M,], N = E[N.],
M, = 41, N, =, Or.

We will construct, by induction on I' +g§ EJI'(M,M,) F o : A(M,M,)] : A, an environment I' 3
E'[I(M,Mo) Fo: A(M,M,)]: A and term I' -5 N’ : A such thas

M' = E'[M], N =E[N],
M. =61, N, =, 6r,

rf RF nar
N —),’ N.
We show some representative cases:

o Case:
TohsAoitype I'oCT
I'FSo[lokFo: AL As

Then M’ = 61, hence picking £’ = E and N/ = N we have the result.

e Case:
FI—;AI] 0 A.B I‘I—;Ezﬂl"ol—o:Ao]]:A
THSAM, (Ey[Doko:AL]):B
‘We have three different. subcases:
— B=1IIz: A"B and M' = )\y : f'll.(.hf] A/fg) Y =y M, My=M
It is easily checked that

THS Ay : A'(My EoD(M, Mo) b o : A(M, M,)] ) : B
and Ay : A" (E[N,] y) -, N.

AANB
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- M= (ﬁ'ﬂ[]’ ﬂfg) —*y (ﬂrf[] AJQ) =M
By inversion (and type conversion, if necessary), I' b5 M| : IIz : A.B, and E' = M| E,, N’ =
E'|N,] are as required.

- M= (ﬂlf] ﬂfé) —ty (A'f] .11{2) =M
By inductive hypothesis on I' 5 Ey[I's F o : 4.] : A we get B and Nj; defining E' = M, E} and
N' = M, N, we have the result.

e Case:
THIE[l oA ]:A A=B TH3Bitype
I3 E[ToFo:AL]:B

Immediate by inductive hypothesis and type conversion.

a

Corollary 5.19. If (T +g M 55 N 0 A) IF D then for all T H5 M’ : A such thet M' =% M there is o
T3 N : A such that N' % N and (DF3 M' 55 N7 . 4) Ik D

7
Proof. By induction on the length of the reduction M’ —} M, using the Lemma. O

Lemma 5.20. If (U 3 M 15 N0 A) Ik D then (CFE M %5 N 4) Ik D.
Proof. Immediate from Corollaries 4.11, 5.17, 5.19. O

Corollary 5.21. If (TF3 M &5 N : A) IF D then (TFZ M <25 N1 A)IF D.

Proof of Theorem. 5.5. One direction has already been proved by Corollary 5.7. The proof of the other is
. . _— R - . )

by induction on the derivation of I' 5 M = N : A > D. Most of the cases are immediate. The only two

requiring some work are application and abstraction:

e Abstraction:
TH3Attype TmAFSMEN:BSD

A=Y'B
I“I—gz\a::A..r’wgAm:A.Z\":HJ::A.Bl>D -2

By inductive hypothesis,
(T,z: AFE M <% N : B) Ik D.
By Proposition 5.9,
T,z AR My ML Ny :B)IFD,

and by Proposition 5.13.(1) and Corollary 5.21

(TS Az AMy) 2 (A : ANy) : Iz : A.B) - D.
By conversion

(TrS Az : AM) & (A\z: AMy) : Tz : AB)IF D,

(THS Oz ANy) 2 Mz AN) : Tz : A.B) IF D,
hence by transitivity the result.

e Application:
THIMEM A B>D THINENABD!
T+3M NEM' N B-(DuD')

By inductive hypothesis,

a#4AB for all aeD’

(CHS M &5 M . Tlzv: AB)IF D,
CHSIN <& N A F D
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By Proposition 5.9,
(g My & A T - ABY I D,
CrE Ny &5 N A D
by Proposition 5.13 and Corollary 5.21
(T 5 (My Ny) 55 (M} Ny): B) IF D
(T F5 (M) Ny) %5 (M) N}) : B) - D,

and by conversion and transitivity the result.

6. CRITICAT, PAIRS

As in the first order case, the check for local confluence of LN goes through the search for critical pairs
generated by the rules of the HTRS R. The definition of critical pairs here, however, is complicated by the
presence of dependent types. Before giving the precise definition of critical pair, we need some additional
machinery:

Definition 6.1. Let # : I' — A be a substitution, the support of 8 (supp(#)) is the set

{z € domT | =(8(z) = =)}
Given two substitutions 8 : T' — A and 8’ : TV — A’, we will say that they are equivalent, and write § = ¢,
if supp(#) = supp(#’) and 8(x) = §'(x) for all 2 € supp(#).
Proposition 6.2. Let # = {T+ M} : T 5 A be a substitution, T3 My : AM : Iy : A.B any term , then
there is a substitution 6 : T,y A S A,y : [M/T)A such that ¢/ =8 and

8y : AM)=Ay:604.6'M

Proof. From A +3 M : [M/F)(Tly : A.B) we get A 3 [M/7|(Ily : A.B) : type and by inversion A 3
[M/Z]A : type.

Also, by inversion (using type conversion, if necessary), I' I—g Avtype, Iy 4 I—g M : B, and A =¥ B;
hence A 3 8.4 | type.

Let A,y : 0A S N ) [M/F]Abesuchthat N =y, then @ = {Fr> M,y N} :Tyy: A S A,y [M/7)A4,
S0

AFZ0AUtype A8 A-Z6 MM /7| B
ARS Y0 AOMYITy:0 A.[M /7B

By type conversion A 3 Ay : 8A.6M | [M/Z|(Ily : 6A.B and, observing that #(Ay : A.M) = (y :
6A . 6'M), by uniqueness of canonical forms we get the result. a

gA=M[M /7)B.

Definition 6.3. Let #: I' = A be a substitution, an atomic term I' Fg M | A4 is said to be stable for 8 if
M = hN where h is either a constant ¢ or a variable z ¢ supp(#).

Stability implies that the head of a canonical term is preserved by the application of a substitution, i.e.
that 8(hN) = hON.

Lemma 6.4. Let § = {F+ M}: T = A be a substitution, T b M | A stable for 8, then there exists an
atomic term A b3 M’ | [M[F]A such that 0M —7 M.

Proof. By Lemma 4.8 and uniqueness of canonical forms, it suffices to show M " = §M. Moreover, by
Proposition 4.16 and Corollary 4.7, we need only to show A bg M’ | [M/F])A. The proof goes by induction
on the derivation I' Fx M | A:
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e Case
S(e)=A
Theel A
It is immediately verified that ¢ = ¢, and for each 2z € domT, z ¢ FV(A). Hence [M/F]A = A and
therefore
Abge | [M/T)A
e Case
T'(2)=4
Pl"‘gm J, A

By stability, 8(z) = z; by inversion on 8 : T = A we have A(z) = [M /7] A, hence

A(x)=[M/z]A
Al—g.’ﬂ J, [.M/T]A ’

e Case
I‘l"gﬂ:’[ J H?]:A.B Fl“E.N U A
FI—E_‘M[ N ,L [A’Yy]B
Since by hypothesis Mf N is stable for 4, so is M, so by inductive hypothesis there is an atomic term
Abrg M| [M/Z]|(Ily : A.B) such that 8Af —* M'. Then

ArsM' | [M/F|(Iy:A.B) AFsdN Y [M/7)A
TroM 0N | [9N/y)[M/Z)B
From A 35 8(M N) | [M/7][N/y)B we get A +3 [M/7][N/y]B : type and, since [M /F|[N/y]B =
[6N/y][M /7] B, by type conversion the result.

o Case

TreM | A A=B TI'kgB:itype
I'tsM | B

Immediate by inductive hypothesis and type conversion.

a

Definition 6.5. Let § = {T — M} : I' = A be a substitution, an environment T' 3 E[[s - o0 : 4,] : A is
stable for @ if whenever the rule

TESMy Il AB TS E,[Dobo: Al A
T My (EaDoto:AL]):B

is applied, T' +3 M | Iz : A.B and M is stable for 4.

Ao ANB

Since all the applications contained in it invalve stable terms, one would expect. that a stable environment
preserves most of its structure when the substitution is applied to it. The following Lemma shows that this
is actually the case:

Lemma 6.6. Let
f={FsM}:T S A
THS E[lo Fo: AJ]: A stable for 6,
Lo b5 Mo § Ao, T F5 Ao | type,



27

and M = E[M.,], then there are
8T, = A, with 8 = 8,
AFS EAFo: [M/T)4.] : [M/7]A
such that:

1. if T +3 E[M.] U A then 0M = E'[6'M,] and A +3 E'[6' M,] U [M/7)A;
2. if T+ E[M.] | A then 6M —7 E'[0'M.] and A v E'[6' M) | [M /7).

s

Proof. By induction on the derivation of I' +3 E[['s o : Ao} : A:

s Case
L5 Aotype ToCT
TFS[Toboido]: Ao
(1) By Weakening I" I3 M, : 4o, s0 A 5 8M, || [M/7] 4., hence by letting E' = E = o, #' = 6 we
have the result. .
(2) By hypothesis I' -3 A, | type and therefore [Af/F]A, = A", A F§ A" | type. Hence by
Inversion A 3 M | [M /7] Ao, and the proof follows from (1).

o Case:
I3 Aitype Tz:AFSE [Dobo:AL]:B
IESAxA B [Tobo: A, 01z A.B

(1) Since T,z : A+ E[AL] : B, by Inversion ',z : 4 +3 EZ[M,] 4 B. By Proposition 6.2 there is
0 :T,z: A5 A,z : [M/F)A such that 6, = 8 and 6z : A B [M.]) = (Az : 0A.8, Ey[M.]), hence we
can apply the inductive hypothesis obtaining

0 :Ty 5 A,
Az [M/F)A RS Ej[Ao Fo: [M/F)4] : [M/7)B
such that 0F; [AM,] = Ej[8'M,] and A,z : [M/F|A VS E{[6'M.] § [M/Z]B. Let E' be
AFS Az [M/FAE[Ac ko [M /7] Ao] : [M /7] : A.B,

A=¥B

it is as required.
e Case:
TF3EL[DoboiA Iz B.A THM;:B
TFS(E [Cobo:AL]) My A
(2) Since I' 3 Eqi[M,] : Iz : B.A, by Inversion I' 5 Ey[M,] | Iz : B.A. By inductive hypothesis
there are

8 :To = Ao,
AFRS E[Ao o [M/F)Ao] : [M/7|Ilx : B.A
such that 05 [M.] —% E{[¢/M.] and A +§ B [6'M.] 4 [F/7](Ilx : B.A). Let E' be
AFS (Bj[Ac kot [H/:T:]AO]I)BZWZ : [ﬂ/T]Li,

it is as required.

(1) By inversion, we must have 4 = 4/, T' F§ A’ | type; it is not difficult then to verify that
[M/z]A= A", A3 A" | type. Hence by Inversion I' -5 E[M,] | 4, and the result follows from (1)
and uniqueness of canonical forms.

e Case:
PEIM I B.A THIEDoto:4,]:B

4 A
TF2M, (Ba[Tok o A]) A AATA
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(2) Since T' F3 Fy[A,] : B, by Inversion I' b5 My | Iz : B.A and I' F3 E,[AL,] 4 B. By inductive
hypothesis there are

#:To = Ao,

AR E[AcFo: [M/7A) : [M/7)B
such that 0Fy[M,] = Ej[#'M,] and A -3 EL[6'M,] U [ﬁ/T]B By stability of Af;, there is a M| such
that OM, =% M{ and A +3 M | [M/7)(Ilz : B.A). Let then E' be the environment

A RS M{(EjJAs ko : [M/F]Al]) : [M /74,
it is as required.
(1) Similar to (1) of the previous case.
o Case:
I'F3E[DFo:A:B B=A T'3B:itype
IFSE[DoFordo]:A

Both (1) and (2) follow trivially from inductive hypothesis and type conversion.

O

Notation. For the rest of this paper, we will write £(8, M,) and #(E, M,) to denote the environments E’
and substitutions # obtained from Lemma 6.6.(1).
Definition 6.7 (Critical Pair). Let R be a HIRS, Iy b3 I} = 1 : Ch, Ty S Iy = ry 1 €y two rules in
R o6 :Th 5 A,60,:Ty 3A 8 ={F— N},and T, F5 E[ls F o : A] : A4 such that I, = E[M,],
& (E] , ﬂrf[o)]\rfo = Gglz, then
A FS< B0, M)[0ar2],6im1 >: [N/FC,

is a eritical pair
Remark. By applying a renaming substitution and using o-conversion, we can assume, without loss of
generality, I't Ny = 0. The by Weakening it is easily verified that 6, U, : Ty, T = Ais aunifier of I; and
M,, and the definition above appears as a generalization of the familiar one for first-order TRSs.
Ezample 2. In the HTRS for the typed lambda calculus given before, letting

I'y = A:type, B : type, F : (term A) = (term B),U : term A

I'y = A: type, B : type,G : term (arrow A B)

A = A:type,B : type,G: term (arrow 4 B),U : term A

6h ={A— A, B~ B,F+ (Az:term Aapp G 2),U = U}
6y = {Aw A, B B,G G}

E=app olU
we get the (trivial) critical pair
Arg<app GU,app GU >: term B

Proposition 6.8. Let 8 = {T+» M} : T 5 A be a substitution, T+ M | C stable for 8, 6M —5 M M,
A RS MM, | [M/T|C, then M = M, My, 8M, =% M|, M, = Mj.

Proof. If M = ¢ or M = z where 2 ¢ supp(#), then M = M, contradiction to uniqueness of atomic
forms. Therefore M = M; M,. By inversion, there are types A,B such that I' F3 M, | Iz : A.B,
P FS My : A, C = [M,/z]B. Since M, is also stable for #, by Lemma 6.4 there is an atomic term
AR M| | [M/7](Ilz : A.B) such that 8M, —+5 Mi". Then A Fg M] 0M, : (8, /z)[M /7] B, and by type
conversion, since [#M, /z|[M /7] B = [M /7||M, /7] B, the result. O
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By definition, the only non-stable subterms of a pattern M have a very specific form, i.e. the must consist of
a free variable, possibly applied to a sequence of terms equivalent. to distinct bound variables. Unfortunately,
this property is not preserved by subterms, since bound variables may become free. Proposition 6.2, however,
suggests a slightly different definition of pattern, which relies on the support of a substitution rather than
on on the set of free variables of the term.

Definition 6.9. Let #: I' — A be a substitution. A term I'Fg M |} A (T'Fg A | A) is said to be a pattern
for 4 if each 2 € supp(@) appears in M applied to terms n-equivalent to distinct bound variables.

Proposition 6.10. If Tty M | A is a pattern, then it is o pattern for any substitution 8 : T — A.

The following theorem says that any subterm N’ of #M, where M is a pattern for 8, either corresponds
to a subterm N of M (such that /N = N’ for some ' = ) or it is a subterm of () for some 2 € supp¥.
This key fact will play a central role in the proof of the Critical Pair Lemma.

Lemma 6.11. Let
g={FT»M}: TS A
AFS EfAcFo: Al]: C7
A, kg M | AL,
FE M : C,

then
1. if 6M = F'[M]], Ao b5 E'[MI] U C" and T +S M Y C pattern for 8, or
2. if OM =7 E'[M]], A, b5 E'[M[] | C', and T F5 M | C both pattern and stable for 8,

then either there is an environment E stable for 6 such that M = E[M,], E' = E(#,M,), M} = 6(E, M)A,
or there are _well-typed environments Ey, Eg and variohble x € supp(f) such that M = Ey[zN], N; =y,
0(z) = N7 : C.Eg[M!], E' = Ex(8,2N)[Es].

Proof. By induction on the derivation of A +3 E'[As Fo: AL]: C’, where C' = [M /7]C:

e Case
AFSALitype A CA
AFS[AFo AL] AL

(1), (2) Immediate, by letting E = o.

e Case:
AFZAtype AmA'+IE|[A o ALl:B
ARS AT AL E{[Acbo: AL LTI A7 B
(1) By Inversion on A F3 Az : A" Ej[M]] | 1Lz : 4'.B’ we obtain immediately A,z : A’ -3 E{[A]] §
B. From the derivation of I' - Al || C' we get types A, B such that M = Az : AM,, ¢'=Hz: A.B and
I',z: AFZ M § B. By Proposition 6.2 and uniqueness of canonical forms we conclude A’ = [M /Z]B.
The result then follows by inductive hypothesis.

A=Y B

o Case:
AFSE [Acko: ALz B . A" AFZSM): B
ARS(Ej[Aoko: AL]) My [M] [ 2] 47

(2) By Inversion on A 3 (Ej[MIDM, | [M}/x]A" we obtain immediately A,z : A’ +5 E{[M]] | B.
By Proposition 6.8, A = M; M, and inversion on the derivation of I' b5 M |} C' there are types 4, B
such that '3 Afy Y Tz : B.A, T'F5 M, | B, and C = [M,/2]B. From Lemma 6.4, by uniqueness of
atomic forms we deduce 0M, = M}, 6 =} E{[M], hence the result follows by inductive hypothesis.

(1) We must have A k5 C J type. It is not difficult then to verify that T' FS Cy |l type, and
therefore by Inversion I' 3 M | C. If M is stable for #, the result follows from (1). Otherwise, by
definition, it. is easy to verify M = 2N, N; = y;, z € supp(8), 6(z) = 37 : C.E'[M.]. Hence Eyr = o,
Ey = E' are as required.
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e Case:
AFSM Mz B A" AFZE [A o AL]:B’
AFSM{(EjJA o AL]): A

(2) By Inversion on A b3 M (E,[M}]) 4 A’ we obtain immediately A -3 E{[M] § B. By Proposition
6.8, M = M, M,, and by inversion on the derivation of I' F§ M || C' there are types 4, B such that
DrS My 410z : B.A T+ My § B, and C = [M;/z]B. From Lemma 6.4, by uniqueness of atomic
forms we deduce M, = E,|M]], 0M, >, M 1» hence the result follows by inductive hypothesis. Notice
that head(A’) = head(A).

(1) We must have A 3 C| | type. It is not difficult then to verify that I' -5 Cy | type, and
therefore by Inversion I' b3 M | C. If M is stable for 8, the result follows from (1). Otherwise, by
definition, it is easy to verify M = zN, N; = y;, x € supp(8), 8(z) = X7 : C.E'[M!]. Hence Eyr = o,
Ey = E' are as required.

AL 4A A

o Case:
AFZE[A o AL]:B' B'=A'" ARZB'itype
AFSE[A o AL]: A

Both (1) and (2) follow trivially from inductive hypothesis and type conversion.

O

Theorem 6.12 (Critical Pair Lemma). Let R be a HTRS, if ' +3 M 4 Nyt Aand TS M it Ny A
then either there is o critical pair in R, or there are rewriting sequences I' F3 N,“) i1 N]”H) 0<i<m),

T3 NP BN 0 < i< ny) such that N = Ny, N = N,, N™) = N

Proof. By definition, I' +3 M it Ny, if and only if there are
ApFsl 5t CLeRB: AL ST TR ERINP o aAP]: 4

such that My = E®[8,1,], (N.)y = EP®[8yry], (k= 1,2).
The proof proceeds on induction on the size of the environments E(', E(?). We show some representative
cases:
o EMW =xz: AE" E® = \z: AE®:
Using type conversion, if necessary, we can assume that the type derivations of ("), E®) are:

'3 A:type I‘,a::Al—gEP) III“(,Z-) I—o:A‘l',z)]]:B

'3 A:type 1",.1::A|—'E<E',“)ﬂI‘g-)I—o:Ag)]I:B
I+3 Aa::A.E,lz) [ng) f—o:AE,Z')]l:Ha::A.B

Tz A BV [T Fo: AV |0 A.B
Then My = Az : A.M,, and by Inversion on I', 2 : A F3 E]“)[[Hl hl:Bwehave ',z : AFS M, | B.
Therefore

A=Y B A=Y B

T,z: AR My B ER o] (k=1,2),

and the result follows by inductive hypothesis.
o EW =E" N, E® = EP N
Using type conversion, if necessary, we can assume that the type derivations of E(" E®) are:

PFEEOIM o A I AB THEN:A THIED M Pbo: APz A B THEN:A
TH(E [V o AV N[N/ 2] B THI(EPIE P ho: AP ) N[N/ 2) B
By inversion, My = (h ﬁ) N. Since all rules are of atomic type, it is easy to see that there are
indexes 1; such that

E® =h My ... Miy1 EP Mygr .. M, (B=1,2)

There are two subcases:



i =iy
By inversion on the derivation of I' 5 My | [N/z]B we get T(My, M; ) b5 M;, | A(My, M;,),
and the result follows by induction hypothesis.

RS

Assuming #; < iy, it is easy to verify that

T |"§ (h Af] e .l'\/.’[»,'.,._] El(ll) .ZW,'H.] e ﬂfg?_] Eu) |[927'2]| Affi,-{-l oo d 1,,,) N [A’Y.’L‘]B
IR (h My My EX6im] Mo oo Mooy BD Mo ... M) N A

are well-typed contexts, hence letting
N =N® =My .. My, BP[8ir] Miyir oo Moyoy ED[8370] Moy ... M) N
we have

TFEN, NP4 (k=1,2)

o EM =o:
Then 6,11 = E®)[8,1,]. By Lemma 6.11 we have two possible subcases:
— There is E stable for #; such that I; = E[M,], E® = E(6:, M), 6414 = 6,(E, M,)M..
Then by definition

T I"§< E(9| ,_17\110)11927‘2]',91 > A

is a critical pair.

— There are well-typed environments Ep, 1, , By, and variable 2 € supp(6;) such that 6,1, = Eg,;, [.’I?H]],
M; = y;, 01 (2) = Ny : C.Ep, [0202]), E' = Eg,1,(61,2N)[Es, ]
Let 6] : Ay = T defined as -

() =4 W) vz
" Xy : C.Ep [6ars] y=r,

we want to show that both Ny = &1, and N, = E(?) [6212] both rewrite to 8]ry.
Assume Ay 5 8,(x) : C, let z be a fresh variable, define 87 : A, ST,z:Chby

83 (y) = {91 (y) y#=

z Y=z

By replacing progressively all the occurrences of z in 0, Iy, starting from the occurrencein Eg, i, (9§, N )
with A7 : C.Eg, [82r.], we get a rewrite sequence 7\' ) such that ]\'(") =N, ’V("' V= = #{ly. Simi-
larly, by replacing all the occurrences of z in #7r \uth 27 : C.Fy, [91 ry] we get a rewrite sequence
]\'() such that .’\'(0) [ (2)/ylBir = Na, N.E"Z) = #ry. The result then follows by a single
addmonal rewrite step.

0O

Definition 6.13. Let R be a HTRS, if whenever I' b3 M it N:Aand T H M Rit Ny ¢ A there are
rewriting sequences I' b3 Nm A ’\"(') (0<i<m), '+ ’\f'(z) ’\"( ? (0 € i < ny) such that .’\'( " = Ny,
N, {0 = N, :’\",("‘) = ]\"2(""), R is said to be locally confluent.

Corollary 6.14. If for all critical pairs T F3< M,N >: A of a HTRS R both M and N R-rewrite to a
common term, then R it is locally confluent.
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7. FuUTurRE DEVELOPMENTS

The Critical Pair Lemma gives us a criterion to check for local confluence of a HTRS. As said before, local
confluence assumes a great relevance in presence of termination, since by Newman’s Lemma, it provides a
simple and computationally-effective way to check for confluence. Very recently, in [5] and [12] two methods
of proving the termination of a HTRS have been proposed for simple types; it is our hope that these will
translate to dependent types, and that perhaps the richer type structure will allow to obtain better results.

Another interesting line of research is R-rewriting modulo a (higher-order) equational theory E. In LF,
where the relation <* define a hierarchy of types, it is possible to define a suggestive notion of *multi-staged
completion”: once a terminating HTRS, defined on some set § of type classes, has been checked for local
confluence, it becomes part of the underlying equational theory E modulo over which a new HTRS, defined
of a set § of “higher” type classes (i.e. VA € SIB € §' A <" B, or at least YA€ SVB € &' B 44 A) isin
turn tested for confluence, and so on.
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