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Abstract

In recent years, the amount of computation being invested into machine learning
(ML) and deep learning (DL) training has multiplied by several orders of magnitude.
Under these conditions, elasticity—the ability of a system to dynamically adapt to
changing supply and demand of compute resources over time—is a key ingredient
for efficient resource management. Elasticity has long been proven to improve the
resource utilization, execution performance, and fault tolerance of traditional appli-
cations such as web services and big data processing. However, elastic ML training
is a relatively new area of interest, and faces different challenges from traditional
applications due to ML training’s highly sub-linear resource scalability, diverse exe-
cution patterns and strategies, and dependence between distributed workers.

This thesis steps beyond the existing early work in elastic ML by employing
co-adaptation, i.e. combining both system-level and application-side adaptations, to
better adapt to dynamic compute resources. Although previous frameworks can en-
able elasticity by relying on system-level implementations, they ignore the inherent
resource adaptability of ML training that can be leveraged to better overcome the
aforementioned challenges. We present the design, implementation, and evaluation
of three elastic systems for ML that improve DL training time in shared GPU clus-
ters by 37-50%, enable elasticity for a diverse set of ML training applications, and
reduce the impact of resource failures by 78-95%.
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Chapter 1

Introduction

In the past decade, machine learning (ML) has found unprecedented success in solving practi-
cal problems across diverse application domains, such as recommendation systems [70, 117],
ad-click prediction [107, 153], sentiment analysis [155, 233], object detection [169, 184], and
more. Behind this success is an ever-increasing demand for compute resources, which are lever-
aged to train larger and more complex models on vaster datasets. For example, even to train
a single model, the amount of floating point operations (FLOPs) required has increased by ap-
proximately 10× per year during the period between 2012 to 2019 [19]. Additionally, to obtain
a model of acceptable quality, practitioners often need to train it many times using different
hyper-parameters, either through a manual experimentation process or by leveraging more re-
cent techniques in AutoML, which can increase the compute demand by an order of magnitude
or more [27, 108, 115, 130]. At the same time, the recent advancements in deep learning (DL)
have driven the adoption of specialized hardware accelerators [106] such as GPUs, TPUs, and
FPGAs, which are expensive to obtain and are in limited supply for most organizations who want
to employ ML. As a result, automatic management and efficient utilization of these compute re-
sources is a critical concern for practical applications of ML.

One key enabler of automatic and efficient resource management is elasticity. In this the-
sis, we define elasticity as the ability of a system to dynamically adapt to changing supply and
demand of compute resources over time. Traditional workloads such as serving web applica-
tions [139] and big data processing [50] have an advantage of being inherently receptive to elas-
tic execution. For example, HTTP servers may be added to or removed from an existing web
application freely without affecting each other’s execution or requiring significant coordination.
This ability allows web applications hosted in the cloud to quickly respond to high user demand
by scaling out to more compute resources, and to save cost during periods of low user demand
by scaling in to fewer compute resources. Big data processing applications that perform trans-
formations on independent data records may recover from worker failures (i.e. unexpected loss
of compute resources) by simply re-computing the subset of data records which were lost due to
the failure [227]. Overall, these applications that traditionally occupied clouds and datacenters
are well supported by mature elastic frameworks that enable efficient resource management.

Comparatively, elasticity for machine learning and deep learning training is a more recent
area of interest. While the traditional settings of academic and high-performance computing
in which ML models have long been trained do not present strong requirements for elasticity,
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the opposite is true in production computing environments such as clouds and datacenters in
which ML is becoming increasingly prevalent. In such computing environments, the supply and
demand of compute resources are often dynamic and cost-conscious resource management is key
to the sustainable usage of an organization’s financial budget.

However, elasticity for ML training poses different challenges from traditional workloads
such as web applications and big data processing, and are under-addressed by existing elastic
and resource management infrastructure. These challenges include:

1. Highly sub-linear scalability. Training performance does not increase in proportion to
the amount of compute resources, and rapidly falls behind optimal linear scalability. The
threshold for the amount of resources that can be efficiently utilized varies greatly between
different training tasks, and depends on factors like the hardware performance, the model
being trained, and the particular training configurations used.

2. Diverse execution strategies. Different models often require different training algorithms,
each of which may employ different strategies for optimizing distributed execution, such
as computation scheduling, inter-node synchronization, and access to shared state. Fur-
thermore, some strategies may assume the number of distributed workers is fixed, which
makes them challenging to apply in elastic settings.

3. Dependence between workers. During training, distributed workers communicate fre-
quently with each other to exchange model parameter state and to synchronize training
progress. Extra workers may not be freely added or removed without affecting the progress
of the remaining workers. Therefore, active coordination between all active workers is of-
ten required to handle elasticity and failure recovery.

Recent works enable elasticity for ML by designing systems with ML workloads in mind,
and are shown to improve expected training time and cluster resource utilization. For example,
Proteus [83], Flint [194], and TR-Spark [220] used pre-emptible instances in public clouds such
as the AWS spot market to reduce the cost of big-data analytics and machine learning training.
Pre-emptible instances may be revoked by the cloud at any time, which is overcome by these
systems through automatic failure recovery and the ability to continue training using fewer re-
sources. By employing elasticity with pre-emptible instances, Proteus showed that the dollar cost
of ML training can be reduced by 85% and training time can be reduced by 37% in comparison
to using a static on-demand cluster.

Others including Huang et al. [93] and Or et al. [164] investigated the problem of auto-scaling
for machine learning and deep learning, respectively. In this setting, an automatic policy decides
the amount of compute resources to be used by a training job that best balances between training
performance and resource efficiency, and dynamically applies new resource configurations dur-
ing training. In particular, Or et al. showed that automatic auto-scaling can reduce the training
time of deep learning models by up to 45% and the GPU-time by up to 85% in comparison to a
fixed amount of resources that might be improperly chosen by the user.

Finally, elasticity has been extensively applied in cluster resource scheduling. In this setting,
deep learning models are trained using compute clusters shared by multiple users and/or training
jobs, and a cluster resource scheduler is responsible for assigning compute resources to each job
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in a way that optimizes for cluster-wide objectives such as minimizing average training time,
maximizing resource utilization, or ensuring scheduling fairness. Elasticity increases flexibility
for the scheduler to dynamically adapt the resource allocations to better fit each training job, or to
fill idle resources when available. SLAQ [231], Gandiva [214], and Optimus [170] are examples
of recent works that leverage elasticity to improve cluster resource scheduling for ML and DL.

Although the applications of elasticity are diverse, nearly all existing works view elasticity
as being solely the responsibility of the execution system, which aims to preserve the operations
of the ML training application with perfect fidelity while transparently adapting to dynamic
resources. This approach simplifies the problem so that elasticity can be achieved through tradi-
tional system-level techniques. However, it fails to leverage the inherent resource elasticity and
adaptability that may be present within the ML training algorithms themselves, which can be the
key to solving the aforementioned challenges.

For example, the best “batch size” (an application-side parameter) for deep learning differs
when the model is trained using different numbers of GPUs, so adapting the batch size when the
number of GPUs changes can enable faster training and better resource utilization (Chapter 3).
Furthermore, ML training algorithms are naturally resilient to small calculation errors, which are
“washed away” with further training. Simply allowing calculation errors to occur when faults
occur can be a more efficient method of recovery from resource failures (Chapter 5).

One major contribution of this thesis is the formulation of goodput, a measure of training
performance that incorporates both system throughput and statistical efficiency. The goodput
can be affected by both system-level choices and application-side choices, making it possible
to jointly co-optimize ML and DL training in both dimensions. For example, a choice for the
batch size that maximizes system throughput may in fact harm statistical efficiency, leading to
an overall decrease in training performance. By using the goodput as the optimization target,
we show that deep learning training can be more automatic, more efficient, and fairer in shared-
resource clusters (Chapter 3).

1.1 Thesis Statement
In this thesis, we step beyond existing work and tackle elastic ML with co-adaptation, which
combines both system-level adaptations as well as application-side adaptations to manage the
dynamic supply and demand of compute resources. We show that ML training also possesses
inherently elastic properties, different from those in traditional applications, that can be leveraged
to improve their execution in elastic environments. This thesis makes the following statement:

Thesis statement: Elasticity for ML training can be achieved through co-adaptation,
i.e. by jointly applying system-level and application-side adaptations. Doing so en-
ables better resource utilization, rapid recovery from failures, and automatic config-
uration of ML training applications in dynamic-resource environments.

The thesis statement above will be supported by evidence from several case studies involving the
design, implementation, and evaluation of several new elastic systems for ML. In particular,

1. Pollux: Co-adaptive Cluster Scheduler for Deep Learning Training (Chapter 3).
Pollux is a novel cluster resource scheduler that combines traditional system-level elastic-
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ity with adaptive batch sizes and learning rates. By co-optimizing these inter-dependent
factors at both the per-job granularity and at the cluster-wide granularity, Pollux improves
DL training scalability and cluster resource utilization. Pollux reduces average DL training
time by 37%–50% relative to state-of-the-art DL schedulers, even when when compared
against idealized baselines. With Pollux, we introduce the notion of goodput, a measure
of DL training performance that combines system throughput and statistical efficiency,
enabling the co-adaptation of DL systems and algorithms.

2. Litz: Elastic Framework for High-Performance Machine Learning (Chapter 4).
Litz brings the diverse execution strategies of distributed ML training under a unified
programming abstraction that decouples the application from its underlying compute re-
sources. Training workloads using Litz can be transparently re-balanced across a dynamic
number of machines (§4.5.1), or automatically utilize external memory when low on main
memory (§4.8). At the same time, Litz provides a flexible programming model that sup-
ports a diverse set of performance enhancements employed by distributed ML, such as
those required by a highly-optimized implementation of HDBSCAN clustering (§4.7). Al-
though Litz is not co-adaptive by itself, it enables new co-adaptive frameworks to be built
upon its foundations, which is demonstrated in Chapter 5.

3. SCAR: Fault Tolerance by Exploiting Iterative-Convergent Training (Chapter 5).
Finally, we demonstrate how ML training algorithms themselves may naturally adapt to
faults and failures in their execution environment, resulting in a co-adaptive framework
for fault tolerance. Starting from the general observation that ML training is iterative-
convergent, we develop a theoretical framework to quantify the effects of calculation errors
during training. We then use this framework to derive a worst-case upper bound on the cost
of arbitrary perturbations to model parameters during training and to design new strategies
for checkpoint-based fault tolerance. Our system, SCAR, is built upon Litz and can reduce
the cost of partial failures by 78%–95% when compared with traditional checkpoint-based
fault tolerance across a variety of ML models and training algorithms, providing near-
optimal performance in recovering from failures.
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Chapter 2

Background

Distributed machine learning employs a diverse set of training algorithms and techniques which
result in diverse requirements for the underlying execution and resource management systems.
This chapter reviews the background relevant to this thesis, starting with foundational properties
shared by most distributed ML algorithms, followed by specific examples for deep learning and
other classical models.

2.1 Machine Learning from First Principles

While ML algorithms come in many forms, nearly all of them share the following commonalities.
First, they possess an objective (or loss) function L(w;D) defined over the model parameters (or
weights) w and input (or training) data D, which measures how well the model parameters w fit
the data D. Second, their goal is to find a value of w that optimizes the objective L(w;D) using
an iterative-convergent training algorithm that repeatedly executes an update equation, which
gradually moves w towards an optimal value. These update equations follow the generic form

w(t) = f(w(t−1);D), (2.1)

where w(t) is the vector (or matrix) of model parameters at iteration t and f is a function that
computes w(t) using the previous model parameters w(t−1) and the input (training) dataD. Often,
the function f applies an additive update to the model parameters so that

w(t) = w(t−1) + ∆(w(t−1);D), (2.2)

where ∆ is a function that computes an additive update to the parameters using their previous
values w(t−1) and the input (training) data D.

2.1.1 Distributed Training with Data Parallelism

Data-parallelism is a popular strategy for distributing ML training algorithms. Arising from the
iid (independent and identically distributed) assumption on the input data, the update function ∆
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(a) Example parameter server architecture for data-
parallel ML. Workers read model parameters from
and send updates to the parameter servers, which
store the partitioned model parameters.
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(b) Example collective (ring topology) all-reduce
for data-parallel ML. Workers store a copy of all
model parameters and send updates to each other in
a cyclic pattern.

Figure 2.1: Examples of parameter server and collective all-reduce for data-parallel ML.

can often be decomposed as

∆(w(t−1);D) =
P∑
i=1

∆i(w
(t−1);Di), (2.3)

where D1, . . . ,DP partition the input data D and each ∆i computes a partial update using Di
which, when aggregated, form the final update ∆. This allows each update to be calculated
in a data-parallel fashion with input data and update calculations distributed across a cluster of
workers.

Parameter Server

A popular approach for implementing data-parallel machine learning is by using the parameter
server architecture [51, 91, 132, 211]. Typically, implementations consist of two types of nodes—
workers and parameter servers. The input data is partitioned across the worker nodes, which
calculate partial updates ∆i and send them to the parameter server nodes. The model parameters
are partitioned across the parameter server nodes, which apply the partial updates and send the
updated model parameters w(t) back to the worker nodes.

The parameter server architecture naturally arises from the update equation of machine learn-
ing algorithms. It can scale to large models by partitioning the model parameters between several
parameter server nodes [16, 132, 224]. It also provides flexibility of access to the worker nodes,
which enables the use of relaxed consistency models (See §2.2.2) that improve training through-
put [91, 132, 211].
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Collective All-Reduce

Another popular approach for implementing data-parallel machine learning is by using a collec-
tive all-reduce operation. Under this setting, each worker node holds a complete replica of the
model parameters, so no special parameter server nodes are required. Instead, the workers aggre-
gate the partial updates ∆i amongst themselves and apply the final ∆ to their own replica of the
model parameters. The aggregation procedure can be done according to several different commu-
nication topologies and its optimization is the subject of much research [37, 167, 178, 179, 202].

Compared to the parameter server architecture, collective all-reduce operations have a long
history of applications in high-performance computing. Publicly available implementations can
be highly optimized in terms of both their algorithmic efficiency as well as their ability to lever-
age hardware-specific capabilities [163, 206]. However, they may be less well-equipped to sup-
port large models or relaxed consistency models as parameter servers.

2.2 Example ML Applications
In this section, we review three different example ML applications to highlight their algorith-
mic diversity and how they each fit into the frameworks of iterative and data-parallel training
described in the previous sections. These three applications are also used throughout this thesis
as evaluation workloads for the systems to be presented.

2.2.1 Deep Learning and Stochastic Gradient Descent
Deep learning (DL) is one specialty within ML that has exploded in popularity in recent years,
finding unprecedented success in applications such as computer vision and natural language
processing. Although deep learning models can be diverse in size, they still obey the structures
laid out in §2.1 and can be distributed with data parallelism.

Training a deep learning model typically involves minimizing a loss function of the form

L(w) =
1

|D|
∑
xi∈D

`(w, xi), (2.4)

where w ∈ Rd are the model parameters to be optimized, D is the training dataset, xi is an
individual sample in D, and ` is the loss evaluated at a single sample. The loss function can
be minimized using stochastic gradient descent (SGD) or its variants like AdaGrad [60] and
Adam [114]. SGD repeatedly applies the following update until the loss converges to a stable
value:

w(t+1) = w(t) − η(t)ĝ(t) (2.5)

η(t) is known as the learning rate, which is a scalar that controls the magnitude of each update,
and ĝ(t) is a stochastic gradient estimate of the loss function L, computed using backpropaga-
tion [185] on a random mini-batchM(t) ⊂ X of the training data:

ĝ(t) =
1

M

∑
xi∈M(t)

∇`(w(t), xi). (2.6)
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Figure 2.2: Example of deep learning training using data-parallel SGD on 3 GPUs. Local gra-
dients are computed from a minibatch of the training dataset [53], then are averaged across all
GPUs and used to update the model parameters.

The learning rate η(t) and batch size M = |M(t)| are hyper-parameters which are typically
chosen prior to training.

Data-parallel execution

DL models are often trained in the distributed setting using synchronous data-parallelism. The
model parameters w(t) are replicated across a set of distributed GPUs 1, . . . , K, and each mini-
batchM(t) is divided into equal-sized partitions per node,M(t)

1 , . . . ,M(t)
K . Each GPU k com-

putes a local gradient estimate ĝ(t)
k using its own partition:

ĝ
(t)
k =

1

m

∑
xi∈M

(t)
k

∇`(w(t), xi), (2.7)

where m = |M(t)
k | is the per-GPU batch size. These local gradient estimates are then averaged

across all GPUs to obtain the desired ĝ(t) as defined by Eqn. 2.6. Finally, each node applies the
same update using ĝ(t) to obtain the new model parameters w(t+1).

The batch size and learning rate are tightly related to DL training performance in elastic
settings. When the number of GPUs is dynamically increased, the batch size and learning rate
should also be increased to achieve high system throughput. When the number of GPUs is
dynamically decreased, the batch size and learning rate should also be decreased to achieve high
statistical efficiency. The precise trade-offs between the number of GPUs, batch size, learning
rate, and training performance change dynamically during training.

Chapter 3 presents Pollux, which improves elastic resource scheduling for DL training in
shared compute clusters by co-adaptively tuning the cluster-wide resource allocations with the
per-job batch sizes and learning rates.

8



2.2.2 Multinomial Logistic Regression and Staleness
Logistic Regression is a classical linear model which is widely used for classification problems.
Although a relatively simple model, it has found success in a wide spectrum of domains includ-
ing online advertisement [153], medical analysis [22], and fraud detection [168]. Multinomial
Logistic Regression (MLR) [118] extends logistic regression into the multi-label setting, where
it has found applications in computer vision [121] and natural language processing [136]. Fur-
thermore, many deep learning classifiers today use MLR as their final classification layer that
outputs their predictions.

Given training examples asD-dimensional feature vectors x1, . . . , xN with corresponding la-
bels y1, . . . , yN belonging toK classes, MLR learnsK D-dimensional weight vectorsw1, . . . , wK
so that the predicted probability that an unlabeled data sample xi belongs to class c is equal to

Pr(yi = c) =
exp(w>c xi)∑K
k=1 exp(w>k xi)

MLR can be trained by minimizing its cross-entropy loss function using a variety of different
optimization algorithms [52, 135, 236]. However, in the distributed setting, MLR is commonly
trained using SGD (in a similar fashion as in §2.2.1) due to its ability to scale more efficiently to
large training datasets.

Training with Staleness

One advantage of MLR over deeper models is its higher tolerance to staleness during train-
ing [48]. In this setting, distributed workers observing stale model parameters that might not
reflect the most recent updates from every other worker. Tolerance to staleness can be leveraged
by training systems to improve distributed execution, such as mitigating the impact of stragglers
by accommodating delayed model updates [43] or optimizing the use of network bandwidth by
prioritizing important model updates [211].

The amount of staleness experienced by the training algorithm can be controlled using a con-
sistency model. Whereas synchronous training — the most commonly used consistency model
for deep learning (§2.2.1) — does not permit staleness, asynchronous training [51] permits any
amount of staleness, and stale-synchronous training [91] permits staleness up to a maximum
number of iterations s. An example of the Stale-Synchronous Parallel (SSP) consistency model
is illustrated in Figure 2.3.

Chapter 4 presents a framework for machine learning that is both elastic and can support
flexible consistency models that enable staleness during training. Chapter 5 investigates the
underlying error tolerance property of many ML training algorithms that gives rise to staleness
tolerance, with applications to recovery from unexpected faults and failures.

2.2.3 Latent Dirichlet Allocation and Gibbs Sampling
Latent Dirichlet Allocation (LDA) is a widely-used Bayesian probabilistic model for topic mod-
eling [30] that can automatically discover the relevant topics of each document in a text corpus.
LDA assumes that the appearance of each word in each document is due to a latent “topic” in that
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Figure 2.3: Example of the Stale-Synchronous Parallel (SSP) consistency model [91]. Node 1
may or may not observe the updates to model parameters made by the other nodes from iteration
3 onwards.

document, and learns both the mixture of topics for each document and the topic assignments of
each word. Suppose there are D documents, K topics, V distinct words across all documents,
and letting wdi denote the i-th word in document d. Three sets of parameters are learned:

1. U , a D ×K “document-topic” matrix in which Udk counts the number of words in docu-
ment d that are assigned to topic k.

2. W , a V × K “word-topic” matrix in which Wvk counts the number of times word v is
assigned to topic k across all documents.

3. zdi, the topic assigned to each wdi.

LDA is commonly trained using the Gibbs sampling algorithm [77], which repeatedly iterates
over all zdi, assigning each a new value randomly sampled from a distribution computed using
the d-th row of U and the wdi-th row of W . The matrices U and W are updated to reflect this
change after each new value is assigned.

Distributed LDA Training

In the distributed setting, it is desirable to process many zdi elements in parallel to better utilize
distributed workers. However, naive parallelization can hurt convergence if it ignores the depen-
dency structures inherent in the LDA model. In particular, processing zd1i1 and zd2i2 in parallel
will concurrently modify the same row of U if d1 = d2, or the same row of W if i1 = i2.

One way to reduce update conflicts is to divide the rows of W into B blocks, each assigned
to a different worker [113]. Each worker sequentially processes the zdi corresponding to its local
documents and its currently assigned block of W . The block assignments are rotated B times so
that each worker updates all of W . Figure 2.4 illustrates this “block-rotation” schedule.
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Figure 2.4: “Block-rotation” update schedule for training LDA with Gibbs sampling. The vo-
cabulary is partitioned into 4 blocks B1, . . . , B4 and each of 4 workers process disjoint blocks at
any given time.

Chapter 4 presents a framework for machine learning that is both elastic and can support
fine-grained model update scheduling required by LDA and other ML training algorithms.
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Chapter 3

Pollux: Improving Cluster Scheduling for
Deep Learning with Co-adaptation

Many organizations today train deep learning models using compute clusters shared by multiple
users and/or training jobs. In this setting, a cluster resource scheduler is responsible for assigning
compute resources to each job in a way that optimizes for cluster-wide objectives such as min-
imizing average training time, maximizing resource utilization, or ensuring scheduling fairness.
Therefore, cluster schedulers play a critical role in the performance and efficiency of resource
management for deep learning.

This chapter presents Pollux, which improves scheduling in deep learning clusters through
co-adaptation of inter-dependent factors both at the per-job level and at the cluster-wide level.
Most existing cluster schedulers expect users to specify the number of resources for each job,
often leading to inefficient resource use. Some recent schedulers choose job resources for users,
but do so without awareness of how DL training can be re-optimized to better utilize the provided
resources. Pollux simultaneously considers both aspects. By monitoring the status of each job
during training, Pollux models how their goodput (a metric we introduce to combine system
throughput with statistical efficiency) would change by adding or removing resources. Pollux
dynamically (re-)assigns resources to improve cluster-wide goodput, while respecting fairness
and continually optimizing each DL job to better utilize those resources.

In experiments with real DL jobs and with trace-driven simulations, Pollux reduces average
job completion times by 37–50% relative to state-of-the-art DL schedulers, even when they are
provided with ideal resource and training configurations for every job. Based on the observation
that the statistical efficiency of DL training can change over time, we also show that Pollux can
reduce the cost of training large models in cloud environments by 25%. Using goodput, Pollux
promotes fairness among DL jobs competing for resources, based on a more meaningful measure
of useful job progress. Pollux is implemented and publicly available as part of an open-source
project at https://github.com/petuum/adaptdl.

The contents of this chapter were previously published in [177].
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3.1 Introduction to Cluster Scheduling for DL
Deep learning (DL) training has rapidly become a dominant workload in many shared resource
environments such as datacenters and the cloud. DL jobs are resource-intensive and long-
running, often demanding distributed execution using expensive hardware devices (eg. GPUs
or TPUs) in order to complete within reasonable amounts of time. To meet this resource de-
mand, dedicated clusters are often provisioned for deep learning [101, 215], with a scheduler
that mediates resource sharing between many competing DL jobs.

Existing schedulers require users to manually configure their jobs, which if done improperly,
can greatly degrade training performance and resource efficiency. For example, allocating too
many GPUs may result in long queuing times and inefficient resource usage, while allocating
too few GPUs may result in long runtimes and unused resources. Such decisions are especially
difficult to make in a shared-cluster setting, since optimal choices are dynamic and depend on
the cluster load while a job is running.

Even though recent elastic schedulers can automatically select an appropriate amount of
resources for each job, they do so blindly to inter-dependent training-related configurations that
are just as important. For example, the batch size and learning rate of a DL job influence the
amount of computation needed to train its model. Their optimal choices vary between different
DL tasks and model architectures, and they have strong dependence on the job’s allocation of
resources.

The amount of resources, batch size, and learning rate are difficult to configure appropriately
without expert knowledge about both the cluster hardware performance and DL model architec-
ture. Due to the inter-dependence between their optimal values, they should be configured jointly
with each other. Due to the dynamic nature of shared clusters, their optimal values may change
over time. This creates a complex web of considerations a user must make in order to configure
their job for efficient execution and resource utilization.

How can a cluster scheduler help to automatically configure user-submitted DL jobs? Fun-
damentally, a properly-configured DL job strikes a balance between two often opposing desires:
(1) system throughput, the number of training examples processed per wall-clock time, and (2)
statistical efficiency, the amount of progress made per training example processed.

System throughput can be increased by increasing the batch size, as illustrated in Fig. 3.1a.
A larger batch size enables higher utilization of more compute resources (e.g., more GPUs). But,
even with an optimally-retuned learning rate, increasing the batch size often results in a decreased
statistical efficiency [150, 193]. For every distinct allocation of GPUs, there is potentially a
different batch size that best balances increasing system throughput with decreasing statistical
efficiency, as illustrated in Fig. 3.1b. Furthermore, how quickly the statistical efficiency decreases
with respect to the batch size depends on the current training progress. A job in a later stage of
training can potentially tolerate 10x or larger batch sizes without degrading statistical efficiency,
than earlier during training [150].

Looking Ahead

The rest of this chapter describes Pollux, a hybrid resource scheduler that co-adaptively allocates
resources and tunes the batch size and learning rate for all DL jobs in a shared cluster. Pollux
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(a) Job scalability (and thus resource
utilization) depends on the batch
size.

(b) The most efficient batch size de-
pends on the allocated resources and
stage of training.

Figure 3.1: Trade-offs between the batch size, resource scalability, and stage of training
(ResNet18 on CIFAR-10). The learning rate is separately tuned for each batch size.

achieves this by jointly managing several system-level and training-related parameters, including
the number of GPUs, co-location of workers, per-GPU batch size, gradient accumulation, and
learning rate scaling. In particular:

• We propose a formulation of goodput for DL jobs, which is a holistic measure of training
performance that takes into account both system throughput and statistical efficiency.

• We show that a model of a DL job’s goodput can be learned by observing its throughput
and statistical behavior during training, and used for predicting the performance given
different resource allocations and batch sizes.

• We design and implement a scheduling architecture that uses such models to configure
the right combination of resource allocation and training parameters for each pending and
running DL job. This includes locally tuning system-level and training-related parameters
for each DL job, and globally optimizing cluster-wide resource allocations. The local and
global components actively communicate and cooperate with each other, operating based
on the common goal of goodput maximization.

• We evaluate Pollux on a cluster testbed using a workload derived from a Microsoft clus-
ter trace. Compared with recent DL schedulers, Tiresias [78] and Optimus [170], Pollux
reduces the average job completion time by up to 73%. Even when all jobs are manually
tuned beforehand, Pollux reduces the average job completion time by 37%–50%. At the
same time, Pollux improves finish-time fairness [146] by 1.5×–5.4×.

• We show that, in cloud environments, using goodput-driven auto-scaling based on Pollux
can potentially reduce the cost of training large models by 25%.
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3.2 Background on Distributed DL Training Performance
An introduction to DL training is presented in §2.2.1. This section presents background on DL
training performance in terms of its system throughput and statistical efficiency.

3.2.1 System Throughput
The system throughput of DL training can be defined as the number of training samples pro-
cessed per unit of wall-clock time. When a DL job is distributed across several nodes, its sys-
tem throughput is determined by several factors, including (1) the allocation and placement of
resources (e.g. GPUs) assigned to the job, (2) the method of distributed execution and synchro-
nization, and (3) the batch size used by the SGD algorithm.

The run-time of each SGD training iteration is determined by two main components. First,
the time spent computing each GPU’s local gradient estimate ĝ(t)

k , which we denote by Tgrad.
Second, the time spent averaging ĝ(t)

k (e.g. using collective all-reduce [166, 192]) and/or syn-
chronizing w(t) (e.g. using parameter servers [39, 51, 91, 175]) across all GPUs, which we
denote by Tsync. Tsync is influenced by the size of the gradients, performance of the network, and
is typically shorter when the GPUs are co-located within the same physical node or rack rather
than spread across different nodes or racks.

Limitations due to the batch size

When the number of GPUs is increased, Tgrad decreases due to a smaller per-GPU batch size.
On the other hand, Tsync, which is typically independent of the batch size, remains unchanged.
By Amdahl’s Law, no matter how many GPUs are used, the run-time of each training iteration is
lower bounded by Tsync. To overcome this scalability limitation, a common strategy is to increase
the batch size. Doing so causes the local gradient estimates to be computed over more training
examples and thereby increasing the ratio of Tgrad to Tsync. As a result, using a larger batch size
enables higher system throughput when scaling to more GPUs in the synchronous data-parallel
setting.

3.2.2 Statistical Efficiency
The statistical efficiency of DL training can be defined as the amount of training progress made
per unit of training data processed, influenced by parameters such as batch size or learning
rate; for example, a larger batch size normally decreases the statistical efficiency. The ability to
predict statistical efficiency is key to improving said statistical efficiency, because we can use the
predictions to better adapt the batch sizes and learning rates.

Gradient noise scale

Previous work [105, 150] relate the statistical efficiency of DL training to the gradient noise scale
(GNS), which measures the noise-to-signal ratio of the stochastic gradient. A larger GNS means
that training parameters such as the batch size and learning rate can be increased to higher values
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with relatively less reduction of the statistical efficiency. The GNS can vary greatly between
different DL models [73]. It is also non-constant and tends to gradually increase during training,
by up to 10× or more [150]. Thus, it is possible to attain significantly better statistical efficiency
for large batch sizes later on during training.

The gradient noise scale mathematically captures an intuitive explanation of how the batch
size affects statistical efficiency. When the stochastic gradient has low noise, adding more train-
ing examples to each mini-batch does not significantly improve each gradient estimate, which
lowers statistical efficiency. When the stochastic gradient has high noise, adding more training
examples to each mini-batch reduces the noise of each gradient estimate, which maintains high
statistical efficiency. Near convergence, the stochastic gradients have relatively lower signal than
noise, and so larger batch sizes can be more useful later in training.

Learning rate scaling

When training with an increased total batch size M , the learning rate η should also be increased,
otherwise the final trained model quality/accuracy can be significantly worse [193]. How to
increase the learning rate varies between different models and training algorithms (e.g. SGD,
Adam [114], AdamW [140]), and several well-established scaling rules may be used. For ex-
ample, the linear scaling rule [76], which prescribes that η be scaled proportionally with M , or
the square-root scaling rule [120, 222] (commonly used with Adam), which prescribes that η be
scaled proportionally with

√
M . More recent scaling rules such as AdaScale [105] may scale the

learning rate adaptively during training.
In addition to decreasing statistical efficiency, using large batch sizes may also degrade the

final model quality in terms of validation performance [73, 111, 197], although the reasons be-
hind this effect are not completely understood at the time of this thesis. However, for each of the
learning rate scaling rules mentioned above, there is usually a problem-dependent range of batch
sizes that achieve similar validation performances. Within these ranges, the batch size may be
chosen more freely without significantly degrading the final model quality.

3.2.3 Existing DL Schedulers

We broadly group existing DL schedulers into two categories, to put Pollux in context. First, non-
scale-adaptive schedulers are agnostic to the performance scalability of DL jobs with respect
to the amount of allocated resources. For example, Tiresias [78] requires users to specify the
number of GPUs at the time of job submission, which will be fixed for the lifetime of the job.
Gandiva [214] also requires users to specify number of GPUs, but enhances resource utilization
through fine-grained time sharing and job packing. Although Gandiva may dynamically change
the number of GPUs used by a job, it does so opportunistically and not based on knowledge of
job scalability.

Second, scale-adaptive schedulers automatically decide the amount of resources allocated to
each job based on how well they can be utilized to speed up the job. For example, Optimus [170]
learns a predictive model for the system throughput of each job given various amounts of re-
sources, and optimizes cluster-wide resource allocations to minimize the average job completion
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time. SLAQ [231], which was not evaluated on DL, uses a similar technique to minimize the av-
erage loss values for training general ML models. Gavel [158] goes further by scheduling based
on a throughput metric that is comparable across different accelerator types.1 AntMan [215]
uses dynamic scaling and fine-grained GPU sharing to improve cluster utilization, resource fair-
ness, and job completion times. Themis [146] introduces the notion of finish-time fairness, and
promotes fairness between multiple DL applications with a two-level scheduling architecture.

Crucially, existing schedulers are agnostic to the statistical efficiency of DL training and the
inter-dependence of resource decisions and training parameters. Pollux explicitly co-adapts these
inter-dependent values to improve goodput for DL jobs.

3.3 The Goodput of DL Training and Pollux
In this section, we define the goodput2 of DL jobs, which is a measure of training performance
that takes into account both system throughput and statistical efficiency. We then describe how
the goodput can be measured during training and used as a predictive model, which is leveraged
by Pollux to jointly optimize cluster-wide resource allocations and batch sizes.

Definition 3.3.1. (Goodput) The goodput of a DL training job at iteration t is the product between
its system throughput and its statistical efficiency at iteration t,

GOODPUTt(?) = THROUGHPUT(?)× EFFICIENCYt (M(?)) , (3.1)

where ? represents any configuration parameters that jointly influence the throughput and batch
size during training, and M is the total batch size summed across all allocated GPUs.

While the above definition is general across many training systems, we focus on three con-
figuration parameters of particular impact in the context of efficient resource scheduling, i.e.
? = (a,m, s), where:

• a ∈ ZN : the allocation vector, where an is the number of GPUs allocated from node n.

• m ∈ Z: the per-GPU batch size.

• s ∈ Z: number of gradient accumulation steps (§3.3.2).

The total batch size is then defined as

M(a,m, s) = SUM(a)×m× (s+ 1).

We note that while THROUGHPUT is affected by the resource allocation, per-GPU batch size, and
the number of gradient accumulation steps, EFFICIENCYt is only affected by the total batch size
M . Thus, M is the key parameter considered by Pollux that affects both the system throughput
and statistical efficiency.

1Pollux’s current throughput model does not consider accelerator heterogeneity. We believe that extending with
Gavel’s metric would allow Pollux to co-adapt for goodput in heterogeneous DL clusters.

2Our notion of goodput for DL is analogous to the traditional definition of goodput in computer networks, ie.
the useful portion of throughput as benchmarked by training progress per unit of wall-clock time.
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Figure 3.2: Validation metric vs training progress for all models in Table 3.1 using three different
batch sizes: M0, an intermediate batch size, and the max batch size limit we set for each DL task.
Metrics are as defined in Table 3.1 except for YoloV3 for which validation loss is shown.

Pollux’s approach

An initial batch size M0 and learning rate (LR) η0 are selected by the user when submitting their
job. Pollux will start each job using a single GPU, m = M = M0, s = 0, and η = η0. As the
job runs, Pollux profiles its execution to learn and refine predictive models for both THROUGHPUT

(§3.3.2) and EFFICIENCY (§3.3.1). Using these predictive models, Pollux periodically re-tunes
(a,m, s) for each job, according to cluster-wide resource availability and performance (§3.4.2).

EFFICIENCYt is measured relative to the initial batch sizeM0 and learning rate η0, and Pollux
only considers batch sizes that are at least the initial batch size, ie. M ≥ M0. In this scenario,
EFFICIENCYt(M) is a fraction (between 0 and 1) relative to EFFICIENCYt(M0). Therefore, good-
put can be interpreted as the portion of the throughput that is useful for training progress, being
equal to the throughput if and only if perfect statistical efficiency is achieved.

Plug-in Learning Rate Scaling

Recall from §3.2.2 that different training jobs may require different learning rate scaling rules
to adjust η in response to changes in M . In order to support a wide variety of LR scaling rules,
including state-of-the-art rules such as AdaScale [105], Pollux provides a plug-in interface that
can be implemented using a function signature

SCALE LR(M0,M) −→ λ.

19



(a) ImageNet (b) YoloV3 (c) DeepSpeech2

(d) BERT (fine-tune) (e) CIFAR10 (f) Recommendation

Figure 3.3: Measured statistical efficiency vs. training progress using two different batch sizes.
Training progress (x-axis) in the top two rows is shown in terms of “statistical epochs”, defined
as M
|X|
∑

t EFFICIENCYt(M) where |X| is the size of the training dataset.
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(a) ImageNet (b) YoloV3 (c) DeepSpeech2

(d) BERT (fine-tune) (e) CIFAR10 (f) Recommendation

Figure 3.4: Measured EFFICIENCYt vs. predicted EFFICIENCYt using a range of batch sizes (log-
scaled), using ϕt measured using the median batch size from each range, during an early-training
epoch (roughly 1/8th of the way through training).
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SCALE LR is called before every model update step, and λ is used by Pollux to scale the learning
rate. The implementation of SCALE LR can utilize metrics collected during training, such as the
gradient noise scale. Using this interface, one can implement rules including AdaScale, square-
root scaling [120], linear scaling [76] and LEGW [222].

3.3.1 Modeling Statistical Efficiency
We model EFFICIENCYt(M) as the amount of progress made per training example using M ,
relative to using M0. For SGD-based training, this quantity can be expressed in terms of the
gradient noise scale (GNS) [150]. To support popular adaptive variants of SGD like Adam [114]
and AdaGrad [210], we use the pre-conditioned gradient noise scale (PGNS), derived by closely
following the original derivation of the GNS (“simple” noise scale in [150]) starting from pre-
conditioned SGD3 rather than vanilla SGD. The PGNS, which we denote by ϕt, is expressed
as

ϕt =
tr(PΣP T )

|Pg|2
, (3.2)

where g is the true gradient, P is the pre-conditioning matrix of the adaptive SGD algorithm, and
Σ is the covariance matrix of per-example stochastic gradients. The PGNS is a generalization
of the GNS and is mathematically equivalent to the GNS for the special case of vanilla SGD. A
detailed derivation of ϕt can be found in Appendix A.1.

Similar to the GNS (Appendix D of [150]), it takes 1 + ϕt/M training iterations to make a
similar amount of training progress across different batch sizes M . Therefore, we can use the
PGNS ϕt to define a concrete expression for EFFICIENCYt(M) as

EFFICIENCYt(M) =
ϕt +M0

ϕt +M
. (3.3)

Intuitively, Eqn. 3.3 measures the contribution from each training example to the overall
progress. If EFFICIENCYt(M) = E, then (1) 0 < E ≤ 1, and (2) training using batch size
M will need to process 1/E times as many training examples to make the same progress as
using batch size M0. During training, Pollux estimates ϕt, then uses Eqn 3.3 to predict the
EFFICIENCYt at different batch sizes. The measured value of ϕt varies according to the training
progress at iteration t, thus EFFICIENCYt(M) reflects the lifetime-dependent trends exhibited by
the true statistical efficiency.

Fig. 3.2 shows the validation metrics on a held-out dataset for a variety of DL training tasks
(details in Table 3.1) versus their training progress. “Statistical epochs”4 is the number of train-
ing iterations normalized by EFFICIENCYt so that each statistical epoch makes theoretically, as
projected by our model, the same training progress across different batch sizes. Thus, the degree
of similarity between validation curves at different batch sizes is an indicator for the accuracy of
EFFICIENCYt as a predictor of actual training progress.

3Pre-conditioned SGD optimizes L(Pw) instead of L(w), where P is known as a pre-conditioning matrix.
Adaptive variants of SGD such as Adam and AdaGrad may be viewed as vanilla SGD (with momentum) applied
together with a particular pre-conditioning matrix P .

4Similar to the notion of “scale-invariant iterations” defined in [105].
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Although there are differences in the validation curves for several DL tasks (especially in
earlier epochs), they achieve similar best values across the different batch sizes we evaluated
(±1% relative difference for all tasks except DeepSpeech2 at ±4%). We note that these margins
are within the plateau of high-quality models expected from large-batch training [149].

Fig. 3.3 and Fig. 3.4 show the measured and predicted EFFICIENCYt during training and
for a range of different batch sizes. In general, larger batch sizes have lower EFFICIENCYt
early in training, but close the gap later on in training. The exceptions being BERT, which is
a fine-tuning task starting from an already pre-trained model, and recommendation, which uses
a much smaller and shallower model architecture than the others. How EFFICIENCYt changes
during training varies from task to task, and depends on specific properties like the learning
rate schedule. For example, EFFICIENCYt for ImageNet, which uses step-based learning rate
annealing, experiences sharp increases whenever the learning rate is annealed.

Finally, we note that the EFFICIENCYt function (which is supplied with estimates of ϕt by
Pollux) is able to accurately model observed values at a range of different batch sizes. This means
that ϕt measured using batch size M can be used by Pollux to predict the value of EFFICIENCYt
at a different batch size M ′ without needing to train using M ′ ahead of time.

Upper batch size limit

In some cases, as the batch size increases, the chosen LR scaling rule may break down before
the statistical efficiency decreases, which degrades the final model quality. To address these
cases, the application may define a maximum batch size limit that will be respected by Pollux.
Nevertheless, we find that a batch size up to 32× larger works well in most cases. Furthermore,
limits for common models are well-studied for popular LR scaling rules [76, 105, 193, 222]. As
better LR scaling rules are developed, they may be incorporated into Pollux using its plug-in
interface (§3.3).

Estimating ϕt

The PGNS ϕt can be estimated in a similar fashion as the GNS by following Appendix A.1
of [150], except using the pre-conditioned gradient Pg instead of the gradient g. This can be
done efficiently when there are multiple data-parallel processes by using the different values of
ĝ

(t)
k already available on each GPU k. However, this method doesn’t work when there is only

a single GPU (and gradient accumulation is off, i.e. s = 0). In this particular situation, Pollux
switches to a differenced variance estimator [209] which uses consecutive gradient estimates
ĝ(t−1) and ĝ(t).

3.3.2 Modeling System Throughput

To model and predict the system throughput for data-parallel DL, we aim to predict the time
spent per training iteration, Titer, and then calculate the throughput as

THROUGHPUT(a,m, s) = M(a,m, s)/Titer(a,m, s). (3.4)
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(a) ImageNet (b) YoloV3 (c) DeepSpeech2

(d) BERT (fine-tune) (e) CIFAR10 (f) Recommendation

Figure 3.5: System throughput for all models described in Table 3.1, as measured using
g4dn.12xlarge instances in AWS each with 4 NVIDIA T4 GPUs and created within the same
placement group. Eqn. 3.8 was fitted using the observed data that appeared in each plot. Time
per training iteration vs. the number of allocated GPUs (log-scaled), with the per-GPU batch size
held constant. The GPUs are placed in as few 4-GPU nodes as possible, which causes a sharp
increase beyond 4 GPUs (when inter-node network synchronization becomes required).
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(a) ImageNet (b) YoloV3 (c) DeepSpeech2

(d) BERT (fine-tune) (e) CIFAR10 (f) Recommendation

Figure 3.6: System throughput (examples per second) vs. total batch size (log-scaled), with the
number of GPUs held constant. To the left of the vertical dashed line, the entire mini-batch fits
within GPU memory. To the right, the total batch size is achieved using gradient accumulation.
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We start by separately modeling Tgrad, the time in each iteration spent computing local gradient
estimates, and Tsync, the time in each iteration spent averaging gradient estimates and synchro-
nizing model parameters across all GPUs. We also start by assuming no gradient accumulation,
i.e. s = 0.

Modeling Tgrad

The local gradient estimates are computed using back-propagation, whose run-time scales lin-
early with the per-GPU batch size m. Thus, we model Tgrad as

Tgrad(m) = αgrad + βgrad ·m, (3.5)

where αgrad, βgrad are fittable parameters.

Modeling Tsync

When allocated a single GPU, no synchronization is needed and Tsync = 0. Otherwise, we model
Tsync as a linear function of the number of GPUs since in data-parallelism, the amount of data
sent and received from each replica is typically only dependent on the size of the gradients and/or
parameters. We include a linear factor to account for performance retrogressions associated with
using three or more GPUs, such as increasing likelihood of stragglers or network delays.

Co-location of GPUs on the same node reduces network communication, which can improve
Tsync. Thus, we use different parameters depending on GPU placement. Letting K = SUM(a) be
the number of allocated GPUs,

Tsync(a,m) =


0 if K = 1

αlocalsync + βlocalsync · (K − 2) if N = 1, K ≥ 2

αnodesync + βnodesync · (K − 2) otherwise,
(3.6)

where N is the number of physical nodes occupied by at least one replica. αlocalsync and βlocalsync are
the constant and retrogression parameters for when all processes are co-located onto the same
node. αnodesync and βnodesync are the analogous parameters for when at least two process are located on
different nodes. Note that our model for Tsync can be extended to account for rack-level locality
by adding a third pair of parameters.

Combining Tgrad and Tsync

Modern DL frameworks can partially overlap Tgrad and Tsync by overlapping gradient computa-
tion with network communication [229]. The degree of this overlap depends on structures in the
specific DL model being trained, like the ordering and sizes of its layers.

Assuming no overlap, then Titer = Tgrad + Tsync. Assuming perfect overlap, then Titer =
max(Tgrad, Tsync). A realistic value of Titer is somewhere in between these two extremes. To
capture the overlap between Tgrad and Tsync, we model Titer as

Titer(a,m, 0) = (Tgrad(a,m)γ + Tsync(a)γ)1/γ , (3.7)

where γ ≥ 1 is a learnable parameter. Eqn. 3.7 has the property that Titer = Tgrad + Tsync when
γ = 1, and smoothly transitions towards Titer = max(Tgrad, Tsync) as γ →∞.
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Gradient Accumulation

In data-parallelism, GPU memory limits the per-GPU batch size, and many DL models hit this
limit before the batch size is large enough for Tgrad to overcome Tsync (or experience diminishing
statistical efficiency), resulting in suboptimal scalability. Several techniques exist for overcom-
ing the GPU memory limit [40, 46, 94, 100]; we focus on gradient accumulation, which is easily
implemented using popular DL frameworks. Per-GPU gradients are aggregated locally over s
forward-backward passes before being synchronized across all GPUs during the (s + 1)th pass,
achieving a larger total batch size. Thus, one iteration of SGD spans s accumulation steps fol-
lowed by one synchronization step, modeled as

Titer(a,m, s) = s× Tgrad (a,m) + (Tgrad (a,m)γ + Tsync(a)γ)
1/γ

. (3.8)

Throughput model validation

Fig. 3.5 and Fig. 3.6 show an example of our THROUGHPUT function fit to measured throughput
values for a range of resource allocations and batch sizes. Each DL task was implemented using
PyTorch [166], which overlaps the backward pass’ computation and communication. Gradients
are synchronized with NCCL 2.7.8, which uses either ring all-reduce or tree all-reduce depending
on the detected GPUs and their placements and its own internal performance estimates. Overall,
we find that our model can represent the observed data closely, while varying both the amount
of resources as well as the batch size. In particular, all models we measured except ImageNet
exhibited high sensitivity to inter-node synchronization, indicating that they benefit from co-
location of GPUs. Furthermore, YOLOv3 and BERT benefit from using gradient accumulation
to increase their total batch sizes. These detailed characteristics are well-represented by our
THROUGHPUT function, and can be optimized for by Pollux.

In addition to the configurations in Fig. 3.5 and Fig. 3.6, we fitted the THROUGHPUT function
on a diverse set of GPU placements and batch sizes in a 64-GPU cluster. Across all DL tasks,
the average error of the fitted model was at most 10%, indicating that it represents the observed
throughput measurements well.

Limits of the throughput model

Pollux models data-parallel training throughput only in the dimensions it cares about, i.e. number
and co-locality of GPUs, batch size, and gradient accumulation steps. The simple linear assump-
tions made in Eqn. 3.8, although sufficiently accurate for the settings we tested, may diverge from
reality for specialized hardware [106], sophisticated synchronization algorithms [37, 211, 235],
different parallelization strategies [95, 157, 195, 196], at larger scales [34, 219], or hidden re-
source contention not related to network used for gradient synchronization. Rather than attempt-
ing to cover all scenarios with a single throughput model, we designed GOODPUTt (Eqn. 3.1) to be
modular so that different equations for THROUGHPUT may be easily plugged in without interfering
with the core functionalities provided by Pollux.
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3.4 Pollux Design and Architecture
Pollux adapts DL job execution at two distinct granularities. First, at a job-level granularity,
Pollux dynamically tunes the batch size and learning rate for best utilization of the allocated
resources. Second, at the cluster-wide granularity, Pollux dynamically (re-)allocates resources,
driven by the goodput of all jobs sharing the cluster combined with cluster-level goals including
fairness and job-completion time. To achieve this co-adaptivity in a scalable way, Pollux’s design
consists of two primary components.

First, a PolluxAgent runs together with each job. It fits the EFFICIENCYt and THROUGHPUT

functions for that job, and tunes its batch size and learning rate for efficient utilization of its
current allocated resources. PolluxAgent periodically reports the goodput function of its job to
the PolluxSched.

Second, the PolluxSched periodically optimizes the resource allocations for all jobs in the
cluster, taking into account the current goodput function for each job and cluster-wide resource
contention. Scheduling decisions made by PolluxSched also account for the overhead associated
with resource re-allocations, slowdowns due to network interference between multiple jobs, and
resource fairness.

PolluxAgent and PolluxSched co-adapt to each other. While PolluxAgent adapts each train-
ing job to make efficient use of its allocated resources, PolluxSched dynamically re-allocates
each job’s resources, taking into account the PolluxAgent’s ability to tune its job.

Fig. 3.7 illustrates Pollux’s co-adaptive architecture (Fig. 3.7c), compared with existing sched-
ulers which are either non-scale-adaptive (Fig. 3.7a), or scale-adaptive without being involved
with statistical efficiency (Fig. 3.7b).

3.4.1 PolluxAgent: Job-level Optimization
An instance of PolluxAgent is started with each training job. During training, it continually mea-
sures the job’s gradient noise scale and system throughput, and it reports them to PolluxSched at
a fixed interval. It also uses this information to determine the most efficient batch size for its job
given its current resource allocations, and adapts its job’s learning rate to this batch size using the
appropriate plug-in LR scaling rule (e.g. AdaScale for SGD or square-root scaling for Adam).

Online model fitting

In §3.3.2, we defined the system throughput parameters of a training job as the 7-tuple

θsys =
(
αgrad, βgrad, α

local
sync, β

local
sync , α

node
sync, β

node
sync , γ

)
, (3.9)

which are required to construct the THROUGHPUT function. Together with the PGNS ϕt (for
predicting EFFICIENCYt) and initial batch sizeM0, the triple (θsys, ϕt,M0) specifies the GOODPUT
function. While M0 is a constant configuration provided by the user, and ϕt can be computed
according to §3.3.1, θsys is estimated by fitting the THROUGHPUT function to observed throughput
values collected about the job during training.

PolluxAgent measures the time taken per iteration, Titer, and records the tuple (a,m, s, Titer)
for all combinations of resource allocations a, per-GPU batch size m, and gradient accumulation
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(a) Non-scale-adaptive.
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Figure 3.7: Architecture of Pollux (Fig. 3.7c), compared with existing schedulers which are
either non-scale-adaptive (Fig. 3.7a) or scale-adaptive (Fig. 3.7b).
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steps s encountered during its lifetime. Periodically, PolluxAgent fits the parameters θsys to
all of the throughput data collected so far. Specifically, we minimize the root mean squared
logarithmic error (RMSLE) between Eqn. 3.8 and the collected data triples, using L-BFGS-B
[236]. We set constraints for each α and β parameter to be non-negative, and γ to be in the range
[1, 10]. PolluxAgent then reports the updated values of θsys and ϕt to PolluxSched.

Prior-driven exploration

At the beginning of each job, throughput values have not yet been collected. To ensure that
Pollux finds efficient resource allocations through systematic exploration, we impose several
priors which bias θsys towards the belief that throughput scales perfectly with more resources,
until such resource configurations are explored.

In particular, we set αlocalsync = 0 while the job had not used more than one GPU, αlocalsync =
βlocalsync = 0 while the job had not used more than one node, and βlocalsync = βnodesync = 0 while the
job had not used more than two GPUs. This creates the following behavior: each job starts
with a single GPU and is initially assumed to scale perfectly to more GPUs. PolluxSched is
then encouraged to allocate more GPUs and/or nodes to the job, naturally as part of its resource
optimization (§3.4.2), until the PolluxAgent can estimate θsys more accurately. Finally, to prevent
a job from being immediately scaled out to arbitrarily many GPUs, we restrict the maximum
number of GPUs that can be allocated to at most twice the maximum number of GPUs the job
has been allocated in its lifetime.

Although other principled approaches to exploration can be applied (e.g., Bayesian optimiza-
tion), we find that this simple prior-driven strategy is sufficient in our experiments. Sec. 3.5.3
shows that prior-driven exploration performs close (within 2-5%) to an idealized scenario in
which the model is fitted offline for each job before being submitted to the cluster.

Training job tuning

With θsys, ϕt, and M0, which fully specify the DL job’s GOODPUT function at its current training
progress, PolluxAgent determines the most efficient per-GPU batch size and gradient accumula-
tion steps,

(m∗, s∗) = arg max
m,s

GOODPUT(a,m, s), (3.10)

where a is the job’s current resource allocation.
Once a new configuration is found, the job will use it for its subsequent training iterations, us-

ing the plug-in LR scaling rule to adapt its learning rate appropriately. As the job’s EFFICIENCYt
function changes over time, PolluxAgent will periodically re-evaluate the most efficient config-
uration.

3.4.2 PolluxSched: Cluster-wide Optimization

The PolluxSched periodically allocates (and re-allocates) resources for every job in the cluster.
To determine a set of efficient cluster-wide resource allocations, it maximizes a fitness function
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that is defined as a generalized (power) mean across speedups for each job:

FITNESSp(A) =

(
1

J

J∑
j=1

SPEEDUPj(Aj)
p

)1/p

. (3.11)

A is an allocation matrix with each row Aj being the allocation vector for a job j, thus Ajn is the
number of GPUs on node n allocated to job j, and J is the total number of running and pending
jobs sharing the cluster. We define the speedup of each job as the factor of goodput improvement
using a given resource allocation over using a fair-resource allocation, ie.

SPEEDUPj(Aj) =
maxm,s GOODPUTj(Aj,m, s)

maxm,s GOODPUTj(af ,m, s)
, (3.12)

where GOODPUTj is the goodput of job j at its current training iteration, and af is a fair resource
allocation for the job, defined to be an exclusive 1/J share of the cluster.5

In §3.3, we described how the GOODPUT function can be fitted to observed metrics during
training and then be evaluated as a predictive model. PolluxSched leverages this ability to pre-
dict GOODPUT to maximize FITNESS via a search procedure, and then it applies the outputted
allocations to the cluster.

Fairness and the effect of p

When p = 1, FITNESSp is the average of SPEEDUP values across all jobs. This causes Pol-
luxSched to allocate more GPUs to jobs that achieve a high SPEEDUP when provided with many
GPUs (i.e., jobs that scale well). However, as p → −∞, FITNESSp smoothly approaches the
minimum of SPEEDUP values, in which case maximizing FITNESSp promotes equal SPEEDUP
between training jobs, but ignores the overall cluster goodput and resource efficiency.

Thus, p can be considered a “fairness knob”, with larger negative values being more fair. A
cluster operator may select a suitable value, based on organizational priorities. In our experience
and results in §3.5, we find that p = −1 achieves most goodput improvements and reasonable
fairness.

Re-allocation penalty

Each time a job is re-allocated to a different set of GPUs, it incurs some delay to re-configure the
training process. Using the the popular checkpoint-restart method, we measured between 15 and
120 seconds of delay depending on the size of the model being trained and other initialization
tasks in the training code. To prevent an excessive number of re-allocations, when PolluxSched
evaluates the fitness function for a given allocation matrix, it applies a penalty for every job that
needs to be re-allocated,

SPEEDUPj(Aj)←− SPEEDUPj(Aj)× REALLOC FACTORj(δ).

5We note that SPEEDUP has similarities with finish-time fairness [146]. However, SPEEDUP is related to training
performance at a moment in time, whereas finish-time fairness is related to end-to-end job completion time.
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We define REALLOC FACTORj(δ) = (Tj − Rjδ)/(Tj + δ), where Tj is the age of the training
job, Rj is the number of re-allocations incurred by the job so far, and δ is an estimate of the
re-allocation delay. Intuitively, REALLOC FACTORj(δ) scales SPEEDUPj(Aj) according to the as-
sumption that the historical average rate of re-allocations for job j will continue indefinitely into
the future. Thus, a job that has historically experienced a higher rate of re-allocations will be
penalized more for future re-allocations.

Interference avoidance

When multiple distributed DL jobs share a single node, their network usage while synchroniz-
ing gradients and model parameters may interfere with each other, causing both jobs to slow
down [101]; Xiao et al. [214] report up to 50% slowdown for DL jobs which compete with each
other for network resources. PolluxSched mitigates this issue by disallowing different distributed
jobs (each using GPUs across multiple nodes) from sharing the same node.

Interference avoidance is implemented as a constraint in Pollux’s search algorithm, by en-
suring at most one distributed job is allocated to each node. We study the effects of interference
avoidance in §3.5.3.

Supporting non-adaptive jobs

In certain cases, a user may want to run a job with a fixed batch size, i.e. M = M0. These jobs
are well-supported by PolluxSched, which simply fixes EFFICIENCYt for that job to 1 and can
continue to adapt its resource allocations based solely on its system throughput.

3.4.3 Implementation
PolluxAgent is implemented as a Python library that is imported into DL training code. We
integrated PolluxAgent with PyTorch [166], which uses all-reduce as its gradient synchronization
algorithm. PolluxAgent inserts performance profiling code that measures the time taken for each
iteration of training, as well as calculating the gradient noise scale. At a fixed time interval,
PolluxAgent fits the system throughput model (Eqn. 3.7) to the profiled metrics collected so far,
and reports the fitted system throughput parameters, along with the latest gradient statistics, to
PolluxSched. After reporting to PolluxSched, PolluxAgent updates the job’s per-GPU batch size
and gradient accumulation steps, by optimizing its now up-to-date goodput function (Eqn. 3.1)
with its currently allocated resources.

PolluxSched is implemented as a service in Kubernetes [35]. At a fixed time interval, Pol-
luxSched runs its search algorithm, and then applies the resultant allocation matrix by creating
and terminating Kubernetes Pods that run the job workers. To find a good allocation matrix,
PolluxSched uses a population-based search algorithm that perturbs and combines candidate
allocation matrices to produce higher-value allocation matrices, and finally modifies them to sat-
isfy node resource constraints and interference avoidance. The allocation matrix with the highest
fitness score is applied to the jobs running in the cluster.

Both PolluxAgent and PolluxSched require a sub-procedure that optimizes GOODPUTt(a,m, s)
given a fixed a (Eqn. 3.10). We implemented this procedure by first sampling a range of can-
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Figure 3.8: The mutation, crossover, and repair operations performed by PolluxSched during
each generation of its genetic algorithm.

didate values for the total batch size M , then finding the smallest s such that m = dM/se fits
into GPU memory according to a user-defined upper-bound, and finally taking the configuration
which results in the highest GOODPUT value. We note that other efficient (but more complex)
algorithms may also be used, such as golden-section search [112].

Genetic Algorithm

The search performed by PolluxSched is implemented using a genetic algorithm which operates
on a population of distinct allocation matrices (see Fig. 3.8). During each generation of the al-
gorithm, existing allocation matrices are first randomly mutated, then crossed over to produce
offspring allocation matrices, and finally modified to satisfy node resource constraints. A con-
stant population size is maintained after each generation by discarding the allocation matrices
with the lowest objective values (according to Eqn. 3.11).

After several generations of the genetic algorithm, the allocation matrix with the highest
fitness score is applied to the jobs running in the cluster. Although only the allocation matrix
with the highest fitness score is applied to the cluster, the entire population is saved and used to
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bootstrap the genetic algorithm in the next scheduling interval.
The genetic operations are briefly described below, and the source code of our search algo-

rithm can be found in Appendix A.2. The genetic algorithm is implemented using pymoo [29].

Mutation. Each element Ajn is randomly selected to be mutated. When Ajn is mutated, it is
either reset to 0 or set to a random integer between 1 and the total number of GPUs on node n.

Crossover. When two allocation matrices are crossed over, their rows are mixed. The offspring
allocation matrix consists of job allocations which are randomly selected between its two parent
allocation matrices. In each generation, the allocation matrices which participate in crossover
are picked using tournament selection [154].

Repair. After the mutation and crossover operations, the resultant allocation matrices may no
longer satisfy resource constraints, and try to request more GPUs than are available on a node. To
address this issue, random elements are decremented within columns of the allocation matrix that
correspond to over-capacity nodes, until the GPU resource constraints are satisfied. Interference
avoidance is also implemented in this step by also removing distributed jobs from shared nodes
until at most one distributed job is allocated to each node.

3.5 Evaluation of Pollux
We compare Pollux with two state-of-the-art DL schedulers using a testbed cluster with 64 GPUs.
Although one primary advantage of Pollux is automatically selecting the configurations for each
job, we find that Pollux still reduces average job completion times by 37–50% even when the
baseline schedulers are supplied with well-tuned job configurations (a scenario that strongly
favors the baseline schedulers). Pollux is able to dynamically adapt each job by trading-off
between high-throughput/low-efficiency and low-throughput/high-efficiency modes of training,
depending on the current cluster state and training progress.

Using a cluster simulator, we evaluate the impact of specific settings on Pollux, including the
total workload intensity, prior-driven exploration, scheduling interval, and interference avoid-
ance. With its fairness knob, Pollux can improve finish-time fairness [146] by 1.5–5.4× com-
pared to baseline DL schedulers. We also reveal a new opportunity for auto-scaling in the cloud
by showing that a Pollux-based auto-scaler can potentially reduce the cost of training large mod-
els (e.g. ImageNet) by 25%.

3.5.1 Experimental Setup

Testbed

We conduct experiments using a cluster consisting of 16 nodes and 64 GPUs. Each node is an
AWS EC2 g4dn.12xlarge instance with 4 NVIDIA T4 GPUs, 48 vCPUs, 192GB memory,
and a 900GB SSD. All instances are launched within the same placement group. We deployed
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Figure 3.9: Number of job submissions during each hour of the day in the Microsoft trace. Our
primary synthetic workload is sampled from the interval between the dashed lines.

Kubernetes 1.18.2 on this cluster, along with CephFS 14.2.8 to store checkpoints for checkpoint-
restart elasticity.

Synthetic Workload Construction

We randomly sampled 160 jobs from the busiest 8-hour range (hours 3–10) in the deep learning
cluster traces published by Microsoft [101], as shown in Fig. 3.9. Each job in the orginal trace
has information on its submission time, number of GPUs, and duration. However, no informa-
tion is provided on the model architectures being trained or dataset characteristics. Instead, our
synthetic workload consists of the models and datasets described in Table 3.1.

We categorized each job in the trace and in Table 3.1 based on their total GPU-time: Small
(0–1 GPU-hours), Medium (1–10 GPU-hours), Large (10–100 GPU-hours), and XLarge (100–
1000 GPU-hours). For each job in the trace, we picked a training job from Table 3.1 that is in
the same category.

Manually-tuned jobs for baseline DL schedulers

We manually tuned the number of GPUs and batch sizes for each job in our synthetic workload,
as follows. We measured the time per training iteration for each model in Table 3.1 using a
range of GPU allocations and batch sizes, and fully trained each model using a range of different
batch sizes (see §3.5.3 for details). We considered a number of GPUs valid if using the optimal
batch size for that number of GPUs achieves 50% – 80% of the ideal (i.e., perfectly linear)
scalability versus using the optimal batch size on a single GPU. For each job submitted from
our synthetic workload, we selected its number of GPUs and batch size randomly from its set of
valid configurations.

Our job configurations assume that the users are highly rational and knowledgeable about the
scalability of the models they are training. Less than 50% of the ideal scalability would lead to
under-utilization of resources, and more than 80% of the ideal scalability means the job can still
utilize more GPUs efficiently. We emphasize that this assumption of uniformly sophisticated
users is unrealistically biased in favor of the baseline schedulers and only serves for comparing
Pollux with the ideal performance of baseline systems.
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Task: Image Classification Task: Object Detection
Dataset: ImageNet [53] Dataset: PASCAL-VOC [63]
Model: ResNet-50 [87] Model: YOLOv3 [184]
Optimizer: Momentum SGD Optimizer: Momentum SGD
LR Scaler: AdaScale LR Scaler: AdaScale
M0: 200 (Images) M0: 8 (Images)
Validation: 75% Top-1 Accuracy Validation: 84% mAP Score
Category: XLarge Category: Large
Frac. Jobs: 2% Frac. Jobs: 6%
Task: Speech Recognition Task: Question Answering
Dataset: CMU-ARCTIC [116] Dataset: SQuAD [180]
Model: DeepSpeech2 [20] Model: BERT (finetune) [55]
Optimizer: Momentum SGD Optimizer: AdamW
LR Scaler: AdaScale LR Scaler: Square-Root
M0: 20 (Sequences) M0: 12 (Sequences)
Validation: 25% Word Error Validation: 88% F1 Score
Category: Medium Category: Medium
Frac. Jobs: 10% Frac. Jobs: 10%
Task: Image Classification Task: Recommendation
Dataset: Cifar10 [119] Dataset: MovieLens [85]
Model: ResNet18 [87] Model: NeuMF [88]
Optimizer: Momentum SGD Optimizer: Adam
LR Scaler: AdaScale LR Scaler: Square-Root
M0: 128 (Images) M0: 256 (Rating Pairs)
Validation: 94% Top-1 Accuracy Validation: 69% Hit Rate
Category: Small Category: Small
Frac. Jobs: 36% Frac. Jobs: 36%

Table 3.1: Models and datasets used in our evaluation workload. Each training task achieves the
provided validation metrics. The fraction of jobs from each category are chosen according to the
public Microsoft cluster traces.
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Comparison of DL schedulers

We compare Pollux to two recent deep learning schedulers, Tiresias [78] and Optimus [170], as
described in §3.2.3. Whereas Pollux dynamically co-adapts the number of GPUs and batch sizes
of DL training jobs, Optimus only adapts the number of GPUs, and Tiresias adapts neither.

For each job, Tiresias uses the number of GPUs and batch size specified in our synthetic
workload. Optimus+Oracle uses the batch size specified, but determines the number of GPUs
dynamically. Each job uses gradient accumulation if they are allocated too few GPUs to support
the specified batch size. To establish a fair baseline for comparison, for all three schedulers, we
scale the learning rate using AdaScale for SGD, and the square-root scaling rule for Adam and
AdamW.

Pollux We configured PolluxSched using a scheduling interval of 60 seconds, and computed
REALLOC FACTOR(δ) using δ = 30s. PolluxAgent reports its most up-to-date system throughput
parameters and gradient statistics every 30s. Unless otherwise specified, the default fairness knob
value of p = −1 is used.

Tiresias We configured Tiresias as described in the testbed experiments of Gu et al. [78], with
two priority queues and the PromoteKnob disabled. We manually tuned the queue threshold
to perform well for our synthetic workload. Whenever possible, we placed jobs onto as few
different nodes as possible to promote worker locality.

Optimus+Oracle Optimus leverages a throughput prediction model that is specific to jobs us-
ing the parameter server architecture. To account for differences due to the performance model,
our implementation of Optimus uses our own throughput model as described in §3.3.2. Further-
more, Optimus predicts the number of training iterations until convergence by fitting a simple
function to the model’s convergence curve. Since this method does not work consistently for all
models in our synthetic workload, we run each job ahead of time and provide Optimus with the
exact number of iterations until completion. We call this version of Optimus Optimus+Oracle.

3.5.2 Testbed Macrobenchmark Experiments
Table 3.2 summarizes the results of our testbed experiments for seven configurations: Pollux
compared with, first, baseline schedulers using well-tuned job configurations; second, baseline
schedulers using more realistic job configurations; third, Pollux using two alternate values for its
fairness knob.

Comparisons using well-tuned job configurations

Even when Optimus+Oracle and Tiresias are given well-tuned job configurations as described in
§3.5.1, they are still significantly behind Pollux. In this setting, Pollux (with p = −1) achieved
50% and 37% shorter average JCT, 27% and 27% shorter tail (99th percentile) JCT, and 20% and
33% shorter makespan, in comparison to Optimus+Oracle+TunedJobs and Tiresias+TunedJobs,
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Policy Job Completion Time MakespanAverage 99%tile
Pollux (p = −1) 0.76h 11h 16h

Optimus+Oracle+TunedJobs 1.5h 15h 20h
Tiresias+TunedJobs 1.2h 15h 24h

Optimus+Oracle 2.7h 22h 28h
Tiresias 2.8h 25h 31h

Pollux (p = +1) 0.83h 10h 16h
Pollux (p = −10) 0.84h 12h 18h

Table 3.2: Summary of testbed experiments.

respectively. As we previously noted, this setting highly favors the baseline schedulers, es-
sentially mimicking users who possess expert knowledge about system throughput, statistical
efficiency, and how their values change with respect to resource allocations and batch sizes.

One key source of improvement for Pollux is its ability to trade-off between high-throughput
low-efficiency and low-throughput high-efficiency modes during training. Fig. 3.10 shows the
total number of allocated GPUs and average EFFICIENCYt during the execution of our synthetic
workload. During periods of low cluster contention, Pollux can allocate more GPUs (indicated
by (A)) and use larger batch sizes to boost training throughput, even at the cost of lower statistical
efficiency, because doing so results in an overall higher goodput. On the other hand, during peri-
ods of high cluster contention, Pollux may instead use smaller batch sizes to increase statistical
efficiency (indicated by (B)).

Comparisons using realistic job configurations

Without assistance from a system like Pollux, users are likely to try various numbers of GPUs
and batch sizes, before finding a configuration that is efficient. Other users may not invest time
into configuring their jobs well in the first place.

To set a more realistically configured baseline, we ran Optimus+Oracle and Tiresias on a
version of our synthetic workload with the number of GPUs exactly as specified in the Microsoft
cluster trace. The batch size was chosen to be the baseline batch size M0 times the number of
GPUs, which is how we expect most users to initially configure their distributed training jobs. We
find that these jobs typically use fewer GPUs and smaller batch sizes than their well-configured
counterparts.

Using this workload, we find that Pollux has 72% and 73% shorter average JCT, 50% and
56% shorter tail JCT, and 43% and 48% shorter makespan, in comparison to Optimus+Oracle
and Tiresias, respectively. Even though Optimus+Oracle can dynamically increase the GPU
allocation of each job, it still only slightly outperforms Tiresias because it does not also increase
the batch size to better utilize those additional GPUs.
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Figure 3.10: Comparison between Pollux (p = −1), Optimus, and Tiresias while executing our
synthetic workload (with tuned jobs). TOP: average cluster-wide allocated GPUs over time.
BOTTOM: average cluster-wide statistical efficiency over time. Tiresias+TunedJobs dips be-
tween hours 16 and 20 due to a 24-GPU job blocking a 48-GPU job from running.
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Figure 3.11: Co-adaptation over time of one ImageNet job (LEFT) and two YOLOv3 jobs
(RIGHT) using Pollux (p = −1). ROW 1: number of jobs actively sharing the cluster. ROW
2: number of GPUs allocated to the job. ROW 3: batch size (images) used. ROW 4: statistical
efficiency (%).

A closer look at co-adapted job configurations

Fig. 3.11 (LEFT) shows the configurations chosen by Pollux for one ImageNet training job as
the synthetic workload progresses. (A) during the initial period of low cluster contention, more
GPUs are allocated to ImageNet, causing a larger batch size to be used and lowering statistical
efficiency. (B) during the subsequent period of high cluster contention, fewer GPUs are allocated
to ImageNet, causing a smaller batch size to be used and raising statistical efficiency. (C) when
the cluster contention comes back down, ImageNet continues to be allocated more GPUs and
uses a larger batch size. However, we note that the batch size per GPU is much higher than in
the first low-contention period, since the job is now in its final, high-statistical-efficiency phase
of training. We see similar trade-offs being made over time for two YOLOv3 jobs (RIGHT).

Effect of the fairness knob

We ran Pollux using three values of the fairness knob, p = 1,−1,−10. Compared with no
fairness (p = 1), introducing a moderate degree of fairness (p = −1) improved the average job
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completion time (JCT) but degraded the tail JCT. This is because6, in our synthetic workload, the
tail JCT comprises of long but scalable jobs (i.e. ImageNet), which take a large number of GPUs
away from other jobs in the absence of fairness (p = 1). However, further increasing fairness
(p = −10) degraded performance in average JCT, tail JCT, and makespan. In §3.5.3, we present
a more detailed analysis of the impact of p on scheduling fairness.

System overheads

During each 60s scheduling interval, PolluxSched spent an average of 1 second on 1 vCPU
computing the cluster allocations by optimizing the FITNESSp function. On average, each job
was re-allocated resources once every 7 minutes, resulting in an average 8% run-time overhead
due to checkpoint-restarts. Each PolluxAgent fits its throughput model parameters on its latest
observed metrics every 30 seconds, taking an average of 0.2 seconds each time. Finding the
optimal per-GPU batch size and gradient accumulation steps by optimizing GOODPUTt takes an
average of 0.4 milliseconds.

3.5.3 Simulator Experiments
We built a discrete-time cluster simulator in order to evaluate a broader set of workloads and set-
tings. Our simulator is constructed by measuring the performance and gradient statistics of each
model in Table 3.1, under many different resource and batch size configurations, and re-playing
them for each simulated job. This way, we are able to simulate both the system throughput and
statistical efficiency of the jobs in our workload.

Unless stated otherwise, each experiment in this section is repeated on 8 different workload
traces generated using the same duration, number of jobs, and job size distributions as in §3.5.2,
and we report the average results across all 8 traces.

Simulator construction

For each job in Table 3.1, we measured the time per training iteration for 146 different GPU
allocations+placements in our testbed cluster of 16 nodes and 64 total GPUs. For each allocation,
we measured a range of batch sizes up to the GPU memory limit. To simulate the throughput for
a job, we queried a multi-dimensional linear interpolation on the configurations we measured.
For each model, we also measured the (pre-conditioned) gradient noise scale during training
using a range of batch sizes, and across every epoch. To simulate the statistical efficiency for a
job using a certain batch size, we linearly interpolated its value of the PGNS between the two
nearest batch sizes we measured.

Simulator fidelity

The data we collected about each job enables our simulator to reproduce several system effects,
including the performance impact of different GPU placements. We also simulate the overhead of

6We note that p = −1 (harmonic mean over speedups) may be more suitable than p = 1 (arithmetic mean) when
optimizing for the average JCT.
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Figure 3.12: CDF of Finish Time Fairness (ρ).

checkpoint-restarts by injecting a 30-second delay for each job that has its resources re-allocated.
Unless stated otherwise, we do not simulate any network interference between different jobs. We
study the effects of interference in more detail in §3.5.3.

Compared with our testbed experiments in §3.5.2, we find that our simulator obtains similar
factors of improvement, showing that Pollux reduces the average JCT by 48% and 32% over
Optimus+Oracle+TunedJobs and Tiresias+TunedJobs.

Scheduling Fairness

We evaluate the scheduling fairness of Pollux using finish-time fairness[146] (denoted by ρ),
which is defined to be the ratio of a job’s JCT running on shared resources to that of the job
running in an isolated and equally-partitioned cluster. Under this metric, jobs with ρ < 1 have
been treated better-than-fair by the cluster scheduler, while jobs with ρ > 1 have been treated
worse-than-fair.

In Fig. 3.12, we compare the finish-time fairness of Pollux with Optimus+Oracle+TunedJobs
and Tiresias+TunedJobs. Pollux with p = 1 results in poor fairness, similar to Tiresias+TunedJobs,
which is apparent as a long tail of jobs with ρ > 4. Optimus+Oracle+TunedJobs obtains bet-
ter fairness due to its allocation algorithm which attempts to equalize the JCT improvement for
each job. Pollux with p = −1 provides the best fairness, with 99% of jobs achieving ρ < 2,
and does so while still providing significant performance increases (Table 3.2). For p = −10,
we observe slightly worse fairness overall, caused by PolluxSched incurring a larger number of
re-allocations due to ignoring the cost in favor of equalizing speedups at all times.

To provide context, we note that the curves for Tiresias and Optimus are consistent with
those reported (for different workloads) by Mahajan et al. [146]. Although their Themis system
is not available for direct comparison, the ρ range for Pollux with p = −1 is similar to the range
reported for Themis. The max-ρ improvements (1.5× and 5.4×) over Tiresias and Optimus are
also similar.
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(a) Varying the workload intensity.

(b) Varying scheduling interval. (c) Varying job interference.

Figure 3.13: Effects of various parameters on Pollux, error bars and bands represent 95% confi-
dence intervals.

Other Effects on Scheduling

Sensitivity to job load. We compare the performance of Pollux, Optimus+Oracle+TunedJobs,
and Tiresias+TunedJobs for increasing workload intensity in terms of rate of job submissions.
Fig. 3.13a shows the results. As expected, all three scheduling policies suffer longer average JCT
and makespan as the load is increased. Across all job loads, Pollux maintains similar relative
improvements over the baseline schedulers.

Impact of prior-driven exploration. Pollux explores GPU allocations for each DL job from
scratch during training (Sec. 3.4.1). We evaluated the potential improvement from more efficient
exploration by seeding each job’s throughput models using historical data collected offline. We
observed minor (2–5%) reduction in JCT for short jobs like CIFAR10, but no significant change
for longer running jobs, indicating low overhead from Pollux’s prior-driven exploration.

Impact of scheduling interval. We ran Pollux using a range of values for its scheduling inter-
val, as shown in Fig. 3.13b. We find that Pollux performs similarly well in terms of average JCT
for intervals up to 2 minutes, while longer intervals result in performance degradation. Since
newly-submitted jobs can only start during the next scheduling interval, we would expect an
increase in the average queuing time due to longer scheduling intervals. However, we find that
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queuing contributed to roughly half of the performance degradation observed, indicating that
Pollux still benefits from a relatively frequent adjustment of resource allocations.

Impact of interference avoidance. To evaluate the impact of PolluxSched’s interference avoid-
ance constraint, we artificially inject various degrees of slowdown for distributed jobs sharing the
same node. Fig. 3.13c shows the results. With interference avoidance enabled, the average JCT
is unaffected by even severe slowdowns, because network contention is completely mitigated.
However, without interference avoidance, the average JCT is 1.4× longer when the interference
slowdown is 50%. On the other hand, in the ideal scenario when there is zero slowdown due to
interference, PolluxSched performs similarly whether or not interference avoidance is enabled.
This indicates that PolluxSched is still able to find efficient cluster allocations while obeying the
interference avoidance constraint.

3.5.4 Cluster Auto-Scaling in the Cloud

In cloud environments, computing resources can be obtained and released as required, and users
pay for the duration they hold onto those resources. Goodput-driven scheduling presents a unique
opportunity: when a DL model’s statistical efficiency increases during training, it may be more
cost-effective to provision more cloud resources and use larger batch sizes during the later epochs
of a large training job, rather than earlier on. We present some preliminary evidence using our
cluster simulator, and note that a full design of an auto-scaling system based on goodput may be
the subject of future work.

Auto-scaling ImageNet training. We implemented a simple auto-scaling policy using Pollux’s
goodput function. During training, we scaled up the number of nodes whenever

max
m,s

GOODPUTt(a,m, s)/SUM(a) > U ·max
m,s

GOODPUTt(1,m, s),

i.e. the goodput exceeds some fraction U of the predicted ideal goodput assuming perfect scal-
ability. We set U = 2/3, and increased to a number of nodes such that the predicted goodput is
approximately L = 1/2 of the predicted ideal goodput.

Fig. 3.14 compares our Pollux-based auto-scaler with the auto-scaler proposed by Or et
al. [164], which allows the batch size to be increased during training, but models job perfor-
mance using the system throughput rather than the goodput. Since the system throughput does
not change with training progress, throughput-based autoscaling (Or et al.) quickly scales out
to more nodes and a larger batch size (Fig. 3.14a), which remains constant thereafter. On the
other hand, Pollux starts with a small number of nodes, and gradually increases the number of
nodes as the effectiveness of larger batch sizes improves over time. Fig. 3.14b shows that Pol-
lux maintains a high statistical efficiency throughout training. Overall, compared to Or et al.’s
throughput-based auto-scaling, Pollux trains ImageNet with 25% cheaper cost, with only a 6%
longer completion time.
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(a) Number of nodes over time. (b) Statistical efficiency over time.

Figure 3.14: Goodput-based auto-scaling (Pollux) vs throughput-based auto-scaling (Or et al.)
for ImageNet training.

3.5.5 Hyper-parameter Optimization

Hyper-parameter optimization (HPO) is an important DL workload. In HPO, the user defines
a search space over relevant model hyper-parameters. A HPO algorithm (aka a trial scheduler)
submits many training jobs (trials) to evaluate the effectiveness of particular hyper-parameters,
in terms of objectives such as model accuracy or energy efficiency.

Different HPO algorithm types manage trials differently. For example, Bayesian optimization
algorithms [115, 199] may submit a few training jobs at a time, and determine future trials based
on the fully-trained results of previous trials. Bandit-based algorithms [130] may launch a large
number of trials at once and early-stop ones that appear unpromising.

A full evaluation on how Pollux affects different HPO algorithm types is future work. How-
ever, in this section, we present preliminary evidence that Pollux can accelerate certain HPO
workloads when used as the underlying cluster resource scheduler. Table 3.3 shows results from
tuning a ResNet18 model trained on the CIFAR10 dataset, using a popular Bayesian optimization-
based HPO algorithm known as the Tree-structured Parzen Estimator (TPE) [27]. The search
space covers the learning rate and annealing, momentum, weight decay, and network width
hyper-parameters. We configured TPE so that 4 trials run concurrently with each other, and
100 trials are run in total. The testbed consists of two NVIDIA DGX A100 nodes, each with 8
A100 GPUs. The baseline scheduler assigns a static allocation of 4 GPUs (all on the same node)
to each trial and uses a fixed per-GPU batch size for every trial. As expected, similar accuracy
values are achieved, but Pollux completes HPO 30% faster due to adaptive (re-)allocation of
resources as trials progress and adaptive batch sizes.

3.6 Additional Related Work
Prior DL schedulers are discussed in §3.2.3.
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Policy Accuracy (Top 5 trials) Avg JCT Makespan
Pollux 95.4± 0.2 25min 10h

Baseline 95.5± 0.3 34min 14h

Table 3.3: Summary of HPO experiments. We run each experiment twice, and report the av-
erage between both experiments. Due to inherent randomness in the trials chosen by the TPE
algorithm, we report the average accuracy of the top 5 trials.

Adaptive batch size training

Recent work on DL training algorithms have explored dynamically adapting batch sizes for better
efficiency and parallelization. AdaBatch [54] increases the batch size at pre-determined iterations
during training, while linearly scaling the learning rate. Smith et al. [198] suggest that instead of
decaying the learning rate during training, the batch size should be increased instead. CABS [24]
adaptively tunes the batch size and learning rate during training using similar gradient statistics
as Pollux.

These works have a common assumption that extra computing resources are available to
parallelize larger batch sizes whenever desired, which is rarely true inside shared-resource envi-
ronments. Pollux complements existing adaptive batch size strategies by adapting the batch size
and learning rate in conjunction with the amount of resources currently available. Alternatively,
anytime minibatch [64] adapts the batch size to mitigate stragglers in distributed training.

KungFu [147] supports adaptive training algorithms, including adaptive batch sizes, by al-
lowing applications to define custom adaptation policies and enabling efficient adaptation and
monitoring during training. Although KungFu is directed at single-job training and Pollux at
cluster scheduling, we believe KungFu offers useful tools which can be used to implement the
adaptive policies used by the PolluxAgent.

Hyper-parameter tuning

A large body of work focuses on tuning the hyper-parameters for ML and DL models [27, 65,
99, 108, 159], which typically involves many training jobs [3, 74] as discussed earlier. Although
batch size and learning rate are within the space of hyper-parameters often optimized by these
systems, Pollux’s goal is fundamentally different. Whereas HPO algorithms search for the high-
est model quality, Pollux adapts the batch size and learning rate for the most efficient execution
for each job, while not degrading model quality.
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Chapter 4

Litz: Enabling General Elasticity for
High-Performance Machine Learning

In Chapter 3, we showed how co-adaptation can improve elastic DL training in shared-resource
clusters by automatically tuning both system-level configurations and application-side parame-
ters. In this chapter, we take a step back and consider elasticity for ML training in general. In
particular, the programming abstractions and system implementations that enable ML applica-
tions to scale in and out when the available compute resources change.

New algorithmic and systems techniques leverage unique properties of ML training to im-
prove their distributed performance by orders of magnitude. However, applications built using
these techniques tend to be static, unable to elastically adapt to changing resource availability.
Existing distributed frameworks are either inelastic, or offer programming models which are
incompatible with the techniques employed by high-performance ML applications.

We present Litz, an elastic framework supporting general distributed ML applications. We
categorize the wide variety of performance-enhancing techniques employed by these applications
into three broad classes—stateful workers, model scheduling, and relaxed consistency—which
are collectively supported by Litz’s programming model. Our implementation of Litz’s execution
system transparently enables elasticity and low-overhead execution.

We implement several popular ML applications using Litz, and show that they can scale in
and out quickly to adapt to changing resource availability. We show that Litz enables elastic-
ity without compromising performance, achieving competitive performance with state-of-the-art
non-elastic ML frameworks. In §4.7, we describe and evaluate a highly-optimized implementa-
tion of the HDBSCAN clustering algorithm using Litz, showing its ability to support different
algorithms in an elastic manner. In §4.8, we leverage Litz to perform automatic out-of-core
execution in memory-limited scenarios.

Unlike Pollux, Litz is not a co-adaptive system for ML. Rather, Litz merely provides a
system-level abstraction and mechanism for an ML training application to dynamically scale
in and out. Litz provides a framework for co-adaptive techniques to be built on top of it, as we
shall demonstrate in Chapter 5.

The contents of this chapter were previously published in [174].
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4.1 Introduction
Recent advancements in algorithmic and systems techniques for distributed ML applications
have improved their performance by an order of magnitude or more. New algorithms such as
AdaptiveRevision [152], NOMAD [183], and LightLDA [224] can better scale in distributed
environments, possessing favorable properties such as staleness tolerance [91, 152], lock-free
execution [183, 225], and structure-aware parallelization [70, 224]. Systems and frameworks
such as GraphLab [142], Petuum [217], Adam [42], and various parameter servers [91, 132] are
able to support and exploit these properties to achieve even higher performance, using techniques
such as bounded-staleness consistency models [47], structure-aware scheduling [113], bandwidth
management/re-prioritization [211], and network message compression [42, 216].

Although significant work is being done to push the boundaries of distributed ML in terms
of performance and scalability, there has not been as much focus on elasticity, thus limiting the
resource adaptability of ML applications in real-world computing environments.

General-purpose distributed frameworks such as Hadoop [11] and Spark [226] are well inte-
grated with cloud and data-center environments, and are extensively used for running large-scale
data processing jobs. They are designed to support a wide spectrum of conventional tasks—
including SQL queries, graph computations, and sorting and counting—which are typically
transaction-oriented and rely on deterministic execution. However, their programming mod-
els are incompatible with the algorithmic and systems techniques employed by distributed ML
applications, abstracting away necessary details such as input data partitioning, computation
scheduling, and consistency of shared memory access. As a result, the performance of ML ap-
plications built using these frameworks fall short of standalone implementations by two orders
of magnitude or more [212].

Consequently, distributed ML applications are often implemented without support from elas-
tic frameworks, resulting in jobs that hold a rigid one-time allocation of cluster resources from
start to finish [42, 113, 211, 225]. The lack of an elastic framework, along with a suitable pro-
gramming model which can support the various distributed ML techniques, is a key roadblock
for implementing elastic ML applications.

Although the algorithmic and systems techniques employed by these standalone applications
are diverse, they typically arise from only a few fundamental properties of ML that can be collec-
tively supported by an elastic ML framework. This observation exposes an opportunity to design
a framework that is able to support a large variety of distributed ML techniques by satisfying a
smaller set of more general requirements. We summarize these properties of ML and how they
guide the design of an elastic framework below, and further elaborate on them in Sec. 4.2.

First, ML computations exhibit a wide variety of memory access patterns. Some mutable
state may be accessed when processing each and every entry of a dataset, while other state
may only be accessed when processing a single data entry. To improve locality of access, ML
applications explicitly co-locate mutable model parameters with immutable dataset entries [224].
Each worker machine in the computation may contain a non-trivial amount of mutable state,
which needs to be properly managed under an elastic setting.

Second, ML models contain a wide variety of dependency structures. Some sets of model pa-
rameters may safely be updated in parallel, while other sets of parameters must be updated in se-
quence. Guided by these dependency structures, ML applications carefully schedule their model
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updates by coordinating tasks across physical worker machines [70]. An elastic ML framework
should abstract the physical cluster away from applications while still providing enough flexibil-
ity to support this type of task scheduling.

Furthermore, ML algorithms are often iterative-convergent and robust against small errors.
Inaccuracies occurring in their execution are automatically corrected during later stages of the
algorithm. Distributed ML applications have been able to attain higher performance at no cost
to correctness by giving up traditionally desirable properties such as deterministic execution and
consistency of memory access [91]. Framework mechanisms for elasticity should not rely on a
programming model that restricts this way of exploiting the error-tolerance of ML algorithms.

Thus, to efficiently support ML applications, an elastic ML framework should support state-
ful workers, model scheduling, and relaxed consistency. It should provide an expressive pro-
gramming model allowing the application to define a custom scheduling strategy and to specify
how the consistency of memory accesses can be relaxed under it. Then, it should correctly exe-
cute this strategy within the specified consistency requirements, while gracefully persisting and
migrating application state regardless of its placement with respect to input data.

Motivated by the needs and opportunities for elasticity of ML applications, we designed and
implemented Litz1, an elastic framework for distributed ML that provides a programming model
supporting stateful workers, model scheduling and relaxed consistency.

Litz enables low-overhead elasticity for high-performance ML applications. When physical
machines are added to or removed from an active job, state and computation are automatically re-
balanced across the new set of available machines without active participation by the application.
Litz’s programming model can express key distributed ML techniques such as stateful workers,
model scheduling and relaxed consistency, allowing high-performance ML applications to be
implemented. Furthermore, a cluster job scheduler can leverage Litz’s elasticity to achieve faster
job completion under priority scheduling, and optimize resource allocation by exploiting inherent
resource variability of ML algorithms.

Our main contributions are:

1. Event-driven Programming Model for ML: Litz exposes an event-driven programming
model that cleanly separates applications from the physical cluster they execute on, en-
abling stateful workers and allowing the framework to transparently manage application
state and computation during elastic events. Computation is decomposed into micro-tasks
which have shared access to a distributed parameter server.

2. Task-driven Consistency Model for ML: Micro-tasks can be scheduled according to de-
pendencies between them, allowing the application to perform model scheduling. Access
to the parameter server is controlled by a consistency model in which a micro-task always
observes all updates made by its dependencies, while having intentionally weak guarantees
between independent micro-tasks.

3. Optimized Elastic Execution System: Litz’s execution system transparently re-balances
workload during scaling events without active participation from the application. It ex-
ploits Litz’s programming and consistency models to implement optimizations that reduce

1Meant to evoke the strings of a harp, sounding out as many or as few. Litz is short for “Wurlitzer”, a well-known
harp maker.

49



system overhead, allowing applications using Litz to be as efficient as those using non-
elastic execution systems.

4.2 Background
Stateful Workers

Even though the model term w appears in the calculations of each partial update, not all of it is
necessarily used. In particular, there may be parts of the model which are only used when pro-
cessing a single partitionDi of the input data. A large class of examples includes non-parametric
models, whose model structures are not fixed but instead depends on the input data itself, typi-
cally resulting in model parameters being associated with each entry in the input data. In such
applications, it is preferable to co-locate parts of the model on worker nodes with a particular
partition of input data so they can be accessed and updated locally rather than across a network.
This optimization is especially essential when the input data is large and accesses to such asso-
ciated model parameters far outnumber accesses to shared model parameters. It also means that
workers are stateful, and an elastic ML system that supports this optimization needs to preserve
worker state during elastic resource re-allocation.

4.2.1 Error Tolerance & Relaxed Consistency
ML algorithms have several well-established and unique properties, including error-tolerance:
even if a perturbation or noise ε is added to the model parameters in every iteration, i.e. w(t) =
w(t−1)+∆(w(t−1);D)+ε, the ML algorithm will still converge correctly provided that ε is limited
or bounded.

Bounded Staleness Consistency

An important application of error tolerance is bounded staleness consistency models [23, 47, 91],
which allow stale model parameters to be used in update computations, i.e. w(t) = w(t−1) +
∆(w(t−s);D), where 1 ≤ s ≤ k for small values of k. ML algorithms that use such consistency
models are able to (1) execute in a partially asynchronous manner without sacrificing correct-
ness, thus mitigating the effect of stragglers or slow workers [43, 81]; and (2) reduce the effect
of network bottlenecks caused by synchronization by allowing cached parameter values to be
used. Stale-Synchronous Parallel (SSP) [91] is such a consistency model, under which a set
of distributed workers may read cached values from a shared parameter server as long as their
staleness do not exceed a fixed limit.

Staleness-aware ML Algorithms

Beyond simply applying bounded staleness consistency to existing algorithms, the ML commu-
nity has developed new staleness-aware algorithms [14, 17, 92, 131, 152, 224, 234] which modify
each update ∆() according to the staleness s that it experiences. The modifications usually take
the form of a scaling factor ∆() ← c∆(), which are computationally light-weight and do not

50



create new bottlenecks. In the presence of staleness, these algorithms converge up to an order of
magnitude faster than their non-staleness-aware counterparts.

4.2.2 Dependencies and Model Scheduling
Another key property of ML algorithms is the presence of implicit dependency structures: sup-
posing w1 and w2 are different elements of w, then updating w1 before w2 does not necessarily
yield the same result as updating w2 before w1; whether this happens or not depends on the
algebraic form of the objective (or loss) function L() and ∆(). As a consequence, the conver-
gence rate and thus the running time of ML algorithms can be greatly improved through careful
scheduling of parallel model parameter updates.

Dependency-aware ML Algorithms

Like the many existing staleness-aware algorithms that exploit error tolerance, there is a rich
set of algorithms that use dependency structures in their models to perform better scheduling
of updates [51, 70, 123, 142, 189, 208, 224]. A typical example is to partition the model into
subsets, where the parameters inside a subset must be updated sequentially, but multiple subsets
can be updated in parallel. Two parameters w1 and w2 are placed into the same subset if the
strength of their dependency exceeds a threshold dep(w1, w2) > ε. As with staleness-aware
algorithms, dependency-aware algorithms converge up to an order of magnitude faster than their
non-dependency-aware counterparts.

4.3 Litz Programming Model and API
The main goal and challenge of designing Litz’s programming model is striking a balance be-
tween being expressive enough to support the wide variety of proven techniques in distributed
ML, while exposing enough structure in the application that the underlying execution system can
take control under elastic conditions. Guided by the insights presented in Sec. 4.2, we describe
how Litz’s programming model naturally arises from the properties of ML applications, and how
it enables an efficient and elastic run-time implementation. For reference, a detailed summary of
Litz’s API can be found in Table 4.1.

Input Data Over-Partitioning Across Executors

Eq. 2.3 shows that the input data and update calculations of ML applications can be partitioned
and distributed across a number of workers, but it does not specify any particular partitioning
scheme, nor does it require the number of partitions to be equal to the number of physical ma-
chines. Instead of directly assigning input data, Litz first distributes it across a set of logical
executors, which are in turn mapped to physical machines. Elasticity is enabled by allocating
more executors than physical machines and migrating excess executors to other machines as
they become available. This separation also lets Litz support stateful workers by allowing execu-
tor state to be defined and mutated by the application while being treated as a black box by the
run-time system.
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Method Name Part Of Defined By Description
DispatchInitialTasks() Driver Application Invoked by the framework upon

start-up to dispatch the first set of
micro-tasks.

HandleTaskCompletion(result) Driver Application Invoked by the framework when
a micro-task completes so that the
driver can dispatch a new set of
micro-tasks.

DispatchTask(executor,args) Driver Framework Invoked by the application to dis-
patch a micro-task to the specified
executor.

RunTask(args) Executor Application Invoked by the framework to per-
form a micro-task on the executor.

SignalTaskCompletion(result) Executor Framework Invoked by the application to indi-
cate the completion of a micro-task.

PSGet(key) Executor Framework Returns a specified value in the pa-
rameter server.

PSUpdate(key,update) Executor Framework Applies an incremental update to
a specified value in the parameter
server.

Table 4.1: The API for Litz. An application should define DispatchInitialTasks and
HandleTaskCompletion on the driver, as well as RunTask on the executor.

Micro-Tasks and Parameter Server

Update calculations are decomposed into short-lived (typically shorter than 1 second) units of
computation called micro-tasks, each of which calculates a partial update using the input data
on a single executor. At the end of each micro-task, control is yielded back to the run-time
system, exposing frequent opportunities for executors to be migrated. During its execution, a
micro-task is granted read/update access to a global parameter server via a key-value interface
(PSGet/PSUpdate in Table 4.1) and applies partial updates to model parameters by modifying
application state in the executor and/or updating globally-shared values in the parameter server.

Model Scheduling and Relaxed Consistency

Litz enables both model scheduling and relaxed consistency using application-defined depen-
dencies between micro-tasks. If micro-task A is a dependency of micro-task B, then (1) B is
executed before A and (2) B observes all updates made by A. This strict ordering and consis-
tency guarantee lets the application perform model scheduling by defining an ordering for when
certain updates are calculated and applied. On the other hand, if neither A nor B is a dependency
of the other, then they may be executed in any order or in parallel, and may observe none, some,
or all of the updates made by the other. This critical piece of non-determinism lets the application
exploit relaxed consistency models by allowing the run-time system to cache and use stale values
from the parameter server between independent micro-tasks.
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Micro-Task Dispatch and Completion

A common way to specify dependencies between tasks is through a directed ”dependency”
graph in which each vertex corresponds to a micro-task, and an arc from vertex A to vertex
B means task A is a dependency of task B. However, due to a potentially large number of
micro-tasks, explicitly specifying such a graph up-front may incur significant overhead. In-
stead, each Litz application defines a driver which dynamically dispatches micro-tasks dur-
ing run-time via the DispatchTask method. When a micro-task completes, Litz invokes
the HandleTaskCompletion method on the driver, which can then dispatch any additional
micro-tasks.

Without an explicit dependency graph, Litz needs an alternative way to decide when a micro-
task should be able to observe another micro-task’s updates. Otherwise, its execution system does
not have enough information to know when it is safe for a micro-task to use cached parameter
values, thus giving up a significant opportunity for performance optimization. To overcome
this issue, Litz uses the sequence of micro-task dispatch and completion events to infer causal
relationships between micro-tasks, which can then be used to generate the dependencies needed
to implement its cache coherence protocol. According to the following two cases:

1. If micro-task B is dispatched before being informed of the completion of micro-task A,
then Litz infers that the completion of A did not cause the dispatch of B. A is not a depen-
dency of B, and B may observe some, all, or none of the updates made by A.

2. If micro-task B is dispatched after being informed of the completion of micro-task A, then
Litz infers that A may have caused the dispatch of B. A may be a dependency of B, and B
will observe all updates made by A.

This consistency model is similar to Causal Memory [15], in which causally related read/write
operations are observed in the same order by all nodes. We discuss how Litz’s consistency model
and its cache coherence protocol can be implemented efficiently in Sec. 4.4.

4.4 Litz Implementation and Optimizations
Litz is implemented in approximately 6500 lines of C++ code using the ZeroMQ [12] library for
low latency communication and Boost’s Context [8] library for low overhead context-switching
between micro-tasks. The run-time system is comprised of a single master thread along with a
collection of worker threads and server threads, as shown in Fig. 4.1. The application’s driver
exists in the master thread and its executors exist in the worker threads. The key/value pairs
comprising the parameter server are distributed across a set of logical PSshards stored in the
server threads. Additional worker and server threads may join at any time during the compu-
tation, and the run-time system can re-distribute its load to make use of them. They may also
gracefully leave the computation after signaling to the master thread and allowing their load to
be transferred to other threads.

The master thread coordinates the execution of the application. First, it obtains micro-tasks
from the driver by initially invoking DispatchInitialTasks and then continuously in-
voking HandleTaskCompletion, sending them to worker threads to be executed. Second,
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Figure 4.1: High-level architecture of Litz. The driver in the master thread dispatches micro-
tasks to be performed by executors on the worker threads. Executors can read and update the
global model parameters distributed across PSshards on the server threads.
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the master thread maintains the dynamic mappings between executors and worker threads, as
well as between PSshards and server threads. When worker or server threads join or leave the
computation, it initiates load re-distribution by sending commands to move executors between
worker threads or PSshards between server threads. Third, the master thread periodically triggers
a consistent checkpoint to be taken of the entire application state, and automatically restores it
when a failure is detected. Each thread registers with an external coordination service such as
ZooKeeper [98] or etcd [10] in order to determine cluster membership and detect failures. In
order to transfer and checkpoint the driver and executors, Litz requires the application to provide
serialization and de-serialization code. The programming burden on the developer is low since
(1) it does not actively participate in elasticity and checkpointing, but simply invoked by the
execution system when needed, and (2) third-party libraries can be used to reduce programming
overhead [9].

Worker Thread Elasticity

Each worker thread maintains the state of and runs the micro-tasks for a subset of all execu-
tors. After any worker threads join the active computation, executors are moved to them from
the existing worker threads (scaling out). Similarly, before any worker threads leave the active
computation, executors are moved from them to the remaining worker threads (scaling in).When
an executor needs to be moved, the worker thread first finishes any of its ongoing micro-tasks for
that executor, buffering any other pending micro-tasks for that executor. The worker thread then
sends the executor’s state and its queue of buffered micro-tasks over the network to the receiving
worker thread.

The transfer of the executor’s input data is treated differently in the scale-in and scale-out
cases. When scaling in, Litz aims to free the requested resources as quickly as possible. The
input data is discarded on the originating worker thread to avoid incurring extra network transfer
time, and re-loaded on the target worker thread from shared storage. When scaling out, Litz aims
to make use of the new worker thread as quickly as possible. The input data is sent directly from
the memory of the originating worker thread to avoid incurring extra disk read time on the target
worker thread.

Parameter Server Elasticity

Similar to worker threads and executors, each server thread stores and handles the requests and
updates for a subset of all PSshards, which are re-distributed before scaling in and after scaling
out. However, since requests and updates are continuously being sent to each PSshard and can
originate from any executor, their transfer requires a special care. In particular, a worker thread
may send requests or updates to a server thread that no longer contains the target PSshard, which
can occur if the PSshard has been moved but the worker thread has not yet been notified.

A naı̈ve approach is to stop all micro-tasks on every executor, then perform the transfer, then
notify all worker threads of the change, and finally resume execution. This method guarantees
that requests and updates are always sent to server threads that contain the target PSshard, but
incurs high overhead due to suspending the entire application. Instead, the server threads per-
form request and update forwarding, and executors are never blocked from sending a parameter
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request or update. When a server thread receives a message for a PSshard it no longer contains,
it forwards the message to the server thread it last transferred the PSshard to. Forwarding can
occur multiple times until the target PSshard is found, the request/update is performed, and the
response is sent back to the originating worker thread. This way, execution of micro-tasks can
proceed uninterrupted during parameter server scaling events.

Consistent Checkpoint and Recovery

To achieve fault tolerance, Litz periodically saves a checkpoint of the application to persistent
storage, consisting of (1) the state of the driver, (2) the buffered micro-tasks for each executor,
(3) the state of each executor, and (4) the key-value pairs stored in each PSshard. Input data is not
saved, but is re-loaded from shared storage during recovery. When a failure is detected through
the external coordination service, Litz triggers an automatic recovery from the latest checkpoint.
The saved driver, executors, buffered micro-tasks, and parameter server values are restored, after
which normal execution is resumed.

Parameter Cache Synchronization

The consistency model outlined in Sec. 4.3 exposes an opportunity for the run-time system to
optimize execution by caching and re-using values from the parameter server instead of retrieving
them over the network for each access. Specifically, a micro-task A is allowed to use a cached
parameter if its value reflects all updates made by all micro-tasks that A depends on. This means
that (1) multiple accesses of the same parameter by micro-task A can use the same cached value,
and (2) a micro-task B whose dependencies are a subset of A’s can use the same cached values
that were used by A. By only using the sequence of micro-task dispatch and completion events
to infer dependencies, Litz enables both (1) and (2) to be implemented efficiently. In particular,
the dependencies of micro-task B are a subset of the dependencies of micro-task A if the total
number of micro-tasks that have been completed when B was dispatched is at most the total
number of micro-tasks that have been completed when A was dispatched.

To implement this cache coherence protocol, the master thread maintains a single monoton-
ically increasing version number that is incremented each time HandleTaskCompletion is
invoked. Whenever the driver dispatches a micro-task, the master thread tags the micro-task with
the version number at that time. After micro-task A retrieves a fresh value from the parameter
server, it caches the value and tags it with A’s version. When micro-task B wants to access the
same parameter, it first checks if its own version is less than or equal to the version of the cached
value. If so, then the cached value is used; otherwise a fresh copy of the parameter is retrieved
from the parameter server and tagged with B’s version. A cache exists on each Litz process
running at least one worker thread, so that it can be shared between different worker threads in
the same process.

This cache coherence protocol allows Litz to automatically take advantage of parameter
caching for applications that use bounded staleness. For example, to implement SSP (Sec. 4.2.1)
with staleness s, all micro-tasks for iteration i are dispatched when the last micro-task for itera-
tion i − s − 1 is completed. Thus, every micro-task for the same iteration has the same version
and share cached parameter values with each other. Since the micro-tasks for iteration i are

56



dispatched before those for iterations between i − s and i − 1 finish (when s ≥ 1), the values
they retrieve from the parameter server may not reflect all updates made in those prior iterations,
allowing staleness in the parameter values being accessed.

Parameter Update Aggregation

Updates for the same parameter value may be generated many times by different micro-tasks.
Since the parameter updates in ML applications are incremental and almost always additive,
they can be aggregated locally before sending to the parameter server in order to reduce network
usage. To facilitate the aggregation of updates, each Litz process contains an update log which
maps parameter keys to locally aggregated updates. Whenever a micro-task invokes PSUpdate,
the update is first aggregated with the corresponding entry in the update log, or is inserted into the
update log if the corresponding entry does not exist. Therefore, an update sent to the parameter
server can be a combination of many updates generated by different micro-tasks on the same Litz
process.

In order to maximize the number of updates that are locally aggregated before being sent
over the network, the results of micro-tasks are not immediately returned to the master thread
after they are completed. Doing this allows the updates from many more micro-tasks to be
sent in aggregated form to the server threads, reducing total network usage. The update log is
periodically flushed by sending all updates it contains to the server threads to be applied. After
each flush, all buffered micro-task results are returned to the master thread, which then informs
the driver of their completion. The period of flushing can be carefully tuned, but we find that the
simple strategy of flushing only when all micro-tasks on a worker thread are finished works well
in practice.

Co-operative Multitasking

Litz employs co-operative multitasking implemented using co-routines [8]. When one task is
blocked on an invocation of PSGet waiting for a value to be returned from a server thread, the
worker thread will switch to executing another micro-task that is not blocked so that useful work
is still performed. Each micro-task is executed within a co-routine so that switching between
them can be done with low-latency, entirely in user-space. Using co-routines provides the benefit
of overlapping communication with computation, while retaining a simple-to-use, synchronous
interface for accessing the parameter server from micro-tasks.

4.5 Evaluation
We start by evaluating Litz’s elasticity mechanism and demonstrate its efficacy along several di-
rections. First, with its parameter caching, update aggregation, and co-operative multi-tasking,
Litz is able to sustain increasing numbers of executors and micro-tasks with minimal perfor-
mance impact. Second, a running Litz application is able to efficiently make use of additional
nodes allocated to it, accelerating its time to completion. Third, a running Litz application is able
to release its nodes on request, quickly freeing them to be allocated to another job.
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Next, we discuss how Litz’s elasticity can be leveraged by a cluster job scheduler to (1)
reduce the completion time of an ML job that yields resources to a higher-priority job, and (2)
improve resource allocation by exploiting the inherent decreasing memory usage of many ML
algorithms.

Lastly, we evaluate Litz’s performance when executing diverse applications which make use
of stateful workers, model scheduling, and relaxed consistency. With the multinomial logistic
regression (MLR) application, we show that our implementation on Litz is faster than the built-in
implementation in Bösen [211], a non-elastic ML system for data-parallel SSP workloads. With
the latent Dirichlet allocation (LDA) application, we show that our implementation on Litz is
competitive with the built-in implementation in Strads [113], a non-elastic ML system for model
scheduling. Furthermore, to evaluate Litz for the special case of deep learning, we implement a
deep feed-forward neural network and compare its performance with Tensorflow [13].

ML Applications

MLR and LDA are popular ML applications used for multi-class classification and topic mod-
eling, respectively. The goal of our evaluation is to show that Litz enables elasticity for these
applications at little cost to performance when compared with state-of-the-art non-elastic sys-
tems. Thus, we closely follow their implementations in Bösen and Strads, using SGD and the
SSP relaxed consistency model for MLR, and block-scheduled Gibbs sampling with stateful
workers for LDA. For details of these implementations of MLR and LDA, we refer readers to
their descriptions in Wei et al. [211] and Kim et al. [113], respectively.

Cluster Setup

Unless otherwise mentioned, the experiments described in this section are conducted on nodes
with the following specifications: 16 cores with 2 hardware threads each (Intel Xeon E5-2698Bv3),
64GiB DDR4-2133 memory, 40GbE NIC (Mellanox MCX314A-BCCT), Ubuntu 16.04 Linux
kernel 4.4. The nodes are connected with each other through a 40GbE switch (Cisco Nexus
3264-Q), and access data stored on an NFS cluster connected to the same switch. Each machine
runs one Litz process which contains both worker threads and server threads; the master thread
is co-located with one of these processes.

Input Datasets

Unless otherwise mentioned, we run MLR on the full ImageNet ILSVRC2012 dataset [187]
consisting of 1.2M images labeled using 1000 different object categories. The dataset is pre-
processed using the LLC feature extraction algorithm [207], producing 21K features for each
image, resulting in a post-processed dataset size of 81GB. We run LDA on a subsample of the
ClueWeb12 dataset [68] consisting of 50M English web pages. The dataset is pre-processed by
removing stop words and words that rarely occur, resulting in a post-processed dataset with 10B
tokens, 2M distinct words, and total size of 88GB.
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Figure 4.2: Average time per epoch for MLR and LDA when running with various numbers of
executors per worker thread. In both cases the overhead of increasing the number of executors is
insignificant. We define one epoch as performing a single pass over all input data.

4.5.1 Elasticity Experiments

Before discussing elastic scaling, we evaluate Litz’s performance characteristics over increas-
ing numbers of executors. The worker threads achieve elasticity by re-distributing executors
amongst themselves when their numbers change, and by over-partitioning the application’s state
and computation across larger numbers of executors, Litz is able to scale out to larger numbers of
physical cores and achieve a more balanced work assignment. Thus it is critical for Litz applica-
tions to still perform well in such configurations. We run the MLR application on 4 nodes and the
LDA application on 12 nodes, varying the number of executors from 1 to 16 per worker thread.
Fig. 4.2 shows how the throughput of each application changes when the number of executors
increases. Using a single executor per worker thread as the baseline, the execution time for MLR
does not noticeably change when using 4× the number of executors, and gradually increases
to 1.11× the baseline when using 16× the number of executors. For LDA, the execution time
initially decreases to 0.94× the baseline when using 2× the number of executors, and thereafter
gradually increases to 1.23× the baseline when using 16× the number of executors. We believe
the overhead introduced by increasing the number of executors is quite an acceptable trade-off
for elasticity and can still be reduced with further optimizations.

Elastic Scale Out

As jobs finish in a multi-tenant setting and previously used resources are freed up, additional
allocations can be made to a currently running job. It is therefore important for the job to be
capable of effectively using the additional resources to speed up its execution. In this section,
we evaluate Litz’s performance characteristics when scaling a running application out to a larger
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Figure 4.3: MLR execution on Litz with 4 nodes, with 8 nodes, with an elastic execution that
scales out from 4 nodes to 8 nodes, and with an elastic execution that scales in from 8 nodes to 4
nodes. For the scale-out execution, the nodes are added at about 40 minutes into execution. For
the scale-in execution, the nodes are removed at about 30 minutes into execution.

number of physical nodes. We run experiments scaling MLR jobs from 4 to 8 nodes, and LDA
jobs from 12 to 24 nodes. Each node runs both worker threads and server threads, so both
executors and PSshards are rebalanced during scaling. The experiments for LDA in this section
were performed using m4.4xlarge instances on AWS EC2, each with 16 vCPUs and 64GiB of
memory.

To evaluate the speed-up achieved, we compare our scale-out experiments with static execu-
tions of the applications using both the pre-scaling number of nodes and the post-scaling number
of nodes. Fig. 4.3 shows the convergence plots for MLR, 4 new nodes added after ≈ 40min
of execution. The static 4 node execution completes in ≈ 157min while the scale-out execution
completes in≈ 122min, resulting in a 22% shorter total run-time. Fig. 4.4 shows the convergence
plots for LDA, 12 new nodes added after ≈ 55min of execution. The static 12 node execution
completes in≈ 183min while the scale-out execution completes in≈ 134min, resulting in a 27%
shorter total run-time.

Ideal Scale Out

Next, we evaluate the amount of room for improvement still achievable over Litz’s current scale-
out performance. Following a similar construction as Pundir et al. [173], we define and compare
with a simple ideal scale-out execution time which intuitively measures the total run-time of a
job that instantly scales out and adapts to use the additional nodes. For example, consider a
job that scales out from 4 to 8 nodes after completing 30% of its iterations, its ideal scale-out
execution time is the sum of the time at which the scale-out was triggered and the time it takes a
static 8 node execution to run the last 70% of its iterations.
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Figure 4.5: Static, scale-out, and ideal scale-out (See Sec. 4.5.1) execution times for MLR and
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negligible size.
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Fig. 4.5 compares the static pre-scaling, static post-scaling, scaling, and ideal execution times
for both MLR and LDA. For MLR, the static 8 node execution completes in ≈ 107min, giving
an ideal scale-out execution time of≈ 121min. The actual scale-out execution time is≈ 122min,
indicating a less than 1% difference from the ideal. Similarly for LDA, the static 24 node execu-
tion completes in ≈ 101min, giving an ideal scale-out execution time of ≈ 127min. The actual
scale-out execution time is ≈ 134min, indicating a 5% difference from the ideal. LDA’s higher
overhead stems from the large worker state that is inherent to the algorithm, which need to be
serialized and sent over the network before the transferred executors can be resumed. We believe
this overhead can be reduced further through careful optimization of the serialization process, by
minimizing the number of times data is copied in memory and compressing the data sent over
the network.

Elastic Scale In

As new and higher-priority jobs are submitted in a multi-tenant environment, the resource al-
location for a currently running job may be reduced and given to another job. In this section,
we evaluate Litz’s scale-in performance based on two key factors. First, we show that Litz ap-
plications continue to make progress after scaling in, with performance comparable to the static
execution on the fewer nodes. Second, we show that running Litz jobs can release resources with
low latency, quickly transferring executors and PSshards away from requested nodes so that they
can be used by another job. We measure the time between when the scale-in event is triggered
and when the last Litz process running on a requested node exits. This represents the time an
external job scheduler needs to wait before all requested resources are free to be used by an-
other job. As with the scale-out experiments, these experiments were run using m4.4xlarge EC2
instances.

We run each experiment at least three times and report the average. Fig. 4.3 shows the
convergence plots for MLR with the scale-in event. We start the job with 8 nodes, and remove 4
nodes≈ 30 minutes into execution. The convergence plot closely follows the plot of 8-node static
execution until the scale-in event, and the plot of 4-node static execution after that. Similarly,
Fig. 4.4 shows the convergence plots for LDA with the scale-in event. We start the job with 24
nodes, and remove nodes ≈ 33 minutes into execution. The convergence plot closely follows the
plot of 24-node static execution until the scale-in event, and the plot of 12-node static execution
after that.

For MLR, the scale-in event takes 2.5 seconds on average, while for LDA the average is
43s. The low latency for MLR is due to a combination of its stateless workers and Litz’s default
behavior of discarding input data upon scaling in. As a result, the only state that needs to be
transferred are the PSshards residing on the server threads of each requested node, which total
≈ 10MiB when split between 8 nodes. The executors in LDA, on the other hand, are stateful
and contain a portion of its model parameters. When distributed across all nodes, each node
contains ≈ 4.6GiB of executor state that need to be transferred away. A benchmark of cluster
network showed that it can sustain a bandwidth of 2.0Gbps between pairs of machines, meaning
that the 4.6GiB of LDA executor state can ideally be transfered within 20s. Nevertheless, the
current transfer times are reasonable for an external scheduler to wait for. For comparison, even
a pre-emptive environment like the AWS Spot Market gives users a warning time of 120s before
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Figure 4.6: Priority scheduling experiments as described in Sec. 4.5.2. The graphs show the
resource allocation over time in the cases of (a) LDA job which is uninterrupted, (b) LDA job
which is killed when a higher-priority job is submitted, and (c) LDA job which elastically scales
in when a higher-priority job is scheduled. We ran each experiment three times and saw negligi-
ble variation between each instance.

forcefully evicting their nodes.

4.5.2 Elastic Scheduling
We present two specific instances where the elasticity enabled by Litz can benefit job scheduling.
First, when a high-priority job needs to be scheduled, an elastic ML application can avoid pre-
emption by cooperatively releasing resources. Second, the inherent resource variability of many
ML applications allow Litz to automatically release memory throughout the lifetime of an ML
job, freeing resources to be used by other jobs.

Priority Scheduling

In multi-tenant computing environments, users frequently submit jobs (both ML and non-ML)
which can have differing priorities. To meet the stricter SLA requirements of high-priority jobs, a
scheduler must sometimes re-allocate some resources used by a lower-priority job. If the lower-
priority job is inelastic, then it may be killed or suspended, leaving the rest of its resources
under-utilized and delaying its completion time. For long-running jobs such as training ML
models, their resources may need to be re-allocated several times during their lifetimes.
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However, with the elasticity mechanism enabled by Litz, a long-running ML application can
simply scale-in to use a fewer amount of resources, while the higher-priority job uses the released
resources. After the higher-priority job completes, it can scale-out again, uninterrupted. We
implemented this priority scheduling policy on a cluster of 16 m4.4xlarge nodes, and launched
an LDA job on all 16 machines that runs for ≈100min if left uninterrupted (Fig. 4.6(a)). A
higher-priority job is launched 60min into its runtime, requiring 4 nodes for 30min. Without
elasticity, the LDA job is killed and re-started after the higher-priority job ends, requiring a total
of ≈190min to complete (Fig. 4.6(b)). However, by leveraging elasticity to scale-in the LDA
job, it can continue to run using 12 nodes and completes in ≈120min (Fig. 4.6(c)). At the same
time, waiting for LDA to scale-in only increased the completion time of the high-priority job
from 30min to 31min.

ML Resource Variability

The iterative-convergent nature of ML algorithms presents opportunities for resource scheduling
not usually found in other computing tasks. One advantage of elasticity in an ML framework
is that in addition to scaling in and out based on the directions from a cluster scheduler, an
elastic ML framework can leverage resource variability that is inherent in ML applications to
autonomously give up resources.

In particular, many ML algorithms, including LDA, may find their model parameters becom-
ing sparse (ie. mostly zeros) as they approach convergence [113], allowing memory usage to be
reduced by using a more memory-efficient storage format (ie. sparse vector). Although LDA
running on Strads has a similar decreasing memory usage, the lack of elasticity in Strads does
not allow it to leverage this phenomenon for efficient scheduling.

Litz, on the other hand, can detect variability in the resource usage and reduce the number of
worker and server threads accordingly. Fig. 4.7 shows the breakdown of memory usage during
LDA. Server threads that store the model start with 6 GiB and drop to around 1 GiB by the 10th
epoch, suggesting that the server threads can be reduced by 80%. Similarly, the worker threads
start with 370 GiB of memory and reduce to about 300 GiB by the 10th epoch, suggesting that
their count can be reduced by 20% and respective resources can be released. This dynamic
resource usage of ML jobs, when exposed through an elastic framework like Litz, can inform the
policies of a cluster scheduler that allocates resources between many jobs.

4.5.3 Performance Experiments

We compare our Litz implementations of MLR and LDA with those built-in with the open-source
versions of Bösen and Strads, respectively. All three systems along with their applications are
written using C++, and to further ensure fairness, we compiled all three using the -O2 -g flags
and linked with the TCMalloc [71] memory allocator. These settings are the default for both
Bösen and Strads.
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Figure 4.8: Multinomial Logistic Regression (MLR) running on 8 nodes using 25% of the Ima-
geNet ILSVRC2012 dataset. Litz achieves convergence about 8× faster than Bösen.
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MLR Comparison with Bösen

We compare Litz with Bösen running the MLR application on 25% of the ImageNet ILSVRC2012
dataset2 using 8 nodes. The open-source version of Bösen differs from the system described by
Wei et. al. [211] in that it does not implement early communication nor update prioritization, but
is otherwise the same and fully supports SSP execution. Both MLR instances were configured
to use the same SSP staleness bound of 2 as well as the same SGD tuning parameters such as
step size and minibatch size. As Fig. 4.8 shows, our MLR implementation on Litz converges
about 8× faster than that on Bösen. Our profiling of Bösen and cursory examination of its code
shows that it does not fully utilize CPUs due to lock contention. We believe the wide gap in
performance is not due to fundamental architectural reasons, and that Bösen should be able to
narrow the gap on such SSP applications given a more optimized implementation.

LDA Comparison with Strads

We next compare Litz with Strads running the LDA application using 12 nodes. The open-source
version of Strads is the same implementation used in Kim et. al. [113]. Both LDA instances
were configured to use the same number of block partitions as well as the same LDA hyper-
parameters α and β. We ran each application until 34 epochs have been completed, where an
epoch is equivalent to a full pass over the input data. As Fig. 4.9 shows, our LDA implementation
on Litz completes all epochs roughly 6% slower than that on Strads. However, it also achieves
a better objective value (measured in log-likelihood), resulting in faster convergence than Strads
overall. Even though more investigation into the per-epoch convergence difference is needed,
we can attribute the throughput difference to the optimizations built into Strads, which employs
a ring-topology specifically optimized for the block-partitioned model scheduling strategy used
by LDA.

Deep Neural Networks (DNNs)

To evaluate Litz with DNNs, we implemented a particular deep learning model called a deep
feed-forward network [75], which forms the basis of many deep learning applications. We used
a network with two hidden layers with ReLU activation and one output layer with Softmax
activation. We trained this model using both Litz and TensorFlow [13] on 4 m4.4xlarge EC2
instances, with the CIFAR-10 [119] dataset. This dataset consists of 60K images, which are
pre-processed into vectors of ≈98K features, labeled using 10 classes. Both systems used the
same data-parallel SGD algorithm, and were configured with the same tuning parameters such as
a learning rate of 0.0001 and mini-batch size of 64. The training using Tensorflow progressed at
a pace of ≈79s per batch, while the training using Litz progressed 3.4× faster at a pace of ≈23s
per batch.

2With the full dataset, the Bösen baseline does not complete within a reasonable amount of time.
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Figure 4.9: Latent Dirichlet Allocation (LDA) training algorithm running on Strads and Litz
with the subsampled ClueWeb12 dataset. Litz completes all 34 epochs roughly 6% slower than
Strads, but achieves a better objective value.

4.6 Discussion and Related Work

Recently, there has been a growing interest in utilizing transient nodes in the cloud spot mar-
kets for big-data analytics. The systems developed for this setting try to execute jobs with the
performance of on-demand nodes at a significantly cheaper cost, using transient nodes. The chal-
lenge for these systems is to deal with the bulk revocations efficiently by choosing right fault-
tolerance mechanism. For example, SpotOn [200] dynamically determines the fault-tolerance
mechanism that best balances the risk of revocation with the overhead of the mechanism. While
SpotOn applies these fault-tolerance mechanisms at the systems level—using virtual machines
or containers—Flint [194] argues that application-aware approach is preferable and can improve
efficiency by adapting the fault-tolerance policy. Flint, which is based on Spark, proposes auto-
mated and selective checkpointing policies for RDDs, to bound the time Spark spends recom-
puting lost in-memory data after a bulk revocation of transient nodes. TR-Spark [220] argues
that RDDs—the checkpointing unit in Spark—are too coarse-grained, making Spark unfit to run
on transient resources, and takes Flint’s approach further by providing fine-grained task-level
checkpointing.

Unlike Flint and TR-Spark that adapt a general-purpose Spark framework to achieve cost-
effective analytics with transient resources, Proteus [83] adapts a specialized ML framework
to achieve significantly faster and cheaper execution, while introducing elasticity optimizations
tuned for the setting. Specifically, Proteus stores the ML model on parameter servers that run on
reliable on-demand nodes, and makes the workers stateless so that they can be run on transient
node, effectively pushing workers’ states to parameter servers, along with the model. This is a
reasonable approach for the spot market setting where bulk revocations can take offline a large
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number of workers without notice. Although it works well for applications with small worker
state, with an increasing data and model size, the approach may run into performance problems
due to the communication overhead between workers and their state stored on the parameter
servers. Litz, on the other hand, keeps the worker state in the workers and assumes a cooperative
cluster scheduler that will ask the running application to give up nodes and wait for state to be
transferred away. This approach results in high performance while still providing elasticity.

4.7 Scalable and Elastic HDBSCAN with Litz
In this section, we present a highly-optimized implementation of HDBSCAN clustering using
Litz. Clustering algorithms have found applications in a variety of fields involving exploratory
data analysis, including document retrieval [205], image search [25], and bioinformatics [134].
HDBSCAN [36] is one such algorithm which is well-suited for these applications, being able
to model clusters in many naturally occurring data. However, traditional implementations of
HDBSCAN scale poorly with the size of data, requiring a full kNN graph [67] to be constructed
over all points in the dataset.

Simpler clustering models such as k-means [145] are popular for data-intensive applications
because they can be efficiently scaled to large datasets [191]. However, they also tend to have re-
strictions for the data and/or user, limiting their usefulness for real-world data. For example, they
may assume that clusters are normally distributed around a mean point [143], the user knows the
number of clusters ahead of time, or that there are no noise points in the data. These shortcomings
are avoided by many hierarchical and density-based clustering algorithms like HDBSCAN.

In our work, we investigate the feasibility of scaling up HDBSCAN. We approach the prob-
lem by using two key optimizations:

1. Replace the computationally expensive kNN graph construction with a more scalable ap-
proximation algorithm.

2. Replace a step which finds a minimum spanning tree of the complete graph of all data
points, by finding the minimum spanning tree of the kNN graph instead.

Using these optimizations, we obtain an efficient approximation to HDBSCAN which works well
on large datasets. We implement this approach as a distributed system, and show that it achieves
over 40x better performance than a popular exact implementation of HDBSCAN. Additionally,
we find that the approximations we used result in minimal difference when compared with exact
HDBSCAN results. We obtain reasonable output from a large word embedding dataset contain-
ing hundreds of clusters, demonstrating the flexibility of the approach.

4.7.1 Background
HDBSCAN

HDBSCAN is a hierarchical density-based clustering algorithm. It takes N points with dimen-
sionality D and a distance metric d as input. The algorithm works in three phases:
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1. Find the K-th nearest neighbor of each point according to the distance metric d, where K
is a hyperparameter. By ap we denote the distance between point p and its K-th nearest
neighbor. In subsequent steps, HDBSCAN uses the following modified distance metric:

d̃(x, y) = max(ax, ay, d(x, y))

The purpose of using this modified metric is to reduce sensitivity to outliers.

2. Find the minimum spanning tree of the points, where for each pair of points x and y there
is an edge connecting them with weight d̃(x, y).

3. Extract clusters from the minimum spanning tree.

Steps (1) and (2) are computationally expensive: they both have time complexity O(N2D). An
algorithm which is quadratic in the number of points will not scale to datasets containing millions
of points.

One technique for dealing with such datasets is sub-sampling, where the algorithm is run on a
fraction of the dataset. This can be effective, but it is not suitable in all instances. For an example,
consider the word embedding dataset described in Sec. 4.7.3. This dataset contains hundreds of
clusters of fewer than 10 points, which would be difficult to extract from a sub-sample of the
dataset.

Previous work on HDBSCAN [151] used k-d trees [26] to optimize step (1), but the worst-
case complexity of step (1) is unchanged. As our experiments will show, this worst-case com-
plexity is realized when the dimensionality D is sufficiently large. This is why we turn to ap-
proximation to scale the algorithm to large N and D.

NN-Descent

NN-Descent [58] is an approximate kNN graph construction algorithm. It is based on the prin-
ciple that “a neighbor of a neighbor is likely to be a neighbor”. A list of K candidate nearest
neighbors is maintained for each point. In each step, for each point p, the algorithm examines
all neighbors of neighbors of p and adds them to the neighbor list of p if they are closer than the
last entry of p’s neighbor list (thus replacing this last entry). This improves the accuracy of the
kNN graph in each iteration. The algorithm stops when the number of updates in an iteration
falls below a certain threshold. NN-Descent possesses several desirable qualities which make it
well-suited for this application:

• It has been shown to perform well on a variety of datasets and distance metrics [58].

• It supports useful non-metric spaces such as the space induced by the cosine similarity
metric.

• It has an O(n1.14) empirical runtime, which is consistent with our results and makes it
scalable to larger datasets.

• It can be easily distributed to multiple cores and machines.
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4.7.2 Design and Implementation
To approximate step (1) of HDBSCAN, we run NN-Descent.

To approximate step (2), we find the minimum spanning tree of the graph produced by NN-
Descent (which has KN edges) rather than the all-pairs graph (which has N(N − 1)/2 edges).
This choice is justified as follows. The only important edges of the minimum spanning tree used
by step (3) are those which connect points in the same cluster. Thus we expect that removing
edges not present in the k-NN graph will preserve most of the important edges.

We implemented our HDBSCAN application using Litz. Each worker is implemented as
a separate executor and messages sent between workers are facilitated using the PSGet and
PSUpdate API calls. Therefore, our implementation of HDBSCAN is not only efficient but
can also elastically scale in and out through Litz. The minimum spanning tree is found using
Kruskal’s algorithm [122] when the points fit on one machine’s memory and Borůvka’s algorithm
[32] when they must be split across machines. Most of the computational cost lies in running
NN-Descent, so we devoted significant effort to optimizing this part of the algorithm.

We modified NN-Descent to achieve constant-factor improvement in the distributed case. In
NN-Descent, points are partitioned evenly among the machines, and each machine keeps track
of the nearest neighbors of its points. To update these nearest neighbor lists, an update is sent
consisting of x, y, and d(x, y) to the machine holding x. The update is accepted if d(x, y) is
less than the distance between x and the most distant element of the nearest neighbor list of x,
denoted dmax(x).

Sending data over the network is more expensive than accessing local memory, so we send
dmax(x) to all neighbors of x at the start of each iteration of updates. That allows those neighbors
to discard updates to x before sending them through the network if the distance of the update is
larger than dmax(x). This technique led to a 42% decrease in runtime when running NN-Descent
on the GloVe dataset [172] (described in the next section) with 4 machines.

4.7.3 Results
To test our implementation on real-world data, we ran it on the GloVe dataset containing 400,000
points with dimension 300. We imposed a maximum cluster size of 1,000 to avoid assigning
all points to the same cluster. Using the dot product metric and running on 4 AWS m4.xlarge
instances, our implementation finished in 143 seconds, producing 329 clusters as output. We find
that the clusters produced are qualitatively valid, examples include:

• loaf loaves rigatoni tofu spaghetti orzo tacos snacks fettuccine penne dente linguine cous-
cous sausage pasta cheese bread noodles sandwiches

• infinitive imperfective noun nominative pronoun dative genitive verb participle subjunctive
accusative

• phi kappa epsilon theta sigma

To obtain a more quantitative measure of the accuracy of our approximation, we compare
with the implementation by McInnes et al. using the Fowlkes-Mallows index [66] running on
a synthetic dataset. The dataset consists of 100,000 points, with 1,000 clusters, where 20% of
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Dimension FM score Clusters (theirs) Clusters (ours)
1 0.896 6267 6285
2 0.959 840 842
3 0.934 1129 1135
4 0.941 1117 1115
5 0.942 1104 1100
6 0.948 1075 1079
7 0.956 1044 1050
8 0.957 1028 1029
9 0.958 1027 1023
10 0.961 1020 1018

Table 4.2: FM score measuring the similarity of our implementation’s output with the output of
the exact implementation by McInnes et al.

the points were noise. The remaining points were randomly distributed among the clusters; the
points in a cluster were normally distributed about the center of the cluster. Table 4.2 summarizes
these results.

We performed a similar experiment to test efficiency. We generated 10 synthetic clusters of
points with dimension 10 and varied the number of points. We found that with 223 points, our
single-machine implementation was over 40 times faster. Fig. 4.10 shows how the implemen-
tations scale with the number of points. The distributed tests are run using 4 AWS m4.xlarge
instances. The performance of our implementation is consistent with the O(n1.14) empirical
runtime of NN-Descent.

4.8 Adaptive Out-Of-Core Execution with Litz
In this section, we show how Litz can be extended to automatically adapt to low memory sce-
narios by invoking out-of-core execution. Our implementation using Litz is aware of when the
partitions for each executor and parameter server are needed, and is able to outperform native
OS-level swap by an order of magnitude.

For big data analytics and particularly for machine learning workloads, memory is often a
scarce resource, and the lack thereof is a prominent source of failures [62]. Even modestly sized
datasets or models may not fit within the available memory of the computing environment being
used. Out-of-core execution techniques can alleviate the demand for main memory by allowing
a significant amount of a running program’s state to instead be placed in secondary storage.

The advantages of out-of-core execution often come at a performance penalty, and are only
desired when a job is running with insufficient memory. On the other hand, it is difficult to set
a tight bound on the memory requirements of machine learning jobs, since memory demand and
availability for these jobs are often dynamic and change over time. First, the memory demand
of certain machine learning applications exhibit trends across the lifetime of a job. For example,
sparse models like Lasso [203] or Latent Dirichlet Allocation [31] (see Fig. 4.11) may see most of
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Figure 4.10: Performance of our implementation compared with the exact implementation by
McInnes et al.

their parameters become zero as they converge, drastically reducing their memory consumption.
Second, since machine learning applications are popular in shared computing environments such
as clouds or data-centers, memory may become unavailable to a job when needed by another
higher-priority job, or become available again when another job finishes. Whether or not to use
out-of-core execution should depend on the demand and availability of memory at a given time.
Thus, an adaptive form of out-of-core execution is desired, being automatically enabled for a job
only when its demand for memory exceeds the amount available for it to use.

Paging to swap space is one solution for out-of-core execution. It has the benefits of being
adaptive, only being used when constrained for memory, as well as being transparent to the
application, requiring no special programming to be enabled. In addition, paging is implemented
in the operating system and is able to bypass the overhead of the filesystem [6]. However, paging
has several limitations for machine learning and big data workloads:

• The amount of swap space is usually limited. Its size is difficult to reconfigure dynamically,
requiring privileged access to the operating system and can only be done when swap is
disabled.

• Higher performance is difficult to achieve. Even though it’s possible to tune swap for
performance using the madvise, mlock, and munlock system calls [4, 5], they require
knowledge of addresses in virtual memory, which are often hidden beneath many layers of
data abstractions.

Our proposed adaptive out-of-core execution framework overcomes these limitations of swap.
It can store program state using the filesystem, which is typically much larger than swap space
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Figure 4.11: Aggregate memory usage of Latent Dirichlet Allocation (LDA) can decrease by
more than 25% over its lifetime.

and offers enough flexibility to implement custom serialized formats that allow dynamic resiz-
ing without privileged access to the operating system. Although framework-level out-of-core
execution precludes optimizations that bypass the overhead of using the filesystem, it enables
other powerful optimizations which are application-aware and exploit the properties of machine
learning to achieve higher performance:

• Knowing the dependencies between the application’s tasks lets the framework prefetch
state from secondary storage before they are needed, or re-order the execution of tasks to
avoid memory thrashing.

• Knowing the type of application state (eg. shared parameters, data-local parameters [174])
informs the framework on their access patterns and the performance trade-off of evicting
them to secondary storage.

• Lossy compression of serialized state can drastically reduce the overhead of reading and
writing to secondary storage.

To show a proof of concept for how out-of-core execution can be performed adaptively and
efficiently for machine learning, we designed and implemented an adaptive out-of-core system
for a parameter server [51, 91, 132, 211] framework in a way that is transparent to the application.
Our performance results are promising for a popular machine learning application on various
hardware configurations. Comparing with paging to swap, our system performs significantly
faster while avoiding the swap space limitations.

4.8.1 System Design and Implementation
We build our out-of-core execution system into Litz. The majority of application state resides in
executors and a distributed parameter server. Each executor stores a partition of input data and
the model parameters which are co-located with that partition of input data, while the parameter
server stores the model parameters which need to be accessed from multiple executors. A single
driver dispatches tasks to individual executors, where each task is some computation that can
read/update the local executor state and the shared parameter server state. The Litz framework
treats the executor state, parameter server state, driver, and tasks as application-defined black
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Figure 4.12: Flow of execution when memory is allocated within a Litz process.

boxes, but expects serialization functions to be defined for executor and parameter server state
so they can be transparently migrated between different machines.

We enable adaptive out-of-core execution in the Litz framework with the addition of two
sub-systems called the Out-of-Memory (OOM) Trap and the Eviction Routine embedded into
each Litz process. The OOM Trap sub-system takes as input a memory threshold, and intercepts
memory allocations made within the Litz process when it would surpass the limit. Each time the
OOM Trap is triggered, it invokes the Eviction Routine, which searches for a suitable executor to
be serialized (via the application-defined serialization function) and written to secondary storage.
This executor is then erased from main memory, and the OOM Trap will retry the allocation
which triggered it. Fig. 4.12 illustrates this process.

The OOM Trap can be be triggered multiple times for the same memory allocation, evicting
multiple executors from main memory until the allocation succeeds. Before a task for an evicted
executor is run, the executor is loaded back into main memory, which in turn may trigger other
idle executors to be evicted. Since the OOM Trap is only triggered when constrained for memory,
our out-of-core system is adaptive and only uses secondary storage when needed. In addition,
the memory threshold can be changed during run-time, allowing more memory to be allocated
to a job when available.

OOM Trap. The OOM Trap should accurately detect when an allocation will cause the mem-
ory limit to be exceeded, and stop the allocation from proceeding while allowing the Eviction
Routine to run. In our implementation, we used ulimit [7] to limit virtual memory, causing
memory allocations to return the null pointer when it would surpass the limit. The OOM Trap
links a wrapper for malloc which checks if the result of allocations is the null pointer.

Eviction Routine. The Eviction Routine should find a suitable executor, serialize it, and write
it to secondary storage. It is only invoked when the memory limit is about to be exceeded, and
needs to run without allocating any additional memory. Each thread in the Litz process reserves
a small amount of memory (2 MB) which can be used by the serialization function during the
Eviction Routine. The Eviction Routine also attempts to find a more optimal executor to evict

74



0
2
4
6
8

10
12
14

i3.xlarge m4.2xlargeTo
ta

l E
xe

cu
tio

n 
Ti

m
e 

(H
ou

rs
)

AWS Instance Types

Our System Swap

Figure 4.13: K-means experiment results on AWS instances.

by trying to avoid executors which have incoming tasks, by looking for tasks which have been
dispatched but not started execution.

4.8.2 Results
We test Mini-batch K-means [138, 191] on the AWS cloud with two types of instances [1]. One
is m4.2xlarge with 8 vCPU, 32GB memory. Another is i3.xlarge with 4 vCPU, 32GB memory.
We set the number of computation threads to four on i3.xlarge and eight on m4.2xlarge, and use
256GB General Purpose SSD (gp2) EBS volumes [2]. The dataset is from the full ImageNet
ILSVRC2012 dataset [186]. It contains 1140297 images, each with 10K features. We run 100
batches, with each batch 40 tasks and each task 1100 images, to train 1000 classes. For our
system we use ulimit -v 31000000 to limit the virtual memory size to a number close to
the total physical memory size while for the system swap we let the OS schedule total 96GB
virtual memory between the physical memory and the swap space.

The results show that on i3.xlarge our system uses 2.13 hours while the system swap uses
12.30 hours. On m4.2xlarge, our system takes 1.52 hours while the system swap takes 13.10
hours (see Fig. 4.13). The reason why the system swap is so slow is that its execution generates
memory thrashing, which results in high IOPS and hits the performance upper limit of the EBS
volumes.
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Chapter 5

SCAR: Exploring the Inherent Fault
Tolerance of Iterative-Convergent Training

Machine learning (ML) training algorithms often possess an inherent self-correcting behavior
due to their iterative-convergent nature, providing opportunities to develop co-adaptive systems
that leverage this property. Recent systems exploit this behavior to achieve adaptability and
efficiency in unreliable computing environments by relaxing the consistency of execution and
allowing calculation errors to be self-corrected during training. However, the behavior of such
systems are only well understood for specific types of calculation errors, such as those caused
by staleness, reduced precision, or asynchronicity, and for specific algorithms, such as stochastic
gradient descent.

In this chapter, we develop a general framework to quantify the effects of calculation errors
on iterative-convergent algorithms. Our framework provides a general tool to build co-adaptive
systems based on the error tolerance property of ML training. We then use this framework
to derive a worst-case upper bound on the cost of arbitrary perturbations to model parameters
during training and to design new strategies for checkpoint-based fault tolerance.

Our system, SCAR, extends Litz (Chapter 4) with co-adaptation. SCAR can reduce the cost
of partial failures by 78%–95% when compared with traditional checkpoint-based fault tolerance
across a variety of ML models and training algorithms, providing near-optimal performance in
recovering from failures.

The contents of this chapter were previously published in [176].

5.1 Introduction
Throughout an ML training job’s lifetime, it is susceptible to hardware failures, performance
fluctuations, and other uncertainties inherent to real-world cluster environments. For example,
processes can be preempted by a cluster resource allocator [90, 204], parameter synchronization
can be bottlenecked on a slow or congested network [133, 230], and stragglers can severely
impact overall job throughput [43, 82].

ML-agnostic distributed systems approaches for addressing such problems often adopt strong
consistency semantics. They aim to provide strong execution guarantees at a per-operation level
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Figure 5.1: The self-correcting behavior of iterative-convergent algorithms. Even though a cal-
culation error results in an undesirable perturbation of δ at iteration T , the subsequent iterations
still brings the solution closer to the optimum value of w∗.

(such as linearizability or serializability), but may also incur higher performance overhead. On
the other hand, ML training is often tolerant to small calculation errors and may not require
such strong consistency guarantees. This observation has been exploited by recent ML sys-
tems to overcome cluster unreliability and resource limitation issues, such as bounded staleness
consistency [43, 45, 91], quantization and low-precision arithmetic [44, 80, 96], and lock-free
execution [51, 162]. One notable exception to this trend is checkpoint-based fault tolerance, a
common strategy in current ML systems for mitigating hardware failures [13, 141, 211] which
continues to enforce strong consistency semantics at a high cost of re-computing lost work.

This trend of relaxing consistency in ML systems relies on the self-correcting behavior of
iterative-convergent ML training algorithms (Fig. 5.1). During each step, the training algorithm
calculates updates based on the current values of model parameters, and then applies the updates
to obtain a “better” set of model parameters. By iteratively performing this computation, the
model parameters eventually converge to a set of optimal values. Small computation errors made
during this procedure are eventually washed out by the successive iterative improvements. This
self-correcting behavior of ML training suggests a general strategy for designing robust training
systems for unreliable environments, as follows:

(A) The execution system allows certain environmental faults and/or resource limitations to
manifest as calculation errors in model training. These errors can be conceptualized as
perturbations to the model parameters.

(B) The perturbations are self-corrected by the model training algorithm, which incurs an extra
cost (e.g. additional iterations, batches, epochs, etc.). We refer to this additional cost as the
rework cost of the perturbations.

Motivated by this general strategy, we develop a framework for exploiting self-correction in
ML systems in a way that is adaptive to generic perturbations whose cause or origin is unknown.
It provides a theoretical foundation for understanding the self-correcting behavior of iterative-
convergent model training as well as the tools needed by ML systems to take advantage of this
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Figure 5.2: A framework for designing robust training systems with co-adaptation by exploiting
the self-correcting behavior of ML. First, through system design, resource instabilities and con-
straints in unreliable computing environments are allowed to manifest as perturbations in model
parameters. Then, through the self-correcting behavior of ML, the perturbations are automati-
cally corrected but incurs a cost in the number of iterations to convergence.

behavior. Our main contributions are:

1. We quantify the impact of generic perturbations on iterative-convergent algorithms in
terms of their rework cost. Under reasonable convergence assumptions, we bound the
rework cost in terms of the sizes of these perturbations.

2. We propose new strategies for checkpoint-based fault tolerance in distributed model train-
ing. Partially recovering from checkpoints, combined with prioritizing checkpoints in a
way that reduces the size of perturbations, can significantly reduce the rework cost due to
partial failures.

3. We design SCAR, a parameter server system based on Litz for fault tolerant ML train-
ing and show that SCAR reduces the rework cost of partial failures by 78%–95% when
compared with traditional checkpointing, which is close to optimal (vs. training with no
failures).

5.2 Modeling Faults in ML Training
Most ML training algorithms are iterative, i.e. model parameters are updated given a current
estimate of the model parameters w(k) until convergence to some target parameter w∗. Such al-
gorithms are commonly called iterative-convergent, and include most optimization, Monte Carlo,
and numerical schemes used in practice. These iterative schemes are of the form

w(k+1) = f(w(k)), w(k) ∈ Rd, (5.1)

for some function f . This model of iterative-convergent algorithms assumes that the current state
w(k) is stored persistently and losslessly in memory. In practice, modern distributed ML systems
are subject to faults such as hardware failures, memory corruption, and performance fluctuations.
Thus, it is unrealistic to assume that w(k) can always be retrieved with perfect fidelity. To model
this uncertainty, let δk be a random variable that represents an unknown perturbation that corrupts
the current state to produce a perturbed state w(k) + δk. We make no assumptions about the
cause, size, or behavior of the perturbations δk. More specifically, we assume the iterates obey
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the following scheme:

y(0) = w(0)

y(1) = f(y(0) + δ0)

...

y(k+1) = f(y(k) + δk)

(5.2)

In the absence of errors, ie. δk = 0, we have y(k) = w(k), which reduces to the basic iterative
scheme (5.1). Moreover, since δk is arbitrary, this model allows for any type of perturbation.
In particular, perturbations may occur in every iteration or periodically according to some ran-
dom process. This setup captures many of the ways that system faults can be manifested as
perturbations, and we give a few important examples below.

Example 5.2.1 (Reduced Precision). A simple practical example is using reduced precision float-
ing/fixed point representations for storing parameter values. If ỹ(k) is a reduced precision version
of the exact parameter values y(k), then the algorithm suffers perturbations of δk = ỹ(k) − y(k)

at each iteration k. If the representation has a p-bit mantissa, then the size of δk is bounded by
|δk| < 2−(p−1)|y(k)| [89].

Example 5.2.2 (Bounded Staleness Consistency). In stochastic gradient descent (SGD) under
the stale synchronous parallel (SSP) consistency model [91], gradients are computed in a data-
parallel fashion where each of M machines may observe a stale version of the model parameters
w̃

(k)
m . Suppose ∇(w̃

(k)
m , Dm) are the gradients computed during iteration k using input data Dm

at machine m. If ∇(w(k), D) is the true stochastic gradient at iteration k, then the algorithm
suffers a perturbation at iteration k + 1 of:

δk+1 =
1

M

M∑
m=1

∇(w̃(k)
m , Dm)−∇(w(k), D)

Example 5.2.3 (Checkpoint-based Fault Tolerance). In failure recovery from checkpoints, a copy
of the entire job state is periodically saved to persistent storage, and is restored in the case of a
failure. Suppose a system experiences a failure at iteration T , and recovers from the failure by
restoring a full checkpoint of the model parameters taken at iteration C < T . Then the algorithm
suffers a perturbation at iteration T of δT = w(T ) − w(C). Although from the system’s point of
view the application is returned to an exact prior state, we can still view the act of checkpoint
recovery as a perturbation to the model parameters.

Reduced precision (Example 5.2.1) and bounded staleness consistency (Example 5.2.2) have
already been the focus of much attention in both the ML and systems communities [47, 102,
211, 228]. Although not typically studied within the explicit set-up of (5.2), these strategies
generate perturbations which fit within our framework, and preserve the correctness of training
by keeping the sizes of these perturbations small. This is accomplished via bounded floating-
point/fixed-point rounding errors for reduced precision and via a maximum staleness limit for
bounded staleness consistency. In Section 5.4, we apply the general set-up of (5.2) to devise
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new strategies for checkpoint-based fault tolerance (Example 5.2.3) by reducing the sizes of the
perturbations δk.

The iteration in (5.2) is closely related to perturbed gradient descent [59, 69, 104]. The main
difference lies in the motivation: Jin et al. [104] show that by choosing δk cleverly, it is possible to
escape saddle points and guarantee that the iteration (5.2) converges to a second-order stationary
point. The idea is to design the perturbations δk to an advantage, which is in stark contrast to
our set-up, in which we have no control over δk. In the worst case, we allow δk to be chosen
adversarially.

5.3 Analysis
Suppose that an ML system has experienced perturbations δ1, . . . , δT up to the T th iteration. A
(random) sequence ak is called ε-optimal if E‖ak − w∗‖ < ε. The main question we seek to
address in this section is the following: Given ε > 0, what is the “cost” in number of iterations
for y(k) to reach ε-optimality compared to the unperturbed sequence w(k)? We write “cost” in
quotations to emphasize that this number can be negative—for example, δk could randomly move
y(k) closer to w∗, or δk can be constructed in advance to improve convergence as in perturbed
gradient descent. We call this quantity the rework cost of the perturbed sequence y(k), introduced
in Sec. 5.1. Our goal in the present section is to bound the rework cost, which will be formally
defined next.

5.3.1 Rework cost
In order to keep things simple, we assume that the unperturbed sequence satisfies

‖f(w(k))− w∗‖ ≤ c ‖w(k) − w∗‖, 0 < c < 1, (5.3)

i.e. the iterates w(k) converge linearly. Although some algorithms (e.g. SGD) do not converge
linearly, many of the most popular algorithms in practice do (e.g. gradient descent, proximal
quasi-Newton, Metropolis-Hastings). This assumption is made purely for simplicity: We use
(5.3) as a baseline for comparison, and the analysis can be extended to more general schemes
such as SGD if desired (Appendix 5.3.3).

Formally, the rework cost is defined as follows: Let κ(y(k), ε) be a lower bound such
that m > κ(y(k), ε) implies E‖y(m) − w∗‖ < ε (this may be +∞ or negative). Under
(5.3), it is straightforward to derive a similar lower bound for the unperturbed sequence w(k)

as κ(w(k), ε) = log
(

1
ε
‖w(0) − w∗‖

)
/ log(1/c). This will be used as a baseline for comparison:

The rework cost for the perturbations δk is defined to be

π(δk, ε) := κ(y(k), ε)− κ(w(k), ε). (5.4)

Using the unperturbed sequence w(k) as a benchmark, π(δk, ε) bounds the additional number of
iterations needed for the perturbed sequence y(k) to reach ε-optimality (where we bear in mind
that this can be negative). Clearly, π(δk, ε) depends on the sequence δk, and should be smaller
whenever the δk are smaller. We seek a bound on π(δk, ε) that holds for arbitrary δk.
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Figure 5.3: Illustrations of rework costs using gradient descent on a simple 4-D quadratic pro-
gram. Each plot consists of 1,000 trials with perturbation(s) randomly generated according to a
normal distribution. The red line is the rework cost bound according to Theorem 5.3.1. The value
of c is determined empirically, and the value of ε is set so that an unperturbed trial converges in
roughly 1,000 iterations.
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Remark 5.3.1. We use the criterion E‖y(k)−w∗‖ < ε as an optimality criterion instead of directly
bounding P(‖y(k) − w∗‖ < ε). This is commonly done [e.g. 33] since bounds on E‖y(k) − w∗‖
imply bounds on the latter probability via standard concentration arguments [see e.g. 181].

5.3.2 Bounding the rework cost
To bound the rework cost, we also require that the update f satisfies a convergence rate similar
to (5.3) for the perturbed data ỹ(k) := y(k) + δk:

E‖f(ỹ(k))− w∗‖ ≤ c E‖ỹ(k) − w∗‖, 0 < c < 1. (5.5)

This simply says that wherever the algorithm is, on average, a single step according to f will
not move the iterates further from w∗. For example, it is not hard to show that gradient de-
scent satisfies this condition whenever the objective is strongly convex (see e.g. the proof of
Theorem 2.1.5 in 161). In fact, this assumption is satisfied for a variety of nonconvex problems
[21, 218], and similar results hold for other optimization schemes such as proximal methods and
Newton’s method.
Under (5.3) and (5.5), we have the following general bound on the rework cost:

Theorem 5.3.1. Assume E‖δk‖ < ∞ for k ≤ T and δk = 0 for k > T . Under (5.3) and (5.5),
we have for any ε > 0,

π(δk, ε) ≤
log
(

1 + ∆T

‖w(0)−w∗‖

)
log(1/c)

(5.6)

where ∆T :=
∑T

`=0 c
−`E‖δ`‖.

In fact, the bound (5.6) is tight in the following sense: As long as (5.3) cannot be improved, there
exists a deterministic sequence δ1, . . . , δT such that (5.6) holds with equality. Theorem 5.3.1 is
illustrated on a simple quadratic program (QP) in Figure 5.3, which provides empirical evidence
of the tightness of the bound.

The interesting part of the bound (5.6) is the ratio ∆T/‖w(0) − w∗‖, which is essentially a
ratio between the aggregated cost of the perturbations and the “badness” of the initialization. For
more intuition, re-write this ratio as

∆T

‖w(0) − w∗‖
=

∑T
`=0 c

k−`E‖δ`‖
ck‖w(0) − w∗‖

.

Up to constants, the denominator is just the error of the original sequence w(k) after k iterations.
The numerator is more interesting: It represents a time-discounted aggregate of the overall cost
of each perturbation. Each perturbation δ` is weighted by a discount factor ck−`, which is larger
for more recent perturbations (e.g. δT ) and smaller for older perturbations (e.g. δ0). Thus, the
dominant quantity in (5.6) is a ratio between the re-weighted perturbations and the expected error
from the original sequence. As expected, if the original sequence converges very quickly and the
perturbations are large, the rework cost increases proportionally.
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Theorem 5.3.1 also assumes that there are no perturbations after time T . The idea is that
if there are no more perturbations, (5.6) bounds the cost of the perturbations incurred so far.
Of course, in practice, the system may experience faults after time T , in which case (5.6) can
be adjusted to include the most recent fault. The difficulty in directly accounting for future
perturbations lies in our assumption that the δk can be arbitrary: If future iterations can experience
any perturbation, it is clear that convergence cannot be guaranteed (e.g. consider δk = w − y(k)

for some fixed w 6= w∗ and all k > T ). Under some additional assumptions, something can be
said about this case; see Example 5.3.4.

5.3.3 Examples
In this section, we discuss some examples where the bound (5.6) is applicable, along with some
generalizations.

Example 5.3.1 (Convex optimization). Theorem 5.3.1 applies to ML systems that are based
on minimizing a strongly convex objective. This includes many classical problems including
regression.

Example 5.3.2 (Nonconvex optimization). If the loss function ` is nonconvex, then Theorem 5.3.1
still applies with some modifications. The assumptions (5.3) and (5.5) can be verified using
known results on nonconvex optimization [21, 218] under the so-called Kurdyka-Łojasiewicz
property, from which the bound (5.6) follows directly. Trouble arises, however, when ` has mul-
tiple basins of attraction: A perturbation δk could “push” the perturbed iterate ỹ(k) into a different
basin, resulting in a limit point that is different from w∗. Theorem 5.3.1 continues to hold as long
as this can be avoided, i.e. the δk are not too large.

Example 5.3.3 (SGD). The assumption (5.5) does not hold for SGD, which has a sublinear con-
vergence rate in general. Nonetheless, it is straightforward to extend our framework to sublinear
algorithms, with the caveat that analogous bounds on the iteration cost become more compli-
cated. In fact, it is not hard to see from our proof how to do this: Lemma B.2.1 in the Appendix
establishes the following useful general inequality

E‖y(k+1) − w∗‖ ≤ ck+1
[
‖w(0) − w∗‖+ ∆T

]
.

Evidently, the factor of c governs how quickly ∆T (i.e. the cost incurred by perturbations)
gets washed out as k increases. For algorithms that converge sublinearly such as SGD, this effect
will also be sublinear, but still tend to zero as long as the perturbations are not too large (see
Appendix B.1.2 for a brief discussion). This is further corroborated by the empirical experiments
in Section 5.5, where we show that the strategies for checkpoint-based fault tolerance proposed in
the next section are successful on SGD as well as other optimization schemes such as alternating
least squares. Similar arguments apply to convex (but not strongly convex) loss functions, for
which gradient descent has a sublinear convergence rate in general.

Example 5.3.4 (Infinite perturbations). An interesting case occurs when δk 6= 0 for all k. In
other words, there is a possibility of a fault in every iteration. For arbitrary δk, it is clearly
impossible to establish any kind of convergence result. In fact, suppose ‖δk‖ ≤ ∆ for each k.
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Then there is an irreducible error of (c/(1− c))∆, meaning that we cannot hope to obtain an ε-
optimal solution for any ε < (c/(1− c))∆. This helps to explain why we focus on the nontrivial
case with δk = 0 for k > T in Theorem 5.3.1. One setting in which the analysis with infinite
perturbations is nontrivial is when ∆ is known to be small, e.g. when using reduced precision
as in Example 5.2.1. This setting can be analyzed by setting ∆ ≥ 2−(p−1)‖w(k)‖ for all k. For
details, see Appendix B.1.1.

5.4 Checkpoint-Based Fault Tolerance

As an application of our framework, we study new strategies for checkpoint-based fault tolerance,
by which a stateful computation is made resilient to hardware failures by periodically saving its
program state to persistent storage. This fault-tolerance mechanism is used in many popular ML
frameworks including TensorFlow [13] and PyTorch [165].

Using traditional checkpointing, the entire saved program state is restored after a failure,
and input data is re-loaded from its persistent storage. Then, all computation since the previous
checkpoint is repeated. This process maximizes the consistency of recovery by restoring the
system to an exact state it was in during the past, but can incur high rework cost if the checkpoint
interval is long. Let Trework be the total amount of time spent re-computing lost iterations. For a
single failure, Trework for the traditional checkpoint strategy is the total amount of time between
the previous checkpoint and the failure.

Although this traditional checkpointing is sufficient for many usage scenarios, it can break
down in computing environments where the mean-time-to-failure is low [84]. For example, re-
source schedulers in shared clusters can kill running jobs to give more resources to higher-priority
jobs, and cloud-based spot instances may be preempted frequently. In these environments, jobs
using traditional checkpointing can incur a large penalty each time they experience a failure. In
the most degenerate scenario, a job can run for an undetermined amount of time when its check-
point interval is longer than the mean-time-to-failure. Thus, it is critical to reduce the rework
cost incurred by checkpoint-based fault tolerance.

Fortunately, for iterative-convergent ML, we can exploit its self-correcting behavior to reduce
Trework. In particular, we can give up the consistency of checkpoint-recovery, and design a system
which tries to reduce the size of the perturbation ‖δT‖ incurred upon failure. By doing so,
Theorem 5.3.1 shows that the rework cost bound is also reduced, lowering the worst case rework
cost and thus reducing Trework.

We design a system architecture, SCAR,1 consisting of two strategies which reduce ‖δT‖
compared to traditional checkpoint recovery: (1) Partial recovery, and (2) Prioritized check-
points. SCAR extends the popular parameter server (PS) architecture for distributed model train-
ing [91, 132, 133]—the model parameters are partitioned across a number of PS nodes, which
are accessed by worker nodes. We assume that during a failure, any number of PS nodes can go
down, causing the loss of their partitions of the model parameters. We present these strategies
and the design of SCAR below, and show evaluation of SCAR in Section 5.5.

1SCAR stands for Self-Correcting Algorithm Recovery.
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5.4.1 Partial Recovery
Our first strategy is to only recover (i.e. from a previous checkpoint) the part of the model param-
eters which are lost due to the failure. Since the model parameters are partitioned across several
PS nodes, a partial failure of PS nodes should only cause a partial loss of model parameters.
Mathematically, the partial recovery strategy should result in a smaller perturbation to the model
parameters and, according to Theorem 5.3.1, incur a smaller rework cost.

Suppose that a fully-consistent checkpoint is taken after iteration C , and a failure occurs
during iteration T > C which triggers checkpoint recovery.

Theorem 5.4.1. Let δ be the perturbation incurred by full checkpoint recovery, and δ′ be the
perturbation incurred by partial checkpoint recovery, then ‖δ′‖ < ‖δ‖.

Furthermore, the size of the perturbation should also be related to the fraction of model pa-
rameters which are lost—losing fewer model parameters should generate a smaller perturbation.
To establish this relationship, we will assume that parameters are partitioned uniformly at ran-
dom across the PS nodes, and so a random subset of parameters will be lost. This assumption is
reasonable as the partitioning scheme is typically within the control of the PS system, which can
choose a random partitioning.

Theorem 5.4.2. Suppose that a failure causes the loss of a fraction 0 < p ≤ 1 of all model
parameters chosen uniformly at random. Let δ be the perturbation incurred by full checkpoint
recovery, and δ′ be the perturbation incurred by partial checkpoint recovery, then E||δ′||2 =
p||δ||2.

Thus, the expected size of perturbations incurred by partially restoring from a checkpoint
decreases as the fraction of parameters lost decreases.

5.4.2 Priority Checkpoint
With the partial recovery strategy, we have shown that relaxing the consistency of checkpoint
recovery can reduce the size of perturbations (i.e. δk) experienced by the training algorithm due
to a failure, and thus reduce the rework cost. In this section, we further consider relaxing the
consistency of saving checkpoints by taking more frequent, partial checkpoints.

Rather than saving all parameters every C iterations, consider saving a fraction r < 1 of
the parameters every rC iterations. A running checkpoint is kept in persistent storage, which
is initialized to the initial parameter values w(0) and updated each time a partial checkpoint
is saved. At a given time, this checkpoint may consist of a mix of parameters saved during
different iterations, and the choice of which subset of parameters to checkpoint can be controlled
via system design. This strategy enables, e.g., prioritization of which parameters are saved
during each checkpoint so as to prioritize saving parameters that will minimize the size of the
perturbation caused by a failure. To do this, we consider a simple heuristic: Save the parameters
which have changed the most since they were previously saved.

The checkpoint period rC is chosen so that the number of parameters saved everyC iterations
remains roughly constant across different values of r. As a result the prioritized checkpoint
strategy writes the same amount of data per constant number of iterations to persistent storage

86



Parameter	Shard	1

(Cached)
Checkpoint	Shard	1

Fault-Tolerance	Controller

Shared	Persistent	Storage

Checkpoint	Shard	1

Parameter	Shard	N

(Cached)
Checkpoint	Shard	N

Checkpoint	Shard	N

Checkpoint
Coordinator

Recovery
Coordinator

Parameter	Server	1 Parameter	Server	N

Failure	Detector

Figure 5.4: SCAR system architecture for partial recovery and prioritized checkpoints in dis-
tributed model training.

as the full checkpoint strategy, while having more frequent opportunities to prioritize and save
parameters to the running checkpoint. We evaluate the system overhead implications of this
scheme in Section 5.5.5.

5.4.3 SCAR Architecture and Implementation

We implement our system, SCAR, using these two checkpoint-based fault tolerance strategies.
SCAR is implemented as a PS architecture—the parameters of the ML model are randomly
partitioned across PS nodes, while the input data is partitioned across worker nodes. During
each iteration, the workers read values from the PS nodes, compute updates using their local
input data, and send the updates to the PS nodes to be applied.

Figure 5.4 illustrates the architecture of SCAR. A fault tolerance controller runs as a separate
service and consists of (1) a checkpoint coordinator responsible for coordinating periodic check-
points at a fixed time interval, and (2) a recovery coordinator responsible for coordinating the
failure recovery process whenever a failure is detected. The detection of failures is performed by
a failure detector service, which can leverage heartbeating mechanisms in existing systems for
distributed consensus such as ZooKeeper [97]. Checkpoints are saved to shared persistent stor-
age, such as distributed filesystems like NFS [188], CephFS [213], or distributed databases like
Cassandra [124]. To speed up distance calculations between the current and previously saved
parameters, each PS node keeps an in-memory cache of the current checkpoint, which is updated
whenever a new partial checkpoint is saved.
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Actions During a Checkpoint

1. The checkpoint coordinator sends a message to each PS node, which computes the distance
of each of its parameters from their previously saved values in the running checkpoint using
its in-memory cache.

2. Each PS node sends its model parameter IDs and computed distances to the checkpoint
coordinator.

3. Upon receipt of the computed distances from all PS nodes, the checkpoint coordinator
selects the fraction r of parameters with the largest distances, and sends their IDs back to
their corresponding PS nodes.

4. Upon receipt of the parameter IDs, each PS node updates its in-memory cache, and saves
those parameters to the shared persistent storage.

During step 4, the training algorithm can be resumed as soon as the in-memory caches have been
updated, while output to the shared persistent storage happens asynchronously in the background.
Thus, the checkpointing overhead in SCAR is just the time needed for prioritizing parameters
and updating the in-memory cache. Furthermore, steps 2 and 3 simply answer a distributed top-k
query. Although we chose a simple implementation for our prototype, a more scalable algorithm
such as TPUT [38] can be used to remove the bottleneck of centralizing this computation onto
the checkpoint controller.

Actions During a Failure

1. The failure detector notifies the recovery coordinator, which determines how the parame-
ters belonging to the failed PS nodes should be re-partitioned.

2. The recovery coordinator partitions and sends the failed parameter IDs to the remaining
PS nodes, which re-load the parameters from the current running checkpoint in shared
persistent storage.

Implementation Details

SCAR is implemented using C++ and leverages an existing elastic ML framework [175], which
provides mechanisms for transparently re-routing requests from workers away from failed PS
nodes, as well as for new PS nodes to join the active training job, replacing the old failed PS
nodes.

5.5 Experiments
With our evaluation, we wish to (1) illustrate our rework cost bounds for different types of per-
turbations using practical ML models, (2) empirically measure the rework costs of a variety of
models under the partial recovery and prioritized checkpoint strategies in SCAR, and (3) show
that SCAR incurs near-optimal rework cost in a set of large-scale experiments.
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5.5.1 Models and Datasets
We use several popular models and datasets as examples for our analysis and checkpoint strate-
gies. We describe them in detail in this section.

Multinomial Logistic Regression (MLR)

Trained with stochastic (minibatch) gradient descent on the MNIST [126] and CoverType [57]
datasets. The model parameters are an M × N matrix of real numbers, where M is the dimen-
sionality of the data, and N is the number of output classes. When distributed, the rows of the
parameter matrix are randomly partitioned. For MNIST, we use a batch size of 10,000, a learning
rate of 1×10−5, and a convergence criteria of 2.5×104 in cross-entropy loss. For CoverType, we
use a batch size of 1,000, a learning rate of 1× 10−7, and a convergence criteria of 6.7× 105 in
cross-entropy loss. For both datasets, the convergence criteria is reached in roughly 60 iterations.

Matrix Factorization (MF)

Trained with alternating least squares (ALS) on the MovieLens [86] and Jester [72] datasets.
The model parameters are matrices L ∈ Rm×p and R ∈ Rp×n. When distributed, the rows of
L and the columns of R are randomly partitioned. For MovieLens, we use 20 factors and a
convergence criteria of 9.2 × 102 in mean squared error loss. For Jester, we use 5 factors and
a convergence criteria of 5.57 × 103 in mean squared error loss. The MovieLens dataset is the
movielens-small version consisting of 671 users and 9,125 items. The Jester dataset is
the Jester 2+ version, We further remove users with no ratings, and re-scale ratings from
[−10, 10] to [0, 10]. For both datasets, the factor matrices L and R are randomly initialized with
each entry sampled uniformly at random from [0, 1), and the convergence criteria is reached in
roughly 60 iterations.

Latent Dirichlet Allocation (LDA)

Trained with collapsed Gibbs sampling [137] on the 20 Newsgroups [125] and Reuters [129]
datasets. The model parameters are the document-topic and word-topic distributions. We use
a scaled total variation between document-topic distributions as the norm for computing dis-
tances between parameters. When distributed, the document-topic distributions are randomly
partitioned across nodes. We do not consider failures of word-topic distributions because they
can be re-generated from the latent token-topic assignments.

In LDA, each document in the input data consists of a series of tokens, where each token is
assigned a categorical topic. Topic assignments are repeatedly randomly sampled during the life-
time of a job. From these token-topic assignments, a document-topic distribution is constructed
for each document, and a word-topic distribution is constructed for each unique word. Both the
document-topic and word-topic distributions can be re-generated given the token-topic assign-
ments, so losing the distributions themselves is not a problem. However, when distributed, each
document-topic distribution is typically co-located with the document it corresponds to. Thus,
losing a document-topic distribution is typically associated with also losing the token-topic as-
signments of that document, which do require recovery from a saved checkpoint. Therefore, we
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only consider the loss of document-topic distributions, and assume that the word-topic distribu-
tions can be reconstructed at any time.

Since the parameters of LDA are distributions, a natural norm to use is the total variation
norm. However, the total variation norm when applied to LDA puts the same weight onto every
document-topic distribution. This means that re-sampling a token-topic assignment in a shorter
document has a greater impact to the overall norm than re-sampling a token-topic assignment
in a longer document, which biases checkpoint prioritization towards shorter documents. To
address this, we scale the total variation norm of each document-topic distribution by the length
of the document it corresponds to. The result is still a valid norm, since it is a positive linear
combination (which is constant with respect to the input data) of total variation norms.

For 20 Newsgroups, we use a convergence criteria of 9.5×106 in negative log-likelihood. For
Reuters, we use a convergence criteria of 8.5× 105 in negative log-likelihood. For both datasets
we train using 20 topics and hyperparameters α = β = 1. The convergence criteria is reached in
roughly 60 iterations.

Convolutional Neural Network (CNN)

Trained with Adam [114]. We train this CNN on the MNIST [126] dataset.The network con-
sists of 2 convolution layers with ReLU activations [156] and max pooling followed by 3 fully-
connected layers with ReLU activation. Because of the structure in neural network models, we
consider two different partitioning strategies: 1) In by-layer partitioning, we assume that the lay-
ers of the network are randomly partitioned across nodes; and 2) In by-shard partitioning, we
further divide each layer’s parameters into shards, and all shards are randomly partitioned across
nodes. We use a batch size of 64, the recommended Adam settings of α = 0.001, β1 = 0.9,
β2 = 0.999, and ε = 10−8, and a convergence criteria of 0.08 in cross-entropy loss. In by-layer
partitioning, the weight and bias parameters are independent and partitioned separately (so they
can either be lost together, or not). In by-shard partitioning, each parameter tensor is evenly
partitioning according to its first dimension. The optimizer parameters (ie. the running first and
second moment estimates in the case of Adam) are placed with their corresponding model pa-
rameters. Thus, an optimizer parameter is always faulted simultaneously with its corresponding
model parameter.

5.5.2 Iteration Cost Bounds

To illustrate the behavior of the rework cost and to verify Theorem 5.3.1 for different types of
models and perturbations, we train MLR and LDA and generate a perturbation according to one
of three types: random, adversarial, and resets.

For random perturbations (Figure 5.5(a)), the rework cost bound is a loose upper bound on
the actual rework cost. This is in contrast to the simpler quadratic program (QP) experiments
shown in Figure 5.3, in which the bound is relatively tight. On the other hand, we also do not
observe any perturbations resulting in a negative rework cost as for QP. This experiment shows
that for MLR, a perturbation in a random direction is unlikely to greatly impact the total number
of iterations to convergence.
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Figure 5.5: Rework costs of MLR on MNIST for (a) random Gaussian perturbations and (b)
adversarial perturbations generated in the opposite direction from the optimum. In each trial,
a single perturbation is generated at iteration 50. The red line is the upper bound according to
Theorem 5.3.1. The value of c is determined empirically, and the value of ε is set so that an
unperturbed trial converges in roughly 100 iterations.
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(b) LDA on 20 Newsgroups.

Figure 5.6: Perturbations are generated by resetting a random fraction of parameters back to their
initial values, for both (a) MLR and (b) LDA. Other settings are the same as Figure 5.5.
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We run a second experiment in which we generate “adversarial” perturbations opposite the
direction of convergence (Figure 5.5(b)). In this case, we see that our bound is much closer to
the actual rework costs, indicating that it is still a tight worst-case upper bound on the rework
cost for MLR.

While Figure 5.5 shows the rework costs for synthetically generated perturbations, Figure
5.6 generates more realistic perturbations for both MLR and LDA. We generate perturbations by
resetting a random subset of model parameters back to their initial values. This scheme simulates
the type of perturbations the training algorithm would observe in the partial recovery scenario
described in Section 5.4.1. In this case, we see that the behavior of actual rework costs is closer
to the scenario with adversarial perturbations, although not quite as costly.

5.5.3 Partial Recovery
To empirically characterize the behavior of partial recovery from checkpoints, we simulate fail-
ures of varying fractions of model parameters for each model. We compare the rework costs
incurred by full recovery with the rework costs incurred by partial recovery. For each model, we
sample the failure iteration from a geometric distribution, which causes the loss of a subset of
model parameters chosen uniformly at random.

Fig. 5.7 and Fig. 5.8 show the results. For all models and datasets, we see the average rework
cost incurred by partial recovery decreases as the failure fraction decreases. Meanwhile, the
average rework cost incurred by full recovery remains constant at its maximum value, since all
parameters are loaded from the checkpoint regardless of which are actually lost.

Across all models and datasets tested, SCAR with partial recovery reduces the rework cost
by 12%–42% for 3/4 failures, 31%–62% for 1/2 failures, and 59%–89% for 1/4 failures.

5.5.4 Priority Checkpoint
In this section, we evaluate the effectiveness of our priority checkpoint strategy for the MLR,
MF, LDA, and CNN models. We compare the rework costs incurred by different fractions of
partial checkpoints, while keeping constant the number of parameters saved per constant number
of iterations, as described in Section 5.4.2. As before, we sample the failure iteration from a
geometric distribution. In this experiment keep the fraction of lost parameters fixed at 1/2.

To gauge the effectiveness of prioritization, we compare between several strategies: (1)
priority, parameters saved to checkpoint are selected based on the prioritization described in
Section 5.4.2, (2) round, parameters saved to checkpoint are selected in a round-robin manner,
and random, parameters saved to checkpoint are selected uniformly at random.

Fig. 5.9 and Fig. 5.10 show the results. For all models and datasets, we see the priority
strategy results in decreasing rework costs when the fraction of each checkpoint decreases (and
frequency of checkpoints increases). On the other hand, the round strategy either reduces or
increases the rework cost depending on the model and dataset, while the random strategy nearly
always increases the rework cost.

Across all models and datasets tested, combining partial recovery with prioritized 1/8th
checkpoints at 8× frequency reduces the rework cost of losing 1/2 of all model parameters
by 78%–95% when compared with traditional checkpoint recovery.
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(b) MLR on MNIST.
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(c) MF on MovieLens.
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(d) MF on Jester.

Figure 5.7: Partial vs. full recovery where the set of failed parameters are selected uniformly at
random. The x-axis shows the fraction of failed parameters, and the y-axis shows the number of
rework iterations. The error bars indicate 95% confidence intervals, calculated by repeating each
trial 100 times, and the dashed black line represents the rework cost of a full checkpoint.
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(a) LDA on 20 Newsgroups.
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(b) LDA on Reuters.
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(c) CNN (by layer) on MNIST.
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(d) CNN (by shard) on MNIST.

Figure 5.8: Partial vs. full recovery experiments (Fig. 5.7) continued.
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Figure 5.9: Prioritized checkpoint experiments comparing between the random, round-robin,
and priority strategies. The x-axis indicated checkpoint frequency relative to full checkpoints,
where 1 indicates full checkpoints, 2 indicates 1/2 checkpoints at 2× frequency, etc., and the
y-axis shows the number of rework iterations. The error bars indicate 95% confidence intervals,
calculated by repeating each trial 100 times. The dashed black line represents the rework cost of
a full checkpoint.
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(d) CNN (by shard) on MNIST.

Figure 5.10: Prioritized checkpoint experiments (Fig. 5.9) continued.
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5.5.5 Large Scale Experiments
Lastly, we evaluate the convergence impact and system overhead of SCAR with two large-scale
training scenarios using MLR and LDA. We use four AWS i3.2xlarge instances to train MLR on
the full 26GB Criteo [107] dataset, and LDA on a 12GB subset of the ClueWeb12 dataset [68].

Convergence Impact

For both MLR and LDA, we trigger a failure of 25% of parameters (corresponding to a single
failed node in our 4-node cluster) after 7 epochs. We compare SCAR, which saves 1/8 of the
highest-priority parameters every epoch, with traditional checkpointing, which saves all param-
eters every 8 epochs. Fig. 5.11 shows the results. For both MLR and LDA, SCAR achieves
near-optimal rework costs of less than a single epoch, while traditional checkpointing incurs
rework costs of 7 epochs corresponding to the exact amount of computation lost.

Our experiment scenario highlights the worst-case behavior of traditional checkpointing,
which occurs when the failure happens immediately before a full checkpoint is taken. A ran-
domly occurring failure is just as likely to happen any time during the checkpoint interval. How-
ever, in expectation, traditional checkpointing would still incur 4 epochs of rework cost. In
dynamic-resource environments where failures can occur frequently, SCAR’s reduced rework
cost can significantly reduce total training time.

System Overhead

The checkpointing mechanisms of SCAR can be implemented with low performance overhead.
In our experiments, we measured an average per-epoch overhead of < 1s for MLR and < 5s for
LDA, when compared with traditional checkpointing. Given that the average time spent comput-
ing each epoch is ≈ 140s for MLR and ≈ 220s for LDA, this added overhead is negligible.

5.6 Related Work
In the optimization literature, optimization with inexact gradients has been extensively studied
[see 56, 190, and the references therein]. These works focus on convergence rates and typically
assume the errors in the gradients are small. By contrast, our focus is somewhat different, instead
considering the case where the perturbations are generic, i.e. they are not restricted to gradient
computations and may be significant. Mania et al. [148] and El Gamal and Lai [61] also consider
a model similar to (5.2), however, perturbations are only added to the gradients.

A related body of work is distributed training under Byzantine faults [28, 41, 49, 79], where
a proportion of machines may act adversarially. However, perturbations to parameters during
training are not always Byzantine, and can often be controlled via system implementations, such
as bounded staleness consistency models, or partial recovery and prioritized checkpointing as in
the present work.

Coded computing has been proposed as a technique to reduce the effects of stragglers and
faults in distributed machine learning [109, 127, 201]. These techniques use coding theory to
increase the redundancy of input data or linear computations such as matrix multiplication. The
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Figure 5.11: Large scale experiments with (a) MLR on Criteo and (b) LDA on ClueWeb12. A
failure of 25% of model parameters is triggered after epoch 7. SCAR saves 1/8 of parameters
every epoch, while traditional checkpointing saves all parameters every 8 epochs.
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failure of model parameters remains an outstanding problem, which is the main focus of our
work.

In other distributed ML systems, fault tolerance is approached in an ML-agnostic way. Ten-
sorFlow [13] offers recovery from periodic checkpoints, while the parameter server of Li et
al. [132] offers live replication of parameter values. Proteus [84] proposes an approach for fault-
tolerance on transient machines by using more reliable machines for active backup of program
state. In comparison, our system takes advantage of the self-correcting nature of ML, offering
lower rework cost compared with traditional checkpoint-restart, and without the performance
overhead of live replication or storing parameter state on designated reliable machines.
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Chapter 6

Conclusion

We conclude this thesis by summarizing our primary contributions and then outlining a few
limitations and interesting directions for future research.

6.1 Summary of Contributions

We proposed co-adaptation as a key factor for improving elastic training of machine learning and
deep learning models. We presented the design, implementation, and evaluation of three systems
for ML that improve DL training time in shared GPU clusters by 37-50%, enable elasticity for a
diverse set of ML training applications, and reduce the impact of resource failures by 78-95%.

First, Pollux is a DL cluster scheduler that co-adaptively allocates resources, while at the
same time tuning each training job to best utilize those resources. We presented a formulation of
goodput that combines system throughput and statistical efficiency for distributed DL training.
Based on the principle of goodput maximization, Pollux jointly tunes the resource allocations,
batch sizes, and learning rates for DL jobs, which can be particularly difficult for users to config-
ure manually. Pollux outperforms and is more fair than recent DL schedulers, even if users can
configure their jobs well, and provides even bigger benefits with more realistic user knowledge.

Second, Litz enables elastic execution of diverse ML training applications in clouds and data-
centers. We identified three important classes of distributed ML techniques—stateful workers,
model scheduling, and relaxed consistency—and designed Litz’s programming model to col-
lectively support each of them. By adopting an event-driven API, Litz is able to control the
execution of its applications, transparently migrating their state and computation between physi-
cal machines. Litz achieves elasticity—the ability to scale out and in based on changing resource
availability—without compromising the state-of-the-art efficiency of non-elastic ML systems.

Lastly, we explored the self-correcting behavior of ML and how it can be leveraged to achieve
adaptability to faults and failures. We outlined a general approach to design co-adaptive systems
for unreliable computing environments by reducing the sizes of perturbations to model parame-
ters. We derived an upper bound on the rework cost of perturbations which can guide the design
of new systems. We then proposed and implemented new strategies for checkpoint-based fault
tolerance in our system SCAR. We showed that SCAR is able to reduce the rework cost of fail-
ures by an order of magnitude when compared to traditional checkpoint-based fault tolerance.
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6.2 The Need for Predictability in Machine Learning
In the past decade, research in machine learning has produced a vast number of new methods that
may improve training speed, stability, and generalization. For example, new optimization pro-
cedures such as Adam [114] and AdaBound [144] accelerate training especially for non-convex
and poorly-conditioned problems often encountered in deep learning. Large-batch optimizers
such as LARS [221], LEGW [223], and AdaScale [105] improve scalability by enabling training
with larger batch sizes. Gradient clipping [232] can mitigate the exploding gradients problem,
while gradient quantization [18] may reduce the communication overhead during training with
minimal loss of model quality.

Nowadays, practitioners must face a maze of choices they must make in order to optimize
the training of their models. Each of the aforementioned methods may work for certain train-
ing tasks but not others, and may introduce additional tuning knobs that users must configure.
This problem is even more severe for distributed training, for which complex new system-level
methods have been proposed, such as pipeline parallelism [95, 157], tensor sharding [128], and
communication scheduling [171]. Even if the perfect combination of methods exists to train a
model efficiently and without loss of quality, users may never find it!

This thesis highlights an alternative pathway for improvements to ML training via predictabil-
ity. Even if a certain training method is not the fastest, it can still improve training by being more
predictable, which allows co-adaptive systems to take over and automatically optimize for train-
ing performance. In Chapter 3, we showed one instance of how improved predictability of the
impact of the batch size on DL training can be leveraged by Pollux to improve training perfor-
mance and fairness in shared compute clusters. Many opportunities still remain, such as more
accurately predicting the iterations-to-convergence to further improve job scheduling, predicting
the effects of gradient compression on different parts of a DL model so it can be automatically
applied during training, and predicting the performance of different parallel execution strategies
to make distributed training more automatic.

6.3 Limitations and Future Work
In this section, we highlight a few of the key challenges facing co-adaptation for elastic ML
training and suggest future directions for research.

Extensions of Goodput. Goodput (Eqn. 3.1) lets Pollux co-optimize cluster-wide scheduling
with per-job training parameters in shared cluster environments. However, goodput is a general
notion of DL training performance that incorporates both system throughput and statistical effi-
ciency. Future work may explore other scenarios in which goodput may be applied. For example,
recent distributed training systems targeting large models may apply data parallelism, tensor par-
allelism, and/or pipeline parallelism in different combinations [103, 182, 195]. Since different
parallelization strategies are affected differently by different batch sizes, goodput may be used as
a target metric for co-optimizing parallelization strategies with the batch size and learning rate.

Furthermore, goodput may be extended to cover other aspects of ML training algorithms
that affect statistical efficiency. For example, staleness [48] and non-uniform sampling of mini-
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batches [110] may have significant impact on statistical efficiency, which are dimensions not
currently covered by Pollux’s goodput model.

Predictability of Training. As mentioned in §6.2, a significant portion of research in ML the-
ory has been focused on improving the absolute convergence speed of training. However, as
demonstrated by Pollux’s use of predictive models, an orthogonal but equally important direc-
tion is to improve the predictability of training. For example, having a good estimate of how
long the model will take to train, or the various effects of adjusting the batch size on the speed of
convergence. Future work may be directed towards (1) theory for predictability of existing and
commonly-used training techniques, such as the aforementioned staleness and non-uniform sam-
pling of mini-batches, and/or (2) new training strategies which target predictability over absolute
speed for training a single model. With additional predictability comes an additional avenue for
improving the performance and adaptability of ML systems through co-adaptation.

Reproducibility of Training. One challenge that comes with co-adaptation is reproducibility
of ML training programs. Under co-adaptation, decisions made by an application may depend
on environmental factors during runtime, such as the current cluster contention, or unexpected
resource failures, making it more challenging to run the same application twice with the expecta-
tion of obtaining exactly the same result. Two possibilities for tackling this challenge, which are
not thoroughly explored in this thesis, may be (1) recording the dynamic decisions made by the
application during its first execution, and replaying them exactly during the second execution,
irregardless of different environmental factors, or (2) development of new training algorithms
which are approximately reproducible given different configurations, such as the AdaScale algo-
rithm being approximately reproducible using different batch sizes [105].

Heterogeneous Compute Clusters. The methods discussed in this thesis were developed as-
suming homogeneous compute resources, i.e. all nodes consisting of the same hardware. How-
ever, compute cluster in practice are increasingly heterogeneous, for example due to incremental
upgrades across several generations of GPUs. Heterogeneous compute resources introduce addi-
tional dimensions that cluster resource schedulers must consider. At the simplest level, a training
job may be assigned to a single type of resource and the scheduler must select that type of re-
source. However, it may make sense for a training job to utilize different types of resources for
different distributed workers, especially for recent model-parallel training systems that may have
different compute requirements for different workers. Applying co-adaptation to manage the
complexities arising from heterogeneous clusters may be a promising direction for future work,
for example by extending Pollux’s goodput function to consider different resource types.
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Appendix A

Appendix for Chapter 3

A.1 Pre-conditioned Gradient Noise Scale
In this appendix, we derive a generalization of gradient noise scale (GNS) [150], which we
call the pre-conditioned gradient noise scale (PGNS). Our motivation is that regular GNS is
not sufficiently general to apply to Adam, AdaGrad and other adaptive gradient algorithms. To
derive PGNS, we introduce pre-conditioned stochastic gradient descent (PSGD), a generalization
of SGD that multiplies a pre-conditioning matrix (or pre-conditioner) to the gradient, in order to
speed-up and stabilize parameter/weight convergence. SGD, Adam and AdaGrad are all special
cases of PSGD (when the pre-conditioners are appropriately chosen).

Definition A.1.1. (Pre-conditioned Gradient Noise Scale) Pre-conditioned gradient noise scale
of PSGD is defined as follows:

ϕt =
tr(PΣP T )

|Pg|2

where g is the true gradient, P is pre-conditioner, and Σ is the covariance matrix of per-sample
stochastic gradient noise.

We first begin by defining mathematical notations that appear in our derivation of the pre-
conditioned gradient noise scale. The model is parameterized with θ, and optimized to minimize
the loss function L. g and gmb respectively stand for the true gradient and mini-batch gradient
calculated for L with respect to θ, andH is the Hessian matrix of L. The (co)variance of stochas-
tic gradient noise per sample is defined as Σ. B is the mini-batch size, and ε is the learning rate of
PSGD. Lastly, P is pre-conditioner of PSGD. With the above definitions, each parameter update
of the model can be written as follows:

gmb = g +
Σ√
B

θ ← θ − ε · (Pgmb)

To derive pre-conditioned gradient noise scale, we mostly follow [150], and analyze the
expected change in loss for the weight update ∆L = E[L(θ) − L(θ − Pgmb)] by applying 2nd-
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order Taylor expansion:

∆L = ε|gTPg| − ε2

2

(
gTP THPg +

tr(HPΣP T )

B

)
= ε|gTPg| − ε2

2

(
tr(gTP THPg) +

tr(HPΣP T )

B

)
≈ ε|gTPg| − ε2

2

(
tr(ggTP TP ) + tr

(Σ

B
P TP

))
(A.1)

= ε|gTPg| − ε2

2
· tr
((Σ

B
+ ggT

)
P TP

)
(A.2)

In Eqn. A.1, we approximate Hessian to be the identity matrix as suggested in [150]. It can be
easily observed from Eqn. A.2 that the expected decrease in loss is maximized at:

εopt =
gTPg

tr

((
Σ
B

+ ggT
)
P TP

) (A.3)

=

gTPg
tr(ggTPTP )

1 + 1
B
· tr(ΣPTP )
tr(ggTPTP )

=

gTPg
|Pg|2

1 + 1
B
· tr(PΣPT )
|Pg|2

(A.4)

=
εmax

1 + Bnoise

B

(A.5)

Finally, from Eqn. A.4 & A.5, we can define pre-conditioned gradient noise scale as:

Bnoise =
tr(PΣP T )

|Pg|2
(A.6)

When P = I , PSGD degenerates to SGD, and pre-conditioned gradient noise scale also becomes
the simple gradient noise scale Bsimple = tr(Σ)

|g|2 defined in [150]. Moreover, when P = E[g2
mb] =(

Σ
B

+ ggT
)−0.5

, PSGD becomes Adam and pre-conditioned gradient noise scale in this case
would be

tr

((
Σ
B

+ ggT
)−1

Σ

)
∣∣∣∣(Σ

B
+ ggT

)−0.5

g

∣∣∣∣2 .

A.2 Source Code for the Allocation Search
import numpy as np
import pymoo.model.crossover
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import pymoo.model.mutation
import pymoo.model.problem
import pymoo.model.repair
import pymoo.optimize

from pymoo.algorithms.nsga2 import NSGA2
from pymoo.operators.crossover.util import crossover_mask

class Problem(pymoo.model.problem.Problem):
def __init__(self, jobs, nodes, base_state):

"""
Multi-objective optimization problem used by PolluxPolicy to determine
resource allocations and desired cluster size. Optimizes for the best
performing cluster allocation using only the first N nodes. The cluster
performance and N are the two objectives being optimized, resulting in
a set of Pareto-optimal solutions.

The optimization states are a 3-D array of replica assignments with
shape (pop_size x num_jobs x num_nodes). The element at k, j, n encodes
the number of job j replicas assigned to node n, in the kth solution.

Arguments:
jobs (list): list of JobInfo objects describing the incomplete jobs

which need to be scheduled.
nodes (list): list of NodeInfo objects describing the nodes in the

cluster, in decreasing order of allocation preference.
base_state (numpy.array): base optimization state corresponding to

the current cluster allocations. Shape: (num_jobs x num_nodes).
"""
assert base_state.shape == (len(jobs), len(nodes))
self._jobs = jobs
self._nodes = nodes
self._base_state = base_state
# Find which resource types are requested by at least one job.
rtypes = sorted(set.union(*[set(job.resources) for job in jobs]))
# Build array of job resources: <num_jobs> x <num_rtypes>. Each entry
# [j, r] is the amount of resource r requested by a replica of job j.
self._job_resources = np.zeros((len(jobs), len(rtypes)), np.int64)
for j, job in enumerate(jobs):

for r, rtype in enumerate(rtypes):
self._job_resources[j, r] = job.resources.get(rtype, 0)

# Build array of node resources: <num_nodes> x <num_rtypes>. Each
# entry [n, r] is the amount of resource r available on node n.
self._node_resources = np.zeros((len(nodes), len(rtypes)), np.int64)
for n, node in enumerate(nodes):

for r, rtype in enumerate(rtypes):
self._node_resources[n, r] = node.resources.get(rtype, 0)

# Calculate dominant per-replica resource shares for each job.
shares = self._job_resources / np.sum(self._node_resources, axis=0)
self._dominant_share = np.amax(shares, axis=1)
# Change base goodput to fair-share goodput.
fair_replicas = np.ceil(1.0 / self._dominant_share / len(self._jobs))
fair_nodes = np.ceil(len(nodes) * self._dominant_share)
for job, num_nodes, num_replicas in zip(jobs, fair_nodes, fair_replicas):

job.speedup_fn._base_goodput = job.speedup_fn._goodput_fn.optimize(
num_nodes=num_nodes, num_replicas=num_replicas,
max_batch_size=job.speedup_fn._max_batch_size,
atomic_bsz_range=job.speedup_fn._atomic_bsz_range,
accumulation=job.speedup_fn._accumulation)[0]

# Upper bound each job: <replicas on node 0> <replicas on node 1> ...
self._max_replicas = np.zeros(base_state.shape, dtype=np.int)
for j, job in enumerate(jobs):

for n, node in enumerate(nodes):
self._max_replicas[j, n] = min(

node.resources[rtype] // job.resources[rtype]
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for rtype in rtypes if job.resources.get(rtype, 0) > 0)
super().__init__(n_var=self._base_state.size, n_obj=2, type_var=np.int)

def get_cluster_utilities(self, states):
"""
Calculates the cluster utility for each state, defined as the average
percentage of ideal speedup for each job (ie. speedup / num_replicas),
weighted by the job's share of the most congested cluster resource.

Arguments:
states (numpy.array): a (pop_size x num_jobs x num_nodes) array

containing the assignments of job replicas to nodes.

Returns:
numpy.array: a (pop_size) array containing the utility for each

state.
"""
num_replicas = np.sum(states, axis=2)
speedups = self._get_job_speedups(states)
# mask (pop_size x num_nodes): indicates which nodes are active.
mask = np.sum(states, axis=1) > 0
# total (pop_size x num_rtypes): total amount of cluster resources.
total = np.sum(np.expand_dims(mask, 2) * self._node_resources, axis=1)
# alloc (pop_size x num_jobs x num_rtypes):
# amount of cluster resources allocated to each job.
alloc = np.expand_dims(num_replicas, 2) * self._job_resources
with np.errstate(divide="ignore", invalid="ignore"):

# shares (pop_size x num_jobs x num_rtypes):
# resource shares for each job as a fraction of the cluster.
shares = np.where(alloc, alloc / np.expand_dims(total, 1), 0.0)
# utilities (pop_size x num_jobs):
# utilities for each job as a fraction of ideal scalability.
utilities = np.where(num_replicas, speedups / num_replicas, 0.0)

# Weighted average across all jobs for each rtype.
utilities = np.sum(np.expand_dims(utilities, 2) * shares, axis=1)
# Return the utilities for the best utilized rtypes.
return np.amax(utilities, axis=1) # Shape: (pop_size).

def _get_job_speedups(self, states):
speedup = []
num_nodes = np.count_nonzero(states, axis=2)
num_replicas = np.sum(states, axis=2)
for idx, job in enumerate(self._jobs):

speedup.append(job.speedup_fn(
num_nodes[:, idx], num_replicas[:, idx]))

return np.stack(speedup, axis=1).astype(np.float)

def _get_cluster_sizes(self, states):
return np.full(len(states), len(self._nodes))
#sizes = np.arange(len(self._nodes)) + 1
#return np.amax(np.where(np.any(states, axis=-2), sizes, 0), axis=-1)

def _evaluate(self, states, out, *args, **kwargs):
states = states.reshape(states.shape[0], *self._base_state.shape)
speedups = self._get_job_speedups(states)
# Scale the speedup of each job so that a dominant resource share
# equivalent to a single node results in a speedup of 1.
scaled_speedups = speedups * self._dominant_share * len(self._nodes)
# Penalize job restarts.
num_restarts = np.array([job.num_restarts for job in self._jobs])
age = np.array([job.age for job in self._jobs])
delay = 30
factor = np.maximum(age - num_restarts * delay, 0.0) / (age + delay)
restart = np.any(states != self._base_state, axis=2)
scaled_speedups *= np.where(restart, factor, 1)
p = -1 # Exponent used in power mean. More negative = more fair.
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if p == 0:
# Geometric mean
mean = np.exp(np.sum(np.log(np.maximum(scaled_speedups, 1e-3)),

axis=1) / states.shape[1])
else:

mean = (np.sum((scaled_speedups + 1e-3) ** p, axis=1)
/ states.shape[1]) ** (1.0 / p)

out["F"] = np.column_stack([-mean,
-self.get_cluster_utilities(states)])

def _crossover(self, states, **kwargs):
states = states.reshape(*states.shape[:2], *self._base_state.shape)
n_parents, n_matings, n_jobs, n_nodes = states.shape
# Single-point crossover over jobs for all parent states.
points = np.random.randint(n_jobs, size=(n_matings, 1))
result = crossover_mask(states, np.arange(n_jobs) < points)
# Set cluster sizes uniformly at random between each pair of parents.
min_nodes, max_nodes = np.sort(self._get_cluster_sizes(states), axis=0)
num_nodes = np.random.randint(np.iinfo(np.int16).max,

size=(n_parents, n_matings))
num_nodes = min_nodes + num_nodes % (max_nodes - min_nodes + 1)
mask = np.arange(n_nodes) >= np.expand_dims(num_nodes, (2, 3))
result[np.broadcast_to(mask, result.shape)] = 0
return result.reshape(n_parents, n_matings, -1)

def _mutation(self, states, **kwargs):
states = states.reshape(states.shape[0], *self._base_state.shape)
# (1) Randomly reset back to base state.
mask = np.random.random(states.shape[:2]) < 0.1
states = np.where(np.expand_dims(mask, 2), self._base_state, states)
# (2) Randomly zero out some elements.
prob = np.where(np.random.random(states.shape[:2]) < 0.1, 0.1, 0.0)
states[np.random.random(states.shape) < np.expand_dims(prob, 2)] = 0
# (3) Randomly increase some elements.
used_resources = (np.expand_dims(self._job_resources, 1) *

np.expand_dims(states, -1)).sum(axis=1)
free_resources = self._node_resources - used_resources
mask1 = np.all(np.expand_dims(self._job_resources, 1) <=

np.expand_dims(free_resources, 1), axis=-1)
prob1 = 1.0 * mask1 / np.maximum(mask1.sum(axis=1, keepdims=True), 1.0)
mask2 = np.logical_and(states, mask1)
prob2 = 1.0 * mask2 / np.maximum(mask2.sum(axis=1, keepdims=True), 1.0)
m = np.random.random(states.shape) < prob1 + prob2 - prob1 * prob2
r = np.random.randint(states, self._max_replicas + 1)
states[m] = r[m]
return states.reshape(states.shape[0], -1)

def _repair(self, pop, **kwargs):
states = pop.get("X")
states = states.reshape(states.shape[0], *self._base_state.shape)
# Copy previous allocations for pinned jobs
states[:, self._pinned_indices] = \

self._base_state[self._pinned_indices, :]
# Enforce at most one distributed job per node. Exclude all
# nonpreemptible jobs.
distributed = np.count_nonzero(states, axis=2) > 1
mask = states * np.expand_dims(distributed, axis=-1) > 0
mask = mask.cumsum(axis=1) > 1
states[mask] = 0
# Enforce no more than max replicas per job.
# max_replicas: (num_jobs x 1)
max_replicas = np.array([[j.max_replicas] for j in self._jobs])
shuffle = np.argsort(np.random.random(states.shape), axis=2)
states = np.take_along_axis(states, shuffle, axis=2) # Shuffle nodes.
states = np.minimum(np.cumsum(states, axis=2), max_replicas)
states = np.diff(states, axis=2, prepend=0)
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max_nodes = 16
mask = np.minimum(np.cumsum(states > 0, axis=2), max_nodes)
mask = np.diff(mask, axis=2, prepend=0)
states[np.logical_not(mask)] = 0
inverse = np.argsort(shuffle, axis=2) # Undo shuffle nodes.
states = np.take_along_axis(states, inverse, axis=2)
# Enforce node resource limits.
# job_resources: (num_jobs x num_nodes x num_rtypes)
job_resources = np.expand_dims(self._job_resources, 1)
states = np.expand_dims(states, -1) * job_resources
states = np.minimum(np.cumsum(states, axis=1), self._node_resources)
states = np.diff(states, axis=1, prepend=0)
with np.errstate(divide="ignore", invalid="ignore"):

states = np.amin(np.floor_divide(states, job_resources),
where=job_resources > 0, initial=99, axis=-1)

# Only choose solutions which have at least min_replicas allocations
min_replicas = np.array([j.min_replicas for j in self._jobs])
mask = np.sum(states, axis=-1) < min_replicas
states[mask] = 0
return pop.new("X", states.reshape(states.shape[0], -1))

class Crossover(pymoo.model.crossover.Crossover):
def __init__(self):

super().__init__(n_parents=2, n_offsprings=2)

def _do(self, problem, states, **kwargs):
return problem._crossover(states, **kwargs)

class Mutation(pymoo.model.mutation.Mutation):
def _do(self, problem, states, **kwargs):

return problem._mutation(states, **kwargs)

class Repair(pymoo.model.repair.Repair):
def _do(self, problem, pop, **kwargs):

return problem._repair(pop, **kwargs)
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Appendix B

Appendix for Chapter 5

B.1 Discussion
In this appendix, we discuss some special cases and extensions of interest, including nonconvex
models, infinite perturbations (e.g. T =∞), and SGD.

B.1.1 Analysis for Infinite T
Suppose E‖δk‖ ≤ ∆ for each k. For intuition, note that Lemma B.2.1 implies that for any k,

E‖y(k+1) − w∗‖ ≤ ck+1
[
‖w(0) − w∗‖+

k∑
`=0

c−`∆
]

= ck+1
[
‖w(0) − w∗‖+ ∆

1− c−(k+1)

1− c−1

]
(B.1)

= ck+1‖w(0) − w∗‖+ ∆
c− ck+2

1− c
k→∞−→ c

1− c
∆.

Evidently, there is an irreducible, positive error if we are subjected to faults in every single
iteration.

Thus, the best we can hope for is convergence to within some tolerance ε > (c/(1−c))∆. Re-
arranging and solving for k in (B.1) as in the proof of Theorem 5.3.1, we deduce that E‖y(k+1)−
w∗‖ < ε as long as

k >
log
(
‖w(0)−w∗‖− c

1−c
∆

ε− c
1−c

∆

)
log(1/c)

.

The resulting iteration cost bound is (cf. (5.6)):

π(δk, ε) ≤
log

(
1−

c
1−c∆

‖w(0)−w∗‖

1−
c

1−c∆

ε

)
log(1/c)

. (B.2)
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This bound is only informative if ‖w(0) − w∗‖ > (c/(1− c))∆ and ε > (c/(1− c))∆.

B.1.2 Stochastic gradient descent

Assume the objective function ` is strongly convex. In order to derive upper bounds on the
iteration cost for SGD, we start from following general recursion, which is standard from the
literature [160, 181]:

E‖w(k+1) − w∗‖2 ≤ (1− αk)E‖w(k) − w∗‖2 + α2
kG

2, (B.3)

where αk → 0 is a sequence that depends on ` and the step size, and G is an upper bound on the
expected norm of the stochastic gradients. Comparing (B.3) to (B.5), the only difference is that
instead of a constant c < 1, we have a sequence 1 − αk → 1. Thus, instead of decaying at the
geometric rate ck, the iterates of SGD converge at a slower rate (1− α1) · · · (1− αk).

Define ak := (1 − α1) · · · (1 − αk). Under the assumptions of Theorem 5.3.1, we have the
following analogue of (B.8):

E‖y(k) − w∗‖ ≤ ak

[
‖w(0) − w∗‖+

T∑
`=0

a−1
`

(
E‖δ`‖+ α2

`G
2
)]
< ε.

This yields an implicit formula for k, which can be used to upper bound the iteration cost for
SGD. For example, a popular choice of αk is αk ∝ 1/k, in which case ak ∝ 1/k (this follows
from an induction argument), and solving for k yields the desired upper bound.

B.2 Proofs

B.2.1 Proof of Theorem 5.3.1

We start with the following useful lemma:

Lemma B.2.1. Assuming (5.5), we have for any k

E‖y(k+1) − w∗‖ ≤ ck+1
[
‖w(0) − w∗‖+

k∑
`=0

c−`E‖δ`‖
]
. (B.4)

Proof. For any k > 0 we have

E‖y(k+1) − w∗‖ = E‖f(ỹ(k))− w∗‖
≤ cE‖ỹ(k) − w∗‖
= cE‖y(k) + δk − w∗‖
≤ c
[
E‖y(k) − w∗‖+ E‖δk‖

]
, (B.5)
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where we have invoked (5.5). Iterating this inequality, we obtain:

c
[
E‖y(k) − w∗‖+ E‖δk‖

]
(B.6)

≤ c2E‖y(k−1) − w∗‖+ c2E‖δk−1‖+ cE‖δk‖
...

≤ ck+1E‖y(0) − w∗‖+
k∑
i=0

ci+1E‖δk−i‖

= ck+1‖w(0) − w∗‖+
k∑
`=0

ck−`+1E‖δ`‖. (B.7)

In the last step we simply re-indexed the summation and use y(0) = w(0). Combining (B.5) and
(B.7) yields the desired bound.

Proof of Theorem 5.3.1. By Lemma B.2.1, we have for any k > T ,

E‖y(k) − w∗‖ ≤ ck
[
‖w(0) − w∗‖+

T∑
`=0

c−`E‖δ`‖
]
< ε (B.8)

⇐⇒ 1

ε

[
‖w(0) − w∗‖+ ∆T

]
< c−k (B.9)

Re-arranging, we deduce that E‖y(k) − w∗‖ < ε if

k >
log
(

1
ε

[
‖w(0) − w∗‖+ ∆T

])
log(1/c)

≥ κ(y(k), ε).

It is easy to check (e.g. take δk = 0 in the previous derivation) that κ(w(k), ε) = log
(

1
ε
‖w(0)−

w∗‖
)
/ log(1/c) is a bound on the number of iterations required for the unperturbed sequencew(k)

to reach ε-optimality. Thus, the iteration cost is given by

π(δk, ε) = κ(y(k), ε)− κ(w(k), ε)

≤
log
(

1
ε

[
‖w(0) − w∗‖+ ∆T

])
− log

(
1
ε
‖w(0) − w∗‖

)
log(1/c)

=
log
(

1 + ∆T

‖w(0)−w∗‖

)
log(1/c)

,

as claimed.

B.2.2 Proof of Theorem 5.4.1
Let z = w(C) be the checkpoint of the model parameters saved at iteration C, and let S be the
subset of model parameters lost during a failure at iteration T . Then

||δ|| = ||z − w(T )||
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is the perturbation due to full recovery, and

||δ′|| = ||zS − w(T )
S ||

is the perturbation due to partial recovery, since w(T )
Sc does not change due to failure, where Sc is

the complement set of S. Then we have

||δ′||2 = ||zS − w(T )
S ||

2

≤ ||zS − w(T )
S ||

2 + ||zSc − w(T )
Sc ||2

+ (zS − w(T )
S ) · (zSc − w(T )

Sc )

≤ ||(zS − w(T )
S ) + (zSc − w(T )

Sc )||2

= ||z − w(T )||2 = ||δ||2

Thus ‖δ′‖ ≤ ‖δ‖, as claimed.

B.2.3 Proof of Theorem 5.4.2
Let z = w(C) be the checkpoint of the model parameters saved at iteration C, and let S be the
subset (chosen uniformly at random) of model parameters lost during a failure at iteration T .
Then

E||δ′||2 = E||zS − w(T )
S ||

2

= E
[
(zS − w(T )

S ) · (zS − w(T )
S )
]

=
∑
i

E
[
(zS − w(T )

S )2
i

]
=
∑
i

E
[
[i ∈ S](zi − w(T )

i )2
]

=
∑
i

P (i ∈ S)(zi − w(T )
i )2

=
∑
i

p(zi − w(T )
i )2

= p||z − w(T )||2 = p||δ||2

Thus E||δ′||2 = p||δ||2, as claimed.
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