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Abstract
Deep learning has become increasingly popular in a wide range of applications in

the past few years. The performance improvements in hardware and machine learn-
ing models have made it possible to train a deeper and wider network to achieve
state-of-the-art (SOTA) performance for those applications. However, there still ex-
ist several potential obstacles that researchers have to overcome before producing
a model that could actually be useful in reality. One of the common obstacles is
related to the data itself. The training data collected from a small hospital could be
limited in quantity and a pre-trained model taken from other hospitals could have
bad generalization performance due to potential differences in the X-ray machines
and the environment in which the mammogram is taken[41]. Moreover, since the
majority of the data collected from the mammogram comes from patients who actu-
ally have no illness, there could be a serious imbalance of positive/negative cases in
the training data. Models trained using such data could naively achieve an extremely
high overall accuracy by predicting everything as normal and would have no actual
value in reality. However, lesion/cancer detection is a task that requires the model’s
predictions to be accurate for both positive/negative cases, resilient to noises, and
consistent across different data sources.

In this thesis, we provide workarounds for the issues mentioned. Our experiment
is based on the UPITT mammogram dataset that is comprised of 79501 images col-
lected from approximately 22267 distinct patients. In order to deal with the dataset
size restriction and to achieve localized explanation, we decide to use a patch-based
model for the lesion classification. We extract the normal patches from the breast
tissue in images with BIRADS level of 1. The lesion patches are extracted from
the ROI(region of interest) labeled by the radiologist from images with BIRADS
level score of 0,2 using computer vision techniques. We designed our own tech-
niques to deal with the serious data imbalance via deep learning-based SMOTE[9]
and GAN[6, 12, 18, 28] and test those techniques with a deep convolutional model
that is similar to VGG16[35].
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Chapter 1

Introduction

Breast cancer is a type of cancer that forms in the cells of the breasts and it is one of the most
common cancers diagnosed among women in the United States[1]. According to the statistics
from the BreastCancer.org[3], about 1 in 8 US women will develop breast cancer over the course
of her life. In 2021, there are an estimated 281,550 new cases of invasive breast cancer expected
to be diagnosed in women in the US along with 49290 new non-invasive cases. On the other
hand, the statistics for men are 2,650 new invasive cases and 1 in 833 men will develop breast
cancer in his lifetime.[3] Because of its high death rate among women, the disease has raised
substantial awareness and gathered much research funding and support to help with its diagnosis
and treatment.

Screening Mammograms, an x-ray of the breast, are routinely administered to detect breast
cancer among patients who have no apparent symptoms of breast cancer.[2] If the radiologist
finds the result of screening mammograms suspicious, what usually follows is either a diagnostic
mammogram or ultrasound. Therefore, the reliability of screening mammogram is critical as it is
usually one of the first stages of breast cancer diagnosis. Its reliability depends on several factors
such as the size of the tumour, the density of the breast tissue and the skill of radiologist who
reads the mammogram. Under most of the situations, the radiologist looks for certain suspicious
patterns in the mammogram such as calcification, masses and soft tissue lesion. According to
statistics, after timing seven radiologists as they interpreted a total of 181 digital and 183 film-
screen screening mammograms, the average amount of time that they spent on the digital studies
is 2.0 minutes.[7] Thus, there could be significant value in provision of certain form of assistance
when a radiologist is making diagnosis under such a restricted time-frame as the decision could
potentially be a matter of life or death.

Deep learning is probably one of the biggest achievements/breakthroughs in the field of ma-
chine learning in the past few years. It has spawned a wide range of applications in different
fields such as natural language processing, object detection, facial recognition, image classifica-
tion and medical diagnosis. As the hardware performance keeps improving, deeper, wider neural
networks now have the potential to achieve human-level of accuracy even in difficult tasks like
translation and medical diagnosis as training cost significantly lowers. This means that deep
learning models could potentially be a great assistance for radiologists to improve their accuracy
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and save the time in the near future.

In order to produce a practical and applicable model to assist the radiologists, we believe that
there are three major obstacles that need to be overcome. Specifically, they are a proper way
of handling the fundamental restrictions imposed by the data itself, development of a model
architecture that is suitable for the size of the data and properly trained using the right set of
hyperparameters such that it could achieve reasonable generalization performance, and a local-
ized prediction for a given area of the given mammogram instead of an overall prediction for the
mammogram so that the model could actually serve as an assistance to the radiologist in reality.

Similar to most image classification tasks, medical diagnosis is heavily dependent on the quality
and quantity of the input images. One of the most common approaches is to use a CNN-based
architecture trained using the labeled mammogram x-ray images directly. This approach has its
own merit if the quantity of data is sufficiently large and the quality of the images is consistently
high. However, in certain fields such as breast cancer detection, there are several important con-
cerns that differentiate it from a task like melanoma detection. Due to privacy concerns, the
quantity of data available could be significantly lower for breast lesion detection. Moreover,
as majority of the patients who underwent mammogram scanning are negative cases, there is
a serious imbalance in the quantity of positive/negative data which could cause serious model
performance degradation. This is the reason why data augmentation is so critical in achieving
better performance than a model trained on the original dataset.

Figure 1.1: Data Augmentation Techniques Overview from [34]

The two standard routes for data augmentation are the image-manipulation based approach and
deep learning based approach. The deep learning based approach became popular in the last
few years and took advantage of deep convolutional layers for extraction of the features in the
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images. One of those architectures called GAN has the capability of taking a vector in the latent
space and generate data that is unseen in the original dataset. This approach allows the model to
observe some data points that are not existing in the training dataset and potentially achieve better
test performance. Since then, lots of research interest was gathered on finding a proper evalua-
tion metric to optimize GAN and determine the extent to which GAN could help improve model
performance if the GAN is actually trained on the same dataset as the classifier. [5, 6, 12, 28]. In
a liver-lesion detection study, GAN-based data augmentation improved the model performance
by increasing the sensitivity/recall and specificity/precision from 78.6% 88.4% to 85.7% and
92.4% respectively[34]. Therefore, it could be possible that the GAN would also help improve
classifier performance even when it is trained on a seriously imbalanced dataset. On the other
hand, image-manipulation based approach’s major advantage is that it is simple and straight-
forward as it applies some operations on the pre-existing images directly. Simplest methods are
using geometric transformations such as vertical and horizontal flipping of the original image
to slightly expand the dataset size and introduce some variations. Other up-sampling technique,
such as SMOTE that was created 20 years ago to tackle data-related problems, basically creates a
mixture of input data based on interpolation from nearest neighbors of a base vector using some
pre-defined distance metric. [9]

Furthermore, there could also be significant qualitative differences in the mammogram if it is
taken with a different machine under different views of the breast or due to the differences in
the size of the breast or tissue density. Also, as the ROI (region of interest) in a mammogram
is expected to cover a significantly smaller proportion of the whole mammogram compared to
the x-ray of other disease such as melanoma that is usually taken for a small target skin area, it
is critical that we adopt certain image processing or data augmentation technique to eliminate
the potential sources of noises to make sure that the model’s performance is more consistent
across different data sources that is different from the training data-set. One of the approaches
would be, instead of training the a deep-learning model on the whole mammogram, we divide
the image into patches and try to predict whether each patch is actually representative of some
forms of lesion so that the variations across training data is reduced. This approach is based on
the assumption that the judgement made by the radiologist is usually based on a relatively small
localized area rather than a holistic view of the whole breast since it is unlikely that two distant
patches viewed together would provide the radiologist with additional information in determin-
ing whether one of them is a lesion.

However, having an accurate model still isn’t sufficient for it to be applicable in the industry.
When we rely on a model that is trained using the whole mammogram images, interpretation
techniques such as LIME[29] need to be applied so that some regions could be highlighted by
the activations during the explanation phase. However, in our use case, as we broke the mam-
mogram image into much smaller patches, we could directly tell the pattern that the model is
recognizing from the prediction result and provide localized explanation for the radiologist with-
out extra efforts.

In recognition of the challenges in building a breast lesion detection system, we provide a com-
plete solution that works for general mammogram datasets. The solution is comprised of an
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algorithm for image processing to extract patches representing the ROI (region of interest) from
the mammogram, deep learning based techniques that we designed to tackle the severe data im-
balance in medical image analysis, development of a CNN-based architecture that makes the
classification of unsuspicious/lesioned patches, and an attempt to provide an explanation for the
model perception/behavior using localized information based on the patch-based model.

In this thesis, we make the following contributions:
• Implement a generic image processing, patch extraction logic for mammogram dataset.
• Implementation of a CNN-based model for the experimentation with the UPITT mammo-

gram dataset and treat it as the baseline for model performance evaluation.
• Implement deep learning-based SMOTE that relies on interpolation in the hidden layer/feature

layer and GAN for data augmentation.
• Provision of patch-based localized prediction using the models developed.
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Chapter 2

Background and Related Work

We next provide background on the current state of the art approach to cancer/lesion classification
in medical image analysis and a brief analysis of the common issues that cause bad generalization
performance of the classification models trained on a specific dataset. Then we discuss some
latest techniques that were applied in some other classification tasks to deal with the dataset
issue and consider their trade-offs.

2.1 State of the art model

2.1.1 General architecture

Despite its prevalence in a lot of applications in the past few years, convolutional neural net-
work has received little attention in the medical field until recently.[25, 33, 40, 41, 42] This is
attributed to the fact that data is always one of the most crucial parts of machine learning and is
quite indispensable for achieving a reasonable model performance. A common CNN architecture
consists of multiple convolutional layers, pooling layers, and linear layers stacked on top of each
other. Each convolutional layer mainly consists of a set learnable filters that extract the features
from the input. The pooling layer basically reduces the dimensionality of its input by combining
the outputs from a cluster of neurons in the previous layers. The fully connected layers are the
multi-layer perceptrons that classify the images based on the feature maps constructed from pre-
vious feature extraction layers. In the last few years, several different architectures, e.g. VGG,
AlexNet, ResNet, have been proposed.[15, 21, 35] Despite of the intrinsic similarities among
those architectures, their performance could actually have significant differences and there have
been a large number of literature comparing the performances of them on different image classi-
fication tasks. For most of the cases, a deep and wide ResNet architecture with a large number
of trainable parameters could have better generalization performance on a complex classification
task. However, this also results in longer training period and cost, and sometimes it could be an
overkill and the performance could even be worse than a much smaller network that does not
overfit to the training dataset when the training samples do not have that high resolution.
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2.1.2 Mammogram-image based classification vs Patch-based classifica-
tion

Two common approaches for breast lesion/cancer classification are mammogram-image-based
and patch-based and next we will examine their advantages and disadvantages respectively. The
mammogram-image based method usually involves simple pre-processing that extracts a fixed
window that contains the breast tissue. The patch-based method involves more complex prepro-
cessing logic for the image based on the BIRADS level for the image. The normal patches are
extracted by using a similar approach as the extraction of the breast region in the mammogram-
image-based classification with an additional step that iterates over the breast in blocks of fixed
size and applies some criteria for filtering and selecting high-quality patches. Lesion patches
are extracted from the ROI(region of interest) annotated by the radiologist and the process could
involve several steps of image preprocessing before we eventually crop the lesion patch from the
annotated region.

Figure 2.1: Standard Views Required for Screening Mammogram and View-based Classifier[25,
41, 42]

The mammogram-image based approach seems to be the more intuitive approach for lesion clas-
sification. The clear advantage of mammogram-image based classification is that the image
processing would be much simpler and the labeling could also be extracted from the reports di-
rectly. However, if the quantity of the training data is limited, the mammogram-image based
model trying to extract the features from the whole breast could have poorer performance due
to more noises in a global view, e.g. differences in the angle and size of the breast, the density
and distribution of the tissues. The model could be harder to train because it has to be able to
recognize the lesion that only covers a really small area of the image. More importantly, the pre-
diction from the model does not provide much information regarding how the decision is made,
thus hurting interpretability.

In recognition of the first data-related issue mentioned above, a finer-grained view-based classi-
fication model have been proposed and it could be built using on an ensemble of models trained
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for each view separately to achieve better accuracy than a model that does not distinguish across
different views. As we could tell from Figure 2.1, by training the model on a fixed view of
the breast, it effectively reduces the variation across the images and could improve the model
accuracy and convergence speed. [25, 41, 42]

Figure 2.2: Sample patches extracted based on radiologist annotations

The patch-based approach requires that the suspicious region in the mammogram be annotated
by the radiologist for patch extraction and label generation. It adds extra complexity and source
of error in the data collection step. There are several major challenges in the data collection
procedure.

• The decision on the patch size(resolution) could significantly impact on the model perfor-
mance. If the patch is too small, a single patch might not contain sufficient information that
indicates the radiologists’ findings. If the patch is too big, the model could have difficulty
focusing on the actual pattern that is suspicious and have difficulty generalizing.

• The filtering procedure has to effectively eliminate the mammogram background and target
regions of breast tissue.

• In the model training phase, the lesion patch must not contain any hints from the radiol-
ogist, meaning that the annotations from the radiologists must not be included to cause
potential data leaking and model performance degradation.

Despite of those challenges that require tuning and application of some programmatic techniques,
the patch-based method also has several clear advantages over mammogram-image based model.

• Significantly expands the dataset size. Effectively deal with the issue that the model un-
derfits with too few mammogram images.

• Less variability across training datasets by focusing on a much smaller region of tissue
instead of a global view that is sensitive to the dimension, view, rotation of the breast
as long as the same patch extraction logic is applied and the radiologist annotation style
is fixed. So the model could potentially have better generalization performance across
different datasets.
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• Ability to directly provide localized explanation that could be taken advantage of to assist
the radiologist.

• The potential for a pre-trained patch-based classifier to be converted into a mammogram-
image based classifier for images without ROI annotated. This is actually quite intuitive
as we could basically reduce the problem of lesion prediction from mammogram image to
prediction from patches by iterating through the mammogram image and making a final
prediction based on localized predictions made. [32]

2.2 Data imbalance and data augmentation
One of the most prevalent issues in the field of medical image analysis is that the distribution of
the labels is usually quite imbalanced, with majority of the training data being negative cases.[25,
41, 42] This leads to the problem that a naive model that actually has degraded performance could
potentially get really high training/test accuracy by predicting everything as negative. Therefore,
we will explore some of the approaches that are frequently applied in other fields such as forgery
detection to discuss their applicability in breast lesion detection or other medical image analysis
tasks. We will also take this into account when we are eventually evaluating our classifiers to
ensure that our model carries actual significance in reality.

2.2.1 Naive up/down sampling
We first analyze the applicability of simple up/down sampling approach.

Figure 2.3: Data Over Sampling and Under Sampling Illustration from [20]

Under sampling

Under sampling is a non-heuristic method that aims to balance the distribution of the dataset by
randomly eliminating samples from the majority class of the dataset.[20] This approach makes
it possible to achieve arbitrary distribution of the samples within the dataset without the need
for generation of new samples that are potentially inconsistent with real data. However, this
mechanism also discards some data that could potentially be useful for the induction process.
Under sampling could hurt model’s ability to estimate the true distribution of target by interfering
with the data sampling process. Furthermore, Under sampling might do little to help the model
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achieve better generalization performance as minority class data is still limited so the model
would not necessarily produce a more accurate decision boundary even if the sampling process
enforces a 1:1 ratio between positive and negative cases. Essentially, the model still learns the
same set of features for the minority/positive class after it is trained for a sufficiently large number
of iterations. On the other hand, as some of the majority/negative samples are discarded in the
sampling process, model could actually perform worse to create more false positive without
decreasing the number of false negatives.

Over Sampling

Over sampling, is a non-heuristic method that aims to balance the distribution of the dataset by
randomly replicating samples (with replacement) from the minority class of the dataset.[20] The
approach could be effective in achieving balance of the dataset but the potential issue is that the
approach still does not really present new data that does not exist in the original dataset to the
model during the training process. After some epochs, the model would have seen all the samples
from the minority class and the sampling technique’s impact on the final model performance
could be limited if no new minority class data is added. Given sufficient iterations of training, the
model would still overfit to the negative/majority cases and experience performance degradation
because it is not actually exposed to unseen features of positive samples in the sampling process.

2.2.2 Interpolation based over-sampling: SMOTE & ADASYN

SMOTE was introduced in the 2000s to deal with data imbalance issue.[9] It can be regarded
as an over sampling approach that replicates the samples from the abnormal class. The author
for SMOTE claims that the traditional over sampling with replacement only creates a more spe-
cific decision boundary that essentially overfits with the minority samples without improving the
generalization performance because replication of samples do not make the minority decision
boundary spread into minority class region. Therefore, the method they proposed is to use the
k nearest neighbors for each sample in the vector space and generate new samples by using an
interpolation from the original sample to its nearest neighbor by a random proportion/distance.
Therefore, the new data points created for the minority class could potentially expand the deci-
sion boundary or make it more precise to allow the model achieve better performance on the test
dataset it is evaluated on.

ADASYN[14] basically follows the same logic as SMOTE. The difference between ADASYN
and SMOTE is that ADASYN introduces several coefficients that affect the number of data points
interpolated from one base data point to its neighboring data points rather than using a fixed pa-
rameter k in the k-nearest algorithm to generate k data samples for each data point in the original
training dataset to expand it by k-fold. ADASYN algorithm basically takes the type/class of the
neighbors for a data point into account when it is deciding the number of samples to be generated
for it. The coefficient ri is computed as a ratio of the number of neighboring samples that belong
to minority class over k, the number of neighbors examined, and then it is normalized across all
minority data points and it determines the number of synthetic samples to be generated for each
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data point.

k = number of neighbors to be examined
β = ratio that controls the balance between number of samples

G = (nmajority − nminority) ∗ β

ri =
number of minority samples among k nearest neighbors

k

r̂i =
ri∑nminority

i ri

Gi = Gr̂i

Theoretically, the SMOTE approach would lead to a larger and more precise minority class region
that could potentially include some minority samples that have similar attributes but are unseen
in the original dataset to improve model performance. However, the shortcoming for this ap-
proach is also quite obvious as there is no guarantee on the degree/direction of the minority class
region expansion since a random coefficient is applied during the interpolation phase. Therefore,
it could introduce a large amount of noise that actually worsens the model performance. Further-
more, the method was originally proposed for structured data that are already vectorized. This
means that it is not suitable for direct application with image data and a workaround is neces-
sary. This is the reason why we would like to explore the effectiveness of a modified version of
this approach in this medical image analysis experiment and propose another method to compare
their performances.

2.2.3 Deep learning-based over-sampling: DFBS and GAN

As the processing power of the hardware keeps improving, deep learning based approach for
synthetic data sample generation gained its popularity in the last few years. The deep learning
approach has its clear advantages over traditional replication-based or interpolation based over-
sampling in several aspects. The feature extraction process is further optimized to ensure a more
precise region in the feature space for each class. Here we will discuss two deep learning-based
approaches DFBS and GAN that achieve these optimizations.

DFBS

DFBS, or deep discriminative feature-based sampling was proposed to deal with some problems
with SMOTE.[22] Similar to SMOTE, DFBS tries to expand the class region of minority samples
in the feature space. The difference is that DFBS pays more attention to the expansion process
by taking the majority class into account to ensure that the generated minority sample are more
distant from the majority class region than the minority class region by some predefined distant
metrics.
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Figure 2.4: DFBS algorithm from original paper [22]

The major principle behind this approach is that the pre-trained auto-encoder will encode the
input into a fixed dimension feature vector. Then a new sample will be generated by a combi-
nation of existing feature vectors. In addition, one of the major contributions from the author is
that they introduced this extra step of verification that measures the distance of the new sample
from minority class center, majority class center, overall center to determine whether the gen-
erated sample should be considered as valid. This ensures that the generated minority sample
won’t over-extend into the majority class region and alleviate the instability issue that exists in
SMOTE because of its random interpolation. However, there are also some potential flaws in the
verification step that we should be concerned with.

• The verification step could be superfluous. The occasion that interpolation between two
minority data points are closer to the centroid for the majority class region should be rare to
have significant impact on the final performance.

• Closer distance in low level feature space does not necessarily translate to closer distance in
high-dimensional space. This is one potential problem with all nearest neighbor and SMOTE
based augmentation approach because the network would apply non-linear transformations
to the low-level feature and completely change the original distance relationship among data
points.

• Euclidean distance applied in the original DFBS algorithm is not necessarily a good metric
when it is used for high-dimensional feature vectors as difference in one dimension could
significantly impact on the final distance. This is the reason why some researchers propose
the application of l1-norm or even fractional norm for high-dimensional data. [4] We will
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explore some other distance metrics in this experiment.

GAN

Figure 2.5: GAN Mechanism Illustration from [11]

GAN is another deep learning-based data augmentation approach that became increasingly pop-
ular in the last few years for its ability to learn the low-level representation of the data samples
in the feature space and produce high quality fake data. [11] It was shown in previous research
that GAN-based data augmentation could quite significantly improve the performance of im-
age classifiers.[34] The major difference between GAN and DFBS is that GAN has a built-in
discriminator that tries to learn the distinction between fake data and real data as opposed to
the verification function in DFBS. The discriminator basically serve as a sanity check for data
sample produced by the generator using a random noise vector. From Figure 2.6, the training
process can be regarded as a zero-sum game in which the discriminator tries to tell the differ-
ence between fake data and real data and maximize the loss function and generator tries to fool
the discriminator and minimize the loss function. This usually results in a much longer training
process since two networks have conflicting interests. Also, this means that more regularization
techniques have to be applied to prevent one network from getting too perfect such that the loss
would basically vanish to stop the learning of the other network. In this paper, we will compare
the performance of the classifier augmented with synthetic data generated from GAN with the
baseline classifier that only applies image manipulation based augmentation.

Figure 2.6: GAN minimax function
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Chapter 3

Deep Learning Augmented Breast Lesion
Detection System

We now describe our breast lesion detection system that is augmented with synthetic data from
deep learning algorithms. Our goal is to implement an approach that effectively solves the com-
mon challenges faced by the traditional medical image analysis system. We will explore the
potential of some deep learning algorthms to deal with the model’s inherent challenges faced by
majority of the medical imaging dataset.
In this experiment with the UPITT mammogram dataset, we will compare the performance of
the baseline model with un-augmented data with models that are augmented with synthetic data
that are generated with deep-learning based SMOTE and GAN.

3.1 Dataset

3.1.1 General Statistics

Dataset

Our mammogram dataset is provided by the University of Pittsburgh for academic and research
purposes. The dataset consists of 101,494 DICOM images from 22,267 patients whose personal
information was de-identified before we received the data. Each patient has a variable number of
images and it is common that some of the views are missing.
The figure-3.1 summarizes the distribution of the number of images per patient across the whole
dataset. On average, each patient has 4.56 images in the folder with the standard deviation being
4.14. The large standard deviation and the figure-3.1 indicates that most of the patients do not
have their complete mammogram results documented, which means that view-based model in
Figure 2.1 that requires all 4 views to be present becomes impractical in those situations. This
is the reason why we choose to adopt a patch-based approach that is mostly unaffected by the
completeness of data and less sensitive to the qualitative differences across the images compared
with the mammogram-image based approaches.
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Figure 3.1: Patient Count for Given Number of Mammogram Image

The following table summarizes the distribution of the images across different views. Some of
the views have less than 20 images and are not included in the table. Those views include the
LTAN(left tangential), RTAN(right tangential), LLMO(left lateromedial oblique), RLMO(right
lateromedial oblique), LLM(left late mediolateral), RLM(right late mediolateral), LAT(left MLO
with axillary tail modifier), RAT (right MLO view with axillary tail modifier), LCV(left cleav-
age), RCV(right cleavage). Among the views that are included in the table, LCC(left cran-
iocaudal),RCC (right craniocaudal), LMLO(left mediolateral oblique), RMLO(right mediolat-
eral oblique) are considered standard views required for a mammogram. On the other hand,
LXCCL(left exaggerated craniocaudal), RXCCL(right exaggerated craniocaudal), LXCCM(left
exaggerated craniocaudal), RXCCM(right exaggerated craniocaudal), LML(left mediolateral),
RML(right mediolateral), L(left view position missing), R(right view position missing)) are also
mostly supplemental view positions that are non-standard.

Total CAD LCC/RCC LMLO/RMLO LXCCL/RXCCL LXCCM/RXCCM LML/RML L/R

101494 16417 20255/20353 20273/20288 1465/1645 70/64 165/120 168/163

Table 3.1: number of images by image type

In consideration of the availability of the data and the general requirements of a standard mam-
mogram, we will only be using LCC, RCC(left craniocaudal/right craniocaudal) and LMLO,
RMLO(left mediolateral oblique/right mediolateral oblique) view for the experiment. Thus the
final total available dataset is comprised of 79501 images. In addition to the image data, there
are two types of label that come with the image.
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• Exam-level BIRADS level label that indicates the radiologist initial diagnosis result for the
patient based on the screening mammogram.

• Pixel-level lesion annotation within the image that indicates the region that the radiologist
find suspicious when the diagnosis was done. The reason for the suspicision could be
several different lesion patterns such as calcification, masses.

BIRADS(Breast Imaging Reporting and Data System) level labels are used when we make the
decision about whether to treat patches from the patient’s breast as being normal/negative or le-
sioned/positive. Specifically, BIRADS level of 1 means that the radiologist believes the patient’s
breast tissue is completely normal, BIRADS level of 0 means the radiologist found some suspi-
cious pattern within the patient’s mammogram, BIRADS level of 2 means the patient has benign
cancer. Therefore, for our purpose of the experiment, we will only keep images from patients
with these three BIRADS levels in the patch generation process that will be explained in the next
section.
The figure-3.2 shows that the majority of the population in UPITT dataset are around the age of
60.
The figure-3.2 shows the BIRADS level distribution across the patients(infrequent BIRADS lev-
els are discarded). Despite of the fact that over 50% of the patients have a BIRADS level of 0 and
2(suspicious and benign cancer), majority of the images/views for benign patients are actually
unannotated, thus leading to a scarcity of positive cases.

Figure 3.2: Dataset age/BI-RADS level distribution

3.1.2 Dataset preprocessing

Some of the features of a mammogram could significantly impact on the quality of the patch
extracted and thus affect the model performance. For the purpose of achieving high consistency
in the quality of the patches. The following tables summarizes our criteria used for filtering the
images and the the number of images that are discarded based on these criteria. According to
table-3.1, we start with 101494 images, after discarding images based on the following standards,
we are left with 79501 images for our model development.

15



Criteria number of images discarded

Images with ViewPosition other than ”MLO” or ”CC” for
the sake of better generalization 20281

Images with SEX that is not ”F” as the data for male is
scarce and the diagnosis standards could be drastically

different between male and female 9

Images with Breast Implant Present being ”YES” as
the presence is rare and the patch for the implant

area could become noise during training 1752

Images with PresentationLUTShape being ”INVERSE” as
the pixel intensities for such images are inverse of regular

images and could confuse the model 2

Images with ImageType containing ”ORIGINAL” as those
images went through different processing from other images 5

Table 3.2: number of images filtered by criteria

3.1.3 Patch Extraction Algorithm

We now describe the general algorithm that we use to extract the patches from the 79501 im-
ages. The algorithm is configured to ensure that the radiologist’s annotated areas are accurately
extracted as clean lesion patches. The reason why we rely on using the annotations from the
radiologists is because the BIRADS level itself does not really tell us whether there is anything
that the radiologist finds suspicious when a diagnosis is made. The white elliptical area annotated
by the radiologist actually serve as the ground truth for the patch-based lesion classifier. On the
other hand, for the normal patches, we just have to ensure that they are actually breast tissues
from the patient that indicate absence of any lesion since any part of the breast could have some
form of lesion and an absence of an annotation by radiologist for a specific area within the breast
can be considered as a signal that the area is normal. There could be rare cases when radiologist
missed the annotation of a lesion area but the model performance shouldn’t be significantly im-
pacted.
The following pipeline is designed for the extraction of two types of patches and the details for
each step will be explained. The overall patch generation pipeline can be divided into two un-
related procedure, the normal patch extraction process and lesion patch extraction process. The
lesion patch extraction involves an additional step of elliptical annotation detection in the image
at first. After which a fixed size lesion patch will be center cropped from the annotated ellipse.
The whole pipeline is implemented based on the python’s cv2, numpy, scipy, pillow, pydicom,
pandas package. The plots are created using matplotlib. [13, 16, 17, 23, 26, 37, 39]

16



Figure 3.3: Patch Extraction pipelines

Lesion Patch Extraction
1. Annotated Ellipse Extraction: Patients with a BIRADS level score of 0 or 2 will undergo

the annotated ellipse extraction procedure even though it is not guaranteed that such anno-
tation exists for all patients. Figure 2.2 shows how extracted patch looks like and the form
of lesion could be mass, calcification, etc. Each step of the pipeline is explained below
with the intermediate results shown for illustration purpose.

2. Blurring: Median filtering is applied to the input image for smoothing to improve the
accuracy of contour detection. The major advantage of using median filtering is that it
preserves the edge while removing the noises from the image.

Figure 3.4: Blurred mammogram using median filtering with radius of 5

3. Thresholding: The purpose of thresholding is to bring the outlines of the elliptical anno-
tations by the radiologists to the foreground by using a filter on the RGB pixel intensities.
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Figure 3.5: Thresholded image based on pixel intensities of annotations

4. Morph Closing: Morphological closing is basically a dilation operation followed by ero-
sion operation. Formally,
erosion of A by B: set of all x s.t. x+ b ∈ A for every b ∈ B

A	B = {x ∈ EN |x+ b ∈ A for every b ∈ B}

dilation of A by B: A⊕B

A⊕B = {c ∈ EN |c = a+ b for some a ∈ A and b ∈ B}

The major purpose of using morphological closing is also to enlarge the boundary of the
foreground. Its major difference from dilation is that it is less destructive of the original
boundary shape so that the contour fitting will become more accurate. Figure 3.6 shows
how the boundary for the annotation thickens and the text boundaries also merged as a
block.

Figure 3.6: Image after morph closing

5. Dilation: The edges of the thresholded boundaries are slightly dilated to serve as a mask
that will be used later in the ellipse filtering stage.
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Figure 3.7: Image after dilation of two iterations with raduis of 5

6. Contour Extraction: Closed curve detection is performed on the image from step 4.
The boundaries obtained from the edges may contain the boundary for the radiologist
annotation.

7. Ellipse Fitting: Following the contours extracted in the previous step, ellipses will be fit
and marked in green as shown in Figure 3.8.

Figure 3.8: Extracted ellipse marked in green

8. Pixel-based and Area-based filtering: Note how the text’s contour also has an ellipse
fitted on it in Figure 3.8. The filtering step uses several metric to ensure that the ellipse ex-
tracted is actually the annotation by the radiologist. It first checks whether the contour area
and ellipse are is larger than MIN CONTOUR AREA and MIN ELLIPSE AREA
that are pre-configured based on experiments with a list of patients. Then it uses the pre-
viously dilated image as the mask to check the overlapping between the boundaries of the
ellipse fitted and the white annotations marked by the radiologist. We only keep the patch
if the percentage of the overlapping is greater than MIN ELLIPSE COV ERAGE,
which is set to 0.999 to ensure that the ellipse fitted is indeed marked by the radiologist
and the patch stays within the ellipse. This is how the ellipse fitted on text is removed.

9. Center crop ROI: By using the center crop method, we extract the ROI(region of interest).
We fit a patch of BLCK SIZE (128x128) at the center of the fitted ellipse by specifying
the top-left corner and bottom-right corner as (center x − 0.5 · BLCK SIZE, center y −
0.5 · BLCK SIZE) and (center x + 0.5 · BLCK SIZE, center y + 0.5 · BLCK SIZE). We
filter the patch based on the coverage of purely white/black pixels and thus ensure that the
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patch does not contain the white annotation mark from the radiologist which might distort
model predictions.Figure 3.9 shows the patch that is removed based on this criteria.

Figure 3.9: A sample patch that is filtered

10. Output: Patch containing the ROI (region of interest) that is marked by the radiologist
and does not get filtered.

Normal Patch Extraction
1. View as Patches/Blocks: The original mammogram is broken into blocks of sizeBLCK SIZE

(128x128) with black padding using the scipy view as blocks function.

2. Pixel-based filtering: Iterate through the blocks, for each block, its quality is first checked
based on the distribution of its pixels’ RGB intensities. If majority of the pixels’ intensi-
ties are below a threshold or above a threshold, the patch is considered as being mostly
black/white such that it contains no meaningful information and will be dropped. The
RGB thresholds for black/white pixels are determined based on the RGB intensities of the
pixels in the black background and pixels from the radiologists annotations.

3. Output: Patches that contain the breast tissue will be saved as Normal patch data.

Patch statistics

After the dataset pre-processing and patch extraction logic is applied to the dataset, we are left
with 976838 normal patches and 3783 lesion patches. The ratio of negative/normal patches to
positive/lesion patches is approximately 258:1, indicating quite serious data imbalance issue for
the UPITT-mammogram dataset. The normal patches come from 2952 different patients. The
Figure 3.10 summarizes the distribution of the lesion patches across different BI-RADS level.
3737 lesion patches come from 1930 BIRADS 0 patients whom the radiologist find suspicious
and need further screening. However, for majority of the benign patients, their mammograms are
unannotated, with only 46 patches coming from 32 different BIRADS 2 patients. The imbalance
between the number of lesion patches and normal patches is significant for two major reasons.

• The inherent nature of all medical imaging data. Majority of the mammograms actually
come from normal patients without benign/malignant cancer or visible lesion that requires
further screening.

20



• The ROI(region of interest) that is suspicious as annotated on the mammogram usually
covers a much smaller region than the area that the normal patches could come from, which
is essentially the whole breast. So majority of normal patches are fatty tissue despite of the
fact that lesions usually occur in glandular, connective tissue.

Figure 3.10: Lesion Patch BIRADS-level Distribution

3.2 Data Augmentation
We now describe how we apply deep learning in data augmentation that could potentially help
us achieve better generalization performance in the medical image analysis task. Specifically,
we will explain two algorithms that we used for generation of new data from the minority lesion
class to reduce the huge gap in data availability between normal and lesion class and to alleviate
the bad generalization performance issue that is pointed out in the NYU experiment [41]. We
will evaluate the data augmentation algorithms based on whether they would improve the state
of the art performance that is achieved by our baseline classifier. One of them is based on the
traditional SMOTE-based interpolation method and takes a step forward by combining it with a
pre-trained feature model and the other approach uses GAN to generate minority class data based
on a given high-dimensional latent vector. Different loss functions and regularization techniques
were applied to optimize the performance of the GAN. We present the architecture that is used
for deep learning and provide training details and evaluate the approaches in next section.

3.2.1 Image Based Embeddings
Multiple studies have shown how important the embeddings are in machine learning tasks[30,
36]. The success of SiameseCBOW showcases that the quality of sentence embeddings can be
optimized by averaging the word embeddings generated from a Siamese network.[19] We take
the inspiration from SiameseCBOW and SMOTE and attempt to acquire an optimized high-
level feature representation for the lesion images using a deep-convolutional architecture before
application of SMOTE algorithm based on the distance in the projected feature space. The data
augmentation techniques seek to fill in the gaps between data points in high-level feature space
such that a more accurate decision boundary can be used to distinguish the data points and reduce
over-fitting. So we can essentially summarize our problem as:
Given dataset D =

{
I1, I2, . . . , IN

}
images where Ii ∈ Rm×n×1 where m, n are the height and

width of the grayscale patch images. We want to find a function F : Rm×n×1 → Rd which maps
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the images to a d-dimensional feature vector. Given a loss function L, for simplicity, let it be
cross entropy loss where L = − 1

N

∑N
i=1 ylog(ŷ) where y is the true classification label for an

image and ŷ is the model estimated probability and ŷi = M(fi) where fi ∈ Rd = F
(
Ii
)

and
M is our normal/lesion patch classifier. Our goal in this medical image analysis is to find the F
that minimizes the loss when we fix the architecture of the classifier M. The major challenge in
learning aF that produces a close to optimal decision boundary that is only susceptible to natural
noises is that the training samples that belong to the lesion class is lacking and the gaps between
minority samples could potentially lead to a decision boundary that overfits to the training data.

3.2.2 Deep Learning Based SMOTE
Now we describe the deep learning based SMOTE that is inspired by the original smote algorithm
in pseudo-code. The interpolation involves the application of a pre-trained model for projection
of the image to feature space. The architecture for the feature model will be described later as it
is part of the lesion classifier.

Algorithm 1 DL-based SMOTE
1: Data: Dm ⊂ D: minority samples of the image dataset, k: number of nearrest neighbors,
nm: number of minority samples.

2: Result: k synthetically interpolated minority feature vectors for each minority sample in the
original dataset, so total of k × nm samples.

3: F : pre-trained model/function that maps the image samples from the minority class to d-
dimensional embeddings.

4: dist func ∈ {cosine similarity, l1, l2, . . . }: a distance metric that measures the similarity
between two vectors.

5: for i = 1, 2, . . . nm do
6: Initialize empty max heap denoted as h.
7: Apply F to sample Di and save fi
8: for j = 1, 2, . . . , nm do
9: if i == j then

10: Skip
11: else
12: Apply F to sample Dj and save fj
13: Apply dist func to fi and fj and push to h along with the index j.
14: if size(h) > k then
15: pop the max from h
16: end if
17: end if
18: end for
19: for distneighbor, idxneighbor,fneighbor ∈ h do
20: Apply algorithm 2 to fi and fneighbor and save the returned result.
21: end for
22: end for
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Algorithm 2 Interpolation
1: Data: fi: The base feature vector from which synthetic vector is interpolated fneighbor: one

of the k-closest neighboring vector.
2: Result: A synthetic vector fsyn interpolated from fi to fneighbor

3: Assign fdiff = fneighbor - fi
4: Generate random float p between 0 and 1.
5: Assign fsync = fi + p · fdiff and return

As interpolation in the original pixel space neither produces a valid minority class image nor car-
ries any real significance in the high-dimensional feature space, we would like to take advantage
of deep learning and first project the images into high-dimensional feature space and carry out
the interpolation there in the hope of achieving the ideal state indicated in figure 3.11.
The question is at what level in the feature extraction process could we apply the interpolation to
obtain the neighboring data that could actually help with the training process and generalization.
Furthermore, which metric should we apply to quantity the distance between the data points in
the feature space. Essentially, we have to use the configurable K-nearest neighbor algorithm[10]
to select the k closest neighbors for each real data sample in our dataset based on a specific
distance metric. The potential distance metrics that could be used are l1, l2 distance, cosine sim-
ilarity metric.
After we select the k-nearest neighbor based on a given distance metric, a randomly scaled in-
terpolation is carried out to create a synthetic data sample. By the initial hypothesis of SMOTE,
this could potentially help us fill in the gaps between the original minority training data points
and achieve better generalization performance in the end.

Figure 3.11: SMOTE Mechanism Illustration from [31]

3.2.3 GAN-based Augmentation

Now we describe the procedure for generation of data samples using a GAN trained specifically
for data augmentation. Our hypothesis is that the GAN would add data points to our original
training dataset to help fill in the gaps by projection from an arbitrary noise vector at the cost of
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adding some noises to the original dataset. As the augmentation is only applied to the minority
class, our goal is to improve the recall while minimizing the decline in the precision as it is quite
inevitable that there exists such a trade-off between recall and precision when we fix the model
architecture.Since the model is exposed to more randomly generated synthetic data, noises from
the GAN could actually mislead the model to predict more false positives. However, if the GAN
is really effective in producing high-quality synthetic data, we could potentially improve the final
F1-score of our model by significantly improving the recall without losing too much precision.

GAN

The GAN(generative adverserial network) applied in our experiment with the UPITT-mammogram
dataset is based on a deep-convolutional architecture. The architecture is summarized in Fig-
ure 3.12. The discriminator and generator basically have symmetric architectures such that one
down-samples the image to output its conviction about whether the image is fake or real and the
other up-samples a fixed latent vector to an image.

In this experiment, we take the WGAN[6, 12] as the baseline and compare its performance
against relavistic-GAN[18] with/without spectral normalization[24] and TTUR(using different
learning rate for discriminator and generator) for stabilizing the training process. Similar to gra-
dient penalty, the spectral normalization achieves improved stability by enforcing the lipshitz
constant and the TTUR is applied to ensure tha the discriminator does not get too powerful be-
fore the generator learns, thus avoiding the gradient vanishing or gradient explosion that stalls
the learning process too early.

The relavistic-GAN applies the discriminator to both the real and fake images while training
both the discriminator and the generator while a traditional WGAN[6, 12] does not really feed
the real images to the discriminator while training the generator. The loss function seeks to
minimize the difference in the confidence score from the discriminator instead of just trying to
maximizing the confidence score for fake images. The following loss functions illustrate this
fundamental difference. (D represents the discriminator, P is the real distribution of minority
class data, Q is the modeled distribution, f1, f2, g1, g2 are scalar functions)

Ldiscriminator = −Exr∼P [f1(D(xr))] + Exf∼Q[f2(D(xf ))]

Lrelavistic discriminator = E(xr,xf )∼(P,Q)[f1(D(xr)−D(xf ))] + E(xr,xf )∼(P,Q)[f2(D(xf )−D(xr))]

Lgenerator = −Exr∼P [g1(D(xr))] + Exf∼Q[g2(D(xf ))]

Lrelavistic generator = E(xr,xf )∼(P,Q)[g1(D(xr)−D(xf ))] + E(xr,xf )∼(P,Q)[g2(D(xf )−D(xr))]
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Figure 3.12: GAN Architecture

The following code snippet describes how we generate synthetic data by applying the pre-trained
generator from the GAN to the noise vector in the latent space. In this experiment, we generate
7160 samples that essentially triple the total number of lesion patches. In the evaluation sec-
tion, we will explain how we evaluate the GANs and choose the best performing GAN for the
generation of the synthetic data.

Algorithm 3 GAN-Based Augmentation
1: Data: nm: number of minority samples.
2: Result: nm synthetic minority class sample
3: G: pre-trained generator in GAN that takes in a noise vector and generate minority class

image.
4: for i = 1, 2, . . . nm do
5: Sample a random noise vector in the latent space and save as noise vec.
6: Apply the generator to noise vec and save the result G(noise vec)
7: end for

3.2.4 Lesion Classifier

Now we will describe the classifier that we applied for the original training dataset and GAN
augmented dataset. As the training pipeline for the original dataset, GAN-augmented dataset is
different from the SMOTE-augmented dataset. We will describe the two pipelines separately.
The basic classifier architecture we used in this experiment is similar to VGG.[35] The reason
why we used this architecture instead of Resnet is because based on our early experiments,
despite of the fact that the VGG model has lower complexity, the model’s generalization ability
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is not significantly different from that of a model based on Resnet18 architecture. However, the
convergence speed is faster because of lowered model complexity.

Figure 3.13: Classifier Architectures

For SMOTE augmentation, we split the training process into three different phases.

The first phase, pre-training phase, is also based on the same architecture in Figure 3.13, we
train the model for the same number of iterations and save the weights for the first convolutional
block and the rest of the model separately. The decision is made to test our hypothesis that in-
terpolation in the low-level feature representation for the images would more likely hit feature
representation for unseen data samples than interpolating from the data samples directly. Further
experimentation is necessary to evaluate the depth at which we apply the interpolation though.

In the second phase, interpolation phase, we utilize the weights from the first convolutional
block and basically follows the Algorithm 1 to create and save the synthetic feature vectors, in
this experiment we set k = 2 so we essentially triple the set of lesion samples by interpolating 2
synthetic data samples from each original data sample.

In the third phase, we use the pre-trained weight from the first convolutional and set its re-
quires grad parameter to False to pause its learning. We concatenate the feature vectors saved
with the embeddings for training images before feeding them into the rest of the architecture.

Figure 3.14: SMOTE Classifier Architectures

In order to obtain a relatively accurate estimation of the final model’s generalization performance,
we split all the patches into training, validation and test set by a 50%, 25%, 25% ratio. A large
portion of the dataset is dedicated for testing to acquire an accurate reflection of the general-
ization ability of the model. The validation performance provides us with a gauge on how the
model may preform on the test set. The split is done randomly based on patients so we ensure

26



that patches from the same patient will not show up in both the training and test set to avoid the
problem that the model sees a patch in the test set from a patient whose other patches showed up
in training, which could cause data leaking and distort model performance. The seed for random
splitting, sampling, shuffling process is fixed to ensure the training and test dataset is fixed across
the experiments to make the results replicated.
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Chapter 4

Evaluation

In this section, we will evaluate the performance of the deep learning models that we used for
dealing with the severe data imbalance issue in the UPITT-mammogram experiment with the syn-
theic data from deep learning based SMOTE and GAN on classifying the normal/lesion patches.
The highlights of evaluation includes

• Achievement of an FID score of 58.5 by using WGAN-gp(64 filter in the first layer) with
spectral normalization [6] and TTUR. The two regularization techniques, spectral normal-
ization [24] and TTUR, significantly stabilized model performance.

• The GAN based data augmentation technique improves the overall f1-score for view-wise
and patient-wise classification by 2.5% and 1.4%, the recall is quite significantly improved
by 5.3%, 5.3%, 4.3% respectively at the cost of minor decreases in the precision.

• The DL-based SMOTE data augmentation technique that uses cosine similarity distance
function improves the overall f1-score for view-wise and patient-wise classification by 0.4%
and 0.7%, the recall for patch-wise classification is improved by 0.2%. Furthermore, the pre-
cision is also slightly improved by 0.9%, 1.5% for view-wise and patient-wise classification.

• The DL-based SMOTE data augmentation technique that uses l1 distance function improves
the overall f1-score for patch-wise, patient-wise classification by 0.1% and 0.4%, The preci-
sion is slightly improved by 0.3%, 0.6% for view-wise and patient-wise classification.

• The DL-based SMOTE data augmentation technique that uses l2 distance function improves
the overall f1-score for patch-wise, view-wise and patient-wise classification by 0.3%, 0.3%
and 0.6%, the recall is slightly improved by 0.4%, 0.1%, 0.2% respectively. Furthermore, the
precision is also slightly by 0.1%, 0.5%, 0.8% along with improved recall.

4.1 Evaluation setup
The implementation is based on pytorch, sklearn, numpy.[13, 27, 39]

Dataset. We evaluate our augmentation approaches with the UPITT-mammogram dataset, statis-
tics of which is documented in 3.1. We group the patches extracted from the mammograms
based on the patient id and obtain two lists of patients, differentiated based on their BIRADS
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level score. We select a fixed random seed and split the patients for each list based on a 50:25:25
for training, validation and testing and use the validation performance to save the model param-
eters to be evaluated for testing. We repeat this process for multiple times to ensure that the test
performance collected is not randomly favoring one method over another.

Training configs. The following tables describe the hyperparameter configurations that we
used for training the GAN.

Params Value

Block1 filter 64/128
Latent size 64/128
Discriminator Learning rate 2e-4
Generator Learning rate 2e-4
Batch Size 64
Adams Optimizer Beta1,Beta2 0.5,0.999

Table 4.1: GAN non-TTUR training hyperparameters

Params Value

Discriminator Learning rate 4e-4
Generator Learning rate 1e-4
Adams Optimizer Beta1,Beta2 0.0,0.9

Table 4.2: GAN TTUR training hyperparameters

Params Value

Block1 filter 16
Learning rate 1e-5
Dropout 0.5
Batch Size 128
Adams Optimizer Beta1,Beta2 0.5,0.999

Table 4.3: Classifier training hyperparameters

Training environment. We use the AWS p3.2xlarge instance equipped with one Tesla-V100
GPU with 16 gigabytes of memory. The instance has 8 vCPUs, 64GB memory and up to 10
Gbps network bandwidth.
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Synthetic data evaluation metric There are two common objective metrics that could be
applied for an objective evaluation of the quality of the synthetic data produced by a GAN.
IS(Inception Score) and FID(Frechet Inception Distance), both of which are based on a pre-
trained inception V3 model. The t-SNE[38] technique could be used for visualization of syn-
thetic data features.

• The inception score basically estimates the quality of the synthetic images compared with
the 1000 objects within its training dataset from ImageNet. As lesioned breast tissue patch is
not among the objects in the ImageNet, so the inception score is relatively low regardless of
the actual synthetic patch quality, which is the reason why we only consider it as a reference
but not criteria for the selection of the final model for synthetic data generation procedure.

• The FID is the distance between the gaussian computed mean and variance based on the
activation for the batch of synthetic images as opposed to the batch of real images. Therefore,
for our use case, the FID is the more reasonable measure for the synthetic image quality for
final model selection.

• The t-SNE[38] is a common dimensionality reduction technique that allows us to project the
high-dimensional feature vectors acquired from a pre-trained feature model to lower dimen-
sional space. This method allows us to subjectively evaluate the synthetic data produced.
However, distance in 2-dimensional space is not directly proportional to the distance in high-
dimensional space as t-SNE[38] does not really retain the distance in high-dimensional space
during the reduction process via gradient descent.

Classifier metrics for evaluation. There are several different ways to evaluate the quality of
the patch-based lesion classifier. The classifier could also have quite different performance when
evaluated using different metric.

• Accuracy: The simplest metric that is computed using TP+TN
TP+TN+FP+FN

. However, the simple
metric is not that suitable for tasks that have really imbalanced dataset as the correctness of
negative/majority class dominates the final result and a naive classifier could achieve mean-
inglessly high accuracy.

• Patch-based Precision, Recall, F1 score and MCC. Precision = TP
TP+FP

, Recall = TP
TP+FN

, F1
score = 2∗TP∗TP

2∗TP+FP+FN
, MCC = TP∗TN−FP∗FN√

(TP+FP )∗(TP+FN)∗(TN+FP )∗(TN+FN)
. These three metrics

put more emphasis on the correctness of the positive/minority class. A naive classifier would
have really low F1 score if it simply predicts everything as negative. However, the flaw for
relying on F1-score is that it is still susceptible to minor shifts in the prediction for negative
class because increase in false positive rate could significantly lower F1-score as the number
of negative samples is large. This is the reason why we also include MCC as it includes all the
values from the confusion matrix and is more suitable for imbalanced dataset by including
TN.

• Mammogram image-wise and patient-wise Precision, Recall, F1 score and MCC. The reason
why we incorporate the view-wise and patient-wise metrics is because we want to have a
more accurate reflection of how the classifier could actually be performing in reality and
we want to reduce the penalty for slightly loosening the threshold for predicting a patch as
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positive. A mammogram image is classified as normal only if all the patches within it are
predicted as normal. A patient is predicted as normal only if all views within the patient
folder is predicted as normal.

4.2 GAN performance evaluation

We first offer a comparison of the random synthetic lesion samples from GAN and the actual
lesion patches. The whole training process takes 300 epochs. We save the model parameters
when the lowest FID score is achieved. By comparing the images with 2.2, we could notice
how the generator has picked up certain patterns such as calcification and mass and most of the
samples look quite realistic. The synthetic data includes more variations of those forms of lesion
at the cost of some lower quality noisy samples. The question is whether these noises would
significantly hurt the model’s precision when we try to improve the recall by inclusion of more
minority class samples.

(a) WGAN-gp spec random lesion samples (b) Real random lesion samples

Figure 4.1: GAN synthetic image quality comparison

Now we evaluate the impact that different loss functions have on the final performance in terms
of the FID score and IS score. First, we show the impact of spectral normalization and TTUR
and number of filters on performance and convergence.
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metric/spec+TTUR rahinge ralsgan rasgan rsgan wgan-gp

FID(64 filter) 66.9/68.9 66.2/65.8 64.1/71.9 66.2/71.0 99.8/58.5
FID(128 filter) 64.6/64.6 61.9/67.7 65.6/71.7 63.0/69.8 85.6/62.7

IS(64 filter) 1.89/1.82 1.9/2.08 2.08/1.98 1.96/1.86 2.07/1.90
IS(128 filter) 2.14/1.82 2.04/2.1 2.18/1.97 2.28/1.87 2.43/1.88

Table 4.4: GAN FID and IS

(a) 64-filter FID (b) 64 filter spectral norm
FID

(c) 64 filter IS (d) 64 filter spectral norm IS

(e) 128 filter FID (f) 128 filter spectral norm
FID

(g) 128 filter IS (h) 128 filter spectral norm
IS

Figure 4.2: GAN FID and IS score

Effect of model complexity/number of filters. Figure 4.2 and Table 4.4 shows the impact of
the number of filters on the convergence behavior and the final model performance. When we
increased the number of filters to 128(in the first conv layer, and doubling the number of filters
for the remaining conv layers), the model’s training stability significantly improved. Across the
5 different loss functions that we applied to evaluate the impact of the filter increase, the FID
decreased by 2.2 on average and the IS score increased by 0.12, indicating the potential for
getting improved performance when the model complexity increases. This is consistent with the
conclusions drawn in previous studies such as BIGGAN.[8] We believe that a bigger model could
potentially produce more realistic images at higher reolution even when the amount of training
data is scarce.

Effect of spectral normalization and TTUR Figure 4.2 shows that the spectral normalization[24]
and TTUR could have a quite significant impact on the model stability. The two regularization
techniques, by enforcing the lipschitz constraint for the discriminator to be less than 1 and us-
ing a lower discriminator learning rate, ensures that the discriminator does not get too powerful
such that the gradient vanishes before the generator learns. However, from Table 4.4, we also
did not observe improvement in performance mentioned in previous literature despite of the fact
that WGAN-gp achieved much better performance with further regularization on top of gradient-
penalty. On average, the FID score increased by 3.13 and the IS score decreased by 0.16 with
strict regularization.
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4.3 Synthetic data t-SNE Visualization
Now we visualize the feature vectors produced by feeding the synthetic data points to the classi-
fier. t-SNE serves as a preview that indicates how the synthetic data could potentially impact on
the final classifier performance. In the t-SNE plots in Figure ??, the blue, red, green, and yel-
low dots represent the projected feature vectors(dimensionality reduced) from the original lesion
patch, normal patch, GAN and SMOTE synthetic data respectively. From the t-SNE plots, we
could derive several observations

• The synthetic data points are occupying regions that are not covered by the original data
points. This indicates that the synthetic data points could possess features that are not covered
by the original data points.

• The GAN-based and smote cosine-based synthetic data points are less noisy and lying in
closer distance to the original data points compared with the other two distance metrics in
deep learning based SMOTE. The closeness after dimensionality reduction does not neces-
sarily imply closeness in high-dimensional space, though.

• The SMOTE based on the l1, l2 distance function are lying farther away from the original
data points. This indicates the potential ineffectiveness of applying l1,l2 when the feature
vectors have high dimensions. The SMOTE synthetic data points from l1,l2 significantly
expands the original minority class region. We will later evaluate how this translate into final
classifier performance.

(a) GAN (b) SMOTE cosine

(c) SMOTE l1 (d) SMOTE l2

Figure 4.3: t-SNE visualization, blue: lesion, red: normal, green: GAN synthetic lesion, yellow:
SMOTE synthetic lesion
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4.4 Classifier performance evaluation

metric gan unaugmented smote cosine smote l1 smote l2

Patch recall 0.820 0.767 0.769 0.766 0.771
Patch precision 0.763 0.821 0.814 0.823 0.822

Patch MCC 0.790 0.793 0.790 0.793 0.795
Patch F1 0.791 0.793 0.791 0.794 0.796

View recall 0.836 0.783 0.783 0.781 0.784
View precision 0.938 0.951 0.960 0.954 0.956

View MCC 0.856 0.830 0.835 0.830 0.834
View F1 0.884 0.859 0.863 0.859 0.862

Patient recall 0.890 0.847 0.847 0.847 0.849
Patient precision 0.916 0.935 0.950 0.941 0.943

Patient MCC 0.840 0.823 0.835 0.828 0.832
Patient F1 0.902 0.888 0.895 0.892 0.894

Table 4.5: Classifier test performance summary

We first summarize the average test performance across the five trials that split the train/test
dataset differently and then we evaluate the consistency of the results across different trials.
From Table 4.5, we could make the following observations

• We observe performance improvements across all metrics with different augmentation tech-
niques. Notably, the F1-score for patch-wise, view-wise and patient-wise classification im-
proved by 0.3%, 2.5% and 1.4%, the MCC, the metric that considers true negative, improved
by 0.2%, 2.6%, 1.7% across the 3 levels..

• There is no significant performance difference among the three deep learning based SMOTE
augmentation techniques despite of the fact that the SMOTE synthetic data that relies on l1,l2
distance metric are more noisy in the t-SNE plots. This implies that distance after dimen-
sionality reduction is not necessarily proportional to the actual distance in high dimensional
space. Overall, we observe a slight improvement, around 0.5% in f1-score and MCC across
different levels of classification for SMOTE based augmentation compared with the model
performance without augmentation applied.

• The GAN-based augmentation approach achieves our major goal of improving the recall(reducing
the number of false negative). By using synthetic data from GAN, the recall improved by
5.3%, 5.3%, 4.3% respectively for patch-wise, view-wise, patient-wise classification. Fur-
thermore, the model almost performs the best across all metrics for view-wise and patient-
wise classification.
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(a) patch recall (b) patch precision (c) patch F1 (d) patch MCC

(e) view recall (f) view precision (g) view F1 (h) view MCC

(i) patient recall (j) patient precision (k) patient F1 (l) patient MCC

Figure 4.4: Error bar plots for classifier performance

After we have evaluated the models’ average performance across different trials, We now evalu-
ate the models’ consistency and stability across the trails using an error bar plot.

• Overall, models augmented with GAN synthetic data have similar stability as the unaug-
mented model. We attribute this to the fact that GAN’s synthetic data is created by a genera-
tor that tries to fool the discriminator, so the overall feature pattern would be less noisy since
otherwise the discriminator could easily distinguish the fake data from real data.

• On the other hand, models augmented with SMOTE based synthetic data has slightly worse
stability as the longer error bar indicates more variability across the experiments. Compared
with GAN’s synthetic data, SMOTE’s synthetic data is based on interpolation after first layer
of feature extraction and it involves more randomness. It also does not consider whether the
synthetic data would be lying close to real data in the higher dimensional space after passing
through further feature extractions. As a result, the synthetic data could either cover unseen
features and improve the minority class boundary or become too noisy and worsen the model
performance.
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(a) unaugmented (b) gan (c) smote cosine (d) smote l1 (e) smote l2

Figure 4.5: patch-based confusion matrices

(a) unaugmented (b) gan (c) smote cosine (d) smote l1 (e) smote l2

Figure 4.6: view-based confusion matrices

(a) unaugmented (b) gan (c) smote cosine (d) smote l1 (e) smote l2

Figure 4.7: patient-based confusion matrices

Figure 4.5, Figure 4.6 and Figure 4.8 are the averaged confusion matrices across the five different
trials. They provide a more straightforward overview of how the models are performing after the
augmentation with synthetic data. There are several key observations.

• GAN augmentation decreased the number of false negative across all 3 levels of specificity.
This comes at the cost of slightly larger number of false positives. Since the total number of
negative cases is large, a relatively small change in precision could have led to this conse-
quence. Overall, our goal is to maximize recall while possibly maintaining the precision.

• For models trained with SMOTE-augmented data, the final prediction results are quite sim-
ilar. The models’ recall does not change significantly from the unaugmented model, but
we could still observe that the precision is slightly improved with a more precise decision
boundary, but overall the change in performance with SMOTE augmentation is less drastic
than GAN augmentation.

Lastly, we look at the MCC plots for five models trained with different augmentation techniques
to briefly analyze how does improving the dataset balance affect the model performance. Based
on the figures, we derive the following observations
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(a) Patch MCC (b) View MCC (c) Patient MCC

Figure 4.8: Sample MCC Plots for Models under Different Augmentation Schemes

• Overall, we could observe that the GAN and SMOTE augmentation slightly improves the
convergence speed and the performance plateaus around 20-30 steps.

• There are some instabilities in performance during training. The smaller the number of test
samples, the greater the instability, meaning that patch-wise performance is more stable than
view-wise performance than patient-wise performance.

• The performance is consistent with the confusion matrices and table summary. We see some
small improvements in performance with GAN augmentation and the improvements from
SMOTE augmentation are much more subtle and harder to tell from the plots.
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Chapter 5

Conclusion

Based on our experiment with the UPITT-mammogram dataset, we have acquired quite solid
empirical evidence that deep learning based data augmentation could improve the performance
of models trained on an un-augmented or image-manipulation(flipping, rotation) augmented
dataset. Data augmentation is a critical technique in addressing the data scarcity and imbalance
issues in the field of deep learning based medical image analysis. Compared with traditional
image-manipulation based augmentation techniques, the deep learning based SMOTE and GAN
push the MCC and F1-score at patient-level up by 0.5-1%/2-4% with the same original train-
ing dataset, model architecture and set of hyperparameters respectively. More importantly, in
the medical imaging field, we believe that minimizing the number of false negative is more im-
portant than reducing false positive, augmenting the minority/positive class effectively helps us
improve the recall. While applying deep learning for data augmentation certainly increases the
complexity of the solution development and training time, GAN and SMOTE have effectively
shown their impacts on the model performance.

Limitations Now we point out several intrinsic limitations involved in the experiment evalua-
tion and our dataset in general.

• The evaluation of the view-wise and patient-wise classifier performance is still flawed. Given
a normal patient/view, we can judge the correctness of model by checking whether any
lesion prediction is made across all the patches of the breast. However, given a lesioned
view/patient, it is hard to objectively judge if the prediction is completely correct. The model
could be judged based on whether it makes the same prediction for the annotated patch by
radiologists, but we also could not tell if the model is wrong when it predicts an unannotated
patch from a lesioned view as positive.

• The evaluation of SMOTE-based synthetic data quality is also difficult. First of all, the
SMOTE-based synthetic data is encoded as feature vectors. This means that the only way for
us to directly measure its quality is based on the final classifier performance. However, even
if the classifier generalization performance is improved after the addition of SMOTE-based
synthetic, we could not easily learn about the patterns that the model has picked up from
those feature vectors or explain the causes for the change in performance.

• Even though the GAN does produce actual synthetic lesion patches, the evaluation based on
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FID and classifier performance changes is still insufficient. Ideally, a group of radiologists
should be invited to play the role of discriminator in GAN and evaluate the number of patches
they find suspicious patterns among the normal patches, real lesion patches and GAN syn-
thetic lesion patches. The average performance across the radiologists could provide us with
a subjective overview of how realistic the synthetic images are and the patterns they have
picked up.

• Distance metric for high-dimensional feature vector remains as a research problem. Based on
this experiment, we realized that the common l1,l2, cosine similarity distance applied during
interpolation did not result in significant classifier performance difference. A more stable
distance metric that is not overly sensitive to one dimension could potentially provide a more
accurate reflection of the neighboring relationship among the data points.

• The dataset also imposes several serious limitations in the experiment. The lesion patches
are extracted from the annotated images and this impose several limitations. There exists a
tradeoff between the number of lesion patches and the resolution/size of the patch. With a
higher resolution, we are guaranteed to include the lesion pattern in the extracted patch but
we would also be left with a much smaller number of lesion samples as we cannot keep the
annotation marks from the radiologists.

• Some mistakenly labeled data also exist in our dataset. We realized that for some of the
patients with BIRADS level of 0/2, her mammograms could contain no annotations at all and
few patients who have BIRADS level of 1, actually have annotations in the image.

Future Works We propose that future efforts should focus on the following areas
• Evaluation of the classifier’s lesion patch performance based on the number of lesion patches

that it predict for a given view/patient.
• Design and evaluate other distance metric that are more suitable for high-dimensional vec-

tors. Evaluation of the impact of clipping each individual dimension shift in l1,l2 distance
computation on t-SNE visualization and final classifier performance.

• Evaluation of the quality of all patches, including real and synthetic patches, by a group of
radiologists.

• Development of more detailed explanation for interpretation on top of annotation explanation
that could be provided by a patched-based classifier.

• Development of stronger GAN with larger number of filters and batch size. (According to
the research results on BigGAN by Google Deepmind[8])
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