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Abstract
We present Score, a rule engine designed and implemented for the Scone knowl-

edge base system. Scone is a knowledge base system designed for storing and ma-
nipulating rich representations of general knowledge in symbolic form. It represents
knowledge in the form of nodes and links in a network structure, and it can perform
basic inference about the relationships between different elements efficiently. On its
own, Scone acts as a sort of “smart memory” that can interface with other software
systems. One area of improvement for Scone is how useful it can be in supplying
knowledge to an intelligent agent that can use the knowledge to perform actions and
update the knowledge base with its observations.

We augment the Scone system with a production rule engine that automatically
performs simple inference based on existing and newly-added structures in Scone’s
knowledge base, potentially improving the capabilities of any planning systems built
on top of Scone. Production rule systems consist of “if-then” production rules that
try to match their predicates to existing knowledge and fire their actions when their
predicates are satisfied. We propose two kinds of production rules, if-added and
if-needed rules, that differ in how they are checked and fired to cover multiple use
cases. We then implement methods to efficiently check and fire these rules in a
large knowledge base. The new rule engine is not meant to be a complex stand-
alone planner, so we discuss how it fits into the context of Scone and future work on
planning systems.
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Chapter 1

Introduction and Background

Scone [6, 8] is an open-source knowledge base system (KBS) designed to store a large col-
lection of knowledge, including both general, common-sense knowledge and domain-specific
knowledge. By using multiple inheritance and virtual copy semantics, Scone’s knowledge base
contains a significant amount of implicit knowledge, much more than what is explicitly defined
in the knowledge network. Scone is also equipped with fast inference capabilities implemented
with parallel marker-passing algorithms that can answer basic queries about the stored knowl-
edge [6]. Scone is implemented in Common Lisp and has been under development in Carnegie
Mellon University’s (CMU’s) Language Technologies Institute since around 2003. A tutorial
book on the design and usage of Scone is in the process of being written. Until it is published,
more information about Scone can be found in Fahlman’s Knowledge Nuggets blog [8].

By itself, Scone is not an intelligent agent that can make decisions, but acts more as a “smart
memory” that can be used to inform other decision-making processes. One of our long term
goals is to give Scone the ability to reason robustly about plans and actions that can be used
to guide an intelligent agent. The ERIS (Episodic Reasoning in Scone) subsystem of Scone
provides a starting point for representing episodic knowledge (actions, events, sequences, and
plans) in Scone to make basic reasoning about it possible [7]. ERIS introduces an event type to
Scone representing knowledge about how a state can change, along with some other machinery
to represent concepts like before and after or cause and effect of events.

A production rule system consists of a set of production rules along with a working memory
that the rules can access. Each production rule has a left-hand-side precondition that tries to
match with the working memory and a right-hand-side action that makes modifications to the
memory or performs some other action. Production systems have been used as planning systems
in cognitive architectures such as Soar [12, 13, 14] and ACT-R [1, 2]. However, these systems
use production systems for the full range of planning tasks, whereas we plan for different systems
to handle simple, lower-level inference and higher-level planning.

Our main contribution is Score, short for Scone Rule Engine, that uses production rules for
automatic planning and inference. This rule-based planner will handle checking and firing for
lower-level inference tasks that are not handled by Scone’s other systems. We also provide
an overview of, but do not implement, a recipe-based planner that handles more complex and
higher-level planning based on breaking down a goal into subgoals and considering alternative
plans. We do this to clarify that the goal of the rule engine is to handle just simple automatic
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Figure 1.1: Scone elements visualized

inferences, not all kinds of complex planning as is the case in some other production systems.
As an example of what capabilities we want our rule engine to have, suppose we are using

Score to plan a trip, which can be represented as an event type. If we know that the vehicle used
in the trip is an airplane, then the trip involves flying, whereas if the vehicle used is a car, then
the trip involves driving. These inferences can be phrased informally as rules saying “if there is
a trip event and the vehicle used is an airplane, then the trip is a flying event” and similarly for
the other inference. Our rule engine allows defining these rules and performing these inferences
to update the knowledge base automatically.

Before outlining the details of our contribution, we first provide the necessary background
knowledge for how Scone itself is structured.

1.1 Scone

1.1.1 Elements
The basic unit of knowledge in Scone is an element, which is represented as a Common Lisp
data structure. Scone elements are denoted using curly braces. Elements are divided into three
categories: nodes, links, and relations, as shown in Figure 1.1. A node represents a description of
some conceptual knowledge about the world, like {elephant} or {the mother of Clyde}. A link
describes the relationship between different elements, like {Clyde is an elephant} or {I dislike
brussels sprouts}. There are many different kinds of links that say different things about the
elements they are connected to. A relation represents some template relationship that can be
instantiated to form special links called statement links. For example, {dislikes} is a relation,
and an instantiation {I dislike brussels sprouts} is a statement link.

A specific kind of node in Scone is the role node. A role node is attached to another node,
called the owner node, and represents some concept that the owner node may have or possess.
For example, a person may have a mother and a dish may have ingredients, so we can have in
Scone that {mother} is a role node with owner {person} and {ingredient} is a role node with
owner {dish}.

Nodes are divided into type nodes and individual nodes. A type node represents a typical
member of some set, like {elephant} represents a typical elephant. An individual node represents
a specific member of some set, like {Clyde the elephant} represents a specific elephant named
Clyde. These notions also extend to roles. A type role represents a typical role that the owner
may possess multiple of, like {ingredient} of a dish. An individual role represents a specific role
that the owner generally only possesses one of, like {mother} of a person.
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An intersection type is a type node that is the intersection of several different types. For
example, the type {man} can be seen as the intersection of the types {male}, {human}, and
{adult}. A defined type is an intersection type that additionally has a predicate that must be
satisfied for nodes to be an instance of that type. As we explore later, we see that intersection
types can be seen as simple if-then rules: if an element is a {male}, a {human}, and an {adult},
then the element is a {man}.

Each link has a set of wires that control how links connect different elements together. Two
important wires are the A-wire and B-wire of a link. The A-wire is connected to the first element
referenced in the link, and the B-wire is connected to the second element referenced in the link.
For example, in the link representing {Clyde is an elephant}, the A-wire is connected to {Clyde}
and the B-wire is connected to {elephant}.

This last example is an instance of a special kind of link called an is-a link. These links state
that the element connected to the A-wire is a more specific concept of the element connected to
the B-wire. For example, an is-a link connecting {human} to {mammal} represents the knowl-
edge that a human is a specific kind of mammal. There are also eq links that state the elements
connected to the A-wire and B-wire are equivalent. The set of all is-a and eq links forms what
is called the is-a hierarchy. Going “up” the is-a hierarchy means going from the A-wire element
to the B-wire element of is-a links which leads to more general concepts, and going “down” the
is-a hierarchy means going from the B-wire element to the A-wire element of is-a links which
leads to more specific concepts. Elements above a given element in the is-a hierarchy are called
its superiors, and elements below a given element are called its inferiors. Superiors that are type
nodes are called supertypes, and inferiors that are type nodes are called subtypes. (All superiors
are in fact supertypes because individual nodes cannot have any inferiors.) The topmost element
in the is-a hierarchy is a type called {thing}: all other concepts are more specific than {thing}.

1.1.2 Multiple Inheritance and Marker Passing
Scone supports multiple inheritance through its is-a hierarchy: each element can have any num-
ber of incoming and outgoing is-a links. Inheritance allows Scone to infer many facts about
the knowledge base that are not explicitly stated. For example, if the knowledge base contains
knowledge that birds are feathered and that a chicken is a type of bird, the fact that a chicken is
feathered is inherited from the bird type and can be inferred.

Scone also has cancel-links to support reasoning with exceptions. For example, we can have
in the knowledge base that {bird} is a subtype of {flying thing}, since birds generally can fly, and
that {penguin} is a subtype of {bird}. However, since penguins can’t fly, we add a cancel-link
from {penguin} to {flying thing} to indicate that we do not want to inherit {flying thing} from
{bird}. Cancelling is a complex topic that can occasionally lead to knowledge ambiguities, and
we do not deal with them extensively in the rule engine.

Scone uses a marker-passing system to perform efficient inference and to handle inheritance
and virtual copying [6]. Each node in Scone is equipped with a fixed set of marker bits that
can be turned on and off. These markers can be conditionally turned on and off in parallel. For
example, if a set of nodes is marked with some marker m, we can look at all is-a links in parallel
and request for each one to mark the node attached to the B-wire with m if the node attached to
the A-wire is marked with m. This operation takes all nodes marked with m and marks with m all
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Figure 1.2: Role nodes visualized for the knowledge “Fido is a pet of John.” Here {pet of John}
is a virtual copy of {pet} that {John} inherits from {person}.

nodes one level above them in the is-a hierarchy. By repeating this operation until no new nodes
are marked with m, we can quickly find all nodes above a specific node in the is-a hierarchy, and
this procedure is called an upscan. There is a corresponding procedure called downscan where
we mark all nodes below a specific node in the is-a hierarchy.

1.1.3 Roles and Virtual Copy Semantics
Role nodes give rise to special links called has links. When a new role is declared for an owner,
a new has link is also created with A-wire connected to the role node and B-wire connected to
the owner node. This link signifies that the owner type possesses some element of the role type.
Any inferior of the role is called a player or a filler, indicating that “the player is a role filler of
the owner.”

Scone implements virtual copy semantics to handle complex knowledge about roles in a
consistent way [6]. When a new inferior of a type with several roles is created, the roles are
virtually copied through inheritance. This means that the new inferior is treated as if it has a
copy of each of the roles of its parent type, though no actual copying is done. For example,
suppose a {pet} role is defined with owner {person}. This creates a has-link {people have pets}.
An individual person {John} then inherits the has link and the {pet} role, creating a virtual copy
{pet of John}. To say that an individual {Fido} is a pet of John, we then simply add an is-a link
from {Fido} to {pet of John}. This is visualized in Figure 1.2, with solid arrows denoting is-a
links and dashed arrows denoting has links.

Scone also contains some marker operations related to role nodes and relations. For role
nodes, there is a function that marks every node x such that x is a ROLE of OWNER for a
specified ROLE and OWNER, and a function that marks every node x such that PLAYER is a
ROLE of x for a specified ROLE and PLAYER. For relations, there are functions that marks
every node x such that “x RELATION B” or “B RELATION x” is true when RELATION and
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either A or B are specified.
Using these marker operations, we can efficiently answer a variety of queries about the

knowledge base, such as if Clyde is an animal or if Clyde has any siblings. These marker passing
operations will form the basis for checking if knowledge in Scone satisfies any production rules
that can potentially fire. Virtual inheritance will also play a role in rule “trigger” activation.

1.1.4 Multiple Contexts and Episodic Reasoning
All knowledge in the Scone knowledge base exists under some context, which can be any Scone
element. By default, all knowledge exists in a large context called {general}. Scone implements
a multiple-context mechanism that can handle different knowledge existing in different contexts
and switching between contexts. Each element in Scone has a context-wire connected to a context
that denotes when the knowledge represented by that element exists or is valid.

To activate a context, a special context marker is placed on the context element, then up-
scanned to all supertypes of the context. This allows Scone to easily consider alternative “uni-
verses” that are mostly the same as our universe but with some differences. For example, sup-
pose we want to model knowledge about the Harry Potter universe. We can create a {Harry
Potter universe} context that is a subtype of the {general} context. When activating the {Harry
Potter universe} context, we inherit all the knowledge in {general}, so many basic facts such as
“humans have two hands” are still true in this context. However, we can add nodes and links
to just this context, such as {wizards can use magic}, that are only true when the {Harry Potter
universe} context is active. When we reactivate the {general} context, the context-wire of the
new nodes and links refer to the {Harry Potter universe} which no longer has the active context
marker, so they are inactive. Scone’s multiple-context mechanism allows easy exploration of
different possible states containing slightly different knowledge.

Episodic reasoning in Scone [7] depends heavily on the multiple-context mechanism. Scone
has an {event} type that represents an event with a “before” state and an “after” state. We rep-
resent this by giving {event} two roles {before-context} and {after-context}. As their names
imply, {before-context} is a context containing knowledge that is true before the event occurs,
and {after-context} correspondingly contains knowledge that is true after the event occurs. Gen-
erally, the {before-context} is inherited from the active context, meaning all the currently active
knowledge is valid before the event, and the {after-context} inherits from {before-context} and
makes a few modifications. As an example, suppose we have an event representing a caterpillar
undergoing metamorphosis into a butterfly. In the before-context, we would have an is-a link
from an individual to {caterpillar}, and in the after-context, we would cancel this link and have a
new is-a link from the individual to {butterfly}. Scone also has an {action} type, which is just a
special {event} that has an {agent} role representing something that causes the event. An agent
could be a {person} in an event like throwing a ball.

1.2 Thesis Structure
The remainder of the thesis is structured as follows. In Chapter 2, we discuss related work in
production systems as they are used in cognitive architectures. In Chapter 3, we design a structure
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for production rules that is compatible with Scone, and we also describe the recipe-based planner
to provide context for our design goals. Chapter 4 contains a description of rule triggers and a
rule search algorithm that are used to check and fire these rules efficiently with the knowledge
base. Finally, we conclude with future directions for research in Chapter 5. Some concrete code
and a pointer to the rule engine codebase is provided in the Appendix.
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Chapter 2

Related Work

2.1 Rule-Based Systems

Production rule systems have been used in existing cognitive architectures such as Soar and
ACT-R. In general, a production system consists of a set of rules (or productions), which can be
thought of as if-then statements, and a mechanism for checking and firing the rules. Production
systems assume some form of memory or knowledge that the productions can read and modify.
The “if” part of a production defines some condition that must be matched by the current state
of the memory. If it is matched, the “then” part of that production is fired and executes some
action, which often includes modifying the current memory or knowledge. After a production is
fired, the memory can be modified to a state that matches the “if” part of a different rule, causing
a chain of production rule firings.

This general structure leaves many parts of the system up to the underlying architecture
to design and implement, such as how the memory is stored and matched and what to do if
multiple production rules match the memory and can fire. Both Soar and ACT-R use this same
general structure for their production systems, though they address design questions such as these
differently and emphasize somewhat different parts of their systems.

2.1.1 Soar

Soar was first developed by Allen Newell’s research group in the CMU Department of Computer
Science, and work on Soar has continued primarily under John Laird at the University of Michi-
gan and Paul Rosenbloom at the University of Southern California [12, 13, 14]. It is designed
to be a unified cognitive architecture, a theory that can explain how cognition works across a
wide range of tasks. Some of its key design objectives include being goal-oriented, meaning it
makes rational decisions in order to reach a defined goal, and requiring use of large amounts of
knowledge and abstractions, which informs its decisions given what it currently perceives about
the state.

Soar distinguishes between two kinds of memory: long-term memory (LTM) and working
memory (WM). Long-term memory is further divided into procedural, semantic, and episodic
knowledge, though procedural LTM is the main kind of knowledge used in the rule system.
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Procedural knowledge stores information about how and when to carry out tasks to reach a goal
and is phrased in terms of if-then production rules. Working memory contains information about
the current state, such as the goal and any relevant information about the environment. Soar
additionally differentiates between rules and operators: rules can augment the working memory
state and make suggestions about what operator to choose, whereas only operators can modify
knowledge stored in working memory.

LTM and WM work together to achieve a desired goal through a sequence of five phases:
input, elaboration, decision, application, and output. The input phase is when the goal is defined
and knowledge about the starting state is brought into WM from a perception module. The
elaboration phase is when production rules in procedural LTM fire. Since these rule actions are
monotonic, meaning they only augment the current WM with new information and suggestions
about what possible operator to take, all applicable rules for the current state fire in parallel. The
elaboration phase ends when no more rules can be fired.

After the elaboration phase ends and the decision phase begins, the system considers all
of its suggested operators and chooses one to apply. The system makes a decision based on
some specification of preferences, such as preferring one operator over another or assigning each
operator a preference score and choosing the operator with the highest score. After choosing an
operator, the system applies it to modify the working state in the application phase. The output
phase consists simply of sending the operator to an output module like one that controls motor
output.

2.1.2 ACT-R
ACT-R, short for Adaptive Control of Thought-Rational, is developed primarily by John An-
derson’s research group in the CMU Department of Psychology [1, 2]. It is another cognitive
architecture that aims to model and explain the mental processes that are central to human cog-
nition. The key assumption in ACT-R is that there are two kinds of knowledge: declarative
knowledge and procedural knowledge. Declarative knowledge is represented as “chunks,” struc-
tures with an isa pointer to what kind of fact it is and additional pointers to content in the fact.
Procedural knowledge is represented as production rules in the form of if-then statements.

In ACT-R, many different modules are responsible for processing different kinds of infor-
mation, such as a visual module for processing visual information and a declarative module for
retrieving declarative knowledge. Within each module, processing can be done in parallel, and
outputs are written to a small buffer. Writing data to and reading data from the buffers is serial,
creating communication bottlenecks between different modules. The modules are connected by
a central procedural module, which coordinates data from the different buffers and processes
them with production rules. The procedural module is designed to replicate cognitive mecha-
nisms linked to the basal ganglia in the brain, which is hypothesized to take in information from
disparate regions of the brain and process them to make overarching decisions.

The production system in the procedural module is designed so that only a single production
rule can fire at a time, creating a central bottleneck where there must be serial processing of
information at the procedural level. One reason to have this bottleneck is to prevent multiple
rules firing and causing contradictory changes to the knowledge; another is that there is evidence
from cognitive psychology suggesting a central bottleneck in human brains when processing
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a problem state [3]. When multiple rules are applicable, the system chooses a rule with the
highest utility for some utility function. The procedural module completes tasks by reading in
information and applying production rules until the goal is reached. Researchers have conducted
experiments showing that human cognitive processing in a variety of tasks can be replicated by
suitably designed ACT-R modules.

There has also been some research on integrating Scone with ACT-R [15]. In this research,
Oltramari and Lebiere add Scone as a knowledge module to ACT-R, creating ACT-RK (where
the K stands for Knowledge). The unified ACT-RK has improved knowledge-based reasoning,
as was demonstrated when it was applied to the task of semantically describing visual input in
the form of video.

2.1.3 Other Related Work
Some rule systems, such as Prolog-based rule engines [4], use backward chaining instead of for-
ward chaining. In Prolog systems, programs are built from facts and rules saying that a conclu-
sion is true if some premises are true. Execution is driven by a query, such as ?- animal(X).
asking what things are animals. Such a query causes backtracking among the rules to find a
resolution for the query, in this case outputting everything that can be deduced to be an animal
from the rules.

In systems with a large amount of knowledge and many rules, naive rule pattern matching
is often too slow. One optimization is the Rete algorithm [10] that can improve matching per-
formance. The Rete algorithm builds a network of nodes containing tests for knowledge that
partially satisfies rule predicates. A path from a root to a leaf indicates an entire rule predicate
that is satisfied. When new facts are added, they are propagated down the network, and any leaf
nodes that are reached indicate that the action is ready to fire.

The Scone system manages and stores semantic knowledge, though it is not the only semantic
knowledge network. The Semantic Web [11] is an extension to the World Wide Web that enables
semantic analysis of data from web pages. It is comprised of several layers, including RDF (Re-
source Description Framework) and OWL (Web Ontology Language). RDF makes statements
about data using subject-predicate-object triples. A collection of triples forms a network of infor-
mation about web resources. OWL is based on formal logic and consists of property assertions
about what kinds of relationships between different terms are allowed. The structure of OWL can
be exploited by computer programs to verify logical consistency and to make implicit knowledge
explicit through deduction.
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Chapter 3

Scone Planning Systems

The long-term goal is to have two planning systems integrated with Scone: one “rule-based”
planner and one “recipe-based” planner. The goal of the rule-based planner is to use productions
to perform fast automatic thinking, and the goal of the recipe-based planner is to be slower and
more deliberative in considering how to carry out the steps in a “recipe plan.” Both kinds of
planners are valuable and complement each other: the rule-based planner can answer a large
range of simple queries and automatically augment its knowledge, and the recipe-based planner
can leverage this knowledge to create more complex plans to achieve its goals.

In this chapter, our main contribution is a design for production rules that interfaces properly
with the knowledge structure of Scone. We have implemented this design in Common Lisp code,
allowing the user to define new rules that can be added to the knowledge base. Implementation of
the recipe-based planner is beyond the scope of this research and left to future work; we describe
how it should behave to illustrate that the rule-based planner is not designed to carry out complex
planning.

Scone stores a rich representation of a large amount of knowledge and makes that knowledge
simple to query for other applications built on top of it. In that sense, Scone has much in common
with the memory modules in Soar and ACT-R. More specifically, the Scone architecture with its
element structure can be seen as analogous to declarative knowledge in ACT-R, and our new
production system corresponds to procedural knowledge in ACT-R. Scone can also be compared
to working memory in Soar, though much larger in scope as working memory is generally quite
small, and the new production system plays a similar role as Soar’s procedural long term memory.

One important distinction between the rule-based planner in Scone and the production sys-
tems in Soar and ACT-R is that Soar and ACT-R depend on production rules to carry out complex
planning with goals. We expect the recipe-based planner to handle goal-based planning, not the
rule-based planner. Correspondingly, our productions are not designed to work towards specific
goal states in mind but are instead meant to represent fast and reflexive thinking.

3.1 Production Rule Design

The rule-based planner relies on production rules to perform fast and reflexive thinking. To this
end, we introduce a new kind of knowledge to the Scone knowledge base system called a rule
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(short for production rule). Scone rules are similar to ordinary production rules in that they have
an “if” precondition, also known as the left-hand-side (LHS) of the rule, and a “then” action,
also known as the right-hand-side (RHS). However, the analogous “working memory” would be
the entire Scone knowledge base, which is quite different from the working memories of other
production systems because it is much larger, so the production rules must be structured to work
nicely with Scone and its various mechanisms.

The “if” part of a rule defines some predicates that must match with some portion of the
knowledge base in order to satisfy the rule. Matching in Scone is a little more complicated than
simple pattern matching because inferiors in the is-a hierarchy should also be considered when
matching. Since the Scone knowledge base is generally very large, we only want to consider a
localized portion of the knowledge base in a single rule. The most degenerate form of a rule only
considers a single element and specifies some predicates about it. For example, one possible rule
is that if an element is a {male} as well as an {adult}, then that element is a {man}. These rules
that only depend on a single element are in fact examples of Scone’s existing defined types or
intersection types, so defined and intersection types can be seen as special cases of rules.

For rules that consider multiple elements in the LHS, the elements should be connected to
each other in some way through roles and/or relations. For example, a rule could depend on a
meeting and the start time of that meeting, which would be two elements with one of them being
a role of another. Conceptually, a rule should say something about a local set of elements, so a
rule that depends on multiple elements that are not directly connected to each other through roles
or relations makes little sense.

The action of a rule defines what to do if the rule LHS is satisfied by some set of elements.
An action can be something like adding links between some of the elements in the rule. These
modifications to the knowledge base would fall under the active context. An action could also
cause external actions such as motor movements if Scone is connected to a motor module. The
result of an action could cause the knowledge base to end up in a state that satisfies other rules,
leading to forward chaining of rules that each fire consecutively.

3.1.1 If-added and if-needed rules
We separate Scone rules into two different classes: if-added rules and if-needed rules. If-added
rules, also called eager rules, are fired when new links are added to the knowledge base. If-
needed rules, or lazy rules, are fired when some value in the knowledge base is requested but not
found in the knowledge base, and they compute the requested value and save it in the knowledge
base as their action.

We distinguish between these two kinds of rules so that they can serve slightly different
purposes. A rule should be an if-added (eager) rule if the action of the rule should be executed
immediately after the LHS is satisfied, whether because it could cause other rules to fire or
because the action is urgent and needs immediate attention. If-added rules are more similar to
the production rules seen in existing production systems. They check if the memory, which in
Scone’s case is the entire knowledge base, matches their predicates, and they fire their actions if
so. These actions can then change the memory, causing other rules to match and fire. We only
check if-added rules when new knowledge is added (hence their name of “if-added” rules), since
if the knowledge remains the same, the set of rules that are satisfied remains the same. Only
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the addition of new knowledge can cause rules to fire. When this happens, the system eagerly
fires rules until it reaches a point where no further rules can fire, at which point it pauses until
more knowledge is added in the future. The trade-off we are making with eager rules is that
adding new knowledge takes a little more time than before, but retrieving knowledge from the
knowledge base remains fast with no additional overhead.

Contrasting with if-added rules, a rule should be an if-needed (lazy) rule if a knowledge slot
is empty and can be computed but computing it is not a high priority. These rules defer rule
checking to when some knowledge is explicitly requested and not found. When this happens,
the system checks to see if there is suitable knowledge in the knowledge base that can match the
predicates, and uses it to compute the requested knowledge if so. After executing the rule action
that does the computation, the rule engine adds the new knowledge to the knowledge base, which
can be reused to avoid further rule firing if the same knowledge is requested again in the future.

3.2 Rule Structure
We now give a detailed outline of how rules are structured in Scone and provide some examples.
Rules consist of several parts:
• The variables of a rule create placeholders where Scone elements can be plugged into the

rule. This creates an abstraction where the rule can be applied to any valid elements, not
just to some specific individuals. For each variable, a Scone type constraint can be speci-
fied such that an element must be an inferior of the specified type to satisfy the rule. Each
variable can have at most one specified type constraint, though specifying an intersection
type effectively allows any number of type constraints.
Some rule variables can also optionally be tagged as proper, signifying that only proper
Scone nodes can be substituted in for the variable (i.e. no generic role nodes). We will see
why this is needed later.

• The x-y-z-predicates of a rule define the relationships between different elements in the
rule. Each predicate consists of three elements in the form (X Y Z). The Y element here
must be a role or relation, and the X and Z elements are variables or Scone elements. If Y
is a role, the predicate represents “X is a Y of Z.” If Y is a relation, the predicate represents
“statement X Y Z is true.” Each predicate must be true for the rule to be satisfied.

• The action of a rule is executed when the rule is fired and the predicates of the rule are
satisfied for some elements in the knowledge base. The possible actions of a rule are
slightly different for if-added and if-needed rules.

For if-added rules, the action can be arbitrary code that uses the variables defined in
the rule. The rule will substitute the satisfying elements into the variables and execute
the code, causing either changes in the knowledge base or performing some action in
the real world.

For if-needed rules, the action takes the form (X Y Z), where X is an arbitrary com-
putation, Y is an individual role node, and Z is a variable representing the owner of
the desired value. The action is executed by carrying out computation X and setting
it as the desired slot filler “the Y of Z.”
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A B

travel
vehicle airplane

flying
event

Figure 3.1: A diagram of the if-added flying event rule with some of the relevant elements. A
and B are drawn with dashed circles to indicate that they are placeholders for other elements.
Solid lines indicate is-a links, and dashed lines indicate x-y-z links (in this case a role has-link).
The double lines indicate links that are created when the rule action is fired.

The variables with their type constraints together with the x-y-z-predicates form the LHS
predicates of the rule, and the action is the RHS of the rule. We additionally place a constraint
on the x-y-z-predicates of a rule to make sure that the elements in a rule are connected to each
other. If we consider the graph with the X and Z values as the vertices and an edge between X
and Z for each x-y-z-predicate, this graph must be connected for the rule to be well-defined. For
example, a rule with four variables A, B, C, and D with only x-y-z-predicates “A is the mother
of B” and “C is the mother of D” is ill-defined because variables A and B are not connected
to variables C and D. If we allowed such rules, then any time we create a mother link, the new
mother link taken together with any other existing mother link would satisfy the rule, causing
an overabundance of rule firings. These kinds of rules also make little conceptual sense, since
elements in a rule should be related to each other in some way.

We describe the following example rules using language to convey what the rules mean con-
ceptually. Code in Common Lisp to define the rules can be found in the Appendix.

3.2.1 If-added rule example

Consider an example if-added rule: if someone is traveling and the vehicle they are in is an
airplane, then that person is flying. We represent {traveling} as an event type with a {travel
vehicle} role. The parts of this example rule would be as follows:

• There are two variables A and B that represent the travel event and the vehicle, and variable
B has the type constraint “B is an airplane”.

• There is one x-y-z-predicate “B is the travel vehicle of A” that captures the relationship
between A and B.

• The action adds the link “A is a flying event” to the knowledge base.

The portion of the knowledge base that would match with this rule is visualized in Figure
3.1. Once this if-added rule is defined and put into the system, the rule engine will start listening
to additions to the knowledge base. When it detects new knowledge that could potentially match
certain elements to A and B in the predicates, it starts trying to check the rule and executes the
action if the predicates are satisfied.
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One part of the rule to note is that we want to specify a type constraint for variable B but not
for variable A. The reason for this is that variables should only contain a type constraint if the
type of that variable is essential to the truth value of the rule predicates. The x-y-z-predicates of
a rule place some implicit type constraints on the variables. For the example rule, the fact that
A is a {traveling} event and B is a {vehicle} can be inferred from the x-y-z-predicate. Knowing
that a candidate element for B is an airplane is essential for determining if A is a {flying} event,
since if B was a different vehicle like a car, A would be a different kind of traveling event. On
the other hand, there is no need to specify any explicit type constraints for A, since the implicit
ones are enough to determine if A is a flying event.

As a side note, the rule engine will still work if extraneous type constraints are specified,
just at the cost of potentially more work done. This is because a trigger is created for each type
constraint that may be checked whenever new knowledge is added. See Section 4.1.1 for details
regarding rule triggers.

3.2.2 If-needed rule example

Now consider an example if-needed rule: if we want to know the duration of a meeting, and we
know that the start time and end time of that meeting are t1 and t2, then we can compute the
duration as t2 − t1. The parts of this rule would be as follows:

• There are three variables A, B, and C that represent the start time, end time, and the
meeting. Variables A and B should be tagged as proper to indicate that only proper values
should be substituted for them in the rule.

• There are two x-y-z-predicates “A is the start time of C” and “B is the end time of C.”
• The action computes B−A using the proper values for A and B and returns it as the answer

“the duration of C.”

The parts of the rule are visualized in 3.2. After this if-needed rule is defined, the system
remembers it as a possible way to compute the duration of the meeting when requested. If the
duration of some meeting is requested, the system first checks to see if a value exists for that
meeting, returning it if it does. If it does not, then the rule system will try to match knowledge
about the meeting to the rule, and if the matching is successful, will compute the requested
duration and add it to the knowledge base.

The reason variables A and B should be tagged as proper in this rule is to ensure that only
nodes with actual values are substituted in, since the rule action needs the values of A and B. A
role node can be created and given a type but not a specific value, for example by saying that the
start time of a meeting ends in :30 but the exact time is unknown. This makes the start time of
that meeting a concrete element that is a subtype of {time ending in :30}, but trying to compute
the duration of that meeting would fail because there is no proper value for the start time of the
meeting.
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start time end time duration

f(A,B) = B − A

Figure 3.2: A diagram of the if-needed meeting duration rule. The arrows from A and B to the
node labeled f(A,B) indicate that A and B will be used for the computation, and the double line
from f(A,B) to “duration of C” represents the is-a link that will be created and returned.

3.3 Recipe-Based Planner

The recipe-based planner, of which we have partial prototypes but not yet a full implementation,
is based on Fahlman’s BUILD planner [5] adapted to the framework of Scone and episodic
knowledge representation described in Eris. BUILD describes a flexible planning system in the
setting of moving blocks around on a table. In the setting considered, the table starts out with
some configuration of blocks, and the goal is to rearrange the blocks into some goal state without
causing any instability. The BUILD planner achieves this by breaking up the goal into subgoals
and planning out how to achieve each subgoal using different actions. If when planning it reaches
a state in which it cannot continue due to instability, it recursively backtracks to a previous state
and tries different actions. In this way, the planner can avoid getting stuck in error states and can
generally always find options to make progress.

BUILD’s central capability of backtracking to previous states and considering different al-
ternatives can be implemented effectively using Scone’s multiple context system. In Scone,
information about the current state is stored in the active context. When considering an action
to perform, the active context fills the {before-context} role of the action, and new information
about the resulting state will be stored in the {after-context} role of the action. The recipe-based
planner can consider what happens after performing this action by activating the {after-context}
and looking at the resulting state. If this eventually leads to an undesirable state where achieving
the subgoal is difficult or impossible, then the planner can simply reactivate the {before-context}
to revert the consequences of the action and try out other possible actions.

The way Scone stores episodic knowledge as described in Eris also guides the way the recipe-
based planner breaks down a goal into subgoals and tries alternative strategies for reaching dif-
ferent goals. Suppose the planner is trying to achieve the goal of going to the Pittsburgh airport.
This goal {go to the Pittsburgh airport} can be represented as an action type in Scone (i.e. this el-
ement is a subtype of {action}), and it can further have subtypes such as {drive to the Pittsburgh
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airport} or {take the bus to the Pittsburgh airport}. The split action types in the is-a hierarchy
represent qualitatively different plans to take: driving to the airport versus taking the bus each
require a particular set of considerations, and the two plans are mutually exclusive.

Action types also have a part-of hierarchy induced by {part of} roles that correspond to
different subgoals in each plan. For example, the {driving to the Pittsburgh airport} action can
have parts such as {take the car keys}, {put the car keys in the ignition}, {take a left turn at so-
and-so street}, and so on. A different action has different parts and therefore different subgoals,
like {take the bus to the Pittsburgh} has {go to the bus stop} and {pay the bus fare} as parts.
Each part of an action can have further parts until eventually the action reaches a base action such
as some motor movement that is easily carried out. If one of the subgoals cannot be carried out
for whatever reason, then the planner tries a different set of subgoals to unblock itself: if turning
left is impossible because the road is blocked due to construction, the planner can try to find a
different path to drive. Failing that, the planner can decide that the current action is impossible
to complete and try a different plan: if the car keys cannot be found, then driving is impossible
and a different method of going to the airport is required.

3.4 Implementation Status
The core structure of production rules has been implemented in code and added to the main
Scone engine. Scone is developed in Common Lisp, so we extended the engine with Common
Lisp code to implement production rules. We represent a production rule as a Lisp structure
with components for each of its parts, including variables, predicates, and actions. If-added and
if-needed rules share the same underlying data structure. Most importantly, we define two new
Lisp macros for creating new rules, one for creating if-added rules and one for creating if-needed
rules. These macros are intended to be used similarly to Scone functions such as new-type
and new-is-a that add knowledge to the knowledge base. Sample macro calls that define the
example rules above are provided in the Appendix.

Implementation of the recipe-based planner is beyond the scope of this research and left to
future work; we describe its design to provide context for the goals of the production system
planner compared to the goals of the recipe-based planner.

Now that we have a framework for adding new rules to the Scone knowledge base system,
we need a system for checking and firing these rules. In the next section, we describe the rule
checking engine, which we have fully implemented in the Scone engine.
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Chapter 4

Rule-Checking Engine

4.1 Rule-Checking Components
Scone is a very large knowledge base, and the rules can reference any subset of elements in the
knowledge base, so some care must be taken in how rules are checked to be satisfied. Constantly
checking all the rules for if they are satisfied is very wasteful, since rules only become satisfied
once new knowledge is added, and then only a few rules (if any) would be satisfied. In addition,
trying to match every element naively to rule variables is very inefficient, since there are too
many elements to check.

To address the first problem, whenever a rule is created, a set of rule “triggers” are created
and attached to all elements involved in the rule. These triggers are then checked when new
knowledge is added for if-added rules and when a role value is requested for if-needed rules. To
address the second problem, the rule system carries out a rule-checking search algorithm that
leverages Scone’s marker-passing operations to search for relevant elements that could satisfy
the rule.

4.1.1 Rule Triggers

If-added rules should only be checked when new knowledge is added to the knowledge base,
and if-needed rules should only be checked when a role value is requested. Additionally, we
only want to check the subset of rules that could match with the new knowledge or requested
role. To achieve this, each newly created rule should create triggers that control when to check
that particular rule. Three types of triggers are created: one for adding new is-a links, one for
adding new role or statement links, and one for accessing a role value. Each trigger is placed on
a Scone element using element properties, which are key-value pairs that each element can have.
The three types of triggers have slightly different forms to deal with the different ways they are
activated.

• Let R be an if-added rule with a variable X that has an is-a type constraint Y. When this rule
is defined, a trigger of the form (R X) containing pointers to R and X is created and attached
to element Y. Conceptually, this trigger represents the fact that any inferiors of element Y
could be substituted for variable X in rule R. All inferiors of Y therefore virtually inherit
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this rule trigger.
Suppose a new is-a link or eq link from node A to node B is created. This link could cause
any rule attached to a trigger that B virtually inherits to become satisfied. Therefore, we
perform an upscan on B to check if there are any triggers (R X) on any superior of B.
Each such trigger is activated by substituting in A for variable X in rule R, then starting
the rule-checking search algorithm on R. A visualization of this kind of trigger activation
is provided in Figure 4.1.

• Let R be an if-added rule with an x-y-z-predicate (X Y Z), where Y is a role or relation
and X and Z are variables or nodes. When this rule is defined, a trigger containing pointers
to R, X, and Z is created and attached to element Y. This trigger represents the fact that a
link (A B C) where B is an inferior of Y could match A with X and C with Z in rule R. All
inferiors of Y therefore virtually inherit this rule trigger.
Suppose a new link (A B C) is created, where B is a role node or a relation. If B is a role,
this link looks like “A is a B of C”, and if B is a relation, this link looks like the statement
“A B C”. We perform an upscan on B to check if there are any triggers (R X Z) that B
should inherit. If X is a Scone element in a trigger, we check if A is an inferior of X, and
we do not activate the trigger if not. If X is a variable, we substitute A for X in R and allow
activation. We also do this check for Z and C. If activation of this trigger is not blocked and
A and C are substituted into their corresponding variables, then the rule-checking search
algorithm is then started on R. This matching is visualized in Figure 4.2.

• Let R be an if-needed rule with action (X Y Z), where X is a computation, Y is a role,
and Z is a variable. When this rule is defined, a trigger of the form (R Z) is created and
attached to element Y. This trigger represents that if we want to know the B of C where B
is an inferior of Y, then we could find out by activating a rule by substituting C for Z in R.
All inferiors of Y therefore virtually inherit this rule trigger.
Suppose the value “the B of C” is requested, where B is a role node. We perform an upscan
on B to check if there are any triggers (R Z) that B should inherit. Each trigger found is
activated by substituting C for variable Z in rule R and starting the rule-checking search
algorithm on R. The substitution and resulting link created is visualized in Figure 4.3.

4.1.2 Rule Variable Substitution

One necessary component of rule-checking is the ability to substitute a Scone element for a
variable in a rule. A rule R contains data about the variables in the rule, the type constraints on
those variables, the x-y-z-predicates of the rule, and the rule action. When the system attempts
to substitute an element E for variable X in rule R, it must first validate that E is an inferior of
any type constraints on X and that any x-y-z-predicates involving X are satisfied by E. If any of
these are false, then the substitution fails and E cannot satisfy the rule when substituted for X.
If substitution succeeds, then the rule stores E as the current filler for X. When all variables in a
rule are successfully substituted, the rule is satisfied and the action is ready to fire using all the
stored elements.
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Figure 4.1: A visualization of an is-a type constraint trigger. Y is above B in the is-a hierarchy,
and has a trigger attached to it with pointers to rule R and variable X. Trigger activation is
performed by matching A with X.

Y (R X Z)

X Z
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R

Figure 4.2: A visualization of an x-y-z-predicate trigger. Y is above B in the is-a hierarchy, and
has a trigger attached to it with pointers to rule R and variables X and Z. Trigger activation is
performed by matching A with X and C with Z.

Y (R Z)
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R

Figure 4.3: A visualization of an if-needed rule trigger. Y is above B in the is-a hierarchy, and
has a trigger attached to it with pointers to rule R and variable Z. Trigger activation is performed
by matching C with Z. An is-a link is created between the resulting computation X and “the B of
C” as part of the rule action.
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procedure CHECK-RULE(R)
if R has an element substituted for each variable then

Add R to a queue to be fired
return T

end if
Choose an x-y-z-predicate (X Y Z) of R with an element substituted for X or Z
Allocate a new marker m
if X has an element substituted for it then

Mark with m all elements E such that the predicate (X Y E) is satisfied
end if
if Z has an element substituted for it then

Mark with m all elements E such that the predicate (E Y Z) is satisfied
end if
for each element E marked with m do

R′ ← substitute E for the unsubstituted variable X or Z in R
if any predicates in R′ are false then

continue
end if
CHECK-RULE(R′)

end for
return NIL

end procedure

Figure 4.4: Rule-Checking Algorithm

4.1.3 Rule-Checking Search Algorithm

A rule starts to be checked when at least one element is substituted in for a variable in that rule.
This occurs when a trigger for a rule is activated as described previously. The next step is to find a
set of Scone elements such that all of them can be substituted in for the rest of the variables while
satisfying all of the rule predicates. This is accomplished through a recursive search algorithm
that searches through possible elements using Scone marker operations.

At a high level, the algorithm starts by choosing an x-y-z-predicate that has just one variable
substituted with an element and one unsubstituted variable. It then uses Scone marker operations
to mark each element that can satisfy the predicate when substituting it in for the remaining
variable. If the remaining variable is marked as proper, the markers are then restricted to the
subset of elements that are proper using another marker operation. For each marked element, the
algorithm tries to substitute the element into the rule. If substitution fails, the algorithm proceeds
to the next marked element. If there are no more marked elements, the algorithm returns NIL.
If substitution succeeds, the algorithm recurses to try to find an element for another variable in
the rule. If the algorithm successfully finds elements for all the variables in the rule, it executes
the action of the rule using the elements it found. The full algorithm pseudocode can be found in
Figure 4.4.
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Note that our constraint that the x-y-z-predicates should form a connected graph ensures
this algorithm’s correctness in finding all possible sets of elements that could satisfy the rule.
The algorithm essentially repeatedly chooses an arbitrary edge connecting a substituted variable
with an unsubstituted variable and finds an element that can be substituted. Each of these steps
of finding suitable elements is relatively fast, since it only involves a single marker operation
starting from a substituted element. Since one marker pair is allocated at each recursion, the
recursion depth is limited by the number of marker pairs available. This is not an issue because
the recursion depth is equal to the number of x-y-z-predicates which is typically no more than
three or four, and the number of marker pairs available is generally around fourteen.

In some cases, adding a piece of knowledge can cause multiple rules to fire. When this
happens, we add each satisfied rule to a queue and fire them sequentially. This sequential firing
after triggers are checked makes the algorithm comparable to the algorithm used by ACT-R.
Rules are fired in order of when their triggers are checked, which is generally starting from
triggers attached to elements at the bottom of the hierarchy and working their way up, though
this order is not strictly defined. We adopt this method of sequential firing to ensure that rule
firing is deterministic and consistent, letting Scone take care of preventing any rule action that
would add contradictory knowledge to the knowledge base.

4.2 End-to-end Example Rule Firing
To illustrate how Scone’s production system works in practice, we step through Scone’s processes
for checking and firing an example rule. We use the rule given earlier in Section 3.2.2 but phrased
as an if-added rule instead of an if-needed rule. Note that in some cases such as this one, a rule
can be defined as either an if-added rule or as an if-needed rule, and choosing which kind of rule
depends on how immediately we want the result of the rule to be updated in the knowledge base.
As a reminder, the parts of the rule are as follows:
• There are three variables A, B, and C that represent the start time, end time, and the

meeting.
• There are two x-y-z-predicates “A is the start time of C” and “B is the end time of C.”
• The action adds the link “B−A is the duration of C” to the knowledge base.

Defining this if-added rule adds triggers (R A C) to role {start time} and (R B C) to role {end
time} for the x-y-z-predicates. Afterwards, any additions to the knowledge base involving these
roles cause the triggers to be checked.

This rule is now defined for an abstract set of elements that would satisfy all the rule precon-
ditions. To see how the rule is specialized to fire for specific individuals, suppose we create a
new individual {meeting 27} that represents a specific meeting. Now suppose we first add the
link “10:30 AM is the start time of meeting 27” to the knowledge base. This causes an upscan
on {start time} to find inherited rule triggers that could be activated. There is in fact a trigger
(R A C) on {start time}, so the rule engine checks if {10:30 AM} can be substituted for A and
{meeting 27} can be substituted for C. There are no explicit type constraints on either A or C and
no other violated predicates, so substitution is successful and the trigger is activated, as shown in
Figure 4.5.
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end time (R B C)
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Figure 4.5: A visualization of two trigger activations for the meeting example rule, one for each
of the x-y-z role predicates.

After this trigger is activated, variables A and C in R are substituted, but variable B is not, so
it is the job of the search algorithm to find a suitable element for B. It sees that there is a partially
substituted x-y-z-predicate “B is the end time of meeting 27” in the rule, so it allocates a marker
pair and marks all elements E that satisfies “E is the end time of meeting 27.” (For this particular
rule, since variable B is marked as proper, the algorithm further restricts the marked elements to
only proper elements.) At this point, there are in fact no such elements that can be marked, so
the algorithm returns knowing the rule is not satisfied. Conceptually, we currently only know the
start time of meeting 27 but not the end time, so as expected we cannot yet compute the duration
of the meeting.

Suppose we find out that “11:30 AM is the end time of meeting 27” and add this to the
knowledge base. This causes an upscan on {end time} to find inherited rule triggers, which finds
trigger (R B C) on {end time}. Activating the rule trigger by substituting {11:30 AM} for B
and {meeting 27} for C (as shown in Figure 4.5) is successful because there are no violated
predicates, so the search algorithm looks for an element for the unsubstituted variable A.

The algorithm finds the partially substituted x-y-z-predicate “A is the start time of meeting
27” so it allocates a marker pair and marks all elements E such that “E is the start time of
meeting 27” (again only marking proper elements). This time, it marks {10:30 AM} given that
“10:30 AM is the start time of meeting 27” is in the knowledge base. For each marked element
E, the rule engine tries substituting E for B in R, so it tries substituting {10:30 AM} for B in
R. This substitution does not violate any type constraints or x-y-z-predicates, so substitution is
successful.

At this point, the rule has elements substituted for all of its variables. This means the rule is
satisfied for this particular set of individuals, so the rule action is fired. {11:30 AM} − {10:30
AM} is computed, yielding {1 hour}, and the knowledge “1 hour is the duration of meeting
27” is added to the knowledge base. This new knowledge could cause rules with triggers that
{duration} inherits to fire, if any are currently defined.

The process of production rule firing illustrates how Scone can carry out automatic thinking
when it gains new knowledge. It only checks rules when it needs to, and it only checks the
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specific rules that need to be checked, thanks to the rule trigger mechanism. Using the search
algorithm, it is able to fetch the relevant knowledge to check if a rule is satisfied.

To elaborate a little more on the choice of making this rule eager or lazy, one reason to make
it eager would be if the duration of a meeting has a direct influence on the decision of whether
to go to that meeting. For example, suppose we have another if-added rule representing “if a
meeting is at most 2 hours long, then decide to go to the meeting” with the default decision to
not go to any meeting over two hours long. We want this additional rule to fire as soon as we
know what the duration of a meeting is, and we also want it to fire as soon as we have enough
information to find out the duration of a meeting. The first rule provides a way to figure out the
duration of a meeting, so defining it as an if-added rule makes sense.

4.2.1 If-needed Example
We could also have reasonably defined the previous rule for computing the duration of a meeting
as an if-needed rule. We would want to do so if we wanted the ability to compute this value when
someone asks what the duration of {meeting 27} is, but do not urgently need the duration of any
meeting. The structure of the rule would be essentially identical, but checking the rule would be
done differently. Instead of adding two if-added triggers, defining the rule as an if-needed rule
adds one trigger (R C) to role node {duration}.

If-needed rules are not checked until a value is explicitly requested, so adding knowledge
“10:30 AM is the start time of meeting 27” and “11:30 AM is the end time of meeting 27”
should not activate any triggers. The absence of any inherited triggers on {start time} and {end
time} ensures this behavior. Once the value for the slot filler {the duration of meeting 27}
is requested, an upscan is performed on role node {duration}, which finds trigger (R C). This
trigger is activated by substituting {meeting 27} for C in R, which is successful because it doesn’t
violate any predicates.

The search algorithm now looks for elements for variables A and B. Both x-y-z-predicates
are partially substituted, so one of them can be arbitrarily chosen, say “A is the start time of
meeting 27.” Skipping the details of the marker passing and substitution, the algorithm finds that
{10:30 AM} can be substituted for A in R. Then, the algorithm looks for an element C that can
satisfy “C is the end time of meeting 27.” It finds element {11:30 AM} and substitutes it in for
C in R.

Now that all variables have been substituted, the rule action “B−A is the duration of B” can
be fired. The computation of this rule action returns the value {1 hour}. The rule action adds
the computed link “1 hour is the duration of meeting 27” to the knowledge base and returns {1
hour} as the requested slot filler. Note that after this rule action executes once, the next time {the
duration of meeting 27} is requested, the knowledge already exists in the knowledge base, so
there is no need to check the rule again.
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Chapter 5

Conclusion and Future Work

In this thesis, we proposed a design for if-added and if-needed production rules that are com-
patible with the Scone knowledge base system. We also implemented triggers and methods to
check efficiently if rules are satisfied. Our work primarily falls under the “rule-based planner”
we have in mind for Scone that performs low-level automatic thinking in response to added or
requested knowledge. We provided an outline of the design of the “recipe-based planner” to
provide context for the design goals of both kinds of planners.

Future research into production systems for Scone could extend the capabilities of production
rules in various ways. One extension is supporting if-removed rules that would contain negative
type constraints in the rule predicates, such as “A is not an elephant.” These rules would fire
when links are removed or canceled. Supporting this would involve using Scone’s cancel-link
capabilities, and ensuring logically consistent behavior would be a challenge. We would also
want to apply the rule engine to a much larger knowledge base with a large collection of rules to
reveal any potential scaling or consistency issues.

One other possibility for rule checking is rumination, a technique used by Learning Reader
to perform off-line inferences to learn from natural language [9]. In the context of Scone, if the
system is currently processing a low-priority rule but needs to spend resources on other higher
priority tasks, it can put off checking the rule until some point in the future when it has resources
to spare. The unfinished rule is added to a queue to be processed later. During rumination, the
system considers the queue of unfinished rules and processes some of them so they actually fire
and update the knowledge base.

An important future research goal is the implementation of the “recipe-based planner” for
Scone that would break up a goal into subgoals and plan out how to achieve each subgoal by
considering different options with multiple contexts. Together with the rule-based planner, these
planners would guide an intelligent agent to make decisions in order to reach a defined goal.

Simpler and more automatic ways to define rules, through structured or unstructured natural
language, is an interesting direction for research. One example is a more declarative form for
defining rules using structured language, such as “the start time plus the duration of a meeting
equals the end time of that meeting.” The goal would be for this declarative form to create three
rules, one for computing each of the start time, duration, and end time of a meeting given the
other two values. There is ongoing research on automatically adding knowledge to the Scone
knowledge base from external sources of unstructured natural language sentences, and this re-
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search could eventually be extended to adding production rules automatically as well.
Finally, a way to learn production rules automatically may be a desirable long-term goal,

though possibly out of scope of the capabilities of Scone. Soar and ACT-R describe methods
of learning production rules automatically [1, 12], though they generally involve some external
feedback or input from the environment. One method of learning from Soar is called chunking,
where new production rules are learned when the system reaches an impasse and no existing
production rules apply. In this case, Soar creates a new subgoal to resolve the impasse and
creates a new “chunk” rule to avoid future impasses in similar situations. In Scone, the recipe-
based planner would take care of planning through such impasses, and it could implement a
similar method of learning new helper production rules.
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Appendix

We have implemented the production rule system in Common Lisp in the main Scone engine1.
There are two new user-level macros that are used to add new if-added rules and if-needed rules
to the knowledge base. new-if-added-rule is a macro that takes bindings, x-y-z-preds, and
any number of body forms as arguments. new-if-needed-rule takes bindings, x-y-z-preds,
and an action as arguments.

Each binding is either a single variable or a list containing a variable and optional keyword
arguments :superior and :proper. Each x-y-z-predicate is a three-element list where the
second element is a role or relation. For if-added rules, the action is arbitrary code defined in the
remainder of the body forms. For if-needed rules, the action is of the form (X Y Z) where X is a
computation, Y is an individual role node, and Z is a variable defined in the bindings.

The example if-added rule described in Section 3.2.1 can be defined using the macro as
follows:

(new-if-added-rule (a (b :superior {airplane}))
((b {travel vehicle} a))

(new-is-a a {flying event}))

Running this macro adds this rule to the knowledge base and adds triggers for this rule to
{airplane} and {travel vehicle}. Assuming the Scone elements are defined correctly, we can
test that the rule fires correctly with the following snippet of code:

(new-indv {my trip} {traveling event})
(new-indv {my vehicle} {airplane})
(x-is-a-y-of-z {my vehicle} {travel vehicle} {my trip})
(assert (simple-is-x-a-y? {my trip} {flying event}))

This code creates a new individual trip, a new individual vehicle that is an airplane, and sets
{my vehicle} as the {travel vehicle} of the trip. The assertion succeeds, indicating that the rule
succesfully fired and added the link “my trip is a flying event” to the knowledge base.

The example if-needed rule described in Section 3.2.2 can be defined using the macro as
follows:

(new-if-needed-rule ((a :proper t) (b :proper t) c)
((a {start time} c)

1The code for the production rule engine is currently hosted at https://github.com/jchen1352/
scone/tree/develop
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(b {end time} c))
((scone-subtract b a) {duration} c))

For simplicity, assume {start time} and {end time} are Scone numbers representing seconds
since the epoch, and scone-subtract is an appropriately defined Lisp function that can
subtract two Scone time elements. We can test that the rule fires correctly with the following
snippet of code:

(new-indv {my meeting} {meeting})
(x-is-the-y-of-z {1609459200} {start time} {my meeting})
(x-is-the-y-of-z {1609462800} {end time} {my meeting})
(assert (is-x-eq-y? {3600} (the-x-of-y {duration} {my meeting})))

This code creates a new individual meeting and sets its start time and end time. the-x-of-y
is responsible for checking potential if-needed rules, and the assertion succeeds indicating that
the if-needed rule successfully fired and added the link “3600 (seconds) is the duration of my
meeting” to the knowledge base.
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