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Abstract. Computer programs written in low-level languages with manual memory
management, like C and C++, can contain unintentional memory-safety bugs [175] due to
developer error. Examples of these bugs include spatial buffer overflows, as well as tem-
poral use-after-frees and double frees, which can be leveraged by attackers to exploit pro-
grams by altering their runtime behavior. Indeed, statistics from both Google Chrome [1]
and Microsoft [129] show that ~70% of all security vulnerabilities in their codebases in-
volve memory-safety bugs.

Past work, as discussed in Chapter 2, has proposed various strategies to eagerly detect
or lazily mitigate such bugs. Eager approaches detect memory-safety bugs by checking
pointer operations (§2.1), whereas lazy mitigations prevent exploitation by validating pro-
gram data (§2.4, §2.5). To improve accuracy, mitigations may need to maintain internal
state (metadata) about program execution, which must also be protected from corrup-
tion. This has been achieved using different techniques, including software-based address
space partitioning (§2.2), and hardware-based fine-grained instruction monitoring (§2.3).
Nevertheless, these approaches suffer from significant complexity, brittleness, or incom-
patibility, which reduces their efficiency and effectiveness.

In this thesis, we observe that existing mitigations are limited by their decision to
maintain internal metadata within the same process. We show that augmenting hardware
with a small, secure, and efficient AppendWrite inter-process communication (IPC) primi-
tive allows metadata storage and policy checking to be performed in a separate isolated
process, which improves both security and performance. We implement this design in
our HerQules [42] framework, which we use to develop new approaches for control-flow
integrity and data-flow integrity that are more precise than past work. We evaluate our
designs on a variety of real-world programs, including multiple benchmark suites, the
NGINX web server, and the Google Chromium web browser.
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CHAPTER 1

Introduction

Computers programs are written in a variety of programming languages, which have
different design paradigms. Imperative languages explicitly describe execution in terms of
individual commands that may perform numerical computation or encode control-flow.
Declarative languages instead express higher-level computational logic, without providing
specific commands. Examples of these include languages like Java and C/C++, which
are imperative, as well as Prolog and Haskell, which are declarative.

Languages can also differ in terms of their type system, which provides derivation
rules about the validity of various language constructs. Statically-typed languages per-
form consistency checking at compile-time, when a program is converted into machine
instructions, whereas dynamically-typed languages do so at run-time, when a program is
being executed. Examples of these include languages like Fortran and OCaml, which
are statically-typed, as well as JavaScript and Python, which are dynamically-typed.

Some imperative languages expose details of the underlying machine hardware, in-
cluding processor registers and virtual memory. Low-level languages, like C and C++,
require the programmer to directly manage allocated memory using pointer references,
as opposed to high-level languages like Java, which executes on an abstract virtual machine
that checks the validity of object references. Other languages, like Rust, permit manual
memory management, but incorporate stronger static type properties about ownership
and mutability to prevent mistakes (§2.1.1).

1.1. Memory-Safety Bugs

Perhaps due to their similarity to machine instructions, low-level imperative lan-
guages like C and C++ have found widespread use. Unfortunately, these languages are
vulnerable to memory-safety bugs, which occur when developers access memory incor-
rectly. There exists three different types of these violations:

• spatial violations, when an access exceeds the boundaries of the intended object, e.g.,
buffer overflows;

• temporal violations, when an access exceeds the lifetime of the intended object, e.g.,
double frees or use-after-frees;

• type violations, when a valid access misinterprets the intended object, e.g., through
incorrect type casting.

We show an example of each of these violations in Listing 1.1. On line 8, a buffer
overflow can occur if the input data is larger than 16 B, because it is copied into the fixed-
size stack-allocated buffer from line 7. On line 17, a double free can occur if the input
heap-allocated data is already freed on line 13. On line 21, type confusion can occur if

1
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1 struct object {
2 uint8_t *data;
3 size_t size;
4 };
5

6 void spatial(struct object *obj) {
7 uint8_t buffer[16];
8 memcpy(buffer, obj->data, obj->size);
9 }

10

11 void temporal(struct object *obj) {
12 if (obj->size && obj->data > obj->size) {
13 free(obj->data);
14 obj->size = 0;
15 }
16

17 free(obj->data);
18 }
19

20 size_t type_confusion(uint8_t *data) {
21 return ((struct object *)data)->size;
22 }

Listing 1.1. An example of each type of memory-safety bug: spatial, tem-
poral, and type.

the input data is not actually of type struct object type, because it will be interpreted
incorrectly.

Although simplified here, these bugs can be difficult to identify in practice due to
various complicating factors. Examples include cross-thread accesses, where developers
must also reason about concurrency, resizeable data, where developers maintain a logical
size separate from the allocation capacity, and type casting, where developers explicitly
reinterpret data encapsulated within a sum or inherited type.

1.1.1. Exploitation. Developers can be tempted to treat memory-safety bugs as harm-
less if they do not appear to impact program execution. For example, if the compiler
inserts extra padding in the stack frame, which tracks execution of the current function,
then a limited buffer overflow may have no impact. Similarly, if no subsequent heap
allocations occur, then a double free may not affect program execution.

However, it is dangerous to assume that these conditions are complete and always
satisfied, because they rely on undefined behavior that is not specified by the underlying
programming language, compiler, or runtime. In practice, memory-safety bugs can have
a variety of different effects, ranging from no impact, to memory leaks or unexploitable
crashes, to exploitable behavior. But, these can change if the program is rebuilt for a
different platform, a shared library is upgraded, or a different compiler is used.
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Address Description

rbp + 8 ∗ (n − 5) Input Argument n
rbp + ... ...
rbp + 16 Input Argument 7

rbp + 8 Return Pointer

rbp Saved rbp

rbp - 8 Local Variable 1

rbp - ... ...
rbp - 8 ∗ m Local Variable m

Table 1.1. Stack frame under the System V AMD64 Application Binary
Interface (ABI).

Offset Description

0 PREV_INUSE Flag
1 IS_MMAPED Flag
2 NON_MAIN_ARENA Flag
3 Allocation Size (n)
8 Allocated Payload

Table 1.2. In-use memory chunks under the glibc allocator.

Attackers can take advantage of memory-safety bugs to deliberately execute unin-
tended behavior, by adversarially manipulating the program using exploits. This is espe-
cially problematic for programs that interact directly with untrusted remote data, such
as network services and web browsers, which have a significant attack surface.

1.1.1.1. Buffer Overflow. One traditional approach for doing so, known as stack smash-
ing [140], takes advantage of a buffer overflow bug to corrupt the return pointer stored in
the current stack frame. Depending on the underlying hardware platform, the processor
may automatically push this pointer before every function call, in order to record the ad-
dress where execution should resume after returning from the call. In Table 1.1, we show
the layout of a single stack frame on x86_64 Linux, which use the rbp register to track
the stack base pointer for the current frame. Observe that the return pointer is located
above local variable allocations, as are the seventh and successive input arguments (if
present). Since addresses grow upwards, overflows of local variables can corrupt these
values.

If the attacker knows the memory layout of the program and can control the contents
of the stack buffer, they may even be able to manipulate it to directly execute arbitrary
code. This is achieved by placing machine instructions (shellcode) within the buffer, and
carefully sizing the overflow to overwrite the return pointer with the address of the
buffer.
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Offset Description

0 PREV_INUSE Flag
1 IS_MMAPED Flag
2 NON_MAIN_ARENA Flag
3 Allocation Size (n)
8 Forward Chunk Pointer
10 Backward Chunk Pointer
18 Forward Next-Chunk-Size Pointer (optional)
20 Backward Next-Chunk-Size Pointer (optional)
n Allocation Size (n)

Table 1.3. Freed memory chunks under the glibc allocator.

1.1.1.2. Double Free. Another approach, known as fastbin corruption, takes advan-
tage of a double free bug to corrupt the state of the system memory allocator. Al-
though implementation-dependent, many Linux systems use the GNU C Runtime Li-
brary (glibc), which uses a derivative of the dlmalloc [111] memory allocator that has
well-documented [56] behavior.

Individual memory allocations are modeled using chunks, which contain embedded
metadata about the status of each allocation, as shown in Table 1.2. To compensate, the
size of each user-requested allocation is increased by 8 B, which is used to record the
size of the allocation, as well as various binary flags about whether this chunk follows
an in-use chunk, has been allocated separately using mmap, or is part of a non-main heap.
Large allocations that exceed a configurable threshold are satisfied directly using mmap,
without checking existing free chunks.

When freed, the payload within each chunk is reused to store additional metadata
that forms a linked list, as shown in Table 1.3. A copy of the allocation size is placed
at the end of the chunk to allow iteration in either direction. These lists, known as bins,
allow fast memory allocation and are checked as follows:
(1) tcache: A per-thread singly-linked list of same-size chunks, which is checked first

only for an exact match.
(2) fast bins: Multiple singly-linked lists of same-size chunks, typically of up to 160 B,

that are checked next and not coalesced with other free chunks.
(3) unsorted bin: A list of unsorted chunks that is checked next.
(4) small bins: Multiple doubly-linked lists of same-size chunks, which are accessed in

insertion order and coalesced with other small chunks.
(5) large bins: Multiple doubly-linked lists of ranges of chunk sizes, typically of at least

1024 B, which are sorted in size order and coalesced with other large chunks. Free
chunks from earlier bins are consolidated and moved when this bin is checked.
Many heap exploits [26, 145] rely on a combination of double frees and use-after-free

bugs to corrupt these linked-list pointers inside the heap allocator metadata, which can
allow attackers to forge chunks, overwrite arbitrary memory, and even execute arbitrary
code. In Listing 1.2, we show a simplified example of a double free bug that corrupts

4



1.1. MEMORY-SAFETY BUGS

1 void doublefree_fastbin() {
2 void *a = malloc(8), *b = malloc(8), *c = malloc(8);
3 free(a);
4 free(b);
5 free(a);
6 a = malloc(8);
7 b = malloc(8);
8 c = malloc(8);
9 }

Listing 1.2. A simplified example of fast bin corruption in the glibc mem-
ory allocator via a double free bug.

Offset Derived1 Derived2

0 typeinfo for Derived1 typeinfo for Derived2
8 Derived1::print() Derived2::print(int)

Table 1.4. Layout of virtual tables for Derived1 and Derived2.

the state of the fast bin, by freeing the allocation stored in a twice (lines 3, 5). At this
point, the fast bin for allocations of size 8 B contains two copies of the chunk referenced
by a on its list. After additional allocations are performed (lines 6–8), the pointers a
and c end up referring to the same chunk, which is not valid behavior. However, newer
glibc implementations have incorporated more runtime checks to detect heap corruption,
which is why the intervening free (line 4) is needed to evade a runtime check.

1.1.1.3. Type Confusion. Finally, one last approach uses a common type confusion
bug to execute incorrect code. These bugs can occur anywhere an input datatype is
improperly casted to another datatype without proper checking, which misinterpret
data stored within the datatype. It is particularly problematic when arbitrary data is
misinterpreted as a pointer, which can result in an out-of-bounds memory load/store,
or even worse, as a function pointer, which can result in arbitrary code execution.

In C++, this type of bug can occur frequently in programs with complex inheritance
hierarchies, because it is always valid to cast upwards from a derived to a base type, but
not necessarily downwards from a base to a derived type. As a result, performing such
a cast without checking can misinterpret an object of different type, which is particularly
risky because C++ objects can contain a pointer to a class-specific virtual table that
encapsulates a virtual dispatch table of function pointers.

We show an example of this in Listing 1.3, where a simple program allocates and
refers to an object of derived type using its base type (line 19). The structure of the virtual
table for both derived types is shown in Table 1.4. However, the program subsequently
performs an incorrect cast (line 21), and misinterprets the object as an object of the
opposing derived type. As a result, despite appearing to call the Derived1::print()
function, the virtual table pointer for object d2 still refers to the virtual table for Derived2,
which is the actual function that is called, but with the incorrect type signature.
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1 #include <iostream>
2

3 class Base { };
4

5 class Derived1 : public Base {
6 public:
7 virtual void print() {
8 std::cout << "Derived1" << std::endl;
9 }

10 };
11

12 class Derived2 : public Base {
13 public:
14 virtual void print(int x) {
15 std::cout << "Derived2: " << x << std::endl;
16 }
17 };
18

19 void vtable_confusion() {
20 Base *d2 = new Derived2();
21 static_cast<Derived1 *>(d2)->print();
22 delete d2;
23 }
24

25 int main () {vtable_confusion();}

Listing 1.3. A simplified example of type confusion in C++ due to an
unsafe downcast.

Pointer Object Boundary Lifetime Identifier Type Signature

buffer (line 8) [&buffer, &buffer + 16) ... ...
obj->data (line 17) ... 1 ...

data (line 21) ... ... uint8_t

Table 1.5. Metadata table that encodes object boundary, lifetime, and type
information for vulnerable pointers from Listing 1.1.

1.2. Eager Checking

Past work (§2.1.2) has explored various approaches for eagerly detecting these memory-
safety bugs. These designs generally instrument the program to maintain additional
safety metadata, and insert runtime checks to verify the validity of each memory opera-
tion before it occurs. If a failure is detected, the program can be immediately terminated,
or allowed to continue execution after emitting a warning message.

One common approach tracks these metadata on a per-pointer basis, by recording
provenance information about the boundary, lifetime, and type signature of the underly-
ing object when each pointer is created. In Table 1.5, we show example metadata for
the three vulnerable pointers from Listing 1.1. This would detect the spatial violation on
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Address Value

rbp + 8 &main

Table 1.6. Integrity table that stores values of protected pointers from List-
ing 2.1.

line 8, by checking that the value of the buffer pointer is within range of the underlying
object boundary upon dereference. Similarly, this would detect the temporal violation
on line 17, by assigning a global monotonic lifetime identifier to each memory alloca-
tion, zeroing this identifier when each allocation is freed, and checking that the lifetime
identifier for each pointer matches that of its underlying allocation upon dereference or
free. Finally, this would also detect the type confusion on line 21, by checking that the
underlying object type signature is compatible upon each type cast.

1.3. Lazy Mitigations

Unfortunately, eager checking imposes significant compatibility issues and perfor-
mance overhead, because e.g., these metadata must be maintained for all pointers, and
checked before every pointer dereference, deallocation, and cast operation. Lazy mitiga-
tions (§2.1.3) propose an alternative approach that allows memory-safety bugs to occur,
but makes it difficult to use them to exploit programs. In effect, this trades-off precision
for performance.

One common approach is control-flow integrity (§2.4), which protects the values of
control-flow pointers. Attackers are allowed to corrupt them via memory safety or other
bugs, but integrity checks are performed before every dereference to verify their in-
tegrity. Although many different designs have been proposed, pointer integrity (§2.4.2)
can do so by storing a copy elsewhere, e.g., in a memory region protected with address-
space isolation (§2.2). We show a simple example of this in Table 1.6, which depicts
the protected stack frame return pointer (Table 1.1) after the function main calls spatial
(Listing 1.1). Although this function contains a buffer overflow, which may be used to
overwrite the protected return pointer, integrity of the pointer is checked before return-
ing, which would detect this corruption. Data-flow integrity (§2.5) offers similar protec-
tions for non-control data.

1.4. Our Approach

We observe that past work on control-flow integrity and data-flow integrity suffers
from two major drawbacks. First, they rely on address-space partitioning to protect in-
ternal security metadata, using techniques like information hiding and software fault
isolation, which can be defeated through disclosure attacks, or are incompatible with
existing dynamically-loaded code. Second, many rely on static analysis to identify au-
thorized writes to protected data, which is inefficient and imprecise, because pointer
alias analysis is fundamentally undecidable [150], can fail to distinguish between dis-
tinct fields of product types due to a lack of field-sensitivity, and may approximate correct
behavior by merging runtime program states without full context-sensitivity.
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We provide evidence to support the following thesis statement: Augmenting hardware
with a small, secure, and efficient AppendWrite inter-process communication (IPC) primitive
decouples metadata storage and policy checking from program execution, enabling new approaches
for security mitigations. This thesis is structured as follows:
• In Chapter 2, we discuss past work on memory safety and address-space partitioning.

This includes security mitigations like control-flow integrity and data-flow integrity,
as well as domain-specific contributions for web browsers.

• In Chapter 3, we discuss the design of our AppendWrite IPC primitive and Her-
Qules [42] program integrity framework, which we use to develop our control-flow
integrity approach. We evaluate these on the NGINX web browser and various bench-
mark suites.

• In Chapter 4, we discuss HerQules-DeiFIed (in submission), our extension that sup-
ports concurrent processes and threads, as well as our language-based data-flow in-
tegrity approach, which uses lightweight annotations to identify sensitive data for
automatic protection. We evaluate these on the Google Chromium web browser, and
also explore using AppendWrite as a generic IPC primitive for the browser Mojo IPC
framework.

• In Chapter 5, we summarize our contributions and discuss future research directions.
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CHAPTER 2

Background

2.1. Memory Safety

At a high-level, past work has taken one of three different approaches in addressing
memory safety: preventing, detecting, or mitigating such program bugs, which trade-off
in complexity, effectiveness, and performance.

2.1.1. Prevention. Since low-level programming languages like C and C++ are inher-
ently unsafe, prevention of memory-safety bugs is difficult without significant language
changes. Early work [83, 134] proposed retrofitting language type systems with addi-
tional memory management subtypes, but saw little adoption and required programs
be rewritten. More recent work has focused on incorporating mutability and owner-
ship of resources as first-class language concepts, leading to the development of modern
languages like Rust [127], which is increasing in adoption. Nevertheless, it is impor-
tant to note that even Rust permits unsafe behavior, which allows accidental introduc-
tion [69, 149, 199] of memory-safety bugs.

2.1.2. Detection. Another line of work has focused on detecting [170] memory-safety
bugs at runtime. Spatial memory-safe designs perform bounds checking on pointer com-
putation and dereference, in order to identify out-of-bounds references and accesses.
Location-based designs [91, 92, 162] provide lower precision, because they only ensure
that pointers refer to valid objects, unlike pointer- or object-based designs, which ensure that
pointers refer to correct objects. However, they can have much lower performance impact,
because they only need to track memory validity and/or place adjacent guard regions
for each object.

Pointer and object-based designs improve precision by tracking boundaries on a per-
pointer or per-object basis, respectively. The former stores boundaries either within
pointers themselves, known as fat pointers [83, 105, 109, 134], or by storing separate
metadata [63, 65, 130] using an associative map data structure. In contrast, the lat-
ter [12, 60, 100, 155, 203] stores boundaries within each object, but may need to insert
additional padding to support one-past-the-end pointers that are valid when not derefer-
enced. Hardware-based designs reduce software overhead by offloading bounds check-
ing and/or storage to special-purpose hardware. However, Intel’s Memory Protection
Extensions [28, 104] (MPX) were removed [90] after shortcomings were identified [138].
Type sanitizers use a similar software-based approach to detect bad type casts at runtime,
by tracking additional type metadata on a per-type [113] or per-object [64, 88, 98] basis.

Temporal memory-safe designs defend against orthogonal use-after-free and double free
pointer bugs, which can occur when dynamically-allocated memory is accessed after
deallocation, or deallocated twice, respectively. Proposed solutions include elimination
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of dangling pointers [112, 195] to deallocated memory, or performing validity checking
on pointer dereference [131]. Some designs provide both spatial and temporal memory
safety, whether in software [32, 135] or in hardware [59, 132, 157, 206].

2.1.3. Mitigation. Many mitigations have been proposed to defend against various
memory-safety bugs, some of which have been widely deployed and are now com-
monplace. Stack canaries [51] are unpredictable stack frame values that are generated
at function entry and checked at function exit to detect memory corruption. Address
Space Layout Randomization (ASLR) randomizes the base address of the process image
at load-time, which conceals the addresses of known code and data (§2.2.1). No-execute
memory [179] (NX or Data Execution Prevention) allows memory to be marked non-
executable, which can prevent execution of user-supplied data as code. W^X [180] takes
this one step further, by preventing memory from being both executable and writable,
which makes it difficult to corrupt executable code.

2.2. Address-Space Partitioning

Security mitigations may need to maintain internal metadata, which must be isolated
from the remainder of the program to prevent corruption due to latent memory-safety
bugs. Past work has proposed various software-based approaches, which trade-off be-
tween overhead, compatibility, and effectiveness.

2.2.1. Information Hiding. This approach has low overhead, but relies on random-
ization to provide probabilistic security. Runtime randomization of program content [47,
143] or layout [21, 22, 94, 179] has been used to deter exploitation and protect sensitive
data. However, side-channel [81, 160, 166, 173] or other information disclosure attacks,
including leakage from uninitialized memory, have been used to defeat information
hiding. In response, various countermeasures have been proposed, including runtime
rerandomization [24, 192, 197], execute-only memory [17, 52, 176], and guard pages, to
prevent memory probing.

2.2.2. Software-Fault Isolation. In this approach [190], the program’s virtual address
space is partitioned into separate logical fault domains, and the program is modified at
compile-time to prevent untrusted cross-domain access. This allows internal metadata
to be placed in one isolated domain, and the remainder of the program in another.
Untrusted pointers are masked such that they cannot access the address space of the iso-
lated domain, whereas trusted pointers are unmodified. To ensure complete coverage,
the program must either prohibit dynamically-loadable modules, or all such loadable
modules must be modified as well. It must also ensure that program data is not ex-
ecutable, and that program code is not modifiable, to prevent protections from being
circumvented. Past work has used this mechanism to sandbox untrusted code, such
as browser-based applications [202] or plugins [159], as well as multimedia codecs and
device drivers [67].
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Design Events Recipient Async. Paradigm HW ∆

FADE [74] HW/SW Core ✕ Filter-Update Big
FlexCore [57] HW/SW FPGA ✕ Filter-Update Big

Guardian Council [11] HW/SW µCores ✓ Filter-Map-Reduce Big
HerQules (§3) SW Memory ✓ Message Passing Small

Intel Processor Trace [7] HW/SW Memory ✓ Filter-Update –
Log-Based Architectures [45] HW/SW Core ✓ Filter-Update Big

Table 2.1. Comparison of hardware-based fine-grained instruction moni-
toring designs.

2.2.3. Disjoint Address Spaces. Alternatively, the program can switch between dis-
joint virtual address spaces, instead of partitioning a single virtual address space. One
approach dynamically reconfigures [66, 121] the memory management unit (MMU) to
modify the virtual-to-physical page mapping directly, whereas another [104, 123, 146] re-
lies on hardware virtualization and Second Level Address Translation (SLAT) to modify
the guest-virtual to host-physical page mapping from within the guest. However, both
approaches increase overhead because processor Translation Lookaside Buffer (TLB) en-
tries must be flushed on each address space switch.

2.3. Fine-Grained Instruction Monitoring

Instead of maintaining software-based in-process metadata, hardware-based fine-
grained instruction monitoring [11, 45, 57, 74]) modifies the processor to generate, filter, and
process execution events (e.g., retired instructions, function calls, memory accesses, etc.)
directly. Proposals include adding a similarly-sized core [45, 74], an on-chip FPGA [57],
or multiple microcontroller-sized cores (µCores) [11], as shown in Table 2.1. How-
ever, these designs require significant microarchitectural changes, and generate fixed
hardware-defined events that may not always be useful, but nevertheless incur both en-
ergy and logic processing costs. For example, under FADE [74], 84–99% of all events
must ultimately be discarded as irrelevant. Guardian Council [11] suffers from simi-
lar load balancing challenges, as anywhere between 2–24 µCores are needed to reduce
overhead below 5%, depending on the security policy being enforced. Synchronous de-
signs stall the processor until this processing is complete, whereas asynchronous designs
enforce a system-level security boundary at e.g., system calls.

Recent Intel processors include built-in support for Processor Trace [7] (PT), which
asynchronously stores processor execution events in memory. These events can be fixed-
function hardware-defined events, or optionally software-defined events via the PTWRITE
instruction. However, although it has been used for instruction monitoring by past
control-flow integrity designs [61, 75, 85, 124], it is primarily designed for performance
monitoring, and thus suffers from numerous flaws. Built-in hardware-defined events
do not provide sufficient execution context, forcing past designs to disassemble program
binaries in order to reconstruct control flow, which adds complexity and overhead. Event
packets can be lost or overwritten due to, e.g., performance monitoring interrupt skid [7],
which defeats security. Tracing and decoding of events incur tremendous overhead,
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Figure 2.1. Control-flow graph of a small loop that counts the number of
sorted (increasing) pairs in a buffer. Edges are colored, with sequential
execution in black, direct forward edges in green, indirect forward edges
in red, and backward edges in blue.

measuring over 500x [124] on the SPEC benchmarks. As a workaround, past designs
must limit which events are monitored (e.g., monitoring only 7-10 system calls—execve,
mmap, etc.), which greatly reduces effectiveness.

2.4. Control-Flow Integrity

Control-flow integrity [10, 34] (CFI) mitigates memory-safety bugs by verifying the
integrity of program control-flow transitions, which can be represented using a control-
flow graph (CFG). Forward-edge transitions occur at branch and call instructions, and
are classified as direct or indirect based on whether the destination can be statically iden-
tified. Backward-edge transitions occur at return instructions that resume execution of
the calling function. We show the CFG for a small loop in Figure 2.1.

Typically, static analysis is used to identify how a program should execute, then
runtime checks are inserted before each transition to ensure that the actual execution
corresponds. Transition edges are protected by partitioning valid targets into sets of
equivalence classes, and inserting checks to verify that the runtime target is indeed in
the corresponding set. Because direct forward edges only have one possible target, and
program code is mapped read-only to prevent modification, these edges typically do
not need protection. The effectiveness of control-flow integrity can differ based on the
precision of the underlying analysis, which is used to identify valid call targets.

2.4.1. Coarse-Grained CFI. These designs approximate the control flow of a pro-
gram using a limited number of equivalence classes. Some use just one equivalence class
for all address-taken functions, including Microsoft’s Control Flow Guard [5] (MSCFG)
and Intel’s Control Enforcement Technology’s [3, 165] (CET) Indirect Branch Tracking
(IBT). ARM’s Branch Target Identification (BTI) supports up to three equivalence classes,
based on the type of the underlying branch instruction. Others form equivalence classes
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based on callee arity [181] or type [204, 205], including modern Clang/LLVM CFI [48],
which redirects indirect calls through aligned jump tables for each equivalence class.

This approach is widely-deployed due to low overhead, but is vulnerable to code-
reuse attacks [27, 36, 55, 76, 77], like return-oriented programming [41, 164] and jump-
oriented programming [27]. MSCFG has been included since Windows 8.1 [177], though
it was vulnerable to a now-patched design flaw [25], and is to be replaced [148] by CET
in future Windows 10 releases. Google Chrome and certain Android devices [6, 182, 183]
are built with modern Clang/LLVM CFI enabled.

2.4.2. Fine-Grained CFI. These designs improve precision by tracking valid call tar-
gets at runtime, and performing a context-sensitive analysis at each call site. Approaches
include recording object origin [103], pointer values [42, 107, 108, 126]), or call paths.

Path-sensitive methods examine callers on the call path to each check, but since the
total number of program paths grows exponentially, approximation or hardware acceler-
ation is needed to make this approach feasible. Mechanisms used by past work include
hardware-accelerated path recording (e.g., Intel Last Branch Record [186] [LBR], or Intel
Processor Trace [61, 75, 85, 124] [PT]), call path merging [137, 186], and/or only checking
at certain sensitive system calls (e.g., sigaction, mmap, mprotect, etc.) [61, 75, 85, 124,
186]. In response, attacks [71] have evolved to target the inherent undecidability [150] of
pointer aliasing, which impedes the generation of an accurate control-flow graph.

2.4.2.1. Pointer Integrity. This is a state-of-the-art fine-grained approach that protects
the values of sensitive pointers, rather than partitioning program callers and callees based
on expected control-flow. It avoids analyzing the program control-flow graph or approx-
imating program paths, while ensuring maximum context sensitivity.

Code Pointer Integrity [107] (CPI) places control-flow pointers in an isolated safe
pointer store (SPS), and redirects loads/stores of the original pointer accordingly. Since
control-flow pointers may be accessed indirectly through data pointers, it uses a recur-
sive definition to identify sensitive pointers, all of which are placed in the safe store.
To prevent overflows of sensitive pointers from corrupting memory, the safe store also
tracks object boundaries, and checks pointer dereferences to ensure that they are in-
bounds. Return pointers are protected using a separate safe stack (§2.4.3). Initially, infor-
mation hiding (§2.2.1) was used to protect both the safe store and the safe stack, but was
later shown [70, 78] vulnerable to disclosure attacks, and fixed [108] by using software
fault isolation (§2.2.2) instead. We observe in §3 that their final design has moderate
overhead but causes many programs to crash or hang, and cannot be easily composed
with existing binaries without adding abstraction (and hence overhead) to the safe store.

Cryptographically Enforced CFI [126] (CCFI) computes a message authentication
code (MAC) for each sensitive pointer, which is stored in adjacent memory and rechecked
upon each pointer dereference. Sensitive pointers include control-flow pointers, as well
as indirect C++ virtual table (vtable) pointers used to locate virtual class methods. The
MAC computation applies a single round of the Advanced Encryption Standard (AES)
block cipher over various properties of each sensitive pointer, including address, value,
type, and class signature, using hardware-accelerated AES instructions to improve per-
formance. To prevent forgery and replay attacks, the expanded AES key is stored in
eleven reserved XMM registers, and a random offset is injected into each stack frame to
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Figure 2.2. Comparison of shadow stacks (top) and safe stacks (bottom).
Safe variables are shown in green, unsafe variables in red, and return ad-
dresses in purple.

act as a nonce. We observe in §3 that their approach has significant overhead, uses a
non-standard AES construction1, breaks calling conventions with all existing code, can-
not invalidate MACs to detect use-after-free bugs, uses a fixed secret key of zero, and
exhibits significant false positives.

Other related work, in both academia [117, 118] and industry [128], has imple-
mented pointer integrity using ARM’s Pointer Authentication (PA). However, Apple’s
design [128] is a cryptographic MAC-based approach with lower precision than CCFI.
For compatibility reasons, it omits the pointer address from the MAC computation,
which permits replay attacks. As a workaround, it supports a separate discriminator in-
put used as a nonce, but Apple’s implementation uses a constant discriminator of zero
for function pointers and C++ virtual table pointers. This design is also specific to Ap-
ple’s smartphones and iOS software, which are not accessible externally for development
and testing, and was shown [16] vulnerable to a now-patched flaw that allowed MAC
forgery.

2.4.3. Return Pointers. Many instruction set architectures (ISAs) automatically save
and restore a stack-allocated return pointer at each function call and return, which can
be corrupted. For example, in a multi-threaded program, even if a control-flow integrity
check is performed before each function return, a concurrent thread could corrupt the
pointer after the check but before the return, in a deliberate race condition. Many coarse-
grained designs (§2.4.1) only match call-return pairs when checking return pointers,
which is vulnerable to code-reuse attacks and further decreases effectiveness.

Instead, shadow stacks [35, 54, 73, 165] place return pointers in a separate stack, which
helps prevent corruption. Software-based approaches, such as Microsoft’s Return Flow
Guard [23] (MSRFG), hide this stack using information hiding (§2.2.1), but are vulnerable
to disclosure attacks. Instead, hardware-based approaches, such as Intel’s CET, place this
stack on special memory pages that are otherwise inaccessible to software.

1The official AES-128 block cipher requires 10 rounds.
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2.5. DATA-FLOW INTEGRITY

1 void work(int *input) {
2 int v, *ptr = &v;
3 *ptr = 4; // definition 1
4 do_stuff(v);
5 *ptr = 12; // definition 2
6 *input = 38; // definition 3
7 }

Listing 2.1. Sample C++ code protected by data-flow integrity.

Variable Last Definition

v 1

Table 2.2. State of the reaching definitions table used by data-flow in-
tegrity at line 4 of Listing 2.1.

Safe stacks, developed as part of Code Pointer Integrity [107], propose an alternative
software-based approach, by moving return pointers and objects that static analysis de-
termines cannot overflow onto a separate stack that is protected by information hiding
(§2.2.1). They can defeat some attacks [50] and are supported by the Clang/LLVM [48]
compiler, which inserts a runtime guard region to detect linear overflows. Neverthe-
less, despite low overhead, safe stacks are still vulnerable [78] to information disclosure
attacks, and were accordingly disabled [184] in Google Chrome. Figure 2.2 provides a
comparison of safe and shadow stacks.

2.5. Data-flow Integrity

Memory-safety bugs can alter program behavior without changing control-flow point-
ers. Non-control-data attacks [38, 44, 96, 97, 158] can modify program control-flow by,
e.g., altering the inputs of conditional expressions used in branches, or modifying system
call arguments, which are not protected by CFI. Data-flow integrity [39] is an analogue
of control-flow integrity that verifies the integrity of program data. Subsequent work
has applied it to protect kernel access control data [168], or developed hardware imple-
mentations [169] with better performance.

Traditionally, static pointer alias analysis is used to generate equivalence classes that
contain valid reaching definitions for each memory location, and a runtime definitions ta-
ble (RDT) is used to track the last definition for each equivalence class. Stores update the
corresponding table entry, whereas loads verify that the last definition is indeed in the
corresponding set. This table must be protected from corruption, typically using soft-
ware fault isolation (§2.2.2). Precision is affected by the underlying pointer analysis; as
originally defined, it is intra-procedurally control-flow-sensitive and inter-procedurally
context-insensitive, which can result in false negatives. In addition, both analyses are
not field-sensitive, and cannot distinguish between different fields in a composite type.

We show a small example of this in Listing 2.1, which defines a variable v twice, on
lines 3 and 5, and uses it once, by passing its value to a function call on line 4. The
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program contains three definitions, which are assigned identifiers 1–3. Of those, the
first two are placed within the equivalence class for variable v. The state of the reaching
definitions table immediately before the call is shown in Table 2.1, where a runtime check
is performed to verify that the last definition for v is within its equivalence class before
proceeding with the call.

2.6. Browser Security

Past work has explored various aspects of browser security, including overall ar-
chitecture [18, 151], content separation [102], extension support [37], library sandbox-
ing [133], JavaScript bindings [30], site isolation [43, 152], and userdata protection [68],
as well as accelerated runtimes like WebAssembly [87, 99, 115, 147, 193, 194]. Other work
has focused on finding browser bugs using fuzzing or static analysis [31], in JavaScript
engines [15, 86, 89, 95, 114, 144, 188, 191] and native code bindings [30, 62].
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CHAPTER 3

Securing Programs via Hardware-Enforced Message Queues

Various runtime defenses have been developed to detect memory-safety bugs or mit-
igate corruption (§2.1); e.g., by tracking allocation boundaries [12, 63, 105, 130], temporal
identifiers [131], tainted values [200], or control-flow pointers (§2.4). However, these de-
fenses need to maintain runtime metadata about memory, which must be protected from
unintended access. Past work has explored various software-based address-space parti-
tioning mechanisms (§2.2), but they impose significant overhead, reduce compatibility,
or rely on hiding information. Alternatively, hardware-based instruction monitoring ap-
proaches (§2.3) do not suffer from these drawbacks, but do impose significant hardware
design complexity.

Instead, we propose to augment existing hardware with a simple and fast Append-
Write inter-process communication (IPC) that adds authentication and message integrity,
which protects metadata via existing inter-process isolation. We provide two implemen-
tations of AppendWrite: one using a self-contained FPGA-based message queue, and
another that adds append-only microarchitectural memory buffers using only one ISA
instruction, two registers per core, and some simple logic. Using this primitive, we de-
sign HerQules (HQ), a framework for efficiently enforcing integrity-based execution
policies, which delivers log messages from a monitored program to a policy-enforcement
verifier program running in a different process. For efficiency, both programs execute con-
currently, and synchronize at the monitored program’s system calls to prevent undesired
behavior.

We describe how our system can support different execution policies, and perform a
security case study on control-flow integrity (CFI) (§2.4), which protects a program’s exe-
cution integrity by verifying control-flow transitions at runtime. Specifically, we develop
two new fine-grained pointer integrity designs, which are maximally precise, do not suf-
fer from the undecidability of pointer aliasing [71, 150], and incorporate novel compiler
optimizations. Compared to past work [48, 107, 108, 126], our designs maintain program
correctness, preserve library compatibility, and add detection of use-after-free errors on
control-flow pointers, while minimizing overhead, as shown in Table 3.2. We evaluate the
correctness, effectiveness, and performance of our designs on the SPEC CPU2006 [93],
SPEC CPU2017 [33], RIPE [154, 196], and NGINX [174] benchmarks. Our results demon-
strate the successful execution of all benchmarks, and the discovery of new use-after-free
bugs in the SPEC benchmarks. Our fastest design prevents all but one type of exploit
with a geometric mean overhead of 14.4%, whereas our comprehensive design prevents
all exploits at the cost of increased overhead, which improves over past work.

We summarize our contributions as follows:
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3. SECURING PROGRAMS VIA HARDWARE-ENFORCED MESSAGE QUEUES

System-CallSystem-Call

……
Check(p, v)Check(p, v)
Create(p, v)Create(p, v)

System-Call

…
Check(p, v)
Create(p, v)

(1a) Enable HerQules runtime
(3b) Perform syscall

(1b) Notify new process

(2a) MSG: Create(p, v)

(2b) MSG: Check(p, v)

(3a) MSG: System-Call

(4a) Parse messages

(4b) Allow syscall

Figure 3.1. Overview of interactions under HerQules

• We observe that software-based program partitioning lacks efficient isolation, whereas
hardware-based instruction monitoring is overly complex, and instead propose a sim-
ple new AppendWrite IPC primitive (§3.1.3), which we implement in both an FPGA and
in hardware at very low cost (§3.2.1).

• We use AppendWrite to build HerQules, a framework for implementing efficient integrity-
based execution policies, which executes asynchronously to maximize performance (§3.1.2).

• We show how HerQules supports a variety of security policies, and perform an ex-
perimental case study on control-flow integrity (§3.3.1), demonstrating a significant
improvement in correctness, effectiveness, and performance over prior work (§3.4).

• We release our system as open-source at https://github.com/secure-foundations/
herqules.

3.1. Design

As a toy example, to put HerQules in context, suppose that a program wants to reli-
ably count the number of function calls that it has made. One approach would have the
program allocate an in-process global counter and increment it before every call instruc-
tion, but this counter could be corrupted by program bugs. Instead, under our design,
the compiler automatically instruments the program to send policy-relevant messages
(e.g., counter increment on each function call) to a verifier running in a different process,
using our AppendWrite IPC primitive. This relies on existing inter-process isolation to
prevent bugs in the program from directly affecting policy-relevant state. Even if the
program is corrupted immediately after sending a message, it cannot retract previously-
sent messages.

Because the monitored program and the verifier execute concurrently, it takes some
time for messages to be sent, received, and processed, which can impact the accuracy of
our execution counter, especially in the presence of high message traffic. We can improve
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the accuracy of this counter by bounding asynchrony at system calls (§3.1.2), where we
pause the program until the verifier has processed all in-flight messages. To determine
when a paused program should resume, the kernel and verifier communicate over a
separate privileged channel that is not accessible to the monitored program.

Figure 3.1 highlights the four main components of HerQules, providing an overview
of the interactions between the components.
(1) At compile-time, our compiler pass automatically instruments the program to send

policy-dependent messages when policy-relevant events occur.
(2) At run-time, the monitored program enables HerQules (1a) during startup, causing

the kernel to register it with the verifier (1b). Subsequently, the monitored program
can send messages to the verifier via AppendWrite (2a, 2b).

(3) At some point, the monitored program sends a system-call message (3a) and per-
forms a system call (3b), where it is initially paused by our kernel module, until the
verifier confirms no policy checks have failed (4a, 4b).

3.1.1. Threat Model. HerQules enforces runtime execution policies that rely on
software-visible execution events. Thus, we do not enforce policies based on microar-
chitectural events such as side-channel attacks. We assume that programs begin exe-
cution in a benign state, but may contain memory-safety bugs that allow adversaries
to read and write arbitrary memory in the monitored process, subject to page table
protections. This excludes access to processor registers, and modifications of read-only
program code. We trust the microarchitecture and operating system to enforce security
boundaries between user processes, and between user and kernel address spaces. We
enforce arbitrary policy-defined invariants on program execution, but exclude confiden-
tiality policies, because asynchronous policy enforcement, while sufficient for integrity-
based policies, could allow data leakage.

3.1.2. Bounded Asynchronous Validation. Because monitored programs start in a
benign state, messages provide a snapshot of program state at a specific point in time.
This can effectively provide evidence of a future policy violation, if messages are sent
before events of interest (e.g., function execution), and messages are guaranteed to be
append-only. Even if that violation subsequently results in total program compromise,
append-only messages ensure that evidence cannot be retracted.

Asynchronous messages decouple policy checking from program execution, which
improves performance by minimizing critical path latency. We rely on system call syn-
chronization to prevent compromised programs from affecting externally-visible side
effects (e.g., attacking the system) before a violation is detected by the verifier. The ker-
nel pauses system call execution until the verifier confirms that no policy checks have
failed. A naive approach would require a round-trip between the kernel and verifier on
every system call executed by the monitored program, which would add latency.

Instead, the monitored program sends a special System-Call message before each
system call, which indicates to the verifier that all outstanding messages have been pro-
cessed, and that the verifier can notify the kernel to resume system call execution. This
requires instrumenting shared libraries as well, but it enables the overhead of this syn-
chronization message to be pipelined with the overhead of the system call itself. An
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IPC Primitive Append-Only Async. Cost Time (ns)

Message Queue ✓ ✕ System Call 146

Named Pipe ✓ ✕ System Call 316

Socket ✓ ✕ System Call 346

Shared Memory ✕ ✓ Memory Write 12

Light-Weight Contexts ✓ ✕ System Call 2010 [121]
xMP ✓ ✕ System Call 1000 - 5000 [146]

AppendWrite-FPGA ✓ ✓ Memory Write 102

AppendWrite-µarch ✓ ✓ Memory Write < 2

Table 3.1. Comparison of existing IPC primitives, grouped by type (top:
software-based, center: hardware-based, bottom: proposed), showing mes-
sage send times.

attacker can forge this synchronization message, but because the forgery would be trans-
mitted after a message containing evidence of a policy violation, it has no effect. Simi-
larly, if no synchronization message arrives within a configurable epoch, the kernel can
treat it as a policy violation and terminate the monitored program.

3.1.3. AppendWrite IPC Primitive. AppendWrite must guarantee message authentic-
ity and integrity, because the monitored program may become compromised. Namely,
it must ensure that all messages were sent by the monitored program, and that no mes-
sages have been modified or erased after being sent. Although the former can be pro-
vided by configuring the kernel to arbitrate creation of messaging channels, the latter
requires that the IPC primitive be designed append-only. Messages must also have low
overhead, to avoid slowing down the monitored program. As discussed below, we ob-
serve that existing software- and hardware-based primitives do not satisfy these con-
straints; hence, we design two hardware implementations of our primitive. AppendWrite-
FPGA uses a programmable FPGA accelerator (§3.1.3.1), whereas AppendWrite-µarch adds
append-only memory buffers to the microarchitecture (§3.1.3.2), which we model in soft-
ware and validate in simulation (§3.4.3.1).

Existing IPC mechanisms either perform poorly or lack message integrity, as shown
in Table 3.1, which includes the average runtime of a micro-benchmark that repeatedly
sends messages. Primitives that require a system call (including POSIX queues, pipes,
and sockets) are too slow: they cost hundreds of nanoseconds, require a privilege transi-
tion that flushes hardware caches (i.e., kernel page-table isolation [84, 120]), and execute
synchronously. Traditional optimizations, such as vectored I/O or client-side buffering,
would violate integrity by buffering unsent messages in the untrusted sender. Fast IPC
primitives, like shared memory, lack semantic access control, allowing writers to cor-
rupt or erase previously-written messages. A compromised program could do so before
newly-written messages have been read by the verifier.

Existing hardware-based primitives suffer from similar problems. Even the fastest
disjoint address space [66, 121, 146] mechanism costs 2010 ns [121] per context switch,
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which would be on the critical path, and occur both to and from the verifier on each
sent message. On our benchmarks (§3.4.5), we estimate that this would amount to a
worst-case overhead of more than five hours. Certain peripherals already contain hard-
ware first-in first-out (FIFO) queues, which we initially attempted to repurpose, but
ultimately determined were unusable. For example, network interface cards (NICs) are
widely deployed, and include per-port queues for packet receive/transmit. However,
this requires logical or physical loopback of NIC ports, kernel bypass to make these re-
sources available to user-space programs, which entails trusting a large code-base (e.g.,
Data Plane Development Kit [2]), and the presence of special hardware features, like an
IOMMU and PCI Express (PCIe) Access Control Services.

3.1.3.1. Accelerator. We implement one version of AppendWrite on an FPGA acceler-
ator, which we label AppendWrite-FPGA. It is compatible with any systems that support
PCIe expansion cards, including most x86_64 machines. However, depending on the
amount of message traffic, the performance of monitored applications may be limited by
the processor interconnect and PCIe bus overhead (§3.4.3.1).

3.1.3.2. Microarchitecture. We implement another version of AppendWrite by extending
the instruction set architecture (ISA), which we label AppendWrite-µarch. It modifies the
microarchitecture to natively support appendable memory region (AMRs), which may span
multiple memory pages, and may only be written to via the AppendWrite instruction
by userspace programs. Other unprivileged writes to AMR memory pages must be
rejected by the MMU. Two privileged per-core registers are added to the processor, which
identify the virtual addresses of the next and one-past-the-end message, respectively:
AppendAddr and MaxAppendAddr.

Programs on each core can use a fixed-size AppendWrite instruction to append user-
defined messages to the configured AMR, by passing a pointer to a message of, e.g.,
32/64/128/256-bytes. The processor automatically increments the AppendAddr register
and copies the message to the AMR, if doing so would not exceed MaxAppendAddr.
Otherwise, it faults to the operating system kernel, which can allocate a new buffer or
reset address registers, if the AMR has been fully read.

For simplicity, our design configures AMRs using core-local registers, which do not
support cross-core writers to minimize cache coherency overhead. Instead, each writer
core must be assigned a unique AMR, although a single reader core can iteratively
receive messages on all mapped AMRs. Although most execution policies, including
control-flow integrity (§3.2.3), do not need cross-core message ordering, individual mes-
sages can include the value of a global counter (e.g., processor timestamp counter) if
ordering is needed.

3.2. Implementation

Below, we describe the implementation details of HerQules’ four main components
(Figure 3.1): the AppendWrite IPC primitive, compiler instrumentation, a kernel module,
and a verifier process.

3.2.1. AppendWrite IPC Primitive. Each message transmitted by AppendWrite is a
fixed-size structure, which contains a 4-byte operation code, two 8-byte operation arguments,
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and on our FPGA-based implementation, an additional 4-byte process identifier (PID). The
semantics of our operation codes and arguments are policy-dependent.

3.2.1.1. Accelerator. We implement AppendWrite-FPGA using a custom Accelerator Func-
tional Unit [119, 139] (AFU) on an Intel Arria 10 [185] GX Programmable Accelerator
Card (PAC), a PCIe-based FPGA. Our logic is written in SystemVerilog/Bluespec [136],
interacts with the host via the Open Programmable Acceleration Engine [125] (OPAE),
and synthesizes using few accelerator resources: 54k (6%) Adaptive Logic Modules and
636k (< 1%) block memory bits.

Messages are decomposed into word-granularity uncached writes to memory-mapped
I/O (MMIO) registers, which are reassembled by the AFU and written back to a circular
buffer in the verifier on the host. To avoid address translation, this circular buffer is allo-
cated from huge memory pages, and its physical address is pinned in memory. The AFU
populates the PID field of each message using a kernel-managed PID register, which is
updated on each context switch and ensures message authenticity. Operation-specific
registers enable messages to be created using at most two MMIO writes.

A per-message counter is used to detect dropped messages, since the AFU lacks a
back-pressure mechanism. This occupies otherwise-unused space within each cacheline-
aligned memory write from the AFU to the host. The verifier checks that each message
has a consecutive counter value; otherwise, the monitored program must be terminated
due to violation of message integrity. In practice, we select a circular buffer size of 1 GB
such that this never occurs.

3.2.1.2. Microarchitecture. In terms of logic, die area, and power consumption, the
cost of implementing AppendWrite-µarch is extremely low. Execution of AppendWrite re-
sembles that of normal x86 store instructions, except that the store-address micro-
operation directly uses AppendAddr without computing an effective address (one fewer
micro-operation). A few additional gates and a comparator are needed to verify that
AppendAddr will not exceed MaxAppendAddr, and to bypass the TLB check for writable
memory pages in the AMR. Auto-increment logic already exists for, e.g., the REP prefix,
and can be reused for the AppendAddr register. These changes have negligible effect on
die area and power consumption.

3.2.2. Compiler Instrumentation. We implement our instrumentation in Clang/LLVM [110]
compiler passes, which insert runtime calls to generate policy-specific messages (§3.3)
and System-Call messages (§3.1.2), while iterating through the LLVM Intermediate
Representation (IR).

Programs directly perform system calls using inline assembly. If an inline assembly
call contains a syscall, sysenter, or int 0x80 instruction, we treat it as a system call,
which must be preceded by a synchronization message. Our analysis uses graph domi-
nators [116] to find the earliest suitable point for sending such messages. Because each
source file may be compiled individually, making inter-procedural analysis difficult, we
require this program point to be (1) on a program path that executes the system call,
and (2) not succeeded by any other messages or function calls. In other words, under
non-exceptional control flow, it must dominate the system call, be post-dominated by the
system call, and not dominate any function calls that also dominate the system call.
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Indirect system calls occur through standard library functions. As a result, we must
recompile the C standard library with system call instruction enabled. Although the
GNU C standard library is widely-deployed, it uses GCC-specific compiler extensions
that are incompatible with Clang/LLVM, so instead we substitute the musl C standard
library [72], which is compact and standards-compliant. To support certain wrapper
functions that use a separate kernel-loaded virtual dynamic shared object (vDSO), such
as getcpu and gettimeofday, we manually insert two messaging calls. During this pro-
cess, we also statically link our runtime messaging library into the C standard library. Al-
ternatively, our runtime library can be inlined directly into monitored programs, which
reduces execution overhead at the cost of increased size. Other standard libraries, such
as language libraries for C++, typically call into the C standard library, and thus do not
need to be rebuilt.

3.2.3. Kernel. We implement bounded asynchronous validation using a kernel mod-
ule. To maximize compatibility, our kernel module dynamically intercepts system calls
using built-in kernel mechanisms, such as kprobes [101] and tracepoints [58]. A hash ta-
ble maintains kernel context for each process that has enabled HerQules, including a
boolean synchronization variable and various statistics. For a given process, this boolean
variable is set by the verifier upon reception of a system call synchronization message,
and it is reset by our kernel module upon resumption of a system call.

Our module allocates a new kernel context for child processes upon invocation of the
fork and clone system calls, but as a prototype, it does not model full POSIX program
semantics, or optimize away synchronization messages for read-only system calls. Like
most work [201] in this space, we do not account for shared memory mappings that may
propagate updates to control-flow pointers across multiple processes, which are rarely
used and do not occur in our benchmarks, but could result in false positives. For our
accelerator-based IPC primitive (§3.2.1.1), this module also updates the privileged PID
register upon context switch.

3.2.4. Verifier. The verifier is a user-space process which maintains a policy context
for each monitored application. It receives messages from monitored programs via Ap-
pendWrite, and is notified of process events by our kernel module. Policy contexts are
allocated, copied, and destroyed when a monitored process enables HerQules, executes
fork or clone, and terminates, respectively. By default, monitored programs are killed
upon policy violation or unexpected verifier termination, but this behavior is config-
urable.

3.3. Execution Policies

Below, we provide a case study on control-flow integrity (§3.3.1), which uses sepa-
rate protection mechanisms for different types of program control-flow transitions, such
as forward-edge transitions (§3.3.2, §3.3.2.1) and backward-edge transitions (§3.3.2.2,
§3.3.2.3). We also sketch designs for memory safety (§3.3.3) and other policies (§3.3.4).

3.3.1. Control-Flow Integrity. We enforce control-flow integrity using a fine-grained
pointer integrity (§2.4.2.1) policy, which protects the values of control-flow pointers by
checking against a copy stored in the verifier via AppendWrite. Unlike other fine-grained
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Design Mechanism Precision Use-After-Free Compatibility Performance

Clang/LLVM CFI [48] Language-level Types • ✕ •• • • ••
CCFI [126] Cryptographic MACs • • • ✕ • •
CPI [107] Information Hiding •• ✕ • • • ••
CPI [108] Software Fault Isolation •• ✕ • • • •

HQ-CFI-SfeStk AppendWrite •• ✓ • • • • • •
HQ-CFI-RetPtr AppendWrite • • • ✓ • • • ••

Table 3.2. Comparison of control-flow integrity designs, grouped by pre-
cision (top: low, center/bottom: high). More • is better.

approaches, pointer integrity is maximally precise and does not suffer from the pointer
aliasing undecidability [150] problem used to defeat [71] past designs. Our approach,
named HQ-CFI, differs from past work on pointer integrity, which relocate [107, 108]
pointers or verify cryptographic hashes [126] within the instrumented process itself. We
are also able to detect use-after-free bugs on control-flow pointers by tracking their life-
time and invalidating them upon destruction, which is not supported by prior control-
flow integrity designs.

Table 3.2 compares our two designs against existing coarse-grained (§2.4.1) and fine-
grained (§2.4.2) control-flow integrity designs. Typically, coarse-grained designs are
faster but fail to prevent certain attacks, whereas fine-grained designs are more pre-
cise but impose greater overhead. As examples, for the former, we select modern
Clang/LLVM CFI [48], which is included in Clang/LLVM and widely-deployed. For
the latter, we select Cryptographically-Enforced CFI [126] (CCFI) and Code-Pointer In-
tegrity [107, 108] (CPI), which are state-of-the-art pointer integrity designs. Note that
like past work, we do not prevent programs from creating and executing unsafe func-
tion pointers to arbitrary user input in an executable buffer, nor do we ensure that all
control-flow pointers must point to valid code or data.

3.3.2. Design: Forward-Edge Transitions. Although programs contain many control-
flow pointers, some are read-only and do not need protection. For example, on Linux, ELF
binaries can contain lazy relocations for imported functions from shared libraries, but
we compile programs with read-only relocations and eager binding to prevent runtime
changes. Similarly, read-only global variables are stored in a read-only program data
section. We protect the following forward-edge control-flow pointers, if writable:
(1) Function pointers: Direct pointers to executable code. This includes the internal

pointer stored in jmp_buf for non-local gotos via longjmp and setjmp.
(2) Virtual method table pointers: Indirect pointers in C++ objects that refer to a global

per-class virtual method table (vtable). Although vtables contain function pointers,
they are stored in read-only memory.

(3) Virtual-method-table table pointers: Indirect pointers in certain C++ objects that use
multiple inheritance. They refer to a global per-class vtable table that stores relative
offsets of individual vtables.
Our design sends messages when certain operations occur on control-flow pointers.

For example, certain library functions may manipulate contiguous chunks (blocks) of
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memory, but because it is difficult to statically determine whether control-flow pointers
are present, we notify the verifier of these events at runtime. We describe the semantics
for our messages below, and defer implementation to §3.3.2.1.

• Pointer-Define(p,v): Initialize a pointer at address p with value v.
• Pointer-Check(p,v): Validate that the pointer at address p with current value v matches

its previous definition. If not, this pointer is corrupt or a use-after-free.
• Pointer-Invalidate(p): Remove the pointer at address p.
• Pointer-Block-Copy(src,dst,sz): Copy all pointers from address range[src, src +

sz) to [dst, dst + sz). These ranges may intersect, and pre-existing pointers in the
destination will be invalidated. This matches the behavior of memcpy and memmove1.

• Pointer-Block-Move(src,dst,sz): Move all pointers from address range [src, src +
sz) to [dst, dst + sz). These ranges must not intersect, and all pre-existing pointers in
the destination will be invalidated. This is an optimization for realloc.

• Pointer-Block-Invalidate(p,sz): Invalidate all pointers in the address range [p, p +
sz). This matches the behavior of free.

3.3.2.1. Implementation: Forward-Edge Transitions. Our compiler instrumentation uses
the following three components to generate runtime calls for sending control-flow pointer
messages. We also enable additional devirtualization optimizations for C++, which
attempt to convert indirect calls into direct calls that do not need protection. While
implementing our instrumentation, we improved various built-in optimizations, fixed
miscompilation bugs, and added new extension points for dynamically-loaded passes,
which we have submitted for review into LLVM.

(1) Language-Specific Annotations (Clang built-in): Insert CFI check annotations before
calling function pointers or object methods.

(2) Initial Lowering (LLVM): Before program optimization, insert CFI define and invali-
date annotations, and convert all CFI annotations into runtime messaging calls.

(3) Final Lowering (LLVM/gold [178]): After program optimization, insert instrumenta-
tion on block memory operations, optimize messaging calls, and optionally inline
our messaging runtime.

Our messages only support two arguments (§3.2.1), but certain messages use three
(e.g., Pointer-Block-Copy). Since our design currently protects user-space programs on
x86_64 systems with four-level paging, we decompose the third size argument into two
chunks that are stored in the upper 17 bits of the first and second pointer arguments. As
an optimization, this limits manipulation of instrumented memory blocks to 16 GB in
size, which is compatible with all of our benchmarks.

Initial Lowering: We examine each operation in the LLVM IR (e.g., load, store, call,
etc), and insert runtime messaging as needed.

(1) Store(p, v): If the stored value is a non-zero control-flow pointer (§3.3.1), send the
message Pointer-Define(p, v) immediately afterwards.

(2) CFI-Check(Load(p)): Send the message Pointer-Check(p, Load(p)).

1A memory copy that permits overlapping input/output ranges.
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(3) Load(p): If the value of Load(p) is passed as a function pointer to a call or returned
as a function pointer to a caller, send the message Pointer-Check(p, Load(p)) imme-
diately before the call or return.

(4) Return: If this function is a complete or deleting C++ destructor, send the message
Pointer-Invalidate(this) immediately before the return, where this corresponds to
the vtable pointer at offset zero for the current object.

(5) Lifetime-End(p): If the pointer is a control-flow pointer, send the message Pointer-
Invalidate(p) immediately before it dies. This uses built-in lifetime analysis.

We perform special detection of function pointers to avoid false negatives, as type
casting allows arbitrary type conversion, and LLVM permits pointers to struct fields
and unions to decay into generic pointers. Specifically, we treat any pointer as a function
pointer if (1) it is ever defined from a value of function pointer type, including via pointer
casts and ϕ-nodes [14, 153], or (2) other uses of its original value are ever cast to function
pointer type.

Final Lowering: We perform store-to-load forwarding and message elision opti-
mizations using our escape analysis, which is more precise than the built-in fast-but-
conservative alias analysis. Then, we insert messaging on block memory operations.
This pass can execute either at compile-time (LLVM) or at link-time (gold), but by de-
fault we execute it at link-time to enable inter-procedural link-time optimizations. By
default, we perform strict subtype checking on composite types passed into block opera-
tions using our function pointer detection scheme, which eliminates messaging on block
operations that statically do not contain control-flow pointers. However, we observe that
this strict checking fails on four benchmarks, which pass decayed function pointers inter-
procedurally. We include a built-in allowlist that always instruments block operations in
certain functions; alternatively, we could conservatively disable such subtype checking
globally at the cost of increased message traffic.

Instrumentation is inserted on calls to library functions, like MemCpy, MemMove,
and ReAlloc, that may modify function pointers inside memory blocks. We also im-
plement special detection for memory blocks that may contain function pointers, by ex-
tending our previous function pointer detection to include composite types that contain
function pointer subtypes, and checking both the input and output arguments of these
library functions. However, we observe that this strict function pointer subtype detection
fails on four benchmark functions that are inter-procedurally passed decayed pointers,
which we override using an allowlist. Alternatively, strict detection can be disabled to
instrument all such library calls, which is conservative and increases message traffic.

(1) MemCpy/MemMove(dst, src, sz): If the destination or source may contain function
pointers, and the source is not a string constant, send the message Pointer-Block-
Copy(dst, src, sz) immediately after the copy.

(2) ReAlloc(p, nsz): Fetch the original2 allocation size osz, then perform the realloca-
tion. If it moved, send the message Pointer-Block-Move(p, Realloc(p, nsz), osz)
immediately afterwards, where nsz is the new size.

2Past work behaves similarly; CPI queries the allocator for the original size, while CCFI modifies the
source to recompute MACs afterwards.
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(3) Free(p): Fetch the original allocation size osz, then perform the free. Send the mes-
sage Pointer-Block-Free(p, osz) immediately afterwards.

We also insert an initializer function to inform the verifier of global control-flow
pointers immediately after program startup. These variables are directly loaded into
memory via a data section, and may be relocated by the dynamic loader during pro-
gram startup. This feature is used by programs that are built position-independent or
with runtime layout randomization (§2.2.1) enabled, which shift function addresses and
the value of corresponding function pointers by a runtime offset. Our instrumentation
appends the address-value pair of all such global variables to a special program section,
and inserts a runtime constructor function to send Pointer-Define(p, v) messages on
each at program startup. As an optimization, if the total number of these entries exceeds
a predetermined threshold, the constructor function instead sends a special Initialize-
Globals(o) message that contains the random offset o, which enables the verifier to
directly fetch and relocate these entries using the binary.

C++ Devirtualization: We enable three C++-specific optimization passes, which an-
alyze the type of C++ objects to eliminate vtable loads, infer callees for virtual calls, and
eliminate unused virtual functions: Virtual Pointer Invariance [141, 142], Whole Pro-
gram Devirtualization [49], and Dead Virtual Function Elimination [171]. They reduce
the frequency of indirect calls and associated checks.

Store-to-Load Forwarding: A field-sensitive optimization that forwards stored control-
flow pointer values to dominated loads, both intra- and inter-procedurally, which re-
duces checks. To ensure soundness, we exclude accesses to thread-local storage, in func-
tions that may return twice, that are atomic or volatile, or to pointers that may escape.
We model inter-procedural loads by localizing them to the local call site on the unique call
path to the remote function. Instead of passing values through intermediate callees, we
create a single canonical remote checked load, and forward it to subsequent remote uses.
To ensure correctness, we avoid mutually-recursive functions using a runtime guard, as
indirect calls make static analysis difficult. While an optimized function is executing, a
global boolean guard variable is set, and if it remains set upon a subsequent call, then
the program is terminated and must be recompiled with this optimization disabled. In
practice, no guards fail across all of our benchmarks (§3.4).

Message Elision: A field- and path-sensitive optimization that eliminates superflu-
ous messages. This includes checks on devirtualized calls, duplicate invalidates after
inlining of C++ destructors, as well as other cases that utilize graph dominators and our
escape analysis. For example, if a given control-flow pointer is never checked, then it
does not need to be defined or invalidated. Similarly, if multiple define messages are
emitted, but intermediate values are never checked, then intermediate defines can be
removed.

3.3.2.2. Design: Backward-Edge Transitions. We protect return pointers using two dif-
ferent approaches. One variant, HQ-CFI-RetPtr, sends messages as shown below,
whereas our other variant, HQ-CFI-SfeStk, instead places return pointers in a safe
stack (§2.4.3) that is protected by information hiding. Although faster, the safe stack
is vulnerable to disclosure attacks, whereas the messaging approach is slower but invul-
nerable.
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• Pointer-Define(p, v): See above.
• Pointer-Check-Invalidate(p,v): Performs Pointer-

Check(p,v), then if successful, Pointer-Invalidate(p,v).
3.3.2.3. Implementation: Backward-Edge Transitions. Our compiler instrumentation checks

for functions that may write to memory, are known to return, contain stack allocations,
and are not always tail called. When found, we insert a runtime call to define the return
address pointer in the function prologue, and we insert a runtime call to check-invalidate
the pointer in the function epilogue.

3.3.3. Memory-Safety Policy. Memory safety ensures that all memory accesses oc-
cur within the spatial boundaries of the target allocation (e.g., not a buffer overflow), and
that the allocation itself is temporally valid (e.g., not a use-after-free). This eliminates the
need for mitigations, such as control-flow integrity and shadow stacks, because memory
corruption cannot occur. Below, we sketch an execution policy that enforces memory
safety by checking creation, access, and destruction of memory allocations.
• Allocation-Create(a,sz): Create an allocation at [a, a + sz), which cannot overlap

with existing allocation(s). This matches the behavior of malloc, stack allocation, and
read-only/global variables.

• Allocation-Check(a): Check that address a is within a valid allocation. If not, this
access is out-of-bounds or use-after-free. This matches the behavior of a pointer deref-
erence.

• Allocation-Check-Base(a1,a2): Check that addresses a1 and a2 are within the same
valid allocation. If not, this access is out-of-bounds or use-after-free.

• Allocation-Extend(src,dst,sz): Extend the allocation at src to [dst, dst + sz), which
cannot overlap with existing allocation(s). This matches the behavior of realloc.

• Allocation-Destroy(a): Destroy an allocation at a. If not present, this destruction is
invalid or double. This matches the behavior of free.

• Allocation-Destroy-All(a,sz): Destroy all allocations within [a, a + sz). If none
are present, this destruction is invalid or double. This matches the behavior of stack
deallocation.

3.3.4. Other Policies. More generally, HerQules can enforce other execution poli-
cies for security, performance, or reliability. Examples include data-flow integrity [39],
memory tagging, taint tracking, race detection, event counting, software watchdog, and
redundant fault detection. These may need message ordering between concurrent writ-
ers, e.g., by including the value of the processor timestamp counter in each message,
or bidirectional communication between two processor cores, e.g., by allocating one buffer
for each core, and configuring each core to transmit append-only messages to the other
buffer.

3.4. Evaluation

We evaluate CFI designs on the RIPE [154, 196] 1.0.5 benchmark for effectiveness (§3.4.2),
and on the SPEC CPU2006 [93] 1.2, SPEC CPU2017 [33], and NGINX web server [174]
1.18.0 benchmarks for both correctness (§3.4.1) and performance (§3.4.3). All bench-
marks were configured to use the musl C runtime library, and we patched SPEC to fix
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Design Errors False Positives Invalid OK

Baseline 0 0 0 48

Baseline-CCFI 2 0 2 46

Baseline-CPI 2 0 2 46

Clang/LLVM CFI 0 15 0 33

CCFI 12 29 9 19

CPI 14 0 14 34

HQ-CFI 0 0 0 48

Table 3.3. Correctness of various CFI designs.

various memory safety (§3.4.2) and compatibility bugs. To identify the IPC primitive
used by HQ-CFI, we apply the postfix -MQ for POSIX message queues (§3.1.3), -FPGA
for the accelerator (§3.2.1.1), -Sim for the hardware simulator (§3.4.3.1), and -Model for
the hardware model (§3.4.3.1).

We compare HQ-CFI against past designs from Table 3.2, which represent differ-
ent design trade-offs. Since CCFI and CPI are based on Clang/LLVM 3.4.2 and 3.3.1,
whereas HQ-CFI and Clang/LLVM CFI are based on 10.0.1, each design is normalized
against a version-specific baseline that excludes unavailable optimizations (§3.3.2.1). For
CPI, we disable runtime bounds checking, as we focus on pointer integrity, not spatial
memory safety. Due to the prevalence of false positives amongst past designs (§3.4.1),
we continue execution after a policy violation, except when evaluating effectiveness.

During this process, we fixed multiple correctness bugs in CCFI and CPI that crashed
the compiler during compilation, as well as other bugs that defeated CPI’s protections.
These include an incorrect pointer mask that did not guard accesses to the safe store,
a failure to redirect function pointers to the safe store, and missing updates to the safe
store after realloc and free. The authors of CPI confirmed [106] that their code was a
proof-of-concept prototype, and not fully robust.

3.4.1. Correctness. To quantify correctness, we executed all performance benchmarks
under each CFI design, and checked that each benchmark produced the intended out-
put. We summarize our results in Table 3.3, distinguishing between errors (crashes or
hangs), false positives (no actual CFI violation), invalid results (incorrect output), and
successful runs. Note that some categories are not mutually exclusive.

Both CCFI and Clang/LLVM CFI enforce pointer type matching but fail to account
for type conversion from casting or decay, producing false positives on 60% and 31%
of all benchmarks, respectively. For example, the povray benchmark defines a function
pointer of type void *(void *), but subsequently calls it with type void *(pov::Object_Struct
*), causing both CFI designs to report a violation. Although matching can be relaxed
using compiler flags or a custom allowlist, these involve manual debugging.

Both CCFI and CPI cause many benchmarks to execute incorrectly, either due to
design flaws or bugs introduced by compiler instrumentation, which affect 25% and
29% of all benchmarks, respectively. We note that 4% of all benchmarks also fail on
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Design BSS Data Heap Stack Total

Baseline 214 234 234 272 954

Clang/LLVM CFI 60 60 60 10 190

CCFI 0 0 0 0 0

CPI 10 10 10 10 40

HQ-CFI-SfeStk 10 10 10 0 30

HQ-CFI-RetPtr 0 0 0 0 0

Table 3.4. Successful RIPE exploits under various CFI designs, grouped by
overflow origin.

both respective baselines, suggesting the presence of shared bug(s) in older versions of
Clang/LLVM.

CCFI reserves eleven XMM registers to store a private cryptographic key, which
breaks platform calling conventions [4] and is incompatible with existing shared li-
braries. As a workaround, we compile a special C runtime library that avoids regis-
ters reserved by CCFI. However, we observe reduced numerical precision and incorrect
benchmark output, likely due to usage of x87 floating-point registers from increased
register pressure.

CPI fails to redirect all loads and stores of each control-flow pointer to the safe store,
causing infinite loops and crashing upon execution of NULL pointers. It also consumes
significant memory–the safe store is allocated 4 TB of huge-page-backed virtual memory,
and was originally evaluated with 512 GB physical memory. To avoid memory-related
crashes, we eventually preallocated 16 GB physical memory for huge pages.

3.4.2. Effectiveness. We demonstrate effectiveness of each CFI design using the RIPE [196]
test suite, which contains hundreds of buffer overflow exploits. Because all programs
were compiled as 64-bit binaries, we use RIPE64 [154], a port that also adds 100 exploits.
For all experiments, we disable program layout randomization, and under HerQules,
we also disable enforcement of system call synchronization for execve, because RIPE
verifies exploits directly using system calls in binary shellcode.

Table 3.4 shows that no exploits succeeded under CCFI and HQ-CFI-RetPtr, whereas
the safe stack is vulnerable to certain exploits, as RIPE emulates disclosure attacks by us-
ing a compiler built-in to directly retrieve return pointer addresses. This affects HQ-CFI-
SfeStk, Clang/LLVM CFI, and CPI, which use a safe stack; however, the Clang/LLVM
implementation adds additional guard pages between the safe and unsafe stacks, which
prevents 10 linear overwrite attacks. In addition, Clang/LLVM CFI is vulnerable to 160

return-to-libc code-reuse attacks due to lower design precision.
Initially, we were surprised to discover policy violations for the CPU2006 and CPU2017

benchmarks under HQ-CFI. It turns out that two omnetpp benchmarks suffer from use-
after-free bugs caused by a subtle static initialization order problem, because initialization
and destruction of static objects across compilation units occurs in undefined order. We
note that this bug type has persisted despite over 11 years of continuous development,
as both benchmarks correspond to different versions of the OMNeT++ simulator [187].
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Figure 3.2. Relative performance of HQ-CFI using various IPC primitives,
sorted on HQ-CFI-SfeStk-Model (left to right), on SPEC CPU2006, SPEC
CPU2017, and NGINX. Suffix ‘+’ denotes C++.

We have reported these bugs in CPU2017 to SPEC, but no changes are planned, and
CPU2006 has been retired.

3.4.3. Performance. On SPEC CPU2006 and CPU2017, we measure execution time
of the ref input dataset, unless noted otherwise. On the NGINX web server, we measure
request throughput using wrk [79] for 60 s. We report relative performance by computing
the arithmetic mean of 3 runs, and show standard deviations using error bars.

3.4.3.1. IPC Primitives. Using HQ-CFI, we quantify the overhead of each IPC primi-
tive across our performance benchmarks.

Software vs. Hardware: In Figure 3.2, we compare hardware-based AppendWrite
against the fastest suitable software primitive from Table 3.1 – POSIX message queues
(HQ-CFI-SfeStk-MQ). We observe that software-based IPC suffers from significant sys-
tem call overhead, resulting in a geometric mean performance of only 39%. In compari-
son, AppendWrite-FPGA (HQ-CFI-SfeStk-FPGA) and our software-only model of AppendWrite-
µarch (HQ-CFI-SfeStk-Model, described below) are much faster.

We observe that HQ-CFI-SfeStk-FPGA has a geometric mean performance of 62%,
due to processor stalls caused by uncached stores and PCIe bus overhead. Writes to
MMIO registers must be written out immediately from cachelines using partial writes
of up to 8 bytes, which traverse the uncore to become transaction layer packets (TLPs) on
the PCIe bus. These occupy store buffer entries until retirement and increase memory
pipeline pressure by taking longer compared to cacheable writes. PCIe relies on pipelin-
ing of TLP requests with out-of-order responses to maximize bandwidth, but we must
transmit each message immediately as a posted TLP write request with inline payload,
adding bus overhead. Buffering smaller writes into 64-byte PCIe burst transactions via
hardware write-combining is not currently supported by the Intel PAC.

Although HQ-CFI-SfeStk-Model should not actually be deployed because it lacks
hardware enforcement of append-only messages, it does provide a lower-bound esti-
mate of actual performance, and achieves a geometric mean of 87%. On each Append-
Write, it fetches, checks, and increments an AppendAddr variable in shared memory, and
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Figure 3.3. Relative performance of HQ-CFI using AppendWrite-µarch on
the train input for SPEC CPU2006 and CPU2017. Suffix ‘+’ denotes C++.

waits for the verifier if the message buffer is full. Because these operations are per-
formed by software, it has higher overhead than an actual hardware implementation of
AppendWrite-µarch.

Model vs. Simulator: In Figure 3.3, we compare the performance of two AppendWrite-
µarch implementations: our software-only model (HQ-CFI-SfeStk-Model-Train) and a
simulation of our actual design (HQ-CFI-SfeStk-Sim-Train). Unlike our other experi-
ments, we use the smaller train SPEC dataset to allow the simulator to complete execu-
tion within a reasonable amount of time, and measure total simulated processor cycles
across one run. We execute our experiments under ZSim [156], a microarchitectural
simulator with an out-of-order core model that is configured to resemble our actual
processor. All benchmarks run to completion (maximum 760 × 109 instructions), but we
omit NGINX because it is I/O-focused and dominated by system calls.

Our numbers show geometric mean performances of 78% and 86%, respectively,
for HQ-CFI-SfeStk-Model-Train and HQ-CFI-SfeStk-Sim-Train. Actual performance of
microarchitecture-based AppendWrite will be between these measurements, as HQ-CFI-
SfeStk-Model incurs shared memory overhead and waits for the verifier if the buffer is
full, whereas HQ-CFI-SfeStk-Sim measures userspace cycles and excludes time spent in
system calls.

On HQ-CFI-SfeStk-Model, we observe a -9% change in performance between the ref
and train SPEC inputs. Because ref is much longer and executes a different workload,
the overhead of each AppendWrite instruction has less impact on benchmark execution.

3.4.3.2. CFI Designs. In Figure 3.4, we compare the performance of HQ-CFI-SfeStk-
Model and HQ-CFI-RetPtr-Model against related work. We omit measurements for
benchmarks that encounter errors or produce invalid output, but not if only false posi-
tives are emitted.

On SPEC, we measure geometric means of 88%, 55%, 94%, 49%, and 96%, respec-
tively, for HQ-CFI-SfeStk-Model, HQ-CFI-RetPtr-Model, Clang/LLVM CFI, CCFI,
and CPI. However, the performance of CPI and CCFI is likely skewed upwards, because
we exhibit slowdowns on similar benchmarks, but of our 14 slowest benchmarks, CPI and
CCFI crash on 5 and 9 benchmarks, respectively, and were thus excluded from the geo-
metric means for those designs. On NGINX, we observe similar trends, measuring 79%,
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Figure 3.4. Relative performance of various CFI designs, sorted on HQ-
CFI-SfeStk-Model (left to right) for SPEC CPU2006, SPEC CPU2017, and
NGINX. Suffix ‘+’ denotes C++.

62%, 97%, 78%, and 96%, respectively. Overall, on our fastest design, HQ-CFI-SfeStk-
Model, we measure a geometric mean of 87.4% performance, or 14.4% overhead, across
both SPEC and NGINX.

In general, these results match our expectations, as Clang/LLVM CFI trades preci-
sion for performance, CCFI uses expensive cryptography, and CPI relocates control-flow
pointers to the safe store, which imposes little overhead. Nevertheless, individual bench-
marks can differ; for example, HQ-CFI-SfeStk-Model beats Clang/LLVM CFI by +36%
on mcf_s, and CPI by +7% on sphinx3, which we credit to our optimizations. HQ-CFI-
RetPtr-Model is typically slower, with a difference of up to -72% on gcc_s, although
other benchmarks do remain unchanged or even increase slightly, such as namd and
lbm_s. Frequent execution of recursive functions, or functions with significant stack-
allocated pointers, can cause this performance discrepancy. Other benchmarks perform
well under all designs, because they lack significant indirect control-flow.

3.4.4. Scalability. Our control-flow integrity case study shows that HerQules achieves
scalable policy enforcement. We observe that across our SPEC and NGINX bench-
marks on a per-benchmark basis, AppendWrite is used to transmit a median of 1.4 × 103

messages per second and a geometric mean of 14 messages per second. The maximum
is 53 × 103 messages per second by the h264ref benchmark, which achieves 77% relative
performance under HQ-CFI-SfeStk-Model. For total messages, we measure a maximum
of 4.76 × 109 messages by the xalancbmk benchmark.

In Figure 3.5, we show a breakdown of messages by type across all SPEC benchmarks
for HQ-CFI-SfeStk, on a log-scale plot. Of these, 79% are Pointer-Check messages, and
15% are Pointer-Define messages, with Pointer-Invalidate and Pointer-Block-Copy

messages amounting to 3% and 2%, respectively. All remaining messages types are neg-
ligible but non-zero, with the exception of Pointer-Check-Invalidate, which are only
sent by HQ-CFI-RetPtr. A total of 60.5 × 106 messages are sent across all benchmarks.

3.4.5. Other Metrics. In terms of memory overhead, on a per-benchmark basis, the
verifier maintains a maximum of ∼3 × 106 entries, with a median of 285 entries and an
arithmetic mean of 221 × 103 entries. Each entry is a 16-byte pointer-value pair. This
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Figure 3.5. Total benchmark messages by type.

FPGA Kernel Compiler IPC Interfaces Runtime Verifier

1250 1100 3350 900 350 750

Table 3.5. Size of HerQules, in approximate lines of code.

includes 14 benchmarks with zero entries, which lack control-flow pointers needing
protection.

In Table 3.5, we show a breakdown of each HerQules component in terms of lines
of code. We exclude autogenerated Verilog for our FPGA and existing software-based
primitives for our IPC interfaces. Most components are fairly small, with the bulk of our
compiler implementation consisting of optimizations.

3.4.6. Discussion. Table 3.2 provides a qualitative overview of various considera-
tions for deploying control-flow integrity, and the trade-offs made by each design. It
shows that if the precision of pointer integrity with safe stack is acceptable, HQ-CFI-
SfeStk-Model offers better correctness, similar performance, and includes use-after-free
detection, when compared to CPI. Alternatively, for fully-precise pointer integrity, HQ-
CFI-RetPtr-Model offers better correctness, significantly faster performance, and in-
cludes use-after-free detection, when compared to CCFI. Otherwise, if performance is
critical, Clang/LLVM CFI is fastest and maintains program correctness, but may emit
false positives from unreliable type matching.

As a research prototype, HQ-CFI is not fully optimized. Potential future improve-
ments include modifying the kernel directly to eliminate dynamic interception over-
head (§3.2.3), eliding synchronization for read-only system calls, and eliminating mes-
sages on block-level memory operations that do not contain control-flow pointers. For
example, a bitvector or other data structure could be used to track the presence of
control-flow pointers, which would allow certain block memory messages to be elided at
runtime. Note that this does not affect the security of our design, because it only permits
false positives by an attacker.
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3.5. Summary

In this chapter, we develop HerQules as a framework for efficiently enforcing integrity-
based execution policies. By adding a simple AppendWrite IPC primitive to an FPGA-
based accelerator or the microarchitecture, we are able to maintain an append-only mes-
sage log of program events. We use bounded asynchronous validation to perform policy
checking asynchronously with program execution, while preventing compromised pro-
grams from affecting externally-visible side effects. Our control-flow integrity case study
demonstrates that our approach is more correct, effective, and performant than other
designs, and adds detection of use-after-free bugs on control-flow pointers. In addition,
HerQules supports concurrent message ordering and bidirectional communication, as
well as other policies like memory safety, data-flow integrity, memory tagging, etc.
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CHAPTER 4

Extending Program Integrity Protections to Browser Data

On mobile and desktop platforms alike, the web browser has become the most
frequently-used application by billions of users around the world. Under the hood,
even many seemingly-native applications are actually web-based, and rely on embed-
ded browser web views or rendering frameworks for ease of development, e.g., Atom,
Discord, Slack, etc. As a result, security of the web browser (§2.6) is pivotal in isolating
sensitive local data from untrusted remote content.

However, modern web browsers are mostly written in unsafe languages like C and
C++. Analysis of past security vulnerabilities in Microsoft [129] and Google Chrome [1]
codebases has shown that ~70% involve memory-safety bugs. Past work has developed
various mitigations for memory-safety bugs, ranging from address-space partitioning
(§2.2) to control-flow integrity (§2.4). Many of these are now widely deployed, whether
in hardware (e.g., Intel Control-Flow Enforcement Technology [7] [CET], ARM Branch
Target Identification [82]), or in software. For example, Google Chrome on Linux is pro-
tected with Clang/LLVM [48] control-flow integrity, and development builds are tested
with fuzzing and memory safety sanitizers [161, 162, 172]. Similarly, Google Chrome on
Windows protects [80] return addresses with Intel CET shadow stack (§2.4.3). Neverthe-
less, non-control-data attacks [38, 44, 96, 97, 158] have shown that existing protections
are insufficient, because memory corruption of non-control data can still affect program
behavior.

Data-flow integrity [39] (DFI) mitigates these attacks by checking non-control data at
runtime, much like control-flow integrity does for control data. Kenali [168] used it to
protect kernel access-control data, and HDFI [169] implemented it in hardware for im-
proved performance. Traditionally, it uses a static reaching definitions analysis to identify
valid definitions of each variable, and dynamic instrumentation to update and check a
runtime definitions table at affected memory stores and loads, respectively. Unfortunately,
this approach (i) uses software fault isolation (§2.2.2) to protect the definitions table, which
requires instrumenting all dynamically-loaded libraries, (ii) fails to distinguish between
accesses to distinct fields of product types due to a lack of field-sensitivity, and (iii) relies
on inefficient and inherently undecidable [150] pointer alias analysis that can produce
false negatives. As a result, it is unclear if this approach can be effectively general-
ized to programs written in languages other than C, such as C++, because classes are
fundamentally composite types.

In HerQules-DeiFIed, we propose an improved data-flow integrity approach that re-
solves these weaknesses, much like pointer integrity does for control-flow integrity. These
improvements are twofold: first, instead of using static analysis to partition variable ac-
cesses, we track runtime memory values, which avoids the imprecision of pointer alias
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analysis. Second, instead of storing metadata in-process using software fault isolation,
we leverage emerging work on hardware-based instruction monitoring to transmit meta-
data to a separate verifier process that performs asynchronous policy checks. Unlike past
work, our approach is the first to generalize to existing programs written in both C and
C++, and includes a pre-annotated C++ standard library that provides drop-in protec-
tion for Standard Template Library (STL) data structures. We use our design to protect
sensitive browser data in the open-source Google Chromium web browser, and also ex-
plore replacement of the internal Mojo IPC primitives used by both Google Chrome
and Mozilla Firefox with our microarchitectural append-only ones. Our results demon-
strate that HerQules-DeiFIed is feasible and has minimal overhead, with a geometric
mean relative performance of 78% on browser benchmarks when used in conjunction
with control-flow integrity. In comparison, prior DFI work [40] reported 104% average
overhead on the SPEC CPU2000 benchmarks.

We summarize our contributions below:
• We develop HerQules-DeiFIed, a new DFI approach without pointer analysis that

uses hardware-based instruction monitoring (§4.2.2) to generate precise runtime software-
defined events when security-sensitive data is accessed (§4.2.3);

• We perform asynchronous policy checking in a separate verifier process before sys-
tem call boundaries, which we extend from HerQules (§3.1.2) to support multiple
processes and threads;

• We provide a simple and reusable language-based annotation mechanism that identi-
fies sensitive data for automatic instrumentation, which includes a pre-annotated C++
standard library (§4.2.3.1);

• We protect sensitive data in the Google Chromium web browser (§4.2.4) with minimal
performance and usability overhead, significantly raising the bar for browser security
exploits, mitigating real Chromium security bugs (§4.4);

• We release our full system as open-source at https://github.com/secure-foundations/
herqules, and our modifications to the Google Chromium browser at https://github.
com/ddcc/chromium.

4.1. Motivation

Given the complexity and attack surface of web content, many web browsers rely on
a layered security design. Compiler-based security mitigations like stack protection and
control-flow integrity help protect unsafe code written in C and C++. Language-based
checking eliminates certain memory-safety bugs, and Mozilla Firefox has begun rewrit-
ing [8] unsafe browser components into Rust, though this is still uncommon. In terms of
software architecture, individual browser components are isolated [18, 152] into separate
processes, which operate at different levels of trust and communicate with each other
using inter-process communication (IPC). Trusted processes, such as the browser process,
store user data and enforce content security policies, whereas untrusted processes are
sandboxed and assumed to be compromised. These untrusted processes include renderer
processes that host the JavaScript engine and interact with web content, as well as utility
processes that interface with the GPU, network, plug-ins, storage, etc. Site isolation [152]
further restricts the scope of renderer processes to specific site origins, which limits the

38

https://github.com/secure-foundations/herqules
https://github.com/secure-foundations/herqules
https://github.com/ddcc/chromium
https://github.com/ddcc/chromium


4.2. DESIGN

exposure of a potential compromise. As a result, achieving a full system exploit typically
requires a combination of at least two different bugs: one to compromise a sandboxed
process, and another to escape the sandbox.

In HerQules-DeiFIed, we significantly raise the bar for these exploits by developing
a data-flow integrity design that protects security-sensitive data in all web browser pro-
cesses. A simple compile-time annotation is used to mark data for automatic runtime
protection. We identify two categories of browser data that should be protected; namely,
internal browser security data and private user data, for which we supply Chromium an-
notations. All told, we annotate 244 different variables and 38 different source classes
(§4.2.4), as the breakdown of these annotation variables and classes in Table 4.1 shows.
Our runtime protection prevents attackers from corrupting browser data that is needed
to exploit or expose past security bugs (§4.4.1).

4.2. Design

We design our data-flow integrity approach around a hardware-based AppendWrite
primitive that transmits software-defined runtime events whenever sensitive program
data are accessed, and we asynchronously check these events in a separate verifier pro-
cess before system calls. We describe our threat model in §4.2.1, our system architecture
in §4.2.2, our data-flow integrity protections in §4.2.3, and our browser data protections
in §4.2.4, and finally our Mojo IPC improvements in §4.2.5.

4.2.1. Threat Model. Our approach protects the integrity, but not confidentiality, of
sensitive program data. We assume that applications begin execution in a benign state,
but may contain bugs that allow attackers to read or write arbitrary process memory,
including side-channel attacks. However, writes are subject to page table permissions,
which prevents modification of read-only code or data, and no modification of processor
registers is permitted. We also assume that applications are already protected with
control-flow integrity, and that the operating system enforces appropriate kernel security
boundaries.

4.2.2. System Architecture.
4.2.2.1. Maintaining Security Metadata. To improve precision, security mitigations main-

tain metadata about program execution. For example, control-flow integrity can add
context sensitivity by tracking runtime call paths [61, 75, 85, 124, 137, 186]. However,
this trades off between effectiveness and performance, because metadata must also be
protected from unintended access. Many past software-based approaches rely on in-
process memory partitioning, using information hiding (§2.2.1) or software fault isolation
(§2.2.2), but can be defeated by disclosure attacks or are incompatible with existing
dynamically-loaded libraries.

Instead, emerging hardware-based instruction monitoring designs (§2.3) focus on
software-defined events, which can be generated precisely where needed, and only re-
quire hardware event logging support. Event processing can also occur asynchronously
before, e.g., the next system call, instead of the next instruction. These designs include
the PTWRITE extension to Intel Processor Trace [7], and the AppendWrite primitive from
HerQules [42] (§3.1.3). We identify the need for an abstract AppendWrite operation that
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Class Name Instances Depth Aggregated Datatypes

ClientSecurityState 4 0 bool, CrossOriginEmbedderPolicy, IPAddressSpace,
PrivateNetworkRequestPolicy

Component 2 0 int
CrossOriginEmbedderPolicy 4 0 string, CrossOriginEmbedderPolicyValue
CrossOriginOpenerPolicy 4 0 string, CrossOriginOpenerPolicyValue
GURL 4 0 bool, string, unique_ptr, Parsed
OptionalStorageBase 1 0 bool
Parsed 10 1 bool, Parsed*, Component
StructPtr 1 0 unique_ptr
Time 1 0 int64_t

Address 7 1 string, string16, vector
CanonicalCookie 12 0 bool, string, CookiePriority, CookieSameSite,

CookieSourceScheme, Time
ChildProcessSecurityPolicyImpl 13 2 bool, int, map, unique_ptr, vector, BrowserContext*,

ResourceContext*, BrowsingInstanceId, FileSystemType,
GURL, IsolatedOriginSource, Optional

CommandLine 5 1 map, string, vector, CommandLine*
CompromisedCredentials 4 0 string, string16, CompromiseType, Store
CookieManager 2 0 unique_ptr, CookieStore*
CookieMonster 10+ 2 bool, size_t, map, multimap, set, string, unique_ptr, vector
CookieSettings 4 1 bool, set, string
CorsURLLoaderFactory 11 2 bool, int32_t, set, unique_ptr, Optional,

OriginAccessList*, TrustTokenRedemptionPolicy
CredentialInfo 4 1 string16, CredentialType, Optional
CreditCard 7 0 int, string, string16, RecordType
EmailInfo 1 0 string16
Feature 2 0 char*, FeatureState
FeatureList 4 1 bool, map, string, FeatureState
IsolationInfo 4 0 bool, Optional, RedirectMode
NavigationRequest 4 2 bool, ClientSecurityStatePtr,

OptInOriginIsolationEndResult, Optional,
WebSandboxFlags

Origin 1 1 Optional
OriginAccessEntry 9 0 bool, uint16_t, string, CorsDomainMatchMode,

CorsPortMatchMode, CorsOriginAccessMatchPriority
OriginAccessList 1 3 map, string, vector, MapType
PasswordForm 13 0 string, string16, GURL, Scheme, Store,

SubmissionIndicatorEvent, Type
PhoneNumber 5 0 string16
RenderFrameImpl 2 0 bool, int
RenderViewImpl 1 0 int32_t
SchemeHostPort 3 0 uint16_t, string
SecurityState 9 2 bool, int, map, set, string, BrowsingInstanceId,

CommitRequestPolicy
SiteForCookies 1 0 bool
SiteInfo 4 0 bool, GURL
SiteInstanceImpl 12 0 bool, int32_t, size_t, RenderProcessHost*,

ProcessReusePolicy, AgentSchedulingGroupHost*,
SiteInstanceProcessAssignment, GURL

WebUIImpl 1 0 int

Table 4.1. Breakdown of protected per-class data in Chromium, show-
ing total variable instances, max template expansion depth, and aggre-
gated datatypes. These are split between custom datatypes (top) and other
classes (bottom).
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can reliably append events to an otherwise-immutable memory buffer, which must sat-
isfy the following functional properties that are not fully-supported by past work:

(1) each processor core can be configured with an event buffer;
(2) each event transmits a user-defined message of specified length;
(3) events are appended atomically; and
(4) the event buffer is otherwise immutable for the transmitting core.

4.2.2.2. Bounding System Calls. Execution events are transmitted using AppendWrite
from protected applications to a separate verifier process, which implements our data-flow
integrity policy, as shown in Figure 4.1. These events are sent before certain memory
operations, and may contain evidence of data corruption. Because violations may not
be detected immediately, we establish a security boundary at system calls to prevent
a compromised application from performing malicious behavior. This is a common
approach used by past work; e.g., for control-flow integrity [61, 75, 85, 124, 186] or taint
tracking [53, 200].

However, unlike past work, our kernel module pauses execution of all system calls
from protected applications until our verifier confirms that no checks have failed. This
provides more comprehensive protection than protecting only system calls deemed to
be high risk a priori. To avoid imposing a round-trip on each system call, we rely on
bounded asynchronous validation from HerQules (§3.1.2), which we extend to support
multiple processes and threads. Protected applications transmit a special System-Call

event before system calls, which indicates to the verifier that no events remain before
the next system call (step 4). Processing of this event is pipelined against the privilege
transition of the system call, which minimizes overhead (steps 5–6). Applications must
already be compromised to forge this event, which would be detected earlier by control-
flow integrity or our data-flow integrity checks.

4.2.2.3. Supporting Multiple Threads. Our design must support complex applications,
like web browsers, that have a multi-threaded and multi-process architecture, whereas
HerQules (§3.1) does not. Within a multi-threaded process, each thread executes inde-
pendently, but all threads share the same address space. One possible messaging design
could allocate a unique per-thread event buffer, but this would impose significant mem-
ory overhead and require an ordering mechanism for global events. Instead, we synchro-
nize system calls individually for each thread using a unique per-process event buffer,
which provides implicit event ordering. Every System-Call event contains the identifier
of the transmitting thread, so that the verifier and kernel know which thread to resume
if no checks fail. However, retrieving thread identifiers typically involves a system call,
which presents a recursive problem. A naive solution could place the gettid system call
on an allowlist, and execute it before transmission of each System-Call event, but this
would effectively double the program’s system calls.

Instead, we observe that these identifiers are already cached within thread-local storage
by many C runtime libraries, and retrieved by the gettid library function. Using this
value directly would be unsafe, because the underlying address space is shared across
all threads and potentially vulnerable to memory corruption. We protect cached thread
identifiers with our data-flow integrity mechanism (§4.2.3), which involves transmitting
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2. Notify: monitor PID 1
8. Notify: fork PID 1 to 2
10. Notify: monitor PID 2

System-Call(1)
Value-Check(&tid, 1)

System-Call(1)
Value-Check(&tid, 1)

System-Call(1)
Value-Check(&tid, 1)

System-Call(1)
Value-Check(&tid, 1)

4. Events:
Value-Check(&tid, 1)

System-Call(1)

6. Approve system call

7. Fork process
9. Enable DeiFIed

11. Map event buffer

1. Enable DeiFIed
5. Call fork() 3. Map event buffer

Figure 4.1. Overview of event processing, system call checking, and thread
identifier protection under HerQules-DeiFIed, depicting behavior at fork.

Value-Define and Value-Check events immediately after each update and load, re-
spectively. We show this design in Figure 4.1, where the verifier checks that the value 1
of tid matches the most recent Value-Define for the &tid address (step 4).

One potential issue with a shared event buffer is whether concurrent AppendWrite op-
erations could incur a data race or be reordered. For example, suppose that two program
threads each overwrite the same protected memory location and transmit correspond-
ing events. Partial event transmission cannot occur because the AppendWrite primitive
is atomic, but event reordering is possible. Nevertheless, observe that if these protected
memory operations are regular (i.e., not synchronization), then events can be reordered
if and only if these operations could also be reordered–namely, iff the original program is
not data-race-free. Thus, with respect to data race freedom of regular memory accesses
under HerQules-DeiFIed, a protected program is as correct as the original program.
However, one caveat is that under the x86-TSO [163] memory consistency model, if
the protected memory operations are atomic, then our instrumentation must introduce
additional synchronization, e.g., using Intel Transaction Synchronization Extensions [7]
(TSX) memory transactions. Otherwise, concurrent execution of two sequential atomic
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memory operations on two threads may be interleaved, which could reorder event trans-
mission.

4.2.2.4. Supporting Multiple Processes. On POSIX systems, applications use the fork-
join parallelism model to spawn a duplicate copy of the current process. However, child
processes of protected processes must also be protected, but event buffers cannot be
shared across multiple processes. We resolve this problem by having the kernel return a
unique event buffer for the caller when HerQules-DeiFIed is enabled, and by marking
event buffers as non-copyable memory regions. Protected child processes must thus im-
mediately re-enable HerQules-DeiFIed after calling fork, as shown in Figure 4.1 (steps
7–11), otherwise they will be suspended at system calls yet unable to transmit events.
Conversely, we disable HerQules-DeiFIed when a protected process calls execve, be-
cause it is replaced in-situ by a new program that may not be protected.

We design our verifier program to scale with multiple concurrent protected processes
and event buffers. Rather than iteratively polling on each event buffer, which would
occupy an entire processor core, we utilize fast userspace mutexes (futexes) to wake the
verifier only when an event buffer is modified. Protected processes must notify the
kernel of new events by executing the futex system call after AppendWrite, in order to
wake the verifier. To minimize protection overhead of this system call, which is also used
by e.g., pthreads to implement synchronization primitives like mutexes and condition
variables, we allowlist (§4.3.1.1) futex in HerQules-DeiFIed. This does not affect the
security of our design, because futex can only be used to suspend the current thread or
wake up other threads, and it already permits spurious wake-ups.

4.2.3. Data-Flow Integrity. Data-flow integrity [39] protects the value of non-control
data at runtime. We do so using AppendWrite, which avoids imprecise static analy-
sis, much like pointer integrity for control-flow integrity (§ 2.4). Events are transmitted
whenever protected data may be loaded or stored, and a memory corruption violation oc-
curs whenever loaded values do not match the last valid stored value at that address.
By generating events whenever protected data goes out-of-scope, we can also detect
use-after-free violations at subsequent accesses. If a violation is detected, we immediately
terminate the corresponding process and stop processing its events, though this can be
configured. We describe the semantics of our events below:
• Value-Define(a, v): Initialize a variable at address a with value v.
• Value-Check(a, v): Validate that the variable at address a with current value v

matches its previous definition. If not, this variable is corrupt or a use-after-free.
• Value-Invalidate(a): Remove the variable at address a.
• Object-Define(a, sz, v...): Initialize an object at address a of size sz with correspond-

ing values v.
• Object-Check(a, sz, v...): Validate that the object at address a of size sz with cor-

responding values v match its previous definition. If not, this object is corrupt or a
use-after-free.

• Object-Invalidate(a, sz): Remove the object at address a of size sz.
• Block-Copy(src, dst, sz): Copy all data from address range[src, src + sz) to [dst,

dst + sz). These ranges may intersect, and pre-existing data in the destination will be
invalidated. This matches the behavior of memcpy.
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1 #include <dfi>
2

3 DFI<std::map<std::string, std::pair<int, bool>>> kv1;
4 std::map<std::string, std::pair<int, bool>> kv2;
5

6 static_assert(std::is_same_v<decltype(kv1), std::dfi_map<std::dfi_string,
std::pair<std::dfi_wrap<int>, std::dfi_wrap<bool>>>>);↪→

Listing 4.1. Two instances of a hash table data structure; one (kv1) anno-
tated and protected by data-flow integrity, the other (kv2) is not.

• System-Call(tid): Allow the proximate system call from thread tid once all prior
events have been processed.

4.2.3.1. Sensitive Data. We rely on manual annotations to identify sensitive data, and
provide automatic compiler-based instrumentation to generate runtime events. Deter-
mining whether program data is security-sensitive depends on its semantic usage, and
not necessarily its language-level characteristics, e.g., type signature. As a result, in large
programs where full context-sensitive inter-procedural analysis is infeasible, it would
be difficult to distinguish between multiple seemingly-identical variables that each may
not be security-sensitive. In addition, non-trivial data structures and objects may con-
tain internal pointers to heap-allocated data that need to be recursively protected. This
resembles the garbage collection problem, which must identify root references to all live
objects.

Kenali [168] used domain-specific heuristics to automatically identify access-control
data in the Linux kernel, but this does not generalize to arbitrary programs in terms
of precision and scalability. General-purpose applications, including web browsers, do
not treat security-sensitive data uniformly, in terms of error handling and return values.
Kenali also relies on a slow points-to analysis that runs in about an hour [167], and
produces a 28% false positive rate on a compressed kernel of ~7 MiB, whereas a com-
pressed uninstrumented web browser is typically an order of magnitude larger (e.g., the
compressed Chromium binary measures ~81 MiB, excluding shared libraries).

We distinguish between protected and unprotected data by separating out protected
instances into new language-level datatypes that contain annotations on protected in-
ternal data. Due to the need for runtime event messaging, protected and unprotected
datatypes cannot share the same implementation. If pointers or references to individual
instances are passed into other functions, then those functions will select the appropri-
ate implementation based on the type signature. This ensures compatibility with object-
oriented language features like class membership, inheritance hierarchies, and dynamic
dispatch, which are common in real-world programs. In addition, the one definition rule
for C++ [9] states that all definitions of the same datatype must be equivalent, because
compilation units are normally translated individually, then subsequently combined and
deduplicated by the linker.

To simplify the annotation process, we provide (A) a native wrapper class to protect
primitive datatypes, (B) pre-annotated datatypes for the C++ Standard Template Library
(STL), and (C) a pre-defined DFI annotation that maps unprotected datatypes to their
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1 template <typename T>
2 class dfi_wrap final {
3 T __attribute__((annotate("dfi"))) data;
4

5 operator T&() & noexcept { return data; }
6 operator const T&() const& noexcept { return data; }
7 };

Listing 4.2. Simplified wrapper class that identifies protected data for
data-flow integrity instrumentation.

protected equivalent. C handles generic datatypes by recursing via type substitution at
template expansions. A–C minimize manual effort, and HerQules-DeiFIed automati-
cally transforms and protects these specific annotated datatype instances.

We show a concrete example of this in Listing 4.1, which depicts two instances of a
hash map data structure that maps strings to (integer, boolean) pairs. Annotations of
each type are shown: dfi_wrap (A, line 6), dfi_map and dfi_string (B, line 6), and DFI
(C, line 3). Only one instance, kv1 (line 3), is annotated for protection, whereas kv2 (line
4) is not. Our wrappers automatically transform the datatype of the kv1 to be recur-
sively protected, as shown by the datatype equivalence assertion (line 6). Observe that
primitive datatypes are wrapped by our dfi_wrap class, whereas other STL datatypes
are transformed to their protected equivalents; e.g., dfi_map, dfi_string, etc.

4.2.3.2. Compiler Instrumentation. Our wrapper class simply labels protected data with
a special compiler attribute (line 3), as shown in Listing 4.2. This is recognized by our
Clang/LLVM compiler instrumentation pass, which inspects accesses to each instance,
and generates runtime calls to transmit events. We include built-in conversion operators
(lines 5–6) to permit implicit data access with minimal source code change. Programs
written in C can also apply this attribute directly to protected data.

• Store(a, v): Value/Object-Define(a, v).
• Load(a, v): Value/Object-Check(a, v).
• Call(f, a...): Value/Object-Define(a, v) and/or Value/Object-Check(a, v).
• MemCpy(src, dst, sz): Block-Copy(src, dst, sz).
• Destructor(a) or Lifetime-End(a): Value/Object-Invalidate(a).
• Inline-Asm(syscall): System-Call(gettid()).

Events are generated based on the type of each access to protected data, as shown for
a selected example in Listing 4.3. We insert Define and Check events immediately after
Store and Load instructions (lines 8, 10), respectively, and select between the Value

and Object variants based on whether the access granularity is less than or equal to
the processor’s word size. Since our analysis is not inter-procedural across compilation
units, we conservatively generate additional events when references to protected data
escape through function calls. This approach maximizes compatibility by preserving
existing type signatures, but it does permit a potential race against execution of the
Define event after returning. At each call site, we inspect the callee attributes and type
signature, to determine whether each argument is statically-known to be readable or
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1 class RenderFrameImpl {
2 DFI<int> bindings_ = 0;
3

4 public:
5 void AllowBindings(int32_t flags) {
6 // enabled_bindings_ |= flags;
7 auto Arg = enabled_bindings_;
8 AppendMsg(VALUE-CHECK, &enabled_bindings_, Arg);
9 Arg |= flags;

10 AppendMsg(VALUE-DEFINE, &enabled_bindings_, Arg);
11 }
12 };

Listing 4.3. Selected browser code that modifies protected data. Compiler
instrumentation automatically inserts the register variable Arg and calls to
AppendWrite.

writable. Then, we generate Check events before each may-read escape, and Define

events after each may-write escape.
In the event that the callee is a memory copy function (i.e., memcpy), we instead

generate the Block-Copy event immediately afterwards, in order to inform the verifier
that protected data has been copied. We also check all other calls to memory copy
functions, and generate similar runtime events if either the source or destination have
type signatures that contain protected data. Additionally, to detect use-after-free bugs,
we generate Invalidate events when protected data goes out-of-scope, which occurs
after calls to C++ object destructors, or when the lifetime of stack-allocated data ends.

Finally, as with HerQules (§3.2.2), we insert System-Call events before inline as-
sembly statements that perform system calls.

4.2.4. Browser Protection. We apply our data-flow integrity protections to the open-
source Google Chromium web browser. Certain browser information, identified as
security-sensitive program data, is protected in all processes. Although by no means com-
plete, we broadly classify this data into two distinct categories: (1) security information,
which is used to enforce the browser’s internal security model, and (2) private informa-
tion, which includes user data. Both types of data are protected from corruption, though
we do not protect the confidentiality of private data (§4.2.1). Below, we summarize these
datatypes, which are shown in detail in Table 4.1:
• command-line arguments, which configure browser features at startup;
• feature flags, which configure browser features at runtime;
• content security policies, which includes site isolation parameters and access control

lists for policies like cross-origin resource sharing (CORS), cross-origin embedder pol-
icy (COEP), and cross-origin opener policy (COOP);

• process permissions, which track sandbox capabilities for child processes;
• script bindings, which expose browser components to JavaScript, including the Mojo

IPC interface (MojoJS);
• site origins, which identify unique sites via their scheme, host, and port components;
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• parsed URLs, which represent canonicalized uniform resource locators (URLs);
• cookies, which store site-specific user information; and
• form data, which records identifying user information, including addresses, credit

card numbers, emails, phone numbers, and passwords.

4.2.5. Generalized IPC. We also observe that AppendWrite can be used to improve
browser IPC performance, and begin by describing the existing Mojo IPC framework.
Both the Chrome and Firefox web browsers use Mojo to communicate between iso-
lated processes, which may be sandboxed and unable to directly access the filesystem.
Messages can be routed through intermediate nodes, and each endpoint is identified
by a randomly-generated node name and port name. Message channels between end-
points can be transmitted over other channels, effectively allowing replacement of one
endpoint with another. On POSIX-based systems, these are implemented using bidirec-
tional UNIX-domain socket pairs, which use ancillary SCM_RIGHTS data to transmit file
descriptors, and automatically close if either process terminates. Messages are received
and sent using the recvmsg and sendmsg system calls, which incur overhead by copy-
ing both ordinary and ancillary message data from user-space to kernel-space and vice
versa.

In HerQules-DeiFIed, we replace sockets with AppendWrite, which eliminates the
overhead of copying message data between kernel- and user-space, by writing it directly
to user-space shared memory. However, since AppendWrite is a uni-directional IPC prim-
itive, whereas sockets are bi-directional, our design must bootstrap bi-directional com-
munication by performing a two-way handshake at creation. Initially, both endpoints
are connected only by a uni-directional IPC channel, so the transmitter must allocate
and send a transmit buffer for the receiver. Then, the receiver can initialize this buffer
for its transmissions in the opposite direction.

Nevertheless, shared memory doesn’t support other features used by Mojo, includ-
ing transmission of message channels and detection of process termination. We extend
the kernel with file descriptor FIFO queues, which allow transmission of arbitrary file de-
scriptors over other file descriptors, including those that back shared memory-mapped
regions. We also repurpose robust mutexes to detect process termination, which rely on
the kernel to automatically unlock shared mutexes when the owning process dies. To
support an event-based messaging abstraction, we rely on futexes to efficiently wait on
multiple concurrent shared memory message buffers.

4.3. Implementation

4.3.1. System Architecture. As discussed in Section 4.2.2, HerQules-DeiFIed targets
platforms with an emerging AppendWrite hardware primitive that satisfies four func-
tional properties. Currently, we are unable to implement AppendWrite directly (§3.2.1),
or emulate it using PTWRITE [7], due to limitations in availability and/or functionality.
The PTWRITE instruction is only commercially-available in the low-power embedded
Gemini Lake microarchitecture, and Intel Processor Trace is known to suffer from event
loss [7] and significant overhead [124]. Similarly, the AppendWrite primitive (§3.1.3) is not
yet available in actual hardware, and does not yet permit sharing of atomic event buffers
across processor cores.
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In the meantime, as a work-around to enable studying the effectiveness and over-
heads of HerQules-DeiFIed, we emulate the behavior of AppendWrite in software using
writable shared memory over sealed file descriptors, which cannot be subsequently resized
or remapped. Although these event buffers are not append-only, they are otherwise
fully functional, and allow us to perform worst-case performance measurements. Op-
tionally, we note that these buffers can be remapped read-only after modification using,
e.g., mremap or Memory Protection Keys for Userspace. We use three shared memory
variables to ensure mutual exclusion, identify whether the event buffer is full, and track
the next write offset. On every invocation of AppendWrite, we atomically take the mutual
exclusion lock, write out the current event, increment the write offset, and then atom-
ically release the lock. If insufficient space remains in the event buffer, then the writer
marks it as full and waits. When the reader reaches the end of the buffer, it resets the
write offset and full flag, which allows a waiting writer to resume. In our evaluation, we
provide a breakdown of our system in terms of lines of code (§4.4.3).

4.3.1.1. Kernel Synchronization. We implement system call synchronization using a
dynamically-loadable Linux kernel module. It uses built-in kernel instrumentation mech-
anisms, including kprobes [101] and tracepoints [58], to intercept existing kernel func-
tions and notify the verifier when protected threads call clone, fork, execve, or exit. A
rhashtable keeps track of all protected threads, and records the unique system call syn-
chronization page for each, which is shared with the verifier. Our kernel module is also
responsible for handling protected processes that fail data-flow integrity checks in the
verifier, with the default being to terminate them immediately (this is configurable).

Certain system calls must be handled specially in protected processes. When an
interruptable system call (e.g., read, write, etc.) is re-executed after signal delivery,
our kernel module automatically marks those as permitted. Other system calls are on
a permanent allowlist; namely, futex (§4.2.2.4), as well as read-only system calls per-
formed by the kernel virtual dynamic shared object (vDSO), which on x86_64 platforms
includes clock_getres, clock_gettime, and gettimeofday. This is because the vDSO is
automatically loaded by the kernel, and cannot be instrumented without a complete re-
build. Permanently allowing these system calls is safe, because they are either read-only
(vDSO) or have limited system effect (futex), even for protected applications that have
not yet been detected as compromised. No System-Call event is transmitted for system
calls on the allowlist, and they are automatically approved by our kernel module.

4.3.1.2. User-Space Verifier. We implement our verifier as a single-threaded user-space
process, which maintains a data-flow integrity policy context for each protected pro-
cess. This includes the per-thread shared system call synchronization page, as well as
a per-process event buffer and hash table that stores protected address-value pairs. For
performance and simplicity, we record protected data at word granularity, rather than
tracking the granularity of individual loads and stores, then subsequently splitting and
combining entries as needed (§4.3.2.2). The verifier is notified of messages from our
kernel module via a synchronous signal, which are then read from a special privileged
character device.
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Kernel-Space

User-Space
Process AProcess B Process C

clone(CLONE_NEWPID) clone(CLONE_THREAD)

tgid = 10, pid = 10

pid = 10, tid = 10

tgid = 11, pid = 11,
vtgid = 1, vpid = 1

pid = 1, tid = 1

tgid = 10, pid = 12

pid = 10, tid = 12

Figure 4.2. Process and thread identifiers in Linux, as seen from kernel-
space (top) and user-space self (bottom), after Process A forks into a new
namespace (left), then clones a new thread (right). Identifiers tracked by
our kernel module are shown in red, whereas identifiers tracked by our
verifier are shown in blue.

To avoid polling for changes to event buffers, we rely on the FUTEX_WAIT_MULTIPLE [20]
feature of the futex system call to concurrently wait on multiple addresses. This mech-
anism has not yet been merged into the upstream Linux kernel, although it is currently
being reviewed as part of the refactored futex2 [13] interface. As a result, we must
recompile our kernel to support this feature.

Due to the complexity of the kernel threading module, it is important to distin-
guish how threads and processes are tracked by our kernel module and user-space
verifier. User-space threads are managed by the Native POSIX Thread Library, which
maps threads one-to-one to light-weight kernel processes. These processes have distinct
kernel-space process identifiers but identical thread-group identifiers, which correspond to
user-space thread identifiers and process identifiers, respectively. We show a diagram of this
in Figure 4.2.

Recent kernels support namespaces as a security feature, which allows scoping of
global system resources within process subtrees. User-space processes can only ob-
serve namespace-local virtual identifiers, which may differ based on the perspective of
the querying process. Since protected processes may be located in different namespaces,
which may also be disjoint from that of our verifier process, these virtual identifiers may
overlap and cannot be translated across namespaces in user-space. As a result, our veri-
fier tracks processes using global process identifiers supplied by our kernel module, and
threads using their virtual thread identifiers.

4.3.1.3. Runtime Libraries. We modify the C runtime library to instrument system
calls and protect certain internal data. Typically, applications perform systems calls
indirectly by calling into runtime libraries, which eventually call the C runtime library.
Thus, no other existing language or runtime libraries needed to be rebuilt during our
experiments. We protect the contents of the jmp_buf data structure used by setjmp
and longjmp, as well as cached thread identifiers. Our compiler instrumentation pass
automatically instruments the C runtime library, but due to compatibility issues with
GCC-specific compiler extensions used by the GNU C runtime library, we instead use
the musl C runtime library, which is compact and standards-compliant.
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Input Type Output Type

unsupported nullopt_t
primitive, enum dfi_wrap<T>

string dfi_string

map<K, V> dfi_map<DFI<K>, DFI<V>>
pair<T1, T2> pair<DFI<T1>, DFI<T2>>

set<T> dfi_set<DFI<T>>
unique_ptr<T> dfi_unique_ptr<DFI<T>>

vector<T> dfi_vector<DFI<T>>

Table 4.2. Simplified data-flow integrity DFI type mapping from input to
output datatypes, showing base (top) and recursive (bottom) cases.

4.3.2. Data-Flow Integrity. We extend the libc++ standard library for C++ to sup-
port data-flow integrity, by bundling it with our wrapper class, pre-annotated Stan-
dard Template Library data structures, and pre-defined type mapping. This includes
copies of map, set, vector, string, and unique_ptr, which we name dfi_map, dfi_set,
dfi_vector, etc., as well as their multi-key and unordered variants (where applicable),
all of which use our wrapper class to protect their internal data.

4.3.2.1. Type Mapping. We show a small snippet of our type mapping in Table 4.2,
which is implemented using template specialization to define base and recursive cases.
Base cases include unsupported types that produce a compile error, scalar primitive
types that are handled by our wrapper class, and string types that use our protected
string class. Recursive cases handle templated generic types, such as the hash map type,
the pair product type, the vector type, etc., by invoking our type mapping recursively on
their input argument datatypes. Note that the pair type remains unchanged because it
does not contain internal data, whereas other recursive cases are changed because they
do.

4.3.2.2. Wrapper Class. Compared to the simplified version shown earlier in List-
ing 4.2, our actual wrapper class, shown partially in Listing 4.4, must ensure that pro-
tected data is word-aligned, fully-initialized at construction, and always invalidated
at destruction. This alignment requirement is needed because our verifier tracks pro-
tected data at word granularity (§4.3.1.2). However, on x86_64 systems, certain primitive
datatypes, including bool, char, short, and int, are smaller and packed by the com-
piler with consecutive values or inaccessible padding bytes, which can cause runtime
checks to fail. Our verifier rejects unaligned addresses, and memory loads that include
uninitialized padding bytes will likely fail to match. We avoid these problems in our
wrapper class (Listing 4.4) by imposing a minimum alignment of word-granularity for
protected data (line 3), and by explicitly zeroing data during construction (line 6). But,
since a minimum alignment would significantly penalize our protected dfi_string type,
by padding out each character to word-width and negating the small string optimization,
we instead manually insert instrumentation on the existing layout without using our
wrapper class.
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1 template <typename T>
2 class dfi_wrap final {
3 std::aligned_storage<sizeof(T), std::max(alignof(T), 8U)>::type

__attribute__((annotate("dfi"))) data;↪→
4

5 dfi_wrap() noexcept {
6 memset(&data, 0, sizeof(data));
7 new (&data) T;
8 }
9

10 ~dfi_wrap() {
11 if (std::is_trivially_destructible<T>::value)
12 data = {};
13 }
14 };

Listing 4.4. Partial wrapper class that ensures alignment and generation
of runtime events for data-flow integrity instrumentation.

Another issue that we must resolve, is that for static primitive datatypes, C++ permits
the compiler to perform load-time constant initialization and omit empty default destruc-
tors. This prevents runtime emission of Define and Invalidate events (Section 4.2.3) on
protected data, which would result in false negatives and positives, respectively. Instead,
we provide an explicit constructor (lines 5–8), and an explicit destructor (lines 10–13) that
performs a dummy default initialization store. But, because this store is only needed to
force generation of the destructor, we eliminate it inside our instrumentation pass. Un-
fortunately, as a side-effect, this explicit destructor also causes exit-time destruction of
static data, which is unnecessary since the program is terminating. As an optimization,
we manually suppress this behavior using the no_destroy attribute on such static data.

4.3.2.3. Language Compatibility. Despite our inclusion of implicit type conversion op-
erators (lines 5–6 in Listing 4.2), certain compatibility problems do occur. According to
the C++ language standard [9], the following situations can prevent implicit conversions:
• the dot operator, which cannot be overloaded to automatically invoke member func-

tions on protected objects;
• the ternary conditional operator, which only allows the first expression to be implicitly

converted to the second;
• template argument deduction, which ignores implicit type conversion;
• an existing implicit conversion, which may only be performed once; and
• ambiguous implicit conversions, which cannot be resolved to a final datatype.
Implicit type conversions are also unsuitable when protected data is exposed through
mutable references, which must use the wrapped type to be updated. We manually
handle all of these cases by modifying the input source code.

We believe that the C++ language could be improved to permit better integration with
minimal developer overhead. In particular, we observe that transmission of e.g., Define

and Check/Invalidate events, allows runtime conversion of data from protected to
unprotected and vice versa, respectively. This suggests that if both datatypes can be
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layout compatible by sharing the same underlying memory representation, then separate
implementations can be avoided by exclusively tracking protected data statically within
the type system using e.g., refinement types. Other security mitigations, such as dynamic
taint tracking [189, 200], could also benefit from these changes.

4.3.3. Browser Protection. Conveniently, the Chromium browser already builds a
custom version of libc++, which we patch to include our data-flow integrity exten-
sions. We also create protected variants of custom data structures used by the browser,
including GURL, Component, and Parsed, as well as Optional and StructPtr. Most of
these encapsulate different representations of parsed URL components, although some
are substitutes for recent language features like std::optional, or provide move-only
semantics for custom data structures synthesized from the Mojo IPC domain-specific
language.

We also make compatibility changes to the Chromium browser by removing de-
pendencies on non-portable or unsupported runtime library features. These include
assumptions about non-standard C runtime library features, including runtime support
for stack backtraces and allocator statistics, as well as the default thread stack size. Cer-
tain inline assembly statements embed systems calls within nested control-flow, which
is unsupported by our compiler instrumentation and must be manually refactored out.
We adjust the browser seccomp-bpf sandbox to permit system calls and arguments used
by our data-flow integrity design and/or the musl C runtime library, including FUTEX
_WAIT_MULTIPLE for futex.

4.3.4. Generalized IPC. As discussed earlier in §4.2.5, shared memory cannot trans-
mit handles to other message channels, which is a feature used by Mojo. We develop a
separate kernel module to support transmission of file descriptors by associating virtual
FIFO queues with filesystem index nodes (inodes), and by extending the fcntl system
call with the ability to push and pop file descriptors over these queues. We minimize
overhead by supporting vectorized operations that allow multiple file descriptors to be
pushed or popped in a single system call. To ensure safety, we increment the reference
counter for file descriptors pushed onto the FIFO queue, and decrement it when they
are popped or the underlying inode is to be destroyed.

We must also adjust the I/O thread abstraction used by the Chromium browser,
which waits on file descriptor read and write events. It can call software libraries like
libevent to perform efficient waiting using the e.g., epoll and/or select system calls,
and is used by default for Mojo IPC events. However, our AppendWrite messages instead
wait on shared memory events using the futex system call, but a single thread cannot
concurrently wait on both file descriptors and futexes. We split Mojo IPC out into a
separate thread, allowing both threads to wait exclusively on either event type.

4.4. Evaluation

We evaluate the effectiveness, performance, and usability of our data-flow integrity
design using various experiments. This includes examining past browser exploits (§4.4.1),
measuring overhead on a variety of benchmarks (§4.4.2), and quantifying the effort in-
volved (§4.4.3). Our results show that our approach (i) mitigates real Chromium security
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Issue ID Severity Component Bug Type Corrupted Data

1155426 Critical (9.6) WebRTC Use-after-free MojoJS
1151865 High (8.1) Network Buffer overflow MojoJS
1148749 Critical (9.6) Autofill Use-after-free MojoJS
1146709 Critical (9.6) Site Isolation Use-after-free MojoJS
1146675 Critical (9.6) Storage Use-after-free MojoJS
1144489 Critical (9.6) Browser UI Buffer overflow MojoJS
1144368 High (8.8) Browser UI Buffer overflow MojoJS
1138143 High (8.8) Clipboard Stack overflow MojoJS
1136078 Critical (9.6) Payments Use-after-free MojoJS
1135857 High (8.8) USB Use-after-free MojoJS
1135018 High (8.8) Media Capture Use-after-free MojoJS
1116304 Critical (9.6) Media Capture Use-after-free MojoJS
1103827 High (8.8) Blink Buffer overflow MojoJS
1082105 Critical (9.6) WebAuth Use-after-free MojoJS
1074706 Critical (9.6) Browser UI Use-after-free MojoJS
1073015 Critical (9.6) Browser UI Use-after-free MojoJS
1072983 Critical (9.6) Storage Use-after-free MojoJS
1064891 Critical (9.6) Sequence Manager Use-after-free MojoJS
1062091 N/A AppManifest Use-after-free MojoJS, CommandLine
1059764 High (8.8) Media Capture Buffer overflow MojoJS

Table 4.3. Chromium vulnerabilities reported in 2020 that would be miti-
gated by HerQules-DeiFIed.

bugs, (ii) decreases geomean relative performance by only 14 p.p. (percentage points) on
browser benchmarks, despite transmitting up to 37.4 billion events, and (iii) increases
browser size by only 445.3 KiB.

We develop HerQules-DeiFIed on Clang/LLVM 11.1.0 and musl libc 1.2.2 for Google
Chromium 87.0.4280.152, and perform our experiments on a virtualized Alpine Linux
3.13 system running kernel 5.10.27, which is configured with 32 GiB memory, 6 CPU
cores, and a 1920 × 1080 display resolution. We pre-allocate 16 GiB of hugepage-backed
shared memory, with 256 MiB assigned to each event buffer, and 16 MiB of normal shared
memory for each Mojo-AppendWrite IPC channel. Our host machine is a Ubuntu 20.04.2
system running QEMU-KVM 5.0.0 on kernel 5.8.0-53, with an Intel Core i9-9900k CPU
@ 5GHz, a Samsung 860 Pro solid-state drive, and 128 GiB DDR4-2666 memory.

4.4.1. Effectiveness. Past exploits show that escaping the Chrome browser sandbox
via non-control-data attacks is quite feasible. One technique [19, 29, 198] corrupts mem-
ory in the renderer process to enable internal features, like JavaScript bindings for the
Mojo IPC interface (MojoJS), which expose a broader attack surface. Then, specially-
crafted messages can be sent to exploit otherwise-inaccessible bugs in privileged pro-
cesses. Another technique [19, 122] overwrites browser command-line flags, so that
subsequent child processes execute arbitrary programs or have sandboxing disabled.
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To quantify the prevalence of these bugs, we manually examine security bugs in
the Chrome bug tracker that were reported in the previous calendar year and issued
Common Vulnerabilities and Exposures (CVE) identifiers. Of the 235 reported security
bugs in 2020, we observe that ~140 involve memory-safety bugs, and identify 20 that
would be mitigated by HerQules-DeiFIed, which we summarized in Table 4.3. These
are bugs that rely on corruption of protected non-control data, either as part of publicly-
disclosed exploits, or as prerequisites for exposing the vulnerable attack surfaces. We are
the first system to mitigate these vulnerabilities, and we manually verify the functionality
of HerQules-DeiFIed by using a debugger to corrupt protected data and checking that
subsequent accesses detect policy violations.

In practice, we observe that compiler-based security mitigations are more effective
than they would initially appear. Many desktop applications embed web browsers us-
ing frameworks like the Chromium Embedded Framework (CEF) or Electron, but disable
sandboxing for compatibility or performance reasons. Past analysis [46] has shown that
this includes many popular applications, including Discord, Facebook Messenger, Key-
base, Microsoft Teams, Signal, Twitch, Visual Studio Code, and WeChat. As a result, a
single exploit may be sufficient to compromise the system.

4.4.2. Performance. We measure various performance aspects of HerQules-DeiFIed,
including browser benchmarks and rendering latency (§4.4.2.2, §4.4.2.3), event logging
scalability (§4.4.2.4), memory usage (§4.4.2.5), and binary size (§4.4.2.6). To isolate indi-
vidual design components, we enable system call instrumentation (§4.2.2) independently
from data-flow integrity protection (§4.2.3 and control-flow integrity protection.

Unless stated otherwise, we execute three iterations of each benchmark, reporting
both the arithmetic mean measurement and standard deviation error bars. Baseline
results were obtained using an uninstrumented Chromium executable, modified only
for compatibility with the musl C runtime library. On each benchmark iteration, we
clear the user profile directory before launching the browser.

4.4.2.1. Browser Benchmarks. We begin with various industry benchmarks: JetStream
2, MotionMark 1.1, Speedometer 2.0, Basemark Web 3.0, and WebXPRT 3 v2.93. These
measure a combination of various browser features, including (i) throughput of JavaScript
and WebAssembly [87] workloads, rendering speed of Scalable Vector Graphics (SVG)
nodes, HTML Document Object Model (DOM) elements, and bitmap canvas operations,
and (ii) latency of various HTML and JavaScript APIs, as well as WebGL GPU perfor-
mance. We also measure the Navigation to First Contentful Paint (FCP) metric from the
Site Isolation [152] benchmarks. This counts elapsed time between page navigation and
initial rendering, on various locally-cached websites selected from the Alexa Top 50 pop-
ularity rankings, as well as on an empty webpage.

4.4.2.2. Data-Flow Integrity. In Figure 4.3, we compare the overhead of system call
synchronization, data-flow integrity, and Clang/LLVM control-flow integrity for Chromium.
System call synchronization decreases performance by 2 p.p. to 12 p.p. relative to base-
line, because transmission of system call events and suspension of system calls imposes
overhead. This magnitude is dependent on benchmark workload; execution of render-
ing benchmarks like MotionMark is mainly spent in the sandboxed GPU process, which
communicates with the renderer process over Mojo IPC by making system calls. On the
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Figure 4.3. Relative performance of Chromium under HerQules-DeiFIed

on various browser benchmarks.

other hand, execution of compute-heavy JavaScript and WebAssembly benchmarks is
mainly spent in the runtime interpreter, just-in-time compiler, or generated native code,
which makes fewer system calls. Adding data-flow integrity protection further reduces
performance by 2 p.p. to 35 p.p., because increased event traffic affects both the transmit-
ting process and our verifier. Enabling built-in Clang/LLVM control-flow integrity has
no measurable effect on performance, but Clang/LLVM CFI is a coarse-grained design
(§2.4.3) that trades-off precision for performance, and does not protect return pointers.
Overall, the geomean performance across the five benchmarks is 92% for system calls,
79% for all of HerQules-DeiFIed, and 78% for HerQules-DeiFIed with control-flow
integrity.

In Figure 4.4, we show results for baseline, system call synchronization-only, and
full-HerQules-DeiFIed experiments. Elapsed time increases by a geometric mean of
91% from baseline to system call synchronization only, indicating that delayed system
call execution has a significant effect on rendering latency. Adding data-flow integrity
increases mean elapsed time by another 8%, although this effect is not consistent across
all websites, and actually reverses slightly on some websites. Enabling control-flow in-
tegrity further increases mean elapsed time by 10%, but again this effect is not consistent.
As shown by our confidence intervals, this metric has high standard deviation across in-
dividual site visits.

4.4.2.3. Generalized IPC. We perform a micro-benchmark on Mojo IPC performance
with and without AppendWrite using built-in tests, and show our results in Figure 4.5.
These demonstrate relative performance in transmitting a fixed number of messages
between the main threads of two processes, using a variable batch size of 1, 10, or 100

messages per iteration, for up to a total of 10000 messages, and with variable message
payloads of 8, 64, 512, 4096, or 65536 bytes per message. Note that in practice, Mojo
can impose significant message overhead, as the actual size of a message with a 64-byte
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Figure 4.4. Relative latency of Chromium under HerQules-DeiFIed on
various popular websites.
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Figure 4.5. Relative performance of Mojo IPC, with AppendWrite, futex,
and/or data-flow integrity.

payload on this micro-benchmark is 192 bytes. Within each batch, performance generally
improves as the payload size increases, but performance at the maximum payload size
can drop significantly. The break-even point appears to be around a batch size of 10

messages, after which performance generally becomes faster than baseline.
Next, we compare the overhead of Mojo-AppendWrite IPC, system call synchroniza-

tion, and data-flow integrity on our browser benchmarks in Figure 4.6. Despite improve-
ments in micro-benchmark performance, we observe that browser benchmarks suffer
from a consistent performance decrease of 1 p.p. to 28 p.p.. Most messages sent over
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Figure 4.7. Relative latency of Chromium with Mojo-AppendWrite IPC un-
der HerQules-DeiFIed on various popular websites.

Mojo IPC messages are fairly small, which perform worse under Mojo-AppendWrite than
baseline, as shown in Figure 4.5.

Finally, we show Navigation to First Contentful Paint metrics in Figure 4.7. We observe
a mean 71% increase in elapsed time from baseline to system call synchronization, which
is consistent across all loaded webpages. Similarly, we observe a further mean 83% in-
crease in elapsed time from system call synchronization to data-flow integrity protection,
again consistently across all loaded webpages.
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These results are surprising, because microbenchmark improvements are inconsis-
tent and the actual performance of AppendWrite-based Mojo IPC is consistently worse
than on browser benchmarks. Nevertheless, Mojo system calls decrease under our de-
sign, because they only occur when in-transmission messages contain message channel
handles, after all queued messages have been transmitted, and after completing each
iteration of the event I/O loop. In comparison, under the original socket-based design,
system calls occur whenever messages are received or transmitted, and after completing
each iteration of the event I/O loop.

Additional experiments and performance instrumentation show that this is due to
a combination of factors. First and foremost, waiting on multiple message buffers us-
ing the futex system call introduces significant overhead, because waiting processes are
rescheduled and may not be immediately woken. In Figure 4.5, we also show results
for a design that polls eagerly for new messages rather than calling futex, which is
consistently faster than baseline. Although such a design is impractical because every
Mojo thread in each browser process would busy-wait, it shows that the underlying ker-
nel FUTEX_WAIT_MULTIPLE implementation could be improved. This would also increase
performance of our verifier and system call synchronization, which relies on the same
futex mechanism.

Other sources of Mojo overhead include our two-way handshake and buffer reset
mechanisms. For each new node channel, two message buffers must be allocated, trans-
mitted to both processes, and mapped in each process. However, due to the structure
of Mojo’s design, construction and initialization of the second buffer cannot occur until
after messaging over the first buffer is available, which adds runtime overhead. Our
message buffers must also block when they become full, until the corresponding reader
resets the next write offset. This is problematic because we fix all Mojo-AppendWrite
message buffers at 16 MB, but some will transmit significantly more messages than oth-
ers. As a result, we trade-off between frequency of runtime resets and total memory
overhead.

4.4.2.4. Scalability. Next, we measure transmitted events and verifier statistics for a
single iteration of the Basemark Web 3.0 benchmark, aggregated across all browser pro-
cesses. We select this benchmark because it is the longest of our browser benchmarks.

In Figure 4.8, we observe that under system call synchronization, a similar number
of Check and System-Call events are processed. This is expected because each thread
identifier is checked before a system call. However, the number of Check events is
slightly higher, because the jmp_buf data structure used by longjmp and setjmp is also
being protected.

After enabling data-flow integrity protection, both designs process a similar num-
ber of System-Call events, because they execute the same benchmark and data-flow
integrity does not perform additional system calls. However, all other event types in-
crease in frequency because security-sensitive browser data is now being protected. The
magnitude of these changes is significant, with a minimum of 2.5x for Check events, to a
maximum of 6721x for Invalidate events. Across all event types, this represents a total
increase in event throughput of 2.3x, but with a geometric mean performance decrease
of only 13 p.p. on browser benchmarks.
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Figure 4.8. Processed events by type across all protected processes for
Basemark Web 3.0.

Verifier Statistic Max Median Arithmean Min

Pe
r-

Pr
oc

es
s Event Buffer Resets 1 0 0.04 0

Forks 26 0 0.96 0

Max Threads 35 5 7.48 1

Max Entries 16064 6600 7224.15 3208

Max Entries 195052 n/a n/a n/a
Protected Processes 11 n/a n/a n/a

Table 4.4. Verifier statistics for Basemark Web 3.0, with system call syn-
chronization and data-flow integrity enabled. Certain statistics (top) are
shown on a per-process basis.

In Table 4.4, we show verifier statistics from the same benchmark iteration with both
system call synchronization and data-flow integrity protection. They demonstrate that
our single-threaded verifier is capable of processing events from up to 11 concurrent
processes, with each executing up to 35 concurrent threads. Some protected processes
are short-lived, either because they terminate or because they execute unprotected pro-
grams, as shown by the increased count of fork system call executions. Up to 3 MiB of
sensitive data is being tracked across all protected processes, as each verifier entry con-
sists of a 16-byte address-value pair. Only one protected process filled its event buffer
and needed a reset from the verifier.

4.4.2.5. Memory Usage. In Figure 4.9, we show total private memory usage across
all browser processes on the Site Isolation benchmarks using built-in browser statistics.

59



4. EXTENDING PROGRAM INTEGRITY PROTECTIONS TO BROWSER DATA

0
200
400
600
800

Total Private Memory Usage (MiB)

Baseline System Call

System Call + DFI System Call + DFI + Clang/LLVM CFI

Mojo-AppendWrite Mojo-AppendWrite + System Call + DFI

Ge
om
ea
n

Figure 4.9. Total private memory usage of Chromium on various popular
websites.
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Figure 4.10. Total shared memory usage of Chromium on various popular
websites.

These results indicate that our system call synchronization and data-flow integrity pro-
tections impose little additional private memory overhead, with a maximum difference
of at most a couple megabytes.

Similarly, in Figure 4.10, we show total shared memory usage across all browser
processes on the Site Isolation benchmarks using built-in browser statistics. Although
fairly noisy, these results also indicate that our design has little impact on shared mem-
ory usage. Note that enabling system call synchronization and/or data-flow integrity
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Baseline + System Call + DFI + CFI
263570400 263574224 264026416 286874416

(above) + Mojo-AppendWrite
(above) 263572400

Table 4.5. Binary size of compiled Chromium executable, with cumulative
addition of features.

protection is not shown to have a significant impact, because pre-allocated hugepages
used by our event buffers are not included.

We estimate that given our previous verifier statistics and per-event buffer alloca-
tions, a total of up to 2.8 GiB hugepages are consumed on the Basemark Web 3.0 bench-
mark. The size of these buffers is configurable, but they increase the frequency of run-
time stalls and verifier resets when they become full. Enabling AppendWrite-based Mojo
also increases shared memory usage, but because these message buffers are anonymous
copy-on-write mappings, allocated pages are not counted until they are modified. When
we re-execute this benchmark under HerQules-DeiFIed with a 16 MiB event buffer in-
stead, we observe an increase in total resets from 1 to 49, and a reduction in average
performance from 90 ± 3% to 87 ± 4%.

4.4.2.6. Binary Size. In Table 4.5, we measure the cumulative size of the compiled
browser binary with our individual design components. Our changes have little ef-
fect on binary size: adding system call synchronization amounts to a scant 3.9 KiB in-
crease over the 251.4 MiB uninstrumented binary, and adding data-flow integrity protec-
tion adds only an additional 441.4 KiB. In comparison, enabling control-flow integrity
adds 21.8 MiB. Enabling AppendWrite-based Mojo IPC only increases the browser size by
2.0 KiB over baseline.

4.4.3. Usability. In Table 4.6, we measure the lines of code added or changed by each
individual component of HerQules-DeiFIed and Chromium, using the cloc tool and by
hand. Of our system components, our kernel module and compiler pass comprise the
bulk of our implementation, with our verifier a distant third.

As for our data-flow integrity annotations (§4.3.2), limited changes to the C++ Stan-
dard Template Library and Chromium browser are needed. Our wrapper class (§4.3.2.2),
type mapping (§4.3.2.1), and protected STL string class likewise encompass few lines of
code. In fact, for small datatypes, inclusion of new header files changes more lines
of code than our data-flow integrity annotations themselves. However, separating out
protected datatypes into distinct classes for both STL and Chromium duplicates many
lines of code, most of which only needs to be automatically renamed to reflect the new
datatype. The only manual changes needed are insertion of additional constructors and
conversion operators to convert between protected and unprotected datatype instances.

Compatibility fixes (§4.3.2.3) in Chromium are needed to adapt to our wrapper class
and protected datatypes. The majority of these changes are in test harnesses written
for the GoogleTest framework, which identify expected return values using templated
function calls, but do not permit implicit type conversion of input arguments due to
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Component Lines of Code

DFI Wrapper Class 137

DFI Type Mapping 326

STL DFI Annotations 107

STL DFI Classes 21227

STL String DFI Instrumentation 36

Compiler Pass 1822

FD Queue Kernel Module 289

Kernel Module 1442

Event Messaging Runtime 330

Shared Headers 531

Verifier 955

Chromium DFI Annotations 275

Chromium DFI Classes 3074

Chromium DFI Compatibility Fixes 369

Chromium DFI no_destroy Attribute 2165

Mojo-AppendWrite IPC 1459

Table 4.6. Approximate lines of code added or modified, split between
data-flow integrity (top), system components (middle), and Chromium-
specific changes (bottom). Unmodified Chromium is ~29.7 million lines of
code.

language rules. Other changes include internal API adjustments to expose mutable ref-
erences to protected datatypes, and insertion of no_destroy attributes on static protected
data. Although not strictly necessary, this attribute allows omission of exit-time destruc-
tors, which adds unnecessary shutdown overhead. Virtually all of these insertions occur
on browser feature flags (§4.2.4), of which there are thousands distributed throughout
the browser codebase. We used a sed script to automatically append this attribute to
individual feature flag instances.

4.4.4. Discussion. Our results show that our data-flow integrity approach is fully
functional with limited performance overhead. Although not directly comparable, our
approach imposes 28% geomean overhead to Chromium on browser benchmarks, com-
pared to 104% average overhead on the SPEC CPU2000 benchmarks by the original
inter-procedural approach [39]. By integrating our annotations into the programming
language, we minimize the effort needed to deploy data-flow integrity, with the core
of our annotations and compatibility fixes amounting to only 644 lines of code (Ta-
ble 4.6) throughout the ~29.7 million line of code Chromium C/C++ codebase. Our
pre-annotated STL datatypes simplify the deployment process, and only need manual
code duplication for additional custom datatypes, which maximizes reusability for other
applications.
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As a research prototype, HerQules-DeiFIed is not fully optimized. System call syn-
chronization is the key latency bottleneck. We believe the performance of system call
synchronization could be significantly improved by adding side-effect-free system calls
that do not need to be paused to the allowlist, or even by limiting synchronization to
solely sensitive system calls (at the risk of providing less comprehensive protection).
Overall system performance (overhead and latency) could also be improved by rewrit-
ing our verifier program to be multi-threaded, which would reduce the event reception
and processing delay for all protected processes.

4.5. Summary

In this chapter, we present HerQules-DeiFIed, an integrity framework for real-world
programs that extends HerQules. Compared to past work on data-flow integrity, our
approach avoids the inaccuracy and inefficiency of pointer alias analysis. We rely on
a hardware-based AppendWrite primitive and compiler instrumentation to transmit run-
time events whenever security-sensitive program data are accessed, and a concurrent
verifier process to perform asynchronous policy checking before system calls. We use
simple language-based annotations to mark data for automatic compiler instrumenta-
tion, and include a pre-annotated C++ standard library. Our data-flow integrity ap-
proach is the first to generalize to existing programs written in both C and C++, and to
protect a web browser. We demonstrate in our evaluation that our design offers effective
protection, has limited overhead, and minimizes code change.
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CHAPTER 5

Conclusion and Future Work

In this thesis, we have shown that adding a small, secure, and efficient AppendWrite
inter-process communication (IPC) primitive has multiple benefits. We use it to de-
velop HerQules and HerQules-DeiFIed, a framework for enforcing program integrity
policies, by sending asynchronous software-defined execution events to a verifier that
performs concurrent policy checking. We show that this permits new approaches for
control-flow and data-flow integrity, which improve compatibility, performance, and
precision over past work. Nevertheless, further improvements are possible. Below, we
discuss three potential directions for future work.

5.1. Improving Other Mitigations

Although we have explored integrity protections to mitigate memory-safety bugs, we
have not explored other uses for our AppendWrite primitive. With the exception of shared
memory, existing IPC primitives impose overhead on program execution by performing
system calls. By improving the security properties of shared memory IPC, we believe
that AppendWrite can be applied to other problem domains where system calls were
previously necessary. For example, the Mojo IPC framework is also used by the Mozilla
Firefox web browser, but we did not benchmark our AppendWrite-based implementation
there to determine whether its IPC workload differs, and how that would affect overall
browser performance.

Similarly, our HerQules-DeiFIed framework could be used for other program safety
mitigations, beyond control-flow and data-flow integrity. Type confusions are a cat-
egory of memory safety violations that have received limited study, yet are a recur-
ring security problem for optimized just-in-time compilers like browser JavaScript run-
times. Past work [53, 189, 200] has also proposed using runtime taint tracking to en-
force information-flow security policies, but this imposes storage and processing over-
head within the instrumented program. Instead, an instrumented program could simply
transmit dataflow events during execution to our external verifier program, which would
be responsible for tracking data movement and enforcing the underlying security policy.

5.2. Optimizing Synchronization Performance

Despite minimal decrease in overall benchmark performance under our control-flow
integrity and data-flow integrity designs, system call synchronization can significantly
increase rendering latency, as shown by our Chromium benchmarks. We believe that
various optimizations could improve its performance.

Our Mojo-AppendWrite benchmarks show that busy-waiting for new messages instead
of suspending via the FUTEX_WAIT_MULTIPLE feature of futex can significantly improve
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performance. This suggests that our verifier may also be experiencing similar overhead,
since it relies on the exact same feature. We believe this may be increasing message
processing latency, either because the kernel scheduler delays resumption of the verifier
process, or because the kernel implementation of the multiple-wait feature is suboptimal.

Similarly, our verifier implementation is only single-threaded, which can result in
message processing delays when multiple protected processes are concurrently trans-
mitting events, since events must be processed sequentially. A multi-threaded verifier
that partitions protected processes among worker threads would resolve this problem,
improving message processing performance.

Finally, placing side-effect-free system calls on an allowlist would reduce the number
of systems calls that must be suspended. These system calls do not modify the system
state, and thus would always be safe to execute, even by compromised processes. Not
only would this reduce System-Call event traffic, but it would also decrease the total
amount of time that protected processes are suspended.

5.3. Increasing Developer Usability

Two aspects of our design reduce the usability of our approach. Although we have
developed an FPGA-based implementation and software-only model of AppendWrite,
a lack of existing hardware support for this primitive makes it difficult to prototype
or benchmark our system. An alternative construction of AppendWrite via e.g., Intel
Memory Protection Keys for Userspace (MPK/PKU), or PTWRITE for Intel Processor
Trace, could bridge this gap, by making it possible to deploy fully-functional HerQules-
DeiFIed on existing hardware.

Our language-based data-flow integrity annotations impose friction on developers
by requiring manual annotation, duplication, and correction of custom datatypes for
compatibility. We believe that this could be improved by tracking protected data only
via a compile-time type attribute, instead of actually lowering it as a first-class datatype.
Runtime code to generate events would be inserted when the source abstract syntax tree
is lowered to compiler intermediate representation, allowing the protected datatype to
share the same underlying implementation as its unprotected equivalent, assuming that
the underlying layouts are compatible and no additional padding is needed.
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