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Abstract
This thesis demonstrates that autonomous cyber-physical systems that use ma-

chine learning for control are amenable to formal verification.
Cyber-physical systems, such as autonomous vehicles and medical devices, are

increasingly common and increasingly autonomous. Designing safe cyber-physical
systems is difficult because of the interaction between the discrete dynamics of con-
trol software and the continuous dynamics of the vehicle’s physical movement. De-
signing safe autonomous cyber-physical systems is even more difficult because of the
interaction between classical controls software and machine learning components.

Formal methods capable of reasoning about these hybrid discrete-continuous dy-
namics can help engineers obtain strong safety guarantees about safety-critical con-
trol systems. Several recent successes in applying formal methods to hybrid dynam-
ical systems demonstrate that these tools provide a promising foundation for estab-
lishing safety properties about planes, trains, and cars. However, existing theory and
tooling does not explain how to obtain formal safety guarantees for systems that use
reinforcement learning to discover efficient control policies from data. This gap in
existing knowledge is important because modern approaches toward building cyber-
physical systems combine machine learning with classical controls engineering to
navigate in open environments.

This thesis introduces KeYmaera X, a theorem prover for hybrid systems, and
uses KeYmaera X to obtain verified safety guarantees for control policies gener-
ated by reinforcement learning algorithms. These contributions enable strong safety
guarantees for optimized control policies when the underlying environment matches
a first-principles model.

This thesis also introduces an approach toward providing safety guarantees for
learned control policies even when reality deviates from modeling assumptions. The
core technical contribution is a new class of algorithms that blend learning and rea-
soning to update models in response to newly observed dynamics in the environment.
When models are updated online, we leverage verification results about the original
but incorrect model to ensure that there is a systematic relationship between the op-
timization objective and desired safety properties. When models are updated offline,
formal verification results are preserved and explainable environmental models are
synthesized. These contributions provide verifiable safety guarantees for systems
that are controlled by policies obtained through reinforcement learning, justifying
the use of reinforcement learning in safety-critical settings.
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Chapter 1

Introduction

The automotive and aeronautical industries have continually improved the energy-efficiency,
safety, comfort and automation of vehicles. Achieving these improvements required substan-
tially increasing the size and complexity of vehicle software. The growing use of software in
these safety-critical settings inspired the development of mathematical models – called hybrid
systems – that model the interaction between discrete software systems and the continuous sys-
tems under control [7, 77]. Hybrid systems provide a fruitful formalism for stating and proving
safety properties about systems that combine discrete computation with continuous control.

Over the past decade, designers of vehicles have moved on from low-level control problems.
Tomorrow’s software systems not only help control the engine and the brakes, but also make
high level decisions about where and how a vehicle should move. Advanced driver-assist sys-
tems are already deployed. Most major automobile manufacturers are experimenting with fully
autonomous vehicles. Designers of planes and trains are also deploying partially autonomous ve-
hicles and experimenting with fully autonomous systems. The future of mobility is autonomous.
These autonomous systems make extensive use of machine learning, such as reinforcement learn-
ing, to control in open environments. Therefore, designing safe autonomous cyber-physical sys-
tems requires establishing safety properties about systems that use reinforcement learning and
other optimization techniques for control.

Unlike traditional software engineering domains where light-weight quality assurance mech-
anisms (e.g., testing) often suffice, best practices for safety-critical systems suggest the use of
formal verification. Ideally, developers of safety-critical systems should construct a model of the
system under control and then write a formal, computer-checked proof that their control software
satisfies key safety properties with respect to the underlying model. For example, a developer
might construct a system of differential equations describing how a car behaves and then prove
that a piece of control software prevents the car from entering an unsafe state. Formal proofs of
relevant safety properties ensure that a system is verifiably safe.

This dissertation demonstrates that autonomous cyber-physical systems that use reinforce-
ment learning for control are amenable to formal verification.

Fully autonomous systems that make use of both offline and online learning will need to
come with strong safety guarantees. Therefore, developing formal methods that are capable of
providing safety guarantees for modern learning algorithms is an important challenge.

Despite recent successes in modeling and verifying safety properties about cyber-physical

1



systems [101, 128], existing hybrid systems verification approaches are not directly applicable
to modern reinforcement learning algorithms. Classical software verification tools (e.g., model
checkers [36], deductive program verification tools such as KeY and Dafny [3, 123], and general-
purpose theorem provers such as Coq, Isabelle, and Lean [47, 132, 141]) are capable of verifying
properties about reinforcement learning algorithms. The mode of use for each of these tools is
different, so the exact properties that can be verified and the difficulty of the verification task vary
greatly between these tools and paradigms. However, none of these systems currently provide a
productive environment for hybrid systems verification because they lack proof search algorithms
and proof constructive primitives specialized to the task of verifying properties about control
algorithms and especially differential equations.

Conversely, existing verification tools for cyber-physical systems (such as KeYmaera X
[64, 154]) are specialized to hybrid systems analysis and therefore do not provide a reason-
able setting for describing algorithms such as those found in the reinforcement learning litera-
ture. This dissertation demonstrates how to use hybrid systems analysis tools to provide safety
guarantees for systems that use reinforcement learning without resorting to encoding the entire
reinforcement learning algorithm as an explicit part of the hybrid system.

Verifiably safe autonomy is an epistemically challenging goal. Verification results for cyber-
physical systems are always stated with respect to a model of the world. Obtaining strong safety
guarantees in situations that are anticipated by system designers are certainly required for safe
autonomy, but truly autonomous systems must provide safety guarantees even when there are
modeling gaps between design-time assumptions and observed reality.

Part I of this dissertation introduces the KeYmaera X theorem prover for hybrid systems
and explains how theorem proving may be used to obtain highly trustworthy safety proofs for
on-model control; i.e., how to guarantee system safety whenever system designers can provide
a sufficiently accurate model of the world. Chapter 3 introduces KeYmaera X and Chapter 4
discusses the design of its interactive proof development language, including a discussion of
several large proof automation developments. Chapter 5 discusses an extension to the theorem
prover’s base logic that has since been extended to enable inter-operation with other provers,
allowing for end-to-end verification of control software by leveraging formlizations of compilers
and arithmetic found in these other systems.

Unfortunately, behaving well in anticipated scenarios is not enough. Autonomy implies the
ability to act safely even in situations that were not explicitly modeled by system designers.
Therefore, safe autonomous systems must be able to act well off-model; i.e., when environmental
modeling assumptions are violated. Achieving this goal requires closing these modeling gaps via
a combination of offline and online reasoning. Part II of this dissertation explores three ways in
which these modeling gaps may be closed.

The first modeling gap closed by this dissertation is the gap between verified descriptions of
control policies and actually implementable control policies. The verification results obtained
in Part I are stated with respect to highly nondeterministic descriptions of the controller. These
control descriptions will concisely characterize all of the safe actions available in each state, but
will not generally explain which of these actions should be taken in order to achieve a high-level
goal. Chapter 7 explains how to close this gap between safe control and efficient control by
leveraging verification results to obtain safety guarantees for reinforcement learning algorithms.

The second modeling gap considered by this dissertation is the gap between a system of dif-
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ferential equations and a physical system’s actual behavior. Chapter 8 considers the special case
in which the system designer identifies many possible models of the world and the control sys-
tem must safely choose between the available models. Chapter 9 moves beyond the assumption
that an accurate environmental model is provided, and instead considers how a combination of
learning and reasoning can be used to generate both a model and a controller that satisfy a safety
property starting from only input/output examples and a global safety specification.

By explaining how to obtain trustworthy correctness proofs for on-model control and how to
leverage these proofs during off-model control, this thesis demonstrates that autonomous cyber-
physical systems that use reinforcement learning for control are amenable to formal verification.

3
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Trustworthy Verification for
Hybrid Dynamics
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Chapter 2

Background on Hybrid Systems
Verification

Safety-critical systems should not be deployed without high confidence in safe system opera-
tion. Deploying systems without strong safety assurances has significant ethical ramifications;
an inadequate understanding of safe autonomy poses a serious risk for near-term and mid-term
deployments of autonomous systems in safety-critical domains [142]. For this reason, deploying
systems without certain safety assurances runs afoul of industry standards in both automotive
[55] and aeronautics [160] domains.

Formal verification is an approach toward building this confidence by way of mathematical
proof. In a typical verification effort, the scientist or engineer builds a mathematical model of the
safety-critical system, identifies mathematical characterizations of key safety properties, and then
proves that control software enforces these safety properties with respect to the model. Modern
systems are far too large and complex for hand-written proofs to suffice, so designers interested
in formal proofs use analysis software such as model checkers or theorem provers to generate
computer-checked proofs.

This verificationist approach toward ensuring safety immediately raises two important ques-
tions: how can we know that the analysis software itself is trustworthy, and how do we know that
our mathematical models of reality are accurate?

Part I of this thesis focuses on the first question: how can we build highly trustworthy analy-
sis software for hybrid systems? We introduce the KeYmaera X theorem prover, which demon-
strates how to analyze cyber-physical systems. Unlike existing hybrid systems analysis tools,
KeYmaera X is built on a small soundness-critical core with a defined logical foundations. This
ensures that analyzing a model with KeYmaera X strictly increases our confidence in a system’s
design, instead of merely shifting uncertainty about a model to uncertainty about the correctness
of the model analysis tool. We begin by recalling the logical foundations upon which KeY-
maera X is built.
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2.1 Hybrid Programs
Cyber-physical systems are characterized by the interaction between discrete control software
and a physical system under control. Hybrid dynamical systems [7, 149] mix discrete and con-
tinuous dynamics, providing a compelling mathematical formalism for describing the mixture of
discrete control and continuous movement that characterizes cyber-physical systems.

Hybrid programs [147, 148, 149] are a programming language model of hybrid dynamics.
Hybrid programs extend nondeterministic imperative programs (i.e., regular programs) with dif-
ferential equations. Typically the discrete portion of a hybrid program describes the behavior of
a software controller and the continuous portion of a hybrid program describes the smooth move-
ment of the physical system under control. In verification tasks, the controller is often stated as
a nondeterministic set of safe control actions; nondeterministic controllers are simpler to verify
because large numbers of possible control inputs – even uncountably infinite numbers of possible
control inputs – can be concisely grouped together as a guarded nondeterministic assignment.

Hybrid systems are an expressive mathematical tool capable of accurately modeling a broad
range of physical and sociological phenomena. This thesis focuses on the use of hybrid systems
to model control systems, such as those found in partially and fully autonomous vehicles. An
informal description of hybrid programs is given in Table 2.1.

Program Statement Meaning
α; β Sequentially composes α and β.
α ∪ β Executes either α or β.
α∗ Repeats α zero or more times.
x := θ Evaluates θ and assigns result to x.
x := ∗ Assigns an arbitrary real value to x.
{x′1 = θ1, ..., x

′
n = θn&F} Continuous evolution1.

?F Aborts if F is not true.

Table 2.1: Hybrid Programs.

Example 1 (The Linear Car Hybrid Program). One of the simplest hybrid programs is a model
of a car moving along a straight line, choosing a new acceleration a ∈ {−B,A} at least once
every T seconds.

Listing 2.1: The Linear Car Program.
1 {
2 //Choose a new acceleration accel ∈ {−B,A}
3 { accel := -B ∪ accel := A }
4 //Reset the timer.
5 c := 0;
6 //System dynamics describing linear motion for at most T time.
7 { pos'=vel, vel'=accel, c'=1 & c ≤ T }
8 }* //loop 0 or more times

1A continuous evolution along the differential equation system x′i = θi for an arbitrary duration within the region
described by formula F .
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Line 3 of Example 1 allows only two choices of acceleration: maximum acceleration A or
maximum braking −B. A more realistic model allows the choice of any acceleration accel ∈
[−B,A]. This behavior is expressible in dL by changing line 3 of Example 1 to read:

accel := *; ?(-B≤ accel ∧ accel≤ A).
This program first allows accel to take on any value, and then immediately asserts that this new
value of accel must be between −B and A. In this way, a nondeterministic controller can char-
acterize an infinite number of control choices without succumbing to the curse of dimensionality
(and/or requiring discretization to enable safety and other reachability analyses).

After the controller is executed, a timer is reset to 0 (c := 0). This timer will tick during the
continuous fragment of the hybrid program (c′ = 1 on line 7). The next run of the controller will
happen, at the latest, before c = T , because the flow of the differential equations are restricted to
the domain where c ≤ T .

Line 7 of Example 1 demonstrates how a system’s physical behavior can be characterized
using differential equations subject to evolution domain constraints. The derivative of the car’s
position is vel and the velocity vel changes according to the choice of acceleration accel.
The system is constrained to the domain c ≤ T so that the controller will run again before T time
units elapse, at which point a new acceleration will be chosen and the timer will be reset to 0.
Finally, the star on line 8 sequences the controller, the timer reset, and the differential equations
zero or more times.

2.2 Differential Dynamic Logic
Differential dynamic logic (dL) [147, 148, 149, 152] is a first-order multimodal logic for spec-
ifying and proving properties of hybrid programs. Each hybrid program α has modal operators
[α] and 〈α〉, which express reachability properties of program α. The formula [α]φ expresses that
the formula φ is true in all states reachable by the hybrid program α. Similarly, 〈α〉φ expresses
that the formula φ is true after some execution of α.
Definition 1 (Formulas). The formulas of dL are defined as follows (with θ, η as terms, p as
predicates, C as quantifier symbols, and φ, ψ ranging over dL formulas):
〈φ, ψ〉 ::= θ ≥ η Comparisons
| p(θ1, . . . , θk) Predicates
| C(φ) Symbols
| ¬φ | φ ∧ ψ | ∀x φ | ∃x ψ First-order Logic
| [α]φ | 〈α〉φ Modalities

The grammar given by Def. 1 is the minimal. In practice, hybrid systems reachability prop-
erties formalized in dL also make use of disjunction, implication, and equivalences:

θ, ψ ::= . . . | φ ∨ ψ | φ→ ψ | φ↔ ψ

Each of these are definable, but the system and technology discussed throughout the rest of
this dissertation is designed in terms of the extended base grammar.

The denotational semantics of dL, discussed in the next section, will assign to each formula
the set of states in which the formula evaluates to true. For example,

Jx > 0 ∧ y > 0K = {s | s(x) > 0 ∧ s(y) > 0}

9



. The intuitive meaning of formulas that do not contain modalities matches that of classical first
order logic. Before defining the semantics of dL, we consider another example that will recur
throughout this document as a simple canonical example of a hybrid systems control task.
Example 2. Consider a car, moving in a straight line, that must stop before arriving at a
stop sign. This property is expressible in dL by the formula in the following listing, where
stopSignPos is the location of the stop sign and safe: R3 → Bool is a to-be-defined formula
describing the set of positions and velocities in which it is safe to accelerate.

Listing 2.2: A Safety Specification for the Linear Car.
1 A > 0 ∧ B > 0 ∧ pos < stopSignPos ∧ safe(pos, vel, -B) →
2 [
3 {
4 //Choose a new acceleration accel ∈ [−B,A],
5 //accelerating only when safe.
6 { accel := -B ∪ accel := *; ?safe(pos, vel, accel) }
7 //Reset the timer.
8 c := 0;
9 //System dynamics describing linear motion for at most T time.

10 { pos'=vel, vel'=accel, c'=1 & c ≤ T }
11 }* //loop 0 or more times
12 ]pos < stopSignPos

Example 2 is a reachability property of a simple hybrid dynamical system with the canonical
form init→[{ctrl; plant}*]safe. Here, the system begins within some initial set init,
repeatedly executes a discrete controller ctrl followed by some continuous physical dynamics
described by the system of differential equations plant, and always ends in a state that satisfies
safe.

The premise (or precondition) of Example 2 describes a set of initial states for the hybrid
dynamical system. Aside from bounds on constants, we must also assume that the car begins
in a configuration such that continuously braking will bring the car to a complete stop before
reaching the stop sign. The precondition safe(pos, vel, -B) expresses this assumption. The
conclusion of the implication states that every execution of Example 1 ends in a state where
pos < stopSignPos.

Nondeterminism in Hybrid Systems: A Prelude To Safe Learning

Notice that the model is nondeterministic and is specifically designed to capture a safety property.
The controller model does not choose a single action; instead, the model describes an entire set
of possible safe actions. The physical model does not choose an exact amount of time to follow
the flow of the ODEs; instead, any flow along the ODE up to time 0 ≤ c ≤ T is possible.
Furthermore, the verification condition does not mention fuel efficiency, passenger comfort, or
other important fitness criteria.

Verification conditions such as Example 2 capture only the critical safety property of the sys-
tem. Both of these modeling choices are crucial for ensuring the tractability of hybrid systems
analyses; a fully deterministic description of the system would prove intractable to verify auto-
matically. Even interactive verification might be too labor intensive in many cases.
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The reinforcement learning algorithms developed in this thesis provide a way to choose effi-
cient resolutions to this nondeterminism that satisfy safety constraints while also optimizing for
other objectives. Reinforcement learning may be viewed as an optimizing compiler for nonde-
terministic and underspecified models. The safety constraints specified in dL may be viewed as
a constraint this optimization process.

2.3 Semantics of dL
The semantics of differential(-form) dynamic logic is given by the semantics of terms θ, the
semantics of formulas ϕ, and the semantics of programs α. Formulas may occur in programs
(within tests) and programs may occur in formulas (within modalities). Therefore, the definitions
of formulas and programs are mutually recursive. We recall these definitions from [152].
Definition 2 (Semantics of Terms). The semantics of a term θ with interpretation I in state s is
given by the following inductive definition.

1. IJxK(s) = s(x) for variables x ∈ V
2. IJf(θ1, . . . , θn)K(s) = I(f)(IJθ1K(s), . . . , IJθnK(s)) for function symbols f ∈ I
3. IJθ + νK = IJθK + IJνK
4. IJθ · νK = IJθK · IJνK
5. IJ(θ)′K(s) =

∑
x∈V s(x

′)∂IJθK
∂x

(s)

Variables are given meaning by the state s and function symbols are given meaning by the
interpretation I . The semantics of addition and multiplication are straight-forward; division and
subtraction are definable in terms of addition and multiplication. Restricting division by zero
is trivial in theory. However, actually implementing a theorem prover that avoids unsoundness
resulting from division by zero – without over-burdening the user or hobbling automation – is
challenging in practice. We discuss our approach toward this problem in Chapter 3.

The semantics of primed terms ((θ)′) is defined as the differential of θ; i.e., as a sum over
the spatial partial derivatives of the (finitely many) variables occurring in the term. The fact that
this differential form corresponds to the time-derivative of θ along the solution to any differential
equation is proven in [152, Lemma 35].

Semantics of Formulas The semantics of a dL formula ϕ, denoted JϕK, defines for each in-
terpretation I the set of all states in which ϕ is true under I . The interpretation I may contain
a finite set of n-ary predicate symbols I(p) ⊆ Rn. The interpretation I defines the meaning of
quantifier symbols C as functionals I(C) : P(S) → P(S) mapping sets of states where C
is true to sets of states where the application of I(C) is true. We denote by sx→r the state that
agrees with s on the value of every variable except x, which takes on the values r in sx→r.

The semantics of formulas are defined simultaneously with the semantics of hybrid programs
because formulas may contain programs (in modalities) and programs may contain formulas
(in tests). The semantics of each program IJαK is a state transition relation that characterizes the
reachable states of a program. The interpretation may define state transitions encoded as program
constants a : P(S × S).
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Definition 3 (Semantics of Formulas). The semantics of a formula ϕ within interpretation I is
the set of states in which ϕ is true, and is inductively defined as follows:

1. IJθ ≥ νK = {s ∈ S : IJθK(s) ≥ IJθK(s)}
2. IJp(θ1, . . . , θn)K = {s ∈ S : (IJθ1K(s), . . . , IJθnK(s)) ∈ I(p)}
3. IJC(ϕ)K = I(C)(IJϕK) for quantifier symbols C
4. IJ¬ϕK = S\(IJϕK)
5. IJϕ ∧ ψK = IJϕK ∩ IJψK
6. IJ∃xϕK = {s ∈ S : sx→r ∈ IJϕK for some r ∈ R}
7. IJ∀xϕK = {s ∈ S : sx→r ∈ IJϕK for all r ∈ R}
8. IJ〈α〉ϕK = IJαK ◦ IJϕK = {s : q ∈ IJϕK for some q such that (s, q) ∈ IJαK}
9. IJ[α]ϕK = IJαK ◦ IJϕK = {s : q ∈ IJϕK for all q such that (s, q) ∈ IJαK}

Definition 4. The semantics of a program α in interpretation I is defined inductively as follows:
1. IJaK = I(a) for program constants a
2. IJx := θK = {(s, sx→r) : r = IJθK(s)}
3. IJ?ψK = {(s, s) : s ∈ IJψK}
4. IJα ∪ βK = IJαK ∪ IJβK
5. IJα; βK = IJαK ◦ IJβK
6. IJα∗K = ∪n∈NIJαnK with αn+1 ≡ αn;α and α0 ≡?true

7. IJx′ = θ&ψK = (s, q) such that:
• s = ϕ(0) on V \{x′} and
• q = F (r) for some function F : [0, r]→ V of duration r satisfying I, F |= x′ = θ&ψ

where I, F |= x′ = θ&ψ iff:
• Fζ ∈ IJx′ = θ&ψK,
• F (0) = F (ζ) on V \{x, x′} for all 0 ≤ ζ ≤ r, and
• dF (t)(x)

dt
(ζ) exists and is equal to F (ζ)(x′) for all 0 ≤ ζ ≤ r.

Assignment and nondeterministic choice are illustrative examples of how the semantics of
hybrid programs are defined. Assignment maps each state s to a new state q that is identical to s
except for the new value of x.

The semantics of nondeterministic choice α ∪ β maps each state s to two new states: one
which results from executing α and the other which results from executing β. The semantics of a
system of differential equations within a domain is defined by the solution to the system; dL only
allows ordinary differential equations and the interpretation I of function symbols is assumed
to contain only smooth functions; therefore, the solution F is guaranteed to exist [125]. The
assumption in dL that dF (t)(x)

dt
(ζ) exists is analogous to the way in which many theorem provers

and logics assume that division by zero is undefined. These design choices are analogous in the
following sense. In theory, these are unproblematic assumptions that the reader is asked to verify
whenever writing down a differential equation (or analogously, a division operation). However,
in practice, checking this property locally is challenging and requires syntactic constraints to
ensure that the theorem prover’s implementation is sound and complete. We discuss this issue at
greater length in Chapter 3.
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2.4 The dL Hilbert Calculus

Proving specifications such as Example 2 requires a sound set of axioms and proof rules for dL.
The KeYmaera X theorem prover implements a Hilbert-style [92, 93] proof calculus with three
components: a set of axioms, as well as proof rules for performing uniform substitutions and
contextual rewriting proof rule.

Axioms The axioms and proof rules of dL from [151] are enumerated in Figures 2.1 and 2.2.
These axioms are designed to support compositional proofs of dL formulas by decomposing
formulas and programs into their constituent parts. For example, the axiom of nondeterministic
choice [a∪b]p(x̄)↔ [a]p(x̄)∧ [b]p(x̄) decomposes a reachability property for a nondeterministic
hybrid system into two reachability properties, one for each of the constituent programs in the
nondeterministic choice.

In typical verification tasks, the axioms in Fig. 2.1 are used to symbolically decompose reg-
ular programs and the axioms in Fig. 2.2 enable various reasoning techniques for handling or-
dinary differential equations. For example, we used the axioms in Fig. 2.2 to implement an
Ordinary Differential Equation solver based on logical deductions and have also implemented
reasoning techniques based on differential invariants [64]. The CE proof rule allows for equa-
tional rewriting of equivalent subformulas, whereas CQ and CT allow for equational rewriting of
equal terms.

Uniform Substitutions Typical axiom systems contain a countably infinite number of axioms
generated from a finite set of axiom schemata. The Hilbert axiomatization of dL does not have
axiom schemata; rather, it has a finite number of axioms, a finite number of proof rules (repre-
sented as sets of formulas), and a proof rule called Uniform Substitution (US) for performing
soundness-preserving substitutions on these axioms. For example, consider the axiom of nonde-
terministic choice

[a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄)

Notice that a and b are concrete atomic programs, and that p(x̄) is a concrete predicate. The
choice axiom alone is not enough to prove

[x := 0 ∪ x := 1]x ≥ 0↔ [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 1

because this axiom is not an schematic meta-formula; rather, it is a concrete formula and substi-
tutions are defined separately via a substitution proof rule.

Uniform substitutions [35, 152] provide a mechanism for using axioms that mention generic
programs and predicates to prove theorems that contain concrete programs and formulas.

Uniform substitutions are mappings from functions f(x̄) to terms, predicate symbols p(x̄)
to formulas, quantifier symbols C( ) to formulas, and program constants a to programs where
x̄ is a set of variables that may be bound and a reserved quantifier symbol of arity zero. We
may also use p(·) where · means that p may mention any variable. The substitution a  x := 0
substitutes any occurrence of the program variable a with program x := 0. And p(·)  x ≥ 0
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〈·〉 〈a〉p(x̄)↔ ¬[a]¬p(x̄)

[:=] [x := f ]p(x)↔ p(f)

[?] [?q]p↔ (q → p)

[∪] [a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄)

[;] [a; b]p(x̄)↔ [a][b]p(x̄)

[∗] [a∗]p(x̄)↔ p(x̄) ∧ [a][a∗]p(x̄)

K [a](p(x̄)→ q(x̄))→ ([a]p(x̄)→ [a]q(x̄))

I [a∗](p(x̄)→ [a]p(x̄))→ (p(x̄)→ [a∗]p(x̄))

V p→ [a]p

G
p(x̄)

[a]p(x̄)

∀
p(x)

∀x p(x)

MP
p→ q p

q

CT
f(x̄) = g(x̄)

c(f(x̄)) = c(g(x̄))

CQ
f(x̄) = g(x̄)

p(f(x̄))↔ p(g(x̄))

CE
p(x̄)↔ q(x̄)

C(p(x̄))↔ C(q(x̄))

US
ϕ

σ(ϕ)

Figure 2.1: Axioms and Proof Rules of Differential Dynamic Logic; C is a quantifier symbol, p, q
are predicate symbols, c, f, g are function symbols, and σ is an admissible uniform substitution.
Admissibility conditions on uniform substitutions are defined in [152].

substitutes a predicate p(θ) with a formula θ ≥ 0 for any argument term θ. For example, the
substitution

a x := 0

b x := 1

p(x̄) x ≥ 0

with x̄ = {x} applied to the choice axiom [a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄) produces the formula

[x := 0 ∪ x := 1]x ≥ 0↔ [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 1

A substitution is uniform if it satisfies the constraints on the occurrences of free and bound
variables given by [152, Definition 19, Fig. 1]. The uniformity constraint is required to ensure
the soundness of the uniform substitution proof rule. Logical deductions in dLmay appeal to the
truth-preserving nature of substitutions via the US proof rule (Fig. 2.1).
Example 3 (Admissible and Clashing Substitutions). Restricting the US proof rule to admissible
uniform substitutions is necessary for preserving the soundness of the calculus. Consider the
substitution and formula

σ = {a x := x− 1, p x ≥ 0}
φ ≡ p→ [a]p.

If σ were admissible for φ (it is not!), then the US proof rule would allow a proof of
x ≥ 0→ [x := x− 1]x ≥ 0

∗
p→ [a]p

x ≥ 0→ [x := x− 1]x ≥ 0
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DW [x′ = f(x) & q(x)]q(x)

DC
(
[x′ = f(x) & q(x)]p(x)↔ [x′ = f(x) & q(x) ∧ r(x)]p(x)

)
← [x′ = f(x) & q(x)]r(x)

DE [x′ = f(x) & q(x)]p(x, x′)↔ [x′ = f(x) & q(x)][x′ := f(x)]p(x, x′)

DI [x′ = f(x) & q(x)]p(x)←
(
q(x)→ p(x) ∧ [x′ = f(x) & q(x)](p(x))′

)
DG [x′ = f(x) & q(x)]p(x)↔ ∃y [x′ = f(x), y′ = a(x)y + b(x) & q(x)]p(x)

DS [x′ = f & q(x)]p(x)↔ ∀t≥0
(
(∀0≤s≤t q(x+ fs))→ [x := x+ ft]p(x)

)
[′:=] [x′ := f ]p(x′)↔ p(f)

+′ (f(x̄) + g(x̄))′ = (f(x̄))′ + (g(x̄))′

·′ (f(x̄) · g(x̄))′ = (f(x̄))′ · g(x̄) + f(x̄) · (g(x̄))′

◦′ [y := g(x)][y′ := 1]
(
(f(g(x)))′ = (f(y))′ · (g(x))′

)
Figure 2.2: Differential Equation Axioms and Differential Axioms.

but this formula is clearly not valid. Conversely, consider the very similar substitution σ′ and the
formula ϕ:

σ′ = {a x := x− 1, p(x̄) x ≥ 0}
ϕ ≡ [a]p(x̄)

for x̄ = (x). Because σ′ is ϕ-admissible, the US proof rule allows the deduction following

x ≥ 0

[x := x− 1]x ≥ 0

via a uniform substitution on the G proof rule.
Example 3 demonstrates that the US rule is not sound for naı̈ve substitutions. A sound calcu-

lus must restrict uniform substitutions so that substitutions which introduce unsound deductions
are not permitted. For this purpose, dL defines when a given substitution is admissible for a
formula and restricts the US proof rule so that the rule is only applicable when the substitution
σ is φ-admissible. The two cases in Example 3 demonstrate why admissibility of a substitution
depends upon the formula to which a substitution is applied – a substitution may be sound for
one formula and unsound for another.

The slight difference between the substitutions σ and σ′ in Example 3 demonstrates the signif-
icance of the difference between p, p(x), and p(x̄). These three predicate symbols have different
static semantics. The first symbol (p) has a nullary predicate symbol. The second (p(x)) has
a predicate symbol where the variable x may occur freely, and the third (p(x̄)) has a predicate
symbol where any x ∈ x̄ may occur freely. These free variables of p continue to be permitted in
its replacement. Additional free variables are allowed by the US rule under certain admissibility
conditions (see [151, Fig. 1]).

The definition of admissibility depends upon the static semantics of dL formulas, so this
difference in the static semantics of p, p(x), and p(x̄) is crucial when determining whether a
substitution is admissible.
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The explication of admissibility for uniform substitutions in dL is critical for soundness. In
this thesis we use dL and its axiomatization [151] as implemented by KeYmaera X for verifying
hybrid systems models of cyber-physical systems.
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Chapter 3

The KeYmaera X Tool

Formal verification requires the use of analysis software, such as a model checker [36] or a
theorem prover. This requirement is due to the fact that formal proofs about software grow
very large – far too large to construct, check, or maintain by hand. Analysis software must be
trustworthy; an untrustworthy tool merely translates uncertainty about the system under analysis
into uncertainty about the analysis tool. Analysis software must also be useful; a maximally
trustworthy analysis tool that cannot even establish simple properties about simple systems is
not useful in practice.

This chapter introduces the KeYmaera X theorem prover for differential dynamic logic1.
The distinguishing features of KeYmaera X are a small soundness-critical core that ensures the
correctness of the system, and a tactics language called Bellerophon for implementing custom
hybrid systems proof construction and proof search procedures on top of the small core. This
combination of a small core with a hybrid systems proof programming environment make KeY-
maera X the most trustworthy and extensible hybrid systems analysis tool available today. This
chapter introduces the core and compares KeYmaera X to existing hybrid systems verification
tools; the challenge of taming the complexity of the core to provide a productive theorem proving
environment is taken up in Chapter 4.

3.1 The KeYmaera X Core
KeYmaera X [64] is structured to maintain a trustworthy core. The KeYmaera X core is trust-
worthy because it is a small and simple piece of software with a defined logical foundation.

The KeYmaera X implementation of the dL Hilbert calculus is attractive from a soundness
perspective because it is simple and small. The implementation contains two main components:
a text file containing verbatim copies of axioms, and a small amount of Scala code implementing
the proof rules (including Uniform Substitution). All reasoning executed by the KeYmaera X
theorem prover runs through this small, soundness-critical core. Unlike existing foundations of
hybrid systems, the Hilbert calculus of dL easily enables sound theorem prover implementations.
Unlike existing hybrid systems analysis tools, KeYmaera X isolates all soundness-critical rea-

1 This chapter is based on the paper KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems by
Fulton et al. [64].
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soning in a small core consisting of simple axioms and proofs rules. An untrusted code base built
around this core implements common proof construction and proof search techniques.

The KeYmaera X core is implemented in Scala, an ML-inspired language for the Java Virtual
Machine. The core implementation has three major components: a set of axioms (see Fig. 2.1
and Fig. 2.2), a set of proof rules that explain how to use these axioms (e.g., the uniform substi-
tution rule), and a definition of the static semantics of the logic that determine when these proofs
rules are applicable (see Example 3). The remainder of this section explains how each of these
components of dL are implemented in the KeYmaera X core.

Representing Proofs KeYmaera X represents proof states using a Provable object. Provable
objects have a conclusion and a set of subgoals. Each conclusion and subgoal is a sequent of the
form ϕ−1, . . . , ϕ−n ` ϕ1, . . . , ϕm where the subscripts are positional addresses that identify
whether a formula is an assumption (negative) or a conclusion (positive).

When a Provable contains no subgoals, the conclusion sequent is a fact about dL. When
there is a single conclusion of the form ` ϕ and no subgoals, ϕ is a theorem of dL.

For example, a complete proof that `dL ∀x(x > 0∨x ≤ 0) is represented by the Scala object

Provable("\forall x (x>0||x <= 0)".asFormula, Nil)

Only the core may create or modify Provables. The core creates provables – without
proof – for facts that are verified by external real arithmetic decision procedures implemented
in Mathematica and Z3. Therefore, although the KeYmaera X core is small, the total size of
the trusted computing base includes the implementation of Z3 and/or the Reduce command of
Mathematica [99, 171]. This reliance on external solvers is possible to eliminate. For example,
Platzer, Quesel and Rümmer leverage a combination of Gröbner bases, the Positivstellensatz,
and semi-definite programming to general witnesses for real arithmetic [156].

Conspicuously missing from the Provable representation of a proven fact is any record of
the actual proof that justifies the result. Chapter 5 introduces an extension to dL, the Logic of
Proofs for Differential Dynamic Logic (LPdL), that makes such justifications explicit. Section 5.5
discusses how to implement LPdL outside of the soundness-critical core of KeYmaera X.

Implementation of Axioms The implementation of axioms in the KeYmaera X core is simple:
a single string contains a list of all axioms within the KeYmaera X core. For example, the axiom
for nondeterministic choice is

1 [a;++b;]p(||) ↔ ([a;]p(||) & [b;]p(||))

where a,b are program constants and p(||) is a predicate that may mention any variable.
Proof rules are implemented as mappings from formulas to (lists of) formulas. The most

significant proof rule is the Uniform Substitution rule, which includes an implementation of the
static semantics and substitution admissibility conditions of dL.

Unfortunately, getting real work done in this raw Hilbert calculus is nontrivial. Even simple
properties have verbose proofs. For example, a proof of [x := 0 ∪ x := 1]x ≥ 0 is far from
concise [61]:
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*[∪]
[a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄)

US
[x := 0 ∪ x := 1]x ≥ 0↔ [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0 ∆

MP
[x := 0 ∪ x := 1]x ≥ 0

with x̄ = {x} where ∆ is:

∆1 ∆2Prop
[x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0

Prop
([x := 0 ∪ x := 1]x ≥ 0↔ [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0)→ [x := 0 ∪ x := 1]x ≥ 0

where ∆1 is

*[:=]
[x := t]p(t)↔ p(x)

US
[x := 0]x ≥ 0↔ 0 ≥ 0

*R 0 ≥ 0Prop
[x := 0]x ≥ 0↔ 0 ≥ 0→ [x := 0]x ≥ 0

MP
[x := 0]x ≥ 0

and ∆2 is

*[:=]
[x := t]p(t)↔ p(x)

*R 1 ≥ 0
MP, Prop, US

[x := 1]x ≥ 0

This lengthy derivation (which still elides some details!) demonstrates that although the
Hilbert calculus provides a compelling target for sound theorem prover implementations, even
trivial hybrid systems reachability properties require extremely verbose proofs.

3.2 Bellerophon
Practical use of the dL Hilbert calculus requires careful design of interactive and automated
theorem proving environments that leverage the simplicity and soundness of the Hilbert calculus
while also enabling verification of complex reachability properties for realistic models of cyber-
physical systems.

Enabling efficient automated theorem proving and productive interactive proving requires a
mechanism for defining and composing common proof construction techniques. Bellerophon, in-
troduced by Fulton et al. [65] and discussed at greater length in Chapter 4, is a programming lan-
guage and standard library for constructing dL proofs in KeYmaera X. Bellerophon implements
a high-level sequent calculus on top of the simpler dL Hilbert calculus, enabling human-readable
proofs for realistic hybrid systems. The Bellerophon standard library also contains several au-
tomatic proof search procedures, called tactics, that can automatically prove properties about
common subclasses of hybrid systems. Bellerophon combinators provide a mechanism for com-
posing these building blocks in to proof construction procedures and proof search algorithms.
As a result, the verbose proof presented above reduces to the very small Bellerophon program
invoking tactics in the Bellerophon standard library:
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Listing 3.1: Branching in Bellerophon proofs.
1 choiceb(1); andR(1); <( //Split proof: 1 subgoal per control choice
2 //[x:=0]x>=0 case
3 assignb(1); QE
4 ,
5 //[x:=1]x>=0 case
6 assignb(1); QE
7 )

The above tactic splits the proof into one case for each program on either side of the nonde-
terministic choice operator ∪. In each of these cases, the assignment is symbolically executed
to produce a purely arithmetic subgoal, which is then discharged using a decision procedure for
real arithmetic. KeYmaera X interfaces with implementations of arithmetic solvers in Z3 [45]
and Mathematica [99]. The primary automated theorem prover implemented in KeYmaera X,
master, will automatically construct the above tactic.

KeYmaera X distinguishes between built-in tactics and composite tactics. A Built-in tactic is
a piece of Scala code that directly manipulates Provable objects using the KeYmaera X core.
A composite tactic is a tactic built by applying combinators to built-in tactics. For example, the
above tactic is a composite tactic while choiceb and assignb are built-in tactics.

The major challenge addressed by KeYmaera X is retaining a productive theorem proving
environment without expanding the theorem prover’s core any more than necessary. The way in
which Bellerophon answers this challenge is discussed further in Chapter 4.

3.3 Related Work on Hybrid Systems Verification
Trustworthy and productive hybrid systems theorem proving requires a small soundness-critical
core, automation specific to hybrid systems, and a mechanism for composing this automation.
Even though these ingredients can be found scattered across a multitude of theorem provers, their
combination provides a novel tactical theorem proving technique for hybrid systems. Table 3.1
compares several tools along the dimensions that we identify as crucial to productive hybrid
systems verification (SC indicates a soundness-critical dependency on user-defined tactics or on
an external implementation of a more scalable arithmetic decision procedure).

Table 3.1: Comparison of KeYmaera X to Related Verification Tools and Provers.
Tool Small Core HS Library HS Auto Scriptable External Tools
KeYmaera X Yes Yes Yes Yes SC
Hybrid Systems Tools No No Yes No SC
Theorem Provers2 Yes No No Yes No
dL in Isabelle,Coq[25] Yes Yes3 No4 Yes No
KeYmaera 3 No Yes Yes SC SC

3E.g., Coq [132], Isabelle [140], HOL [82, 166], and Lean [46, 47].
4via encodings in dL
5via KeYmaera X proof term extraction discussed in Chapter 5
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Logics of Hybrid Systems Theorem provers for hybrid dynamics use deduction in a formal
calculus to establish reachability properties about a programming languages model of hybrid
dynamics. Differential Dynamic Logic and Hybrid CSP [126] both fit this paradigm. The first
theorem prover for dL was KeYmaera6 [154]. KeYmaera [3] was built as an extension to the
KeY system [3].

Unlike KeYmaera X, KeY and therefore KeYmaera were not built on a small core and their
tactics proving mechanisms are soundness-critical. Furthermore, the KeYmaera tool includes
more soundness-critical external tooling dependencies than KeYmaera X. These factors signifi-
cantly limit the trustworthiness of proofs obtained using KeYmaera. Perhaps more importantly,
the lack of separation between prover automation and soundness-critical proof checking limits
the extensibility of of KeYmaera relative to KeYmaera X because new proof search procedures
implemented in KeYmaera are soundness-critical, whereas proof developers using KeYmaera X
are free to speculate. The ability to speculatively modify a proof and later check the resulting
proof for correctness plays an important enabling role in our work presented in Chapter 8.

Automation implemented in KeYmaera is not only soundness-critical, but is also expressed
in a way that is not easy to interrogate. Unlike KeYmaera, KeYmaera X exposes a tactical proof
programming language (discussed further in Section 4.2. The fact that tactics in KeYmaera X
are themselves implemented in a tactical programming language means that these programs are
amenable to manipulation. This is a key enabling feature for our work in Chapter 8.

General-Purpose Theorem Proving Differential dynamic logic is a specialized logic for stat-
ing and proving reachability properties of hybrid dynamical systems. Several researchers have
proposed building a theory of hybrid systems within existing theorem provers. The most com-
plete approach is that of Bohrer et al. [25], whose work is compared with KeYmaera X in
Table 3.1. The approach of Bohrer et al. leverages purpose-built systems such as KeYmaera X
while building an interface with the larger theories available in tools like Coq and Isabelle. Un-
like embeddings of dL in other theorem provers, KeYmaera X is designed from the ground up
with productive hybrid systems theorem proving in mind. For this reason, Bohrer et al. [25] cur-
rently export proofs from KeYmaera X into other systems and independently check the proofs
there, instead of manually constructing proofs within their dL embeddings.

Some libraries implemented within general-purpose theorem provers are relevant to the anal-
ysis of continuous systems. For example, Immler and Hölzl formalized Picard-Lindelöf in Is-
abelle [96, 97]. Analyzing solvable differential equations is only a small part of hybrid systems
verification; verifying cyber-physical systems requires reasoning about the interaction between
control software and differential equations; Example 4 in Chapter 4 demonstrate that doing so is
not always trivial.

Foster et al. [56] recently proposed a new approach toward verifying hybrid systems using
a Hoare logic implemented in Isabelle. Foster et al. focus on unifying theories. Therefore,
their current exploration of interactive and automated hybrid systems verification focuses on
demonstrating that these properties are encodable within their framework, rather than on the

6Not to be confused with KeYmaera X, a clean-slate implementation that shares no code with KeYmaera, im-
plements a different core calculus, and takes a different approach toward both interactive and automated theorem
proving.
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verification effort itself.

Delta Decidability The δ-decidability framework, introduced by Gao et al. [66], relaxes the
decision problem for real arithmetic extended with special functions such as sine and cosine by
introducing numerical perturbations. Decision procedures determine, for an arbitrary formula ϕ,
whether the formula is true or false. The δ-decision procedure relaxes this problem by allowing
numerical perturbations to ϕ. Instead of returning true or false, a δ-decision procedure will, for
any formula ϕ containing only bounded quantifiers and for arbitrarily small δ, return either that
ϕ is true or else will return that a small perturbation to the formula will make the formula false.
The dReal tool [110] implements a δ-decision procedure for real arithmetic extended with special
functions by using interval constraint propagation [22] as the base theory for a DPLL(t) solver
[30]. Gao et al. extend this δ-decidability framework to the problem of bounded reachability
analysis for hybrid systems [68], and the dReach tool [67] leverages dReal to implement this
bounded reachability analysis.

The approach taken by dReal and dReach is similar to the earlier of Herde, Eggers, and
Fränzle whose HySAT solver is also DPLL-based [57, 89].

Unlike dReach and the work of Gao et al. and Herde et al. on bounded reachability anal-
ysis for hybrid systems [68, 89], KeYmaera X is capable of verifying systems with unbounded
quantifiers and can analyze systems with unbounded time horizons. Both of these are important
features because many salient safety properties about hybrid systems cannot be stated in terms
of bounded quantifiers and/or bounded time.

Unlike dReal and dReach, KeYmaera X isolates all soundness-critical reasoning to a small
soundness-critical core and enables interactive analysis of hybrid systems. Also unlike dReal
and dReach, KeYmaera X is capable of checking both safety and liveness properties of hybrid
systems. This distinction is important to our work on reinforcement learning discussed in Part II
because the ModelPlex algorithm that plays a central role in that approach relies on a hybrid
systems liveness analysis.

Timed Automata Timed automata express a restricted subset of hybrid dynamics in which
continuous dynamics are restricted to a finite set of real-valued resettable clocks. Tools such as
UPPAAL [20, 21, 42, 119] and KRONOS [43] are able to automatically model-check properties
of (networks of) timed automata. Unfortunately, timed automata are not expressive enough to
capture the rich continuous dynamics typically found in cyber-physical systems in which both
positional and time variables may have continuous dynamics. Hybrid systems include the full
expressiveness of ordinary differential equations, which is necessary to capture many interesting
controls problems including those which often occur when designing safety-critical control sys-
tems for automobiles and aircraft. Unlike tools based on timed automata, KeYmaera X is capable
of checking both safety and liveness properties of both timed systems and hybrid systems.

Hybrid Automata and Reachability Hybrid automata [85] are a representation of hybrid dy-
namics based on automata theory. Several approaches toward model checking for hybrid au-
tomata have been proposed and implemented; all of these approaches attempt to compute a set
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of a states that are reachable from an initial configuration. The reachable set is often over-
approximated to make automated analysis tractable. Over-representations might be represented
as ellipsoids [115, 116], convex polytopes, zonotopes [74], taylor models [31], and/or support
functions [78]. Many of these approaches consider subsets of hybrid dynamics; e.g., PHAver
[58] considers linear hybrid automata and SpaceEx [59] considers piecewise affine dynamics.
KeYmaera X currently provides less automation7 than these tools but is also not restricted to
a subclass of hybrid systems. KeYmaera X also differs from these tools because it provides a
robust interactive theorem proving environment; see Fulton et al. [65] Mitsch and Platzer [134].
A third and important distinction between KeYmaera X and both PHAver and SpaceEx is the
ability of the latter tools to provide visual insights into a system’s dynamics.

Several other tools also implement reachability analyses for hybrid automata. FLOW* [32,
33] is a reachability tool for hybrid automata that uses Taylor models to over-approximate reach-
able sets. The Compare Execute Check Engine (C2E2) [50] is an automatic verification tool that
combines numerical simulation with over-approximation to check bounded-time properties of
hybrid systems. Both of these tools have been used to verify large case studies (e.g., on large ge-
netic networks and helicopter dynamics). The HyTech [8, 86] system is capable of automatically
verifying temporal properties for some classes of hybrid systems.

Among tools based on hybrid automata, Ariadne [23] is notable because – like KeYmaera X–
Ariadne aspires to provide both an analysis tool and a development environment for constructing
new hybrid systems analyses. Unlike KeYmaera X, Ariadne does not isolate soundness-critical
reasoning from user-defined verification algorithms.

A number of tools provide support for analysis of hybrid systems within languages or soft-
ware packages. The MATLAB Hybrid Toolbox [19] contains a myriad of analysis and simulation
tools, including a technique for designing model-predictive controllers for hybrid systems. The
HyReach [130] tool is a MATLAB toolbox that approaches verification of linear hybrid systems
by using support functions to compute reachable sets. Checkmate [137] implements a MAT-
LAB toolbox for verifying, exploring, and simulating hybrid systems. The verification approach
implemented in Checkmate is based on flow pipe approximations of over-approximated hybrid
systems. S-Taliro [11] is a MATLAB toolbox for robustness analysis that uses Monte Carlo
methods for stochastic testing of hybrid systems. HyPro [95, 164] is a C++ library for imple-
menting hybrid systems analyses. HyPro implements state set representations that are useful for
implemented reachability analyses for hybrid automata.

The Charon [10] system enables modular specification of hybrid systems by including prim-
itives for composing agents and building hierarchies of behavior. Ptolemy [29, 52], focuses on
modeling and simulation of cyber-physical systems with concurrent components. Unlike KeY-
maera X, Charon and Ptolemy do not enable verification of hybrid systems.

Compared to tools for analyzing hybrid systems, KeYmaera X has several characteristics that
are crucial to our work on safe reinforcement learning.

• Unlike any other tools except KeYmaera, KeYmaera X focuses on interactive deductive
verification allowing users to tackle verification problems that are currently outside the
scope of automatic analyses. To date, this includes most industrially relevant hybrid sys-

7 This limitation is one of the implementation rather than the theory. Section 4.5.3 discusses how automation can
be built on top of KeYmaera X using a combination of schematic dL formulas and Bellerophon tactics.
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tems.
• Unlike any other tools except general purpose theorem provers, KeYmaera X contains a

small soundness-critical core enabling complex proof automation without decreasing the
trustworthiness of the prover. However, unlike general purpose theorem provers, KeY-
maera X provides a robust tactics library for verifying hybrid systems and for building
automated hybrid systems analysis tooling.

• Unlike all existing hybrid systems tools, KeYmaera X provides extensible automation ex-
pressed in a tactical programming language allowing us to systematically modify proof
scripts. This will play a crucial role in our work on model update learning in Chapter 8.

• KeYmaera X is capable of both safety and liveness checking, enabling the ModelPlex
algorithm for generating monitoring conditions that plays a crucial role in Chapter 7 and
Chapter 8.

• Unlike [8, 32, 33, 43, 50, 86], KeYmaera X enables tactical and deductive theorem proving
of both safety and liveness properties for hybrid systems. The tactical theorem proving
paradigm is a particularly important aspect of KeYmaera X that we leverage to great effect
in Chapter 8 and Chapter 9 to provide safety guarantees for hybrid systems.

3.4 Conclusion
KeYmaera X is a novel hybrid systems theorem prover that provides: 1) a small foundational
core; 2) a library of high-level primitives automating common deductions (e.g., computing Lie
Derivatives, computing and proving solutions of ODEs, propagating quantities across dynam-
ics in which they do not change, automated application of invariant candidates, and conserva-
tion/symmetry arguments); and 3) scriptable heuristic search automation. KeYmaera X can also
automatically generate ODE invariants [155] and generate code via a verified toolchain [26].
This combination of features enables our approach toward safe reinforcement learning in cyber-
physical systems.
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Chapter 4

Bellerophon

The previous chapter introduced the KeYmaera X system and discussed the structure of the
prover core at length. Although we acknowledged the difficulty of constructing a productive the-
orem prover based upon a small core, few details were given about how KeYmaera X overcomes
this difficulty. This chapter1 explains how the Bellerophon proof programming environment
helps turn the soundness-preserving core of KeYmaera X into a productive theorem proving
environment for establishing safety properties about hybrid dynamical systems.

Our presentation of Bellerophon begins with the syntax and semantics for the Bellerophon
tactic combinator language, passes through an example verification effort exploiting Bellerophon’s
support for invariant and arithmetic reasoning for a non-solvable system, and culminates with a
discussion of substantial proof engineering efforts undertaken using the Bellerophon proof engi-
neering environment.

4.1 Introduction

Theorem proving is an attractive technique for verifying correctness properties of hybrid systems
because it is applicable to a large class of hybrid systems [148]. Verification for hybrid systems is
not semi-decidable, thus requiring human assistance along two major dimensions. First, general-
case hybrid systems proving requires identifying invariants of loops and differential equations,
which is undecidable in both theory and practice. Second, the remaining verification tasks con-
sist of first-order logic over the reals with polynomial terms. Decision procedures exist which
are complete in theory [37], but are only complete in practice if a human provides additional
guidance. Because both these dimensions are essential to hybrid systems proving, innovating
along these dimensions benefits a wide array of hybrid systems verification tasks.

We argue that trustworthy and productive hybrid systems theorem proving requires: 1) a
small foundational core; 2) a library of high-level primitives automating common deductions
(e.g., computing Lie Derivatives, computing and proving solutions of ODEs, propagating quanti-
ties across dynamics in which they do not change, automated application of invariant candidates,
and conservation/symmetry arguments); and 3) scriptable heuristic search automation.

1 This chapter is based on Bellerophon: Tactical Theorem Proving for Hybrid Systems by Fulton et al. [65]
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As Chapter 3 demonstrated, KeYmaera X [64] is structured from the very beginning to main-
tain a small and trustworthy core. Bellerophon is built upon this foundation. Using the logi-
cal foundations of dL [152], Bellerophon implements a set of automated deduction procedures.
These procedures manifest themselves as a library of hybrid systems primitives in which com-
plex hybrid systems can be interactively verified. Finally, heuristic automation tactics written
in Bellerophon automatically apply these primitives to provide automation of hybrid systems
reachability analysis.

Even though these ingredients can be found scattered across a multitude of theorem provers,
their combination into a tactical theorem proving technique for hybrid systems is new. This com-
bination enables more ambitious verification efforts and, as we will see in Part II, enables several
novel approaches toward obtaining safety guarantees for reinforcement learning algorithms.

General purpose theorem provers, such as Coq [132] and Isabelle [141], have small founda-
tional cores and tactic languages, but their tactic languages and automation are not tailored to the
needs of hybrid systems. Even when these provers have formalizations of the classical theory
of differential equations, those theories do not provide substantial automation and are not tightly
incorporated into a holistic theorem proving environment. This chapter addresses the problem
of getting from a strong mathematical foundation of hybrid systems [152] to a productive hybrid
systems theorem proving tool. Reachability analysis tools, e.g. SpaceEx [59], provide auto-
mated hybrid systems verification for linear hybrid systems, but at the expense of a large trusted
codebase and limited ways of helping when automation fails, which is inevitable due to the unde-
cidability of the problem. KeYmaera’s [154] user-defined rules are no adequate solution because
they enlarge the trusted codebase and are difficult to get right.

Contributions. This chapter demonstrates how to combine a small foundational core [152],
reusable automated deductions, and problem-specific proof-search tactics into a tactical theorem
prover for hybrid systems. It presents Bellerophon, a hybrid systems tactics language and library
implemented in the theorem prover KeYmaera X [64]. Bellerophon includes a tactics library
which provides the decision procedures and heuristics necessary for a productive interactive hy-
brid systems proving environment. We first demonstrate the interactive verification benefits of
Bellerophon through interactive verification of a simple hybrid system, which is designed to
showcase a maximum of features in a minimal example. In the process, we also discuss signifi-
cant components of the Bellerophon standard library that enable such tactical theorem proving.
We then present two examples of proof search procedures implemented in Bellerophon, demon-
strating Bellerophon’s suitability for implementing reusable proof search heuristics for hybrid
systems. Along the way, we demonstrate how the language features of Bellerophon support
manual proofs and proof search automation.

4.2 The Bellerophon Tactic Language
Bellerophon is a programming language and standard library for automating proof constructions
and proof search operations of the KeYmaera X core. As in other LCF-style provers [165],
Bellerophon is not soundness-critical. This frees us to provide courageous reasoning strate-
gies that enable users to perform high-level proofs about hybrid systems while still benefiting
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from the high degree of trustworthiness that comes from a small soundness-critical core and the
cross-verification of dL in Isabelle and Coq [25]. A basic use of Bellerophon is to recover a
convenient sequent calculus for dL [147] from the simpler Hilbert calculus-based core [152] of
KeYmaera X. This demonstrates that Bellerophon is expressive enough to implement the au-
tomation capabilities of the predecessor prover KeYmaera [154] from a smaller set of primitives.
Beyond that, Bellerophon is used, e.g. for programming both individual proofs and custom proof
search procedures.

This section presents the basic constructs of the Bellerophon language. Readers familiar with
tactic languages for interactive theorem provers (e.g., [132]) will find many constructs familiar,
but should pay particular attention to the discussion of Bellerophon’s standard library. For us-
ability, traceability and educational purposes, Bellerophon tactics can be written in a hierarchical
structure that maps to the graphical tree structure of the resulting dL sequent proof [134].

The following dL formula Example 4 will be used as a running example throughout this
chapter to demonstrate tactical theorem proving in Bellerophon. The example models a skydiver
that may open his parachute or leave the chute closed. The model guarantees that the skydiver
will land at a safe speed by ensuring that the parachute opens early enough.
Example 4 (Safety specification for the skydiver model).

x ≥ 0 ∧ g > 0 ∧ 0 < a = r < p ∧ −
√
g

p
< v < 0 ∧m < −

√
g

p
∧ T ≥ 0 (init)

→ [
{

(?

(
r = a ∧ v − g · T > −

√
g

p

)
︸ ︷︷ ︸

Dive

∪ r := p); (ctrl)

t := 0; {x′ = v, v′ = r · v2 − g & x ≥ 0 ∧ v < 0 ∧ t ≤ T} (plant)}∗
](x = 0→ |v|≤|m|) (post cond.)

Opening the parachute is a discrete control decision. The diver’s physics are modeled as
an ODE, accounting for both gravity and drag, which changes when the parachute opens. This
example is carefully crafted to demonstrate many of the challenges in hybrid systems reasoning
while retaining relatively simple dynamics. Qualitative changes happen to the continuous dy-
namics after a discrete state transition, the dynamics are non-linear, and the property of interest
is not directly inductive.

We model a gravitational force (g > 0), a drag coefficient (r) which depends on whether
the parachute is closed (air a) vs. open (parachute p), the skydiver’s altitude x ≥ 0 and velocity
v < 0. The time between control decisions is bounded by the skydiver’s reaction time T . We also
assume that the diver does not pass through the earth x ≥ 0 and (to streamline this presentation)
that v < 0.

The controller contains two options for our skydiver. The left choice lets a closed parachute
(r = a) stay closed if the speed after one control cycle is definitely safe, computed by over-
approximating as if gravity were the only force (v − g · T > −

√
g
p
). The right control choice

opens the parachute, after which it stays open (as r 6= a). For simplicity, we say the parachute
opens instantly.

The differential equations allow model the drag on the skydiver caused a combination of
gravity and the parachute’s drag.
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Figure 4.1: Outline of a Sequent-Style Proof for Example 4.

∧R

. . .

testb
Γ ` Dive→ [ode](x=0→ |v|≤|m|)
Γ ` [?Dive?Dive?Dive][· · ·](x=0→ |v|≤|m|)

. . .

assignb
Γ ` [ode(p)](x=0→ |v|≤|m|)

Γ ` [r := pr := pr := p][· · ·](x=0→ |v|≤|m|)

choiceb
Γ ` [?Dive][· · ·](x=0→ |v|≤|m|)∧∧∧ [r := p][· · ·](x=0→ |v|≤|m|)

composeb
Γ ` [{?Dive∪∪∪ r := p}][{p′ = v, v′ = f(v, g, r)}](x=0→ |v|≤|m|)

prop
x ≥ 0, . . . ` [{?Dive ∪ r := p};;;{x′ = v, v′ = f(v, g, r)}](x=0→ |v|≤|m|)
` x ≥ 0∧∧∧ . . .→→→[{?Dive ∪ r := p}; {x′ = v, v′ = f(v, g, r)}](x=0→ |v|≤|m|)

The safety theorem says when the skydiver hits the ground, the velocity is at most a specified
safe landing speed |v|≤|m|, v < 0. We assume the parachute is initially closed (r = a), the speed
initially safe (v > −

√
g
p
), and the safe landing speed faster than the limit speed of the parachute

(m < −
√

g
p
).

The proof of the skydiver example motivates the constructs of our language and standard
library. A sketch of the proof follows.
Proof 1 (Skydiver sequent proof sketch). The proof starts from the initial conjecture (Example 4)
at the bottom, phrased as a sequent. Each sequent has the shape assumptions ` obligations,
which means from the assumptions left of the turnstile `, we have to prove any formula on the
right. Horizontal lines indicate that the sequent below the horizontal line is proved when the
sequent above the horizontal line is proved, justified by the tactic that is annotated left of the
horizontal bar (the corresponding operator is highlighted in boldface and red). For example, the
first step prop makes all conjuncts left of an implication available as assumptions, so the goal
x ≥ 0 ∧B → C below the line becomes x ≥ 0, B ` C above the line. When proof rules (e.g.,
andR) result in multiple subgoals, each subgoal continues in a separate branch and all need to
be proved.
Each step in the sequent proof above is a built-in tactic:
prop Exhaustively applies propositional proof rules in the sequent calculus.
composeb Splits sequential composition [α; β]P into nested modalities [α][β]P .
choiceb Splits choice [α ∪ β]P into a conjunction of subsystems [α]P ∧ [β]P .
andR, implyR, existsL, . . . are the right conjunction rule (∧R), the right implication rule

(→R) and left existential rule (∃L) as usual in sequent calculus. Throughout the chapter,
we will make use of standard propositional sequent calculus tactics that follow this naming
convention.

testb Makes test condition [?Q]P available as assumption Q→ P .
assignb Makes effect of assignment [x := t]P (x) available as update to P (t) or as assumption

x = t with proper renaming of other occurrences of x.
Bellerophon programs, called tactics, are functions mapping lists of sequents to (lists of2)

2Tactics may map a single sequent to a list of sequents; the simplest example of such a tactic andR corresponds
to the proof rule ∧R, which maps a single sequent Γ ` A ∧B,∆ to the list of subgoals Γ ` A,∆ and Γ ` B,∆.
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sequents. Built-in tactics (ranged over by τ ) are implemented in Scala. Proof developers can
combine existing tactics using the constructs described in Table 4.1. Built-in programs are im-
plemented as a sequence of operations on a data structure that can only be created or modified
by the soundness-critical core of KeYmaera X, thereby ensuring soundness of built-in tactics.

Table 4.1: Meaning of Bellerophon Tactic Combinators.
Language Primitive Operational Meaning

e ::= τ Built-in tactic
| e(v) Applies a tactic e to a (list of) positions or formulas
| e1 ; e2 Sequential Composition: Applies e2 on the output of e1

| e1 | e2 Either Composition: Applies e2 if applying e1 fails
| e∗ Saturating Repetition: Repeatedly applies e as long as it is applica-

ble (diverging if it stays applicable indefinitely)
| ?(e) Optional: Applies e if e does not result in an error
| <(e1, e2, . . . en) Applies e1 to the first of n subgoals, e2 to the second, etc.

Built-in Tactics. Bellerophon is both a stand-alone language and a domain-specific language
embedded in the Scala programming language. Built-in tactics directly manipulate the KeY-
maera X core to transform formulas in a validity-preserving manner. Bellerophon programmers
can construct new tactics either by writing new built-in tactics in Scala, or else by combining
pre-existing tactics using the combinators described in Table 4.1. KeYmaera X ships with a large
library of tactics for proof construction and proof search. Some built-in tactics – the propo-
sitional rules and choiceb for example – are straight-forward applications of the axioms in
[152]. Others provide a significant amount of automation on top of the axiomatic foundations.
For example, prop combines propositional sequent calculus rules to an automated proof search
procedure that often performs numerous simpler proof steps automatically.
Parameters. Most tactics are parameterized by formulas, locators, or both. Formula parameters
are provided whenever the behavior of a tactic is dependent upon a particular formula; for exam-
ple, the loop and differential induction tactics take an invariant formula as parameter. Locators
specify where in a sequent a tactic should be applied. The simplest form of locator is an explicit
position. Negative positions refer to formulas to the left of the turnstile (`) and positive positions
refer to formulas to the right of the turnstile,3 e.g., −1 :A, −2 :B, −3 :C ` 1 :D, 2 :E with
annotated formula positions. In addition to explicit positions, Bellerophon provides indirect lo-
cators: (i) e(R) applies e to the first applicable position4 in the succedent; (ii) e(Rlast) applies
e to the last position in the succedent. e(L) and e(Llast) behave accordingly in the antecedent.
Basic Combinators. Tactics are executed sequentially using the ; combinator. In e; f , the left
tactic e is executed on the current subgoal and then the right tactic f is executed on the result
of the left tactic’s execution. The | combinator attempts multiple tactics – moving from left to
right through a list of alternatives. The ∗ combinator in e∗ repeats the tactic e as long as it is
applicable. Many proof search procedures are expressible as a repetition of choices.

3The addressing scheme extends to subformulas and subterms in a straight-forward way. Interested readers may
refer to the Bellerophon documentation for details.

4Tactic e is applicable at a position pos if e(pos) does not result in an error.
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Branching. Proof search often results in branching. For example, a canonical proof of the
induction step of Example 1 decomposes into two cases: a diving case corresponding to the
control decision ?Dive and a deployed parachute case corresponding to the control decision r :=
p. Fig. 4.1 visually emphasizes the branching structure of this proof, which can be helpful for
structuring tactics too. The < combinator expresses how a proof decomposes into cases. An
explicit tactic directly performing the derivation illustrated in Fig. 4.1 without any search is:

Listing 4.1: A Structured Bellerophon Tactic for a Branching Proof.
1 prop ; composeb(1) ; choiceb(1) ; andR(1) ; <(
2 testb(1) ; ..., /* tactic for left branch of andR */
3 assignb(1) ; ... /* tactic for right branch of andR */
4 )

Equivalently, the proof search tactic unfold automates proofs such as Listing 4.1 by apply-
ing all propositional and dynamical axioms until encountering a loop program or a differential
equation, where cleverness might be needed.

4.3 Formal Semantics
This section provides a formal semantic model for the intuitions conveyed in previous sec-
tions. This formalism is merely a model of the underlying implementation; in particular, the
Bellerophon error reporting and handling mechanisms are much more sophisticated than the se-
mantics defined here.

The semantics presented below contain an embedding into Scala, where built-in tactics (ranged
over by β throughout) are interpreted. We also assume, implicitly, an evaluation context for
Scala tactics that includes all of the tactics named in this thesis. This context mapping is im-
plemented explicitly in the Bellerophon parser; see DerivationInfo.scala in the KeY-
maera X source code5.

4.3.1 Evaluation of Tactics

Recall from Chapter 3 that tactics operate over Provables, which contain a conclusion sequent
and a list of sequents called subgoals that imply the conclusion. Provables represent the proof
state of a sequent derivation:

Γ1 ` ∆1 · · · Γn ` ∆n

Γconclusion ` ∆conclusion

An alternative representation for Provables is (s; s1, . . . , sn) where each si is a subgoal and s
is the conclusion. Notice that there is a correspondence between each sequent s and the provable
(s; s) and also note that (s; nil) is the witness that s is proved. We denote by sugoals(p) the list
of subgoals of a provable p.

5http://github.com/KeYmaeraX-release
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Each tactic t maps a Provable to one or more new Provables. Tactics may also take argu-
ments. For example, in the next section we will introduce a loop tactic that allows the user to
specify a formula J that acts as a loop invariant as well as a position p indicated where in the
sequent to loop program occurs. We refer to the type signature of the argument list that a tactic
takes as the tactic’s signature.
Definition 5 (Signature of a Bellerophon Tactic). The signature sig(e) of a Bellerophon tactic e
is generated by the grammar

τ ::= String | Formula | Term | Position | τ, . . . , τ

where each Formula is a dL formula, each Term is a dL term, and each Position is a sequence
of dot-delimited integers indicating a position in a sequent or formula following the numbering
scheme introduced in Chapter 3.

For example, the signature of the loop tactic is Formula,Position; i.e.,

sig(loop) = Formula,Position

The formula and position passed to loop are referred to as arguments or, collectively, the argu-
ment list.

The remainder of this section describes the evaluation semantics presented in Fig. 4.2, in
which v ranges over argument lists, e over (unapplied or partially applied) tactics, and p over
provables. When reading the formal semantics, it is important to pay attention to whether a
tactic is being applied to an argument list or to a provable.

We denote by e(p) the application of a tactic to a provable p, which may contain several sub-
goals. The ith subgoal of p is denoted by p[i] with i ≥ 1 (the zeroth “subgoal” is the conclusion
of the provable). Note that each subgoal is a sequent, not a provable. However, by reasonable
abuse of notation, we can refer to each p[i] as the Provable (p[i]; p[i]).

E-PRIMITIVE-ARG When constructing tactics, it is often useful to escape into the host lan-
guage (Scala) to perform some computation, call an external tool (such as a computer algebra
system), or manipulate formulas. The suitability of Scala for writing code that manipulates for-
mulas is unsurprising due to the influence of ML on Scala’s design [143] and the fact that ML was
first developed as a language for developing tactics for the LCF system [76, 165]. To facilitate a
blend of Scala programming and Bellerophon programming, we allow the definition of primitive
tactics that are fully implemented in the Scala language. A primitive tactic name β is simply a
string that is mapped (implicitly via reflection or explicitly via a key-value mapping) to a Scala
class containing a method that maps proof states to proof states by performing operations in the
KeYmaera X core. The premise of the rule states that applying the tactic associated with β to the
argument list v evaluates (in Scala) to e′. The premise also contains an assumption that the sig-
nature of β in Bellerophon and the type of JβKScala in Scala correspond. Under these conditions,
β(β(v)) ⇓ e′. We intentionally leave the exact implementation of the mapping between tactic
names and provables loosely defined because the implementation details are not essential to the
definition of the meaning of Bellerophon programs. Our design choices on this question have
changed over time without any causing changes to other aspects of the Bellerophon evaluation
semantics.
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E-PRIMITIVE The E-PRIMITIVE rule is similar to the E-PRIMITIVE-ARG rule except for
provables instead of for argument lists.

E-APP The E-APP rule allows a tactic to be reduced before it is applied to an argument list.

E-SEQ and E-EITHER the sequence and either rules implement the intuitive meaning of the
sequential composition and either combinators; the sequential combinator composes the effect of
two tactics sequentially, and the either tactic allows either the left or the right tactic to be applied.
Note that the semantics implemented in KeYmaera X make the effect of the either combinator
deterministic; i.e., the EITHER-RIGHT rule as implemented in KeYmaera X is:

E-EITHER-RIGHT-KYX
e1(p) ⇓ p′ e2(p) ⇓ err

(e1 | e2) ⇓ p′

Note that in sequential implementation of this rule, e2(p) may remain unevaluated after first
evaluating e1(p) to a non-error value p′. Alternatively, in a parallelized implementation, the
evaluation of e2(p) may be terminated prematurely once the evaluation of e1(p) is complete.

Looping Tactics A tactic containing the repeat combinator can terminate in two ways. The first
option is for the tactic to eventually reach an error (e.g., by becoming inapplicable to the current
provable). The second option is for the tactic to reach a fixed point. These two alternatives are
described by the E-*-ERR and E-*-FP rules respectively.

Tests Wrapping a tactic in the test combinator allows the user to specify that a possibly inap-
plicable tactic should be attempted. If the child tactic results in an error, then the proof state
is unmodified and the tactic does not return an error state and the original proof state is propa-
gated. However, if the child tactic does not result in an error, then the effect of the child tactic is
propagated.

Branching Tactics Finally, the E-BRANCH-MAP allows a provable with several subgoals to
be decomposed into several sub-provables to which tactics may be applied. Recall that by abuse
of notation, each p[1] in the premise is really the provable (p[i]; p[i]) where p[i] is a sequent
corresponding to the ith subgoal. The meaning flatten(sugoals(p′1) :: sugoals(p′n) :: nil) in the
conclusion of this rule is simply that each sugoals(p′i) is a (possibly empty!) list of subgoals, so
the list of lists (p′1 :: p′n :: nil) should be flattened into a single list. Thus, the final expression

(p; flatten(sugoals(p′1) :: sugoals(p′n) :: nil))

denotes a provable for which p is the conclusion and in which the subgoals are a (flattened) list
of the subgoals resulting from the proof attempts on each branch.
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Error Semantics Several of the above-mentioned rules refer to tactics evaluating to an error
state. Error states are important in tactical theorem proving because many tactics are necessarily
heuristic and may fail in unexpected ways. The E-PRIMITIVE propagates exceptions and throw-
ables out of Scala and into Bellerophon. The exact implementation of this tactic is extremely
important to usability, but is here left abstract. The sequential and either composition error prop-
agation rules are straight-forward. Branching may fail in two ways. This first is a size mismatch
between the arity of the tactic list passed to the branch combinator and the arity of the subgoal
list of the provable to which the branching tactic is applied (E-BRANCH-SIZE-ERR). The second
is an error occurring in a proof of one of the subgoals (E-BRANCH-SIZE-ERR).

E-PRIMITIVE-ARG
Jβ(v)KScala ≡ e′ sig(β) = typeScala(β)

β(β(v)) ⇓ e′
a

E-PRIMITIVE
Jβ(p)KScala ≡ p′

β(β(p)) ⇓ p′

E-APP
e ⇓ e′

e(v) ⇓ e′(v)

E-SEQ

e1(p) ⇓ p′ e2(p′) ⇓ p′′

(e1 ; e2)(p) ⇓ p′′

E-EITHER-LEFT
e1(p) ⇓ p′

(e1 | e2)(p) ⇓ p′

E-EITHER-RIGHT
e2(p) ⇓ p′

(e1 | e2)(p) ⇓ p′

E-*-ERR
e(p0) ⇓ p1 · · · e(pi) ⇓ pi+1 e(pi+1) ⇓ err

e∗(p0) ⇓ pi+1

E-*-FP
e(p0) ⇓ p1 · · · e(pi) ⇓ pi+1 e(pi+1) ⇓ pi+1

e∗(p0) ⇓ pi+1

E-TEST-ERR
e(p) ⇓ err
?e(p) ⇓ p

E-TEST
e(p) ⇓ p′

?e(p) ⇓ p′

E-BRANCH-MAP
length(subgoals(p)) = n e1(p[1]) ⇓ p′1 . . . en(p[n]) ⇓ p′n
<(e1, . . . , en)(p) ⇓ (p; flatten(sugoals(p′1) :: sugoals(p′n) :: nil))

Figure 4.2: The evaluation dynamics of Bellerophon.

aJ·KScala identifies and executes the tactic named β in the KeYmaera X built-in tactic library, then executes that
tactic on the object obtained by running the parser on v.
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e ⇓ err

E-PRIMITIVE-ARG
Jβ(v)KScala ≡ err

β(v) ⇓ err

E-PRIMITIVE
Jβ(p)KScala ≡ err

β(p) ⇓ err

E-APP
e ⇓ err
e(v) ⇓ err

E-SEQ-ERRLEFT

e1(p) ⇓ err
(e1 ; e2)(p) ⇓ err

E-SEQ-ERRRIGHT

e1(p) ⇓ p′ e2(p′) ⇓ err
(e1 ; e2)(p) ⇓ err

E-EITHER-ERR
e1(p) ⇓ err e2(p) ⇓ err

(e1 | e2)(p) ⇓ err

E-BRANCH-SIZE-ERR
length(subgoals(p)) 6= n

<(e1, . . . , en)(p) ⇓ err

E-BRANCH-EVAL-ERR
∃i.1 ≤ i ≤ n ∧ ei(p[i]) ⇓ err
<(e1, . . . , en)(p) ⇓ err

Figure 4.3: Error Propagation Semantics of Bellerophon (includes all evaluation rules of the form
e ⇓ err that do not introduce new errors).

4.4 Demonstration of Tactical Hybrid Systems Proving
In this section, we demonstrate that the Bellerophon standard library’s techniques for invariance
properties, conservation properties, and real arithmetic simplifications, as implemented in KeY-
maera X, make it a convenient mechanism for interactively verifying hybrid systems. We do so
by considering the proof of Example 4 in detail.

Loop Invariants

Verifying a system loop begins with identifying a loop invariant J that is true initially, implies
the post-condition and is preserved by the controller. Each formula of the initial condition in
the parachute model is invariant except r = a; therefore, we will proceed with the following
invariant J :

(x ≥ 0 ∧ v < 0)︸ ︷︷ ︸
ev.dom.

∧
(
g > 0 ∧ 0 < a < p ∧ T ≥ 0 ∧m < −

√
g

p

)
︸ ︷︷ ︸

diff. inductive

∧ v > −
√
g

p︸ ︷︷ ︸
hard

(4.1)

Note that J holds initially and implies formula |v|≤|m| because v > −
√

g
p
> m. These facts

prove automatically. Therefore, the core proof needs to prove J → [ctrl; plant]J . We express the
proof thus far with the following tactic:

Loop Induction Tactic.
1 implyR(1); loop(J, 1); <(QE,QE,nil)

The implyR tactic corresponds to the right implication rule (→R) in sequent calculus; the first
argument states that we should apply this proof rule at the first position in the succedent. The
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loop tactic uses the dL axioms about loops to derive three new subgoals: (1) the loop invariant
holds initially (init→ J); (2) the loop invariant implies the post condition (J → post cond.); and
(3) the loop invariant is preserved throughout a single iteration of the loop (J → [ctrl; plant]J).
The loop rule in KeYmaera X is derived in Bellerophon from axioms and automatically retains
assumptions about constants that do not change in the system. The nil tactic has no effect and
is used in <() to keep subgoal (3) unchanged.

The branching combinator <() allows us to isolate each of these three subtasks from one
another. Subgoals (1) and (2) are proven using a Real Arithmetic solver (QE, for Quantifier
Elimination), since the arithmetic is easy enough here.

Decomposing Control Programs

The skydiver model’s control program is simple. It checks if it is safe to keep the parachute
closed, or sets r to open the parachute (at any time, but at the latest when it is no longer safe
to keep it closed). Therefore, we will immediately symbolically execute the control program
and consider the two resulting subgoals, both of which are reachability conditions on purely
continuous dynamical systems. This splitting could be done manually, as in Listing 4.1. But we
decide to split it automatically using the unfold tactic.

Decomposing Control Programs.
1 implyR(1); loop(J, 1); <(QE,QE,unfold)

ODE Tactics in the Standard Library

The rest of the proof will make use of several tactics in the Bellerophon standard library:
boxAnd Splits [α](P ∧Q) into separate postconditions [α]P and [α]Q.
dC(R) Proves a new propertyR of an ODE and then restricts the differential equation to remain

within the evolution domain R (differential cut).
dW Proves [x′ = f(x)&Q]P by proving that domain Q implies postcondition P .
dI Proves [{x′ = f(x)}]P by proving P and its differential P ′ along x′ = f(x).
dG(y’=ay+b,R) Adds new differential equation y′ = ay + b to [x′ = f(x)&Q]P , and re-

places the post condition by equivalent formula R (possibly mentioning the fresh differen-
tial ghost variable y).

These tactics perform significant automation on top of the dL axioms. For example, dI
performs automatic differentiation via exhaustive left-to-right rewriting of our axiomatization of
differentials (e.g., (s · t)′ = s′t + st′) and propagates the local effect of the differential equa-
tion. The dI tactic preserves initial value constraints for variables that are not changed by the
differential equation. It often performs hundreds of axiom applications automatically. The dif-
ference between the sound Differential Induction axiom [152] and the automation provided by
the dI tactic is an exemplary demonstration of the difference between a theoretically complete
mathematical/logical foundation, and a pragmatically useful tactical library.

We are now ready to consider two purely continuous subgoals of the form J → [plant(r)]J :
one where r = a (the parachute is closed) and one where r = p (the parachute is open), which
are both valid for different reasons.
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Closed Parachute: Chaining Inequalities

We first consider the r = a case, in which the parachute is closed. Symbolically executing the
control program results in a remaining subgoal that requires us to prove:

J ∧ v − g · T > −
√
g/p→ [{x′ = v, v′ = a · v2 − g&x ≥ 0 ∧ v < 0 ∧ t ≤ T}]J

We use boxAnd to work on the conjuncts of the loop invariant J separately, since each are
preserved for different reasons. The proofs for the first two sets of loop invariants in J (labeled
ev. domain and diff. induction) are identical to the r = p case and will be discussed later. Here,
we focus on the formula J ∧ v− g ·T > −

√
g
p
→ [{x′ = v, v′ = a · v2− g&x ≥ 0∧ v < 0∧ t ≤

T}]v > −
√

g
p
, which handles the third conjunct of J (labeled hard).

Compute that v ≥ v0 − g · t ≥ v0 − g · T > −
√

g
p
, where v0 is the value of v before the

ODE. In Bellerophon proofs for differential equations, we use old(v) to refer to the initial value
of a variable that will change throughout a loop or differential equation. For example, when
executing {x := x − 1}∗ from a state where x = 5, the value of old(x) is always 5 whereas
the value of x will change on each iteration of the loop.

Each of the subformulas in the postcondition above is a differentially inductive invariant, or
else is valid after the domain constraint is automatically augmented with constants g > 0∧p > 0.
Therefore, we use a chain of dC justified either by dI or by dW for each inequality in this tactic:

A Chain of Inductive Inequalities.
1 /* Key lemmas proofs of lemmas */
2 dC(v>=old(v)-g()*t,1); <(nil , dI(1));
3 dC(old(v)-g()*t>=old(v)-g()*T,1); <(nil , dW(1);QE);
4 dC(old(v)-g()*T>-c,1); <(nil , dI(1));
5 dW(1) ; QE

The argument is a sequence of differential cuts, each of which has a simple proof, and whose
conjunction implies the post-condition. Each of the nil tactics in the <() passes along a single
subgoal to the next tactic, so that at the end we have a long conjunction in our domain constraint
containing each of the cuts. This style of proof is pervasive in hybrid systems verification, and
easily expressed in Bellerophon. One key feature that makes this proof so concise is the use of
old(v), which introduces a variable v0 that remembers the initial value of v. Tactic dW(1);QE
on line 3 proves the cut from the evolution domain constraint.6

The inequalities in the evolution domain of the differential equation system are now suffi-
ciently strong to guarantee the postcondition, so we use dW to obtain a final arithmetic subgoal:
Γ ` v ≥ v0 − g · t ≥ v0 − g · T > −

√
g
p
→ v > −

√
g
p
, where Γ contains constants propagated

by the rule dW (unlike the DW axiom).
Although this arithmetic fact is obvious to us, QE will take a substantial amount of time to

prove this property (at least 15 minutes on a 32 core machine running version 10 Mathematica

6The attentive reader will notice we use g() instead of g. This is to indicate that the model has an arity 0
function symbol g(), rather than an assignable variable whose value may change from state to state.
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and version 4.3.7 of KeYmaera X). This is a fundamental limitation of Real Arithmetic decision
procedures, which have extremely high theoretical and practical complexity [41].

The simplest way to help QE is to introduce a simpler formula that captures the essential
arithmetic argument: e.g., cut in ∀a, b, c, d (a ≥ b ≥ c > d→ a > d) and then instantiate this
formula with our chain of inequalities. We take this approach for demonstration (see the imple-
mentation). As an alternative, transforming and abbreviating formulas in Bellerophon achieves
a similar effect.

Open Parachute: Differential Ghosts

We now consider case 2, where the parachute is already open (r = p). After executing the
discrete program the remaining subgoal is:

J → [{x′ = v, v′ = p · v2 − g & x ≥ 0 ∧ v < 0 ∧ t ≤ T︸ ︷︷ ︸
evolution domain constraint

}]J

The proof proceeds by decomposing the post-condition J into three separate subgoals, one for
each conjunct in J . In Listing 4.5, the boxAnd tactic uses axiom [α](P∧Q)↔ [α]P∧[α]Q from
left to right, to rewrite the instance of [α](P∧Q) to separate corresponding conjuncts [α]P∧[α]Q.
The first set of formulas in J (labeled ev. domain) are not differentially inductive, but are trivially
invariant because the evolution domain constraint of the system already contains these properties.
Differential weakening by dW is the appropriate proof technique for these formulas, see line 1 in
Listing 4.5. The second set of formulas (labeled diff. inductive) are not implied by the domain
constraint, but are inductive along the ODE because the left and right sides of each inequality
have the same time-derivative (0). Differential induction by dI is the appropriate proof technique
for establishing the invariance of these formulas, see line 2 in Listing 4.5.

Listing 4.5: Differential Weakening and Differential Induction.
1 boxAnd(1); andR(1); <(dW(1);QE , nil);
2 boxAnd(1); andR(1); <(dI(1) , nil)

The third conjunct (labeled hard) requires serious effort: we have to show that v > −
√

g
p

is
an invariant of the differential equation. This formula is not a differentially inductive invariant
because it is getting less true over time. To become inductive, we require additional dynamics to
describe energy conservation. The Bellerophon library provides a tactic to introduce additional
dynamics as differential ghosts into a differential equation system. Often, differential ghosts can
be constructed systematically. Here, we want to show v > −c where c =

√
g
p
, so we need a

property with a fresh differential ghost y that entails v + c > 0, e.g., y2(v + c) = 1. The formula
y2(v + c) = 1 becomes inductively invariant when y′ = −1

2
p(v − c). In summary, tactic dG

in Listing 4.6 introduces y′ = −1
2
p(v − c) into the system and rewrites the post-condition to

y2(v + c) = 1 with the additional assumptions that y does not contain any singularities (p >
0 ∧ g > 0).

Listing 4.6: Finishing the Parachute Open Case with a Ghost.
1 dG(y'=-1/2*p*(v-(g()/p)ˆ(1/2)), p>0&g()>0&yˆ2*(v+c)=1, 1) ;
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2 dI(1.0); QE

Tactic dG results in a goal of the form ∃y[· · · ](p > 0 ∧ g > 0 ∧ y2(v + c) = 1), so in
line 2 of Listing 4.6 we apply dI at the first child position 1.0 of succedent 1 in context of the
existential quantifier to show that the new property y2(v + c) = 1 is differentially invariant with
the differential ghost y.

If a system avoids possible singularities, the ODE tactic in the Bellerophon standard library
automatically computes the differential ghost dynamics (here y′ = −1

2
p(v−c)) and postcondition

(here y2(v+c) = 1) with the resulting proof. Additionally, notice that dG conveniently constructs
the axiom instance of DG [152], saving the proof developer from manually constructing such
instances.

The proof in Listing 4.6 completes the invariant preservation proof for r = p. The full proof
artifact for the skydiver demonstrates how Bellerophon addresses each of the major reasoning
challenges in a typical hybrid systems verification effort.

4.5 The Bellerophon Standard Library
The Bellerophon standard library contains two major components: an implementation of various
easy-to-use proof calculi for dL, and a suite of general-purpose tactics that encode general results
about dynamical systems.

4.5.1 Proof Calculi

The simplest component of the Bellerophon standard library is an implementation of the dL
sequent calculus in terms of the dL Hilbert axiom system. Most of this implementation is a
straightforward translation of axioms into sequent-style proof rules. For example, the proof rule
for box assignment:

Γ ` ϕx→θ,∆
Γ ` [x := θ]ϕ,∆

where ϕx→θ is short-hand for the replacement of all free occurrences of x by θ in ϕ, is imple-
mented by:

1. cutting the assignment axiom [x_:=f();]p(x_)<-> p(f()) into the proof,

2. proving the branch that contains the cut-in axiom in the succedent by hiding all formulas
except the axiom and making a direct appeal to that axiom.

3. performing a uniform substitution on this axiom so that x is substituted by x, f() by θ,
and p(x) and p(f()) by ϕ and ϕx→θ,

4. performing equivalence rewriting on the formula [x := θ]ϕ using the newly instantiated
equivalence, and finally

5. hiding the now-applied equivalence.
This general pattern – transforming a formula using an axiomatic equivalence or implication

– is particularly common in the Bellerophon implementation of the dL sequence calculus. For

38

http://web.keymaeraX.org/show/itp17/skydiver.kya
http://web.keymaeraX.org/show/itp17/skydiver.kya


this reason, the Bellerophon implementation includes a specialized useAt tactic will perform
this style of reasoning automatically.

Although most of the dL sequent calculus more-or-less follows from this pattern of reasoning,
the implementation of the solve rule is not so straightforward.

4.5.2 Solving Differential Equations
Many systems of differential equations have explicit, closed form solutions residing in decidable
fragments of Real arithmetic. When these solutions exist, they are powerful tools for reachability
analysis.

For example, the purely continuous system x′(t) = v(t), v′(t) = a(t) where t′ = 1 is often
a useful model of fragments of hybrid systems. The solution to this system is x(t) = a0

t2

2
+

v0t + x0, v(t) = a0t + v0, a(t) = a0 where x0, v0, a0 are symbolic initial values for the system.
For hybrid systems, constraints on these variables are determined by the discrete fragment of the
system and any initial conditions on the reachability theorem under consideration.

The following axiom schema can be used to verify systems with explicit closed-form solu-
tions that reside within a decidable fragment of arithmetic, where both x and f are vectors, and
y(t) is the solution to the differential equations for x evaluated at time t:

[x′ = f ]φ↔ ∀t ≥ 0[x := y(t)]φ

We choose to disclude rules and axioms such as the one above from the core of KeYmaera X
because of the complex side condition that y′(t) = f , which is difficult and subtle to check.
Such side-conditions interact in subtle ways with the rest of the logic, and should be avoided
when possible. Instead of introducing a new and fragile mechanism to check this one side condi-
tion, KeYmaera X leverages Bellerophon tactics to construct an untrusted solver using the more
general axiomatization of Lie Derivatives already present in the prover’s core.
An Axiomatic ODE Solver. The intuition behind our tactic for an axiomatic ODE solver is sim-
ple. For linear homogeneous systems, all partial solutions of the system are inductive invariants.
We use the Differential Cut (DC) rule to cut in each partial solution, and then prove that the
solution is an invariant using Differential Induction (DI). We then rewrite the post-condition P
in terms of time alone, and remove all differential equations except t′ = 1 from the system using
the Differential Ghost (DG) axiom in the right-to-left direction. Finally, we use the Differential
Solve (DS) axiom when we have only t′ = 1 left in the ODE.

A formal derivation for an example system x′ = v, v′ = a is given in Fig. 4.4. Some of these
steps require auxiliary goals; a full discussion of this derivation is presented [152].

A formal derivation corresponding to the proof constructed by the axiomatic solver for the
system x′ = v, v′ = a follows. Some of these steps require auxiliary goals; a full discussion of
this derivation is presented in [152], which introduced this proof technique.

The corresponding top-level Bellerophon tactic decomposes this proof into a number of steps:
The addTime tactic introduces a time variable to an autonomous system of equations using

the DG axiom (corresponding to the bottom two steps in the sequent derivation).
The cutInSoln tactic is a built-in tactic that computes partial solutions to the ODE and

cuts in these solutions following the variable dependency ordering. For example, the first partial
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φ ` ∀s(x0 + a
2
s2 + v0s ≥ 0)

φ ` ∀t ≥ 0∀0 ≤ s ≤ t[t := 0 + 1s]x0 + a
2
t2 + v0t ≥ 0

DSφ ` [t′ = 1]x0 + a
2
t2 + v0t ≥ 0

DGφ ` [v′ = a, t′ = 1]x0 + a
2
t2 + v0t ≥ 0

DGφ ` [x′ = v, v′ = a, t′ = 1]x0 + a
2
t2 + v0t ≥ 0

DCφ ` [x′ = v, v′ = a, t′ = 1&v = v0 + at]x0 + a
2
t2 + v0t ≥ 0

DCφ ` [x′ = v, v′ = a, t′ = 1&v = v0 + at ∧ x = x0 + a
2
t2 + v0t]x0 + a

2
t2 + v0t ≥ 0

Gφ ` ([x′ = v, v′ = a, t′ = 1&v = v0 + at ∧ x = x0 + a
2
t2 + v0t]x = x0 + a

2
t2 + v0t)→ x ≥ 0

DWφ ` [x′ = v, v′ = a, t′ = 1&v = v0 + at ∧ x = x0 + a
2
t2 + v0t]x ≥ 0

DCφ ` [x′ = v, v′ = a, t′ = 1&v = v0 + at]x ≥ 0
DCφ ` [x′ = v, v′ = a, t′ = 1]x ≥ 0

propφ ` ∃t[x′ = v, v′ = a, t′ = 1]x ≥ 0
DGφ ` [x′ = v, v′ = a]x ≥ 0

Figure 4.4: An Axiomatic Proof Using Solutions

Listing 4.7: Top-Level Axiomatic Solve Tactic.
1 solve(pos) := addTime(pos);
2 cutInSoln(pos)*;
3 simplifyPostCondition(pos);
4 inverseDiffCut(pos)*;
5 inverseDiffGhost(pos)*;
6 useAt("DS")(pos)
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solution for the example in Fig. 4.4 is v = v0 + at. The * operator repeats this operation until it
is no longer applicable.

The purpose of lines 3–5 of solve is to remove all occurrences of primed variables (except
t) from both the evolution domain constraint and the post-condition of the formula. Following
the x′ = v, v′ = a example, our goal is to produce a formula [x′ = v, v′ = a, t′ = 1&Q]P in
which Q and P do not mention x or v, but may mention a or t. These steps are necessary so
that the DG axiom can be used to remove x′ = v, v′ = a from the system; doing so makes the
univariate DS axiom applicable. This axiom is the only one which characterizes the notion of a
solution, and is only applicable to the equation t′ = 1; applying the DS axiom to larger systems
of differential equations would (rightly) result in a substitution clash. It is in fact important that
such a clash should occur because allowing the use of the DS axiom for arbitrary systems of
differential equations would certainly be unsound.

The simplifyPostCondition tactic rewrites the post-condition so that it does not men-
tion any primed variables in the autonomous system. This step ensures that t is the only variable
bound by the system c, allowing all other variables to be removed from the system via use of the
DG axiom in right-to-left order.

The inverseDiffCut tactic rewrites [c&H ∧ s]P to [c&H]P in the evolution domain
constraint where c is the system of differential equations. This step removes all mentions of one
of the ODE’s primed variables in the evolution domain constraint. This step incurs significant
overhead because removing each component of the domain constraint requires at least one call
to a real arithmetic solver. An alternative, more efficient, way of performing these proof steps is
to use the differential refine axiom.

After the inverseDiffCut steps, the domain constraint and post-condition are both stated
in terms of the time variable and do not mention any other variables that occur primed in the
ODE. The diffGhost tactic is now clear to remove all equations of the system of differential
equations except t′ = 1. Each of the tactics discussed so far are themselves built-in tactics that
construct Bellerophon expressions.

Finally, the DS axiom is used to solve the now univariate system, producing a final arithmetic
subgoal corresponding to the solution to the system of differential equations.

The tactic presented here is a slight simplification of the full top-level tactic implemented in
KeYmaera X. The KeYmaera X tactic performs a significant amount of preprocessing to make
the base tactic applicable in a wider range of settings. If initial values for primed variables
(e.g. x0, v0) are not included in the initial antecedent, then symbolic initial conditions are added
by discrete ghosts. Differential equations are commuted so that variables occur in dependency
ordering (i.e., x′ = v, v′ = a and v′ = a, x′ = v are both supported by commuting across the
comma). Real arithmetic subgoals are optimized. The tactic also includes a custom integrator
that handles a subset of linear homogeneous differential equations. KeYmaera X only supports
automatic solving of systems whose solutions exist in a decidable fragment of real arithmetic
because the ODE solver tactic makes repeated calls to an arithmetic decision procedure.

The solver supports both safety properties ([x′ = v, v′ = a]P ) as well as liveness properties
(e.g., 〈x′ = v, v′ = a〉P ). The diamond component of the ODE solver is a critical component of
the ModelPlex algorithm [135]. The full implementation in KeYmaera X is roughly 1000 lines of
Scala (excluding substantial supporting code that is reused in other parts of the codebase; e.g., the
implementation of useAt, the core Bellerophon data structures and interpreter, etc.). These 1000
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lines construct Bellerophon programs using a Scala domain-specific language whose semantics
are equivalent to those presented in this chapter.

4.5.3 Reasoning about Bifurcations
Despite the relative simplicity and small size of the KeYmaera X core, Bellerophon and KeY-
maera X are capable of expressing many properties about continuous dynamical systems.

One significant tactic is the axiomatic ODE solver, which uses the axioms and proof rules
of dL to prove the existence of solutions to a subset of linear ordinary differential equations.
The ODE solver implemented by Fulton and others provides validated solutions to differential
equations and is one of the largest tactics in the Bellerophon standard library. The ModelPlex
algorithm [135], which generates runtime monitors for hybrid systems, is implemented as a
Bellerophon tactic and makes essential use the axiomatic ODE solver.

KeYmaera X and dL are designed for hybrid program verification, not general-purpose math-
ematics. Therefore, the variety of results about dynamical systems that are encodable using a
combination of dL and Bellerophon tactics is often surprising. The Axiomatic ODE Solver is
a great example of this surprising expressiveness. The existence of closed-form solutions for
linear systems is not directly expressible in dL. However, a schema of dL formulas describing
all such systems combined with a Bellerophon tactic that can prove the invariance of a solution
for any system in this schema produces the same result. The dL formulaic schema is a theorem
about a general class of dynamical systems, and the Bellerophon tactic generates a proof for each
formula in the schema.

Bifurcation theory provides another nice example of the often surprising expressiveness of
KeYmaera X and Bellerophon. A bifurcation point is a point at which a dynamical system’s
qualitative dynamics changes [24, 157]. From a theorem proving perspective, bifurcation points
are interesting because the proof of a property about an ODE is often different on either side of a
bifurcation. Perhaps the simplest example of a bifurcation point arises in the following system:

x′ = r + x2

The existence of a bifurcation point in this 1D saddle-node system [118] – and the location
of the fixed points of the system on either side of this bifurcation – can be encoded in dL and
Bellerophon. The following dL formula encodes the fact that some fixed point f exists for any
choice of a parameter r ≤ 0: r ≤ 0→ ∃f(x = f → [x′ = r + x2]x = f)

The proof of this property must identify the bifurcation point at r = 0 and discover the
corresponding fixed points (f = −

√
−r when r < 0 and f = 0 when r = 0):

The Equilibrium Points of the 1D Saddle-Node Bifurcation7.
1 /* Move r <= 0 to the antecedent */
2 implyR(1);
3 /* Introduce and prove r = 0 ∨ r < 0 so that we can split the
4 * rest of our analysis along this bifurcation. */
5 cut(r = 0 ∨ r < 0); <(hideL(-1), hideR(1) ; QE);
6 /* Split the proof. */
7 orL(-1); <(
8 /* CASE 1: r=0 */
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9 existsR({0}, 1); /* choose f=0 */
10 implyR(1);
11 dG({y′ = −xy}, yx = 0 ∧ y > 0, 1); /* x = 0↔ ∃y(yx = 0 ∧ y > 0) */
12 existsR({1}, 1); /* choose y 6= 0; e.g., y = 1 */
13 /* Consider y*x=0 and y>0 differential invariants separately */
14 boxAnd(1); andR(1); <(
15 /* y*x=0 is differentially inductive because:
16 (yx)′ = 0↔ y′x+ x′y = 0 and y′x+ x′y = 0↔ −xy2 + r + x2 = 0
17 (recall: r=0)
18 */
19 dI(1)
20 ,
21 /* y>0 case needs an extra cut to use differential ghost for open set */
22 dG(z'= x

2z, z2y = 1, 1);
23 existsR({1}, 1);
24 dI(1)
25 )
26 ,
27 /* CASE 2: r < 0 */
28 /* introduce new variable s = sqrt(-r) and prove s exists. */
29 cut(∃s.r = −s2); <(nil, hideR(1) ; QE);
30 /* Some cleanup work about s */
31 existsL(-2) ; existsR(−s, 1) ; implyR(1) ;
32 dG({y′ = (s− x)y}, y(x+ s) = 0 ∧ y > 0, 1) ; existsR({1}, 1) ;
33 boxAnd(1) ; andR(1); <(
34 dI(1),
35 dG({z′ = x−s

2z }, z2y = 1, 1) ; existsR({1}, 1) ; dI(1)
36 )
37 )

The main idea is that many results about dynamical systems which are not traditionally
thought of as reachability properties are none-the-less expressible using a combination of dL
and Bellerophon even though KeYmaera X is not explicitly designed to support general-purpose
mathematics. I.e., a combination of Bellerophon tactics and schematic dL formulas can express
general results about dynamical systems. This fact enables our proof-producing axiomatic ODE
solver without any direct appeal to Picard–Lindelöf. With a bit of ingenuity, KeYmaera X’s
approach toward hybrid systems analysis is surprisingly powerful.

4.5.4 Tactical Automation for ODEs

Automated reasoning for ODEs is critical to scalable analysis of hybrid systems. Even when
human interaction is required, automation for simple reachability problems – such as reachability
for solvable or univariate subsystems – streamlines analysis and reduces requisite human effort.

The skydiver example above illustrated the interplay between finding differential invariants
and proving with differential induction and differential ghosts. The tactic ODE in the Bellerophon
standard library automates this interplay for solvable systems and some unsolvable, nonlinear

7 Disambiguating { · } markers are replaced with inline formulas; e.g., r = 0 ∨ r < 0 is actually written as
{r=0|r<0} in the Bellerophon script.
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systems of differential equations, see Listing 4.9. The ODEStep tactic directly proves prop-
erties by differential induction, with differential ghosts, and from the evolution domain con-
straints. The ODEInvSearch tactic cuts additional differential invariants, thereby strengthen-
ing the evolution domain constraints for ODEStep to ultimately succeed. Tactic ODE succeeds
when ODEStep finds a proof; if ODEStep does not yet succeed, ODEInvSearch provides
additional invariant candidates with differential cuts dC or by solving the ODE. This interaction
between ODEStep and ODEInvSearch is implemented in Listing 4.9 by mixing recursion and
repetition. Repetition is used in ODE so that ODEStep is prioritized over ODEInvSearch each
time that a new invariant is added to the system. Recursion is used in ODEInvSearch so that a
full proof search is started every time an invariant is successfully added to the domain constraint
by dC. The ODEInvSearch tactic calls ODEStep on its second subgoal (the “show” branch
of the dC) because differential cuts can be established in the right order without additional cuts.

Listing 4.9: Automated ODE Tactic for Non-Solvable Differential Equations.
1 ODEStep(pos) = dI(pos) | dgAuto(pos) | dW(pos) | ...
2 ODEInvSearch(pos) = dC(nextCandidate); <(ODE(pos), ODEStep(pos))
3 | solve(pos)
4 ODE(pos) = ( ODEStep(pos) | ODEInvSearch(pos) )*

The ODEStep tactic finds a proof with dI when the post-condition is differentially induc-
tive, meaning that the vector field of the differential equation points into the set described by
the differential equation. The dgAuto tactic will also attempt to make properties differentially
inductive by constructing differential ghosts for the postcondition, such as the ghosts introduced
in the skydiver example. In case the evolution domain of a differential equation system is suf-
ficiently strong, tactic dW succeeds from just the evolution domain constraints. The ODEStep
tactic implemented in KeYmaera X contains other proof search techniques (marked . . . above)
that are guaranteed to terminate but refrain from performing differential cuts.

The invariant search ODEInvSearch constructs candidates for differential invariants heuris-
tically [153], see dC(nextCandidate) in Listing 4.9, or systematically for solvable differen-
tial equations with solve. Tactic solve follows an axiomatic ODE solver approach [152] that
implements a solver in terms of the differential invariants, cuts, and ghosts reasoning principles
to avoid a trusted built-in rule for solving differential equations (such trusted built-in rules are
necessary in other hybrid systems tools, e.g., in KeYmaera [154]).

The ODE tactic described above is a simplified version of the ODE tactic implemented in
KeYmaera X, which contains additional automated search procedures and specializes proof
search based upon the shape of the post-condition.

4.5.5 Tactical Automation for Hybrid Systems
The solve and ODE tactics provide some automation for continuous systems proofs. The
master tactic builds on these to provide a full heuristic for hybrid systems in the canonical
form init → [{ctrl; plant}∗]safe. Tactic master combines the three basic reasoning principles
that together cover the reasoning tasks arising in hybrid systems models of the above shape:
propositional reasoning, symbolic execution of hybrid programs, and reasoning about loops and
differential equations.
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Listing 4.10: Proof Search Automation for Hybrid Systems.
1 master = OnAll(prop | step | close | QE | loop | ODE)*

In such proofs, branching is prevalent, e.g., due to non-deterministic choices in programs,
as well as loop and differential induction. In the proofs so far we specified explicitly how the
proof proceeds on each branch using <(). This approach is useful to specifically tailor tac-
tics and provide user insight to certain subgoals. In a general-purpose search tactic, however,
we neither know a priori how many branches there will be, nor how the specific subgoals on
each branch are tackled best. The Bellerophon library lets us specify such general-purpose proof
search with tactic alternatives |, repetition ∗, and continuing proof search on all branches with
OnAll. The prop tactic is executed first on each subgoal. Running prop moves init (of the
above-mentioned canonical form init → [{ctrl; plant}∗]safe) into the antecedent in the initial
theorem, but also performs propositional reasoning on each new subgoal generated by the proof.
This enables propositional simplifications both after symbolic execution and loop/ differential
induction, as well as to uncover propositional truths handled by close and thereby avoid po-
tentially expensive arithmetic reasoning in QE. The step tactic picks the canonical dynamical
axioms for a formula (by indexing techniques) and applies it in the canonical direction. For
example, when applied to [α ∪ β]P , the step tactic will produce a new subgoal [α]P ∧ [β]P .
The step tactic focuses on the portions of a program that do not need any decisions such as in-
variants for loops or differential equations. The loop tactic generates loop invariants [153] and
performs loop induction for the outer control loops, whereas ODE handles differential equations.
The KeYmaera X implementation of master contains several optimizations to the ordering of
tactics based upon empirical experience.

The ODE and master tactics demonstrate how Bellerophons’s combinators are used to con-
struct proof search procedures out of components available in the Bellerophon standard library.

4.6 Related Work on Tactical Theorem Proving
The novel contributions of this chapter are the design and implementation of a tactics language
and library for hybrid systems which have shown themselves to make tactical proving fruitful for
realistic hybrid systems verification tasks.
Tactics Programming Languages Tactics combinators appear in many general-purpose proof
assistants, such as NuPRL [38], MetaPRL [91], Isabelle [16], Coq [132], and Lean [47]. How-
ever, our goals differ: all of the above aim to work for as many proving domains as possi-
ble, while we optimize for hybrid systems proving. In pursuing this aim, we have developed
a unique, extensive suite of tactical automation for hybrid systems resting on a small trusted
core. We integrate key techniques for continuous systems (ODE solving, invariant generation,
and conservation reasoning via differential ghosts) with heuristic simplifications for arithmetic
that speed up the use of external real-closed field solvers.
Arithmetic Proving Proving theorems of first-order real arithmetic should not be confused with
formalizing real analysis, though both are valuable. General-purpose proof assistants have been
used to formalize much of real analysis [27, 81, 111, 167], and in fact some such formaliza-
tions [94, 98] have been used to prove the soundness of dL’s proof calculus on which KeY-
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maera X and Bellerophon rest [25]. However, the style of proof used is different: like other
domains in which general-purpose provers excel, formalized analysis benefits from the forms of
automation that these provers do well, such as automatically expanding definitions and applying
syntactic simplification rules. Because hybrid systems verification is less definition-heavy and
because simplification rules alone (e.g. ring axioms) do not make real arithmetic tractable, real
arithmetic proofs face problems for which existing automation is insufficient. Since arithmetic
proofs do arise in these provers as well, we believe our techniques to be of broader interest.
While we provide new automation for important tasks, this does not preclude us from using ex-
isting tactical techniques for the subtasks where they are most appropriate, such as propositional
reasoning and decomposing composite hybrid systems.
Tactical Proving Styles A set of patterns and anti-patterns have been proposed for Coq tactic
programming in Ltac [34]. The suggestion is to use general-purpose automation as much as
possible, conveying any problem-specific details through hints or lemmas. In keeping with this
philosophy, the canonical usage of Bellerophon is to provide loop and sequences of differential
invariants as hints to the automated master tactic. This reduces the proof to arithmetic. At
this point the user can steer the proof further, e.g. by using Bellerophon’s equational rewriting
mechanisms to reduce complex arithmetic to simpler lemmas. This tactical proof-by-hint style
can be mixed freely with other styles provided by the KeYmaera X user interface [134]. For
example, a user might use the UI to identify and apply an arithmetic simplification, at which
point the corresponding tactic is generated automatically. They might then integrate this tactic
into a larger proof-search algorithm which then solves similar proof cases automatically.

4.7 Conclusion
Bellerophon and its standard library support both interactive and automated theorem proving for
hybrid systems. The library provides users with a clean interface for expressing common insights
that are essential in hybrid systems verification tasks. Bellerophon combinators allow users to
combine these base tactics in order to implement proofs and proof search procedures. Through
Bellerophon, KeYmaera X provides sound tactical theorem proving for hybrid systems.

Bellerophon provides a useful basis upon which the rest of this thesis is developed. The small
core of KeYmaera X is solely responsible for soundness, but provides enough flexibility to reason
in many radically different ways about hybrid systems. Bellerophon makes this flexibility easily
accessible for programming both high-level hybrid systems verification strategies and concrete
case study proofs.
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Chapter 5

The Logic of Proofs for Differential
Dynamic Logic

This chapter presents a novel logic that extends differential dynamic logic with proof terms, the
logic of proofs for differential dynamic logic (LPdL) 1. LPdL reifies the structure of derivations
of the uniform substitution calculus presented Chapter 2. LPdL is related to the rest of this thesis
document in two ways.

The primary relationship between LPdL and the rest of this thesis stems from the observa-
tions in Chapter 3 and Chapter 4 that general-purpose provers are more general and have well-
developed automation for some domains, but are not as productive as KeYmaera X for hybrid
systems theorem proving. This is unfortunately because operating system kernels [107] and
compilers [112, 114] are verified in these more general purpose systems, opening up the pos-
sibility of not just verified models but end-to-end verification guarantees for compiled control
software. Thus, there are clear advantages to reifying the structure of derivations generated by
KeYmaera X in the uniform substitution calculus described in Chapter 2. Although this the-
sis focuses on hybrid systems theorem proving and verifiably safe learning for control, other
researchers have taken up the challenge of wedding KeYmaera X to theorem provers such as Is-
abelle and Coq [26], and those researchers take an approach based on proof reification (although
do not use LPdL itself).

The secondary relationship between LPdL and the rest of this thesis is more aspirational. The
clear trajectory to be established by the end of Part II is a long-running research program that
combines reasoning and learning to build highly trustworthy and highly adaptive control systems.
We believe achieving this goal will require building systems that interrogate the structure of their
own reasoning process, and performing those introspective operations will require a logic such
as LPdLthat reifies the structure of proofs. Although this direction is not explored in this thesis,
it does motivate the development of a sound logical foundations that goes deeper than the more
expedient translational approach taken by Bohrer et al. [26].

1This chapter is based the paper A Logic of Proofs for Differential Dynamic Logic: Toward Independently Check-
able Proof Certificates for Dynamic Logics published by Fulton and Platzer [61].
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5.1 Introduction

Differential dynamic logic has an implicit notion of proof; there is no way of saying, in the logic,
that some sequence of proof rule applications results in a proof of a dL formula. Type theories
[44, 131] and justification logics [12, 13] have explicit notions of proof; instead of only formulas
ϕ these logics also have formulas of the form t : ϕ meaning t is a proof of ϕ. Theorem proving
tools built on logics with an explicit notion of proof have many attractive qualities, including an
explicit syntax for exporting proofs generated by the theorem prover.

Unlike theorem provers based upon type-theoretic foundations, theorem provers in the dy-
namic logic tradition are not based upon logics with a formalized notion of explicit proof evi-
dence. Like several other theorem provers, KeYmaera X ensures soundness by only allowing
truth-preserving transformations on formulas, rather than by production of formally defined and
independently checkable proof terms. Successful theorem provers and verification tools that are
based on logics without proof terms – e.g., KeY, KeYmaera, many first-order theorem provers
(e.g., the Logic Theory Machine [136]), Dafny, model checkers, etc. – demonstrates truth-
preserving operations on formulas are enough to ensure the soundness of a theorem prover or
verification tool.

Although truth-preserving operations are sufficient for ensuring soundness, proof terms ad-
dress a number of limitations that have arisen during the development and use of the KeYmaera
[154] and KeYmaera X theorem provers. KeYmaera and KeYmaera X do not:

• provide a clean separation between proof checking and proof search
• implement a mechanism for composing, reusing, or parameterizing proofs (rather than

merely mechanisms for composing provability); or
• take advantage of procedures that require interrogating or modifying the structure of a

proof.
One advantage of the approach KeYmaera X takes is that there is never a need to re-check

proofs obtained via proof search because search always proceeds via operations defined in the
soundness-critical core of KeYmaera X. However, ensuring soundness is not the only motiva-
tion for separating searching from checking. KeYmaera X allows for parallel speculative proof
search, so persisting the particular execution trace of a proof search procedure requires storing
and merging proof state using extra-logical operations. Introducing an explicit notion of evi-
dence into differential dynamic logic is a more principled solution than post-hoc analysis of the
execution of a search procedure.

The second challenge is surmountable within a single theorem proving session, but is prob-
lematic in cases where users collaborate on proofs. Proof terms provide a natural modularity
mechanism and allow users to import proven lemmas from other users without re-executing an
expensive proof search procedure or blindly trusting the source of the proof.

This chapter presents a Logic of Proofs for Differential Dynamic Logic (LPdL) . LPdL provides
an explicit notion of evidence in the form of proof terms – syntactic objects that correspond to
deductions in (the uniform substitution calculus of) differential dynamic logic (dL). Concretely,
we assign a syntactic term e to each derivation of φ in dL such that e : φ – read as “e is a proof
of φ” – is a theorem of LPdL. We provide a semantics and an axiomatization for this language of
proof terms and establish some basic results about the logic and its relation to dL.
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The primary contributions of LPdL are:
• a semantic model that extends the standard reachability relation semantics of differential

dynamic logic with a notion of evidence (following Fitting [54]).
• a differential dynamic logic with an explicit notion of evidence – a Logic of Proofs for

Differential Dynamic Logic (LPdL).
• a theorem establishing the correctness of this logic by proving that all pieces of evidence

in LPdL correspond to a deduction in dL.
These contributions constitute a logical foundation for hybrid systems with an explicit notion

of evidence. LPdL was designed with two goals in mind: extracting live control programs from
dL specifications, and enabling systematic transformations to proofs.

Although LPdL was superseded by alternative approaches, the idea of constructing explicit
proof witnesses lives on KeYmaera X. Bohrer et al. implemented a verified implementations
of a differential dynamic logic proof checker in both Isabelle and Coq [25]. Using their imple-
mentation of a variant of our proof term calculus (in which proof terms simulate the proof trans-
formations performed by the KeYmaera X core), these researchers were able to export proofs
generated by KeYmaera X to the Isabelle theorem prover. These exported proofs were then
checked by other theorem provers and ultimately incorporated into a chain of evidence tying
hybrid systems tools to verified compilers [26].

Much of the work in Part II of this dissertation focuses on transformations that simultaneously
change a hybrid program and its safety proof. Rapid progress on the Bellerophon language en-
abled us to implement these transformations as modifications to Bellerophon programs (instead
of as modifications to proof terms).

Although the two goals for which LPdL was originally designed have been at least partially
solved using other methods, LPdL none-the-less contributes a logical foundations which could be
used to place the above-mentioned implementations on sound logical footing. However, using
LPdL to improve the robustness of proof transformations and proof translation remains future
work.

5.2 Related Work on Representing Proofs
Logics containing explicit representations of proofs have a storied place in the history of mathe-
matical logic and computer science. The Brouwer-Heyting-Kolmogorov semantics for intuition-
istic logic is one early and prominent example [90, 109]2. Type-theoretic theorem provers such as
Coq [132] use proof terms as explicit notions of evidence. Conversely, differential dynamic logic
has proved to be an excellent setting for verifying complex hybrid dynamical systems [158].

The approach taken in this chapter is motivated primarily by pragmatic concerns related to
the construction of certified software controllers for cyber-physical systems. We are particularly
interested in developing a notion of evidence that is easy to add to existing theorem provers for
differential dynamic logic (or other dynamic logics). For this reason, we take a logic with roots
in the modal logic tradition – the Logic of Proofs [12] – as our point of departure with existing
work.

2For an account of the development of the BKH interpretation, see Section 5.2 of Troelstra’s History of Con-
structive Mathematics in the 20th Century [168]
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The syntactic restriction placed on formulas containing proof terms is perhaps the most a
significant difference between LPdL and modal logics with notions of evidence. In LPdL, it is not
possible to construct a term of the form e : e′ : φ. For this reason, LPdL is considerably less ex-
pressive than what one might expect from a full logic of proofs for hybrid systems. However, our
concern in this chapter is with modeling deductions in dL, rather than with studying provability
in the context of hybrid dynamical systems.

LPdL contains several mechanisms for performing contextual equivalence and equational
rewriting. There exist many logics and calculi with primitives for this style of rewriting [4, 172].
Effortless rewriting of deeply nested formulas is a major benefit of Hilbert-style logics, but comes
at the cost of less structured proofs.

There are also many existing techniques for augmenting an existing logic with proof terms.
The remainder of this section discusses why we chose to design and implement a novel logic
rather than some of the most prominent alternatives, and why logic may prove useful in the
future even though other approaches (ad hoc tactic rewriting and ad hoc proof term translation)
have dominated implementation decisions in KeYmaera X thus far.

There are many reasons for implementing a new theorem prover – especially in the cyber-
physical systems domain. KeYmaera X is designed as a platform for research on both automated
and interactive theorem proving specifically for hybrid dynamical systems. Designing and imple-
menting new tactics languages, proof construction GUIs, and other features is easier in a smaller
system with significantly fewer lines of code, and KeYmaera X was specifically designed to sup-
port certain extensions (e.g., parallel proof search, control engineering-centric user interfaces)
that Coq (for example) was not designed to support.

Proceeding from the premise that hybrid systems theorem proving benefits from a theorem
proving system that is specifically tailored to differential dynamic logics, the primary benefit of
the approach in this chapter is that it is parsimonious with the meta-theory of these logics. Both
the syntax and semantics of LPdL are a straightforward extension of the semantics of differential
dynamic logics.

The rationale for developing a custom theorem prover for differential dynamic logics apply
equally to all of the alternatives discussed in this section. The following discussions of particular
alternatives focus on more specific comparisons.

Encoding in a Proof Assistant. One alternative is encoding Fig. 2.1 and Fig. 2.2 in a proof
assistant such as Coq [132] or Isabelle [140]. The Uniform Substitution algorithm implemented
in KeYmaera X is constructive and is implemented in a proof assistant for a higher order logic
[25], so this approach is certainly possible. These proof assistants have proof terms, so those
proof terms would serve our goal of adding proof terms to dL.

Even given a formalization of the soundness proof for dL, the benefit of a proof constructed
in a proof assistant remains questionable because the KeYmaera X core is small. For example,
although the Coq core is more thoroughly audited than the KeYmaera X core, it is also far larger
(the Coq core is approx. 20000 lines of code and the KeYmaera X core is approx. 2000 lines).3

More importantly, especially for deep embeddings, much of the proof structure is likely lost and

3This argument is less strong for HOL Light [80] and Lean [47], both of which have implementations whose size
and complexity is comparable to KeYmaera X.
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difficult to recover.
Ultimately, the contribution of LPdL relative to encodings is its first-principles logical foun-

dations for dynamic logic proofs.

Logical Frameworks. Logical frameworks [79] provide a potential counter-point to the above
observation that formalizing the soundness proof for dL would require considerable effort. Work
toward a mechanization of Standard ML in Twelf [145] demonstrates that logical frameworks are
particularly well-suited to reasoning about binding [122]; this strength is relevant in the context
of dL because binding structure is at the heart of admissibility constraints on uniform substitu-
tions. However, the binding structure of hybrid programs is rich enough that encoding admissible
uniform substitutions would require non-trivial effort. Furthermore, uniform substitution is only
the first (and likely easiest) step of a mechanization of dL in Twelf, Beluga [146], etc. because
obtaining soundness proofs would also require proving the local soundness of the axioms in
Fig. 2.2.

5.3 The Logic of Proofs for Differential Dynamic Logic
This section presents the syntax and semantics for LPdL. Syntactically, the logic is the differential
dynamic logic presented in [151], augmented with formulas of the form e : φ (where φ is a dL
formula and e is of a new syntactic category which we will call proof terms). The intended
meaning of e : φ is that e serves as evidence for φ. Semantically, LPdL extends the semantics of
dL with meanings for formulas of the form e : φ.

The choice of proof terms presented in this section is motivated by the typical structure of
proofs in dL. Proofs in dL combine equivalence/equational reasoning with uniform substitutions
and uniform renamings. For example, consider the proof of [x := 0 ∪ x := 1]x ≥ 0 in Fig. 5.1.
Each of the leafs of the proof is either an axiom of dL or else a tautology of FOLR. These leafs
are obtained from the original problem by performing equivalence rewriting, modus ponens,
and identifying uniform substitutions that translate the resulting subgoals into dL axioms. In
this proof, uniform renaming is not necessary; however, renaming would be necessary for the
formula [y := 0 ∪ y := 1]y ≥ 0 because the axiom for symbolically executing a discrete
assignment mentions x instead of y.

5.3.1 Syntax
Definition 6 (Formulas). The formulas of LPdL are defined by extending the inductive definition
of dL formulas given in Def. 1 with formulas of the form e : φ, where φ is a formula of dL and e
ranges over proof terms (defined below).

Our definition of the grammar of LPdL formulas (e.g., the inclusion of dL formulas) is parsi-
monious with the Justification Logic tradition rather than the type theory tradition.
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[∪]
[a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄)

US
[x := 0 ∪ x := 1]x ≥ 0↔ [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0 ∆

MP
[x := 0 ∪ x := 1]x ≥ 0

where ∆ =

[:=]
[x := t]p(t)↔ p(x)

US
[x := 0]x ≥ 0↔ 0 ≥ 0

R 0 ≥ 0Prop
[x := 0]x ≥ 0↔ 0 ≥ 0→ [x := 0]x ≥ 0

MP
[x := 0]x ≥ 0

[:=]
[x := t]p(t)↔ p(x) R 1 ≥ 0

MP, Prop, US
[x := 1]x ≥ 0

Prop
[x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0

Prop
([x := 0 ∪ x := 1]x ≥ 0↔ [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0)→ [x := 0 ∪ x := 1]x ≥ 0

Figure 5.1: A Proof of [x := 0∪ x := 1]x ≥ 0 in the Uniform Substitution Calculus of dL. The proof of ∆ is slightly abbreviated for
readability; the proof for the x := 1 case is very similar to the proof of the x := 0 case.
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The formulas of LPdL as defined in Def. 6 augment the formulas of dL with an additional
connective e : φ. 4 This augmentation strictly extends the grammar of dL. Formulas such as
1 = 1∧2 = 2 which do not contain proof terms remain formulas of LPdL. However, grammatical
constructions of the form e : e′ : φ (and e : e′ : e′′ : φ, and so on) are not formulas of LPdL; i.e.,
proof terms provide evidence only for dL derivations – not for LPdL derivations. Although the
authors are interested in extending LPdL to properly treat formulas of these forms, our immediate
motivations for explicitly representing proofs do not require such a rich language.

Pure LPdL formulas are formulas that do not allow the use of dL connectives (such as (e :
φ) ∧ (d : φ)). Pure LPdL formula either a formula of dL, or a formula of the form e : φ where e
is a proof term and φ is a formula of dL.
Example 5 (LPdL formulas and non-formulas). The following are non-pure formulas of LPdL (where
e, d are proof terms and φ, ψ are dL formulas):

• (e : φ) ∧ (d : ψ)
• (e : φ)→ (d : ψ)
• [x := 0](j1=1 : 1 = 1)

whereas e : (φ ∧ ψ) is a pure formula of LPdL:
In most of this chapter we are concerned only with pure LPdL formulas, because these are

the formulas that correspond to judgements

e is a dL proof of φ

where φ is a formula of dL; i.e., pure LPdL formulas are just proof certificates for dL derivations.
In particular, our axioms and proof rules focus only on the pure fragment of LPdL. A complete
definition of the objects that may stand in for e occupies the remainder of this subsection.
Definition 7 (Proof Terms). Proof terms are defined by this grammar (with e, d as proof terms, c
ranging over sets of proof constants, σ as a uniform substitution, B as a uniform renaming, and
φ as dL formulas as defined in Def. 1).
〈e, d〉 ::= cφ Proof Constants
| e ∧ d Conjunctions
| e • d Implicative Application
| e •← d | e •→ d Directional Equivalence Application
| σe |Be Uniform Substitutions and Bound Renaming
| CTσe | CQσe | CEσe Equivalence/equational Reasoning

Proof terms are the syntactic objects of LPdL corresponding to deductions in dL.

Atomic/Axiomatic Terms. Proof constants serve as evidence for dL axioms and FOLR tau-
tologies. In this chapter, we consider two sets of proof constants – iA where A is any dL axiom
and jT where T is any tautology of FOLR. We use cφ whenever we mean to discuss both of these
sets of proof constants.

The separation of atomic proof terms indexed by concrete axioms into disjoint sets is moti-
vated by practical concerns that arise when implementing a theorem prover for hybrid systems.

4It is not misleading to think of : as a binary function mapping proofs terms and dL formulas to LPdL for-
mulas.
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The benefit of separating atomic proof terms into sets is a clear separation between axiomatic
and real arithmetic reasoning. Although the first-order theory of real arithmetic is decidable [37],
the problem has extreme complexity [53]. Furthermore, KeYmaera X (as well as other theorem
provers) that utilize decision procedures for real arithmetic are typically sound only modulo the
soundness of an external implementation of the decision procedure being used. Distinguishing
computationally trivial appeals to axioms from possibly expensive appeals to arithmetic decision
procedures isolates a natural extension point for incorporating certificates of arithmetic facts e.g.,
by extracting witnesses from an implementation of a Coq implementation of the Cylindrical Al-
gebraic Decomposition algorithm [129] or by using approaches such as [156] that are amenable
to certificate generation. Isolating real arithmetic facts from axiomatic facts also makes it very
easy to identify appeals to FOLR tautologies in proofs, which could be useful for identifying
when the reproducibility of a proof is going to depend upon possibly expensive appeals to a
decision procedure.

Conjunctions. The ∧ operator allows for the creation of evidence for conjunctive formulas. If
e : φ and d : ψ then (e ∧ d) : φ ∧ ψ. This connective is also not strictly necessary if dL contains
appropriate propositional axioms but is useful because many dL axioms contain conjunctions.
Conjunctions represent the exact structure of a proof, so LPdL excludes the + operator found in
some Justification Logics ([13, Part II]) because we are interested only in single conclusion proof
systems. From an implementation perspective, the most interesting multi-conclusion extensions
are those that could serve as a category of values for a proof search specification language capable
of describing decidable but non-deterministic forward proof search procedures.

Implications. The • operator allows the use of evidence of an implication, and corresponds to
the modus ponens proof rule. For example, if e : ψ → φ and d : ψ then e • d : φ. This operator
corresponds to the application operator of the Logic of Proofs and corresponds to application in
the Simply Typed Lambda Calculus.

Equivalence Rewriting. The •← and •→ operators are similar to the implication operator, but
are used for equivalences instead of implications. The subscript on the operator indicates the
direction in which the equivalence should be used. For example, if e : ψ ↔ φ and d : φ then
e•← d : ψ. The •← and •→ operators are not strictly necessary because they can be replaced with
axioms. If

i : (φ↔ ψ)→ (φ→ ψ),

e : φ↔ ψ, and
d : φ

then (i • e) • d : ψ. These operators are included because equivalence rewriting is a fundamental
and pervasive operation in axiomatic proofs, so even the constant multiplier on the length of
proof terms is enough to motivate the addition of operators.
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Substitution and Renaming. Uniform substitution and renaming are essential parts of dL
proofs and are witnessed by proof terms of the form σe and Be, where σ and B are uniform sub-
stitutions and renamings respectively. Uniform substitutions do not map variables to variables,
but variable renamings are necessary whenever a proof contains variables that do not occur in
axioms. For example, a proof of [a := 12]a = 12↔ 12 = 12 is just a uniform renaming of x to
a in the [:=] axiom. KeYmaera X allows explicit uniform renamings during proving, and these
explicit renamings are captured by the B proof terms.

Equivalence and Equational Reasoning. The CTσ, CQσ, and CEσ operators correspond to
uniform substitution instances of the contextual equation and equivalence proof rules of dL (CT,
CQ, and CE). For example, the proof term CT{c(·) 7→·2,f(·)7→b,g(·)7→a} serves as evidence for the
{c(·) 7→ ·2, f(·) 7→ a, g(·) 7→ b} uniform substitution instance of the CT proof rule:

a = b

a2 = b2

5.3.2 Semantics
The semantics of LPdL formulas extends the semantics of the uniform substitution calculus
presented in Chapter 2. As in dL, interpretations I in LPdL give meaning to program constants,
function, predicate and quantifier symbols [151].
Definition 8 (LPdL Semantics). The semantics of an LPdL formula χ is defined with respect to
an interpretation I as the subset JχKI ⊆ S of states in which χ is true and is defined inductively
as follows (where iA, jT ranges over proof constants, e, d range over proof terms, and φ, ψ range
over dL formulas):

• JφKI = JφKIdL where J·KdL is the denotation of dL given in [151]. The meaning of connec-
tives ∧,¬, ∃, [·], 〈·〉 is also as in dL, e.g., Jϕ ∧ χKI = JϕKI ∩ JχKI

• JiA : AKI = S for dL axioms A
• JjT : T K = S for FOLR tautologies T
• Je ∧ d : φ ∧ ψKI = Je : φKI ∩ Jd : ψKI = {v ∈ S : v ∈ Je : φKI and v ∈ Jd : ψKI}
• Je • d : φKI =

⋃
ψJe : (ψ → φ)KI ∩ Jd : ψKI

= {v ∈ S : v ∈ Je : (ψ → φ)KI and v ∈ Jd : ψKI for some ψ}
• Je •← d : φKI =

⋃
ψJe : (φ↔ ψ)KI ∩ Jd : ψKI

= {v ∈ S : v ∈ Je : (φ↔ ψ)KI and v ∈ Jd : ψKI for some ψ}
• Je •→ d : φKI =

⋃
ψJe : (ψ ↔ φ)KI ∩ Jd : ψKI

= {v ∈ S : v ∈ Je : ψ ↔ φKI and v ∈ Jd : ψKI for some ψ}
• Jσe : σφKI = Je : φKI if σ is admissible for φ

= {v ∈ S : v ∈ Je : φKI and σ is admissible for φ}.
• JBe : BφKI = Je : φKI if B is a uniform renaming of φ

= {v ∈ S : v ∈ Je : φKI and B is a uniform renaming of φ}
• JCTσe : σ(c(f(x̄)) = c(g(x̄)))KI = Jσe : σ(f(x̄) = g(x̄))KI
• JCQσe : σ(p(f(x̄))↔ p(g(x̄)))KI =

Jσe : σ(f(x̄) = g(x̄))KI
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• JCEσe : σ(C(p(x̄))↔ C(q(x̄)))KI =
Jσe : σ(p(x̄)↔ q(x̄))KI

Undefined cases are empty.5

Note that the meaning of e : φ is always either S or ∅ because e either is a proof of φ or is
not a proof of φ; in other words, the validity of a proof does not depend on the state in which the
proof is evaluated.

We do not prove soundness in this chapter; instead, we establish a correctness result that
is more useful in our context: whenever e : φ is a theorem of LPdL, we can construct a dL
proof of φ, which implies that φ is valid. In this section, we take a similar approach. Instead of
establishing a direct connection between the semantics and axioms and proof rules of LPdL, we
instead establish a projection from the semantics of LPdL to the semantics of dL.
Theorem 1 (Correctness of Proof Term Valuation). Consider any interpretation I , v ∈ S and
dL formula φ. If v ∈ Je : φKILPdL

then v ∈ JφKIdL.
Note that Theorem 1 pertains only to pure LPdL formulas; i.e., LPdL formulas of the form

e : φ where e is a proof term and φ is a formula of dL.

Proof. The proof proceeds by induction on the structure of e, simultaneously for all φ.

Axiomatic Terms. Suppose v ∈ Jiψ : φKILPdL
. By Def. 8, it must be that φ is ψ and ψ is an axiom

of dL. Therefore, φ is an axiom of dL so by soundness of dL, JφKIdL = S. Finally, v ∈ S.
FOLR Tautology Terms. Suppose v ∈ Jjψ : φKILPdL

. By Def. 8, it must be that φ is ψ and ψ is a
tautology of FOLR. Therefore, φ is a tautology of FOLR so by soundness of dL, JφKIdL = S.
Finally, v ∈ S.

Case e ∧ d. Suppose v ∈ Je ∧ d : φKILPdL
. Inspecting the cases of Def. 8, it must be that

φ = ϕ ∧ ψ

for some ϕ, ψ such that

v ∈ Je : ϕKILPdL
(5.1)

v ∈ Jd : ψKILPdL
(5.2)

Applying the inductive hypothesis at (5.1) and (5.2), we have v ∈ JϕKIdL and v ∈ JψKIdL
from which it follows that

v ∈ JϕKIdL ∩ JψKIdL = Jϕ ∧ ψKIdL

by the definition of the semantics of dL [151].
Case e • d. Suppose v ∈ Je • d : φKILPdL

. By Def. 8 we know that

v ∈ Je : ψ → φKILPdL

v ∈ Jd : ψKILPdL

5E.g., J(e ∧ d) : φKI = ∅ whenever φ is not of the appropriate form. Likewise for the other cases.
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for some ψ. Applying the inductive hypothesis to these facts establishes

v ∈ Jψ → φKIdL
v ∈ JψKIdL

From these facts, a classical propositional encoding of ψ → φ, and elementary theorems
of set theory, we obtain that

v ∈ (JψKIdL)C ∪ JφKIdL
(where XC is the set complement S \ X of X) which, because v ∈ JψKIdL, implies v ∈
JφKIdL.

Case e •← d and e •→ d. Symmetric to e • d.
Case σe. Suppose that v ∈ Jσe : φKILPdL

. Then by inspection of the cases of Def. 8, φ = σ(φ′)
and v ∈ Je : φ′KILPdL

Applying the inductive hypothesis to this fact establishes v ∈ Jφ′KIdL.
Note that σ is, by Def. 8, an admissible substitution for φ′. From this fact and the previously
established fact that v ∈ Jφ′KIdL, it follows that v ∈ Jσ(φ′)KIdL by the uniform substitution
proof rule and the soundness of dL. So, by our previous observation that φ = σ(φ′),
v ∈ JφKIdL.

Case Be. Suppose that v ∈ JBe : φKILPdL
. Then by inspection of the cases of Def. 8, φ =

B(φ′) and v ∈ Je : φ′KILPdL
Applying the inductive hypothesis to this fact establishes

v ∈ Jφ′KIdL. Note that B is, by Def. 8, an admissible substitution for φ′. From this fact
and the previously established fact that v ∈ Jφ′KIdL, it follows that v ∈ JB(φ′)KIdL by the
uniform substitution proof rule and the soundness of dL. So, by our previous observation
that φ = B(φ′), v ∈ JφKIdL.

Case CTσe. Suppose that v ∈ JCTσe : φKILPdL
. By inspection of the cases of Def. 8, φ =

σ(c(f(x̄)) = c(g(x̄))) and v ∈ Je : c(f(x̄)) = c(g(x̄))K. Note that σ is admissible for
c(f(x̄)) = c(g(x̄)), so v ∈ Jσ(c(f(x̄)) = c(g(x̄)))KIdL = JφKIdL. The remaining contextual
cases are similar.
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5.3.3 Axioms and Proof Rules

Axioms governing the construction of proof terms allow for the derivation of proof terms that
describe proofs by substitution, uniform renaming, uniform substitution, and appeals to axioms
and tautologies. This is sufficient to describe proofs constructed by the uniform substitution
calculus of dL, and by extension most proofs constructed by the KeYmaera X theorem prover.
The KeYmaera X theorem prover also contains a propositional sequent calculus and skolemiza-
tion [147], so in practice some proofs constructed by KeYmaera X may not have proof terms in
LPdL. However, there exist proof term calculi for propositional sequent calculi, so this chapter
focuses on the portions of KeYmaera X proofs that do not yet have an easily adaptable proof
term calculus.

After stating the axioms and proof rules of LPdL in Def. 9, we describe how each is used to
construct proof terms for typical constructions.

Unlike dL, LPdL does not use uniform substitutions. Therefore, the objects described in the
following definition are axiom schemata and proof rules – not just formulas or pairs of formulas.

The axioms in Def. 9 correspond to the intuitive meanings for proof terms given in Sec-
tion 5.3.1.

Proof Constant Axioms. The axiomatization of dL is included in LPdL in the form of includ-
ing all provable dL formulas (rule dL Axiom). Proof constants iA and jT internalize evidence
for dL axioms and FOLR tautologies. For example,

i[a;b]p(x̄)↔[a][b]p(x̄) : [a; b]p(x̄)↔ [a][b]p(x̄), and
jx≥0→x2≥0 : x ≥ 0→ x2 ≥ 0

are both axioms of LPdL. For brevity, we often use the names of axioms as subscripts instead of
the axioms themselves. For example,

i[∪] : [a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b](x̄).

Conjunction Proof Rule. The And proof rule enables construction of compound proof terms
that serve as evidence for conjunctions. Constructing a proof term that allows for left and right
projections of a conjunction is also possible using dL axioms and Application axiom, so these
are not included as primitives. Unlike dL, proof term axioms and proof rules are schematic, so

d : x = y e : y = z

(d ∧ e) : x = y ∧ y = z

is a derivation in LPdL.
Definition 9 (Axioms of LPdL). The following are axiom schemata of LPdL, where ϕ, ψ range
over LPdL formulas, and c, f, g are function symbols and p, q are predicate symbols, and C a
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quantifier symbol.

φ (dL Axiom)
iA : A (dL Constants)
jT : T (FOLR Constants)

e : φ d : ψ

(e ∧ d) : (φ ∧ ψ)
(And)

e : (φ→ ψ) d : φ

e • d : ψ
(Application)

e : (φ↔ ψ) d : φ

e •→ d : ψ
(Right Equivalence)

e : (φ↔ ψ) d : ψ

e •← d : φ
(Left Equivalence)

e : φ

σe : σ(φ)
(US Proof Term)

e : φ

Be : B(φ)
(Renaming)

σe : σ(f(x̄) = g(x̄))

CTσe : σ(c(f(x̄) = c(g(x̄)))
(CTσ)

σe : σ(f(x̄) = g(x̄))

CQσe : σ(p(f(x̄)↔ p(g(x̄)))
(CQσ)

σe : σ(p(x̄)↔ q(x̄))

CEσe : σ(C(p(x̄)↔ C(q(x̄)))
(CEσ)

and where the rules US Proof Term, CTσ, CQσ, and CEσ are applicable only whenever σ is
admissible for the dL formulas to which it is applied, and only whenever σ has no free variables.
The set of free variables of a substitution is defined in [151]. The formula φ in (dL Axiom) must
be a dL formula provable in dL.

Application Proof Rules. The Application proof rule enables construction of proof terms that
correspond to the use of the Modus Ponens rule in dL; for example,

d : p(x)→ q(x) e : p(x)

e • d : q(x)

is a derivation in LPdL. The Left Equivalence and Right Equivalence rules are definable in terms
of the Application rule at the expense of more verbose proof terms.
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Uniform Substitution Proof Rule. The US Proof Term axiom allows the construction of ev-
idence that appeals to uniform substitutions. Similarly, uniform renaming is evidenced by Re-
naming. A schematic sequent calculus for dL is definable using uniform substitutions [64] and
proof terms can be assigned to each of these proof rules. For example, the proof terms for the
sequent calculus proof rule

` [α]ϕ ` [β]ϕ

` [α ∪ β]ϕ

are σi[∪] •→ e : [α]ϕ ∧ [β]ϕ where e : [α ∪ β]ϕ and σ = {a 7→ α, b 7→ β, p(·) 7→ ϕ}.

Equivalence/Equational Proof Rules. The CTσ, CQσ, and CEσ proof rules combine uniform
substitutions with the proof rules CT, CQ, and CE from dL.

Example 6 demonstrates how these axioms and proof rules are combined with the axioms
and uniform substitutions of dL to construct witnesses for dL proofs by constructing a proof
term corresponding to the previous example.
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dL Constants
i[∪]: [a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄)

US Proof Term
σ1i[∪]: [x := 0 ∪ x := 1]x ≥ 0↔ [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0

∆∧
e∧ : [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0

Left Equivalence
σ1i[∪] •← ((σ2i[:=] •← j0≥0) ∧ (σ3i[:=] •← j1≥0))︸ ︷︷ ︸

e∧

: [x := 0 ∪ x := 1]x ≥ 0

where ∆∧ is

i[:=]: [x := t]p(x)↔ p(t)

σ2i[:=]: [x := 0]x ≥ 0↔ x ≥ 0 j2 : 0 ≥ 0

σ2ii[:=] •← j2 : [x := 0]x ≥ 0

dL Constants
i[:=]: [x := t]p(x)↔ p(t)

US Proof Term
σ3i[:=]: [x := 1]x ≥ 0↔ x ≥ 0

FOLR Constants
j3 : 1 ≥ 0

Left Equivalence
σ3i[:=] •← j3 : [x := 1]x ≥ 0

And
((σ2i[:=] •← j0≥0) ∧ (σ3i[:=] •← j1≥0))︸ ︷︷ ︸

e∧

: [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0

Example 6 (A Simple Proof Term.). A proof of

(σ1i[∪] •← ((σ2i[:=] •← j0≥0) ∧ (σ3i[:=] •← j1≥0))) : [x := 0 ∪ x := 1]x ≥ 0

where

σ1 ≡ {a 7→ x := 0, b 7→ x := 1, p(·) 7→ x ≥ 0}
σ2 ≡ {t 7→ 0, p(·) 7→ · ≥ 0}
σ3 ≡ {t 7→ 1, p(·) 7→ · ≥ 0}
i[∪] ≡ i[a∪b]p(x̄)↔[a]p(x̄)∧[b]p(x̄)

i[:=] ≡ i[x:=t]p(x)↔p(t)

is given above. Intuitively, this property states that if x nondeterministically takes on 0 or 1, then x ≥ 0. The proof proceeds by
symbolic decomposition of the hybrid program x := 0 ∪ x := 1 using axioms of dL. Uniform substitution instances of the relevant
symbolic decomposition axioms are necessary in order to complete the proof. Labels on the left side of the proof of ∆ are elided for
readability, but exactly match the labels on the right side.
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5.4 Converting LPdL Proof Terms into dL Proofs
We say that `LPdL φ whenever there is a proof of φ in LPdL, and we say that `dL φ whenever
there is a proof of φ in dL.
Lemma 1 (Inversion). The following are facts about LPdL:

• If `LPdL iφ : ψ then φ is ψ and φ is an axiom of dL.
• If `LPdL jφ : ψ then φ is ψ and φ is a tautology of FOLR.
• If `LPdL e ∧ d : φ then φ is (χ ∧ ψ) where `LPdL e : χ and `LPdL d : ψ.
• If `LPdL e • d : φ then `LPdL e : ψ → φ and `LPdL d : ψ for some ψ.
• If `LPdL e •← d : φ then `LPdL e : φ↔ ψ and `LPdL d : ψ for some ψ.
• If `LPdL e •→ d : φ then `LPdL e : ψ ↔ φ and `LPdL d : ψ for some ψ.
• If `LPdL CTσe : φ then φ is σ(c(f(x̄)) = c(g(x̄))), `LPdL σe : σ(f(x̄) = g(x̄)), and σ is

admissible on all formulas to which it is applied.
• If `LPdL CQσe : φ then φ is σ(p(f(x̄)) ↔ p(g(x̄))), `LPdL σe : σ(f(x̄) = g(x̄)), and σ is

admissible on all formulas to which it is applied.
• If `LPdL CEσe : φ then φ is σ(C(p(x̄))↔ C(q(x̄))), `LPdL σe : σ(p(x̄)↔ q(x̄)), and σ is

admissible on all formulas to which it is applied.
• If `LPdL σe : φ then `LPdL e : φ′ and σ(φ′) = φ for some φ′ such that σ is admissible for φ′.
• If `LPdL Be : φ then `LPdL e : φ′ and B(φ′) = φ for some φ′.

Proof. The proof involves a straightforward induction involving inspection of the conclusions of
LPdL axioms.

Theorem 2 (Proof terms justify theorems). Let e be a proof term and φ a dL formula. If `LPdL

e : φ then `dL φ.

Proof. The proof involves the construction of a dL proof corresponding to the proof term e. We
proceed by induction on the structure of e.

Case iA. Suppose that `LPdL iA : φ. By Lemma 1, φ = A and is an axiom of dL. Therefore,
`dL φ.

Case jT . Suppose that `LPdL iA : φ. By Lemma 1, φ = A and is a tautology of FOLR. Therefore,
`dL φ.

Case e ∧ d. Suppose that e ∧ d : φ. By Lemma 1,

φ = χ ∧ ψ

and

`LPdL e : χ (5.3)
`LPdL d : ψ (5.4)

Applying the inductive hypothesis to (5.3) and (5.4) establishes that

`dL χ (5.5)
`dL ψ (5.6)
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The schematic proof rule

(∧R)
ϕ Ω

ϕ ∧ Ω

where ϕ and Ω are any dL formulas that are derivable in dL using the propositional tautol-
ogy ϕ→ Ω→ ϕ ∧ Ω and MP. From (5.5) and (5.6), andR derives `dL χ ∧ ψ.

Case e • d. Suppose that `LPdL e • d : φ. By Lemma 1,

`LPdLe : ψ → φ (5.7)
`LPdLd : ψ (5.8)

Applying the inductive hypothesis to (5.7) and (5.8) establishes that

`dLψ → φ (5.9)
`dLψ (5.10)

from which MP derives `dL φ.
Case e •→ d. Suppose `LPdL e •→ d : φ. By Lemma 1,

`LPdLe : ψ ↔ φ (5.11)
`LPdLd : ψ (5.12)

are provable in LPdL. Applying the inductive hypothesis to (5.11) and (5.12) establishes

`dLψ ↔ φ (5.13)
`dLψ (5.14)

Note that
`dL (ψ ↔ φ)→ (ψ → φ)

has a proof in dL. With (5.13), MP , thus, derives `dL ψ → φ. Applying MP once more to
ψ → φ with (5.14) establishes that `dL φ.

Case e •← d. Suppose `LPdL e •← d : φ. By Lemma 1,

`LPdLe : φ↔ ψ (5.15)
`LPdLd : ψ (5.16)

are provable in LPdL. Applying the inductive hypothesis to (5.15) and (5.16) establishes

`dLφ↔ ψ (5.17)
`dLψ (5.18)

Note that
(φ↔ ψ)→ (ψ → φ)

has a proof in dL. From this fact and (5.17), it follows by the modus ponens proof rule
that `dL ψ → φ. Applying modus ponens once more to this fact and (5.18) establishes that
`dL φ.
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Case CTσe. Suppose that `LPdL CTσe : φ. By Lemma 1,

φ = σ(c(f(x̄)) = c(g(x̄)))

where

`LPdL e : σ(f(x̄) = g(x̄)) (5.19)

and σ is admissible for f(x̄) = g(x̄). Applying the inductive hypothesis to (5.19) estab-
lishes

`dL σ(f(x̄) = g(x̄)) (5.20)

Also by Lemma 1, σ is admissible on this formula. Therefore, [151, Theorem 25] estab-
lishes that the σ uniform substitution instance of CT is sound in dL and so `dL σ(c(f(x̄)) =
c(g(x̄))) by the σ uniform substitution instance of CT.

Case CQσe. Suppose that `LPdL CQσe : φ. By Lemma 1,

φ = σ(p(f(x̄))↔ p(g(x̄)))

where

`LPdL e : σ(f(x̄) = g(x̄)) (5.21)

and σ is admissible for f(x̄) = g(x̄). Applying the inductive hypothesis to (5.21) estab-
lishes

`dL σ(f(x̄) = g(x̄)) (5.22)

Also by Lemma 1, σ is admissible on this formula. Therefore, [151, Theorem 25] estab-
lishes that the σ uniform substitution instance of CQ is sound in dL and so `dL σ(p(f(x̄))↔
p(g(x̄))) by the σ uniform substitution instance of CQ.

Case CEσe. Suppose that `LPdL CEσe : φ. By Lemma 1,

φ = σ(C(p(x̄))↔ C(q(x̄)))

where

`LPdL e : σ(p(x̄)↔ q(x̄)) (5.23)

and σ is admissible for p(x̄) ↔ q(x̄). Applying the inductive hypothesis to (5.23) estab-
lishes

`dL σ(p(x̄)↔ q(x̄)) (5.24)

Also by Lemma 1, σ is admissible on this formula. Therefore, [151, Theorem 25] estab-
lishes that the σ uniform substitution instance of CE is sound in dL and so `dL σ(C(p(x̄))↔
C(q(x̄))) by the σ uniform substitution instance of CE.

64



Case σe. Suppose that `LPdL σe : φ. By Lemma 1, φ = σ(φ′) and `LPdL e : φ′ for some φ′.
Note that σ is, by Def. 8, an admissible substitution for φ′. The induction hypothesis for
the smaller proof term e gives `dL φ

′. Therefore, `dL σ(φ′) (i.e., φ) is provable by US.
Case Be. Similar to the case for σe.

The fact that LPdL is sound with respect to the semantics of dL under proof term erasure is
a corollary of this theorem.
Corollary 1 (Validity of Evident Formulas). If `LPdL e : φ then JφKIdL = S where S is the set of
all states.

Proof. By Theorem 2, `LPdL e : φ implies `dL φ. Note that dL is sound,[151, Theorem 25] so
JφKIdL = S. By Def. 8, JφKILPdL

= JφKIdL = S.

5.5 Checking Proof Terms Using Truth-Preserving Transfor-
mations

The soundness-critical core of KeYmaera X contains a set of truth-preserving operations on dL
formulas; these operations correspond to the axioms and proof rules of dL. Provable objects
are the closest that KeYmaera X comes to proof certificates. A Provable is an object with a
goal and a sequence of remaining subgoals, each of which is a sequent. A KeYmaera X proof
certificate for a formula ϕ is a Provable object with no remaining subgoals and ` ϕ as its
goal. Provable objects may only be created by the soundness-critical core of KeYmaera X, so
they are guaranteed to be constructed via a sequence of truth-preserving operations such as proof
rules, axioms, or substitutions. However, a proof certificate does not record the actual sequence
of truth-preserving operations through which it is produced. While memory-efficient, this state
of affairs is less than ideal for reasons that were enumerated in the introduction.

Adding proof terms to KeYmaera X is relatively simple because LPdL is in every way –
syntactically, semantically, and axiomatically – parsimonious with dL. Never-the-less, more
pragmatic implementation-focused concerns (e.g., interfacing with other tools and producing
readable proof transformations) have obsoleted the use of LPdL in KeYmaera X. None-the-less,
we briefly describe some of the implementation details that are necessary for bridging the gap
between theory and implementation for LPdL.

The proof of Theorem 2 was written so that it suggests a procedure for proof term checking.
The proof could have exploited completeness results at several points. Instead, we opted for
explicitly constructing a syntactic dL proof. For this reason, an LPdL proof term checker can
follow the structure of the proof of Theorem 2 – for each component of a proof term, the proof
term checker constructs the sequence of truth-preserving operations described in the proof of
Theorem 2. These truth-preserving operations are then executed by the KeYmaera X core. If
each operation succeeds (e.g., no clashes occur during uniform substitutions), then the proof
term checker returns true.

There are a few caveats. The inversion lemma relies on the existence of certain formulas;
these formulas must be inferred automatically, or else proof terms must be augmented with addi-
tional annotations. In particular, inferring how the types of implications and substitutions decom-
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pose is not completely trivial and is reminiscent of the type inference problem in typed functional
languages. Additionally, in the proof of Theorem 2, there are some points where the truth of a
particular theorem is asserting (e.g., via soundness). In each of these cases, KeYmaera X has
either a tactic or an extra proof rule that provides exactly the required truth-preserving trans-
formation. For example, the keymaerax.TacticLibrary.AndR tactic of KeYmaera X
performs the action of the AndR schema referenced in the e ∧ d case. The σ instances of CT,
CQ, and CE (which are guaranteed to be sound by [151, Theorem 25]) that we appeal to in the
CTσe, CQσe, and CEσe cases also have corresponding tactics in KeYmaera X.

5.6 Conclusion
Explicit notions of evidence provide a clean separation between proof checking and proof search
and enable analyses that crucially depend upon an interrogation of the structure of proofs. The
Logic of Proofs for Differential Dynamic Logic demonstrates that it is possible to construct a
calculus of proof terms on top of an existing theorem prover. The broader implications of explicit
proof terms for dynamic logics remains largely unexplored, especially in the context of AI for
theorem proving. As discussed in the introduction, the second half of this thesis establishes a
clear trajectory toward building systems that leverage not just theorems but also proofs of those
theorems to control safely.
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Part II

Verifiably Safe Learning
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Chapter 6

An Introduction to Safe Learning

The formal methods discussed in Part I of this dissertation increase our confidence in safe sys-
tem operation by providing highly trustworthy safety proofs for cyber-physical systems. Hybrid
systems reachability proofs substantially increase our confidence in overall system safety by
eliminating the possibility that our control software contains bugs. However, safety theorems
are always stated with respect to a model of the underlying environment and typically consider
highly nondeterministic control software. Verified controllers do not explain how to achieve
high-level objectives other than remaining safe and, furthermore, do not provide any guarantee
that modeling assumptions accurately represent reality.

The second part of this dissertation addresses these two shortcomings of the purely verifi-
cationist approach introduced in Part I. The techniques introduced in this chapter address two
deeply related questions.

1. How do we obtain formal guarantees about controllers obtained via reinforcement learn-
ing?

2. How can we increase overall confidence in safe system operation even when the initial
environmental model is incorrect?

Chapter 7 addresses the first question by explaining how to translate verification results for
nondeterministic control software into verification results for deterministic control software ob-
tained via reinforcement learning. Our approach, called Justified Speculative Control (JSC) also
explains how to leverage insights from logical analysis of dynamical systems during the learn-
ing process. Chapter 8 introduces a falsification-based approach both for answering the second
question in the special case where we have a set of possible models only one of which is correct.
Finally, Chapter 9 closes the loop by explaining how to obtain safety proofs for a highly opti-
mized controller starting with nothing except experimental data and a global safety specification.
Along the way, we will see that combining model-based deductive verification with inductive
model building provides a powerful paradigm for obtaining highly trustworthy control software
even in situations where models are difficult or impossible to build at design time.

The remainder of this background chapter is organized into two sections. Section 6.1 dis-
cusses safe reinforcement learning, and Section 6.3 discusses three approaches toward control-
ling well without a perfect model of the environment.
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6.1 Reinforcement Learning

We begin by recalling the mathematical preliminaries of Reinforcement Learning and discussing
related work on safe reinforcement learning. Reinforcement learning algorithms solve the prob-
lem of controlling well even when some state transitions are not deterministic. This random
transition structure is formalized in terms of Markov Decision Processes.
Definition 10. A Markov Decision Process (MDP) is a tuple (S,A, P,R) where:

• S is a set of states,
• A is a set of actions,
• P (spre, a, spost) : S×A×S → R is the probability of transiting from spre to spost when

taking action a, and
• R(spre, a, spost) : S×A×S → R is the reward obtained by transitioning from state spre

to state spost via action a.
Unless otherwise noted, we will assume that

∑
spost∈S P (spre, a, spost) = 1.

The goal of reinforcement learning is to discover a policy π : S → A that maximizes the
long-term cumulative reward. The sequence of states visited and actions taken by the policy is
referred to as the system’s trajectory. The goal is to maximize the sum of rewards (as computed
by R) expected over a trajectory.

This dissertation focuses on reinforcement learning algorithms that satisfy safety constraints
stated in dL. for this reason, we introduce an abstraction over MDPs that interfaces well with the
semantics of dL and that translates probabilistic transitions into nondeterministic transitions.
Definition 11. A reinforcement learning model is defined for a Markov Decision Process (S,A, P,R)
whenever S is a mapping from a set of variables V into R by replacing the probabalistic
transition function P with a reachability relation E so that spost ∈ E(spre, a)1 whenever
P (spre, a, spost) 6= 0.

Standard reinforcement learning is inappropriate in safety-critical settings for two reasons.
First, finding an optimal policy requires entering unsafe states and observing negative rewards.
This problem is particularly acute in systems that use online reinforcement learning to discover
policies directly on a hardware platform instead of in simulation. Second, there is no guarantee
that a final policy avoids unsafe states because even optimal policies may enter unsafe states if
the reward function is not carefully defined. These safety violations are particularly egregious in
settings where global safety constraints are known a priori and are easily expressible, which is
often the case in control problems.

Garcı́a and Fernández survey several approaches toward safe learning [69]. Garcı́a and
Fernández define Safe RL as “the process of learning policies that maximize the expectation of
the return in problems in which it is important to ensure reasonable system performance and/or
respect safety constraints during the learning and/or deployment processes” .

This dissertation is concerned with Verifiably Safe RL which we define as the problem of
obtaining or leveraging formal proofs of correctness for safe reinforcement learning algorithms.

Obtaining verification results for algorithms and techniques developed in the Artificial Intel-
ligence research community is an emerging area of interest [161], but there is a rich history of

1Or E(spre, a) = spost for deterministic systems
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research on safe control in the absence of perfect models. This chapter reviews how the work in
Part II of this dissertation is related to prior work on safe reinforcement learning.

6.2 Safe Reinforcement Learning
Traditional research on safe reinforcement learning did not take advantage of formal verifica-
tion. An excellent and comprehensive survey on safe learning by Garcı́a and Fernández [69]
decomposed these approaches into two broad categories: methods that obtain safety assurances
by modifying the optimality criterion, and methods that modify the exploration process. In this
section we review this work following the blueprint laid out by Garcı́a and Fernández. Along
the way, we extend their survey to take into account recent work on both safe learning and on
verifiably safe learning.

6.2.1 Modifying the Criterion
The behavior and final output of a reinforcement learning algorithm is highly dependent upon
the definition of an optimization criterion, or reward function, which defines the objective of the
reinforcement learning algorithm by assigning quantitative values to states and/or actions. In the
constrained criterion paradigm, safety properties2 of safe reinforcement learning are achieved
by modifying or transforming this criterion in a way that pushes the learning algorithm toward
safe actions. Garcı́a and Fernández survey these approaches [69]. We recall three of the main
approaches toward modifying the optimization criterion discussed by Garcı́a and Fernández and
additionally discuss recent work which post-dates their survey that focuses on leveraging theo-
rem provers for constraining reinforcement learning. We then conclude our discussion of safety
through criteria modifications with a thorough comparison of these approaches to the work dis-
cussed in Part II of this document.

Worst Case Criterion

One extensively studied approach toward modifying the optimality criterion defines the optimal-
ity criterion in terms maximizing the worst-case outcome. This approach, first introduced by
Heger [84] and later extended by Coraluppi et al. [39, 40], defines the objective function in terms
of maximizing worst-case outcomes.

Given a set of trajectories Ωπ of alternative states and actions that occurs under policy π,
where Eπ,ω(·) is the expectation with respect to the policy π and trajectory ω, and where rt is the
reward observed at time t, the objective of worst-case control is to find the policy π ∈ Π with the
maximal minimum outcome:

max
π∈Π

min
ω∈Ωπ

Eπ,ω(R) = max
π∈Π

min
ω∈Ωπ

Eπ,ω
( ∞∑
t=0

γtrt
)

2 A safety property is more commonly referred to as a specification in the formal methods community. In the
context of a dL formula ψ → [α]ϕ, the term safety property as used by much of the safe RL community refers only
to the subformula ϕ. We adopt this meaning for the term safety property throughout the rest of this chapter in order
to avoid confusion and discuss prior work on safe RL in its own terms.
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Heger introduced an algorithm analogous to Q-learning, called Q̂-learning, which optimizes for
this minimax criterion [84].

The worse-case criterion family of objective criteria has the advantage of reducing risk in
worst-case scenarios, but at the cost of extremely conservative behavior even when there are good
(e.g., model-based) reasons to assert that some of those worst case outcomes are impossible given
the current configuration of the system. Bagnell et al. observed that the mini-max formulation
given above is closely related to work on H∞ robust control [15]. Chris Gaskett demonstrated
that this pessimism can be harmful and proposed an approach toward compensating for this
pessimism by introducing a parameter that is used to choose between the classical Q-learning
algorithm and Heger’s Q̂-learning algorithm [71].

Controlling Safely with Uncertainty in Parameters

Robust MDPs [138] and their associated reinforcement learning algorithms [124] provide an
alternative formulation of the problem of learning safely. Instead of controlling safely and opti-
mally with respect to a single MDP, the robust MDP framework studies MDPs in which transition
probabilities are uncertain and/or estimated from data. The theory of robust Markov decision pro-
cesses places special emphasis on the problem of controlling well given an explicit understanding
of model uncertainty.

Bagnell et al. also address the problem of controlling well under model uncertainty by con-
sidering the problem of finding a policy that is optimal with respect to a class of models, char-
acterized in terms of a set of possible transition matrices [15]. They show that when this set is
finite and convex, computing a best policy with respect to the worst possible model is NP-hard
but tractable in practice.

Constrained Criterion

Worst-case criterion and robust MDPs both approach safe control by modifying the problem
setup or optimization criterion to take into account possible worst-case outcomes. An alternative
approach, which also focuses on the optimization criterion, instead obtains safe policies by only
allowing agents to choose from a set of control actions that are conjectured – but not formally
proven – to be safe.

Altman’s Constrained Markov Decision Processes provide a theoretical framework for char-
acterizing constrained optimization of dynamical systems [6]. Geibel et al. introduced a rein-
forcement learning algorithm for MDPs with constraints [72]. Recent work by Achiam et al. [2]
leverages this framework to constrain learning for high-dimensional control problems.

Kadota et al. consider the case of MDPs with multiple utility constraints, in which the goal
is to maximize expected utility for one of the functions while maintaining lower bounds on the
expectations for other utility functions [104]. Kadota et al. give a saddle-point theorem that
establishes conditions on the existence of these optimal policies. Their work is relevant to safe
RL because in some settings safety constraints can be characterized in terms of lower-bounds on
utility functions.

Trust region policy optimization is a policy optimization algorithm that tends to learn robust
policies via monotonic improvement in policy performance [163]. Unlike Shulman et al. and
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Achiam et al. who focus on model-free reinforcement learning, we start with model-based re-
inforcement learning and account for the difficulty of building accurate models by explaining
several ways in which formal verification can help cope with model deviation.

Logical Constraints on Learning

The difference between safe RL and verifiably safe RL is analogous to the difference between
a correct piece of software and a formally verified piece of software. In theory it is possible to
implement a correct software system without the use of formal methods; however, in practice,
formal verification provides the only known technique for obtaining highly trustworthy proofs
about large software systems. Whereas approaches toward Safe RL assume the presence of cor-
rect constraints, verifiably safe RL backs those constraints with formal proofs that the constraints
are sufficient for establishing global safety guarantees.

Each of the approaches discussed above addresses the safe RL question but not the verifiably
safe RL question. Several recent approaches toward safe learning move toward verifiably safe
RL by leveraging existing theorem provers and logics; our work very much fits in this vein.

Alshiekh et al. and Hasanbeig et al. each propose an approach toward logically constrain-
ing reinforcement learning based on Linear Temporal Logic (LTL) [5, 83]. Like the Justified
Speculative Control (JSC) algorithm discussed in Chapter 7, these approaches have a logical
foundation. Unlike JSC, these approaches do not use a logic capable of expressing hybrid dy-
namical systems and do not explain what to do when a model deviation is detected. Therefore,
these approaches do not solve the problem this thesis proposes addressing: providing verifiably
safety guarantees for cyber-physical systems when reality deviates from modeling assumptions.

The use of LTL limits the applicability of these approaches in cyber-physical systems, but
does succinctly capture many constraints on discrete or discretized planning and optimization
problems. One fruitful avenue of future work could combine these approaches with JSC, using
LTL-based approaches for expressing constraints on global, coarse-grained planning while using
dL for expressing constraints on more local, fine-grained control decisions.

By contrast, KeYmaera X and ModelPlex [64, 133] are able to automatically and correctly
reduce reachability properties of hybrid dynamical systems to formulas of real arithmetic. Rel-
ative to these constrained criterion approaches, we introduce a methodology – based on hybrid
systems theorem proving – for correctly and often automatically generating useful optimizing
constraints from statements about reachability properties of hybrid dynamical systems.

Comparison with Our Work

Part II of this thesis contributes three new approaches toward safe learning: justified speculative
control (Chapter 7), model update learning (Chapter 8), and hybrid program synthesis (Chap-
ter 9). We now discuss what is novel about each of these contributions relative to the prior work
on modifying criterion discussed above.

Justified speculative control (JSC) is a new approach toward safe RL that combines a con-
strained criterion with a modified criterion by leveraging theorem proving.

Relative to constrained criterion approaches [2, 6, 72], JSC provides a strong justification
that monitoring constraints are well-founded and correspond to intuitive safety properties for
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analyzable dynamical models. This is an important contribution because constrained criterion
approaches require the system designer to explicitly state safety constraints, usually as purely
arithmetic properties that do not mention e.g., differential equations or discrete dynamics. How-
ever, the problem of coming up with good constraints is analogous to the problem of coming
up with good reward functions. Although it is often easy to state the dynamical systems in-
terpretation of a constraint (e.g., the robot does not run into the interlocutor whose movement is
governed by given ODEs), translating these dynamical descriptions into a arithmetic descriptions
that are useful as costs or constraints for an optimization algorithm is non-trivial and error prone.
The problem of reducing reachability properties about dynamical systems to unquantified real
arithmetic constraints is ultimately reducible to the problem of full-blown hybrid systems theo-
rem proving which is undecidable[87]; in fact, this is exactly the methodology that KeYmaera X
takes toward verification.

Relative to work on worst-case criterion and robust MDPs [15, 39, 40, 84, 124, 138], JSC
distinguishes between situations where the model is accurate and situations where the model is
inaccurate. Furthermore, instead of optimizing for the worst case or controlling well with respect
to an uncertainty set, JSCQ leverages the model itself as a reward signal when model deviation
occurs. Instead of optimizing for worst-case scenarios or attempting to control robustly with
respect to a class of models, JSCQ instead optimizes for correcting mismatches between its
model and reality. Our approach avoids any need to explicitly model uncertainty bounds in the
model and also avoids overly conservative bounds in situations where a single, known, non-
worst-case model is in fact accurate.

Our extensions to JSCQ in Chapter 8 and Chapter 9 attempt to learn a more accurate model
which is then used to constrain the learning process Chapter 8 and Chapter 9 take up the problem
of extending JSCQ to multiple models; the approaches discussed in these chapters are closely
related to the stationary uncertainty formulation of the robust control problem discussed in [138,
139], where uncertainty is fixed once and for all for a given control policy.

JSC improved on previous work in the ways following.
• Unlike [2, 6, 15, 39, 40, 72, 84, 124, 138] all of our approaches transfer guarantees ob-

tained from computer-checked safety proofs to reinforcement learning algorithms, closing
the gap between constraints/rewards/uncertainty sets used for safe RL and the underlying
kinematic models that those constraints are based upon.

• Unlike [15, 39, 40, 84, 124, 138], we distinguish between situations where an accurate
model is available and situations where an accurate model is not available, thereby avoiding
worst-case decision making except when necessary. Also unlike these approaches, we
demonstrate how to use models as utility functions for repairing model deviations, thereby
avoiding the need to explicitly model uncertainty in the form of uncertainty sets used in
the robust MDP setting [138, 139].

• Unlike [2, 6, 72], we consider the problem of controlling well even when empirical obser-
vations at runtime invalidate models that constraints are based on.

• Unlike [5, 83], we do all of this in the setting of an expressive logic for reasoning about the
safety of cyber-physical systems, which are important for the reasons discussed in Part I.

Because µlearning and our approach toward hybrid program synthesis both build upon JSC,
these comparisons extend to the work discussed in Chapter 8 and Chapter 9 as well. Additionally,
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our approach toward hybrid program synthesis can be thought of as addressing one of the robust
control problems laid out in [139] but, again, with the crucial distinction that we provide formal
proofs of correctness to justify our claims of safe control.

6.2.2 Initial Knowledge Approaches
Another approach toward safe learning attempts to initialize the learner in order to direct policy
exploration away from unsafe states [49]. Our approach is analogous; the guards on control
decisions in our hybrid programs are a form of initial knowledge. Unlike most approaches that
leverage initial knowledge, we explicitly characterize the difference between states where our
initial knowledge is trustworthy from states where our initial knowledge is not trustworthy. This
is important because often the correctness of control policies is not trivial.

6.2.3 Analysis of Learned Policies
So far, our discussion of safe reinforcement learning has focused on methods of modifying the
definition/behavior of the learning process. Modified criterion and initial knowledge approaches
ensure safety by modifying the learning/optimization process.

An alternative approach toward safe reinforcement learning suggests analyzing the policies
after they are constructed from a learning process. We now turn our attention to this class of
methods, which all focus on the output of a reinforcement learning algorithm.

In the simplest case, a tabular policy extracted after performing a tabular Q-learning algo-
rithm could be analyzed for safety from each table entry. Obviously, this approach is completely
infeasible for the same reason that tabular learning on large or continuous state spaces is in-
tractable: the set of states and actions is far too large to check each one for safety. For this
reason, both RL and safe RL that analyze learned policies instead focus on representations such
as neural nets.

Katz et al. introduce an SMT-based approach for analyzing deep neural networks and apply
this technique to analysis of a DNN implementation of parts of a collision avoidance for aircraft
[105]. Wang et al. take a similar approach toward reasoning about security properties [170].

Other examples of related work on analysis of learned policies focus on perception rather the
control. Examples include the predictor/verifier framework of Dvijotham et al. [51], and VeriVis
by Pei et al. [144], and a growing body of work on both robustness metrics for neural networks
and applications of SMT solvers to verification of neural networks. These approaches focus on
perception instead of control, but also focus on analysis of a learned classifier.

Analyzing learned models is attractive when the modifying the learning process is intractable
or impossible, which is often the case in practical settings where a cutting-edge algorithm is
not trivial to modify with a constrained criterion. The approach is especially relevant in poor
engineering environments where safety analysis has been treated as a post-hoc concern.

Although recent successes demonstrate the feasibility of analyzing very large learned poli-
cies, the curse of dimensionality tells us that these approaches will always require clever opti-
mization. The approaches discussed in this thesis leverage the insight that safety problems are
often of lower dimension than optimization problems; many variables relevant to overall fitness
(e.g., fuel efficiency, passenger comfort, etc.) are not relevant to the safety-critical concerns
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about the system. Furthermore, unlike our approach, analyzing learned policies does not provide
guarantees about the learning process itself.

6.2.4 Summary of Related Work on Safe Learning
Our work on Justified Speculative Control, introduced in Chapter 7, makes two contributions
relative to prior work on safe learning. First, we leverage hybrid systems verification results and
runtime monitor synthesis to appropriately sandbox the exploration process, instead of relying on
more ad-hoc sources of knowledge about how to act safely. The chain of evidence transfers from
a high-level model to runtime monitors and ultimately to the reinforcement learning process
via the theorems presented in this thesis. Second, we distinguish between optimizing among
known safe policy options and speculating about portions of the state space that are not a priori
modeled. This distinction is crucial to determine what level of speculation should be allowed,
and when.

When compared to existing approaches to reinforcement learning, our approach either 1)
suggests a way to strengthen the existing approach by incorporating not just a presumably safe
policy but a formally verified safe policy3; or 2) is compositional with the existing approach (by
further modifying our exploration process to perform more robust decision making when the
model monitor is already violated).

6.3 Viewpoints on Controlling Without a Perfect Model
Automatically modifying or constructing programs based upon logical specifications, test data,
and/or environmental data is a common approach used by researchers in many different disci-
plines. This section reviews approaches from the control theory, software engineering, AI/ML,
and programming languages research communities.

Unlike existing work, the verification-preserving model update algorithms discussed in Chap-
ter 9 learn how to modify a continuous system in response to data, discover a corresponding
update to a discrete system that preserves a hybrid reachability property, and then synthesize a
formal and computer-checked proof that the resulting combination of discrete/continuous model
updates continue to satisfy relevant safety invariants.

6.3.1 Model and System Identification
System identification algorithms use data to build a discrete, continuous, or even hybrid dynam-
ical systems model of the observed process. System identification is an enormous and mature
area of research. Diester provides a historical overview of system identification [48], Garg et al.
survey approaches toward system identification for control that decomposes techniques across
several different dimensions [70], and Juloski et al. survey and compare approaches toward
system identification for certain classes of hybrid systems [103].

3The difference between safe reinforcement learning and verifiably safe reinforcement learning is analogous to
the difference between unverified software and verified software – namely, the existence of a formal specification
that precisely characterizes the meaning of safety and a proof justifying correctness these safety claims.

76



A thorough survey of system identificaiton techniques is beyond the scope of this chapter
because our work is largely compositional with system identification procedures; we focus on the
problem of maintaining formal safety guarantees when incorporating identification into safety-
critical control. When viewed from the perspective of system identification, Chapter 8 considers
the problem of verifiably safe model selection and Chapter 9 discusses how to combine classical
model identification approaches with program synthesis

6.3.2 Program Synthesis and Repair
Program synthesis algorithms attempt to automatically generate programs in a fixed program-
ming language. The basis for synthesis might be a formal specification, a test suite, or a set of
I/O pairs. Automatic program repair algorithms are a special class of synthesis algorithms that at-
tempt to synthesize bug-fixing patches for existing programs. Approaches toward program repair
differ on the basis of the programming language under consideration, the domain of relevance,
the method for producing patch candidates, and the basis for accepting or rejecting a repair.

GenProg by Le Goues et al. [121] uses genetic programming to generate repairs for C pro-
grams using test cases as the primary definition of correctness. Rothenberg and Grumberg [159]
leverage SAT and SMT solvers to generate repairs using logical assertions as a basis for correct-
ness. Le et al. [120] leverage a combination of deductive verification and genetic programming
to generate repairs.

Our proposed approach leverages data-driven approaches to decide how environmental mod-
els should change. Especially for autonomous systems, program repairs based upon designer
intent are irrelevant to the choice of an accurate environmental model because environmental
models capture physical realities rather than designer intents. However, once a repair to the en-
vironmental model is identified, we leverage logic-driven approaches to decide how a controller
should change in response to identified changes in environmental models. This combination that
allows us to adapt to unforeseen environmental behaviors without sacrificing reachability proofs
or losing track of designer intent.

When viewed from the perspective of program synthesis and repair, the proposed work
1. contributes the first library of mutations for continuous programs (ODEs) and hybrid pro-

grams,

2. demonstrates how to combine data-oriented mutations for environmental models with log-
ically constrained mutations for controller models in a way that preserves reachability
properties for the combined hybrid dynamical system, and

3. shows how program repairs provide a setting for characterizing situations in which learning
algorithms are capable of operating safely.

Programming Language Representations in Reinforcement Learning Recent work lever-
ages programming language theory as part of a reinforcement learning algorithm. For example,
Verma et al. use a simple functional programming language to ensure intrepretability of learned
policies [169]. Our work has a similar goal, but focuses on a language with a rich combination of
discrete and continuous dynamics. Like other related work on using LTL specifications to con-
strain reinforcement learning, the approach proposed by Verma et al. might compose well with
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our current and proposed work by providing an attractive setting for planning problems while
dL-based approaches provide an attractive setting for problems where interpretability is funda-
mentally limited by the lack of differential equations in the policy language (i.e., most controls
problems).

Ghosh et al. [73] propose an approach toward constrained optimization that monitors for
safety violations using a specification monitor and uses a grammatical approach toward bounding
model deviation. Unlike the proposed work, Ghosh et al. do not consider the case where the
grammar can express not just arithmetic constraints but entire hybrid dynamical systems and
also do not consider the problem of preserving formal proofs.

Other Related Work on Hybrid Systems We propose a data-driven approach toward safe
control, mediated by model identification algorithms specialized to preserve verification results.
Many other data-driven approaches toward hybrid systems control are suggested in the literature;
for example, Kushner et al. take a data-driven approach toward control for an artificial pancreas
[117] and Althoff et al. suggest a demonstration-driven approach [75]. Kumar et al. introduce
an approach toward learning based upon Hamiltonian control [113] inspired by earlier work by
Nerode and Kohn [108].

Our proposed approach uses (online mutations of) specifications to monitor cyber-physical
systems. Our monitors are generated by KeYmaera X using Modelplex; Bartocci et al. review
various other approaches toward monitoring CPS [18], none of which construct proofs linking
monitors to models. Some of our proposed model updates make use of both offline and online
verification; Johnson et al. suggest other approaches toward the online component of this verifi-
cation effort [102]. Some (but not all) of our proposed model updates are refinements of hybrid
programs; we could show these are verification-preserving using Loos’ differential refinement
logic [127].

6.4 Conclusion
The second part of this thesis demonstrates how to leverage the logical model-based verification
approaches discussed in Part I to obtain safety guarantees for learned control policies. Chapter 7
explains how to transfer model-based verification results to policies obtained via reinforcement
learning and also explains how verification guarantees can be used to direct learning when mod-
eling errors are discovered at runtime. Chapter 8 uses runtime model falsification to extend the
approach discussed in Chapter 7 to scenarios in which there are multiple possible models of the
world. Finally, Chapter 9 considers the problem of learning both the model and the controller
from data.

Perhaps the most important insight from this work is that logic has much more to offer than
mere sandboxing. Programming languages and their verification logics provide a promising
semantic target for explainable and verifiable machine learning.
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6.5 Overview of Related Work
The proposed thesis leverages several research areas: hybrid systems verification (HSV), reinforcement learning/optimal control
(RL/OC) constrained reinforcement learning (CRL), model/system identification (MI/SI), and program synthesis/repair (PS&R).
Table 6.1 summarizes all of these research areas as they relate to our previous and proposed work. The Safe columns indicate whether
the technique guarantees safety in model space (∈MS) and outside of model space ( 6∈MS); for techniques that have multiple phases
(e.g., reinforcement learning), safety is taken to mean safety throughout system execution. The HS column indicates whether the
family of techniques is applicable to hybrid systems. The “Changes Model” column indicates whether the family of techniques
will produce a human-readable model explaining why the system behaved as it did (either inside or outside of model space). The
“Explainable” column indicates whether the approach offers some other method for ensuring that safety guarantees are explainable
to system designers and other stakeholders.

Table 6.1: Summary of Related Research Fields.
Approach Safe ∈MS Safe 6∈MS HS Changes Model Explainable
JSC+VPMU4 Formal Formal Yes Yes Yes
JSC[62] Formal Informal Yes No Yes
Software Verification Formal No No No Yes
HS Verification5 Formal No Yes No Yes
PS&R w/ formal specs6 Some Some No Yes (not HS) Yes
PS&R w/ test cases No No No Yes (not HS) Yes
MI/SI7 Some (not formal) Some (not formal) Some Some Some
RL/OC8 No No Some No Some
Constrained RL/OC Informal No Some No Some
LTL FM for RL[5, 83] Formal No No No Yes
MC for NNs (e.g., [105, 170]) Formal No Some No Yes

4Proposed.
5A more in-depth comparison of software and hybrid systems verification techniques is presented in Table 3.1.
6Section 6.3.2 compares JSC+VPMU to program synthesis and repair techniques in more detail.
7Section 6.3.1 discusses the relationship between JSC+VPMU and model/system identification in more detail.
8Section 6.2 discusses the relationship between JSC and (constrained) learning/optimization in more detail.
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Chapter 7

Justified Speculative Control

Autonomous vehicles should be deterministic, efficient, and safe. Part I introduced our approach
toward for ensuring safety for nondeterministic controllers. Verified hybrid programs distinguish
between safe and unsafe actions in each state, but do not single out the specific action that should
be taken in order to achieve an objective other than safety. The car in Example 2 has two different
options in most of the state space, and can always choose to activate its brakes. Although KeY-
maera X tells us that this controller is safe, the resulting theorem does not explain the sequence
of actions that will help the car actually reach the stop sign.

KeYmaera X establishes a safe set of actions, but does not explain which of these actions
ought to be taken.

Fortunately, reinforcement learning solves exactly the problem that KeYmaera X does not
solve. Given an appropriate reward signal, a reinforcement learning algorithm could tell us which
sequence of actions should be taken so that the car reaches the stop sign without over-shooting
the stop sign. However, learning this control policy might require thousands of iterations before
the algorithm eventually learns how to avoid over-shooting the stop sign. This situation is un-
acceptable in the real world, where over-shooting a stop sign might result in property damage
or even loss of life. In addition, the exploration of obviously unsafe or unfeasible policies also
contributes to the notorious data-inefficiency of reinforcement learning algorithms.

This chapter introduces an approach that combines the best of both learning and verification1.
In our approach, KeYmaera X constrains the search space for a reinforcement learning algorithm
so that only safe actions are taken, while reinforcement learning is free to search the subset
of safe policies for a policy that achieves objectives other than safety. Our approach, called
justified speculative control (JSC), ensures that verification results transfer to policies learned
via reinforcement learning. This approach has the nice auxiliary advantage of increasing the
data efficiency of reinforcement learning, because obviously unsafe actions do not need to be
explored during reinforcement learning.

KeYmaera X, like all formal methods tools, can only provide guarantees relative to a model
of the world. When the model is inaccurate, guarantees disappear. For example, if the stop sign
in Example 2 begins to move forward2, then the car has left the modeled portion of the state space

1 This chapter is based on the paper Safe Reinforcement Learning via Formal Methods: Toward Safe Control
Through Proof and Learning published by Fulton and Platzer [62].

2E.g., consider a situation in which the stop sign is held by a partially occluded construction worker along a work
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and might over-shoot the stop sign even though its controller is verified. We call the set of states
where the model is accurate the model space; traditional verification results only apply within
their model space.

Designing a safe autonomous system requires either building a perfect model of the world,
or else ensuring that the system will behave well outside of model space.

7.1 Runtime Monitoring for dL
Central to our own approach toward safe RL is the ability to check, at runtime, whether or not the
current state of the system can be explained by a dL formula. The KeYmaera X theorem prover
provides a mechanism for translating a dL formula of the form P → [α∗]Q into a formula of real
arithmetic, which checks whether the present behavior of a system fits to this model. The result-
ing arithmetic is checked at runtime and is accompanied by a correctness proof. This algorithm,
called ModelPlex [135], can be used to extract provably correct monitors that check compliance
with the model as well as with the controller. If non-equivalence transformations have been used
in the ModelPlex monitor synthesis proofs, the resulting monitor may be conservative, i.e. give
false alarms. But if the monitor formula evaluates to true at runtime, the execution is guaranteed
to be safe.

Controller Monitors

ModelPlex controller monitors are boolean functions that monitor whether or not the controller
portion of a hybrid systems model has been violated. The monitor takes two inputs – a “pre”
state and a “post” state. The controller monitor returns true if and only if there is an execution
of the ctrl fragment of the program that, when executed on the “pre” state, produces the “post”
state. For example, the controller monitor for Example 1 is:

(vpost = v ∧ ppost = p ∧ apost = A)∨

(vpost = v ∧ ppost = p ∧ apost = 0)

where apost is the value of a chosen by the controller. Similarly, vpost and ppost are the values
v and p chosen by the controller. Therefore, this controller monitor states that the controller may
choose a := A or a := 0, but may not change the values of p or v.

We write the controller monitor as a function

CM : S × A→ Bool

mapping a current state s ∈ S and an action act ∈ A to a boolean value. This formulation is
equivalent to the pre/post state formulation (e.g., vpost = act(vpre)) where

act(s)

is the state reached by performing the action act in state s.

zone and the construction worker begins to walk forward.
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Model Monitors

ModelPlex can also produce full model monitors, which check that the entire system model is
accurate – including the model of the system’s physics – for a single control loop. The full
model monitor returns true only if the controller for the system chooses a control action that is
allowed by the model of the system and also the observed physics of the system correspond to
the differential equations describing the system’s physical dynamics. The full model monitor for
Example 2 is:

(tpost ≥ 0 ∧ apost = A ∧ vpost = Atpost + vpre ∧

ppost =
At2post

2
+ vpretpost + ppre) ∨

(tpost≥0 ∧ vpost=vpre ∧ ppost=vposttpost + ppre ∧ apost=0)

Each side of the disjunction corresponds to a control decision, and the constraints on v and p
come from solving the differential equation p′ = v, v′ = a.

We write the ModelPlex monitor as a function

MM : S × A× S → Bool

where S is a set of states and A is a set of actions allowed by the controller; the first argument is
the state before the control action, the second argument specifies the control action, and the third
argument specifies the state after following the plant with the chosen control action.

The ability to perform verified runtime monitoring is essential to our approach – these arith-
metic expressions are the conditions that allow us to determine when to use a speculative con-
troller, and when to avoid deviating from the various options available in the verified nondeter-
ministic control policy. We define model monitors semantically.

This section explains how justified speculative control guarantees safety within model space,
discusses one approach toward controlling well outside of model space, and discusses other
approaches toward safe and verifiable reinforcement learning. We also discuss the limitations of
this approach; those limitations will motivate the work discussed in Chapter 8 and Chapter 9.

Justified Speculative Control extends model-based safety theorems to policies obtained through
reinforcement learning. Given a verified model init→ [{ctrl; plant}∗]safe, if controller monitor
CM(s, act) = True then

(s, act(s)) ∈ JctrlK

and if model monitor MM(spre, act, spost) = True then

(act(spre), spost) ∈ JplantK.

In this chapter, we use model monitors to transfer a safety proof of the above form into guarantees
about a reinforcement learning process acting in domains where the environment never results in
a model monitor returning false.
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7.2 The Justified Speculative Learning Algorithm
The listing below presents a generic reinforcement learning algorithm with justified speculation.
This algorithm corresponds to the approach described in the introduction – the system chooses
among a set of verified safe actions whenever the environment is accurately modeled, and other-
wise selects any action in the action space.

The inputs are a reinforcement learning model (S,A,R,E), a strategy choose for select-
ing actions, a function update that records state transitions, and a predicate done over states
indicating which states are terminal. Each of these functions has access to the learning model
(S,A,R,E) and, typically, some additional state (e.g., a Q table, policy/value function approxi-
mator, etc.).

The Justified Speculative Control algorithm leverages the ModelPlex runtime monitors to
ensure that, whenever the system is accurately modeled, only safe actions are taken. The model
monitor is used to determine if the previously observed state, previous control action, and current
state are accurately described within the system model. Whenever the model monitor is true, the
controller monitor is then used to prune the action space to only known-safe actions.

JSC also takes as input both CM : A× S → B as a controller monitor and MM : S × A× S → B
as model monitor where S is the set of states and A the set of actions.

Justified Speculative Learning (a.k.a. JSC).
1 JSC(init, (S,A,R,E), choose, update, done, CM, MM) {
2 prev := curr := init;
3 a0 := NOP;
4 while (!done(curr)) {
5 if (MM(prev, a0, curr))
6 u := choose({a ∈ A | CM(a,curr)});
7 else
8 u := choose(A);
9 prev := curr;

10 curr := E(u, prev);
11 update(prev, u, curr);
12 }
13 }

Lines 2 – 3 begin the process in an initial state; the model monitor will always return true for
inputs s1,NOP, s2 where s1 = s2. Lines 4 – 12 choose the next action and execute the chosen
action until reaching a terminal state. If the model describes the transition from the previous
state to the current state via the chosen control action, then a safe action that comports with the
controller action is chosen (Lines 5 – 6). Otherwise, the system is allowed to speculate because
the model that lead to MM does not accurately characterize the system E (lines 7 – 8). This
code assumes that the model’s control policy exhibits a liveness property; i.e., the set

{a ∈ A | CM(a, curr)}

is always non-empty; we allow non-liveness in the theoretical treatment following this section3.
3 The theoretical treatment following this section handles model monitors for non-live models, but such models

are often broken.
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Finally, on lines 9 – 11, the state is updated according to the environment and the learning model
(e.g., a Q-table or NN) is updated.

7.3 Safe Learning
The JSC algorithm explores safely whenever the environment E is accurately modeled by the dL
theorem from which CM and MM are defined. This section presents a precise statement of this
assertion, effectively demonstrating how to transfer hybrid systems formal verification results to
reinforcement learning.

We begin by recalling the definition of a learning process, which is essentially a dynamical
systems encoding of the pseudo-code for the JSC algorithm. Re-stating this algorithm as a dy-
namical system allows us to give a precise argument without defining a formal semantics for
pseudo-code.
Definition 12 (Learning Process). A tuple of sequences (si, ui, Li) is a learning process for

(init, (S,A,R,E), choose, update, done,CM,MM)

if it satisfies the recurrence relations

ui = chooseLi({ui ∈ A | specOK(u, s, i)}) (7.1a)
si+1 = E(ui, si) (7.1b)
Li+1 = update(Li, si, ui) (7.1c)

where s0 |= init, Li is a sequence of learned models, and

specOK(u, s, i) ≡ CM(ui, si) ∨ ¬MM(si−1, ui−1, si)

The three sequences Li, ui, si all terminate whenever there is no choice for ui (i.e., an empty
set is passed into the choose function), or else when done(si). Indices i are non-negative and the
predicate MM(si−1, ui−1, si) evaluates to true whenever i < 1.

The sequences u, s, L are the selected control action, state, and learned model (e.g., Q table
or NN) at each step of the JSC algorithm. The recurrence relations are equivalent to the compu-
tations performed in the JSC pseudo-code, except the liveness caveat discussed in the previous
section.
Corollary 2 (Meaning of Controller Monitor). Suppose CM is a controller monitor for P →
[{ctrl; plant}∗]Q, s ∈ S is a state and u : S → S is a controller. Then CM(u, s) implies
(s, u(s)) ∈ JctrlK.
Corollary 3 (Meaning of Model Monitor). Suppose MM is a model monitor for init→ [{ctrl; plant}∗]Q,
and that (u, s, L) is a learning process. If MM(si−1, ui−1, si) for all i then si |= Q, and also
(si, ui(si)) ∈ JctrlK implies (ui(si), si+1) ∈ JplantK.
Lemma 2. Suppose init→ [{ctrl; plant}∗]safe. If s |= init and (s, t) ∈ JctrlK then

t |= [plant]safe.

Proof. Validity of init → [ctrl; plant]safe implies that if s |= init then s |= [ctrl; plant]safe
as well. Therefore, s |= [ctrl][plant]safe by soundness of the box compose axiom. From this
fact and the semantics of the box modeality, (s, t) ∈ JctrlK implies t |= [plant]safe.
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Lemma 3. If A is a sequence of actions selected by JSC and S is a sequence of states at the
beginning of each control loop then for all 0 ≤ i ≤ |A|, Ai(Si) |= [plant]safe.

Proof. The proof proceeds by induction on the sequence of actions A.
We have assumed S0 |= init. If JSC selects actionA0, thenCM(A0, S0); i.e., (S0, A0(S0)) ∈

JctrlK. From these two facts, it follows that A0(S0) = S1 |= [plant]safe by Lemma 1.
The proof for the inductive step is similar. Suppose Ai(Si) |= [plant]safe. It suffices to

show Ai+1(Si+1) |= [plant]safe. If JSC selects action Ai+1, then CM(Ai+1, Si+1) by line X;
i.e., (Si+1, Ai+1(Si+1)) ∈ JctrlK. From these two facts, it follows thatAi+1(Si+1) |= [plant]safe
by Lemma 1.

We are now ready to state the first major safety property – that JSC does not violate the sys-
tem’s safety properties during reinforcement learning if the environment is accurately modeled.
Definition 13. An environment E is accurately modeled by a system {ctrl; plant}∗ for a set of
actions A and states S if for all s ∈ S and u ∈ A,

(s, u(s)) ∈ JctrlK implies (u(s), E(s, u)) ∈ JplantK (7.2)

Theorem 3 (JSC Explores Safety in Modeled Environments). Assume a valid safety specification

|= init→ [{ctrl; plant}∗]safe (7.3)

i.e., any repetition of {ctrl; plant} starting from a state in init will end in a state described by
safe. Further assume that the proof of this property proceeded by identifying a loop invariant J .
Then ui(si) |= safe for all ui, si satisfying the learning process for

(init, (S,A,R,E), choose, update, done,CM,MM)

where CM and MM are the controller and model monitor for init→ [{ctrl; plant}∗]safe.

Proof. We prove, by induction on the sequences si and ui, the stronger property that

si |= J

and
(si, ui(si)) ∈ JctrlK ∧ ui(si) |= [plant]J

Base Case For the first control action, notice that s0 |= init is a pre-condition of the algorithm.
We’ve assumed J is a loop invariant, so |= init→ J as well. From these two facts, s0 |= J .

If the sequence terminates at s0 then the proof is complete. Otherwise, there must exist
some action u0 satisfying the constraint in (7.1a). The negation of the model monitor MM
is false initially because i − 1 = 0 − 1 < 0, so CM(u0, s0) must be true. By Corollary 2,
(s0, u0(s0)) ∈ JctrlK. Therefore, u0(s0) |= [plant]J by 2 and our assumption that J is a loop
invariant.

86



Inductive Case Assume si |= J and ui(si) |= [plant]J for some i ≥ 0.
By (7.1b), si+1 = E(ui, si). We have assumed thatE is accurately modeled, so (ui(si), si+1) ∈

JplantK. From this fact and the inductive hypothesis, si+1 |= J .
If done(si+1) or if no ui+1 satisfying (7.1a) exists then the proof is complete. Otherwise,

there must be some ui+1 that does satisfy this constraint. Either MM(si, ui, si+1) false or else
the CM(si, ui) is true. Notice that MM(si, ui, ss+1) is true due to our assumption that the
environment is accurately modeled and the inductive hypothesis. Therefore, CM(ui+1, si+1)
must be true. By Corollary 2, (si+1, ui+1(si+1)) ∈ JctrlK.

The second part of the induction hypothesis follows from this fact, 2, and our assumption that
J is a loop invariant: ui+1(si+1) |= [plant]J .

Theorem 3 states that whenever the environmental model is accurate, every state we reach via
JSC satisfies the safety property safe. The proof of this property exploits the fact that any proof
of init→ [{ctrl; plant}∗]safe will proceed by identifying a loop invariant [150].

7.4 Safe Policy Extraction
The ultimate output of the learning algorithm is a control policy π. Many reinforcement algo-
rithms allow this policy to be extracted after some learning period. If a known-safe fallback
policy is provided, Theorem 3 also extends verification results to extracted policies.
Theorem 4 (Safety of Extracted Policies). Assume

|= init→ [{ctrl; plant}∗]safe

and assume the existence of a policy called fallback that is safe with respect to this specification.
Further assume that fallback ⊆ JctrlK.

Consider a learning process (ui, si, Li) in which E is an accurate model and CM,MM are
controller and model monitors for init→ [{ctrl; plant}∗]safe.

If π is a policy such that π(s) = t implies either (s, t) is explored during the learning process
or else (s, t) ∈ fallback, then π is safe with respect to the above specification.

Proof. Let f ≡ π ◦ JplantK and suppose J is the loop invariant which witnesses the safety of
fallback. It suffices to show that fn(s0) ∈ J for any n ≥ 0 and s ∈ JinitK. The proof proceeds
by induction on n.

Notice that s0 ∈ JinitK, so by our assumption that J is a loop invariant, s ∈ JJK as well.
Assume si = f i(s0) ∈ J for i ≥ 0 and let t = π(si). If t = fallback(si) then plant(t) ∈ J

because fallback is safe. Therefore, fn+1(s0) = (π ◦ JplantK)(si) ∈ J .
Otherwise, it must be the case that the (si, t) is an explored action in the learning process.

In that case, π(si) = ui(si) for some ui such that either CM(ui, si) or ¬MM(si−1, ui−1, si).
Notice that MM(si−1, ui−1, si) follows from our assumptions that E is an accurate model and
that fallback ⊆ JctrlK. Therefore, CM(ui, si). By Corollary 2, (si, t) ∈ JctrlK.

So we know si |= J , (si, π(si)) ∈ JctrlK, and |= J → [ctrl; plant]J . By 2, π(si) |= [plant]J
which implies plant(t) |= J . Therefore, (π ◦ JplantK)(si) = fn+1(s0) |= J .
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Table 7.1: A Comparison of JSC and Classical Q-Learning in a Modeled Environment.
JSC Normal

Training steps Crash Fall Behind Steady Crash Fall Behind Steady
1,000 0 12559 289 10644 2162 42

10,000 0 12538 310 10462 2291 95
100,000 0 12375 473 10492 2284 72

7.5 Experimental Validation

The theoretical results presented in the Provably Safe Learning section apply to generic rein-
forcement learning algorithms. This section presents two sets of simulations that expore JSC in
the concrete setting of classical Q-learning on a simple model of adaptive cruise control. The
first set of experiments validate the theoretical results within this concrete setting. The second
set of experiments consider a case where the environment deviates from modeling assumptions,
violating the key assumption made in Theorem 3. The second set of experiments demonstrate
that verification can help improve the learning process itself.

The JSC algorithm is parametric in the approach toward reinforcement learning. We choose
Q-learning because it is a simple algorithm, and our example is simple enough that discretized
Q-learning is possible. We leave exploration of JSC-style control in more complex environments,
and with more effective reinforcement learning algorithms, as future work.

The setting of this experiment is a simple model of adaptive cruise control. These exper-
iments are implemented in a new linear Adaptive Cruise Control4 OpenAI Gym environment
[28] based on [128].

7.5.1 Adaptive Cruise Control

Adaptive Cruise Control (ACC) is an increasingly common feature in passenger vehicles. Unlike
traditional cruise control, ACC adjusts the speed of a car relative to the speed and distance of a
leader car. The safety property for adaptive cruise control is simple: an actuated follower car
must avoid crashing into a leader car.

Our experiment considers Adaptive Cruise Control for two cars. We use relative coordinates
to reduce the state space, so instead of two positions posfollower and posleader we have a single
relative position

rpos = |posleader − posfollower|

A relative coordinate system allows us to exploit symmetries in the state and action space dur-
ing learning and increases the likelihood that the system will return to a modeled state after an
environmental perturbation.

The relative position of the two cars rpos, is non-negative whenever the cars do not collide.
The relative velocity between the cars is zero whenever the cars are stationary relative to one
another, positive whenever the cars are moving apart, and negative whenever the cars are moving

4This implementation is available at github.com/nrfulton/JSC
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Table 7.2: A Comparison of JSC and Q-Learning with Error Injection (.05 error rate).
JSC Normal

Training steps Crash Fall behind Steady Crash Fall behind Steady
1,000 3 12539 306 10950 1745 153

10,000 7 12502 339 10546 2215 87
100,000 5 12359 484 10561 2242 45

closer together. We consider a discrete action space – the actuated car may brake with constant
force B, accelerate with constant force A, or maintain its current relative velocity.
Model 1 (Relative Acceleration Along a Straight Line).
rpos ≥ 0 ∧ A > 0 ∧B > 0 ∧ T > 0 ∧ rpos ≥

r2vel
2A
→

[
{
{racc := A

∪ ?rpos −
−BT+r2vel

2A
+ rvelT − BT 2

2
≥ 0;

racc := −B
∪ ?rvel = 0; racc := 0
}; {r′pos = rvel, r

′
vel = racc, c

′ = 1&c ≤ T}}∗
] rpos ≥ 0

The above model presents a dL formula that corresponds to this system. On every iteration
of the control loop, the follower actuates the relative acceleration racc. By choosing a positive
second derivative for relative acceleration, the car slows its rate of approach toward the leader;
therefore, the action racc := A is always permitted. However, choosing a negative relative accel-
eration increases the cars’ rate of approach toward one another; therefore, choosing the action
racc := −B requires first checking the resulting braking distance. Finally, if the car is already
stopped (rvel = 0), then it may remain stopped (racc := 0). From this model, we extract con-
troller and model monitors for JSC Q-learning using ModelPlex. Notice that this controller can
be rather inefficient. In particular, one safe but inefficient deterministic implementation of this
model could choose to always increase the distance between the two cars by choosing racc := A.

7.5.2 Experimental Setup and Results
This section presents two experiments. In the first experiment, we validate the safe learning
theorem presented in the previous section. In the second experiment, we go beyond provably
safe sandboxing to determine whether verification results might be useful even when models are
inaccurate; i.e., even when the accurately modeled assumption (as stated in Def. 13) is violated.

JSC in an Accurately Modeled Environment Our first experiment validates our theoretical
results by the performance of JSC and Q-learning in an accurately modeled environment. The
results of this experiment are recorded in Table 7.1. We ran training for a specified number of
steps (n = 1, 000; 10, 000; and 100, 000). We then iterated across each of the initial states and
determined how the policy behaved in each case, omitting in which no safe policy was available
(i.e., states where even braking with maximum braking force would result in crashes within the
chosen discretized space).

89



The Crash columns indicate, for the policy extracted by each approach, the number of initial
states that resulted in a crashing state. The Fall Behind columns indicate the number of initial
states that resulted in a policy that brakes too often; i.e., where the follower car loses track of the
lead car. The Steady columns indicate the number of initial states that resulted in an ideal policy
– one that does not lose the lead car, but also does not result in a collision.

We observe that the JSC controller never enters unsafe states during training. But we also
observe that JSC encounters significantly fewer fall-behind states and more steady states. This
result indicates that learning with JSC is more efficient than normal learning. The experimental
observation that JSC is more efficient at learning effective policies deserves further exploration.

JSC in an Environment that Admits Speculation The results presented above demonstrate,
via proof and experiment, that Justified Speculative Control effectively transfers proofs of cor-
rectness from verified models to reinforcement learning algorithms.

In our second experiment (Table 7.2), we force speculation by simulating an environment that
behaves differently from the modeled system. We introduce a slight perturbation to the relative
position of the cars (−2 units) with 5% probability. The policy extracted after running our JSC
algorithm for any period of time results in relatively few crashes (< 10 out of 20, 000 possible
initial states result in a crash). All of these crashing states are attributable to actuator faults.

During each experiment, we extracted the learned policy for JSC and for classical Q-learning
after N simulations. We then evaluated the resulting policy from every possible initial posi-
tion. These results demonstrate that JSC can control reasonably well even when there are small
perturbations between the model and the simulated environment.

7.6 Quantitative JSC
In our final set of experiments, we move beyond viewing logical constraints as mere sandboxes
for a learning process or targets for sandbox synthesis. ModelPlex works by reducing a dL for-
mula to a quantifier-free formula of real arithmetic. We exploit this fact to generate quantitative
real-valued signals from our qualitative boolean-valued functions.

Our modified algorithm uses the distance between the current state and the modeled envi-
ronment as an objective function during speculation; when the system leaves the modeled state
space, the reinforcement learning agent optimizes for returning to the modeled portion of the
state space. We call this approach JSCQ.

Table 7.3: Crashing States for JSC and JSCQ Control.
Perturbation JSC JSCQ

5% 3 2
25% 18 16
50% 41 34

For small positional perturbations, JSCQ and JSC perform equally well. However, we found
that as the positional perturbation increases, the modified algorithm begins to outperform the
original algorithm. Table 7.3 presents these results.
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7.7 Conclusion
Leveraging an existing model and control policy substantially increases the data efficiency of
JSC relative to naı̈ve learning. Unlike traditional verification approaches, JSC explains how
to optimize for goals that are not safety-crtical. Verification results transfer not only to final
policies, but also to the learning process itself. This might enable the use of online reinforcement
learning in production environments. This combination on improved data efficiency and safety
guarantees for the training process itself might enable the use of reinforcement learning in real,
non-simulated environments.

The justified speculative control algorithm discussed in this chapter presents one approach
toward verifiably safe learning. Reinforcement learning is sandboxed by monitors derived from
verification results, and a quantitative version of the monitor provides a signal that appears to give
reasonable heuristics in unmodeled environments. However, this approach has two significant
limitations.

Limited Applicability Justified speculative control is currently limited to simple hybrid sys-
tems with few state variables and linear continuous dynamics. There are two reasons for this
limitation. First, the ModelPlex tactic can only generate exact monitoring conditions when the
differential equations have a solution that exists in the first order theory of real closed fields5.
Second, justified speculative control assumes it is possible to enumerate the entire state space
during the training phase. These two limitations are crippling: JSC is not applicable to hybrid
systems with nonlinear continuous dynamics and does not work well for models with large state
spaces. Because of these limitations, the justified speculative control algorithm introduced by
Fulton et al. [62] is only validated on very simple models.

Lack of Guarantees for Unmodeled Environments Ideally, an approach toward verified safe
autonomy should come with guarantees of safety and/or optimality even in cases where the orig-
inal model is slightly wrong. Small deviations from the model should not typically lead to
catastrophic failures.

Overcoming these limitations requires two new contributions. First, we must expand justified
speculative control to large and/or continuous state and action spaces. Second, we must find a
way to identify and resolve systematic disparities between models and reality. And when a more
accurate model is discovered, this new model must be incorporated into justified speculative
control.

5in particular, these solutions may not contain any exponential or trigonometric functions
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Chapter 8

Model Update Learning

The justified speculative control algorithm presented in Chapter 7 takes a first step toward verifi-
ably safe learning by transferring safety guarantees to learned controllers within model space and
by leveraging insights from verification during exploration outside of model space. Other exam-
ples of approaches toward controlling well inside model space include shielding [5], logically
constrained learning [83], and constrained Bayesian optimization [73].

Each of these approaches provide formal safety guarantees for reinforcement learning and/or
optimization algorithms by stating assumptions and safety constraints in a formal logic, gener-
ating monitoring conditions based upon safety constraints and environmental assumptions, and
then leveraging these monitoring conditions to constrain the learning/optimization process to a
known-safe subset of the state space.

Existing formal methods for learning and optimization consider the problem of constrained
learning or constrained optimization [5, 62, 62, 73, 83]. They address the question: assuming we
have a single accurate environmental model with a known safety constraint, how can we learn an
efficient control policy respecting this safety constraint?

Safety proofs for well-modeled environments are necessary but not sufficient for ensuring
that reinforcement learning algorithms behave safely. In fact, a significant motivator for using
reinforcement learning in safety-critical systems is the fact that explicit and accurate environ-
mental models are not readily available. Although some formal methods suggest ways in which
formal constraints might be used to inform control even when modeling assumptions are vio-
lated, none of these approaches provide formal safety guarantees when environmental modeling
assumptions are violated.

Holistic approaches toward safe reinforcement learning should provide formal guarantees
even when a single, a priori model is not known at design time. We call this problem verifiably
safe off-model learning. In this chapter we introduce a first approach toward obtaining formal
safety proofs for off-model learning1. Our approach consists of two components: (1) a model
synthesis phase that constructs a large set of candidate models together with provably correct
control software, and (2) a runtime model identification process that selects between available
models at runtime in a way that preserves the safety guarantees of all candidate models.

Model update learning is initialized with a set of models. These models consists of a set

1 The work in this chapter extends a vision paper on Safe AI for CPS by Fulton and Platzer [63].
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of differential equations that model the environment, a control program for selecting actuator
inputs, a safety property, and a formal proof that the control program constrains the overall
system dynamics in a way that ensures the safety property is never violated.

Instead of requiring the existence of a single accurate initial model, we introduce model
updates as syntactic modifications of the differential equations and control logic of the model.
We call a model update verification-preserving if there is a corresponding modification to the
formal proof establishing that the modified control program continues to constrain the system of
differential equations in a way that preserves the original model’s safety properties.

Beginning with a single provably safe model, we construct at design time a large class of
possible models (and their associated controllers) by iteratively applying updates to both the
ODEs and their associated control programs in a way that preserved verification guarantees.
Runtime falsification is then used to choose between these possible models.

We begin by introducing a conceptual framework called verification-preserving model up-
dates (VPMUs). These updates preserve verification guarantees by changing both the controller
and the model in systematically similar ways. Each model consists of a set of differential equa-
tions that serve as candidate models for the environment, a control program, a safety property,
and a formal proof that the control program constrains the overall system dynamics to a safe
subset of the state space. Instead of assuming that an initial model (or set of models) is perfectly
accurate, we introduce model updates as syntactic modifications of differential equations and
controllers. We call a model update verification-preserving if there is a corresponding modifica-
tion to the formal proof establishing that the modified control program continues to constrain the
system of differential equations in a way that preserves the original model’s safety properties.

The canonical example of a verification-preserving model update is parameter instantiation: a
static parameter p that is known to be between pmin and pmax and whose precise value is possible
to determine only at runtime. Instantiating p with a concrete value θ between pmin and pmax is a
verification-preserving model update, as long as p is uniformly replaced with θ in both the model
and the proof.

Verification-preserving model updates are inspired by the fact that different parts of a model
serve different roles. The continuous portion of a model is typically an assumption about how
the world behaves, and the discrete portion of a model is derived from these equations. For this
reason, many of our updates inductively synthesize ODEs (i.e., in response to data) and then
deductively synthesize control logic from the resulting ODEs.

This chapter also introduces an algorithm, called model update learning (µlearning), that
explains how to solve this problem. µlearning uses runtime falsification to control both safely
and efficiently in the presence of many feasible models. In experimental validation, we show
that µlearning combined with generic model updates enables provably safe control even when an
initial model contains inaccuracies.

Our experiments demonstrate that the µlearning framework is surprisingly effective.
This chapter introduces a first approach toward verifiably safe off-model learning. Our con-

tributions enabling this approach include:
1. A set of verification-preserving model updates (VPMUs) that systematically update dif-

ferential equations, control software, and safety proofs in a way that preserves verification
guarantees while taking into account possible deviations between an initial model and fu-
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ture system behavior.

2. A reinforcement learning algorithm, called model update learning (µlearning), that ex-
plains how to transfer safety proofs for a set of feasible models to a learned policy. The
learned policy will attempt to falsify models at runtime.

In addition to proving a safety theorem for µlearning similar to the safety theorem given in
Chapter 7 for justified speculative control, our contributions are also experimentally validated on
several examples of safety-critical control problems. One of our examples also demonstrates that
µlearning can also be leveraged to extending safety results for reinforcement learning algorithms
to hierarchical reinforcement learning algorithms.

VPMUs and µlearning provide one approach toward verifiably safe off-model learning. In-
stead of considering completely model-free learning, we assume that there is an initial model and
a set of model updates such that an accurate model can be generated by successively applying
model updates to the initial model. Although the most accurate model cannot be determine at
design time, runtime falsification can be used to select the most accurate model. In Chapter 9,
we will explore a purely data-oriented approach toward this problem.

8.1 Verification-Preserving Model Updates
A verification-preserving model update (VPMU) is a transformation of a hybrid program ac-
companied by a proof that the transformation preserves key safety properties. VPMUs capture
situations in which a model and/or a set of data can be updated in a way that captures possi-
ble runtime behaviors which are not captured by an existing model. VPMUs are a reasonable
approach toward constructing a robust set of possible models whenever system designers can
characterize likely ways in which an existing model will deviate from reality.
Definition 14 (VPMU). A verification-preserving model update is a pair of mappings modelUpdate
and proofUpdate which take as input an initial dL formula ϕ with an associated Bellerophon
proof e of ϕ, and produce as output a new dL formula modelUpdate(ϕ) and a proof
proofUpdate(e) of modelUpdate(ϕ).

An Example The simplest example of a VPMU instantiates a parameter whose value is not
known at design time but can be determined at runtime via system identification. Consider the
program p modeling a car whose acceleration depends upon both a known control input accel
and parametric values for maximum braking force −B and maximum acceleration A:

p ≡ initp → [{ctrlp; c := 0;plantp}∗]safep

where

initp ≡ A > 0 ∧B > 0 ∧ T > 0 ∧ obsPos− pos > vel2

2B
safep ≡ obsPos > pos

plantp ≡ {pos′ = vel,vel′ = accel, c′ = 1&vel ≥ 0 ∧ T ≥ 0}
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and the controller ctrlp allows the car to choose between braking, accelerating, or maintaining
the current acceleration (with associated safety checks for each case):

accel := −B ∪

{?obsPos− (pos+
T 2

accel

2
+ T · vel) > (vel + accelT )2

2B
;

accel := A } ∪

?obsPos− pos+ T · vel) >
vel2

2B
;accel := 0

The proof of this formula is given by the following Bellerophon proof script which identifies
pos > vel2

2B
as the critical loop invariant and defers the rest of the deductive reasoning to our

automated theorem prover:

implyR(1);loop(pos− obsPos > vel2

2B
);OnAll(auto)

The value B represented the maximum braking force of the car. The permissible range al-
ways depends upon context: tire pressure, tread, road conditions, and (perhaps most importantly)
models of vehicle predictability. The above model can be updated to work for a concrete instan-
tiation by choosing e.g., B = 12. Concretely, choosing B = 12 is achieved through a model
update that replaces every occurrence of B with 12 in both the model and the proof script.

Notice that choosing a concrete value for our maximum braking force allows more precise
and less pessimistic control; otherwise, the controller must either a) assume that B could take on
any non-negative value and therefore control in an extremely conservative fashion; or b) assume
that the system designer chose and correctly instantiated a concrete value for B.

As noted in the introduction, verification-preserving model updates are inspired by the fact
that different parts of a model serve different roles. The above example aptly demonstrates this
separation. The continuous portion of a model (pos’=vel,vel’=accel) is typically an
assumption about how the world behaves, and the discrete portion of a model (ctrl) is derived
from these equations.

Before giving further concrete examples of model updates, we consider how a set of feasible
models computing using VPMUs can be used to provide verified safety guarantees for a family
of reinforcement learning algorithms. The primary challenge is to maintain safety with respect to
all feasible models while also avoiding overly conservative monitoring constraints by falsifying
some of these models at runtime. After introducing several generic model updates and explaining
how to generate a set of feasible models from a set of initial models and a set of model updates,
Section 8.4 introduces a reinforcement learning algorithm that uses model updates. Finally, in
Section 8.5, we introduce several concrete examples in which model update learning is useful
and discuss the role of domain-specific model updates.

8.2 From Model Updates to Feasible Models
This chapter considers two types of model updates: generic and domain-specific. Generic up-
dates are applicable in a broad class of systems and are not specific to any particular model or
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application domain. Conversely, domain-specific model updates are transformations which are
very specific to a particular class of dynamics (e.g., sinusoidal) or models (e.g., adaptive cruise
control).

This section introduces several generic verification-preserving model updates (some domain
specific updates are introduced in Section 8.5). For each generic update, we discuss how the
model is modified, how the controller is modified, and how the proof is modified. After dis-
cussing several generic model updates that are used in our later examples, we also introduce a
simple algorithm for generating a set of feasible models given a set of initial models and a set of
updates. All of these updates are implemented using the KeYmaera X theorem prover. These im-
plementations often contain significant implementation details; this section attempts to explain
the transformations at a high level.

8.3 A Model Update Library
So far, we have established how to obtain safety guarantees for reinforcement learning algo-
rithms given a set of formally verified dL models. We now turn our attention to the problem of
generating such a set of models by systematically modifying dL formulas and their correspond-
ing Bellerophon tactical proof scripts. This section introduces five generic model updates that
provide a representative sample of the kinds of computations that can be performed on models
and proofs to predict and account for runtime model deviations.

Parameter Instantiation The simplest example of a VPMU instantiates a parameter whose
value is not known at design time but can be determined at runtime via system identification.
Consider the program p modeling a car whose acceleration depends upon both a known control
input accel and parametric values for maximum braking force −B and maximum acceleration
A: p ≡ initp → [{ctrlp; c := 0;plantp}∗]safep where

initp ≡ A > 0 ∧B > 0 ∧ T > 0 ∧ obsPos− pos > vel2

2B
safep ≡ obsPos > pos

plantp ≡ {pos′ = vel,vel′ = accel, c′ = 1&vel ≥ 0 ∧ T ≥ 0}

and the controller allows the car to choose between braking, accelerating, or maintaining the
current acceleration (with associated safety checks for each case):

accel := −B ∪

{ ?obsPos− (pos +
T 2accel

2
+ T · vel) >

(vel + accel)2

2B
; accel := A } ∪

?obsPos− pos + T · vel) >
vel2

2B
;accel := 0

The proof of this formula is given by a following Bellerophon tactic. The tactic first moves
the initial conditions into the antecedent, and identifies pos > vel2

2B
as the critical loop invariant.
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Establishing a formula is invariant throughout the execution of a loop requires proving several
subgoals. The tactic then uses the KeYmaera X automated tactic master on each of these
subgoals (via the OnAll tactic):

implyR(1);loop(pos− obsPos > vel2

2B
, 1);OnAll(master)

The valueB represented the maximum braking force of the car. The permissible range always
depends upon context: tire pressure, tread, road conditions, and (perhaps most importantly)
models of vehicle predictability. The above model can be updated to work with for a concrete
instantiation by choosing e.g., B = 12. Concretely, choosing B = 12 is achieved through a
model update that replaces every occurrence of B with 12 in both the model and the tactic.

Notice that choosing a concrete value for our maximum braking force allows more precise
and less pessimistic control; otherwise, have to assume that B could take on any non-negative
value and therefore control in an extremely conservative fashion.

Automatic Compact Domain Parameter Instantiation The automatic parameter instantia-
tion update does not require the user to identify a parameter or a parameter value. Instead, we
search the formula for parameters that are restricted to a compact domain and then choose dis-
crete values from this domain at a user-defined level of precision.

• Model and Controller Update: given a formula init → [α]safe, the automatic parameter
instantiation update identifies a parameter p such that init → pmin ≤ p ≤ pmax for some
pmin, pmax ∈ R. The update produces several new models by performing the normal
parameter instantiation update for finitely values between pmin and pmax using a user-
specified step size.

• Proof Update: For each choice of parameter p and value θ ∈ [pmin, pmax], the proof update
for automatic parameter instantiation is identical to the proof update for normal parameter
instantiation.

The automatic parameter instantiation update improves the basic parameter instantiation up-
date by automatically detecting which variables are parameters and by constraining the instanti-
ation of these parameters to values that are permitted by the original model.

Together, parameter instantiation and automatic parameter instantiation provide a method for
system designers to automatically explore the space of possible parameter values when possible,
while also providing system designers with the option to (carefully) instantiate parameters with
concrete values obtained experimentally.

Replace Worst-Case Bounds with Approximations Models designed for the purpose of safety
verification are often worst-case analyses. Often a variable occurring in the system is bounded
above (or below) by its worst-case value. Worst-case analyses are sufficient for establishing
safety but are often overly conservative. The approximation model update replaces worst-case
bounds with approximate bounds obtained via series expansions. The model update identifies a
variable x satisfying the following conditions:

• The variable x has a differential equation,
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• the solution to x′ = f(x) can be approximated both above and below by a Taylor series2,
and

• there are parameters (or numbers) xmax or xmin such that x ≤ xmax or xmin ≤ x occurs in
either the initial conditions for the model or the evolution domain constraint of the model.

If such a variable x exists, the following update may be applied:
• The differential equations do not change.
• Controller update: For each control choice of the form ?gi; ui := θi, we replace all in-

stances of xmax and xmin occurring in gi with either low(x) or hi(x). In some cases,
occurrences of x are also replaced by low(x) or hi(x) depending on the context in which
x occurs. A similar transformation happens in all θi for ui 6= x.

• Proof update: Prior to any differential tactic3, we introduce a series approximation tactic
that establishes low(x) ≤ x ≤ hi(x) as an invariant of the differential equations.

Add Disturbance/Noise Terms Models often assume perfect sensing and actuation. A com-
mon way of robustifying a model is to add a piecewise constant noise term to the system’s
dynamics. Doing so while maintaining safety invariants requires also updating the controller so
that safety envelope computations incorporate this noise term.

The Add Disturbance Term update introduces noise terms to differential equations. If the
user does not specify the term that should have noise added, the update identifies an actuated
variable u; a variable is considered an actuator if it occurs on the right-hand side of a differential
equation and is assigned to in the discrete fragment of the hybrid program. Given a variable u –
identified by the user or automatically according to the above criteria – the update is defined as
follows.

• Differential Equations: the differential equations c, v′ = f (where c is an arbitrary system
and f an arbitrary polynomial) are modified to c, v′ = f + n. For example, the equations
x′ = v, v′ = a can be updated with a noise term x′ = v, v′ = a+ n.

• Controller: Each controller guard that mentions f is updated to f + n.
• Initial Condition: When introducing a parameter, the user may choose the specify an upper

bound on the noise term, a lower bound on the noise term, both, or neither. The initial
conditions init are then updated to init ∧ nmin ≤ n ≤ nmax where nmin, nmax ∈ R are
(optional) user-specified upper and lower bounds on n. Although n is a fresh variable and
therefore has no dynamics, the bounds may be arbitrary terms mentioning both free and
bound variables of the original model.

• Proof Update: All loop invariants, cuts, and differential cuts in the proof update mentions
of f to f + n.

Our library of generic updates also includes a multiplicative version of this update, where the
(optionally bounded) noise term is multiplied to the right-hand side of a specified ODE.

2Our current implementation current considers only a few possible Taylor expansions, but demonstrates the
general principle.

3a tactic operating on a differential equation containing x′ = f
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Change Static Points to Dynamic Points The generic model update library contains several
updates that change the model by making a static point (x, y) dynamic. For example, one such
update introduces the equations {x′ = −y, y′ = −x} to a system of differential equations in
which the variables x, y do not have differential equations. The controller is updated so that any
statements about separation between (a, b) and (x, y) require global separation of (a, b) from the
circle on which (x, y) moves. The proof is also updated by prepending to the first occurrence of
a differential tactic on each branch with a sequence of differential cuts that characterize circular
motion. Our model update library also contains similar updates for changing a static obstacle
into one that moves along lines in either coordinate.

8.3.1 Linear Hybrid Program Synthesis
Complete model and controller synthesis algorithms can be characterized in terms of model
updates. One such example is our synthesis algorithm for systems whose ODEs have solutions
in a decidable fragment of real arithmetic (a subset of linear ODEs), called the Learn Linear
Dynamics update. Unlike other model updates, we do not assume that any initial model is
provided; instead, we learn a model (and associated control policy) entirely from data. We defer
extended discussion of this update to Chapter 9

Significance of Selected Updates The updates described in this section demonstrate several
possible modes of use for VPMUs and µlearning. VPMUS can update existing models to ac-
count for systematic modeling errors (e.g., missing actuator noise or changes in the dynamical
behavior of obstacles). VPMUs can automatically optimize control logic in a proof-preserving
fashion. VPMUS can also be used to generate accurate models and corresponding controllers
from experimental data made available at design time, without access to any prior model of the
environment.

8.3.2 From Updates to Candidates
The rest of this chapter will consider the problem of starting with a set of feasible models and
learning which model is the best representation of observed reality. The following algorithm
provides a way of generating such a set of feasible models from a set of initial models and a set
of available updates.

The algorithm is very simple: we continue applying all applicable updates to all available
models until reaching some finite horizon. The condition on the tenth line of this listing checks
that the update proof actually proves the updated model. This step is necessary because, as our
above discussion of generic updates indicates, many generic VPMUs are useful in practice but
are fundamentally heuristics. which may not actually preserve verification for many concrete
examples.

The rest of this thesis considers the following question: given a set of feasible models4, can
we safely learn which model is accurate?

4generated, for example, using this algorithm, the generic updates discussed above, and perhaps some domain-
specific updates
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Listing 8.1: Model Update Generation Pseudocode.
1 def generate(models, updates):
2 for m,p in models:
3 assert proveBy(m,p)
4 until reaching horizon:
5 for m,p in models:
6 for mu,pu in updates:
7 continue if m not in dom(mu) or
8 p not in dom(pu)
9 newm, newp = mu(m), pu(p)

10 if proveBy(newm,newp):
11 models.append( (newm, newp) )
12 return map(lambda mp: mp[0], models)

Line 3 of Listing 8.1 asserts that the initial set of model/proof pairs are actually proofs; i.e.,
that the Bellerophon tactic p proves the formula m. For each fo the currently available proven
models m,p, the algorithm applies all available updates to obtain a new model and a new tactic
mu,pu. These updates might fail on some models; if so, the update is simply excluded from
consideration for the model (line 7). However, if the update is applicable and if pu proves mu,
then the new model and proof are added to the set of models (line 9-11). The process repeats
until reaching a specified horizon (e.g., a fixed number of iterations or a fixed point).

8.4 Learning with Updates

Verification-preserving model updates generate a large class of feasible models. This section
introduces Model Update learning, a class of reinforcement learning algorithms that leverage the
class of models generated by applying verification-preserving model updates in order to provide
safety guarantees for control problems in which a single accurate model cannot be selected at
design time.

Model Update learning (µlearning) algorithms all have the same basic idea: begin with a set
of feasible models and act safely with respect to all feasible models. Whenever a model does
not comport with observed dynamics, the model becomes infeasible and is therefore removed
from the set of feasible models. We introduce three variations of µlearning: a basic algorithm
for a finite set of models, an extension of the basic algorithm to countable model sets, and an
algorithm that prioritizes actions that rule out feasible models (adding an eliminate choice to the
classical explore/exploit tradeoff).

Model Update learning demonstrates how to use a set of models generated by exhaustively
applying model updates in order to safely learn efficient policies by combining the JSC algorithm
presented in Chapter 7 with online falsification. However, the algorithms presented in this section
are equally applicable in settings where a large set of feasible models is provided a priori (i.e.,
from some source other than exhaustive application of a class of model updates to an initial set
of models).
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8.4.1 Monitored Models

All µlearning algorithms use monitored models; i.e., models equipped with ModelPlex controller
monitors and model monitors.

Definition 15. A monitored model m is a tuple (ϕ, cm,mm) where:

• ϕ is a dL formula of the form init → [{ctrl;plant}∗]safe where ctrl is a loop-
free program containing no ODEs, plant is a single system of differential equations, and
the entire formula ϕ contains exactly one modality.

• The formulas cm and mm are the control monitor and model monitor for ϕ, as defined in
Corollary 2 and Corollary 3.

Notation This chapter uses slightly different notation from Chapter 7 for similar or identical
objects. For example, in the above definition, we use cm and mm instead of CM and MM to refer
to monitors. We also refer to the formula monitored by these monitors as ϕ. These changes in
notation are made to help avoid confusion between monitored models m and their corresponding
formulas ϕ, between models and sets of models, between monitored models and sets of moni-
tored models, and between sets and sequences of each. Throughout this chapter, single monitors
and single formulas will be denoted either greek symbols or by lowercase letters, sets will be
denoted by uppercase letters (e.g., M for a sequence of monitored models), and sequences will
be denoted by bold and uppercase letters (e.g., S for a sequence of sets). We will also always use
m or mi to refer to monitored models whereas ϕ refers to just the formula used to generate the
monitors.

Monitored models may have a continuous action space because of both tests and the non-
deterministic assignment operator. Some µlearning algorithms focus on models with a finite
action space.

Definition 16. A monitored model over a finite action space is a monitored model (ϕ, cm,mm)
where ϕ ≡ init→ [{ctrl;plant}∗]safe and JctrlK(s) is finite for all states s.

Similarly, monitored models over a finite action space are monitored models for which
JctrlK has a finite codomain on every input state.

Distinguishing between plausible models with qualitatively similar dynamics requires know-
ing how much time passes globally and between control inputs. For example, x′ = 1 and x′ = 42
are impossible to distinguish between without knowing how much time has passed. For this rea-
son, we consider the class of models with explicit timers.

Definition 17 (Time-aware Monitored Model). A time-aware monitored model is a monitored
model (ϕ, cm,mm) such that ϕ contains both a global timer t, and also a local clock c that is
reset at each control step. Concretely, ϕ ≡ init→ [{ctrl;plant}∗]safe where

• init |= c = 0 ∧ t = 0,
• ctrl does not change t and also sets c = 0 for every input state, and
• plant contains the equations c′ = 1, t′ = 1.
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8.4.2 Model Update Learning: The Basic Algorithm
Model update learning, or µlearning, leverages verification-preserving model updates to maintain
safety while selecting an appropriate environmental model.
Definition 18 (µlearning Process). A learning process PM for a finite set of monitored models
M is defined as a tuple of countable sequences (U,S,Mon) where U is a sequence of actions in
a finite set of actions A, elements of the sequence S are states, and Mon are monitored models
with Mon0 = M . Let

specOKm(U,S, i) ≡ cm(Si,Ui) ∨ ¬mm(Si−1,Ui−1,Si)

such that cm and mm are the monitors for the model m. Let specOK always returns true for
i = 0.

A µlearning process is a learning process satisfying the following additional conditions:
• action availability: in each state Si there is at least one action u such that for all m ∈

Moni, u ∈ specOKm(U,S, i),
• actions are safe for all feasible models:

Ui+1 ∈ {u ∈ A | ∀(ϕ, cm,mm), (ϕ, cm,mm) ∈ Moni → cm(Si, u)}
• feasible models remain in the feasible set:

If (ϕ, cm,mm) ∈ Moni and mm(Si,Ui,Si+1) then (ϕ, cm,mm) ∈ Moni+1.
Note that µlearning processes are defined over an environment E : A × S → S that deter-

mines the sequences U and S5, so that Si+1 = E(Ui,Si).
In our algorithms, the set Moni never retains elements that are inconsistent with the observed

dynamics at the previous state.
Notice that the safe actions constraint is not effectively checkable without extra assumptions

on the range of parameters. Two canonical choices are discretizing options for parameters or
including an effective identification process for parameterized models.

Our safety theorem focuses on time-aware µlearning processes, i.e., those whose models are
all time-aware; similarly, a finite action-space µlearning process is a µlearning process in which
all models m ∈ M have a finite action-space. The basic correctness property for a µlearning
process is the safe reinforcement learning condition: the system never takes unsafe actions.
Definition 19 (µlearning process with an accurate model). Let PM = (S,U,Mon) be a µlearning
process and let E be a mapping from actions (i.e., deterministic loop-free and ODE-free pro-
grams) and states (i.e., mappings from variables to values) to states. We say that an element
m∗ = (ϕ∗, cm∗,mm∗) ∈ Mon0 is an accurate model for E if it has the properties following:

1. ϕ∗ ≡ (initm → [{ctrlm;plantm}∗]safe),
2. `dL ϕ

∗,
3. (s, u(s)) ∈ JctrlmK implies (u(s), E(u, s)) ∈ JplantK for E projected to the state vari-

ables occurring in m∗, and
4. mm∗(Si,Ui,Si+1) for all i ≥ 0 on which the sequences are defined.
If exactly one such element exists in Mon0, we call that element m∗ the distinguished and/or

accurate model and say that the process PM is accurately modeled with respect to E.

5Throughout the chapter, we denote by S a specific sequence of states and by S the set of all states
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The mapping E is often called an environment. We will often elide the environment for
which the process PM is accurate when it is obvious from context.
Theorem 5 (Safety). If PM is a µlearning process with an accurate model, then Si |= safe for
all 0 < i < |S|.

Proof. Let m∗ be the distinguished model for PM = (S,U,Mon). Proceed by induction on the
length of S with the hypothesis that Si |= safe and m∗ ∈Moni. Let E be the environment with
respect to which PM is defined.

By the definition of a µlearning process with an accurate model, S0 |= safe and m∗ ∈
Mon0.

Now, assume Si |= safe and m∗ ∈ Moni. By the definition of a µlearning process, we
therefore know that either

cm∗(Si−1,Ui−1(Si−1))

or else
¬mm∗(Si−1,Ui−1(Si−1),Si)

However, the second cannot be the case due to the hypothesis that m∗ is the accurate model
(Def. 19). Therefore, it must be that (Si,Ui(Si)) ∈ Jctrlm∗K. From this fact, Def. 19, and
the fact that m∗ is distinguished, it follows that (Ui(s), E(Ui,Si)) ∈ JplantK. This, together
with the fact that `dL ϕ

∗, the shape assumption on ϕ∗, and the soundness of dL, implies that
Si+1 |= safe.

What remains to be shown is that m∗ ∈ Moni+1. Notice that mm∗(Si,Ui(Si),Si+1) must
be true because m∗ is the accurate model. By the inductive hypothesis know also that m∗ ∈
Moni. By definition, feasible models remain in the feasible set (Def. 18); i.e., the above two
facts establish that m∗ ∈Moni+1.

Listing 8.2 defines a µlearning algorithm that produces a µlearning process. The inputs are:

1. A set of models M each with a method models : S × A × S → B which implements
the evaluation of its model monitor in the given previous and next state and actions and a
method safe : S × A→ B which implements evaluation of its controller monitor,

2. an action space A and an initial state init ∈ S,

3. an environment function env : S × A→ S × R that computes state updates and rewards
in response to actions, and

4. a function choose : ℘(A) → A that selects an action from a set of available actions and
update updates a table or approximation. Our approach is generic and works for any
reinforcement learning algorithm; therefore, we leave these functions abstract.

This algorithm augments an existing reinforcement learning algorithm, defined by update
and choose, by restricting the action space at each step so that actions are only taken if they are
safe with respect to all feasible models. The feasible model set is updated at each control set by
removing models that are in conflict with observed data.

The µlearning algorithm rules out incorrect models from the set of possible models by taking
actions and observing the results of those actions. Through these experiments, the set of relevant
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models is winnowed down to either the distinguished correct model m∗, or a set of models M∗

containing m∗ and other models that cannot be distinguished from m∗.

Listing 8.2: The Basic µlearning Algorithm.
1 def µlearn(M,A,init,env,choose,update):
2 s_pre = s_curr = init
3 act = None
4 while(not done(s_curr)):
5 if act is not None:
6 M = {m ∈ M : m.models(s_pre,act,s_post)}
7 avail = {a ∈ A : ∀ m ∈ M, m.safe(a)}
8 act = choose(avail)
9 s_pre = s_curr

10 (s_curr, reward) = env(s_curr, act)
11 update(s_pre, act)

8.4.3 Active Verified Model Update Learning

Clever µlearning takes actions that help rule out modelsm ∈M that are notm∗. Removing mod-
els from the set of possible models weakens the monitoring condition, allowing less conservative
and more accurate control decisions.

This section introduces a refinement of the µlearning algorithm that prioritizes differentiating
between models by active learning. Instead of choosing a random safe action, the refined algo-
rithm prioritizes actions that differentiate between available models. We begin by explaining
what it means for an algorithm to perform good experiments.
Definition 20 (Active Experimentation). A µlearning process with an accurate model m∗ has
locally active experimentation if there exists an action a that is safe for all feasible models (see
Def. 18) in state si, and if taking action a results in the removal of m from the model set, then
|Mi+1| < |Mi|.
Definition 21 (Distinguishing Actions). Consider a µlearning process (U,S,Mon) with a model
m∗ that is accurate with respect to E (see Def. 19). An action a distinguishes m from m∗ if there
is some i > 0 such that a = Ui, m ∈ Moni and m 6∈ Moni+1.

The active µlearning algorithm, presented in Listing 8.3, uses model monitors to select dis-
tinguishing actions, thereby performing active experiments which winnow down the set of fea-
sible models. The inputs to active-µlearn are the same as those to Listing 8.2 with two
additions:

• models are augmented with an additional prediction method p that returns the model’s
prediction of the next state given the current state, a candidate action, and a time interval.

• An elimination rate er is introduced, which plays a similar role as the classical explore-
exploit rate except that we are now choosing whether to insist on choosing a good experi-
ment.

The active-µlearn algorithm is guaranteed to make some progress toward winnowing
down the feasible model set whenever 0 < er < 1.
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Listing 8.3: µlearning with Active Experimentation.
1 def active-µlearn(· · ·):
2 s_pre = s_curr = init
3 act = None
4 while(not done(s_curr)):
5 if act is not None:
6 M = {m ∈ M :
7 m.models(s_pre,act,s_post)}
8 avail = {a ∈ A : ∀ m ∈ M. m.safe(a)}
9 if rand() > er:

10 avail = {a ∈ avail : ∃ m,n ∈ M m.p(curr,a) 6= n.p(curr,a)}
11 act = choose(avail)
12 update(s_pre, act)

Theorem 6. Let PM = (S,U,Mon) be a finite action space µlearning process with an accurate
model m∗. Then m∗ ∈ Moni for all 0 ≤ i ≤ |Mon|.

Proof. Let m∗ = (ϕ∗, cm∗,mm∗) and let E be the environment over which PM is defined. By
Def. 19,

m∗ ∈Mon0

Suppose now thatm∗ ∈Moni for some i ≥ 0. The crucial observation is that mm∗(Si,Ui,Si+1),
which will directly imply that m∗ ∈ Moni+1 due to the fact that feasible models remain in the
feasible set (Def. 18).

So, it suffices to show that mm∗(Si,Ui,Si+1). However, notice that this follows directly from
the definition of an accurate model (Def. 19).

Theorem 7. Let PM be a finite action space µlearning process with an accurate model m∗.6 If
each model m 6= m∗ has in each state s an action as that is safe for all models and distinguishes
m from m∗, then limi→∞ Pr(m 6∈Mi) = 1.

Proof. Consider PM = (S,U,Mon). Note that m∗ ∈ Moni for all 0 ≤ i ≤ |Mon| is directly
implied by Theorem 6. Let k = |Mi| − 1 be the number of non-m∗ elements in Moni. It suffices
to show that limi→∞ Pr(k = 0) = 1. Notice that because each m 6= m∗ is falsifiable at step i, the
probability that k − 1 non-m∗ elements remain in after n steps is

∑k−1
j=0 er

j(1 − er)n−j which
tends to 0 as n→∞.

Corollary 4. Let PM = (S,U,Mon) be a finite action space µlearning process generated by an
environment E and with an accurate model m∗. If each model m 6= m∗ has in each state s an
action as that is safe for all models and distinguishes m from m∗, then Mon converges to {m∗}
a.s.

Proof. The conclusion follows from Theorem 7 as long as m∗ is never removed. Proceed by
induction on the length of Mon. In the base case, recall that m∗ ∈ Mon0. Suppose, then, that
m∗ ∈ Moni. We assume m∗ = (ϕ∗, cm∗,mm∗) is accurately modeled with respect to E, which
by Def. 19 implies mm∗(Si,Ui,Si+1) for all elements in the sequences U and S. Therefore,

6Recall that µlearning is initialized with a finite set of models.
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Moni+1 must contain m∗ by the inductive hypothesis applied to the third condition (“feasible
models remain in the feasible set”) of Def. 18.

8.4.4 Limitations of Locally Good Experimentation
Although locally active experimentation is not strong enough to ensure that PM eventually con-
verges to a minimal set of models7, our experimental validation demonstrates that this heuristic
is none-the-less effective on some representative examples of model update learning problems.
Example 7 (limitation of locally active experimentation). Consider the following three models:

x ≥ 0 ∧ t = 0→ [ctrl; {x′ = x, t′ = 1}]x ≥ 0 (m∗)

x ≥ 0 ∧ t = 0→ [ctrl; {x′ = 0, t′ = 1}]x ≥ 0 (m1)

x ≥ 0 ∧ t = 0→ [ctrl; {x′ = 5, t′ = 1}]x ≥ 0 (m2)

where ctrl ≡ x := 0 ∪ ?t = 0;x := 1. According to Def. 20, choosing the action x := 0 is an
active experiment because this action will distinguish between the second and third models.

Unfortunately, taking this action will result in the next control step happening in a state where
t 6= 0, meaning that the only safe action is x := 0 for the rest of time. Obviously, the first and
third models are not possible to distinguish between using the only remaining action x := 0.

This limitation is no counter-example to the above theorems because states where t 6= 0 do
not have any experiments that distinguish m1 from m∗.

8.5 Experimental Validation
The µlearning algorithms introduced in this chapter are designed to answer the following ques-
tion: given a set of possible models that contains the one true model, how can we safely perform
a set of experiments that allow us to efficiently discover a minimal safety constraint? In this
section we present several experiments which demonstrate the use of µlearning in safety-critical
settings.

Overall, these experiments empirically validate our theorems and further demonstrate that the
µlearning framework is useful even when the assumptions underpinning our theoretical results
are violated.

Our simulations use a conservative discretization of (8.1) and we translated monitoring condi-
tions by hand into Python from ModelPlex’s C output [133]. Although we evaluate our approach
in a research prototype implemented in Python for the sake of convenience, there is a verified
compilation pipeline for models implemented in dL that eliminates uncertainty introduced by
discretization and hand-translations [26].

8.5.1 Adaptive Cruise Control
Adaptive Cruise Control (ACC) is a common feature in new cars. ACC systems change the speed
of the car in response to the changes in the speed of traffic in front of the car; e.g., if the car in

7Consider e.g., x ≥ 0 ∧ t = 0→ [{{?t = 0;x := 1 ∪ x := 0}; {x′ = F, t′ = 1}}∗]x ≥ 0 for F = 0, 5, x.
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Figure 8.1: Comparison of Justified Speculative Control and µlearning on Adaptive Cruise Con-
trol. The cumulative reward obtained by Justified Speculative Control [62] (green) and µlearning
(blue) during training over 1,000 episodes with each episode truncated at 100 steps.

front of an ACC-enabled car begins slowing down, then the ACC system will decelerate to match
the velocity of the leading car.

Our first set of experiments consider a simple linear model of ACC, as used in previous chap-
ters. The generic constant disturbance update computes the following model update, in which
the acceleration set-point is perturbed by an unknown parameter p; i.e., the relative position of
the two vehicles is determined by the equations

pos′rel = velrel, velrel = accrel + p (8.1)

where p has a constant but unknown value.
In [62], the authors consider the collision avoidance problem when a noise term is added so

that vel′rel = paccrel. We are able to outperform the approach in [62] by combining the Add Noise
Term and Parameter Instantiation updates; we outperform in terms of both avoiding unsafe
states and in terms of cumulative reward. These two updates alloww us to insert a multiplicative
noise term p into these equations, synthesize a provably correct controller, and then choose the
correct value for this noise term at runtime. Unlike [62], µlearning avoids all safety violations.

The graph in Fig. 8.5.1 compares the Justified Speculative Control approach of [62] to our
approach in terms of cumulative reward; in addition to substantially outperforming the JSC al-
gorithm of [62], µlearning also avoids 204 more crashes throughout a 1,000 episode training
process.
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8.5.2 Pedestrian Crossing

The second experiment tests the µlearning algorithm without using any model updates. This
experiment the problem of anticipating whether a pedestrian will move into a cross-walk. The
system must differentiate between two models of the pedestrian, both of which are given a priori
by the system designer. In the first model, m0, a pedestrian at position (pedx, pedy) continues
to walk along a sidewalk indefinitely (pedx never changes). In the second model, m1, a pedes-
trian enters the crosswalk at some point between cmin ≤ pedy ≤ cmax (the boundaries of the
crosswalk). The overall task is visualized in Fig. 8.2.

The µlearning algorithm exhibits exactly the correct course of action. Before pedy ex-
ceeds cmax the agent is unable to rule out either model and therefore maintains safety wrt
M = {m0,m1} by braking sufficiently often to maintain separation in the y coordinate. As
soon as the pedestrian passes cmax the agent notices that m1 is no longer feasible, discards the
model from the feasible set, and accelerates through the crosswalk.

8.5.3 SCUBA Diving

SCUBA diving is a safety-critical activity. SCUBA dive computers help divers remain safe by
alerting the diver when oxygen supply is running low. Unfortunately, monitoring the tank directly
requires the use of expensive sensors and underwater transmitters that are often too expensive
for hobbyist use. Fortunately, it is possible to monitor oxygen consumption indirectly using a
cheaper heart rate monitor. A simple model relating heart rate to oxygen consumption is given
by the system of differential equations:

hr′ = b(hrss − hr), tank′ = −τhr

where tank is the amount of oxygen remaining in the diver’s tank, hrss is a steady-state heart rate
whose value is determined by the diver’s level of exertion, hr is the diver’s heart rate, and b, τ are
parameters specific to the diver’s physiology. We have designed a safe SCUBA ascent protocol
using these equations8.

We consider the problem of identifying the true values of the parameters b and τ . This
problem is different from the cruise control and pedestrian crossing problems in two ways:

1. these parameters may take on values from a compact domain meaning that there is an
infinite set of possible models, and

2. identifying the true model requires performing a regression to fit observed data to param-
eter values.

This problem is characterized as a model learning problem by introducing a parameter instan-
tiation model update. This update allows parameters to take on any value from within a compact
domain. We consider two variations on this algorithm.

In the first variation, we introduce compact domains for each parameter and use the automatic
compact parameter instantiation update to generate many feasible models (one for each parame-
ter instantiation). The system then chooses the correct model from this finite set of models.

8available at github.com/nrfulton/scuba-release
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In the second variation, regression, instead of falsification, is used to select parameter values
at runtime. We have evaluated this algorithm on a set of feasible values for each parameter, and
find that the controller requires very few data points to discover accurate parameter values. This
experiment is particularly interesting because it replaces a discretization step with regression.
We expand on this idea in the next chapter.

8.5.4 Mode Switching
Model update learning can be extended to provide formal guarantees for hierarchical reinforce-
ment learning algorithms [17]. If each feasible model m corresponds to a subtask, and if and all
states satisfying termination conditions for subtask mi are also safe initial states for any subtask
mj reachable from mi, then µlearning directly supports safe hierarchical reinforcement learning
by re-initializingM to the initial (maximal) model set whenever reaching a termination condition
for the current subtask.

The mode switching task has four separate models, one of which encodes two possible behav-
iors. The first three models capture the behavior of the car in the intersection, which may either
move straight or make a left-hand turn. The left-hand turn is modeled as circular motion, and the
critical invariant which is monitored at runtime is the fact that the car under control chooses to
remain static and is therefore completely separated from the circle along which the left-turning
car will move. This model is only valid until the left-turning car enters the intersection. The
other two models allow the car to move along the x-axis after having left the intersection, or
along the y-axis through the intersection. The final model for the mode switching task capture
the behavior of the pedestrian. The pedestrian may either choose whether to enter the cross-
walk. A single model captures the pedestrian’s behavior (which may also be modeled using two
separated models, one for each behavior).

We implemented a variant of µlearning that performs this re-initialization and validated this
algorithm in an environment where a car must first navigate an intersection containing another
car and then must avoid a pedestrian in a crosswalk (as illustrated in Fig. 8.5.4). This example
focuses on demonstrating that safe hierarchical reinforcement learning is simply safe µlearning
with safe model re-initialization. The switching conditions for these models were constructed
manually. We also constructed the model monitors by hand instead of using those generated by
ModelPlex (although the ModelPlex monitoring conditions could also be used with additional
engineering effort).

8.6 Related Work on Safe Off-Model Learning
Related work falls into three broad categories: safe reinforcement learning, runtime falsification,
and program synthesis

Related work on Safe Reinforcement Learning

Our approach toward safe reinforcement learning differs from existing approaches that do not
include a formal verification component (e.g., as discussed in the introductory chapter of Part II
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Figure 8.2: A Visualization of the Intersection and Pedestrian Task.

of this thesis) because we focused on verifiably safe learning; i.e., instead of relying on oracles
or conjectures, constraints are derived in a provably correct way from formally verified safety
proofs. The difference between verifiably safe learning and safe learning is significant, and is
equivalent to the difference between verified and unverified software.

Alshiekh et al. and Hasanbeig et al. propose approaches based on Linear Temporal Logic
[5, 83]. Alshiekh et al. synthesize monitoring conditions based upon a safety specification
and an environmental abstraction. In terms of this formalism, the goal of off-model learning
is to systematically expand the environmental abstraction based upon both design-time insights
about how the system’s behavior might change over time and also based upon observed data at
runtime. Jansen et al. extend the approach of Alshiekh et al. by observing that constraints should
adapt whenever runtime data suggests that a safety constraint is too restrictive to allow progress
toward an over-arching objective [100]. Herbert et al. address the related problem of safe motion
planning by using offline reachability analysis of pursuit-evasion games to pre-compute a safety
bubble for the online planner [60, 88].

The above-mentioned approaches have an implicit or explicit environmental model. Even
when these environmental models are accurate, reinforcement learning is still necessary because
these models focus exclusively on safety and are often nondeterministic. Resolving this non-
determinism in a way that is not only safe but is also effective at achieving other high-level
objectives is a task that is well-suited to reinforcement learning.

Unlike the above-mentioned work on verifiably safe RL, we are interested in how to provide
formal safety guarantees even when there is not a single accurate model available at design time.
Achieving this goal required two novel contributions. First, we contributed a way to generate a
robust set of feasible models given some combination of an initial model and data on previous

111



runs of the system (because formal safety guarantees are stated with respect to a model). Given
such a set of feasible models, we then contributed an algorithm that learns how to safely identify
which model is most accurate so that the system is not over-constrained at runtime.

Thus, compared to prior work on applying verification and reachability analysis tools to
safe reinforcement learning [5, 60, 62, 83, 88, 100], our approach is the first to combine model
synthesis at design time with model falsification at runtime so that safety guarantees capture
a wide range of possible futures instead of relying on a single accurate environmental model.
Safe off-model learning is an important problem because autonomous systems must be able to
cope with unanticipated scenarios, and ours is the first approach toward verifiably safe off-model
learning.

To achieve these goals, we built on the safe learning work and theorem proving technology
discussed in previous chapters. In particular, the approach discussed in this chapter required the
following combination of capabilities unique to KeYmaera X and Bellerophon.

1. A modeling language that combines combine discrete and continuous dynamics so that
we could produce explainable models of system dynamics (e.g., systems of differential
equations as opposed to large state machines)

2. The ability to systematically modify models in a way that separates assumptions (where it
is reasonable to apply inductive program synthesis techniques) from derived control laws
and user-provided safety specifications (where deductive synthesis, bootstrapped with the
output of an inductive synthesis phase, makes much more sense).

3. The ability to systematically modify proofs alongside their models.

4. A monitor synthesis algorithm capable of using information latent in safety proofs.

Related Work on Safe Model-Free Reinforcement Learning

Several recent papers focus on providing safety guarantees for model-free reinforcement learn-
ing. Trust Region Policy Optimization [163] defines safety in terms of monotonic policy im-
provement, a much weaker notion of safety than the constraints guaranteed by our approach.
Constrained Policy Optimization [2] extends TRPO with guarantees that an agent nearly satis-
fies safety constraints during learning. Our approach is model-based instead of model-free, and
instead of focusing on learning safely without a model we focus on identifying accurate models
from data obtained both at design time and at runtime. Learning concise dynamical systems
representations has one substantial advantage over model-free methods: safety guarantees are
stated with respect to an explainable model that captures the safety-critical assumptions about
the system’s dynamics. Synthesizing explainable models is important because safety guarantees
are always stated with respect to a model; therefore, engineers must be able to understand induc-
tively synthesized models in order to understand what safety properties their systems do (and do
not) ensure.

Related Work on Program Synthesis

Our approach includes a model synthesis phase that is closely related to program synthesis and
program repair algorithms [106, 121, 159]. Relative to work on program synthesis and repair,
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VPMUs are unique in several ways. We are the first to explore hybrid program repair. Our
approach combines program verification with mutation. We treat programs as models in which
one part of the model is varied according to interactions with the environment and another part
of the model is systematically derived (together with a correctness proof) from these changes.
This separation of the dynamics into inductively synthesized models and deductively synthesized
controllers enables our approach toward using programs as representations of dynamic safety
constraints during reinforcement learning.

Although we are the first to explore hybrid program repair, several researchers have explored
the problem of synthesizing hybrid systems from data. This work is closely related to our Learn
Linear Dynamics update. Sadraddini and Belta provide formal guarantees for data-driven model
identification and controller synthesis [162]. Relative to this work, our Learn Linear Dynamics
update is continuous time, synthesizes a computer-checked correctness proof (as opposed to a
least violation criterion implied by the synthesis algorithm both not independently checked by a
theorem prover), and does not require dynamics to be compact, bounded, and locally connected.
Unlike Asarin et al. [14], our full set of model updates is capable of synthesizing nonlinear
dynamical systems from data (e.g., the static→ circular update) and produces computer-checked
correctness proofs for permissive controllers.

8.7 Conclusion
This chapter introduced verification-preserving model updates, an approach toward learning
safely even when a single, accurate environmental model is not available. We achieve this goal
by updating the system’s model of the world in response to observations without losing formal
safety guarantees. The next chapter builds upon the VPMU framework developed in this chapter
and, in particular, expains our linear model synthesis algorithm in more detail.
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Chapter 9

Hybrid Program Synthesis

Classical approaches toward control engineering are model-based. Engineers write down a model
of the system under control, derive control laws that satisfy safety and efficiency properties, and
then implement a controller in a general purpose programming language. This is the approach
that KeYmaera X [64], ModelPlex [133], and the VeriPhy pipeline [26] were originally designed
to support. Environmental models might take the form of a system of differential equations, a
system of difference equations, a state machine, or some form of automata. The safety-critical
nature of many controls problems has inspired the development of formal methods for proving
that these model-based controllers are safe.

The justified speculative control (JSC) and model update learning algorithms demonstrate
that model-based controllers are amenable to formal verification and that we can automati-
cally generate robust generalizations of model-based controllers that preserve proofs. JSC and
µlearning both assume access to a more-or-less accurate model, even if there are many other
plausible models and even if reality occasionally strays from the model.

JSC and µlearning start with models and move toward reality by modifying and/or leveraging
these models. This chapter instead starts from observed data, generates a model that fits the data,
and then generates both controllers and correctness proofs for the resulting model. Our approach
synthesizes provably correct controllers from a global safety specification after inductively syn-
thesizing an environmental model from raw data.

The previous chapter discussed the Learn Linear Dynamics update, in which the set of
models provided to the µlearning may rely on experimental data available at design time. This
chapter further develops this approach by considering the problem of proof-preserving induc-
tive program synthesis for hybrid dynamical systems. We discuss the Learn Linear Dynamics
update in more detail and briefly discuss how this idea may be extended to nonlinear systems.

Synthesizing verified models at design-time from data has three desirable properties:
1. The engineer does not need to provide an explicit environmental model of the system.

Instead, we generate models from experimental data provided at design-time.

2. The environmental models that we generate are explainable. Unlike most model-free
approaches, our approach provides engineers with human-readable models in the form of
hybrid programs.

3. We are able to automatically synthesize and formally verify control laws based upon these
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explainable environmental models.
Concretely, the problem solved in this chapter is take as input a safety specification, a finite

set of control choices (a.k.a. actions as discussed in Chapter 8), and a global safety specification
expressed as a quantifier-free arithmetic formula and produce as output:

1. a system of differential equations odes that fit some experimental data, and

2. tests (a.k.a. guards) gi for each control action ui together with initial conditions init
such that init→ [{ctrl;odes}∗]safe.

The remainder of this chapter is organized as follows. Section 9.1 presents our methodology
for environments that can be accurately as a system of ordinary differential equations with nilpo-
tent constant coefficients. In this setting we are able to state and prove both soundness and com-
pleteness results for the synthesis algorithm. We also present several experiments that demon-
strate important design criteria for the cost function that guides the synthesis algorithm. Sec-
tion 9.2 then considers nonlinear environmental dynamics by leveraging verification-preserving
model updates, a mechanism for shaping the model search space in a way that guarantees we
will be able to synthesize a safe controller.

9.1 Proof-Generating Synthesis for Linear Systems
This section tackles the problem of synthesizing proven-correct control software from a set of
experiments, a finite set of control choices expressed as a sequence of assignments, and a global
safety specification. The algorithm has three distinct phases:

1. The model identification phase during which a set of differential equations c is inductively
synthesized from data.

2. The controller synthesis phase, which takes as input the differential equations c from the
previous step and the desired global safety constraint safe and generates maximally per-
missive guards ϕi are computed for each control program ui; and

3. The verification phase, during which a proof of ϕinit → [{{∪i?ϕi;ui}; c}∗]safe is gener-
ated. where ϕinit are a set of initial conditions generate from the output of step 2 and safe
is the given safety constraint.

We begin with an overview of the algorithm and then discuss, in detail, how each phase of
this algorithm is implemented.

9.1.1 Overview of of Synthesis Process for Linear Systems
The Learn Linear Dynamics update discussed in the previous chapter takes as input: (1) data
from previous executions of the system, and (2) a desired safety constraint. From these two
inputs, the update computes a set of differential equations odes that comport with prior ob-
servations, a corresponding controller ctrl that enforces the desired safety constraint with
corresponding initial conditions init, and a Bellerophon tactic prf which proves init →
[{ctrl;odes}∗]safe For example, inputs for the system described by Example 2 would be a
sequence of records with the form:

{accel: 2, T: 1, pos: {0,2,6,12,...}, v: {1,3,5,7,...}}
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and safe: pos < obstaclePos.
This update is implemented as an exhaustive search of the set of fully parametric ODES

whose solutions exist in a decidable fragment of real arithmetic. By fully parametric, we mean
that all coefficients are stated as parameters instead of as concrete values. For example, instead
of x′ = v, v′ = 12a the update will simply return x′ = p0v, v

′ = p1a. The update searches for
the parametric model(s) that sufficiently minimize a cost function defined by:

cost(odes) = f(incorrect(experiments,odes), complexity(odes))

where incorrect counts the number of elements in each execute trace that do not comport with
the solution to incorrect and complexity is a model complexity measure (e.g., a count of the
number of nodes in the ODE’s AST weighted by the degree of the highest total degree polynomial
occurring in the right-hand side of the differential equations).

Insisting on parametric differential equations has several advantages. The search is guaran-
teed to terminate and return an optimal model or set of models under mild assumptions on the
shape of the cost function. Using parameters instead of concrete values also helps avoid over-
fitting to the particular execution traces available at design time. However, these advantages
come with a complication: computing incorrect for parametric models requires instantiating
these parameters. To address this complication, the Learn Linear Dynamics update uses a least
squares regression with a subset of the I/O trace data to fit parameters for each trace, and then
computes incorrect using the remaining trace data.

So far, we have explained how Learn Linear Dynamics chooses an ODE (or set of candidate
ODEs) by searching the space of parametric ODEs for systems that minimize a cost function
defined in terms of model accuracy and model complexity. However, we have not explained how
a corresponding controller is computed or how a proof is synthesized. We now turn our attention
to these two problems.

Controllers are computed by searching for an action1 that is globally safe from some subset
of state space. Formally, there should be some discrete program u which chooses actuator inputs
such that [{u;odes}∗]safe↔ ϕ for some quantifier-free formula ϕ of real arithmetic2. Every
other control choice q has a guard gq which ensures that ϕ is true after taking the action g from
the current state; i.e., the final controller has the form ctrl ≡ us∪?ϕ(soln(x0, u1, T ));u1) ∪
· · · ∪?ϕ(soln(x0, un, T ));un where u1 . . . un is the set of available actions expressed as loop-free
deterministic discrete programs (e.g., in the case of Example 2, accel := A and accel := −B)
every other choice of control inputs must stay within this safe subset of state space where
the distinguished safe action can maintain safety invariants The formula ϕ provides a loop in-
variant so that the tactic unfold; loop(ϕ,1)<(QE,QE,master) will prove the formula ϕ →
[{ctrl;plant}∗]safe The master tactic is an automated tactic that performs symbolic de-
composition of the loop-free control program, solves the system of differential equations using
the KeYmaera X axiomatic ODE solver, and then resolves the resulting quantified arithmetic
using a real arithmetic decision procedure.

1i.e., a mapping from controllable/actuated variables to concrete numeric values.
2KeYmaera X can automatically reduce this formula to a quantified arithmetic formula, and quantifier elimina-

tion for the resulting arithmetic is decidable because of our restriction on the set of linear ODEs considered by this
update
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9.1.2 Model Identification

Model identification is the problem of generating a dynamical system – e.g., a set of ordinary
differential equations – from data. We solve this problem using a combination of inductive
program synthesis and regression. The synthesis algorithm produces a set of parameteric ODEs
as candidates. A regression algorithm is then used to instantiate these parameteric models so
that each model may be numerically evaluated against a set of evaluation data. This evalution
results in a score, which is used by the syntheizer to select the next set of parametric models.
The process repeats until reaching a finite horizon. Under very mild assumptions, this algorithm
will converge.

The basic algorithm is presented in Fig. 9.1.2. We use linear least squares for fitting param-
eters. The interesting design points in this algorithm are selecting the score and newModels

functions. The choices are related, since newModels has access to computed scores and will
typically use these scores to select the next set of models.

The Baisc Inductive Synthesis Algorithm.
1 //An experiment maps the initial conditions (i.e., control inputs) and an

independent variable t : R+ to a state S.
2 type Experiment = U × R+ × S
3 inputs:
4 es: Set[Experiment], a set of experiments.
5 n : N, the bound/timeout on the synthesis process.
6 ms: List[ODESystem], a (possibly empty) set of initial models.
7 split: A function that splits a set into two parts.
8 score: Set[Experiment] × ODESystem → R, a scoring function defining the

quality of the model. Lower scores are better.
9 newModels: Set[ODESystem × R] → Set[ODESystem]

10 threshold: N, a cutoff point for models' scores.
11 es1,es2 = split(es)
12 while i < n:
13 regression, eval = split(es1)
14 // fs = ms with parameters fit using regression.
15 fs = ms.map(mi => fit-params(regression, mi))
16 // associate each fitted model fi with a score.
17 fs.zip( fs.map(fi => score(eval, fi)) )
18 // remove all models above a threshold and then generate new models.
19 // (note: lower scores are better.) There is an implicit mapping from
20 ms = newModels(fs.filter((fi, score) => score < threshold).map( (fi,score)

=> fi)
21 return ms.min(mi => score(es2, mi))

Line 13 first splits the data into two sets; the first set of data is used to fit parameters and
the second is used for computing the model’s score. Line 15 uses regression to fit the ODE’s
parameters by first solving the ODE and then using a least squares regression to fit the parameters
of the ODE. Lines 17 – 21 then compute scores, filter out models above a threshold, generate a
new set of models, and at last return the model with the lowest total cost. Notice that line 21 can
be replaced with another filter with a score threshold so that the inductive synthesis algorithm
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returns a set of models instead of a single model; this is the approach discussed in Chapter 8.

Convergence Criteria

An interesting theoretical question is whether the finite horizon n is strictly necessary. Under
what conditions is the algorithm in Fig. 9.1.2 guaranteed to converge to a fixed point?
Theorem 8 (Conditions on convergence of the linear inductive synthesis algorithm). Denote by
msi the value of ms after the ith iteration of the loop in Fig. 9.1.2 and consider arbitrarily large
n. Assume all of the auxiliary mappings used in Fig. 9.1.2 terminate and are functions. Also
assume that newModels(msi) ⊂ msi unless msi is a fixed point.

Denote by len(m) the syntactic weight of a model3. Crucially, assume score(es,m) ≥
δlen(m) for some δ > 0. Then the sequence msi converges to a fixed point in finite time.

Proof. The first paragraph of assumptions directly implies that msi ⊆ msi+1 and that |msi| <
|msi+1| unless msi is a fixed point. Because this sequence of sets never loses elements and
always grows in size monotonically until reaching a fixed point, it suffices to show that there is
some finite supremal set msn such that msk ⊆ msn for any k.

If len(m) > threshold
δ

then score(m) ≥ δ threshold
δ

= treshold and therefore m is
excluded from ms by line 20. There are obviously finitely many systems of fully parametric
linear ODEs whose syntactic weight is less than threshold

δ
. Therefore, the desired mn is the set

of all models with syntactic weight less than threshold
δ

.

Although convergence is a nice property, it is both unnecessary and insufficient as a crite-
ria for effective model identification. Therefore, we now turn our attention to the problem of
empirically evaluating several different choices for the score and newModels functions.

Candidate Score Functions and Synthesis Algorithms

In this chapter we consider the following class of candidate scoring functions:

score(es,m) = kweight(m) + (1− k)|{e ∈ es : predict(m, eu, ein) 6= eout}|

where 0 < k < 1 is a parameter, m a system of differential equations, the weight function
is simply the size of the AST of the right-hand sides of m except for exponents whose weights
are equal to their values4, and predict maps each model, input state, and time direction to the
model’s predicted output state.

In addition to considering several candidate cost functions we also consider several candidate
synthesis algorithms.

The first and simplest synthesis algorithm is our baseline. This approach completely
disregards scoring; the cost function is still used to select a final model but does not direct the
iterative synthesis process. At each iteration i, baseline simply returns all models with syn-
tactic weight equal to i. This continues until i = threshold so that the user-defined threshold
determines the maximum size of the model. Notice that threshold therefore controls both the

3e.g., the number of nodes in its AST
4 i.e., the weight of x′ = x2 + x+ 1 is 6 while the weight of x100 + 1 is 102
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highest possible degree of the model and also, for models with many dependent variables, the
degree to which these variables may interact.

The second synthesis algorithm we consider leverages the error in variables to determine
which differential equations should be changed. For example, given an equation of the form
x′ = θx, o

′ = θo, the synthesis algorithm will only introduce new candidates for θx if the set of
incorrect experiments esout for the best available model contains a sufficient number of errors
caused by the existing models’ predication of the x variable’s value.

9.1.3 Controller Synthesis
Model identification is inherently inductive, moving from empirical observations of the world
to a mathematical model that comports with those observations. However, once a model is
determined, deriving a controller that is safe with respect to the model is purely deductive. This
section explains how to derive a controller from a safety specification ϕ and a system of ODEs
plant.
Definition 22 (The Controller Synthesis Problem). Given:

• a safety specification safe stated in FOLR,
• a system of differential equations plant,
• a finite set of control variables U , and
• for each control variable u ∈ U a set of possible values Fu ⊆ R,

the controller synthesis problem is to derive a set of initial conditions init, a definition of the
set of possible control vectors α, and a safety guard ψ satisfying the conditions following:

• (s, t) ∈ JαK with t(u) = v iff v ∈ Fu, and
• init→ [{α; ?ψ;plant}∗]safe.
The finite controller synthesis problem assumes that each Fu is finite. The time-aware con-

troller synthesis problem assumes an explicit timer t is reset at least every T time units, so that
the final formula has the form:

init ∧ T > 0→ [{α; ?ψ; t := 0; {plant, t′ = 1 ∧ t ≤ T}}∗]safe.

Observe that the finite time-aware controller synthesis problem reduces to the problem of
associating with each possible set of control inputs a test program that prevents the system from
choosing those control inputs unless doing so is safe.

Let V be the set of all possible control vectors expressed as programs. For example, if
U = {a} and Fa = {−B,A} then V = {a := −B, a := A}. Also, if U = {x, y} with
Fx = {1, 2} and Fy = {3, 4} then V =

{
{x := 1; y := 3}, {x := 1; y := 4}, {x := 2; y :=

3}, {x := 2; y := 4}
}

. Then the controller synthesis problem is to generate, for each v ∈ V , a
formula ϕv such that:

` init ∧ T > 0→ [{{∪v∈V ?ϕv; v}; t := 0;plant}∗]safe

In this chapter we are concerned with solving both the controller synthesis problem and also
obtaining an actual proof that the chosen controller is safe. We first discuss the problem of
synthesizing a controller and then turn our attention to automating theorem proving.
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Solving the controller synthesis problem in full generality requires finding the fixed point
of a quantified arithmetic predicate. Unfortunately, calculating this fixed-point is intractable for
even simple examples. We therefore focus on the two important subclasses of this problem that
usually arise in practice. All of the examples considered in this chapter fit into these classes.

1 inputs:
2 init: The initial state.
3 U: a finite set of control actions.
4 plant: A system of ODEs.
5 T: upper bound on the time between control steps.
6 safe: S → B is the safety constraint.
7 soln: S × U × R+ → S is the state reached when following plant for T time

from an initial state.
8 output:
9 a test program for each control action in U.

10 val fallback = fallback-in(U, plant)
11 if fallback is defined:
12 U.map(u => {
13 if u == fallback:
14 return {?true;}
15 else:
16 return {?QE(∀0 ≤ t ≤ T∀s ≥ t safe(solve(solve(x0, u, t), fallback, s);}
17 })
18 else:
19 U.map(u => return {?safe(solve(u, T));}

This algorithm first checks if there is some action – called a fallback action – that is safe
for all time from some subset of state space. If such an action exists, then that action is always
permitted.

This strategy assumes the existence of an action that is safe for all forward time from some
subset of state space. For example, for the safety constraint x ≥ 0 and the system of differential
equations {x′ = v, v′ = a, t′ = 1&t ≤ T}, the action a := −B for B > 0 is globally safe from
the region x > v2

−2B
.

Generating Initial Conditions Assuming that there is such an action, it is possible to deter-
mine the existence of such an action ufallback and constraint Fu by attempting to prove

[ufallback; ODEs]safe

where ODEs is the plant without time-based domain constraints with the tactic unfold; solve

(1); partialQE. If the result of this tactic is not false, then ufallback is a globally safe action
from the set of states described by the resulting arithmetic. Notice that the resulting arithmetic
also defines the initial conditions for the model.

If there is no action that is safe for all forward time for some subset of state space, then
the system simply checks that the current action is safe for the next time step. Notice that this
is not sufficient for ensuring that the controller is live; in particular, it may be the case that the
system is only vacuously safe because no safe control action is available in some reachable states.
Although it is possible to characterize the maximally permissive, always-live controller in terms
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of fixed points, computing these fixed points requires quantifier elimination calls that quickly
become intractable.

9.1.4 Automated Proving
We would like to automatically prove formulas of the form

init→ [{{∪i?gi;ui}; plant}∗]safe,

where plant is generated by the model identification algorithm, the guards gi are generated by the
synthesis algorithm, each assignment ui is an assignment to each variable in the control vector,
and i ranges over all of the finitely many choices for the control vector.

The Axiomatic ODE Solver discussed in Chapter 4 can solve the equations plant so the only
remaining problem is to generate a loop invariant. When a globally safe control action exists, the
invariant can be immediately synthesized.

9.2 Proof-Generating Synthesis for Nonlinear Systems
Generating proofs for nonlinear systems is significantly more difficult than the linear case be-
cause synthesizing controllers and automatically proving safety properties is much less system-
atic. For this reason, we constrain the search process using the verification-preserving model
updates framework developed in Chapter 8. By only considering model updates for which safe
controllers are already known, we offload the problem of synthesizing proofs and models to the
problem of identifying a robust set of model updates. Naturally, this remains a difficult model
engineering problem.

The algorithm is much simpler to the linear algorithm: starting with a set of initial models,
we successively apply all available model updates, use regression to fit parameters, judge the
fitness of each model, exclude models below a threshold, and continue until reaching an arbitrary
horizon.

9.3 Conclusion
Formal verification techniques typically focus on providing guarantees in situations where a
model is designed by a human. This chapter considers the problem of obtaining formal proofs
of safety even in cases where models are partially constructed using design-time data, such as
high-fidelity simulations or executions of previous system runs. Providing safety guarantees
for systems designed in this way is an important problem because engineers are increasingly
turning toward data on previous system executions to build robust autonomy into cyber-physical
systems. This chapter explains how to construct explainable and provably correct models from
data available at design time. The approach in this chapter leverages the insight that hybrid
program synthesis has both an inductive phase and a deductive phase. This insight allows us to
construct, from data, provably correct control software.

122



Chapter 10

Conclusion

Autonomous cyber-physical systems that use reinforcement learning for control are amenable
to formal verification. High-level models may be verified in a hybrid systems theorem prover
such as KeYmaera X. Once verified, these models can be used to sandbox model-based learning
algorithms. The JSC algorithm demonstrates that verification results also provide a powerful
signal for directing off-model learning toward safe actions. Even when no initial model is avail-
able, formal verification provides a unique perspective for guiding the model identification and
controller synthesis process.

This thesis introduced several conceptual tools for combining learning and reasoning to build
robust control systems that come with explainable and verifiable safety guarantees. These frame-
works – tactical hybrid systems theorem proving with proof term generation, justified specula-
tion, and hybrid program induction guided by verification preserving model updates – provide
a powerful foundation for safe learning and lay the groundwork for tackling many important
remaining problems. How can we incorporate safe learning for control with safe learning for
perception? How can hybrid program synthesis be combined with off-model policy learning?
And perhaps most importantly, do the techniques developed in this scale to real industrial sys-
tems?

Perhaps the most important insight from Part II of this thesis is that, when it comes to safe
learning, logic has much more to offer than mere sandboxing. Although sandboxing is important,
it is only the beginning of logic’s role in the safe learning story. JSC with quantified model
monitors, µlearning, and hybrid program induction together demonstrate several ways in which
programming languages and their verification logics provide a promising semantic target for
explainable and verifiable machine learning. An obvious direction for future work is to continue
pulling on this thread by finding additional ways in which combinations of theorem proving and
machine learning can leverage each others’ strengths. This vision goes far beyond controls and
dynamic logics.

A significant gap in current work toward safe control is the construction of systems that can
build their own justifications for self-improvement. This thesis focused only on enabling learning
in a way that is justified (i.e., satisfies existing safety constraints assuming a priori modeling
assumptions, as in Chapter 7), but did not tackle the much more difficult problem of building
systems capable of constructing their own justifications or learning the successes and failures of
their own attempts at reasoning. One very concrete avenue for future work would be to extend the
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paradigm of hybrid program induction to the setting of the LPdL logic introduced in Chapter 5,
so that systems may learn how to construct new proofs instead of relying, as in Chapter 9, on
pre-existing proof search techniques.

By explaining how to obtain trustworthy correctness proofs for on-model control and how to
leverage these proofs during off-model control, this thesis demonstrates that autonomous cyber-
physical systems that use reinforcement learning for control are amenable to formal verification.
Future work in this direction should focus on scaling current techniques to industrial systems and
pushing the boundaries of justifiable autonomy by allowing systems to autonomously learn new
models, new control strategies, and new proof techniques for establishing the correctness of new
control strategies.
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[135] Stefan Mitsch and André Platzer. ModelPlex: Verified runtime validation of verified
cyber-physical system models. Form. Methods Syst. Des., 49(1):33–74, 2016. Special
issue of selected papers from RV’14. 4.5.2, 4.5.3, 7.1

[136] Allen Newell and Herbert A. Simon. The logic theory machine-a complex information
processing system. IRE Transactions on Information Theory, 2(3):61–79, 1956. 5.1
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hamed, César A. Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order
Logics, 21st International Conference (TPHOLS 2000), volume 5170 of LNCS, pages 28–
32. Springer, 2008. 3

[167] Alexey Solovyev and Thomas C. Hales. Formal Verification of Nonlinear Inequalities
with Taylor Interval Approximations. In Guillaume Brat, Neha Rungta, and Arnaud Venet,

137



editors, NASA Formal Methods, volume 7871 of LNCS, pages 383–397. Springer, 2013.
4.6

[168] A. S. Troelstra. History of Constructivism in the 20th Century Vol. Ml-91-05. University
of Amsterdam, 1991. 2

[169] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat
Chaudhuri. Programmatically interpretable reinforcement learning. In Jennifer G. Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on Ma-
chine Learning (ICML 2018), volume 80 of JMLR Workshop and Conference Proceed-
ings, pages 5052–5061, 2018. 6.3.2

[170] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal secu-
rity analysis of neural networks using symbolic intervals. CoRR, abs/1804.10829, 2018.
6.2.3, 6.1

[171] Eric W. Weisstein. Quantifier elimination. MathWorld–A Wolfram Web Resource. URL
http://mathworld.wolfram.com/QuantifierElimination.html. 3.1

[172] Bruno Woltzenlogel Paleo. Contextual natural deduction. In Sergei Artemov and Anil
Nerode, editors, Logical Foundations of Computer Science, volume 7734 of LNCS, pages
372–386. Springer, 2013. 5.2

138

http://mathworld.wolfram.com/QuantifierElimination.html

	1 Introduction
	I Trustworthy Verification for  Hybrid Dynamics
	2 Background on Hybrid Systems Verification
	2.1 Hybrid Programs
	2.2 Differential Dynamic Logic
	2.3 Semantics of 
	2.4 The Hilbert Calculus

	3 The KeYmaera X Tool
	3.1 The KeYmaera X Core
	3.2 Bellerophon
	3.3 Related Work on Hybrid Systems Verification
	3.4 Conclusion

	4 Bellerophon
	4.1 Introduction
	4.2 The Bellerophon Tactic Language
	4.3 Formal Semantics
	4.3.1 Evaluation of Tactics

	4.4 Demonstration of Tactical Hybrid Systems Proving
	4.5 The Bellerophon Standard Library
	4.5.1 Proof Calculi
	4.5.2 Solving Differential Equations
	4.5.3 Reasoning about Bifurcations
	4.5.4 Tactical Automation for ODEs
	4.5.5 Tactical Automation for Hybrid Systems

	4.6 Related Work on Tactical Theorem Proving
	4.7 Conclusion

	5 The Logic of Proofs for Differential Dynamic Logic 
	5.1 Introduction
	5.2 Related Work on Representing Proofs
	5.3 The Logic of Proofs for Differential Dynamic Logic
	5.3.1 Syntax
	5.3.2 Semantics
	5.3.3 Axioms and Proof Rules

	5.4 Converting LP Proof Terms into Proofs
	5.5 Checking Proof Terms Using Truth-Preserving Transformations
	5.6 Conclusion


	II Verifiably Safe Learning
	6 An Introduction to Safe Learning
	6.1 Reinforcement Learning
	6.2 Safe Reinforcement Learning
	6.2.1 Modifying the Criterion
	6.2.2 Initial Knowledge Approaches
	6.2.3 Analysis of Learned Policies
	6.2.4 Summary of Related Work on Safe Learning

	6.3 Viewpoints on Controlling Without a Perfect Model
	6.3.1 Model and System Identification
	6.3.2 Program Synthesis and Repair

	6.4 Conclusion
	6.5 Overview of Related Work

	7 Justified Speculative Control
	7.1 Runtime Monitoring for 
	7.2 The Justified Speculative Learning Algorithm
	7.3 Safe Learning
	7.4 Safe Policy Extraction
	7.5 Experimental Validation
	7.5.1 Adaptive Cruise Control
	7.5.2 Experimental Setup and Results

	7.6 Quantitative JSC
	7.7 Conclusion

	8 Model Update Learning
	8.1 Verification-Preserving Model Updates
	8.2 From Model Updates to Feasible Models
	8.3 A Model Update Library
	8.3.1 Linear Hybrid Program Synthesis
	8.3.2 From Updates to Candidates

	8.4 Learning with Updates
	8.4.1 Monitored Models
	8.4.2 Model Update Learning: The Basic Algorithm
	8.4.3 Active Verified Model Update Learning
	8.4.4 Limitations of Locally Good Experimentation

	8.5 Experimental Validation
	8.5.1 Adaptive Cruise Control
	8.5.2 Pedestrian Crossing
	8.5.3 SCUBA Diving
	8.5.4 Mode Switching

	8.6 Related Work on Safe Off-Model Learning
	8.7 Conclusion

	9 Hybrid Program Synthesis
	9.1 Proof-Generating Synthesis for Linear Systems
	9.1.1 Overview of of Synthesis Process for Linear Systems
	9.1.2 Model Identification
	9.1.3 Controller Synthesis
	9.1.4 Automated Proving

	9.2 Proof-Generating Synthesis for Nonlinear Systems
	9.3 Conclusion

	10 Conclusion
	Bibliography


