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Abstract

Meeting tail latency Service Level Objectives (SLOs) in shared cloud networks is known to be
an important and challenging problem. The main challenge is determining limits on the multi-
tenancy such that SLOs are met. This requires calculating latency guarantees, which is a difficult
problem, especially when tenants exhibit bursty behavior as is common in production environments.
Nevertheless, recent papers in the past two years (Silo, QJump, and PriorityMeister) show techniques
for calculating latency based on a branch of mathematical modeling called Deterministic Network
Calculus (DNC). The DNC theory is designed for adversarial worst-case conditions, which is
sometimes necessary, but is often overly conservative. Typical tenants do not require strict worst-
case guarantees, but are only looking for SLOs at lower percentiles (e.g., 99th, 99.9th). This
paper describes SNC-Meister, a new admission control system for tail latency SLOs. SNC-Meister
improves upon the state-of-the-art DNC-based systems by using a new theory, Stochastic Network
Calculus (SNC), which is designed for tail latency percentiles. Focusing on tail latency percentiles,
rather than the adversarial worst-case DNC latency, allows SNC-Meister to pack together many
more tenants: in experiments with production traces, SNC-Meister supports 75% more tenants than
the state-of-the-art. We are the first to bring SNC to practice in a real computer system.





1 Introduction
Meeting tail latency Service Level Objectives (SLOs) in multi-tenant cloud environments is a
challenging problem. A tail latency SLO such as a 99th percentile of 50ms (written T99 < 50ms)
requires that 99% of requests complete within 50ms. Researchers and companies like Amazon
and Google repeatedly stress the importance of achieving tail latency SLOs at the 99th and 99.9th
percentiles [14, 52, 13, 39, 4, 47, 48, 26, 45, 23, 27, 55]. As demand for interactive services
increases, the need for latency SLOs will become ever more important. Unfortunately, there is little
support for specifying tail latency requirements in the cloud. Latency is much harder to guarantee
since it is affected by the burstiness of each tenant, whereas bandwidth is much easier to divide
between tenants. Tail latency is particularly affected by burstiness, and recent measurements show
that the 99.9th latency percentile can vary tremendously and is typically an order of magnitude
above the median [35].

1.1 The case for request latency SLOs
Throughout this paper, we measure request latency (a.k.a., flow completion time), which is defined
as the time from when a tenant’s application makes a request for data to the time until all the
requested data is received by the tenant’s application. This is in contrast to packet latency, which is
the time it takes a packet to traverse through the network. Packet latency is the right metric when
requests are small. However, as the amount of data used increases, request latency becomes the
most relevant granularity (as argued in [54]).

1.2 Queueing is inevitable for request latency
The major cause for high request latency is almost always excessive queueing delay [23, 27].
Queueing is inevitable. In production environments, traffic is typically bursty as shown in Fig. 3(a).
When these bursts happen simultaneously, the result is high queueing delays.

Queueing can occur both within the network (in-network queueing) and at the end-hosts (end-
host queueing). Some works (e.g., Fastpass [39], HULL [3]) claim to eliminate or significantly
reduce queueing. What they actually mean is that they eliminate in-network queueing by shifting
the queueing to the end-hosts with rate limiting. This produces great benefits for packet latency,
which does not include this end-host queueing time. However, these techniques do not solve the
problem for request latency, which by definition captures the entire queueing time, both in-network
queueing and end-host queueing. Queueing delay still comprises the biggest portion of request
latency, particularly when looking at the tail percentiles [23].

1.3 Dual goals: meeting tail latency SLOs and achieving high multi-tenancy
The goal of this paper is two-fold: 1) We want to meet tail request latency SLOs and 2) we want
to admit as many tenants as possible. Clearly, there’s an obvious tradeoff. If we admit very few
tenants, e.g., just 1 tenant, then it’s very likely that we can meet that tenant’s request latency SLO,
because there will be very little queueing (queues will only be caused by that single tenant’s bursts,
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Figure 1: Admission numbers for state-of-the-art admission control systems and SNC-Meister
in 100 randomized experiments. The state-of-the-art systems are Silo [27], QJump [23], and
PriorityMeister [55], which have all been published in the last two years. In each experiment,
180 tenants, each submitting hundreds of thousands of requests, arrive in random order and seek
a 99.9% SLO randomly drawn from {10ms, 20ms, 50ms, 100ms}. While all systems meet all
SLOs, SNC-Meister is able to support on average 75% more tenants with tail latency SLOs than the
next-best system.

not contention with other tenants). By contrast, if we admit many tenants, then there will be high
contention across tenants, resulting in long queues and possibly violating SLOs. Admission control
is the necessary component that limits the multi-tenancy so as to guarantee that we only admit
tenants whose SLOs we can meet. The challenge in admission control is predicting what the request
latency will be for each tenant.

1.4 The state of the art in admission control: worst-case bounds on the re-
quest latencies

Predicting request latency is not an easy task due to sharing the network with many tenants that
send bursty traffic as is common in production environments. The burstiness makes it challenging
to meet SLOs by only keeping system load below a “magic number”, e.g., below 60%. For
example, Fig. 2 illustrates that there can be violations of tail latency SLOs even at low loads.
Furthermore, the number of SLO violations depends on the specific SLO latencies and percentiles,
so even determining a magic load number is not straightforward. This shows that load alone is an
insufficient criterion to determine admission decisions.

The state-of-the-art in admission control are Silo (SIGCOMM 2015 [27]), QJump (NSDI
2015 [23]), and PriorityMeister (SoCC 2014 [55]). These systems perform admission control by
using Deterministic Network Calculus (DNC) to calculate upper bounds on the request latency.
Typically DNC characterizes a tenant’s request process based on the maximum arrival rate and burst
size. DNC then uses each tenant’s maximum rate/burst constraint to compute the worst-case latency
within a shared network. If the worst-case latency for a tenant is higher than its SLO, the tenant is
not admitted.
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Figure 2: Without admission control, the number of SLO violations increases quickly as the load
increases.

The above systems all use DNC, but in somewhat different ways. Silo uses DNC to calculate
the amount of queueing within the network and performs admission control to ensure that network
switch buffers do not overflow. QJump offers several classes with different latency-throughput
trade-offs, for which latency guarantees are calculated with DNC. PriorityMeister considers different
prioritizations of tenants. For each priority ordering, PriorityMeister uses DNC to bound the worst-
case latency of each tenant. PriorityMeister aims to choose a priority ordering that maximizes the
number of tenants that can meet their SLOs if admitted.

1.5 The limitations of DNC
While DNC is an excellent tool for latency analysis, it assumes that tenants behave adversarially
where all the tenant’s worst possible bursts happen simultaneously. While an adversarial worst-case
assumption is suitable for some environments, it is typically too conservative in making admission
decisions. As an example, we analyze three traces from a production server in Fig. 3(a) and show
their aggregate behavior in Fig. 3(b). The peak burst in each trace is marked with a horizontal
line. Note that bursts are short lived (on the order of seconds), and that these bursts are not caused
by diurnal (hourly) trends. In fact, such short-term bursts occur during every hour of our traces
and they are known to have a large impact on performance [25]. As DNC performs an adversarial
worst-case analysis, it must consider the scenario where each of the peak bursts happen at the same
time. But as shown in the aggregate trace, the actual peak is much lower than the adversarial sum of
peaks. As a result, DNC’s worst-case assumption limits the number of tenants that can be admitted
into the system for any given SLOs.

1.6 The case for Stochastic Network Calculus (SNC)
Typical tenants do not seek strict worst-case guarantees. Instead, tenants target tail latency per-
centiles lower than the 100%, e.g., the 99.9th latency percentile [14]. DNC only supports the 100th
percentile (i.e., adversarial worst-case), so given 99.9th percentile SLOs, DNC simply pretends they
are 100th percentile SLOs, resulting in admission decisions which are far too conservative.

We therefore instead turn to an emerging branch of probabilistic theory called Stochastic
Network Calculus (SNC). SNC provides request latency bounds for any tenant-specified latency
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(a) Individual burstiness (b) Aggregate bursti-
ness

Figure 3: In computing worst-case analysis of the peak for an aggregate traffic trace, one assumes
that all three individual traces have their worst peaks at the same time. This is overly conservative.

percentile, e.g., the 99th, 99.9th, or 99.99th latency percentile. By not assuming the adversarial
worst-case, we will show that it is possible to admit many more tenants, even for high percentiles
(several 9s).

1.7 Our SNC-based system: SNC-Meister
Our new system, SNC-Meister, uses SNC to upper bound request latency percentiles for multiple
tenants sharing a network. Admission decisions are thus made for the specific percentile requested
by each tenant. We implement and run SNC-Meister on a physical cluster, and our experiments with
production traces show that SNC-Meister can support many more tenants than the state-of-the-art
systems by considering 99.9th percentile SLOs (see Fig. 1).

This paper makes the following main contributions:
• Bringing SNC to practice: SNC is a new theory that has been developed in a theoretic

context and has never been implemented in a computer system. Our primary contribution is
identifying and overcoming multiple practical challenges in bringing SNC to practice (details
in Sec. 4 and Appendix A). For example, it is an open problem how to effectively apply
SNC to analyze tail latency in a network, in particular with respect to handling dependencies
between tenants. Many approaches using SNC introduce artificial dependencies that make
the analysis too conservative. SNC-Meister introduces a novel analysis, which minimizes
artificial dependencies and also supports user-specified dependencies between tenants, which
has not previously been investigated in the SNC literature. We prove the correctness of
SNC-Meister’s analysis (Appendix A) and show that SNC-Meister improves the tightness of
SNC latency bounds by 2-4× (Sec. 4).
• Extensive evaluation: We implement SNC-Meister and evaluate it on an 18-node cluster

running the widely-used memcached key-value store (setup shown in Fig. 4, details in Sec. 5).
We compare against three state-of-the-art admission control systems, two of which we enhance
to boost their performance1. Across 100 experiments each with 180 tenants represented by

1Silo++ admits 10% more tenants than a hand-tuned Silo baseline, and QJump++ admits 5× more tenants than a
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Figure 4: SNC-Meister meets tail latency SLOs on the complete request path for the network shown.
The request latency spans the time from when a request is issued until it is fulfilled. Our evaluation
experiments involve 180 tenant VMs (on 12 nodes), which replay recent production traces, and six
servers running memcached.

recent production traces, SNC-Meister is able to support on average 75% more tenants than
the enhanced state-of-the-art systems (Fig. 1) while meeting all SLOs. This improvement
means that SNC-Meister allows tenants to transfer 88% more bytes in the median (Sec. 6.1).
SNC-Meister is also within 7% of an empirical offline maximum, which we determined
through trial-and-error experiments (Sec. 6.2).
• Building a deployable system: We design SNC-Meister to operate in existing infrastructures

alongside best effort tenants without requiring kernel, OS, or application changes. To simplify
user adoption, SNC-Meister only requires high-level user input (e.g., SLO) and automatically
generates SNC models and corresponding configuration parameters. Our representation of
SNC in code is simple and efficient, which results in the ideal linear scaling of computation
time in terms of the number of tenants.

The rest of this paper is organized as follows. The SNC-Meister admission system is described
in Sec. 2. Sec. 3 introduces background on SNC and Sec. 4 introduces the challenges solved by
SNC-Meister in bringing SNC to practice. We describe our experimental setup, including the
enhanced state-of-the-art admission systems, in Sec. 5 and present our main results in Sec. 6. We
discuss our results in a brief conclusion in Sec. 8. Details of SNC-Meister’s analysis algorithm and
corresponding correctness proofs are given in Appendix A.

2 SNC-Meister’s admission control process
This section describes SNC-Meister’s process in determining admission. When a new tenant seeks
admission, it provides its desired tail latency SLO (e.g., T99 < 50ms) and a trace of the tenant’s
requests that represents the burstiness and load added by the tenant. Traces consist of a sequence of
request arrival times and sizes, and they can be extracted from historical logs or captured on the fly.
Using traces simplifies the burden of having users specify many complex parameters to describe

hand-tuned QJump baseline.
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Figure 5: Example network with two tenants T1 and T2 flowing through two queues S1 and S2.

their traffic.
To understand the implications when selecting a representative trace, we first need to consider

the differences between short-term burstiness and long-term load variations. Short-term burstiness
denotes sub-second variations of a tenant’s bandwidth requirements. Long-term load variation
denotes trends over the course of hours, such as diurnal patterns. While both types of variation can
affect latency, tail latency is mainly caused by transient network queues due to short-term burstiness.
In fact, in our production traces (to be described in Sec. 5), short-term peaks have a rate that is 2×
to 6× higher than the average rate, which is higher than the difference between day-hour rates to
night-hour rates (less than 2×). This short-term burstiness leads to tail latency SLO violations even
under low load: in our experiments, SLO violations occurred for network utilizations as low as
40%.

Due to the significance of short-term burstiness, SNC-Meister requires only a short trace segment.
This trace segment can be taken from the peak hour of the previous day, or can be periodically
updated throughout the day. In our experiments in Sec. 6, we find that 15min trace segments are
sufficient to characterize a tenant’s load and short-term burstiness.

After having received the tenant trace, SNC-Meister determines admission through the following
three steps. First, SNC-Meister analyzes the tenant’s trace to derive a statistical characterization
understood by the SNC theory (see Sec. 4.3). Second, SNC-Meister assigns a priority to the tenant
based on its SLO where the highest priorities are assigned to tenants with the tightest SLOs. We
opt for this simple prioritization scheme since our experiments with a more complex prioritization
scheme [55] show similar results. Third, SNC-Meister’s SNC algorithm calculates the latency for
each tenant using the SNC theory (see Sec. 4.1)). We then check if each tenant’s predicted latency
is less than its SLO. If the previously admitted tenants and the new tenant all meet their SLOs, then
the new tenant is admitted at its priority level. Otherwise, the tenant is rejected and can only run at
the lowest priority level as best-effort traffic.

SNC-Meister enforces its priorities both in switches and at the end-hosts. To enforce priority
at the end-hosts, SNC-Meister configures the HTB queueing module in the Linux Traffic Control
interface. To enforce priority at the network switch, we use the Differentiated Services Code Point
(DSCP) field (aka TOS IP field) and mark priorities in each packet’s header with the DSMARK
module in the Linux Traffic Control interface. Our switches support 7 levels of priority for each
port; using this functionality simply requires enabling DSCP support in our switches.

3 Stochastic Network Calculus background
At the heart of SNC-Meister is the Stochastic Network Calculus (SNC) calculator. SNC is a
mathematical toolkit for calculating upper bounds on latency at any desired percentile (e.g., 99th
percentile). This is in contrast to DNC which computes an upper bound on the worst-case latency
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(i.e., 100th percentile). In Sec. 3.1, we explain the core concepts of SNC by way of example (Fig. 5).
In Sec. 3.2, we explain the necessary mathematical details needed to implement SNC.

3.1 SNC core concepts
SNC is based on a set of operators that manipulate probabilistic distributions. We refer to these
distributions as arrival processes (A1 and A2 for tenants T1 and T2 in Fig. 5) and service processes
(S1 and S2 in Fig. 5). One of the main results from SNC is a latency operator for taking an arrival
process (e.g., A1), a service process (e.g., S1), and a percentile (e.g., 0.99), and calculating a tail
latency. We write this as Latency(A1, S1, 0.99). The latency operator works for any arrival and
service process. In our Fig. 5 example, A1 does not experience a service process S1 since there is
congestion introduced by A2. Rather, A1 experiences the leftover (aka residual) service process
after accounting for A2. In SNC, this is handled by the leftover operator, 	. In our example, we
get a new service process S ′1 = S1 	 A2. Then we can apply the latency operator with S ′1 (i.e.,
Latency(A1, S

′
1, 0.99)) to get T1’s 99th percentile latency at the first queue.

Moving to the second queue in Fig. 5, we now need arrival processes at the second queue. This
is precisely the output (aka departure) process from the first queue. In SNC, this is handled by
the output operator, �. In our example, we calculate A1’s output process A′1 as A′1 = A1 � S ′1
where S ′1 is the service process that A1 experiences at the first queue as defined above. A2’s output
process A′2 is calculated similarly. We can then calculate T1’s latency at the second queue as
Latency(A′1, S2 	 A′2, 0.99).

To calculate T1’s total latency, we can add up the latencies from each queue (i.e., Latency(A1, S
′
1, 0.99)+

Latency(A′1, S2 	A′2, 0.99)). However, this is not a 99th percentile latency anymore. To get a 99th
percentile overall latency, we need to use higher percentiles for each queue (e.g., 99.5th percentile)
2. There are in fact many options for percentiles at each queue (e.g., 99.5 & 99.5, 99.3 & 99.7, 99.1
& 99.9) for calculating an overall 99th percentile latency. Choosing the option that provides the
best latency bound is time consuming, so SNC provides a convolution operator, ⊗, which avoids
this problem by treating a series of queues as a single queue with a merged service process. In our
example, we can apply the convolution operator as S ′1 ⊗ (S2 	 A′2). We then use this new service
process to calculate the latency as Latency(A1, S

′
1 ⊗ (S2 	 A′2), 0.99).

Lastly, SNC has an aggregation operator, ⊕, which calculates the multiplexed arrival process of
two tenants. For example, the aggregate operator can be used to analyze the multiplexed behavior
of T1 and T2 as A1 ⊕ A2.

The SNC theory provides this set of operators along with proofs of correctness. For a recent
in-depth introduction to the SNC operators, see the recent survey [18]. Unfortunately, however,
SNC has rarely been used to analyze realistic network topologies. For example, almost all prior
work in the SNC theory focuses on simple line networks [9, 16, 22, 33, 6, 10, 5, 18]. It remains
currently an open question how to practically put these operators together to obtain an accurate
latency analysis in complex networks. We will describe in Sec. 4 the challenges we face in bringing
SNC to a typical cloud data center network and the approach taken by SNC-Meister to obtain an
accurate latency analysis.

2This is formally known as the union bound.

7



Purpose ρ(·) σ(·)
Arrival process A for MMPP
with transition matrix Q and
diagonal matrix E(θ) of each
state’s MGF

ρA(θ) = sp(E(θ) Q) σA(θ) = 0

Service process S for network
link with bandwidth R

ρS(θ) = −R σS(θ) = 0

Leftover operator 	 for ser-
vice process S and arrival pro-
cess A

ρS	A(θ) = ρA(θ) + ρS(θ) σS	A(θ) = σA(θ) + σS(θ)

Output operator � for service
process S and arrival process
A

ρA�S(θ) = ρA(θ) σA�S(θ) =
σA(θ) + σS(θ) −
1
θ
log
(
1− eθ(ρA(θ)+ρS(θ))

)
Aggregate operator ⊕ for ar-
rival process A1 and arrival
process A2

ρA1⊕A2(θ) = ρA1(θ) + ρA2(θ) σA1⊕A2(θ) = σA1(θ) +
σA2(θ)

Convolution operator ⊗ for
service process S1 and service
process S2

ρS1⊗S2(θ) =
max{ρS1(θ), ρS2(θ)}

σS1⊗S2(θ) =
σS1(θ) + σS2(θ) −
1
θ
log
(
1− e−θ|ρS1

(θ)−ρS2
(θ)|
)

Tail latency L for percentile p,
arrival process A, and service
process S

L = min
θ

1
θρS(θ)

log
(
(1 − p) ∗

(
1 − exp(θ ∗ (ρA(θ) +

ρS(θ)))
))
− 1

ρS(θ)
(σA(θ) + σS(θ))

Table 1: The SNC operators and equations used by SNC-Meister.

3.2 Mathematics behind SNC
In this section, we expand upon the high level description of the SNC concepts in Sec. 3.1 and
describe the mathematics behind SNC. To begin, we need to represent arrival processes. We write
the arrival process for tenant T1 as A1(m,n), which represents the number of bytes added by T1
between time m and n. As arrival processes are probabilistic in nature, SNC is based on moment
generating functions (MGFs), which are an equivalent representation of distributions. Directly
working with MGFs is unfortunately quite challenging mathematically, so SNC operates on an
upper bound on the MGF, parameterized by two subcomponents ρ(θ) and σ(θ). For example, the
MGF of A1(m,n), written MGFA1(m,n)(θ), is upper bounded by:

MGFA1(m,n)(θ) ≤ eθ(ρA1
(θ)(n−m)+σA1

(θ)) ∀θ > 0

The parameter θ ensures that all moments of the distribution of A1(m,n) are covered. By using this
standardized form, all arrival processes are defined by the two subcomponents ρ(θ) and σ(θ), and
all SNC operators provide equations for these subcomponents (Tbl. 1).

To calculate the ρA1(θ) and σA1(θ) for T1, we need to assume a stochastic process for T1, such
as a Markov Modulated Poisson Process (MMPP). An MMPP is useful for representing time-variant
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(bursty) arrival rates (see Sec. 4.4). For example, a 2-MMPP switches between high-rate phases and
low-rate phases using a Markov process. The MMPP’s transition matrix is given by Q, which for a
2-MMPP has four entries:

Q =

(
phh phl
plh pll

)
where, e.g., phl indicates the probability that after a high-rate phase (h) we next switch to a low-rate
phase (l). The distribution of the arrival rate and request size for each phase is captured in the matrix
E, which is a diagonal matrix of the MGF for each phase:

E(θ) =

(
MGFh(θ) 0

0 MGFl(θ)

)
We can now calculate the ρA1(θ) and σA1(θ) for T1 as:

ρA1(θ) = sp(E(θ) ·Q) and σA1(θ) = 0

where sp(·) is the spectral radius of a matrix. This is proved in SNC, and we list this equation in
Tbl. 1.

Service processes are defined similarly to arrival processes with the same two subcomponents
ρ(θ) and σ(θ). Rather than working with lower bounds on the amount of service provided, SNC
works with an upper bound:

MGFS1(m,n)(−θ) ≤ eθ(ρS1
(θ)(n−m)+σS1

(θ)) ∀θ > 0

where the MGF has an extra negative sign on the θ parameter, which transforms a lower bound into
an upper bound. For lossless networks, the ρS1(θ) and σS1(θ) have a simple form:

ρS1(θ) = −R and σS1(θ) = 0

where R is the bandwidth of the network link.
Lastly, we need to deal with the arrival and service processes generated by the SNC operators

described in Sec. 3.1. Fortunately, SNC has derived and proved equations for ρ(θ) and σ(θ) for
each of the SNC operators, and they can be found in Tbl. 1. Formal definitions of the assumptions
of SNC, of each operator, and of the latency equation can be found in the Appendix A.1.

In summary, the analysis of a network with SNC requires three conception steps: 1) create an
arrival bound for each tenant, 2) calculate the service available for each tenant by chaining together
the equations in Tbl. 1, and 3) calculate the tail latency for each tenant using the latency equation
(last line in Tbl. 1). We will describe in Sec. 4.4 how we represent arrival and service processes in
code, and how we evaluate the latency equation with the θ parameter.

4 Challenges in bringing SNC to practice
As we are the first to implement SNC in practice in a computer system, we face multiple practical
challenges. Our primary contribution in this work is identifying these challenges and demonstrating
how to overcome them.
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Figure 6: Extending Fig. 5’s example with tenants T3 and T4 flowing through queues S3 and S2.

First, SNC is a new theory, and it is currently an open problem how to apply SNC effectively to
a network. SNC theorists are primarily concerned with the theorems and proofs behind the SNC
operators, but haven’t studied how to practically put together the operators to analyze networks.
Sec. 4.1 describes how we analyze networks.

Second, SNC theorists typically assume that all tenants are independent of each other, which
can be overly optimistic. SNC-Meister allows users to specify dependencies between subsets of
tenants. Sec. 4.2 discusses the effect of dependency on latency.

Third, real traffic exhibits bursty behavior, particularly at second/sub-second granularity, and we
need to capture this behavior to properly characterize tail latency. SNC theorists, however, don’t
pay attention to modeling tenant behavior. Instead, they assume that tenant arrival processes have
already been stochastically characterized and focus their attention on providing SNC operators that
operate on these pre-specified distributions. However, to use SNC in practice, we need to figure
out how to build stochastic characterizations that can represent the burstiness exhibited by tenants.
In Sec. 4.3, we identify a reasonable model that is practical to compute using parameters that can
efficiently be extracted from trace data.

Fourth, SNC works with full representations of probabilistic distributions to properly calculate
tail latency. SNC theorists can easily write this down mathematically via equations operating on
distributions, but to actually implement an SNC calculator, we need representations in code. Sec. 4.4
describes our simple symbolic representation and how we work with SNC in code.

4.1 Analyzing networks with SNC-Meister
The biggest challenge we face in bringing SNC to practice is building an algorithm for combining the
SNC operators (described in Sec. 3.1) to analyze networks. Even with the simple example in Fig. 5,
there are multiple ways to analyze the latency for T1. For example, Sec. 3.1 describes how the latency
can be analyzed one queue at a time (i.e., Latency(A1, S

′
1, 0.995) + Latency(A′1, S2 	A′2, 0.995))

as well as through a convolution operator (i.e., Latency(A1, S
′
1 ⊗ (S2 	 A′2), 0.99)). Yet there is

even another approach by first applying the convolution operator on S1 and S2 before accounting
for the congestion from A2 (i.e., Latency(A1, (S1 ⊗ S2) 	 A2, 0.99)). While each approach is
correct as an upper bound on tail latency, they are not equally tight. One of our key findings is that
some approaches can introduce artificial dependencies, which eliminate a lot of SNC’s benefit. For
example, in Latency(A′1, S2	A′2, 0.995), A′1 (= A1� (S1	A2)) and A′2 (= A2� (S1	A1)) are
stochastically dependent because they are related by A1, A2, and S1. Likewise, the convolution
S ′1 ⊗ (S2 	 A′2) has an artificial dependency because S ′1 (= S1 	 A2) and A′2 both are related by
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Figure 7: The tail latency calculated by DNC and multiple SNC methods, SNC convolution [16],
SNC hop-by-hop [5], and SNC-Meister. In this micro-experiment, we vary the number of tenants
connecting from a single client to a single server through two queues.

S1 and A2. In reality, there shouldn’t be any dependencies between A1, A2, S1, and S2, but the
ordering of SNC operators can introduce these artificial dependencies.

In our SNC-Meister SNC algorithm, we identify two key ideas that allow us to eliminate artificial
dependencies.

Key idea 1. When analyzing T1, SNC-Meister performs the convolution operator before the leftover
operator for any tenants sharing the same path as T1. For example, Latency(A1, (S1 ⊗ S2) 	
A2, 0.99).

In our Fig. 5 example, this avoids the artificial dependencies at the second queue. However, this
is not the only source of artificial dependencies. Fig. 6 shows a slightly more complex scenario with
additional traffic from T3 and T4. To calculate T1’s latency, we now need to account for the effect
of T3 and T4 at the second queue S2. The straightforward approach is to apply the output operator
on A3 and A4 to get arrival processes A′3 (= A3 � (S3 	 A4)) and A′4 (= A4 � (S3 	 A3)) at the
second queue. However, this introduces a stochastic dependency between A′3 and A′4 because they
are related by S3, A3, and A4.

Key idea 2. When handling competing traffic from the same source, SNC-Meister applies the
aggregate operator before the output operator. For example, (A3 ⊕ A4)� S3.

This aggregate flow to the second queue now does not have any artificial dependencies. Com-
bining these ideas for our Fig. 6 example, we can calculate the latency of T1 as Latency(A1, (S1 ⊗
(S2 	 ((A3 ⊕ A4)� S3)))	 A2, 0.99). Through these two ideas, SNC-Meister is able to produce
much tighter bounds (see Fig. 7) than the two SNC analysis approaches used by prior SNC lit-
erature. The first prior approach is called SNC convolution and works by first calculating the
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Figure 8: The tail latency calculated by DNC and SNC-Meister as we vary the fraction of tenants that
are dependent on each other. In this micro-experiment, we have seven identical tenants connecting
from a single client to a single server and indicate to SNC-Meister that a fraction of them are
dependent on each other.

left-over service at each queue and then applies the convolution across the resulting leftover ser-
vices [9, 16, 22, 33, 6, 10, 5, 18]. The second prior approach is called SNC hop-by-hop [5] because
it analyzes one queue at a time. Examples and formal definitions of these approaches are given
in Appendix A.3. Fig. 7 shows that the analysis used by SNC-Meister is close to the tail latency
measured in an actual experiment, whereas SNC convolution and SNC hop-by-hop are 2− 4× less
accurate.

A formal description of SNC-Meister’s SNC algorithm and its proof of correctness can be found
in Appendix A.4 and A.5.

4.2 Dependencies between tenants
Since not all tenants are necessarily independent, SNC-Meister also supports users specifying de-
pendencies between tenants. This is useful in scenarios, for example, where multiple tenants are part
of the same load balancing group. Unfortunately, generally assuming tenants are dependent when
applying SNC leads to very conservative latencies, eliminating our benefit over DNC. We resolve
this issue in SNC-Meister by tracking dependency information with arrival and service processes
and only accounting for dependencies when SNC operators encounter dependent arrival/service
processes.

Fig. 8 shows the effect of tenant dependency on latency. In this experiment, we take a fraction
of the tenants and mark them as dependent on each other. As this fraction varies from 0% (i.e., all
independent) to 100% (i.e., all dependent), we see the latency calculated by SNC-Meister increases.
This is expected since it is more likely that a group of dependent tenants will be simultaneously
bursty. Nevertheless, SNC-Meister’s latency is almost always3 under DNC since it always assumes

3SNC-Meister can generate higher latencies than DNC when nearly all tenants are dependent because the SNC
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dependent behavior.

4.3 Modeling tenant burstiness
Properly characterizing tail latency entails representing the burstiness and load that each tenant
contributes. In SNC-Meister, we find that a Markov Modulated Poisson Process (MMPP) is a
flexible and efficient model for burstiness. An MMPP can be viewed as a set of phases with different
arrival rates and a set of transition probabilities between the phases. A phase with high arrival rate
can represent a bursty period, while a phase with low arrival rate represents a non-bursty period.
The MMPP is efficient in that the number of phases can be increased to reflect additional levels of
burstiness.

The MMPP parameters for each tenant are determined from its trace. The traces contain the
arrival times of requests and their sizes, where the size of a request is the number of bytes being
requested. In SNC-Meister, the trace analysis is automated by our Automated Trace Analysis (ATA)
component. The ATA first determines the number of MMPP phases needed to represent the range
of burstiness in the trace. We use an idea similar to [24] where each phase is associated with an
arrival rate and covers a range of arrival rates plus or minus two standard deviations. The ATA then
maps time periods in the trace to MMPP phases and empirically calculates transition probabilities
between the MMPP phases.

While SNC-Meister adapts to the range of burstiness on a per-tenant basis using multiple
MMPP phases, the specific number of phases is not critical. In our experimentation, we find a big
difference going from a single phase (i.e., a standard Poisson Process) to two phases, but less of a
difference with more than two phases. If computation speed is a limiting factor, it is possible to
tune SNC-Meister to compute latency faster using fewer phases.

4.4 Representing SNC in code
The core building blocks in SNC are arrival and service processes. In this section, we’ll demonstrate
how SNC-Meister represents arrival and service processes as objects in code. We’ll first show how
to put together the SNC operators by walking through the example in Fig. 5 and then delve into
details on how SNC operators are represented internally.

To analyze the example in Fig. 5, we start with two arrival processes for A1 and A2 and two
service processes for S1 and S2:
ArrivalProcess* A1 = new MMPP(traceT1);
ArrivalProcess* A2 = new MMPP(traceT2);
ServiceProcess* S1 = new NetworkLink(bandwidth);
ServiceProcess* S2 = new NetworkLink(bandwidth);

We now proceed to calculate the latency of T1, mathematically written Latency(A1, (S1 ⊗ S2)	
A2, 0.99). First, we’ll need to create a service process for the convolution of S1 and S2 (i.e., S1⊗S2),
which is yet another service process (named S1x2):
ServiceProcess* S1x2 = new Convolution(S1, S2);

equations are not tight upper bounds, whereas our DNC analysis is tight.
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Figure 9: The ratio between maximum and mean request rate per second is high for many of our
traces, which indicates high burstiness.

To get the final service process for A1, we need to take S1x2 and calculate the leftover service
process after accounting for A2 (i.e., (S1 ⊗ S2)	 A2):
ServiceProcess* S1x2_A2 = new Leftover(S1x2, A2);

Finally, we calculate the 99th percentile latency of T1 by:
double L_A1 = calcLatency(A1, S1x2_A2, 0.99);

SNC-Meister is designed to allow the SNC operators to compose any algebraic expression
(e.g., (S1 ⊗ S2) 	 A2 is new Leftover(new Convolution(S1, S2), A2)). This is
accomplished by having all of our operators as subclasses of the ArrivalProcess and ServiceProcess
base classes, which have a standardized representation using the ρ(θ) and σ(θ) form (see Sec. 3.2).
To symbolically represent these ρ(θ) and σ(θ) functions in code, the base classes define pure virtual
functions for rho and sigma that every operator overrides with the equations in Tbl. 1.

There is one more detail we need to take care of. The calcLatency function from above has
an extra parameter called θ that we haven’t mentioned. Each value of the θ parameter produces
an upper bound on the latency percentile [18]. We can thus improve the accuracy of the latency
prediction by optimizing θ to get the minimal upper bound on the latency. This search over θ
values can only be executed after combining all SNC functions, so we add a symbolic θ (theta)
parameter to the internal representation of all SNC functions, e.g., calcLatency(A, S, 0.99,
theta). After combining all SNC functions, SNC-Meister searches for the optimal θ starting
at a coarse granularity (e.g., θ = 1, 2, 3, ..., 10) and then progressively narrowing down to finer
granularities (e.g., θ = 2.1, 2.2, ..., 2.9).

5 Experimental setup
To demonstrate the effectiveness of SNC-Meister in a realistic environment, we evaluate our
implementation of SNC-Meister and of three state-of-the-art systems in a physical testbed running
memcached as an example application. This section describes the state-of-the-art systems (Sec. 5.1),
our physical testbed (Sec. 5.2), our traces (Sec. 5.3), and the procedure of each experiment (Sec. 5.4).
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5.1 State-of-the-art Admission Control Systems
The goal of an admission control system is to ensure that all tenants meet their request latency
SLO, where the request latency includes both network queueing and end-host queueing. As all
three state-of-the-art systems rely on some form of rate limiting, end-host queueing delay can be
significant and has to be taken into account. Unfortunately, two of the three systems (Silo and
QJump) do not account for end-host queueing, which is left to the tenant since the tenant is also
responsible for selecting rate limits in these systems. As this is not practical for experimentation,
we create enhanced versions (Silo++ and QJump++) that both 1) compute the effect on end-host
queueing based on the rate limits and 2) automatically select rate limit parameters to attempt to
maximize the number of admitted tenants.

Silo [27]: Silo offers tenants a worst-case packet latency guarantee under user-specified rate
limits. Admission control is performed with DNC by checking that no switch queue in the network
overflows. The maximum packet latency is calculated by adding up all maximum queue sizes along
a packet’s path.

A limitation with Silo is that the non-trivial problem of choosing a rate limit (i.e., bandwidth
and maximum burst size) is left to the user. In the Silo experiments, the burst size is fixed to 1.5KB,
but the bandwidth is chosen by trial and error. A small bandwidth (e.g., the mean rate of a tenant)
entails a high end-system queueing delay due to being slowed down by the rate limiting. Because
Silo focuses on packet latency and does not incorporate the end-system queueing delay into its
admission decisions, selecting too small of a bandwidth leads to SLO violations for the total request
latency. On the other hand, selecting too high a bandwidth causes very few tenants to be admitted.

Silo++: We extend Silo with an algorithm to automatically choose the minimal bandwidth so
that each tenant’s request latency SLO can be guaranteed. This is achieved by profiling each tenant’s
traffic requirements using the DNC effective bandwidth theory [31]. We then model the end-system
queueing delay using DNC, add in Silo’s packet latency guarantee, and check whether the tenant
can meet its SLO.

QJump [23]: QJump offers multiple classes of service with different latency-throughput trade-
offs. The first class receives the highest priority along with a worst-case latency guarantee based on
a variant of DNC [37, 38], but is aggressively rate limited. For the other classes, tenants are allowed
to send at higher rates, but at lower priorities and without any latency guarantee. There are two
limitations in employing the original QJump proposal: 1) tenants do not know which class to pick
because the respective latency guarantee is unknown in advance, and 2) tenants do not know the
end-system queueing delay caused by the rate limiting of each class.

QJump++: We extend QJump with an algorithm to automatically assign tenants to a (near)
optimal class. The algorithm iteratively increases the QJump level for tenants that do not meet their
SLOs. To check if a tenant meets its SLO, we solve limitation 1 by calculating the latency guarantee
offered by each class using DNC theory. We solve limitation 2 by automatically profiling a tenant
trace and inferring the end-system delay using DNC theory.

Additionally, we find that instantiating the QJump classes using the QJump equation (Eq. (4)
in [23]) severely limits the number of admitted tenants (5x fewer on average). By fixing a set
of throughput values independent of the number of tenants, we significantly boost the number of
admitted tenants for the QJump system.
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PriorityMeister (PM) [55]: PriorityMeister uses DNC to offer each tenant a worst-case re-
quest latency guarantee based on rate limits that are automatically derived from a tenant’s trace.
PriorityMeister automatically configures tenant priorities to meet latency SLOs across both network
and storage, and in this work, we tailor it to focus only on network latency.

5.2 Physical testbed
Our physical testbed comprises an otherwise idle, 18 node cluster of Dell PowerEdge 710 servers,
configured with two Intel Xeon E5520 processors and 16GB of DRAM. We use the setup shown in
Fig. 4. Six servers are dedicated as memcached servers running the most recent version (1.4.25)
of memcached. Twelve servers run a set of tenant VM’s using the standard kvm package (qemu-
kvm-1.0) to provide virtualization support. Each tenant VM runs 64-bit Ubuntu 13.10 and replays a
request trace using libmemcached. Each physical node runs 64-bit Ubuntu 12.04 and we use the
distribution’s default Linux kernel without modifications. The top-of-rack switch connecting the
nodes is a Dell PowerConnect 6248 switch, providing 48 1Gbps ports and 2 10Gbps uplinks, with
DSCP support for 7 levels of priority.

5.3 2015 production traces
Our evaluation uses 180 recent traces captured in 2015 from the datacenter of a large Internet
company. The traces capture cache lookup requests issued by a diverse set of Internet applications
(e.g., social networks, e-commerce, web, etc.). Each trace contains a list of anonymized requests
parameterized by the arrival time and object size being requested, ranging from 1 Byte to 256 KBytes
with a mean of 28 KBytes. Each trace is 30 minutes long and contains 100K to 600K requests,
with a mean of 320K requests. We find that these traces exhibit significant short-term burstiness,
and Fig. 9 shows that the CDF for the ratio of peak to mean request rates ranges from 2 to 6.
We also perform standard statistical tests [36, 1] to verify the stationarity and mutual stochastic
independence of our traces as required by SNC.

5.4 Experimental procedure
In our experiments, we run up to 180 tenants that replay memcached requests from each tenant’s
associated trace. For each experiment, tenants arrive to the system one by one in a random order
with a 99.9% SLO drawn uniformly randomly from {10ms, 20ms, 50ms, 100ms}. Having different
orders and SLOs for tenants leads to very different experiments where distinct subsets of the 180
tenants are being admitted in each experiment. When a tenant arrives, the admission system makes
its decision based on the tenant’s SLO and the first half of the tenant’s trace (15 mins). After
the admission decisions for all 180 tenants have been made, each tenant starts a dedicated VM
(Sec. 5.2), which replays the second half of its request trace (15 mins). All tenants replay their
traces in an open loop fashion, which properly captures the end-to-end latency and the effects of
end-system queueing [43]. All admission systems meet the tenant SLOs, as verified by monitoring
the total memcached request latency for every request (i.e., completion time - arrival time in the
trace) and checking that the 99.9% latency across 3min time intervals for each tenant is less than
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Figure 10: Comparison of three state-of-the-art admission control systems to SNC-Meister for 100
randomized experiments. In each experiment, 180 tenants, each submitting hundreds of thousands of
requests, arrive in random order and seek a 99.9% SLO randomly drawn from {10ms, 20ms, 50ms,
100ms}. The left box plot shows that across the 100 experiments, all percentiles on the number of
tenants admitted are higher for SNC-Meister than for any other system. The right plot shows that
SNC-Meister achieves a similar improvement with respect to the volume of bytes transferred in
each experiment.

its SLO. Thus, we evaluate the performance of the admission control systems under the following
two metrics: 1) the number of tenants admitted by each system, and 2) the total volume of bytes
transmitted by admitted tenants. Metric 1 indicates how many tenants with tail latency SLOs can be
concurrently supported by each system. Metric 2 prevents a system from scoring high on metric 1
by admitting only small tenants, which could happen because the tenants have very different request
volumes (Sec. 5.3).

6 Results
In this section, we experimentally evaluate the performance and practicality of SNC-Meister.
Sec. 6.1 shows that SNC-Meister is able to support 75% more tail latency SLO tenants in the median
than state-of-the-art systems across a large range of experiments. SNC-Meister also transfers
88% more bytes in the median, which shows that SNC-Meister supports a much higher network
utilization. Sec. 6.2 shows that SNC-Meister’s median performance is within 7% of an empirical
offline solution. Sec. 6.3 demonstrates that SNC-Meister is able to support low-bandwidth tenants
with very tight SLOs alongside high-bandwidth tenants. Sec. 6.4 investigates the sensitivity of the
SNC latency prediction to the SLO percentile. Sec. 6.5 evaluates the scalability of SNC-Meister’s
SNC computation and shows that it scales linearly with the number of tenants.

6.1 SNC-Meister outperforms the state-of-the-art
This section compares SNC-Meister with enhanced versions of the state-of-the-art tail latency SLO
systems (described in Sec.5.1). We run 100 experiments each with 180 tenants arriving in a random
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Figure 11: Comparison between state-of-the-art systems, SNC-Meister, and an empirical optimum
(OPT) for 10 of the 100 experiments in Fig. 10. The left box plot shows that the number of tenants
admitted by SNC-Meister is close to OPT, whereas the other systems admit less than half of OPT.
The right plot shows that SNC-Meister is also close to OPT with respect to the volume of bytes
transferred in each experiment.

order with random SLOs (described in Sec. 5.4). All four systems, including SNC-Meister, meet
the latency SLOs for all tenants, but differ in how many tenants each system admits.

Fig. 10 shows a box plot of the number of admitted tenants and a box plot of the volume of
transferred bytes. We see that the three state-of-the-art systems (Silo++, QJump++, PriorityMeister)
perform roughly the same as they draw upon the same underlying DNC mathematics. SNC-
Meister achieves a significant improvement over all three systems across all percentiles of admitted
tenants and bytes transferred. At a more detailed look, Silo++ admits more than QJump++ and
PriorityMeister, which is caused by the effective bandwidth enhancement of Silo++ (see Sec. 5.1).
Nevertheless, SNC-Meister outperforms Silo++ by a large margin: of the 100 experiments, the
10-percentile of SNC-Meister is above the 75-percentile of Silo++ for both the number of admitted
tenants and bytes transferred. The fact that SNC-Meister performs well for both metrics shows that
SNC-Meister’s improvement is not just due to admitting more small tenants, but actually allowing
higher utilization.

6.2 Comparison to empirical optimum
To evaluate how well SNC-Meister compares to an empirical optimum, we determine the maximum
number of tenants that can be admitted without SLO violations (labeled OPT) via trial and error
experiments. In order to make finding OPT feasible, OPT only considers tenants in the order that
they arrive and determines the maximum number of tenants we can admit until introducing SLO
violations. Determining OPT via trial and error is time consuming and hence we only do this for a
random subset4 of 10 out the 100 experiments from Sec. 6.1.

Fig. 11 compares the state-of-the-art, SNC-Meister and OPT. We find that SNC-Meister is close
to OPT across all percentiles of admitted tenants and bytes transferred. Specifically, SNC-Meister is

4Note that the results from the 10 experiments in Fig. 11 are representative because the state-of-the-art systems and
SNC-Meister perform similarly to the 100 experiments in Fig. 10.
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Figure 12: Number of admitted tenants (left) and bytes requested by admitted tenants (right) for
two groups of tenants: a set of small-request low-latency (4ms) tenants and a set of large-request
higher-latency (50ms) tenants. SNC-Meister again admits significantly more tenants and more than
three times as many bytes as any of the state-of-the-art systems.

within 7% of OPT in the median, whereas the state-of-the-art admission systems achieve only half
of OPT. Thus SNC-Meister captures most of the statistical multiplexing benefit without needing to
run trial and error experiments.

6.3 Small-request tenants
While we have focused on request latency, many related works focus on packet latency and the
effects on small requests (i.e., single packet-sized requests).

As SNC-Meister supports prioritization (Sec. 2), we demonstrate that SNC-Meister can also
support tenants with small requests and very tight SLOs. Fig. 12 shows the results from an
experiment with a set of eleven tenants with single packet requests and tight SLOs (4ms) along
with twenty-one other tenants with larger requests and higher SLOs (50ms). Like before, we see
that SNC-Meister is able to admit many more tenants than the state-of-the-art systems. Here,
PriorityMeister does better than Silo++ and QJump++ since it does not need to reserve a lot of
bandwidth for the tight SLOs. Nevertheless, all three of these state-of-the-art systems suffer from
the drawbacks of DNC and are unable to admit many of the large-request tenants once they’ve
admitted the small-request tenants with tight SLOs. This can particularly be seen in the graph of the
number of bytes transferred by admitted tenants. SNC-Meister tenants send a lot more traffic since
SNC-Meister admits both the small-request tenants as well as many more large-request tenants.
SNC-Meister is able to do so since, probabilistically, our small-request tenants don’t have a large
effect on the large-request tenants. The large-request tenants end up with a lower priority due to
their higher SLOs and thus do not affect the small-request tenants.

6.4 Tail latency percentiles
One might wonder how SNC-Meister performs for latency SLOs other than the 99.9th percentile.
We address this question by comparing SNC-Meister’s latency prediction to the DNC latency
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Figure 13: Comparison between the latency predictions of SNC-Meister and DNC for different
SLO percentiles. Specifically, the x-axis denotes the number of 9s, where three 9s represents the
99.9th percentile. As expected, the latency using SNC increases with the SLO percentile, but is still
superior to DNC even with thirty 9s.

prediction used by state-of-the-art systems. Lower and more accurate latency predictions allow
SNC-Meister to admit more tenants than DNC. We consider how SNC-Meister’s latency prediction
varies with the SLO percentile.

Fig. 13 shows the latency prediction of SNC-Meister and DNC vs. the number of 9s in the SLO
percentile, where three 9s represents the 99.9th percentile. SNC-Meister’s latency increases with
the SLO percentile, as expected, and only exceeds the DNC latency with thirty-three 9s. DNC’s
worst-case analysis is conservative in accounting for rare events that probabilistically should never
occur. SNC gains most of its advantage by working with lower SLO percentiles that are unaffected
by these rare, probabilistically improbable events.

6.5 Scalability of computation
In this section, we study the scalability of SNC-Meister’s computation. In Fig. 14, we show the
runtime for computing latency bounds as a function of the number of tenants. We see that SNC-
Meister’s runtime scales linearly with the number of tenants, which is ideal since each tenant’s
latency is calculated one by one. This is very promising, given that the computation is currently
single threaded, and the analysis of each of the tenants can easily be parallelized.

7 Related work
SNC-Meister addresses tail latency SLOs, which is an active research area with a rich literature.
The related work can be divided into four major lines of work, and is summarized in Tbl. 2. First,
there is a body of work that ensures that tail latency SLOs are met using worst-case latency bounds;
unfortunately these works are unable to achieve high degrees of multi-tenancy. To overcome these
limitations, theoreticians have developed a second line of work that provides probabilistic tail latency
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Figure 14: SNC-Meister’s runtime scales linearly with the number of tenants.

bounds via Stochastic Network Calculus (SNC); unfortunately this work is entirely theoretical and
has never been implemented in any computer system. Third, there is a body of work that proposes
techniques for significantly reducing the tail latency; unfortunately, ensuring that request latency
SLOs are met is not within the scope of that work. Fourth, there are some recent systems that try to
meet SLOs based on measured latency; unfortunately, they aren’t suited for admission control and
don’t cope well with bursty tenants.
Guaranteed Latency Systems

There are three recent state-of-the-art systems that provide SLO guarantees: QJump [23],
Silo [27], and PriorityMeister [55], described in detail in Sec. 5.1. All three systems, however, are
designed for worst-case latency guarantees. For tenants seeking a lower percentile tail guarantee
(e.g., a guarantee on the 99.9th percentile of latency), these systems are overly conservative in their
admission decisions: they admit less than half of the number of tenants as compared to SNC-Meister
(see Sec. 6).

Besides these recent proposals, there has been a long history of DNC-based worst-case latency
admission control algorithms in the context of Internet QoS [15, 34, 30, 46, 51]. These older
proposals are not tailored to datacenter applications, and also suffer from the conservativeness of
worst-case latency guarantees.
Stochastic Network Calculus (SNC)

The modern SNC theory evolved as an alternative to the DNC theory to capture statistical
multiplexing gains and enable accurate guarantees for any latency percentile [18, 40, 5, 10, 33, 6,
22, 16, 9, 19, 8, 29, 7, 12, 41, 44, 53]. While the SNC community has made significant progress
in building a theoretical framework for the analysis of latency tails, we are not aware of any
implementations that use SNC in computer systems.

Almost all prior SNC analysis focuses on simple line network topologies [9, 16, 22, 33, 6, 10,
5, 18], in which the classical SNC convolution approach does not introduce artificial stochastic
dependencies. This might be the reason that the problem of artificial dependencies, which is a
major challenge in data center topologies, has rarely been considered before. In fact, only one
work [5] points out the artifical-dependency problem, but does not propose a solution. The problem
of user-specified dependencies and how to efficiently aggregate them has also not been considered
in prior SNC literature (see Appendix A.3 for details).
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D2TCP [47] no high yes no n/acongestion

control DCTCP [2] no high yes no n/a
other [13, 48, 26, 52,

45, 54]
no high yes no n/a

Table 2: Comparison of the features and deployability of prior approaches.

While there are no implementations of SNC in computer systems, there are a few works that
use SNC in the modeling of critical infrastructures such as avionic networks [42] and the power
grid [50, 21], which supports the robustness of SNC theory.
Reducing tail latencies

There are many systems that demonstrate how to significantly reduce tail latency. Datacenter
schedulers, like pHost [20], Fastpass [39], and pFabric [4], improve the tail latency by bringing
near-optimal schedulers (like earliest-deadline first) to the datacenter. These approaches can also
shift queueing from within the network to the end-hosts, which greatly reduces tail packet latency
and the latency of short messages. These approaches, however, are not designed to ensure tail
latency SLO compliance.

Latency-aware congestion control algorithms, like D2TCP [47] and DCTCP [2], aggressively
scale down sending rates and prioritize flows with deadlines. Unfortunately, these approaches can
only react to congestion, which can lead to late decisions in face of bursty traffic [4, 27]. HULL [3]
is an extension of DCTCP that keeps tail latencies low by controlling the network utilization.
Unfortunately, recent experiments show that this does not prevent latency SLO violations [23].

Other techniques for reducing tail latency include issuing redundant requests [13, 48, 26],
latency-adaptive machine selection [52, 45], and latency-adaptive load balancing [54]. All these
proposals are orthogonal to our work: these techniques can significantly reduce the tail latency, but
cannot give guarantees on the tail latency.
Measurement-based approaches

Several recent works measure the latency and adapt the system to try to meet tail latency
SLOs [49, 32]. Unfortunately, these approaches aren’t suited for admission control where measure-
ments cannot be made dynamically, and prior work has shown that reactive approaches struggle
with bursty tenants and often do not meet their SLOs [55].

The recent Cerebro [28] work uses measurements to characterize the latency of requests com-
posed of multiple sub-requests. Unlike SNC-Meister, Cerebro is not designed to account for the
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interaction between multiple tenants, which is a primary benefit of SNC.

8 Conclusion and discussion
SNC-Meister is a new system for meeting tail request latency SLOs while achieving much higher
multi-tenancy than the state-of-the-art. In experiments with production traces, on a physical
implementation testbed, we show that SNC-Meister can admit two to three times as many tenants
as the state-of-the-art while meeting tail latency SLOs. SNC-Meister draws its power from being
the first computer system to apply a new probabilistic theory called Stochastic Network Calculus
(SNC) to calculate tail latencies, while prior systems used the worst-case Deterministic Network
Calculus (DNC) theory.

As SNC is a very new theory, there are many challenges in bringing it to practice, and there is
much room for further research. One challenge we identify is the important role of the order in
which SNC’s operators are applied – a fundamental problem that was not previously considered
in SNC literature. Our novel algorithm for analyzing networks with SNC makes a significant step
forward in making SNC a practical tool. We also add support in SNC-Meister for dependencies
between subsets of tenants, which solves a practical issue that is generally ignored in SNC theory.
Nevertheless, it is still an open question on how to better apply SNC techniques to get tighter
bounds.

While this work focuses on the admission control problem, the ideas behind SNC-Meister and
SNC are applicable to many applications beyond admission control. One such example is the
datacenter provisioning problem. By being able to analyze tenant behavior and compute tail latency,
SNC-Meister could be extended to deciding when (and how many) more resources are required for
meeting tail latency SLOs. Similarly, these techniques could apply to tenant placement problems:
SNC could be used to identify bottlenecks and make placement decisions in a tail latency aware
fashion. We thus believe that the SNC theory can develop into a practical tool for working with tail
latency. This first implementation of SNC, in SNC-Meister, is a first, but significant, step in this
direction.
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A SNC-Meister Analysis Algorithm and Correctness Proof
This section gives a detailed explanation of SNC-Meister’s analysis technique and the corresponding
proof of correctness. In order to state this proof, we first introduce basic SNC definitions and
assumptions (Sec. A.1) and the SNC operators (Sec. A.2). We then give a detailed example
explaining prior approaches to SNC network analysis and our approach in SNC-Meister (Sec. A.3).
Finally, we describe the SNC-Meister analysis algorithm (Sec. A.4) and state the corresponding
correctness proofs (Sec. A.5).

Secs. A.2 and A.3 describe material that is already known to the SNC community. Sects. A.4
and A.5 and parts of Sect. A.3 describe material that forms new contributions. These are new
techniques that SNC-Meister develops to extend SNC both with respect to making it practical for
real systems and also with respect to greatly improving the accuracy of latency bounds derived in
SNC.

A.1 Basic SNC assumptions and definitions
Our SNC model is based on the “ρ(θ),σ(θ)” notation developed by Chang [8] and the moment
generating function framework by Fidler [16]. Note that we use the common discrete-time form,
where the time step size is small enough to capture continuous-time effects. An excellent in-depth
introduction of the discrete-time SNC building blocks and SNC operators can be found in a recent
survey [18].

SNC is based on four definitions (the arrival process, the MGF-arrival bound, the service process,
and the MGF-service bound), which are modified via the SNC operators (Sec. A.2).

We first formally define the arrival process, which captures the total work arriving from a tenant
in any time interval.

Definition 1 (Arrival process). Let ai i ≥ 1 denote the work increments of a tenant. The cumulative
work received between time m and n,

A(m,n) :=
n∑
i=1

ai −
m∑
i=1

ai

is called arrival process of this tenant.

Using this definition, we can formulate an upper bound on the distribution of the arrival process,
using its MGF. Recall that the moment generating function (MGF) of a random variable X is
defined as E[eθX ].

Definition 2 (MGF-arrival bound). Let A(m,n) denote the arrival process of a tenant. Then, this
tenant has the MGF-arrival bound ρA(θ), σA(θ), if the moment-generating function of A exists and
is bounded

E[eθA(m,n)] ≤ eθ((n−m)·ρA(θ)+σA(θ)) for all m ≤ n ∈ N and θ > 0 .
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Note that the MGF-arrival bound captures both the arrival instants (time stamps) and each
arrival’s work requirement (the request size), and thus upper bounds the total work (in bytes)
arriving in an interval. A typical MGF-arrival bound can be found in Sec. 3.2 in the form of the
Markov-modulated process.

Having bounded a tenant’s arrivals, we next formalize the service model. We first formally
define the service process assumption, which formalizes the relation between queue departures
and the service process: if there are waiting arrivals, then the minimal number of finished requests
(departures) is given by the service process. Note that the service process assumption is also known
as the dynamic server assumption in the SNC literature [18]. We use D(m,n) to describe the
departures (the output in bytes) from a queue between time m and n, see [17] for more details about
this definition.

Definition 3 (Service process (dynamic server)). Let S(m,n) describe the total work processed
by a queue between time m and n, and let D(m,n) denote the queue’s departures. S is called a
service process with departures D(m,n), if S is positive and increasing in n and if for any tenant
with arrival process A(m,n) it holds that

D(0, n) ≥ min
0≤k≤n

{A(0, k) + S(k, n)}

Note that service process assumption is fundamental for the correctness of SNC calculations
and checking this assumption is a key step in the correctness proofs in Sec. A.5. Similar to the
arrival process definition, S(m,n) is measured in bytes.

Using the service process definition, we can formulate an upper bound on the distribution of the
service process, using its MGF.

Definition 4 (MGF-service bound). Let S be a service process. Then, S has the MGF-service
bound ρS(θ), σS(θ), if the moment-generating function of S exists and is bounded

E[e−θS(m,n)] ≤ eθ((n−m)·ρS(θ)+σS(θ)) for all m ≤ n ∈ N and θ > 0 .

Note that the negative θ in the bound on the MGF actually makes this a lower bound on the
service (the rate ρS(θ) is also negative).

A.2 Formal definition of the SNC operators
The concepts behind the SNC operators are described in Sec. 3. We recall that there are five SNC
operators: the latency operator (Latency), the left-over operator (	), the output operator (�), the
convolution operator (⊗), and the aggregation operator (⊕). While Tbl. 1 gives an overview over the
most commonly used form of the operators, this section states the precise mathematical definition
and assumptions and gives pointers to respective correctness proofs in the literature.

We start with the SNC latency bound. Recall that the SNC latency bound relies on a bound on a
tenant’s arrivals and the corresponding service process.

Theorem 1 (Latency Operator [16, 5]). Let A be an arrival process and let S be a service process.
Assume that A has MGF-arrival bound ρA(θ), σA(θ), S has MGF-service bound ρS(θ), σS(θ), and
that (−ρS(θ)) > ρA(θ).
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dependent case: An upper bound on the tail latency L as a function of the percentile p is given by

L(p) ≤min
θ>0

{ 1

θρS(y θ)
log
(
(1− p) ·

(
1− eθ·(ρA(x θ)+ρS(y θ))

))
− 1

ρS(y θ)
(σA(x θ) + σS(y θ))

}
,

for any x, y ∈ (1,∞] with 1
x
+ 1

y
= 1 and for any θ > 0.

independent case: If,A and S are stochastically independent, then the tail latency bound simplifies
to

L(p) ≤min
θ>0

{ 1

θρS(θ)
log
(
(1− p) ·

(
1− eθ·(ρA(θ)+ρS(θ))

))
− 1

ρS(θ)
(σA(θ) + σS(θ))

}
,

for any θ > 0.

Note that the assumption (−ρS(θ)) > ρA(θ) is essentially a stability condition, as the time-
dependent ρA component of the arrival process has to be lower than the time-dependent ρS com-
ponent of the service process. Furthermore, note that the tail latency bound is valid for any fixed
θ > 0, and thus we can minimize this upper bound on the latency prediction by searching across θ’s
parameter range. This is done automatically by SNC-Meister as explained in Sec. 4.4.

Finally, note that the dependent case has additional parameters (x and y), besides θ. The
latency bound is valid for any x and y (fulfilling x, y ∈ (1,∞] with 1

x
+ 1

y
= 1), which requires an

additional search for the minimal parameters. Additionally, we remark that the dependent case leads
to significantly higher latency bounds because there is less multiplexing benefit. Mathematically,
the lack of independence means that the dependent-case form relies on the Hoelder bound, which is
“costly” and leads to a much higher latency prediction [16]. Sec. A.3 explains this further.

The next operator characterizes the left-over service for a tenant that shares a queue with a
higher-or-equal priority tenant.

Theorem 2 (Left-Over Operator [16, 5]). Assume that two tenants share a queue with service
process S, for which the first tenant has higher or equal priority than the second. The tenant’s
arrival processes are A1 and A2, respectively. Then, the service offered by the queue to the second
tenant is the service process S 	 A1.

Assume that A1 has MGF-arrival bound ρA1(θ), σA1(θ), and that S has MGF-service bound
ρS(θ), σS(θ).
dependent case: The service process S 	 A1 has MGF-service bound ρS	A1 , σS	A1 with

ρS	A1 = ρA1(x θ) + ρS(y θ)

σS	A1 = σA1(x θ) + σS(y θ) ,

for any x, y ∈ (1,∞] with 1
x
+ 1

y
= 1 and for any θ > 0.

independent case: If, A1 and S are stochastically independent, then the MGF-service bound
simplifies to

ρS	A1 = ρA1(θ) + ρS(θ)

σS	A1 = σA1(θ) + σS(θ) ,

for any θ > 0.
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Note that if the queue is shared between many tenants, this theorem can be repeatedly applied
because the resulting S 	 A1 again fulfills the assumption of the theorem.

We also remark, that Theorem 2 is very conservative for the case when the two tenants have
the same priority. For specific cases of scheduling policies, like FIFO scheduling, there are more
accurate analysis techniques in the literature [11]. However, since switching fabrics do not strictly
follow FIFO in practice, our analysis does not rely on assuming a specific scheduling policy (such
as FIFO).

The next operator is the output operator, which is used to calculate a bound on the departures
from a queue, which can then form the input (arrival process) to another queue in a network.

Theorem 3 (Output Operator [16, 5]). A tenant with arrival process A traverses a queue with
service process S. Assume thatA has MGF-arrival bound ρA(θ), σA(θ) and that S has MGF-service
bound ρS(θ), σS(θ).
dependent case: The departure processA�S (“output”) has the MGF-arrival bound ρA�S(θ), σA�S(θ)

given by

ρA�S(θ) = ρA(x θ)

σA�S(θ) = σA(x θ) + σS(y θ)−
1

θ
log
(
1− eθ(ρA(x θ)+ρS(y θ))

)
.

for any x, y ∈ (1,∞] with 1
x
+ 1

y
= 1 and for any θ > 0.

independent case: If A and S are stochastically independent, then the MGF-service bound simpli-
fies to

ρA�S(θ) = ρA(θ)

σA�S(θ) = σA(θ) + σS(θ)−
1

θ
log
(
1− eθ(ρA(θ)+ρS(θ))

)
,

for any θ > 0.

The next operator is the convolution operator, which is used to “merge” two (or more) queues in
sequence into a single mathematical representation.

Theorem 4 (Convolution Operator [16]). Let S and T be two service processes, which have MGF-
service bounds ρS(θ), σS(θ) and ρT (θ), σT (θ), respectively. If ρS(θ) 6= ρT (θ), this network can be
replaced by the service process S ⊗ T .
dependent case: The MGF-service bound of S ⊗ T is given by σS⊗T , ρS⊗T with

ρS⊗T (θ) = max {ρS(x θ), ρT (y θ)}

σS⊗T (θ) = σS(x θ) + σT (y θ)−
1

θ
log
(
1− e−θ|ρS(x θ)−ρT (y θ)|) ,

for any x, y ∈ (1,∞] with 1
x
+ 1

y
= 1 and for any θ > 0.
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independent case: If, S and T are stochastically independent, then the MGF-service bound sim-
plifies to

ρS⊗T (θ) = max {ρS(θ), ρT (θ)}

σS⊗T (θ) = σS(θ) + σT (θ)−
1

θ
log
(
1− e−θ|ρS(θ)−ρT (θ)|) ,

for any θ > 0.

The idea behind the convolution theorem is that it can be repeatedly applied until each tenant’s
arrival process in a network traverses a single (convolution-type) service process [9, 16].

Note that the case ρS(θ) = ρT (θ) is not covered by this theorem. The simplest way around this
problem is to assume that one of the server is slightly slower than the other (e.g., scaling ρS(θ) by
0.99), which makes little difference numerically and allows us to always use this theorem.

The final SNC operator is used to merge two arrival processes into one, which is called aggrega-
tion.

Theorem 5 (Aggregation Operator). Assume two tenants with arrival processes A1 and A2, respec-
tively. Assume that A1 has MGF-arrival bound ρA1(θ), σA1(θ) and that A2 has MGF-arrival bound
ρA2(θ), σA2(θ)
dependent case: The aggregated arrival process A1⊕A2 has MGF-arrival bound σA1⊕A2 , ρA1⊕A2

with

ρA1⊕A2(θ) = ρA1(x θ) + ρA2(y θ)σA1⊕A2(θ) = σA1(x θ) + σA2(y θ)

for any x, y ∈ (1,∞] with 1
x
+ 1

y
= 1 and for any θ > 0.

independent case: If A1 and A2 are stochastically independent, then the MGF-service bound
simplifies to

ρA1⊕A2(θ) = ρA1(θ) + ρA2(θ)σA1⊕A2(θ) = σA1(θ) + σA2(θ)

for any θ > 0.

This concludes the formal description of the five SNC operators.

A.3 Example: SNC convolution, hop-by-hop, and SNC-Meister analysis
Having formally introduced the SNC operators, we are now ready to give an example for the hop-by-
hop analysis technique, convolution analysis technique, and SNC-Meister’s analysis technique. All
three techniques are based on the five SNC operators but differ in the order in which the operators
are applied.

We consider a simple network, which showcases the challenge of working with stochastic
dependencies. After discussing the simple network, we consider how the dependency problem
compounds as more tenants are added to the network.

Recall the example network analyzed in Sec. 4.1, repeated here as Fig. 15. There are four
tenants, with arrival processes AT1 , AT2 , AT3 , and AT4 . The four tenants traverse three queues, with
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Figure 15: Example network with four tenants T1 to T4 flowing through three queues S1 to S3.

service processes S1, S2, and S3. For the sake of simplicity, we assume that T1 has a strictly lower
priority than T2 to T4 on all queues and that all tenants are stochastically independent to start with.
Sec. A.4 shows how to work with user-specified tenant dependencies. We furthermore require that
all tenants have MGF-arrival bounds and all service processes have MGF-service bounds.

Recall that, besides the latency operator, there are five SNC operators, which modify arrival
processes and service process: the left-over operator (	), the output operator (�), the convolution
operator (⊗), and the aggregation operator (⊕).

All network analysis approach have to first consider the departures from tenants T3 and T4 at
S3. A straightforward application of the left-over and output operators at S3, would calculate their
departures from S3 as follows

A′T3 = AT3 � (S3 	 AT4), and
A′T4 = AT4 � (S3 	 AT3) ,respectively.

Then, when analyzing S2 and subtracting A′T3 and A′T4 from S2 (to calculate the service available to
T ), we would run into an artificial stochastic dependency (becauseA′T3 andA′T4 are not independent).
In this example, it is easy to avoid this artificial dependency by aggregating AT3 and AT4 right
from the start. This aggregation trick is a key part of SNC-Meister’s analysis technique and will be
discussed in more detail later.

We next state the explicit operator sequences to analyze the whole network based on the
hop-by-bop approach, convolution approach, and SNC-Meister’s approach.

The first approach is called hop-by-hop, because it separately applies the tail latency bound from
Theorem 1 to each queue. Recent work [5] has shown that this technique can be used to analyze a
broad set of queueing networks (feed-forward networks).

Analysis approach 1 (SNC hop-by-hop). We first derive the service S ′1 offered to T1 at the first
queue

S ′1 = S1 	 AT2

where we subtract the arrival processes of the tenant T2. We can then calculate the tail latency T1
at the first queue with

Latency(AT1 , S
′
1, 0.995) . (1)
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In order to analyze the latency at the second queue, we first derive the arrival process of T1 at
the second queue (which is the departure process from the first queue)

A′T1 = AT1 � S ′1 ,

using the output operator. Similarly, we derive the departure process for T2 as A′T2 = AT2 � S1.
For tenants T3 and T4 we first aggregate them into a single arrival process and then calculate their
departure process from S3 as A′T3/4 = (AT3 ⊕ AT4)� S3. The local service S ′2 offered to T1 at the
second queue is then derived as

S ′2 = S2 	 A′T2 	 A
′
T3/4

and we calculate the tail latency of T1 at the second queue with

Latency(A′T1 , S
′
2, 0.995) . (2)

Note that Eq. (2) includes a stochastic dependency (S1 occurs in both A′T1 and S ′2), which means
that the operators cannot use the simplified independent-case equation but need to use the more
complex dependent-case equation.

Observe that the stochastic dependency in the hop-by-hop analysis approach is inherent to the
analysis and not due to actual dependencies between tenants (we assumed them to be initially
stochastically independent). We therefore call such a stochastic dependency an artificial dependency
as opposed to an actual (user-specified) dependency between tenants.

The second analysis approach is called SNC convolution and emerges when applying the
line-network analysis technique [9, 16, 22, 33, 6, 10, 5, 18] to our network. The goal of the
SNC convolution approach is to merge all queues into a single service process and to then apply
Theorem 1 once to obtain the tail latency.

Analysis approach 2 (SNC convolution). We first apply the left-over operator to every queue to
obtain the “local service process” offered to T1. We use S ′1 to denote the local service process at the
first queue, and we use S ′2 to denote the local service process at the second queue, and this follows
exactly the same steps as in Approach 1.

We next use the convolution operator to merge the two local service processes together into a
global service process S

S =
(
S ′1 ⊗ S ′2

)
(3)

We can then calculate the tail latency of T1 at both queues using

Latency(AT1 , S, 0.99) .

Note that Eq (3) includes an artificial stochastic dependency. The benefit of the convolution
approach is that it only requires a single latency calculation.
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In contrast to both SNC hop-by-bop and SNC convolution, SNC-Meister uses a novel operator
sequence, which minimizes the number of stochastic dependencies in the network analysis. For
the particular example given here, it is easy to show that our analysis does not have any stochastic
dependencies and always uses the more accurate stochastic independent-case of the operator
equations.

Analysis approach 3 (SNC-Meister). The idea is similar to Approach 2, but changes the position
of AT2 in the operator sequence. Specifically, we exclude T2 in the derivation of the local service
processes for each queue, because it shares the whole path with T1. We apply the left-over operator
to T2 and T1 only after having merged the two local service processes into a global service process.
This leads to the following operator sequence

S =
(
S1 ⊗

(
S2 	 ((AT3 ⊕ AT4)� S3

))
	 AT2 , (4)

where in the inner-most parenthesis we aggregate T3 and T4 before calculating their departures
from S3 and then subtracting them from S2. In the outer-most parenthesis, T2 is subtracted after
having merged S1 and the left-overs from S2 using the convolution operator. We calculate the tail
latency of T1 at both queues using

Latency(AT1 , S, 0.99) .

Note that Eq. (4) does not include any stochastic dependencies.

Note that SNC-Meister’s equation is simpler than the other approaches, but requires changing
the order of several operators, which are not necessarily exchangeable. We therefore need to prove
the correctness of this change in the operator sequence, which is done in Sec. A.5.

We remark that the aggregation step (described before the three approaches) play an important
role in preventing stochastic dependencies. Unfortunately, as more and more tenants are added to a
network aggregating departures becomes more complex.

Fig. 16 expands the network from Fig. 15 with two additional tenants traversing S3. Specifically,
we now consider four tenants at S3, T3 to T6, of which only two, T4 and T6, traverse the queue S2.
The four tenants are ordered by strictly decreasing scheduling priority. As in the previous example,
we are interested in analyzing S2, which requires the departures from T4 and T6.

If we calculate the departures of T4 and T6 separately (i.e., without aggregation), we would
introduce artificial stochastic dependencies. Therefore, it would be helpful to aggregate the depar-
tures. Unfortunately, T4 and T6 have different scheduling priorities, which prevents aggregating
them into a single arrival process. SNC-Meister solves this problem by relaxing the priority of the
higher-priority tenant, T4, and then calculating the aggregated arrival process. While this seems at
first counter-intuitive – as assuming T4 has a lower priority makes the analysis conservative – this
step is necessary to resolve artificial stochastic dependencies which would be introduced without
aggregation. Changing these priorities (for the sake of analysis) and efficiently aggregating tenants
are key parts of SNC-Meister’s analysis algorithm.
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Figure 16: Reordering of tenant priorities can be necessary to allow for aggregation of the departures
of tenants. In this figure, the tenant priorities are ordered AT3 > AT4 > AT5 > AT6 , which makes
aggregating T4 and T6 impossible. In order to aggregate T4 and T6, they need to be in the same
priority class, which means decreasing the priority of T4 (for the sake of the analysis).

Figure 17: SNC-Meister calculates upper bounds for a bipartite graph of service processes (Si), i =
1..n (left-hand side) and (Vj), j = 1..m (right-hand side). For example, in our experiments in Sec. 6
n = 180 tenants and m = 6 server nodes.

A.4 SNC-Meister’s analysis algorithm
This section introduces the two parts of SNC-Meister’s analysis algorithm: the arrival process
aggregation algorithm and the actual network analysis based on the aggregation algorithm.

The first part, the arrival process aggregation algorithm, has the goal of aggregating many arrival
processes, which might have inter-dependencies originating from user-specified dependencies.
Specifically, the input to this algorithm is a list of arrival processes, and a graph of their dependencies.
The dependency graph has an edge between arrival process Ai and Aj , if they are inter-dependent.
In SNC-Meister we assume that user-specified dependencies are transitive (i.e., if i and j are
dependent, and j and k are dependent, then also tenants i and k must be dependent). This means that
the dependency graph consists of several cliques, which each represent one set of inter-dependent
arrival processes.

The goal of the aggregation algorithm is to apply the minimal number of dependent-case SNC
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operators to merge all arrival processes into a single arrival process. We will use this aggregation
algorithm multiple times in the network analysis. The algorithm proceeds in four steps:

1. create a vector of groups G;
2. for each arrival process A, add A to the lowest numbered group in G that does not have a

tenant with a dependency on A;
3. for each group g in G, aggregate the arrival processes in g, which are all independent by

construction, and store the aggregate in G’;
4. aggregate all the aggregates in G’, which all are dependent by construction.

The output is a single arrival process.
The second part, SNC-Meister’s network analysis algorithm, has the goal of deriving an upper

bound on the tail latency for a given tenant. Specifically, this algorithm considers the network
sketched in Fig. 17. The network of queues is a bipartite graph connecting two sets of service
processes Si (i ∈ 1..n) and Vj (j ∈ 1..m). Without loss of generality, we consider the tenant labeled
T , which traverses S1 and V1. SNC-Meister’s network analysis algorithm then proceeds in five
steps:

1. • Find the set X of all tenants (excluding T ) that traverse S1 and V1 and have a higher or
equal priority than T .
• Use the aggregation algorithm to merge the arrival processes of all tenants in X and

denote the aggregated arrival process by AX .
2. • Find the set Y of all tenants that traverse S1 and Vj (j > 1) and have a higher or equal

priority than T .
• Use the aggregation algorithm to merge the arrival processes of all tenants in Y and

denote the aggregated arrival process by AY .
3. • For each i > 1:

– find all tenants Zi, which traverse Si and V1 and have a higher or equal priority than
T ;

– use the aggregation algorithm to merge all of Zi’s arrival processes into AZi
;

– find all tenants Ri, which traverse Si, are not in Zi, and have a higher or equal
priority than the lowest priority tenant in Zi;

– use the aggregation algorithm to merge all of Ri’s arrival processes into ARi
; and

– calculate the departure process for Si: DZi
= AZi

� (Si 	 ARi
).

• Use the aggregation algorithm to merge all departure processes into DZ = DZ1⊕DZ2⊕
DZ3 ⊕ . . . .

4. Calculate the network service process for tenant T using the SNC operators and the following
equation

S =
((

(S1 	 AY )⊗ (V1 	DZ)
)
	 AX

)
. (5)

5. Use T ’s arrival process, S, and the SNC latency bound to derive the latency for T , for the
percentile p via Latency(AT , S, p).
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A.5 Correctness of SNC-Meister’s analysis algorithm
This section describes the correctness proofs of SNC-Meister’s analysis algorithm described in the
previous section. Specifically, we prove three statements: a) that the aggregation algorithm does in
fact lead to the minimal number of stochastic dependencies, b) that step 3 in the network analysis
correctly calculates an output bound, and c) the correctness of the service process equation Eq. (5).

To prove statement a), we recall the dependency graph which is the input to the aggregation
algorithm. As described above, this graph consists of several cliques, where each clique represents
a set of inter-dependent arrival processes.

Theorem 6 (Optimality of aggregation algorithm). Let k be the maximum size of a clique in the
dependency graph. The minimal number of applications of dependent-case SNC operators for any
algorithm is k − 1.

Our aggregation algorithm requires k − 1 applications of dependent-case SNC operators.

Proof. Note that the first statement is trivial because clearly each arrival process in the largest
clique has to be aggregated with a dependency operation. Since all tenants in the largest clique are
inter-dependent, we need at least k − 1 aggregations with the dependent-case SNC operator.

We next prove that the aggregation algorithm needs at most k − 1 dependent-case operations.
Assume for the sake of contradiction that the aggregation algorithm requires k dependency op-
erations. Step 4 in the aggregation algorithm requires |G′| − 1 dependency operations. Thus,
k = |G′| − 1 = |G| − 1, which implies |G| = k + 1. This means that in step 2, there was some
arrival process A∗, such that A∗ was added to the k + 1 group. This can only happen if A∗ is
dependent with some arrival process in all groups 1, . . . , k. Now by the transitive property of
stochastic dependencies, we have a clique of size k + 1 with A∗ and the other arrival processes
that it is dependent on in each group. This is a contradiction to k being the maximum size of a
clique.

To prove statement b), we show that decreasing the priority of a tenant (for the sake of analysis)
leads to an upper bound on the tenant’s departures.

Lemma 1 (Aggregation with changed priorities). Assume that a set of tenants traverses a queue with
service process S. Let Z denote a subset for which we are interested in a bound on the aggregated
departures. Let R denote all tenants with an equal or higher priority than the lowest-priority tenant
in Z. Assume that the aggregated arrival processes from Z and R have MGF-bounds AZ and AR,
respectively.

Then, the departure process of all Z tenants, DZ , is upper bounded

DZ ≤ AZ � (S 	 AR) .

Proof. It is sufficient to show that for every tenant, calculating the departure process by decreasing
the tenant’s priority is an upper bound on the departure process with the original priority. To this
end, let A denote any fixed tenant and let S denote the local service process of A at the queue. Let
D denote A’s departures. According to the departure theorem [31], it holds that

D(m,n) ≤ max
0≤k≤m

{A(k, n)− S(k,m)} . (6)
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Decreasing the priority of A results in a service process S ′(m,n) ≤ S(m,n) (for all m ≤ n ∈
N). Therefore, max0≤k≤m{A(k, n) − S ′(k,m)} gives an upper bound on the right-hand side of
Eq.(6). This extends to the stochastic case as σA�S(θ) in Theorem 3 is monotonically increasing in
σS(θ).

To prove statement c) (Eq. (5)), we need to verify the assumptions of the SNC latency bound,
which is that S is a service process (Definition 3).

The following theorem formally describes this scenario and SNC-Meister’s operator sequence
together with a full proof of correctness.

Theorem 7 (Independent Network Analysis). Assume the scenario shown in Fig. 17:
• a bipartite graph connecting two sets of service processes Si (i ∈ 1..n) and Vj (j ∈ 1..m)
• a set of tenants X traverses S1 and V1, and the aggregate arrivals are bounded by AX;
• a set of tenants Y traverses S1 and Vj (j > 1), and the aggregate arrivals are bounded by
AY ;
• a set of tenants Z originates as departures from Si (i > 1) and traverses V1, and the aggregate

departures from these tenants are bounded by DZ .
We are interested in the tenant T , which has a lower or equal priority to X , Y , Z and traverses S1

and V1. The order of priorities between X , Y , Z can be arbitrary.
Then, the tail latency can be calculated using Theorem 1 using AT and the service process S

S(m,n) =
((

(S1 	 AY )⊗ (V1 	DZ)
)
	 AX

)(
m,n

)
,

whose MGF-service bound is calculated using the standard SNC operators.

Note that because the correctness of individual operators has already been proven, it remains
to be shown that changing the operator sequence satisfies the service process requirement from
Definition 3.

Proof. We explicitly show that the theorem’s operator sequence satisfies the service process condi-
tion.

Let DX , DY , DT , DZ denote the departures from a server in the first column, and let D∗X , D∗T ,
D∗Z denote the departures from a server in the second column.

Let n ≥ 0 be arbitrary, and choose m ≤ n maximal such that D∗X(0,m) = DX(0,m),
D∗T (0,m) = DT (0,m), D∗Z(0,m) = DZ(0,m) (i.e., m is the start of the current V1-server busy
period, if it exists). Then, by definition of V1, it holds that

D∗T (0, n)−D∗T (0,m) = T (m,n)− (D∗X(0, n)−D∗X(0,m))− (D∗Z(0, n)−D∗Z(0,m)) . (7)

By definition of m, and by Theorem 2 (applied to the left-over service of S1), it also holds that

D∗T (0,m) = DT (0,m) ≥ AT ⊗ (S1 	 AX 	 AY )(0,m) .

Next, we use two classical bounding steps (e.g.,[31, p.21]) to estimate D∗X and D∗Z

D∗X(0, n)−D∗X(0,m) ≤ DX(0, n)−DX(0,m) ≤ AX(0, n)− AX(0,m)

D∗Z(0, n)−D∗Z(0,m) ≤ DZ(0, n)−DZ(0,m) .
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We conclude by plugging into Eq.(7) the previous three inequalities, and bringing DT (0,m) to the
right side

D∗T (0, n) ≥ AT ⊗ (S1 	 AX 	 AY )(0,m)

+ T (m,n)− (AX(0, n)− AX(0,m))

− (DZ(0, n)−DZ(0,m)) ,

which can be reformulated using the definition of m

D∗T (0, n) ≥ min
0≤m≤n

{
AT ⊗ (S1 	 AX 	 AY )(0,m)

+ T (m,n)− (AX(0, n)− AX(0,m))

− (DZ(0, n)−DZ(0,m))
}

= min
0≤m≤n

{
min

0≤k≤m

{
AT (0, k) + S1(k,m)

− (AX(0,m)− Ax(0, k))− (AY (0,m)− AY (0, k))
}

+ T (m,n)− (AX(0, n)− AX(0,m))

− (DZ(0, n)−DZ(0,m))
}

= min
0≤k≤m≤n

{
AT (0, k) + S1(k,m)

− (AX(0,m)− Ax(0, k))− (AY (0,m)− AY (0, k))
+ T (m,n)− (AX(0, n)− AX(0,m))

− (DZ(0, n)−DZ(0,m))
}

= min
0≤k≤n

{
AT (0, k)

+ min
k≤m≤n

{
S1(k,m)− (AY (0,m)− AY (0, k))

+ T (m,n)− (DZ(0, n)−DZ(0,m))
}

− (AX(0, n)− AX(0, k))
}

= AT ⊗
((

(S1 	 AY )⊗ (V1 	DZ)
)
	 AX

)
.

This concludes the proof because S is a service process.

Observe that S(m,n) preserves all stochastic independencies of T ,X , Y , and Z. SNC-Meister’s
network analysis is thus optimal in the sense in that it does not introduce artificial stochastic
dependencies.
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