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Abstract

Despite the best efforts of programmers and programming systems researchers, software bugs

continue to be problematic. This thesis will focus on a new framework for performing dynamic

(runtime) parallel program analysis to detect bugs and security exploits. Existing dynamic anal-

ysis tools have focused on monitoring sequential programs. Parallel programs are susceptible to

a wider range of possible errors than sequential programs, making them even more in need of

online monitoring. Unfortunately, monitoring parallel applications is difficult due to inter-thread

data dependences and relaxed memory consistency models.

This thesis presents dataflow analysis-based dynamic parallel monitoring, a novel software-

based parallel analysis framework that avoids relying on strong consistency models or detailed

inter-thread dependence tracking. Using insights from dataflow analysis, our frameworks enable

parallel applications to be monitored concurrently without capturing a total order of application

instructions across parallel threads. This thesis has three major contributions: Butterfly Analysis

and Chrysalis Analysis, as well as extensions to both enabling explicit tracking of uncertainty.

Butterfly Analysis is the first dataflow analysis-based dynamic parallel monitoring framework.

Unlike existing tools, which frequently assumed sequential consistency and/or access to a total

order of application events, Butterfly Analysis does not rely on strong consistency models or

detailed inter-thread dependence tracking. Instead, we only assume that events in the distant past

on all threads have become visible; we make no assumptions on (and avoid the overheads of

tracking) the relative ordering of more recent events on other threads. To overcome the potential

state explosion of considering all the possible orderings among recent events, we adapt two
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techniques from static dataflow analysis, reaching definitions and available expressions, to this

new domain of dynamic parallel monitoring. Significant modifications to these techniques are

proposed to ensure the correctness and efficiency of our approach. We show how our adapted

analysis can be used in two popular memory and security tools. We prove that our approach does

not miss errors, and sacrifices precision only due to the lack of a relative ordering among recent

events.

While Butterfly Analysis offers many advantages, it ignored one key source of ordering in-

formation which significantly affected its false positive rate: explicit software synchronization,

and the corresponding high-level happens-before arcs. This led to the development of Chrysalis

Analysis, which generalizes the Butterfly Analysis framework to incorporate explicit happens-

before arcs resulting from high-level synchronization within a monitored program. We show how

to adapt two standard dataflow analysis techniques and two memory and security lifeguards to

Chrysalis Analysis, using novel techniques for dealing with the many complexities introduced by

happens-before arcs. Our security tool implementation shows that Chrysalis Analysis matches

the key advantages of Butterfly Analysis while significantly reducing the number of false posi-

tives, by an average of 97%.

While Chrysalis Analysis greatly improved upon Butterfly Analysis’ precision, it was unable

to separate potential errors due to analysis uncertainty from true errors. We extend both Butterfly

Analysis and Chrysalis Analysis to incorporate an uncertain state into their metadata lattice,

and provide new guarantees that true error states are now precise. We experimentally evaluate

a prototype and demonstrate that we effectively isolate analysis uncertainty. We also explore

possible dynamic adaptations to the presence of uncertainty.

In all cases, we have shown that our frameworks are provably guaranteed to never miss an

error and sacrifice precision only due to the lack of a relative ordering among recent events, and

present experimental results on performance and precision from our implementations.
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Chapter 1

Introduction

Writing correct, bug-free programs is difficult. To help address this problem, a number of tools

have been developed over the years that perform static [22, 35, 40], dynamic [20, 36, 71, 82, 98],

or post-mortem [78, 119] analysis to diagnose bugs. Static analysis is guaranteed to reason

about all paths through a program; anything proven to be safe is guaranteed to be safe under

any execution of the program. Static analysis does suffer from imprecision when reasoning

about pointers and heap locations, whose values aren’t known until runtime. Dynamic analysis

benefits from access to pointer value and heap locations, but is limited to analyzing only the

observed path taken by the application; dynamic analysis will generally not miss a bug in the

monitored execution, but may miss bugs present in the actual application which do not occur

while the application is monitored.

While static and dynamic analysis tools are generally complementary, my focus in this the-

sis is on dynamic (online) tools, which we refer to as “lifeguards” (because they watch over a

program as it executes to make sure that it is safe). To avoid the need for source code access,

lifeguards are typically implemented using either a dynamic binary instrumentation framework

(e.g., Valgrind [82], Pin [71], DynamoRio [20]) or with hardware-assisted logging [23]. Life-

guards maintain shadow state to track a particular aspect of correctness as a program executes,

such as its memory [80], security [84], or concurrency [98] behaviors. Most existing lifeguards
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have focused on monitoring sequential programs.

As difficult as it is to write a bug-free sequential program, however, it is even more challeng-

ing to avoid bugs in parallel software, given the many opportunities for non-intuitive interactions

between threads. Despite the difficulty, on modern multicore processors, increases in perfor-

mance are tied to an increasing use of parallelism. To achieve this, programmers must devise

parallel algorithms and write parallel software. Hence we would expect bug-finding tools such

as lifeguards to become increasingly valuable as more programmers wrestle with parallel pro-

gramming. Unfortunately, the way that most lifeguards have been written to date does not extend

naturally to parallel software1 due to a key stumbling block: inter-thread data dependences. To

illustrate the complexities of parallel program analysis, it helps to begin by examining sequential

program analysis, and then analyze the challenges in adapting dynamic analysis to the parallel

domain.

1.1 Background: Dynamic Program Monitoring

Program monitoring performs on-the-fly checking during the execution of applications, and is an

important technique for improving software reliability and security. Program monitoring tools,

or lifeguards can be categorized according to the granularity of application events that they care

about, from system-call-level [52, 91] to instruction-level [80, 82, 84, 98]. Compared to the

former, the latter can obtain highly detailed dynamic information, such as memory references,

for more accurate and timely bug detection. However, such fine-grained monitoring presents

great challenges for system support. This thesis focuses on instruction-level lifeguards, although

the results readily extend to coarser-grained settings as well.

1For the purpose of this thesis, “parallel software” refers to software targetting a shared-memory abstraction,
written in languages like C or C++, and using a threaded-style parallelism
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Lifeguards: ADDRCHECK and TAINTCHECK

We describe two representative lifeguards which will be referenced throughout this thesis.

• ADDRCHECK [79] is a memory-checking lifeguard. By monitoring memory allocation

calls such as malloc and free, it maintains the allocation information for each byte in

the application’s address space. Then, ADDRCHECK verifies whether every memory read

and write accesses an allocated region of memory by reading the corresponding allocation

information; that every free references a currently allocated region of memory; and that

every malloc references a currently deallocated region of memory.

• TAINTCHECK [84] is a security-checking lifeguard for detecting overwrite-based secu-

rity exploits (e.g., buffer overflows or printf format string vulnerabilities). It maintains

metadata for every location in the application’s address space, indicating whether the lo-

cation is tainted. After a system call that receives data from the network or from an un-

trusted disk file, the memory locations storing the untrusted data are all marked as tainted.

TAINTCHECK monitors the inheritance of the tainted state: For every executed application

instruction, it computes a logical OR of the tainted information of all the sources to obtain

the tainted information of the destination of the instruction. TAINTCHECK raises an error

if tainted data is used in jump target addresses (to change the control flow), format strings,

or other critical ways.

Lifeguards typically operate on shadow state, or metadata, that they associate with every ac-

tive memory location in the program (including the heap, registers, stack, etc.). As the monitored

application executes, the lifeguard follows along, instruction-by-instruction, performing an anal-

ogous operation to update the corresponding shadow state. For example, when a lifeguard that

is tracking the flow of data that has been “tainted” by external program inputs [84] encounters

an instruction such as “A = B + C”, the lifeguard will look up the boolean tainted status for

locations B and C, OR these values together, and store the result in the shadow state for A.
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Figure 1.1: Analyzing parallel programs is more complicated than sequential programs (here, shown
using ADDRCHECK). (a) Single threaded sequential programs can be analyzed in program order.
(b) When analyzing parallel programs, it is insufficient to monitor a thread in isolation; inter-thread
data dependences must be incorporated into the analysis. (c) Space of possible interleavings; which
interleaving occurs affects the outcome of the analysis.
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Figure 1.2: Parallel lifeguard complications extend to many lifeguards–here, illustrating
TAINTCHECK. (a), (b) and (c) follow the same form as Figure 1.1, with an entirely different analysis.

When monitoring a single-threaded application, it is straightforward to think of the lifeguard

as a finite state machine that is driven by the dynamic sequence of instructions from the mon-

itored application. The order of events in this input stream is important. For single-threaded

applications, it is sufficient to analyze an execution trace of the instructions in commit order, or

the order the instructions are committed from the reorder buffer by the processor: any reordering

by the processor is guaranteed to preserve all intra-thread data dependences. This is illustrated
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in Figure 1.1(a) (respectively, Figure 1.2(a)), which shows a simple sequential programs that

ADDRCHECK (respectively, TAINTCHECK) can easily analyze. As any processor reorderings

respect intra-thread data dependences, analyzing the outcome of statement B in Figure 1.1(a) is

straightforward: assuming the malloc in statement A returns a non-null pointer, then the deref-

erence of p at B is safe. Likewise, in Figure 1.2(a), the dereference of p at B is safe since p is

untainted, or marked as trusted, earlier in program order at A.

1.2 Inter-Thread Data Dependences Complicate Analysis

Adapting sequential dynamic analysis tools to the parallel domain is nontrivial. As an example,

consider Figure 1.1(b). Thread 0 in Figure 1.1(a) and Thread 0 in 1.1(b) perform the exact same

set of operations. However, in Figure 1.1(b), the application is now concurrent, and Thread 1 con-

currently performs p = NULL. If thread 0 executes entirely before thread 1 or thread 1 executes

entirely before thread 0 (the first two scenarios shown to the left in Figure 1.1(c), no error has

occurred on this particular execution. However, if the two threads interleave, with the assignment

of p = NULL; occurring after p=malloc() but before *p = ... (shown in Figure 1.1(c)

on the right), then the program will experience a segmentation fault. The lifeguard cannot reason

about each thread in isolation; instead, it must consider all possible interleavings and interactions

between threads. This scenario is not limited to memory safety; Figure 1.2(b) illustrates a similar

problem in TAINTCHECK where the different interleavings shown in Figure 1.2(c) can lead to

different outcomes.

Fundamentally, analysis of parallel programs executing on a shared-address space machine

is complicated by the presence of inter-thread data dependences. In a parallel setting, reasoning

about each thread in isolation is not sufficient: interference from other threads affects analysis.

In particular, without knowing the particular interleaving of threads, it can be difficult to reason

about whether an error occurred on a particular dynamic run.
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1.3 One Approach: Enable Dynamic Parallel Monitoring by

Capturing Ordering of Application Events

The complications in analyzing Figure 1.1(b) and Figure 1.2(b) arise because the lifeguard is

not aware which order of events actually occurred. One approach to enabling analysis, then,

is to capture the ordering of these non-deterministic shared memory interactions, and use this

information to enable dynamic program analysis of parallel programs.

1.3.1 Time Slicing

One simple solution to enable dynamic monitoring of parallel applications is simply to time

slice the parallel threads on one core; by controlling which thread is scheduled on and which

threads are scheduled off, its easy to infer an ordering of application events and feed this to

a lifeguard. This has the advantage of being a software-only solution, with one large caveat:

all application parallelism has been lost. Its important to note that one state-of-the-art dynamic

analysis framework, Valgrind, actually uses timeslicing when analyzing parallel programs [1]. A

key disadvantage is the loss of parallelism; all parallel threads must run on one core.

1.3.2 ParaLog

An alternative hardware-based approach treats this interference between parallel threads as a

measurement problem: the goal is to capture the inter-thread data dependences and expose them

to the parallel program monitor, or lifeguard. Our solution, ParaLog [110], utilizes hardware

support to capture inter-thread data dependences and expose them to the lifeguards as happens-

before arcs. A key challenge in developing ParaLog’s hardware extensions was ensuring that

lifeguard threads can consume these arcs online and that lifeguard threads obey these arcs when

processing events from the monitored application. ParaLog is the first solution to deliver high-

precision dynamic parallel program monitoring with minimal slowdown, given the proposed
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hardware extensions. ParaLog supports the sequential consistency memory model, as well as

the total store order memory model, two of the strongest memory models. A key advantage of

ParaLog is that single-threaded lifeguards can easily be adapted to a multi-threaded environment,

and lifeguard writers do not have to spend much time worrying about ordering of inter-thread data

dependences.

1.4 This Thesis: Enable Dynamic Parallel Program Analysis

Without Capturing Inter-Thread Data Dependences

The goal of this thesis is to answer a question: can we enable dynamic parallel program analysis

without capturing a total order of application events? There are good reasons for pursuing this

approach. First, solutions which do not require access to a total order of application events also

do not require the specialized hardware which, at this time, does not exist on modern processors.

In addition, modern processors implement relaxed memory consistency models. In contrast to

sequential consistency, on relaxed memory consistency models, there is no guarantee a total

order of application events exists that respects both read-write semantics and thread ordering,

even if one instruments all coherence activity from the processor.

Motivated by the desire to find solutions that require neither hardware support nor strong

consistency models, this work explores a novel monitoring approach based on dataflow analysis

over windows of inter-thread interference uncertainty, called dataflow analysis-based dynamic

parallel monitoring. Dataflow analysis-based dynamic parallel monitoring does not require cap-

turing inter-thread data dependences, and hence avoids the need for adding hardware support for

such capture. Moreover, it can be used for the weaker memory models prevalent in today’s ma-

chines. Such weak memory models are not supported by ParaLog, in part because such memory

models do not have a corresponding total order of application instructions across parallel threads.

(In practice, such memory models could cause ParaLog to deadlock.)
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1.4.1 Dataflow Analysis-Based Dynamic Parallel Monitoring

In contrast, our dataflow analysis-based parallel monitoring solution provides a generic frame-

work to lifeguard writers that automatically reasons about concurrent interleavings, similar to

how dataflow analysis provides a general platform for writing static analyses. Dataflow analysis-

based parallel monitoring tolerates the lack of total ordering information across threads that

occurs in today’s machines while also managing to avoid the state space explosion problem. Our

thread execution model represents potential concurrency within the system using bounded win-

dows of uncertainty. Our key insight, inspired by region-based analysis, was to create a modified

“closure” to automatically reason about concurrency within the uncertainty windows.

Butterfly Analysis [45] is the first dataflow-analysis based parallel monitoring framework.

Much like dataflow analysis provides a general platform for writing static analyses, Butterfly

Analysis is generic and easily adapted for new dynamic parallel analyses. Although inspired by

dataflow analysis, Butterfly Analysis is very much a non-trivial adaptation. Moving from the

static to dynamic environments involves moving from a finitely-sized control flow graph (CFG)

to a (possibly infinite) dynamic run-length: we showed how analysis can proceed dynamically

without waiting for the entire “dynamic CFG” to become available. We introduced new prim-

itives to capture the effects of concurrency in the sliding windows, and new closures to avoid

exploring a combinatorial explosion of interleavings. Furthermore, we showed that two canoni-

cal dataflow analyses, reaching definitions and available expressions, as well as two memory and

security lifeguards based on them, are sound adaptations and never experience false negatives

(missed errors, as defined by the analysis).

Butterfly Analysis supports only a very simple and regular concurrency structure of sliding

windows across all threads. While Butterfly Analysis avoids the overhead of tracking inter-thread

data dependences, it also ignores high-level synchronization within a program, which could lead

to Butterfly Analysis believing an error existed in the program which was impossible due to

synchronization. In Chrysalis Analysis [44], we showed how to generalize Butterfly Analysis
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to improve precision by incorporating high-level happens-before arcs. Chrysalis Analysis sup-

ports an arbitrarily irregular and asymmetric acyclic structure within such windows. This makes

the analysis problem considerably more challenging. Despite these challenges, we presented

sound formalizations within the Chrysalis Analysis framework of both reaching definitions and

available expressions, and showed a large improvement in precision.

Butterfly Analysis demonstrated that the dataflow analysis-based dynamic parallel monitor-

ing approach had merit, and Chrysalis Analysis explored methods of improving precision by

trading off some performance lost to the more complex analysis and thread execution model.

However, in both Butterfly and Chrysalis Analysis, when a lifeguard check fails (signaling a

potentially unsafe event), neither framework can automatically reason about whether the check

failed due to a true error versus a potential error. Acknowledging feedback that programmers

desire the ability to distinguish these cases, we modified both Butterfly and Chrysalis Analyses to

incorporate uncertainty into their metadata lattices. The goal was two-fold: first, isolate known

errors from potential errors, and give programmers a provable guarantee that any failed check of

this precise state was indeed a true error. Second, by isolating true errors from potential errors,

enable dynamic responses to the presence of uncertainty (e.g., dynamically resizing epochs) to

recover precision when possible.

The isolation ensures that any performance overhead of a dynamic response is incurred pre-

cisely when the analysis could not reach a precise solution; neither Butterfly or Chrysalis Anal-

ysis could properly disambiguate a true error from a potential error. By dynamically adapting

analysis to improve precision only when a potential error is encountered, the analysis only incurs

the cost of the dynamic adaptation when it could potentially improve precision. It can safely

avoid any dynamic adaptations when encountering a true error, as no additional amount of anal-

ysis will ever change a true error to a potential error.

Incorporating uncertainty in the metadata lattice also gives dataflow analysis-based dynamic

parallel monitoring an advantage most other dynamic analyses (which frequently limit them-
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selves to the particular interleaving observed) do not match: the ability to reason about near

misses, or cases where an error did not manifest on this run, but no synchronization prevented the

buggy interleaving from occurring on a later run! Especially when overlaid on top of Chrysalis

Analysis, a “false positive” which is also a near miss provides fundamental insight about the

code: while the programmer may frequently get lucky, an actual bug is present in the source

code.

Beyond Data Race Detection: General Framework for Parallel Monitoring

Dataflow analysis-based dynamic parallel monitoring is a general purpose dynamic parallel anal-

ysis framework. The true power of dataflow analysis-based dynamic parallel monitoring lies in

its ability to support analyses even when the underlying application experiences a data race.

For instance, TAINTCHECK is unconcerned about data races in the monitored application, un-

less the data races lead to a metadata race, i.e. two different metadata values are possible for

a given memory location. Likewise, data races in ADDRCHECK are unimportant; the only race

ADDRCHECK concerns itself with is between accesses and malloc/free calls. The ability to

monitor programs despite the presence of data races in the monitored application increases the

power of dataflow analysis-based dynamic parallel monitoring; while concurrency-specific anal-

yses can be overlaid onto our framework, we also support analyses that previously were limited

to sequential programs, or else required extensive support to capture ordering.

1.5 Related Work

Dataflow analysis-based dynamic parallel monitoring is a new framework for monitoring parallel

programs which draws from many other subfields. Limited to monitoring one thread only, it

resembles traditional dynamic analysis, though with larger overheads. When considering only

one window of uncertainty for a parallel application, the two passes resemble traditional static
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dataflow analysis, though not on a control flow graph. One of the advantages of our approach is

that it can be either a software-only solution or utilize a modest amount of hardware.

In addition, many of the primitives that allow butterfly analysis to achieve reasonable effi-

ciency and precision, such as uncertainty epochs [8, 10, 73, 76, 106], sliding windows [68], only

assuming partial ordering of events [87], and conservative analysis [25], are present in a variety

of other works in the programming languages and computer architecture communities. Chrysalis

analysis utilizes vector clocks, a well studied area [11, 24, 102] with many applications, one of

which is data race detection [19, 37].

1.5.1 Platforms for Lifeguards (aka Dynamic Analysis)

Log-Based Architecture (LBA) is a hardware platform for dynamic program monitoring which

offloads the lifeguard to a separate core from the application [23]. Originally, LBA was limited

to a monitoring one application core with a single-threaded lifeguard. If the application had

multiple threads, they had to be timesliced on the same core. In the first parallel extension of

LBA, Ruwase et al. [96] parallelized the lifeguards but not the application, yielding a speedup

in the amount of time it took a lifeguard to monitor a sequential application but not allowing the

application itself to run in parallel. As mentioned earlier, Vlachos et al. [110] proposed ParaLog,

a hardware framework which extends LBA [23] to handle parallel applications, using Flight Data

Recorder (FDR) [118] as a mechanism to capture inter-thread data dependences and use them to

make metadata updates deterministic. Concurrent with this thesis, Vlachos [109] later extended

ParaLog to the domain of relaxed consistency models, specifically for total store order (TSO)

and relaxed memory order (RMO), in a proposal named Resolve. Resolve, like ParaLog, is a

hardware-based proposal, in contrast to dataflow analysis-based dynamic parallel monitoring.

LBA is only one hardware-based platform for program monitoring; DISE [27] is another.

Dynamic-binary instrumentation (DBI) tools such as Valgrind [81, 83, 100], DynamoRio [20]

and PIN [71, 125] can also be used to implement lifeguards, as well as solutions like Road-
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Runner [39] which allow Java bytecode to be dynamically instrumented and CAB [48], a Java

platform which allows analysis to be offloaded to a separate core.

While dataflow analysis-based dynamic parallel monitoring requires access to a dynamic par-

allel monitoring platform such as LBA or PIN, dataflow analysis-based dynamic parallel moni-

toring is a software framework whose correctness guarantees are independent of platform chosen

and whose algorithms do not depend on that platform. The platform used to implement dataflow

analysis-based dynamic parallel monitoring may affect performance (hardware is generally faster

than software when it exists); for the experiments in this thesis, we used LBA.2

1.5.2 Parallel dataflow analyses

There have been proposals for parallel adaptations of classic dataflow problems. The adaptations

focus mostly on adapting control flow graphs to reflect explicit programmer annotated parallel

functions, but are often constrained in the memory consistency model, semantics, or degree of

“correctness” they require in the program. In some cases [47, 103, 104], a copy-in/copy-out se-

mantics is assumed. Sarkar’s proposal [97] of using Parallel Program Graphs, or PPGs, requires

deterministic or data-race free programs. Long and Clarke [66] propose a parallel dataflow ex-

tension suitable for programs using rendezvous synchronization without any shared variables.

Knoop et al. [62, 64] propose a more general parallel adaptation, suitable for many bit vector

analyses, which requires explicit parallel regions and assumes interleaving semantics. Knoop

also presented specific parallel adaptations for the problems of code motion [63], partial dead

code elimination [59], constant propagation [60] and demand-driven dataflow queries [61].

In contrast, dataflow analysis-based dynamic parallel monitoring is a dynamic adaptation of

dataflow analysis to a parallel domain. Unlike prior attempts, dataflow analysis-based dynamic

parallel monitoring cannot assume access to specialized structures or bug-free programs, be-

2The use of LBA for our experiments does not violate our discussion of dataflow analysis-based dynamic parallel
monitoring as a software framework that does not require hardware. LBA was used to gather execution traces and
insert epoch boundaries; all of this is possible with DBI and without hardware. In Chrysalis Analysis, the shim
library that wraps library calls was also modified; this is again easily done within DBI.
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cause it is being designed as a general framework that must work even in the presence of bugs

in the monitored programs. Furthermore, dataflow analysis-based dynamic parallel monitoring

is explicitly designed to work correctly on relaxed memory consistency models, and cannot re-

quire sequential consistency as a condition of the analysis behaving correctly. Finally, dataflow

analysis-based dynamic parallel monitoring is a dynamic framework, which changes the struc-

ture of the data it must analyze and motivates the use of a sliding window of application events

(as monitoring the entire dynamic execution is quickly intractable).

1.5.3 Systematic Testing

Dataflow analysis-based dynamic parallel monitoring in some ways resembles proposals for sys-

tematic testing [21, 74, 77], which either try to exercise all interleavings [74], or a randomized

subset with probabilistic guarantees [21, 77]. Recent work also has proposed testing concurrent

functions instead of exercising all interleavings [30], languages to allow programmers to guide a

schedule towards a buggy interleaving [34], and combining local logging and constraint solvers

to reproduce a buggy execution [54].

Unlike these systems, dataflow analysis-based dynamic parallel monitoring does not make

guarantees about the correctness of its analysis for all possible interleavings. However, we do

provide guarantees for all total orderings consistent with the observed partial ordering, as well

as providing guarantees for many possible interleavings by observing only one. To improve

coverage of dataflow analysis-based dynamic parallel monitoring in the future, one could try to

combine the ideas underlying systematic testing to drive different partial orderings for dataflow

analysis-based dynamic parallel monitoring to improve interleaving coverage.

1.5.4 Deterministic Multi-threading

There have been several proposals that leverage the key observation that debugging a sequential

program is easier than debugging a parallel program largely due to its determinism, and propose
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making multi-threading deterministic [13–15, 31, 32, 53, 56, 65, 85]. While some proposals are

robust to changes in the input affecting interleavings [65], most only guarantee that the same

interleaving will be seen with the exact same inputs [13, 31, 32]. In addition, achieving the

best performance frequently requires relaxing the consistency model [13, 31, 32], so that while

determinism has been achieved, the cost is that instructions are being deliberately reordered, po-

tentially beyond what the hardware itself would do (or what programmers would expect when

debugging). In a similar vein, there has also been work to limit allowable production interleav-

ings to known good interleavings which survived testing [116, 120].

In contrast, dataflow analysis-based dynamic parallel monitoring is generic enough to mon-

itor any execution, whether or not it is deterministic. It does not require the application being

monitored to have been compiled with a special compiler or have access to deterministic hard-

ware. Furthermore, if deterministic multi-threading becomes more prevalent, the insights can be

used to inform dataflow analysis-based dynamic parallel monitoring when it is considering the

possible interleavings. Deterministic multi-threading does not guarantee a bug-free program; in

fact, dataflow analysis-based dynamic parallel monitoring, by monitoring all interleavings con-

sistent with the observed partial ordering, has the ability to detect a buggy interleaving for an

input x which may not occur in deterministic multi-threading on input x, but would occur on a

slightly perturbed input x′.

1.5.5 Detect Violations of Consistency Model

A lot of work has focused on detecting violations of sequential consistency, holding that such

violations are often indicative of a buggy interleaving [70, 73, 75, 92]; in some cases, the works

attempt to enforce total store order (TSO) instead of sequential consistency [111], as TSO more

closely matches the x86 memory consistency model [3]. However, x86 is not precisely TSO–it

permits writes that are unaligned, which may be executed as multiple memory accesses where no

guarantees about visibility or execution order are made [3]. In contrast, dataflow analysis-based
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dynamic parallel monitoring focuses on delivering its provable guarantees even when the exe-

cution is not sequentially consistent; this follows from a deliberate design decision for dataflow

analysis-based dynamic parallel monitoring to work on any relaxed consistency machine, as long

as they provide shared memory and cache coherence.

1.5.6 Concurrent Bug Detection

There is a substantial body of work dedicated to dynamic analyses to detect concurrency bugs.

Many of these analyses could themselves be expressed within the dataflow analysis-based dy-

namic parallel monitoring framework.

Data Race Detection

There has been substantial work focused on efficiently detecting data races [19, 25, 33, 37, 76,

94, 98, 114, 121]. Some techniques focus on efficiency over precision [98], while others prior-

itize both precision and efficiency [37], and some uniquely adapt dataflow analysis to perform

race detection [25]. Still other proposals attempt to improve performance by probabilistically

detecting data races [19], using hardware to accelerate the detection process [33] or in special-

ized cases, exploiting parallelism’s structure [94]. People have also differentiated language level

data races from low level data races [114]. Data races themselves have been shown to be much

less benign than many programmers believe [38]. Furthermore, ad hoc synchronization, which

can frustrate many bug detection tools (including data race detection), has also been shown to be

dangerous and less effective than many programmers believe at achieving both performance and

correctness [117].

Data race detection is one particular dynamic analysis; while dataflow analysis-based dy-

namic parallel monitoring can be used to implement a data race detector, dataflow analysis-based

dynamic parallel monitoring is actually much more general and can support many analyses. Fur-

thermore, the analyses’ provable guarantees hold regardless of whether the underlying monitored
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program experiences a data race.

Detecting and Diagnosing Other Concurrent Bugs

In addition to the substantial body of work on data race detection, there has also been a large

body of work on detecting atomicity violations [67, 86] and deadlocks [57, 58], among oth-

ers [123]. Some analyses [58, 123] combine static analysis phases with a dynamic analysis

phase to achieve better results. Recent work has focused on using already-available hardware,

such as performance counters [6] to detect and diagnose bugs in both sequential and concurrent

programs. Later, Arulraj et al. [7] propose branch-tracing facilities provided by x86 to provide

failure diagnoses that are suitable to be deployed in production systems. Some proposals, such

as Aviso [69] and ConAir [122], not only detect failures, but also attempt to correct the problem,

whether in future interleavings or by rolling back a single thread’s execution.

Dataflow analysis-based dynamic parallel monitoring focuses on providing a general purpose

platform for adapting analyses, such as TAINTCHECK and ADDRCHECK, to the parallel domain.

One could write a deadlock detector, or a race detector, within the confines of dataflow analysis-

based dynamic parallel monitoring. In some ways, dataflow analysis-based dynamic parallel

monitoring is constantly checking for interference between threads, and then calculating how

that interference affects the analysis it is currently executing. Unlike some proposals, dataflow

analysis-based dynamic parallel monitoring does not attempt to fix the currently executing appli-

cation.

1.6 Thesis Statement

The goal of this research is to demonstrate the following:

Without explicit knowledge of inter-thread data dependences, it is possible to build

an efficient, software-based general framework suitable for online monitoring based

on windows of uncertainty.
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1.7 Contributions

This thesis makes the following contributions:

• We propose a novel abstraction for modeling thread execution that incorporates bounded

regions of uncertainty as the underlying setting for performing dynamic parallel program

monitoring.

• We develop a new class of software-based general frameworks for monitoring parallel pro-

grams at runtime, called dataflow analysis-based dynamic parallel monitoring. Dataflow

analysis-based dynamic parallel monitoring frameworks adapt forward dataflow analysis

techniques to the dynamic domain and are designed to monitor parallel programs without

capturing inter-thread data dependences. Dataflow analysis-based dynamic parallel moni-

toring is a general parallel dynamic analysis framework that delivers provable guarantees

not to miss errors even when the monitored application experiences a data race, and is not

limited to detecting concurrency-specific bugs. A large contribution of dataflow analysis-

based dynamic parallel monitoring is the number of other analyses, many that previously

required support to reason about inter-thread data dependences, which can now be adapted

to the parallel domain.

• We introduce Butterfly Analysis, the first dataflow analysis-based dynamic parallel moni-

toring, which demonstrates how to adapt two canonical dataflow analysis problems (reach-

ing definitions and available expressions) to the domain of dynamic parallel monitoring.

We show how reaching definitions and available expressions serve as useful abstractions

for adapting real-world lifeguards to the parallel domain by adapting TAINTCHECK and

ADDRCHECK as layers on top of these analyses, respectively, and provide provable guar-

antees that our analyses miss no errors. We implement the Butterfly Analysis version of

ADDRCHECK and conduct performance and sensitivity studies, demonstrating the trade-

offs between improved precision and better performance.
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• Inspired to further reduce the false positives present in Butterfly Analysis, we refine the

thread execution model to incorporate high-level synchronization-based happens-before

arcs. We generalize Butterfly Analysis to incorporate these synchronization-based arcs,

creating Chrysalis Analysis. We show how how to generalize reaching definitions, avail-

able expressions, ADDRCHECK and TAINTCHECK within Chrysalis Analysis while main-

taining all our provable guarantees, and explore the challenges of doing so with a more

complicated thread execution model, and more difficult setting for updating both global

and local state. We implement a TAINTCHECK prototype in both Butterfly and Chrysalis

Analyses, showing that Chrysalis Analysis trades off a 1.9x slowdown (average, relative to

Butterfly Analysis) for a 17.9x reduction in the number of false positives.

• We explore the root causes of “potential error” messages by introducing an uncertain meta-

data state into the reaching definitions and TAINTCHECK metadata lattices, and show how

this uncertain state allows us to disambiguate true errors from possible errors. We imple-

ment the uncertainty extension to TAINTCHECK and demonstrate that all previous potential

errors are now mapped to failed checks of uncertain. We investigate the impact of dynam-

ically adapting to the presence of a failed check of uncertainty by adjusting the effective

epoch size, and show that such adaptations can effectively eliminate all false positives.

1.8 Thesis Organization

The remainder of this thesis will focus on developing three dataflow analysis-based dynamic

parallel monitoring frameworks: Butterfly Analysis and Chrysalis Analysis, as well as the un-

certainty extensions to both. We will begin by deriving the thread execution model that underlies

all frameworks in Chapter 2. Once we have the model of thread execution, we will explore

how to build the first dataflow analysis-based dynamic parallel monitoring framework, Butterfly

Analysis, in Chapter 3.
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In Chapter 4, we will explore how augmenting the thread execution model with high-level

synchronization-based happens-before arcs in Chrysalis Analysis can lead to a more compli-

cated thread execution model (and therefore, more complex analysis) which ultimately greatly

improves on Butterfly Analysis’ precision.

In Chapter 5, we will show how adding an additional metadata state to explicitly track un-

certainty once more increases the complexity of the analysis, but provides benefits overall by

enabling isolation of true errors from potential errors. Furthermore, we will explore how dy-

namic adaptations in the face of a failed check of an uncertain location can lead to elimination of

potential errors altogether, a large win for dataflow analysis-based dynamic parallel monitoring.

Finally, in Chapter 6, we conclude by reflecting on the contributions of our work and propos-

ing possible future extensions.
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Chapter 2

Modeling Parallel Thread Execution

Motivated by the desire to find solutions that require neither hardware support nor strong con-

sistency models, our research explores a novel monitoring approach based on dataflow analysis

over windows of inter-thread interference uncertainty. Dataflow analysis-based dynamic parallel

monitor does not require capturing inter-thread data dependences, and hence avoids the need for

adding hardware support for such capture. Moreover, it can be used for the weaker memory mod-

els prevalent in today’s machines. Creating a software framework that can provably guarantee

no missed errors requires a thread execution model suitable for proving such guarantees, where

the assumptions about underlying hardware closely match modern parallel processors.

General-Purpose Lifeguard Infrastructure

Existing general-purpose support for running lifeguards can be divided into two types depending

on whether lifeguards share the same processing cores as the monitored application or lifeguards

run on separate cores. In the first design, lifeguard code is inserted in between application in-

structions using dynamic binary instrumentation in software [20, 71, 82] or micro-code editing in

hardware [27]. Lifeguard functionality is performed as the modified application code executes.

In contrast, the second design offloads lifeguard functionality to separate cores. An execution

21



trace of the application is captured at the core running the application through hardware, and

shipped (via the last-level on-chip cache) on-the-fly to the core running the lifeguard for moni-

toring purposes [23].

We observe that lifeguards see a simple sequence of (user-level) application events regardless

of whether the lifeguard infrastructure design is same-core or separate-core; the event sequence

is consumed on-the-fly in the same-core design, while the trace buffer maintains any portion

of the event sequence that has been collected, but not yet consumed, in the separate-core de-

sign. This observation suggests the application event sequence as the basic model for monitoring

support. Using this model, we are able to abstract away unnecessary details of the monitoring

infrastructure and provide a general solution that may be applied to a variety of implementations.

Most previous works studied sequential application monitoring. (A notable exception is [26],

which assumes transactional memory support.) However, in the multicore era, applications in-

creasingly involve parallel execution; therefore, monitoring support for multithreaded applica-

tions is desirable. Unfortunately, adapting existing sequential designs to handle parallel appli-

cations is non-trivial, as discussed in Chapter 1. This paper proposes a solution that does not

require extensive hardware dependence-tracking mechanisms or a strong consistency model.

To begin formulating our thread execution model, we consider a model of monitoring sup-

port with multiple event sequences: one per application thread. Each sequence is processed

by its own lifeguard thread1. The lifeguard analysis will lag behind the application execution

somewhat, relying on existing techniques [23] to ensure that no real damage occurs during this

(short) window.2 As discussed in Chapter 1, event sequences do not contain detailed inter-thread

dependences information.

1When a dynamic binary instrumentation platform such as PIN [71] is used, it is possible to use the same thread
to generate and process the sequence.

2A lifeguard thread raising an error may interrupt the application to take corrective action [93]. Some delay
between application error and application interrupt is unavoidable, due to the lag in interrupting all the application
threads.
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2.1 Challenges in Adapting Dataflow Analysis to Dynamic Par-

allel Monitoring

In the absence of detailed inter-thread dependence information, there are many possible interleav-

ings consistent with the event sequences that lifeguards see when monitoring parallel programs.3

Our approach is to adapt dataflow analysis—traditionally run statically at compile-time—as a

dynamic run-time tool that enables us to reason about possible interleavings of different threads’

executed instructions. In this section, we will motivate our design decisions, showing how sim-

pler constructions are either too inefficient, too imprecise, or both. For ease of exposition, we

will assume a sequentially consistent machine throughout this section and through Section 2.4.1.

This will be relaxed in Section 2.4.

2.1.1 Naive Attempt: Adapt Control Flow Graphs (CFGs) to Dynamic

Instruction-grain Monitoring

For the sake of mapping dataflow analysis onto dynamic program monitoring, the dynamic trace

of events (i.e., machine instructions) in dynamic monitoring is roughly analogous to the static

program in traditional dataflow analysis: it is the code to be analyzed. Instead of program

statements, we must analyze assembly. Unlike static source code, these sequences of events

are linear (i.e., there is no unresolved control flow) and have no aliasing issues. One natural

approach, then, is to adapt tools and abstractions that have been developed to analyze static code

to a dynamic setting, and use them to analyze dynamic traces. We initially explored adapting

a control flow graph (CFG) representation to represent the order in which lifeguard analysis

should proceed. A control flow graph expresses relationships between basic blocks within a

program. Significantly, CFGs can represent ordered relationships between basic blocks, as well

as relationships such as branches, where control flow can take different independent paths.
3Even on the simplest sequentially consistent machine, lifeguards do not see a single precise ordering of all

application events.
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Figure 2.1: Two threads modify three shared memory locations, shown (a) as traces and (b) in a CFG.
Throughout this paper, solid rectangles contain blocks of instructions, dashed hexagons contain single
instructions, and “empty” blocks contain instructions that are not relevant to the current analysis.

Figure 2.2: CFG of 4 threads with 2 instructions each.

Our first attempt at modeling a lack of fine-grain interthread dependence information was

to assume no ordering information whatsoever between threads, even at a coarse granularity.

Then, the only ordering information we could assume was that instructions in a thread execute

in program order4.

Translating these insights into a “dynamic CFG” required making nodes out of individual

instructions rather than basic blocks. This allows modeling of arbitrary interleaving among in-

structions executed by different threads. We place directed arcs in both directions between any

two instructions that could execute in parallel, and a directed arc between instructions i and i+1

in the same thread, indicating that the trace for a thread is followed sequentially. This yields a

graph that at first glance resembled a control flow graph (see Figure 2.2); it seemed at first that

enough of the structure would be similar to apply dataflow analysis. However, this approach

suffers from three major problems.

Problem 1: Too many edges.
4Continuing the sequential consistency assumption
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Figure 2.1(a) shows a very simple code example of two threads modifying three variables. Even

with only three total instructions, we still require several arcs to reflect all the possible concur-

rency, shown in Figure 2.1(b). This may look manageable; unfortunately, adding arcs over an

entire dynamic run leads to an explosion in arcs and the space necessary to keep this graph in

memory. Figure 2.2 shows how quickly the number of arcs increases with only four threads,

each executing two instructions. For T threads with N instructions each executing concurrently,

there are O(NT ) edges due to the sequential nature of execution within a thread and O((NT )2)

edges due to potential concurrency: each of the NT nodes has edges to all the nodes in all the

other threads.

Problem 2: Arbitrarily delayed analysis.

Unlike a static control flow graph, whose size is bounded by the actual program, the dynamic

run-length of a program is unbounded and potentially infinite in size if the program never halts.

Since the halting problem is undecidable, analysis could not be completed until the program

actually ended, because only then would the actual graph be known. This model of parallel

computation quickly becomes intractable.

Problem 3: Conclusions based on impossible paths.

The third problem with this approach is that it can lead to conclusions based on impossible paths5

through our “dynamic CFG”. Recall the TAINTCHECK lifeguard described in Section 1.1. Sup-

pose we were interested in running the TAINTCHECK lifeguard on the code in Figure 2.1(b),

where buf has been tainted from a prior system call. Instruction 2 in Thread 1 taints c. Instruc-

tions (1) and (i) propagate taint from the source to their destination. According to the graph, it is

valid for instruction (i) to be the immediate successor of instruction (2), implying there is a way

for a to be tainted by inheriting taint from c at instruction (2). Likewise, it is valid for instruction

5Paths for the lifeguard analysis to follow when analyzing the application.
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(1) b = a

(2) c = buf[0]

(i) a = c

Figure 2.3: Two threads concurrently update a,b and c.

(1) to be the immediate successor of instruction (i), implying b is tainted due to a being tainted.

However, for all three memory locations to be tainted, we must have (2) execute before (i), and

(i) before (1)–contradicting the sequential consistency assumption.

2.1.2 Refinement: Bounding Potential Concurrency

We then attempted to refine our model, taking advantage of the finite amount of buffering avail-

able to current processors. Modern processors can only have a constant amount of pending

instructions, typically on the order of the size of their reorder and/or store buffer, and instruc-

tion execution latency is bounded by memory access time. Combining a bounded number of

instructions in flight and a bounded execution time per instruction, we can calculate that after

a sufficiently long period of time, two instructions in different threads could not have executed

concurrently; one must have executed strictly before the other.

While this intuition proved useful, it did not solve all the aforementioned problems. Even

after modifying our CFG-like approach to include edges only between individual instructions that

are potentially concurrent, we could still conclude that an instruction at the end of the program

taints the destination of the first instruction of the first thread, by zig-zagging up from the bottom

of the graph to the top. This is possible even if each instruction only has edges to three other

instructions in the other thread, as depicted in Figure 2.3. Because there are still paths from the

end of a thread’s execution to its beginning, we can potentially conclude that every address is
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tainted for almost the entire execution based on a single taint occurring at the very end.

This led us to consider restricting our dataflow analysis to only a sliding window of instruc-

tions at a time, ultimately culminating in a framework we call Butterfly Analysis.

2.2 Overview: Butterfly Analysis Thread Execution Model

In this section, we introduce a new model of parallel program execution, which formalizes what

it means for one instruction to become globally visible strictly before another instruction, and

shows how to group instructions into meaningful sliding windows to avoid the problems de-

scribed in Section 2.1.

2.2.1 Bounding System Concurrency

We rely on a regular signal, or heartbeat, to be reliably delivered to all cores. For lifeguards

using dynamic binary instrumentation (DBI) to monitor programs, this could be implemented

using a token ring; it can also be implemented using a simple piece of hardware that regularly

sends a signal to all cores. We will not assume that a heartbeat arrives simultaneously at all cores,

only requiring that all cores are guaranteed to receive the signal.6 We will use this mechanism to

break traces into uncertainty epochs.

We do not require instantaneous heartbeat delivery, but do assume a maximum skew time

for heartbeats to be delivered. By making sure that the time between heartbeats accounts for

(i) memory latency for instructions involving reads or writes, (ii) time for all instructions in

the reorder and store buffers to become globally visible, and (iii) reception of the heartbeat

including the maximum skew in heartbeat delivery time, we can guarantee non-adjacent epochs

(i.e., epochs that do not share a heartbeat boundary) have strict happens-before relationships.7

6The signal must be received within some guaranteed maximum latency, or else the skew time measured.
7This guarantee is by construction. Time between epochs is always large enough to account for the reorder

buffer, store buffer, memory latency, and skew in heartbeat delivery. Instructions more than one epoch apart were
already implicitly ordered, since the earlier instruction has committed, with any related store draining from the store
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for(int i=0; i<3; i++)
{

j[i]=0;
}

mov 0, i

A: j[i] = 0
add    1, i
cmp 3, i
jle A

B: leave

add    1, i
cmp 3, i
jle A

A: j[i] = 0
add    1, i
cmp 3, i
jle A

A: j[i] = 0

.

.
mov 0, i

A: j[i] = 0

add    1, i
cmp 3, i
jle A

B: leave
.
.

(a)  Simple code example                                                                               

(b) Control flow graph (c) Butterfly blocks

Figure 2.4: Unlike basic blocks (which are static), butterfly blocks contain dynamic instruction se-
quences, demarcated by heartbeats.

On the other hand, we will consider instructions in adjacent epochs, i.e., epochs that share a

heartbeat boundary, to be potentially concurrent when they are not in the same thread.

An epoch contains a block in each thread, where a block is a series of consecutive instruc-

tions, and each block represents approximately the same number of cycles. Note that a block in

our model is not equivalent to a standard basic block. As an example, the code in Figure 2.4(a)

transforms into a few basic blocks, illustrated as a CFG in Figure 2.4(b), whereas Figure 2.4(c)

shows blocks in our model. The epoch boundaries across threads are not precisely synchronized,

and correspond to reception of heartbeats. Our model, illustrated in Figure 2.5, incorporates pos-

sible delays in receiving the heartbeat into its design. Formally, given an epoch ID l and a thread

ID t, a block is uniquely defined by the tuple (l, t). A particular instruction can be specified by

(l, t, i), where i is an offset from the start of block (l, t).

Our model has three main assumptions. Our first assumption will be that instructions within

a thread are sequentially ordered, continuing our sequential consistency assumption from Sec-

buffer, before the later instruction is even issued. We do assume cache coherency for ordering writes to the same
address.
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Thread 1      Thread 2     Thread 3     …… Thread T

7

Thread

Block Epoch

Figure 2.5: A particular block is specified by an epoch id l and thread id t. In reality, epoch bound-
aries will be staggered and blocks will be of differing sizes.

(a) Instructions body interleave with instructions in wings. Head
has already executed, tail has not yet executed.

Epoch l-2

Epoch l-1

Epoch l

Epoch l+1

Epoch l+2

Thread 1 Thread 2

(b) Arcs between instructions indicate
possible interleavings.

Figure 2.6: Potential concurrency modeled in butterfly analysis, shown at the (a) block and (b)
instruction levels.

tion 2.1; we will later relax this assumption.

Our second assumption is that all instructions in epoch l execute (their effects are globally

visible) before any instructions in epoch l + 2, implying that any instructions in epoch l executes

strictly after all instructions in epoch l − 2.

Our third and final assumption is that instructions in block (l, t) can interleave arbitrarily

with instructions in blocks of the form (l − 1, t′), (l, t′), and (l + 1, t′) where t′ 6= t. The final

two assumptions of this model handle the various possible delays (in receiving a heartbeat, in

memory accesses, due to the reorder buffers, etc.). If an instantaneous heartbeat would have
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placed an instantaneous instruction j in epoch l, our model will require that instruction j instead

will always be in either epoch l − 1, l or l + 1.

Butterfly analysis formalizes the intuition that it may be difficult to observe orderings of

nearby operations but easier to observe orderings of far apart instructions. We now motivate the

term butterfly, which takes as parameter a block (l, t); see Figure 2.6(a). We call block (l, t) the

body of the butterfly, (l − 1, t) the head of the butterfly and (l + 1, t) the tail of the butterfly.

The head always executes before the body, which executes before the tail. For all threads t′ 6= t,

blocks (l − 1, t′), (l, t′) and (l + 1, t′) are in the wings of block (l, t)’s butterfly.

2.2.2 Butterfly Framework

As described, our framework resembles a graph of parallel execution, where directed edges indi-

cate that instruction i can be the direct predecessor of instruction j. Figure 2.6(b) illustrates this

from the perspective of a block in Thread 1, epoch l.

Block (l, 1) has edges with arrows on both ends between its instructions and instruction in

epochs l−1 through l+1 of thread 2. There is only one arrow from epochs l−2 and one to epoch

l + 2, indicating that the first instruction of (l, 1) can immediately follow the last instruction of

(l − 2, 2), and the last instruction of (l, 1) can be followed immediately by the first instruction

of (l + 2, 2). Overall, for T threads each with N instructions and epochs of K instructions, the

graph contains O(NKT 2) edges.

For our analysis to be truly useful, we must be able to guarantee that we never miss a true

error condition (false negatives) while keeping the number of safe events that are flagged as

errors (false positives) as close to zero as possible. While we still wish to adapt dataflow analysis

techniques, we will make the final observation that behaving conservatively guarantees zero false

negatives and retains the flavor of dataflow analysis. In fact, we will show that with only two

passes over each block, we can reach a conclusion about metadata state with zero false negatives.

In this model, there is only a bounded degree of arbitrary interleaving: our dataflow analysis

30



is done on subgraphs of three contiguous epochs only. Because the analysis considers only three

epochs at a time, we introduce state, not normally necessary in dataflow problems. We will call

Strongly Ordered State (SOS) the state resulting from events that are known to have already

occurred, i.e., state resulting from instructions executed at least two epochs prior. This state is

globally shared. For each block (l, t) there is also a concept of Local Strongly Ordered State

(LSOS), which is the SOS modified to take into account that, from the perspective of the body

block (l, t), all instructions in the head of the butterfly have also executed.

2.3 Background: Cache Coherence and Relaxed Memory Con-

sistency Models

In this section, we discuss one of the challenges facing parallel programmers: how relaxed mem-

ory consistency models affect program semantics by permitting shared-memory interactions that

seemingly conflict with program order. One of this thesis’ major contributions is its ability to

support dynamic parallel monitoring on shared-memory relaxed memory consistency models

so long as the machine provides cache coherence and does not violate intra-thread data depen-

dences.

2.3.1 Preserving Program Ordering Within Threads

Processor pipelines are frequently taught as a simple five-stage process: instruction fetch, de-

code, execute, memory and write-back, where the instruction fetch stage processes instructions

in program order. In reality, modern processors deploy dynamic scheduling, effectively reorder-

ing instructions to reduce pipeline stalls without affecting accuracy for a single thread. Dynamic

scheduling leverages instruction-level parallelism to execute instructions Out-of-Order (OoO)

while maintaining sequential semantics within a thread [50]. In order to maintain sequential

semantics, processors must respect data dependences. By preserving intra-thread data depen-
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dences, dynamic scheduling can improve single-threaded performance without affecting single-

threaded correctness [50].

2.3.2 Reasoning About Orderings Across Threads on Parallel Machines

While dynamic scheduling provides sequential semantics to a single thread, on shared-memory

multiprocessors instruction reordering can cause the effects of a given thread’s instructions to

become visible to other threads out of program order. Absent sufficient synchronization, shared-

memory interactions between threads, or inter-thread data dependences, are non-deterministic.

Cache coherence guarantees that, for a particular memory location, there exists a hypothetical

total order of all memory accesses (reads and writes) across all threads which is consistent with

the order the individual processors issued the accesses and where the values returned by a read

come from the most recent write to the same memory location [28].8 There are two key properties

to cache coherence: write serialization, meaning all writes to a single memory location are seen

in the same order by all processors, and write propagation, meaning all writes eventually become

visible (i.e., writes cannot be buffered indefinitely) [28, 51]. Cache coherence dictates that writes

to a single location must propagate and become visible, but does not dictate when writes actually

become visible; furthermore, the serialization property of cache coherence is limited to a single

memory location.

In contrast, memory consistency addresses two complementary challenges: when must writ-

ten values become visible to other threads via reads, and what properties hold concerning reads

and writes to different memory locations [28, 51]. Memory consistency dictates which reorder-

ing operations are allowed and when writes become visible to other threads. To aid programmers,

processor vendors provide ordering and synchronization primitives which disallow certain pro-

cessor reorderings and can aid in writing correct programs. [4].

8While some processors, such as the Intel Single-Chip Cloud Computer, have shipped without providing co-
herence, most commodity CPUs do provide coherence [28] . The results in this thesis are limited to coherent
processors.
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Sequential Consistency: An Intuitive Memory Consistency Model

Perhaps the most intuitive memory consistency model is sequential consistency (SC). Sequential

consistency is the closest analogue to single-processor sequential execution. The guarantee made

by a SC processor is that there exists a total order of application instructions across all threads

which is consistent with program order across each thread. Unfortunately, while this is the most

intuitive memory consistency model for programmers to reason about, it is also one of the most

constraining, as it disallows many compiler and hardware optimizations. For this reason, modern

processors do not provide sequential consistency.

2.3.3 Cache Coherence

While most processors do not provide SC, they do provide cache coherence. Recall that cache

coherence guarantees that there exists a hypothetical total order of all memory accesses (reads

and writes) across all threads which is consistent with the order the individual cores issued the

accesses and where the values returned by a read come from the most recent write to the same

memory location [28]. Unlike sequential consistency, cache coherence provides guarantees only

with respect to a particular memory location and the memory accesses (which can appear to be-

come decoupled from the actual instructions) associated with that location. The ordering is only

“hypothetical” because while all writes are serialized with respect to each other, reads which

return the value of a particular write operation are not necessarily ordered with respect to each

other, and instead ordered with respect to the immediately preceding and succeeding write oper-

ations.

Cache coherence is a property of a shared memory machine, implemented by a cache co-

herence protocol. On modern processors, it is insufficient to merely claim that a protocol is

correct; cache coherent protocols are subject to formal verification using a variety of tech-

niques [12, 16, 29, 55, 88–90, 105, 107]. Among the many techniques [88], some explicitly

support relaxed memory consistency models [90] or heterogeneous coherence hierarchies [16],
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while others verify the behavior of the interconnect [107]. The most commonly-taught family

of coherence protocols, MSI/MESI [28], have undergone verification [29, 55]. While actual

processor coherence protocols may be considered proprietary, companies internally perform ver-

ification to ensure correctness of their coherence protocol [12].

The MSI/MESI family of coherence protocols include different subsets of several states:

modified (M), exclusive (E), shared (S), invalid (I) [28, 115]. The three most critical, hinted

at by the MSI protocol, are the modified, shared and invalid states. This corresponds easily

with the SWMR property (single-writer–multiple-reader) set forth by Wood et al. [115], which

explains coherence as a per-memory-location timeline of epochs, where in each epoch either

exactly one thread is a writer or many threads can be reading. Likewise, MSI guarantees that

at any point in time, exactly one thread is the writer (modified) or many threads are readers

(shared)9 MESI builds upon MSI by adding an exclusive state. 10 The correspondence between

MSI and SWMR should be clear; SWMR simply tracks transitions between MSI states over

time, particularly between whether any thread is in the M (corresponding to an exclusive writer)

versus S (corresponding to multiple readers).

It is important to note that cache coherence makes no guarantees that coherence arcs between

independent locations can be combined to form a total order of application events without cycles.

The interactions between independent memory location are handled by memory consistency,

not coherence. Furthermore, coherence specifies that all operations to a given address can be

serialized but does not specify when a given write must become visible; this is again specified

by consistency [28].

9The invalid state indicates that while a block may be present in the cache, it has been invalidated by another
core and cannot be safely read or written to without generating coherence traffic to transition into the modified or
shared states.

10There are other members of this family, e.g., MOESI, which for simplicity are not discussed here.
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2.3.4 Relaxed Consistency Models

Instead of sequential consistency, modern processors provide a range of relaxed memory con-

sistency models [2, 46, 72, 112]. Consistency models range from more formal specifications,

such as release consistency [41] to the more descriptive specifications published by processor

manufacturers [2, 46, 72, 112]. The formal models [41, 101] tend to be clearer with less arbi-

trary edge cases, whereas manufacturers’ descriptive specifications are less clear and may carve

out certain behaviors with no guarantees. At the same time, manufacturer’s consistency models

match actual commodity processors for sale today. While some more theoretical models, such

as x86-TSO [101] have been proposed, they are not a perfect match to processor semantics. For

instance, while x86 appears to provide total store order (TSO), it deviates on an entire class of

operations, namely, stores of size larger than 1B that are non-aligned. We easily verified that in

the event of a processor issuing a write to a non-aligned word that wraps two cache lines, x86

does not even guarantee write atomicity. Compared with PowerPC and ARM, which provide

very relaxed consistency models [46, 72], Intel and AMD via x86 and IA-64 provide a much

stronger consistency model [2]. SPARC frequently offers a programmer a choice of consistency

model: TSO, as well as progressively weaker memory models such as Partial Store Order (PSO)

and Relaxed Memory Order (RMO) [112]. Programs written for RMO will work on TSO and

PSO, but the opposite is not guaranteed.

Adve and Gharachorloo [4] performed a survey of shared memory consistency models, which

showed that consistency models can be roughly classified along three axes. The first axis mea-

sures which memory ordering relationships (e.g., read-to-read, write-to-read, read-to-write and

write-to-write) can be relaxed among non-causally related, or non-dependent, memory locations.

The second axis corresponds to write visibility, in particular two conditions: (1) whether a thread

can read its own write early and (2) whether a thread can read others’ writes early. The third

axis concerns itself with what ordering primitives the architecture makes available to program-

mers to prevent reordering. For instance, on strong consistency models like TSO, it is sufficient
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to transform reads and writes with a sequence of “read-modify-write”; for a read, this implies

that the write is writing the same value as the read; to transform a write into a read-modify-

write, the value written is unaffected by the read. On more relaxed architectures such as release

consistency, special release and acquire instructions are available to the programmer, and these

instructions carry specific semantics.

It is the programmer’s job to adequately synchronize his/her program (e.g., eliminate data

races) using the available ordering primitives. While many relaxed consistency models provide

sequentially consistent semantics to data-race-free programs [41–43], the behavior of insuffi-

ciently synchronized programs is limited only by the specification of the consistency model.

2.3.5 This Thesis: Leverage Cache Coherence and Respect of Intra-Thread

Data Dependences

In this thesis, we present dataflow analysis-based dynamic parallel monitoring. One particular

restriction of dataflow analysis-based dynamic parallel monitoring is that lifeguards written in

this framework cannot combine metadata for two different memory locations. This restriction is

inspired by the interplay of consistency models and coherence. On the one hand, how accesses to

two different memory locations can be reordered depends entirely on the specific memory consis-

tency model. On the other hand, regardless of the memory consistency model, cache coherence

guarantees a total order of conflicting accesses to the same memory location. By restricting

our focus to processors that (1) support cache coherence and (2) respect intra-thread data de-

pendences, we can provide provable guarantees for our dynamic analysis framework across all

relaxed consistency models, as long as our analysis is restricted to analyzing one memory loca-

tion at a time. To meet this restriction, we will not support analyses that combine metadata for

independent memory locations.

For example, an analysis that counts the number of stores to memory locations m such m ≡ 2

mod 3 combines metadata for m and m + 3, among other locations–this analysis cannot be
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supported by dataflow analysis-based dynamic parallel monitoring. In contrast, an analysis that

computes the parity of the number of stores for each memory location m in the program maintains

metadata separately for each location m; this analysis can be supported by dataflow analysis-

based dynamic parallel monitoring. Almost every commodity processor on the market satisfies

both (1) and (2) [2, 46, 72, 112].

2.4 Model of Thread Execution: Supporting Relaxed Mem-

ory Models

In the previous section, we discussed relaxed memory consistency models and cache coherence.

With this background at hand, we can now finish building the thread execution model that But-

terfly Analysis depends on.

Our butterfly framework is well-suited to relaxed memory models. There are relaxed assump-

tions on when a memory access becomes globally visible (two epochs later). There are relaxed

assumptions on memory access interleavings within a sliding window. In fact, the analysis ac-

counts for different threads possibly observing different orderings of the same accesses, e.g., two

writes A and B such that thread 1 may observe A before B while thread 2 may observe B before

A. We make only the weak assumptions that (i) from a given thread’s view, its own intra-thread

dependences are respected, and (ii) cache coherency orders writes to the same address. As dis-

cussed in Sections 3.1 and 3.3, our analysis for what happens at other threads is based on set

operations; set union and intersection are both commutative operations, and set difference only

becomes a problem if we change metadata before an instruction was able to read it, which will

not happen given our above weak assumptions.

This suffices for our reaching definitions and available expressions analyses in Section 3.1,

and hence any lifeguards based on them. However, for lifeguards such as TAINTCHECK, there

may be more false positives with relaxed models than when assuming sequential consistency (as

37



discussed in Section 3.3.2).

2.4.1 Lifeguards As Two Pass Algorithms

We describe a two-pass algorithm for a generic lifeguard, based on the observation that starting

with the global SOS as the default state, lifeguard checks can be influenced by local state and/or

state produced by the wings. We split our algorithm into two passes accordingly.

In the first pass, we perform our dataflow analysis using locally available state (i.e., ignoring

the wings), and produce a summary of lifeguard-relevant events (step 1). Next, the threads com-

pute the meet of all the summaries produced in the wings (step 2). In a second pass, we repeat our

dataflow analysis, this time incorporating state from the wings, and performing necessary checks

as specified by the lifeguard writer (step 3). Finally, the threads agree on a summarization of the

entire epoch’s activity, and an update to the SOS is computed (step 4).

The lifeguard writer specifies the events the dataflow analysis will track, the meet operation,

the metadata format, and the checking algorithm. Examples will be given in Section 3.3.

2.4.2 Valid Ordering

We introduce the concept of a valid ordering Ol, which is a total sequential ordering of all

the instructions in the first l epochs, where the ordering respects the assumptions of butterfly

analysis. More formally:

Definition 2.4.1. Ol is a valid ordering (VO) if:

◦ INCLUDES ALL INSTRUCTIONS THROUGH EPOCH l

All instructions from epochs 0 to l are included exactly once, with no instructions from epochs

> l included.

◦ NON-ADJACENT EPOCHS ARE ORDERED Instructions in non-adjacent epochs are ordered,

e.g., all instructions in epoch k occur before any instructions in epoch k + 2 ∀0 ≤ k ≤ l.
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◦ INSTRUCTIONS IN WINGS ARE CONCURRENT Instructions in block (k, t) can interleave

arbitrarily with instructions in blocks (k − 1, t′), (k, t′) and (k + 1, t′) for any thread t′ 6= t.

◦ [IF ASSUMING SEQUENTIAL CONSISTENCY] INSTRUCTIONS IN A THREAD ARE SEQUEN-

TIALLY ORDERED Restricting Ol to thread t yields the trace of instructions for thread t in

program order. This assumption will be ignored for relaxed memory models.

A path to an instruction (block) is the prefix of a valid ordering that ends just before the

instruction (the first instruction in the block, respectively).

We observe that the set of valid orderings is a superset of the possible application orderings11:

Nearly all machines support at least cache coherency, which creates a globally consistent total

order among conflicting accesses to the same location. Because our analysis considers each

definition event independently, our approach has no false negatives (as argued in Section 2.4),

even for relaxed memory models. This approach aligns well with guarantees of cache coherence,

which only promises ordering of causally related memory locations.

We will not claim that we can construct an ordering for multiple locations simultaneously.

We expect to conclude that two instruction definitions dk and dj both reach the end of epoch l

even if the program semantics state exactly one of dk and dj will reach that far. We use valid

orderings as a conservative approximation of what orderings a given thread could have observed.

Valid orderings are a key contribution of the thread execution model. In fact, when we provide

correctness proofs in the following chapters they will almost always be in reference to valid

orderings12.

Valid Orderings Do Not Imply Sequential Consistency

There may appear to be a contradiction between the use of valid orderings in proofs throughout

this thesis, such as those in later chapters, and the claim that dataflow analysis-based dynamic
11Note that the set of all possible application orderings does not imply that there exists any one application

ordering that all threads agree on. Our use of valid orderings is to prove existential or universal guarantees. For
example, if under all valid orderings an address m is untainted, then it must also be the case that every thread
agrees m is untainted, even if they have differing views on instruction ordering.

12In Chrysalis Analysis, they will be to a refinement of valid orderings known as valid vector orderings.
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parallel monitoring supports relaxed memory consistency models. The use of valid orderings

does not imply an assumption of sequential consistency. In Section 2.3, we acknowledged a key

restriction: lifeguards written in this framework cannot group metadata for two different memory

locations, e.g., we cannot have a lifeguard that counts the number of memory locations m such

m ≡ 2 mod 3.

The proofs presented for reaching definitions, available expressions and ADDRCHECK reason

about the metadata status for exactly one memory location at a time. As discussed in Section 2.3,

when restricting focus to a single memory location, cache coherence guarantees a hypothetical

total order of reads and writes exists consistent with each thread’s execution. For instance, a

definition d is only killed by a subsequent redefinition of d–mapping to the same location. An

expression e is killed if any of its constituent (memory) operands has a new value written to it.

Whether a memory location acquires a new value is determined independently. ADDRCHECK

reasons about whether accesses/frees to a memory location m are always to allocated data; the

metadata status for m depends solely on changes to m’s allocation status. While valid orderings

include all instructions, each proof relies only on cache coherence and respect of intra-thread

data-dependences.13

The use of additional instructions, such as all instructions belonging to epoch l, within the

definition of valid orderings was designed to (1) make the definition simple, (2) easily extend

to TAINTCHECK and, primarily, (3) lead more naturally to summaries of epochs and (4) enable

proofs about the SOS, which summarizes the effects of all prior instructions. Valid orderings

are so named since they do not violate any of the fundamental assumptions of the butterfly

thread execution model: all valid orderings will always enforce the ordering relation between

instructions from non-adjacent epochs while considering instructions from adjacent epochs to be

concurrent.

13ADDRCHECK additionally requires correct annotations of free/malloc calls.
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TAINTCHECK: Inheritance Complications

The proofs and mechanisms presented for TAINTCHECK require inheritance, but never more

than the combination of (1) respect of intra-thread data dependences and (2) cache coherence.

Our reliance on cache coherence for TAINTCHECK is similar as for other lifeguards: when anal-

ysis is restricted to a single address, cache coherence orders all competing accesses to the same

memory location.

The presence of inheritance within TAINTCHECK complicates analysis. The sequence of

instructions $r1 ← b; $r2 ← c; $r2 ← $r2 + $r1; a ← $r2; in one thread

implies a = b + c, meaning a inherits its metadata from b and c. Unlike prior lifeguards, to

resolve metadata for a, TAINTCHECK requires knowing the metadata values of b and c. Note,

however, that this metadata dependence aligns exactly with an intra-thread data-dependence: for

a to inherit from b and c, a must be data dependent on both b and c!

TAINTCHECK introduces a resolve algorithm, first in Section 3.3.2 and later in Sec-

tions 4.5, 5.5 and 5.7, to resolve the metadata for a taking into account inheritance from parents

b and c. In particular, when recursively resolving metadata for b and c, resolve may recur-

sively need to resolve another thread’s computation b = d + e. Once more, such inheritance

by lifeguard metadata results directly from intra-thread data dependences within the actual ap-

plication. While the resolve algorithm does restrict the order in which it recursively explores

parents, for relaxed memory models these constraints effectively require (1) respect of ordering

constraints among non-adjacent epochs and (2) never repeating the same instruction. Instruc-

tions can (deliberately) be explored out of program order, in order to support weak consistency

models such as PowerPC and ARM which aggressively reorder instructions – but never violate

intra-thread data dependences when doing so [46, 72].
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2.5 Chapter Summary

In this chapter, we have motivated the design decisions in creating the thread execution model

which will be referenced throughout this thesis. We explored why a CFG-like representation was

our initial inspiration as well as the drawbacks to the naive extension of control flow graphs to the

domain of dynamic parallel monitoring. We introduced the thread execution model designed for

Butterfly Analysis, which bounds system concurrency without requiring access to inter-thread

data dependences. We motivated how this framework avoids the pitfalls that a CFG-like rep-

resentation would otherwise incur. We explored background related to shared-memory relaxed

consistency models as well as cache coherence. We showed how our thread execution model

was designed to support any shared-memory relaxed memory consistency model so long as it

provides cache-coherence. We defined valid orderings, a construct tied to our thread execution

model which enables the proofs, and showed how the use of valid orderings as a proof mechanism

never requires more than (1) cache coherence and (2) respect of intra-thread data dependences.

In Chapter 3, which follows, we will show how to build on this thread execution model to

enable Butterfly Analysis, prove correctness guarantees and experimentally evaluate a prototype

implementation.
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Chapter 3

Butterfly Analysis: Adapting Dataflow

Analysis to Dynamic Parallel Monitoring

In Chapter 2, we explored the derivation of a thread execution model used in Butterfly Analy-

sis. In particular, we showed how, by dividing dynamic execution into epochs, we could bound

concurrency to a three epoch window. Within the three epoch window, we derived the butterfly,

shown in Figure 2.6, and showed how it models concurrency in the wings of the butterfly while

respecting that the head of the butterfly effectively executes before the body which itself effec-

tively executes before the tail.1 Even when concurrent interactions are constrained to a three

epoch sliding window, the epochs are sized on the order of thousands to tens of thousands of in-

structions per thread (or more); exploring the entire space of potential interactions can still lead

to a combinatorial explosion of interleavings that would have to be examined. In this chapter,

we will explore how adapting dataflow analysis to a dynamic setting allowed us to present an

efficient parallel dynamic analysis framework.

1Any reorderings are guaranteed to preserve intra-thread data dependences, so from a thread’s perspective of its
own execution, it is as though it executed in program order.
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3.1 Butterfly Analysis: A Dataflow Analysis-Based Dynamic

Parallel Monitoring Framework

This section presents our dataflow analysis-based dynamic parallel monitoring framework, called

Butterfly Analysis. Where our derivation of the thread execution model in Chapter 2 drew on

domain knowledge of both parallel computer architecture and compiler analysis, here our so-

lution draws inspiration from a particular area of static dataflow analysis, namely region-based

analysis.2 Specifically, we adapt reaching definitions and available expressions [5], two simple

forward dataflow analysis problems that exhibit a generate/propagate structure common to many

other dataflow analysis problems, to a new, dynamic setting of parallel online program moni-

toring. Previous studies [23, 124, 125] have shown that this propagate/generate structure is a

common structure for lifeguards, including lifeguards that check for security exploits, memory

bugs, and data races.

In this section, we show how reaching definitions and available expressions can be formulated

as generic lifeguards using butterfly analysis. In standard dataflow analysis, there are equations

for calculating IN, OUT, G and K (e.g., OUT = G ∪ (IN − K)). Our approach extends beyond

these four, as discussed below. In our setting, the lifeguard’s stored metadata tracks definitions or

expressions, respectively, that are known to have reached epoch l. While the generic lifeguards

do not define specific checks, their IN and OUT calculations provide the information useful

for a variety of checks. (Section 3.3 shows how our generic lifeguards can be instantiated as

ADDRCHECK and TAINTCHECK lifeguards.)

The key to our efficient analysis is that we formulate the analysis equations to fit the butterfly

assumptions, as follows:

• We perform our analysis over a sliding window of three epochs rather than the entire

execution trace. This not only enables our analysis to proceed as the application executes,

2Region-based analysis is alternatively known as interval analysis.
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it also bounds the complexity of our analysis.

• We require only two passes over each epoch. The time per pass is proportional to the

complexity of the checking algorithm provided by the lifeguard writer.

• We introduce state (SOS) that summarizes the effects of instructions in the distant past (i.e.,

all instructions prior to the current sliding window). This enables using a sliding window

model without missing any errors.

• The symmetric treatment of the instructions/blocks in the wings means we can efficiently

capture the effects of all the instructions in the wings. To do so, we add four new primitives:

GEN-SIDE-IN, GEN-SIDE-OUT, KILL-SIDE-IN and KILL-SIDE-OUT, as defined below.

In the following sections, Gl,t,i, Kl,t,i, Gl,t and Kl,t refer to their sequential formulations, either

over a single instruction (l, t, i) or an entire block (l, t). GEN-SIDE-OUTl,t will calculate the

elements (definitions or expressions) block (l, t) generated that are visible when (l, t) is in the

wings of a butterfly for block (l′, t′). Likewise, KILL-SIDE-OUTl,t calculates the elements block

(l, t) kills that are visible when (l, t) is in the wings for block (l′, t′). GEN-SIDE-INl′,t′ and

KILL-SIDE-INl′,t′ combine the GEN-SIDE-OUT and KILL-SIDE-OUT, respectively, of all blocks

in the wings of block (l′, t′). The strongly ordered state SOSl, parameterized by an epoch l, will

contain any elements no later than epoch l − 2 that could reach epoch l.

3.2 Butterfly Analysis: Canonical Examples

To motivate our work, we examine Figure 3.1, a available expressions example.

Processing an Epoch

First, we note that for any sliding window of size 3, the strongly ordered states SOSl−1, SOSl

and SOSl+1, which summarize execution through epochs l− 3, l− 2, and l− 1, respectively, are

available after the lifeguard has consumed events through l− 1. This can be shown by induction,
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KSO:
a-b

a-b ∈ SOSl

b=b+1
y=a+b

LSOS(l,2)

(a) 1st Pass: Compute
KILL-SIDE-OUT (KSO)

a-b ∈ SOSl

LSOS (l-1,1)

KSO:
∅

a=a+1
c=a+b

LSOS (l,1)

KSO:
a-b

KSI: a-b

LSOS (l+1,1)

KSO:
∅

b=b+1
y=a+b

LSOS (l,2)

KSO:
a-b

d=a+b

LSOS (l-1,3)

KSO:
∅

LSOS (l,3)

KSO:
∅

LSOS (l+1,3)

KSO:
∅

meet

b=b+1
y=a+b

LSOS (l,2)
KSI:
a-b

(b) 2nd Pass: Aggregate KSOs from the wings, combine
into KILL-SIDE-IN

Figure 3.1: Computing KILL-SIDE-OUT and KILL-SIDE-IN in available expressions, from the per-
spective of the body, block (l, 2), of the butterfly. Boxes with beveled edges are summaries.

as follows. The very first butterfly uses only epochs 0 and 1, and has SOS0 = SOS1 = ∅.

After concluding all butterflies with bodies in epoch 0, we have SOS2 as well. From then on, we

inductively have the correct SOS for each epoch in the butterfly.

Now consider Figure 3.1(a). The LSOS is available for block (l, 2) because the head (not

shown) is available and so is SOSl. In our first pass we discover that block (l, 2) kills expression

a-b through a redefinition of b. The epoch’s summary need only be generated once (in available

expressions, the summary contains the killed expressions), so we do not need to regenerate the

summary as the block changes position in the sliding window. After the first butterfly, we are

performing a first pass only on the blocks in the newest epoch under consideration; the summaries

for older blocks have already been completed.

Using that information, we now examine Figure 3.1(b). This shows the entire butterfly for

block (l, 2). As part of step 2, summaries from all blocks in the wings (computed earlier, as

argued above) are first collected and combined (represented by the circle labeled “meet”), pro-
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ducing one summary for the entire wings (in available expressions, this is KILL-SIDE-INl,2).

(Note: The meet function for KILL-SIDE-OUT is not the standard available expressions inter-

section, but rather computed as the union. This is explained in Section 3.2.2.) Finally, (l, 2)

repeats its analysis and performs checks (step 3), noting that it is not the only block to kill a-b.

Once the second pass is over, an epoch summary is created (step 4, not shown). In the

example, epoch l witnesses the killing of expression a-b, as well as the generation of expression

a+b. Any ordering of instructions in epochs l − 1 and l (empty blocks contain no instructions

relevant to the analysis) yields a + b defined at the end. Hence, a+b is added to SOSl+2, and

a-b is removed.

Note that there is a single writer for each of the data structures (one of the threads can be

nominated to act as master for global objects such as the SOS), and objects are not modified

after being released for reading. Hence, synchronizing accesses to the lifeguard metadata is

unnecessary.

In Sections 3.2.1 and 3.2.2, we will formalize the well-known problems of reaching defini-

tions and available expressions [5] using butterfly analysis.

Valid Ordering

Recall the definitions of valid orderings and paths from Section 2.4.2: A valid ordering Ok is a

total sequential ordering of all the instructions in the first k epochs, where the ordering respects

the assumptions of butterfly analysis. A path to an instruction (block) is the prefix of a valid

ordering that ends just before the instruction (the first instruction in the block, respectively).

We observe that the set of valid orderings is a superset of the possible application orderings:

Nearly all machines support at least cache coherency, which creates a globally consistent total

order among conflicting accesses to the same location. Because our analysis considers each

definition event independently, our approach has no false negatives (as argued in Section 2.4),

even for relaxed memory models.
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We will not claim that we can construct an ordering for multiple locations simultaneously.

We expect to conclude that two instruction definitions dk and dj both reach the end of epoch l

even if the program semantics state exactly one of dk and dj will reach that far. We use valid

orderings as a conservative approximation of what orderings a given thread could have observed.

3.2.1 Dynamic Parallel Reaching Definitions

In Butterfly Analysis, generating a definition is global; a definition in block (l, t) is conserva-

tively considered visible to any block (l′, t′) in its wings, and vice versa. Conversely, killing

a definition in butterfly analysis is inherently local; it only kills the definition at a particular

point in that block, making no guarantee about whether the definition may still reach by a dif-

ferent path or even a later redefinition in the same block. For this reason, we conservatively set

KILL-SIDE-OUTl,t = KILL-SIDE-INl,t = ∅ in our reaching definitions analysis, and do not rely

on these primitives.

Generating and Killing At The Block Level

Let Gl,t,i be the set of definitions generated by instruction (l, t, i): Gl,t,i = {d} if and only if

instruction (l, t, i) generates definition d, and is empty otherwise. Similarly, letKl,t,i be the set of

definitions killed by instruction (l, t, i). Define Gl,t,(i,i) = Gl,t,i and Gl,t,(i,j) = Gl,t,j ∪ (Gl,t,(i,j−1)−

Kl,t,j) for j > i. We can assume a symmetric definition for Kl,t,(i,j). Then for a block (l, t) of

n + 1 instructions, let Gl,t = Gl,t,(0,n) and Kl,t, = Kl,t,(0,n).

Let GEN-SIDE-OUTl,t represent the set of generated definitions a block (l, t) exposes to an-

other block (l′, t′) anytime it is in the wings of a butterfly with body (l′, t′). Because the body of

the butterfly can execute anywhere in relation to its wings, we must take the union of the Gl,t,i.

Let GEN-SIDE-INl,t represent the set of expressions visible to block (l, t) that are killed by the

wings.

GEN-SIDE-OUTl,t =
⋃
i Gl,t,i
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GEN-SIDE-INl,t =
⋃
l−1≤l′≤l+1

⋃
t′ 6=t GEN-SIDE-OUTl′,t′

In reaching definitions, KILL-SIDE-IN = KILL-SIDE-OUT = ∅, as no block has enough infor-

mation to know that along every path to a particular instruction, definition d has been killed.

Generating and Killing Across An Epoch

The concept of an epoch does not exist in standard reaching definitions. We will propose exten-

sions to generating and killing that allow us to summarize the actions of all blocks in a particular

epoch l. These definitions will enable us to define reaching an entire epoch l to mean that there

is some valid ordering of the instructions in the first l epochs such that running a sequential

reaching definitions analysis will conclude that dk reaches. We calculate:

Gl =
⋃
t Gl,t

Kl =
⋃
t(Kl,t ∩ (

⋃
t′ 6=tK(l−1,l),t′ ∪ NOT-G(l−1,l),t′))

where K(l−1,l),t = (Kl−1,t − Gl,t) ∪ Kl,t

and NOT-G(l−1,l),t = {dk|dk /∈ Gl−1,t ∧ dk /∈ Gl,t}

Intuitively, the formula for Gl states that any particular definition that can reach the end of a

block may reach the end of an epoch, because there is a valid ordering such that the instructions

in block (l, t) are last. Likewise, the formula for Kl indicates it is harder to kill a definition dk,

as at least one block (l, t) must explicitly kill dk and all other threads must either not generate dk

or else kill dk (technically, not-generating and killing must span the two epochs l − 1 and l, as

indicated in the formulas).

We define the set G(Ok) to be the set of definitions that, if we were to execute all instructions

in order Ok, would be defined at the end of Ok. The correctness of Gl and Kl are shown by the

following lemma:

Lemma 1. If dk ∈ Gl then there exists a valid ordering Ol such dk ∈ G(Ol). If dk ∈ Kl then

under all valid orderings Ol, dk /∈ G(Ol).

Proof. Each statement is proved independently.
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If dk ∈ Gl then there exists a valid ordering Ol such that dk ∈ G(Ol).

If dk ∈ Gl, then there is some block (l, t) such that dk ∈ Gl,t, implying there exists some index

i such that dk ∈ Gl,t,i ∧ ∀j > i, dk /∈ Kl,t,j . Then Ol is any valid ordering where the instructions

in block (l, t) are last.

If dk ∈ Kl then under all valid orderings Ol, dk /∈ G(Ol).

This follows by construction. If dk ∈ Kl then there exists at least one thread t such that

dk ∈ Kl,t. For all other threads t′ 6= t it must be the case that dk was killed during epochs l − 1

through l and not subsequently regenerated, or else that it was simply not generated. Either way,

any possible instruction that generates dk is followed by a kill of dk within the same thread. So,

dk is not generated by epochs l or l − 1, and the KILL in block (l, t) occurs strictly after any

GEN in epochs l − 2 or earlier.

Note that while we construct valid orderings Ol for all instructions in epochs [0, l], our proof

only relies on the ability to order instructions that affect d.

Updating State

Any definition dk ∈ SOSl was generated by an instruction that came strictly earlier than any

instruction in epoch l. We require the following invariant for SOSl:

dk ∈ SOSl if and only if ∃Ol−2 s.t. dk ∈ G(Ol−2)

To achieve this, we use the following rule for updating SOS:

SOSl := Gl−2 ∪ (SOSl−1 −Kl−2) ∀l ≥ 2

SOS0 = SOS1 = ∅

Lemma 2. SOSl := Gl−2 ∪ (SOSl−1 −Kl−2) achieves the invariant.

Proof. Base Case. SOS0 = SOS1 = ∅. According to the invariant, we wish to show SOS2 =

G(O0) = G0.

50



Any definition dk ∈ SOS2 must be generated by some instruction (0, t, i) in block (0, t),

implying it is in G(0,t) and G0. We can construct a valid ordering O0 with all instructions in block

(0, t) last, so the invariant is satisfied.

Inductive hypothesis: If s ≤ l, SOSs := Gs−2 ∪ (SOSs−1 −Ks−2) achieves the invariant.

Inductive step: Consider the SOS for epoch l +1. It must include everything generated by epoch

l − 1, which is Gl−1. Now, we must consider how many definitions dk ∈ SOSl ∧ dk /∈ SOSl+1,

which are precisely those definitions dk such that for all valid orderings, epoch l−1 kills dk. This

is exactly what Kl−1 calculates; the elements of Kl−1 are precisely those that should be removed

from the SOSl when creating SOSl+1. This yields the equation: SOSl+1 = Gl−1

⋃
(SOSl −

Kl−1).

Recall that the Local Strongly Ordered State for a block (l, t), denoted LSOSl,t, represents

the SOSl augmented to include instructions in the head that were already processed. The invari-

ant required for the LSOS is:

dk ∈ LSOSl,t iff ∃ valid ordering O of instructions in epochs [0, l − 2] and block

(l − 1, t) s.t. dk ∈ G(O)

To achieve this, we use the following LSOS update rule:

LSOSl,t = Gl−1,t ∪ (SOSl −Kl−1,t)∪

{dk|dk ∈ SOSl ∧ dk ∈ Kl−1,t ∧ ∃t′ 6= t s.t. dk ∈ Gl−2,t′}

Let LSOSl,t,k denote the LSOS after k instructions have executed.

LSOSl,t,k =


LSOSl,t if k = 0

Gl,t,k−1 ∪ (LSOSl,t,k−1 −Kl,t,k−1) ow

This is the standard OUT = G ∪ (IN − K) formula, with LSOSl,t,k−1 acting as IN and

LSOSl,t,k as OUT.
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Calculating In and Out

Let INl,t,0 = INl,t represent the set of definitions that could possibly reach the beginning of block

(l, t). INl,t should be the union of the set of valid definitions along all possible paths to instruction

(l, t, 0). Let INl,t,i be the set of definitions that reach instruction (l, t, i). We have:

INl,t = GEN-SIDE-INl,t
⋃

LSOSl,t

INl,t,i = GEN-SIDE-INl,t ∪ LSOSl,t,i

Let OUTl,t,i and OUTl,t be the sets of definitions that are still defined after executing instruction

(l, t, i) or block (l, t), respectively:

OUTl,t,i = Gl,t,i
⋃

(INl,t,i −Kl,t,i)

OUTl,t = Gl,t
⋃

(INl,t −Kl,t)

Using reaching definitions as a lifeguard, we have now shown how to compute the checks, the

OUT computation.

Applying the Two-Pass Algorithm

We can now set our parameters for the two-pass algorithm proposed in Section 2.4.1. For step 1,

our local computations are Gl,t, Kl,t and LSOSl,t. These are used for our checking algorithm.

The summary information is GEN-SIDE-OUTl,t. For step 2, the meet function is ∪, calculated

over the GEN-SIDE-OUT from the wings, to get GEN-SIDE-INl,t. We then use GEN-SIDE-INl,t

to perform our second pass of checks (step 3). Finally, we use Gl and Kl to update the SOS

(step 4).

3.2.2 Dynamic Parallel Available Expressions

An expression e reaches a block (l, t) only if there is no path to the block that kills e, i.e., no valid

ordering in which e is killed before the first instruction of the block, as available expressions is a

must analysis. In such cases, there is no need to recompute the expression. However, if any path

to the block kills e, then there is no guarantee that e is precomputed and we must recompute it
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in block (l, t). With reaching definitions, dk reaches a particular point p if in at least one valid

ordering dk reaches p; in available expressions, ek only reaches p if in all valid orderings ek

reaches p. This gives some intuition that K in available expressions behaves like G in reaching

definitions, and likewise G in available expressions behaves like K in reaching definitions.

Let Gl,t,i be the set of expressions generated by instruction (l, t, i): Gl,t,i = {ek} if and only if

instruction (l, t, i) generates expression ek, and is empty otherwise. Similarly, let Kl,t,i be the set

of expressions killed by instruction (l, t, i). We calculate Gl,t and Kl,t as usual.

Let KILL-SIDE-OUTl,t represent the set of killed expressions a block (l, t) exposes to another

block (l′, t′) anytime it is in the wings of a butterfly with body (l′, t′). Because the body of the

butterfly can execute anywhere in relation to its wings, we must take the union of the Kl,t,i.

Let KILL-SIDE-INl,t represent the set of expressions visible to block (l, t) that are killed by the

wings.

KILL-SIDE-OUTl,t =
⋃
iKl,t,i

KILL-SIDE-INl,t =
⋃
l−1≤l′≤l+1

⋃
t′ 6=t KILL-SIDE-OUTl′,t′

In available expressions, GEN-SIDE-IN = GEN-SIDE-OUT = ∅ for the same reason that

KILL-SIDE-IN = KILL-SIDE-OUT = ∅ in reaching definitions; no block has enough infor-

mation to know that every path to a particular instruction has generated a particular expression.

The properties we desire for Gl and Kl are roughly the opposite of those from reaching defi-

nitions.

Kl =
⋃
tKl,t

Gl =
⋃
t(Gl,t ∩ (

⋃
t′ 6=t G(l−1,l),t′ ∪ NOT-K(l−1,l),t′))

where G(l−1,l),t = (Gl−1,t −Kl,t) ∪ Gl,t

and NOT-K(l−1,l),t = {ek|ek /∈ Kl−1,t ∧ ek /∈ Kl,t}

The correctness of Kl and Gl follows along the lines of the proof of Lemma 1, with the roles of

G and K reversed.
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Updating State

The SOS has the same equation and update rule as described in Section 3.2.1. The LSOS has

a slightly different form, reflecting the different roles G and K play. In available expressions,

an expression only reaches an instruction (l, t, i) if it has been defined along all paths to the

instruction. So, if ek ∈ SOSl ∧ ek /∈ Kl−1,t, then ek ∈ LSOSl,t because ek is calculated along all

paths. However, if ek ∈ Kl−1,t then at least one path exists where the expression is not defined.

If ek /∈ SOSl, the only way that ek ∈ LSOSl,t is if it is defined by the head (ek ∈ Gl−1,t) and no

other thread t′ ever kills ek in epoch l− 2; otherwise, because the head can interleave with epoch

l − 2, there is a possible path where ek is killed before the body executes. This leads to:

LSOSl,t =
(
Gl−1,t −

⋃
t′ 6=t{ek|ek ∈ Kl−2,t′}

)
∪

(SOSl −Kl−1,t)

LSOSl,t,k has the same update rule as stated in Section 3.2.1.

Calculating In and Out

Let INl,t,i be the set of inputs that reach instruction i in thread t and epoch l. Let INl,t,0 = INl,t

represent the set of expressions that could possibly reach the beginning of block (l, t). INl,t

should be the intersection of the set of valid expressions of all possible paths to instruction

(l, t, 0):

INl,t = LSOSl,t − KILL-SIDE-INl,t

INl,t,i = LSOSl,t,i − KILL-SIDE-INl,t

Let OUTl,t,i be the set of expressions that are still defined after executing instruction i in thread t

and epoch l, and OUTl,t represent the set of expressions still defined after all instructions in the

block have executed. Then:

OUTl,t,i = Gl,t,i
⋃

(INl,t,i −Kl,t,i)

OUTl,t = Gl,t
⋃

(INl,t −Kl,t)
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Applying the Two-Pass Algorithm

The parameters for the two-pass algorithm are similar to those in Section 3.2.1. In step 1, we

again calculate Gl,t, Kl,t and LSOSl,t, but now the summary information is KILL-SIDE-OUTl,t.

Step 2 uses ∪ for the meet function but calculates over all the KILL-SIDE-OUTl′,t′ in the wings,

to get KILL-SIDE-INl,t, which is then used to perform our second pass of checks (step 3). Finally,

we use Gl and Kl to update SOSl (step 4).

3.3 Implementing Lifeguards With Butterfly Analysis

Now that we have shown how to use butterfly analysis with basic dataflow analysis problems, we

extend it to two lifeguards. For each of these lifeguards, we will show that we lose some precision

(i.e., experience some false positives) but never have any false negatives; compared against any

valid ordering, we will catch all errors present in the valid ordering but potentially flag some

safe events as errors. Our main contribution will be parallel adaptations of ADDRCHECK and

TAINTCHECK that do not need access to inter-thread dependences and are supported on even

relaxed memory models, as long as those memory models respect intra-thread dependences and

provide cache coherence. For each lifeguard, we also show how to update the metadata using

dataflow analysis.

3.3.1 AddrCheck

ADDRCHECK [79], as described in Section 1.1, checks accesses, allocations and deallocations

as a program runs to make sure they are safe. In the sequential version, this is straightforward;

writing to unallocated memory is an error. In butterfly analysis, one thread can allocate memory

before another writes, but if these operations are in adjacent epochs, the operations are potentially

concurrent. In ADDRCHECK, a false positive occurs when the program behaves safely but the

lifeguard believes it has seen an invalid sequence of malloc, free, and memory access events.
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a=malloc()

*a++

*b=24*a=0

b=malloc()

Thread 1 Thread 2 Thread 3

Epoch  j + 1

Epoch  j + 2

Epoch  j 

Figure 3.2: ADDRCHECK examples of interleavings between allocations and accesses. There is a
potentially concurrent access to a by Thread 2 during its allocation by Thread 1, but the allocation of
b by Thread 3 is isolated from other threads.

We describe ADDRCHECK as an adaptation of available expressions, associating allocations

with G and deallocations with K. We chose available expressions because we want to guarantee

zero false negatives; for all valid orderings, we want to know whether an access to memory lo-

cation m is an access to allocated memory, and always detect accesses to unallocated memory

regions. Let Gl,t,i = {m} if and only if instruction (l, t, i) allocates memory location m and oth-

erwise ∅. Likewise, Kl,t,i = {m} if and only if instruction (l, t, i) deallocates memory location

m and otherwise ∅. Gl,t, Kl,t, Gl, Kl, SOSl and LSOSl,t use the equations and update rules from

Section 3.2.2.

Checking Algorithm

Our checking algorithm needs to be more sophisticated than available expressions’ use of IN

and OUT. A naive calculation would not detect that a location had been freed twice, since set

difference does not enforce that B ⊆ A before performing A − B. Modifying the checks is

straightforward, though.
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There are two basic conditions we wish to ensure. First, any time an address is being accessed

(either read or write) or deallocated, we wish to know that the address is definitely allocated.

Secondly, any time an address is being allocated, we wish to know that the address is definitely

deallocated. Examining these two conditions in detail, we find that each has two parts.

In the first case (i.e., when we wish to ensure that an address is definitely allocated), it

suffices to ensure that the address appears allocated within our thread and that no other thread is

concurrently allocating or deallocating this address. Symmetrically, to check that an address is

definitely deallocated, it suffices if the address appears deallocated within the given thread with

no other thread concurrently allocating or deallocating the address. The general implication of

these two rules is that whenever the metadata states changes from allocated to deallocated (or

vice versa), any concurrent (i.e., in the wings) read, write, allocate or deallocate is problematic.

This is analogous to a race on the metadata state.

Consider Figure 3.2. When thread 2 accesses a in epoch j + 1, a does not appear allocated

yet, because its allocation will not be reflected in the SOS for another epoch. However, when

thread 3 allocates b in epoch j + 1, it appears deallocated within the thread and no other thread

is accessing it. The subsequent access to b in epoch j + 2 is also safe because it is within the

same thread, even though the allocation is not yet reflected in the SOS.

More formally, we split the checking into two parts. We first verify that any address we

accessed or deallocated appeared to be allocated within our thread, and any address we allocated

appeared deallocated in our thread. These checks can be resolved by checking that an access or

deallocation (allocation) to memory location x at instruction (l, t, i) is contained (not contained,

respectively) in the LSOSl,t,i.

Next, we want to ensure that allocations and deallocations were isolated from any other

concurrent thread. This occurs during the second pass, using the summaries created in the first

pass. For ADDRCHECK, the summary is sl,t = (Gl,t,Kl,t, ACCESSl,t), where ACCESSl,t contains
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all addresses that block (l, t) accessed. Combining the wing summaries yields:

Sl,t = (
⋃

wings

Gl′,t′ ,
⋃

wings

Kl′,t′ ,
⋃

wings

ACCESSl′,t′).

To verify isolation, we check that the following set is empty (sl,t is abbreviated as s, and Sl,t as

S):

((s.Gl,t ∪ s.Kl,t)
⋂

(S.Gl,t ∪ S.Kl,t))
⋃

(s.ACCESSl,t
⋂

(S.Gl,t ∪ S.Kl,t))
⋃

(S.ACCESSl,t
⋂

(s.Gl,t ∪ s.Kl,t))

and otherwise flag an error.

Theorem 3. Any error detected by the original ADDRCHECK on a valid execution ordering for

a given machine (obeying intra-thread dependences and supporting cache coherence) will also

be flagged by our butterfly analysis.

Proof. Observe that the original ADDRCHECK detects errors that occur pairwise between opera-

tions (i.e., allocations, accesses, and deallocations) on the same address. It is therefore sufficient

to restrict our analysis to pairs of instructions involving the same address.

We consider any memory consistency model that respects intra-thread dependences and sup-

ports cache coherence. Suppose there is an execution E of the monitored program on a machine

supporting that model such that one of the pairwise error conditions is violated for an address

x, e.g., there is an access to x after it is deallocated. Let E|x be the subsequence of E con-

sisting of all instructions involving x. By the assumptions of the butterfly analysis, there is a

valid ordering O such that O|x, the subsequence of O consisting of all instructions involving

x, is identically E|x. Because butterfly analysis considers O among the many possible valid

orderings, and checks for all combinations of pairwise errors for locations, it too will flag an

error.
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3.3.2 TaintCheck

TAINTCHECK [84] tracks the propagation of taint through a program’s execution; if at least

one of the two sources is tainted, then the destination is considered tainted. When extending

TAINTCHECK to work using butterfly analysis, we extend this conservative assumption as fol-

lows. If some valid ordering O causes an address x to appear tainted at instruction (l, t, i), we

conclude that (l, t, i) taints x even if it does not taint x under any other valid ordering. We mod-

ify reaching definitions to accommodate TAINTCHECK. In this setting, a false negative refers

to concluding that data is untainted when it is actually tainted, whereas a false positive refers to

believing data to be tainted when it is actually untainted.

Unfortunately, adapting TAINTCHECK to butterfly analysis is not as simple as adapting AD-

DRCHECK. TAINTCHECK has an additional method of tracking information called inheritance.

Consider a simple assignment a:=b+1. If we already know that b is tainted, then a is tainted

via propagation, and can be calculated using IN and OUT. If b is a shared global variable whose

taint status is unknown to the thread executing this instruction, then a inherits the same taint

status as b.

In order to efficiently compute taint status while handling inheritance, we will use a SSA-

like scheme that assigns unique tuples (l, t, i) instead of integers. We also define a function

loc() that given an SSA numbering (l, t, i) returns x, where x is the location being written to

by instruction (l, t, i). Our metadata are transfer functions between SSA-numbered variables and

their taint status, with ⊥ as taint and > as untaint. We will use xl,t,i as an abbreviation for the

case where x = loc(l, t, i). The SOS will only contain addresses believed to be tainted. Then:
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Gl,t,i =



(xl,t,i ← ⊥) if (l, t, i) ≡ taint(x)

(xl,t,i ← >) if (l, t, i) ≡ untaint(x)

(xl,t,i ← {a}) if (l, t, i) ≡ x := unop(a)

(xl,t,i ← {a, b}) if (l, t, i) ≡ x := binop(a, b)

If we know that the last write to a was ⊥ in a block, we can short-circuit the unop and

binop calculations, concluding (xl,t,i ← ⊥). This resembles propagation in reaching defini-

tions.

Let S = {>,⊥, {a}, {a, b}|∃memory locations a, b}. In other words, S represents the set of

all possible right-hand values in our mapping. We define the set Kl,t,i = {(xl,t,j ← s)|s ∈ S, j <

i, and loc(l, t, j) = loc(l, t, i)}. In TAINTCHECK, GEN-SIDE-OUTl,t, KILL-SIDE-OUTl,t,

GEN-SIDE-INl,t, KILL-SIDE-INl,t, Gl,t andKl,t all function identically as defined in Section 3.2.1

for reaching definitions.

Checking Algorithm

The main difference between TAINTCHECK and reaching definitions is the checking algorithm.

Given an instruction-level transfer function (x← s), a location yl,t,i is a parent of x if ∃zl′,t′,i′ ∈

s such that loc(l, t, i) = loc(l′, t′, i′). We will say instruction (l, t, i) occurs strictly before

instruction (l′, t′, i′), if one of three conditions hold. First, if l ≤ l′− 2. The other two cases only

apply if the memory model is sequentially consistent. If l = l′, t = t′ and i < i′, or if t = t′ and

l < l′, then (l, t, i) occurs strictly before (l′, t′, i′). We denote this as (l, t, i) < (l′, t′, i′).

Algorithm 1 presents a function resolve that takes a particular transfer function of the

form (xl,t,i ← s) and a set of transfer functions T . Intuitively, resolve resembles depth first

search on a graph. Parents are replaced with their predecessors recursively until we run out of

transfer functions or reach a termination condition, whichever happens first.

We consider two variants of resolve: one for sequential consistency and one for more
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Algorithm 1 TAINTCHECK resolve Algorithm
Input: (xl,t,i ← s), T
Extracts the list of parents of xl,t,i: {y0, y1, . . . , yk} using the loc function
for all yj a parent of xl,t,i do

Search for rules of the form (yj ← s′) ∈ T
Replaces yj with all the parents of yj in s′, subject to a termination condition
if any parent of yj is ⊥ then

Terminate with the rule (xl,t,i ← ⊥).
else if any parent of yj is > then

Drop it from the list of parents, and continue
Postcondition: Either (xl,t,i ← s) converges to (xl,t,i ← ⊥), or s becomes empty. If s is
empty, conclude (xl,t,i ← >).

relaxed models. Under sequential consistency, it makes sense to enforce sequential execution

within each thread. To do so, we associate t counters of the form (l, t, i) with each parent. We

only allow a replacement for a parent y with zl′,t′,i′ if (l′, t′, i′) occurs strictly before the counter

at position t′ associated with y. If so, we update the counter to reflect the new (l′, t′, i′) value,

and continue. If y is replaced with multiple predecessors, we follow the same procedure for each

predecessor. This forces the ordering of instructions implied by the checking algorithm to always

be in sequential order when restricted to a particular thread t.

If we do not have sequential consistency, we must relax the resolve algorithm’s termina-

tion condition while still preventing false negatives. The issue is that a sequence of assignments

causing x to inherit from y can exist, but depend on an assignment occurring in the wings; in

Figure 2.1(b), executing (2) before (i) before (1) is legal on some relaxed memory models [4]. By

disallowing a parent to eventually be replaced by itself we prevent infinite loops, because there

are only a bounded number of potential parents; it will not guarantee that the ordering that taints

memory location x is actually valid. This resembles iteration as performed in dataflow analysis

to resolve loops.

Theorem 4. If resolve returns (xl,t,i ← >), then there is no valid ordering of the first l + 1

epochs such that x is ⊥ at instruction (l, t, i). Therefore, any error detected by the original

TAINTCHECK on a valid execution ordering for a given machine (obeying intra-thread depen-
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dences and supporting cache coherence) will also be flagged by our butterfly analysis.

Proof. We begin by assuming sequential consistency and the associated termination condition,

and then show how the proof holds on relaxed memory models with their associated termination

condition.

Sequential Consistency: Suppose there was a valid ordering of the first l + 1 epochs such

that x← ⊥ at instruction (l, t, i). That implies there exists a sequence of k +1 transfer functions

f̂ such that the associated instructions in order would taint x.

Restricting f̂ to functions from a particular thread t will produce a subsequence, potentially

empty, that is still ordered, so we will not have violated the sequential consistency assumption.

This shows f̂ is a legitimate sequence of parents to follow, so we would conclude (x← ⊥).

Relaxed Memory Models: Once more, if there is a valid ordering O of the first l + 1 epochs

such that x← ⊥ at instruction (l, t, i), there exists a sequence of k + 1 transfer functions f̂ such

that the associated instructions in order would taint x.

By virtue of the fact that O is a valid ordering, restricting the f̂ to functions from a particular

thread t will show that each transfer function is associated with a unique instruction from thread

t (no duplicates or repeats), even if the subsequence violates program order. This shows that,

under the relaxed termination condition, f̂ is a legitimate sequence of parents to follow, so we

would conclude (x← ⊥).

Reducing False Positives

Suppose we are trying to resolve (a2,2,1 ← b), and in the wings of the butterfly are transfer

functions (b1,3,1 ← r) and (r3,1,1 ← ⊥). Under either of the proposed termination conditions,

it is still possible to conclude instruction (a ← ⊥). However, for (a ← ⊥) to occur, then

instruction (3, 1, 1) must execute before instruction (1, 3, 1), a direct violation of our butterfly

assumptions (epoch 1 always executes before epoch 3).
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To reduce the number of false positives, the resolution of checks takes place in two phases.

In the first phase, a block (l, t) can use any transfer function from epochs l− 1 or l in resolve.

In the second phase, only transfer functions from l + 1 and l can be used by resolve. If in

the first phase, we conclude ⊥ for a location x, that location remains ⊥ throughout the second

phase. The correctness of this optimization is supported by the following lemma.

Lemma 5. If there exists a valid ordering O among 3 consecutive epochs such that x is tainted

then

(1) x is tainted via an interleaving of the first 2 epochs;

(2) x is tainted via an interleaving of the last 2 epochs; or

(3) there exist a predecessor y of x such that y is tainted in the first two epochs and there exists

a path from x to y in the last two epochs using only transfer functions from the last two epochs.

Proof. A valid ordering of 3 epochs that taints x might taint x when restricted only to (1) the

first two epochs, or (2) restricted only to the last 2 epochs. The final case is when all three

epochs are used to taint x. In this case, there can be no interleaving between the first and third

epochs, because all instructions in the first epoch must commit before any instructions in the

third epoch begin. As the first epoch cannot taint x directly and neither can the third epoch (this

would put us into cases 1 or 2) then it must be the case that some predecessor of x is tainted by

an interleaving of the first epoch with some of the second epoch, and then that there is a valid

interleaving between the remaining instructions in the second epoch with the third epoch such

that x inherits from y. This is conservatively handled by (3).

SOS and LSOS

Instead of transfer functions the SOS and LSOS will track locations believed to be tainted. Once

again, TAINTCHECK is slightly more complicated than reaching definitions. We can conclude

that a variable is tainted in epoch l based on an interleaving with epoch l+1. Consider Figure 3.3.

If we do not commit a to the SOS before beginning a butterfly for block (j + 2, 2) we may
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a=b

b=buf[0]

c=ad=c

Thread 1 Thread 2 Thread 3

Epoch  j + 1

Epoch  j + 2

Epoch  j 

Figure 3.3: Updating the SOS is nontrivial for TAINTCHECK. By the end of epoch j + 1, a has been
tainted, but the SOS may need to be updated before blocks in epoch j + 2 begin butterfly analysis.

conclude that d is untainted, even though there is a path where d is tainted. If we consider a to

be tainted before beginning epoch j + 2, though, there is no guarantee the instruction that taints

a has actually already executed. However, considering an address to be tainted early is merely

imprecise, while considering an address to be tainted too late violates our guarantees.

Define the function LASTCHECK(x, l, t) to be the last metadata value returned by resolve

for location x while checking block (l, t). This is not the same as recomputing resolve for x

at the end of the block. Rather, it is similar to computing the difference between the LSOS at

the end of the block and the LSOS at the beginning. If x was assigned to in block (l, t), then

LASTCHECK(x, l, t) will return > or ⊥; otherwise, it returns ∅. We can extend this definition to

LASTCHECK(x, (l − 1, l), t) which will tell us whether the LASTCHECK spanning two epochs

l − 1 and l tainted, untainted, or merely propagated x. In our SOS, we will track only those

variables x we believe are tainted, and will use LASTCHECK to do so. We define

Gl =
⋃
t{x|LASTCHECK(x, l, t) = ⊥}

Kl =
⋃
t{x|LASTCHECK(x, l, t) = >∧
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(∀t′ 6= t, LASTCHECK(x, (l − 1, l), t) = >∨

LASTCHECK(x, (l − 1, l), t) = ∅)}

This is an almost identical formulation to reaching definitions; the difference is that we use

LASTCHECK to change our metadata format from transfer functions to tainted addresses. SOSl

and LSOSl,t use the update rules for reaching definitions. We claim the following conditions

hold for the SOS:

Condition 3.3.1. If there exists a valid ordering Os of the first l− 2 epochs such that x is tainted

in Os then x ∈ SOSl−2.

Condition 3.3.2. If x ∈ SOSl−2, then there exists at least one thread t such that t assigns to x

and believes a valid ordering of the first l − 2 epochs exists that taints x.

The first condition is identical to reaching definitions. The second condition addresses impre-

cision due to our reliance on the checking algorithm. Analogous conditions hold for the LSOS.

3.4 Evaluation of A Butterfly Analysis Prototype

To demonstrate the practicality of butterfly analysis and to identify areas where further optimiza-

tions may be helpful, we now present our experimental evaluation of our initial implementation

of butterfly analysis within a parallel monitoring framework.

3.4.1 Experimental Setup

While the generality of butterfly analysis makes it applicable to a wide variety of dynamic analy-

sis frameworks (including software-only frameworks based upon binary instrumentation [20, 71,

82]), we chose to build upon the Log-Based Architectures (LBA) [23] framework in our experi-

ments due to its relatively low run-time overheads. With LBA, each application thread is moni-

tored by a dedicated lifeguard thread running concurrently on a separate processor on the same

CMP. The LBA hardware captures a dynamic instruction log per application thread and passes
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Table 3.1: Simulator and Benchmark Parameters

Simulation Parameters
Cores {4,8,16} cores
Pipeline 1 GHz, in-order scalar, 65nm
Line size 64B
L1-I 64KB, 4-way set-assoc, 1 cycle latency
L1-D 64KB, 4-way set-assoc, 2 cycle latency
L2 {2,4,8}MB, 8-way set-assoc, 4 banks, 6 cycle latency
Memory 512MB, 90 cycle latency
Log buffer 8KB

Application Suite Input Data Set
BARNES Splash-2 16384 bodies
FFT Splash-2 m = 20 (220 sized matrix)
FMM Splash-2 32768 bodies
OCEAN Splash-2 Grid size: 258× 258
BLACKSCHOLES Parsec 2.0 16384 options (simmedium)
LU Splash-2 Matrix size: 1024× 1024, b = 64
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Figure 3.4: Relative performance, normalized to sequential, unmonitored execution time. X-axis:
number of application threads.
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it (via the L2 cache) to the corresponding lifeguard thread. When lifeguard processing is slower

than the monitored application (as is the case in our experiments), the monitored application

stalls whenever the log buffer is full; hence our performance results show lifeguard processing

time, which is equivalent to application execution time including such log buffer stalls.

Because the LBA [23] hardware support is not available on existing machines, we simulated

the LBA hardware functionality (including log capture and event dispatch) on a shared-memory

CMP system using the Simics [108] full-system simulator. Although the LBA hardware is sim-

ulated, the full software stack for butterfly analysis is executed faithfully in our experiments.

Table 3.1 shows the parameters for our machine model as well as the benchmarks that we moni-

tored (taken from Splash-2 [113] and Parsec 2.0 [17]).

For our lifeguard, we implemented a parallel, heap-only version of ADDRCHECK–based

upon [79]—using butterfly analysis as described in Section 3.3.1. The LBA logging mecha-

nism makes it easy to generate and communicate heartbeats: we simply insert heartbeat markers

into the log after h instructions have occurred per thread,3 where h equals 8K or 64K instruc-

tions in our experiments. We use the metadata-TLB and idempotent filtering4 accelerators from

LBA [23], and we filter out stack accesses.

3.4.2 Experimental Results

We now evaluate the performance and accuracy of our butterfly-analysis-based ADDRCHECK

lifeguard compared with the current state-of-the-art.

Performance Analysis. Because lifeguards involve additional processing and no direct perfor-

mance benefit for the monitored application, the performance question is how much they slow

3In practice, we issue heartbeats after hn instructions are executed by the application, where n is the number
of application threads, without enforcing uniformity of execution across threads. In the worst case, one thread will
execute hn instructions while the rest will execute 0. We maintain the invariant that at least h cycles have passed on
each core. Butterfly analysis does not require balanced workloads within an epoch.

4For idempotent filtering, we flushed the filters at the end of each epoch so that events are only filtered within
(and never across) epochs.
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down performance relative to unmonitored execution. Figure 3.4 shows the performance impact

of butterfly analysis, where the y-axis is execution time normalized to the given application run-

ning sequentially on a single thread without monitoring (hence shorter bars are faster). We show

performance with 2, 4, and 8 application threads,5 as labeled on the x-axis. Within each set of

bars, we show three cases: (i) “Timesliced Monitoring”, the current state of the art where all

application threads are interleaved on one core, and are monitored by a sequential lifeguard (run-

ning on a separate core); (ii) “Parallel, Monitoring,” which is with our butterfly analysis; and (iii)

“Parallel, No Monitoring,” which is the application running in parallel without any monitoring

(as a point of comparison).

As we observe in Figure 3.4, when monitoring only two application threads, the performance

of butterfly analysis relative to the state-of-the-art timesliced approach is mixed: it is significantly

better for BARNES and FMM, comparable for FFT and OCEAN, and significantly worse for

BLACKSCHOLES and LU. A key advantage of butterfly analysis relative to timesliced analysis,

however, is that the analysis itself can enjoy parallel speedup with additional threads. Hence

as the scale increases to eight application (and lifeguard) threads, butterfly analysis outperforms

timesliced analysis in five of six cases, and in four of those cases by a wide margin. In the one

case where timesliced outperforms butterfly analysis with eight threads (i.e., BLACKSCHOLES),

one can observe in Figure 3.4 that butterfly analysis is speeding up well with additional threads,

but it has not quite reached the crossover point with eight threads.

While our butterfly approach offers the advantage of exploiting parallel threads to acceler-

ate lifeguard analysis, the implementation of our current prototype has the disadvantage that it

performs more work per monitored instruction than the timesliced approach. For example, in

the first pass, our current implementation executes roughly 7-10 instructions for each monitored

load and store instruction simply to record it for the second pass, above and beyond performing

the same first-pass checks as traditional ADDRCHECK. We believe that this overhead is not fun-

5Recall that LBA uses a total of 2k cores to run an application with k threads, since k additional cores are used
to run the lifeguard threads.
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Figure 3.5: Performance sensitivity analysis with respect to epoch size. Results shown for h=8K and
64K.

damental to butterfly analysis, and that it could be significantly reduced by caching parts of our

first-pass analysis and reusing it when the same monitored code is revisited. (We plan to explore

this possibility in future work.) Despite the inefficiencies of our initial prototype, we observe in

Figure 3.4 that it offers compelling performance advantages relative to the state-of-the-art due to

its ability to exploit parallelism.

Sensitivity of Performance and Accuracy To Epoch Size. A key parameter in butterfly anal-

ysis is the epoch size, which dictates the granularity of our concurrency analysis. We now explore

how this parameter affects lifeguard performance and accuracy.

Figure 3.5 shows the impact of epoch size on performance. We show two epoch sizes (h):

8K and 64K instructions. (Note that the epoch size in Figure 3.4 was h=64K.) As we see in

Figure 3.5, in nearly all cases (i.e., everything except the two and four thread cases for OCEAN),

the performance improves with a larger epoch size. Intuitively, this makes sense because the

fixed costs of analysis per epoch—including barrier stalls after each pass—are amortized over a

larger number of instructions. To understand what happened in OCEAN, let us first consider the
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Figure 3.6: Precision sensitivity to epoch size. Results shown for h=8K and 64K. Y-axis: false
positives as percentage of memory accesses, shown on a logscale.

impact of epoch size on accuracy.

While the advantage of a larger epoch size is better performance, Figure 3.6 shows that the

disadvantage is an increase in the false positive rate of the analysis.6 (Recall that false negatives

are impossible with butterfly analysis.) In a number of cases (e.g., FFT, FMM, and LU), the

false positive rate did not increase significantly when the epoch size increased from 8K to 64K

instructions, but in other cases it did increase by orders of magnitude. In fact, the increase in the

false positive rate for OCEAN helps explain why its performance degraded with a larger epoch

size: false positives are expensive to process in ADDRCHECK, and in OCEAN they increased

enough to offset the savings in amortized overhead. Aside from OCEAN, the false positive rates

remain below 0.01% of memory accesses even with the larger epoch size. With the smaller epoch

size, all programs have false positive rates well below 0.001% of memory accesses. Overall, we

observe that the epoch size is a knob that can be tuned to trade off performance versus accuracy

6Recall that for ADDRCHECK, a false positive refers to the lifeguard mistaking a safe event (e.g., an access to
allocated memory) for an unsafe event (e.g., an access to unallocated memory).
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(subject to a minimum size, as discussed in Section 2.2.1), and that there are reasonable epoch

sizes that offer both high performance and high accuracy.

3.5 Chapter Summary

In this chapter, we have presented a new approach to performing dynamic monitoring of parallel

programs that requires little or no hardware support: all that we require is a simple heartbeat

mechanism, which can be implemented entirely in software. Inspired by dataflow analysis, we

have demonstrated how our new butterfly analysis approach can be used to implement an in-

teresting lifeguard that outperforms the current state-of-the-art approach (i.e., timeslicing) while

achieving reasonably low false-positive rates. The key tuning knob in our framework is the epoch

size, which can be adjusted to trade off performance versus accuracy.
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Chapter 4

Chrysalis Analysis: Incorporating

Synchronization Arcs in

Dataflow-Analysis-Based Parallel

Monitoring

While the dataflow-based approach of Butterfly Analysis offers many advantages (including a

theoretically sound framework with no missed errors), one of the limitations of the original

framework was that it ignored explicit software synchronization. Because Butterfly Analysis

considers all possible instruction interleavings within each window of uncertainty, lifeguards

can conservatively report an error based on a hypothetical ordering that can never arise due to

synchronization operations. In Figure 4.1, for example, because the ordering untaint(p),

taint(p), *p cannot be ruled out under Butterfly Analysis, a lifeguard would report the deref-

erence of a possibly tainted pointer. Such false positives represent an additional burden on the

application developer as error reports must be analyzed, true errors may be missed if they are lost

in a large number of false positive messages, and developers may abandon the tool if the work

required to process the false reports exceeds the tool’s benefits.
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Figure 4.1: (a) Butterfly Analysis ignores synchronization arcs (such as from locks), and hence views
the taint(p) and *p as racing if they are close in time, even if the source code resembles (b). (b)
Chrysalis Analysis eliminates such false positives by dynamically capturing explicit synchronization
arcs. (Note that [un]taint(p) indicates an application operation that would cause the lifeguard
to [un]set the “tainted” metadata value for p.)

Chrysalis Analysis: Adding Happens-Before Arcs to Butterfly Analysis

In this chapter, we propose and evaluate “Chrysalis Analysis,” which is an extension of Butterfly

Analysis that takes into account the dynamic happens-before constraints resulting from explicit

software synchronization, thereby reducing the number of erroneous false positives, as illustrated

in Figure 4.1(b). Integrating happens-before relationships into the Butterfly Analysis framework

while retaining the elegance and efficiency of the original framework was a major challenge, due

to the irregularities that this introduced, as will be described in detail in Section 4.1. This required

generalizing the dataflow analysis mechanisms in the original framework (which were based on

simple sliding windows spanning all the threads) to handle all the complexities introduced by

partial orderings induced by happens-before arcs between pairs of threads.

Table 4.1 compares Chrysalis Analysis with Butterfly Analysis and ParaLog [110]. Com-

pared to ParaLog, Chrysalis Analysis does not require special hardware support or a mechanism

for tracking inter-thread memory dependences, and it can also handle weak memory consistency

models. Compared to Butterfly Analysis, Chrysalis Analysis offers improved precision by not

reporting errors that are precluded by software synchronization. In fact, when monitoring data-

race-free parallel programs, the precision of Chrysalis Analysis should be comparable to ParaLog
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Table 4.1: Comparison of Parallel Program Monitoring Solutions

Implementation Analysis Monitoring
requirements supports precision
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ParaLog [110] Yes Yes TSO only high high
Chrysalis Analysis No No Yes good high
Butterfly Analysis [45] No No Yes fair fair

(because all valid orderings are accurately captured via happens-before arcs).1 There is a trade-

off, though, in obtaining this improved precision, as Chrysalis Analysis is somewhat slower than

Butterfly Analysis.

Contributions

This chapter makes the following contributions:

◦ We propose Chrysalis Analysis, which builds upon Butterfly Analysis to model the happens-

before arcs from explicit synchronization, thereby increasing precision. While Butterfly Anal-

ysis supported only a very simple and regular concurrency structure of sliding windows across

all threads, Chrysalis Analysis supports an arbitrarily irregular and asymmetric acyclic struc-

ture within such windows (making the analysis problem considerably more challenging).

◦ We present (sound) formalizations in the Chrysalis Analysis framework for reaching defini-

tions, available expressions, and two well-studied lifeguards.

◦ In contrast to work presented in the prior chapter, we implemented a far more challenging

lifeguard (TAINTCHECK, requiring not only dataflow analysis but also inheritance analysis

whereby a single instruction is itself a transfer function) in both the Butterfly and Chrysalis

Analysis frameworks to evaluate their precision.

1We assume explicit synchronization such as locks and barriers (tracked by Chrysalis Analysis) are used to
prevent races.
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Figure 4.2: (a) Butterfly Analysis divides thread execution into epochs. A block is a thread-epoch
pair. (b) Chrysalis Analysis incorporates high-level synchronization events by dividing blocks into
subblocks based on the happens-before arcs (shown as dashed arrows) resulting from such events.

◦ Our experimental results demonstrate a factor of 17.9x reduction in the number of false posi-

tives, while slowing down the lifeguard by an average of 1.9x.

4.1 Overview of Chrysalis Analysis

In this section, we introduce Chrysalis Analysis. We begin by motivating the utility of our

analysis using simple examples, as well as showcasing the challenges we faced in generalizing

Butterfly Analysis. Then, we introduce the new primitives that enable Chrysalis Analysis. Fi-

nally, we illustrate some of the major challenges in generalizing Butterfly Analysis to produce

Chrysalis Analysis, namely maintaining global state and updating local state.

4.1.1 Adding Happens-Before Arcs: A Case Study

We begin with a few examples that illustrate the utility of our new primitives as well as the

challenges that lie ahead.

Consider Figure 4.3(a). This shows a single thread’s execution, where in one block it issues

(an instruction that serves to) untaint(p) and in the next *p. Any single-threaded analysis

will conclude that at the point where *p is dereferenced, p is untainted because only one thread

was executing and that thread untainted p prior to dereferencing it as a pointer.
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Now consider Figure 4.3(b). Here, we see Thread 1 issuing untaint(p); unlock(L).

After Thread 1 unlocks L, Thread 0 is the next thread to acquire L (lock(L)) and then issues

*p. In this case, the happens-before relationship is not due to intra-thread data dependences but

rather the synchronization on lock L. However, from the perspective of a lifeguard monitoring

this program, Thread 1 issued untaint(p) before Thread 0 issued *p; since no instructions

in Thread 0 prior to *p conflict, this analysis should be identical to case (a). This is true for

Chrysalis Analysis, but not Butterfly Analysis.

Finally, consider Figure 4.3(c), which contains a data race. Thread 1 is still untainting p and

releasing lock L immediately before Thread 0 dereferences p. However, we also see that block

b1 in Thread 0, prior to issuing lock(L) in block b2, issued taint(p) without holding lock L.

To know whether the dereference of p is safe in Thread 0, the analysis needs to know whether p

was tainted at the program point immediately prior. It knows that two things happened before the

dereference: p was tainted by Thread 0, and p was untainted by Thread 1. However, the ordering

between these two operations remains unknown! Figure 4.3(c) illustrates that extra happens-

before information is not a panacea for all causes of imprecision. In this case, the lifeguard

must behave conservatively, since the analysis cannot determine whether the taint(p) occurs

before or after the untaint(p).

While incorporating happens-before arcs can significantly improve precision, it spoils the key

ingredient underlying Butterfly Analysis, namely, that the simple “butterfly” of Figure 4.2(a) cap-

tured all the ordering information known to the lifeguard. Each of the steps in Butterfly Analysis’

two-pass analysis exploits this regular structure in a fundamental way; and with happens-before

arcs, this regularity no longer exists (see Figure 4.2(b)). Including additional partial ordering in-

formation, while making the analysis more precise, also makes the analysis much more difficult!
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Figure 4.3: TAINTCHECK examples for dereferencing a pointer p. (a) In single-threaded execution,
respect of intra-thread dependences implies p is untainted. (b) The synchronization between Thread
1 and Thread 0 means block b3 executes before block b2. Since b1 does not assign to p, p is untainted.
This is a win for Chrysalis Analysis. (c) Similar to (b), but now Thread 0 issues taint(p) in b1

concurrently with b3. Conservative analysis means p must be treated as tainted. (d) Another win for
Chrysalis Analysis. Each dereference of p in b4 and b6 is guaranteed to only see p as untainted.

4.1.2 Maximal Subblocks

Consider again Figures 4.3(b) and (c). In both cases, what allowed us to analyze these figures

was the fact that the traces were divided at each lock or unlock call. This allowed us to reason

that an entire section of the trace happened before another section. This motivates the following

definition, based on the synchronization events currently tracked by our analysis. An execution

trace for a thread is partitioned into maximal subblocks (subblocks for short) by breaking the trace

(i) after the last instruction of an epoch, (ii) after each send, unlock, or barrier-wait call,

and (iii) whenever the following instruction is a receive or lock call.2 This subdivision en-

ables us to reason that entire maximal subblocks must have occurred before, after, or concurrent

with other maximal subblocks. Note that the maximal subblocks are precisely the irregularity

mentioned earlier. The number and size of maximal subblocks per thread, and per epoch, is

based on the frequency and types of synchronization used by the application. This is illustrated

in Figures 4.1(b) and 4.2(b).

Despite the introduction of subblocks, for ease of comparison, we will adopt the notation

of Butterfly Analysis by referring to instructions based on their offset within blocks. Namely,

2In the special case where the first instruction of an epoch is a receive or lock call, the first maximal subblock
is considered empty and the second maximal subblock begins with the receive or lock, respectively.
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(l, t, i) refers to the ith instruction in epoch l of thread t’s trace.

Next, we discuss how to determine, given two subblocks, b and b′, if b executed before, after,

or concurrent with b′.

4.1.3 Testing Ordering Among Subblocks

To test ordering between maximal subblocks, each maximal subblock b has an associated vector

clock v(b). Vector clocks have been used in many other works [11, 19, 24, 37, 102]; they are a

natural distributed clock primitive. We are using them here to label individual subblocks based

on synchronization events and epoch boundaries.3 The addition of vector clocks and subblocks

transforms the Butterfly Analysis diagram, shown in Figure 4.1(a), into Figure 4.1(b).

We modify the standard vector clock algorithm slightly. Let n be the number of threads. If

v(b)[i] is the ith position in vector clock v(b), then for 0 ≤ i < n we initially set v(b)[j] = 1

if j = i and v(b)[j] = 0 otherwise. For example, the second thread in a 3-thread system would

begin with vector clock < 0, 1, 0 >. Consider a send (equivalently, unlock L) from thread j

to thread k. If vj is thread j’s current vector clock and vk is thread k’s current vector clock, then

thread j will first bind vj to vsend, which k will later receive. Then, vj[j] is incremented, and a

new maximal subblock begins in thread j. When thread k processes the associated receive

(equivalently, lock L), it will set vk[i] = max{vsend[i], vk[i]} for 0 ≤ i < n and then increment

vk[k]. The receive instruction in thread k begins a new maximal subblock.

On a barrier wait (assuming all n threads participate) let

∀i, 0 ≤ i < n, vbar[i] = vi[i].

3We make the typical assumption that, even on relaxed memory consistency models, synchronization events
such as lock, unlock and barrier-wait always carry an associated memory fence. Such a fence implies, for
example, that all the effects of instructions before an unlock complete before the lock is released [18].
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Then, thread j updates its vector clock to be:

∀i 6= j, vj[i] = vbar[i], vj[j]++

This is easily extended to work for a barrier of n′ < n threads: Update vj[i] only if both threads

i and j were among the n′ threads participating in the barrier.

It makes sense to include ordering information that Butterfly Analysis provides. After the

second epoch, we can update vector clocks at epoch boundaries, since the ordering is always

known when instructions are separated by at least an epoch. Epoch l treats a snapshot of the

vector clocks available at the end of epoch l − 2 as a barrier (call them v∗bar). While v∗bar is

calculated the same as vbar, the update rule differs slightly:

∀i 6= j, vj[i] = max{v∗bar[i], vj[i]}, vj[j]++

We can compare two vector clocks, v and v′, by comparing their components. Vector clock v

happens before vector clock v′ if ∀i, v[i] ≤ v′[i] ∧ ∃j s.t. v[j] < v′[j]. We indicate this relation-

ship using v < v′ or equivalently, v′ > v. If v 6< v′ and v′ 6< v, then v and v′ label concurrent

maximal subblocks; we will denote this as v ∼ v′.

We will use this terminology loosely. For instance, if (l, t, i) is an instruction in maximal

subblock b, then we might talk about v(l, t, i) or v(b), which are equivalent vector clocks.

4.1.4 Reasoning About Partial Orderings

Some new complexities arise when trying to reason about all the partial orderings which are

consistent with Chrysalis Analysis. For instance, there can be an upwards arc from epoch l + 1

into epoch l, where a subblock in epoch l+1 happens before a different subblock in epoch l. This

is illustrated in Figure 4.2(b), where the last subblock in the body happens after a subblock in the

rightmost thread in the wings. Once all the instructions in epoch l have executed, we also know
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that some of the instructions in epoch l + 1 have also executed, because there exists a maximal

subblock in epoch l which happens after a maximal subblock in epoch l + 1. We call l+ the

extended epoch of l, and define it to include all instructions in epoch l, as well as all instructions

(l+1, t, i) in epoch l+1 for which there is some subblock b in epoch l where v(l+1, t, i) < v(b).

We introduce the concept of a valid vector ordering, which extends Butterfly Analysis’ valid

ordering to incorporate happens-before arcs. A valid ordering is any total sequential ordering of

instructions consistent with both the intra-thread dependences and the ordering of instructions in

non-adjacent epochs. This is too broad a set of orderings for Chrysalis Analysis to use because it

includes orderings that violate the happens-before arcs captured by our vector clocks. To capture

the more restricted set of orderings, we define valid vector orderings:

Definition 4.1.1. Ol is a valid vector ordering (VVO) if:

◦ BACKWARDS COMPATIBLE

Ol restricted to epochs [0, l] and ignoring happens-before arcs is a valid ordering.

◦ INCLUDES ALL INSTRUCTIONS THROUGH EPOCH l+

All instructions from epochs 0 to l are included exactly once, as well as those instructions from

epoch l + 1 that belong to l+, with no instructions from epochs > l + 1 included.

◦ RESPECTS HAPPENS-BEFORE

If v(l, t, i) < v(l′, t′, i′), instruction (l, t, i) appears before instruction (l′, t′, i′) in Ol.

4.1.5 Challenge: Maintaining Global State

As in Butterfly Analysis, Chrysalis Analysis requires global state because the analysis only pro-

ceeds over a sliding window of execution. Butterfly Analysis made simplifying assumptions that

allowed it to symmetrically reason about each butterfly in parallel. For instance, consider the

traces depicted in Figure 4.3(d). In Butterfly Analysis, the dashed happens-before arcs (from

synchronization) are ignored. Suppose this all occurred within the same epoch l. Both subblocks

b4 and b6 would conservatively reason that p was tainted before the dereference, as it was possi-
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ble that the taint(p) occurred between the untaint(p) and *p. However, that taint(p)

is issued only once, whereas Thread 1 issues untaint(p) twice! It was impossible for both

dereferences of p to be against a tainted pointer, and also have p tainted at the end of epoch l.

However, Butterfly Analysis would have summarized this epoch with p tainted.

Once Chrysalis Analysis adds the happens-before (dashed) arcs in Figure 4.3(d), it is clear

not only that each *p is to untainted data, but also that at the end of the epoch, p is untainted.

This requires epoch-level summarization to consider the happens-before arcs. Summarizing an

“epoch” in Chrysalis Analysis will also mean summarizing the extended epoch. Suppose alter-

natively that subblocks b2 and b3 were instead in epoch l + 1, while all other subblocks were in

epoch l as before; b2 now belongs to l+, and we still conclude that after all instructions in l+ have

executed, p is untainted and we update the global state (SOS) accordingly.

4.1.6 Challenge: Updating Local State

Once again, consider Figure 4.3(d). As stated earlier, the second pass for Butterfly Analysis was

entirely in parallel, because there were no additional happens-before arcs. Chrysalis Analysis

wishes to improve on this imprecision. As the second pass of the analysis proceeds, at each entry

point to a new maximal subblock Chrysalis Analysis must wait for all of its direct parents (those

subblocks with a happens-before arc pointing to it) to finish their second pass before beginning.

This makes the analysis aware, for example, that b2’s taint of p was prior to b6, and hence b6’s

subsequent issue of untaint(p) made *p safe.

To do this analysis correctly, it is important to note that each direct parent takes on a role

analogous to the head in Butterfly Analysis. However, now we can have multiple “heads”, aris-

ing either due to explicit synchronization or intra-thread sequential semantics. The parents are

unlikely to be ordered themselves. Just as in Figure 4.3(c), we will need to conservatively reason

about instructions that executed prior to a subblock. This will lead to our treating the local state

(LSOS) more as a dataflow problem and less as pure state. We will conduct a “meet” at subblock
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entry points of the incoming GEN and KILL sets we define in the sections that follow.

4.2 Reaching Definitions

In this section, we will show how to extend Reaching Definitions, a classical dataflow analysis

problem, to Chrysalis Analysis. We will begin by showing how to define generating and killing

definitions at the instruction, subblock and epoch level, as well as showing how to compute the

Side-In and Side-Out primitives. Then we will show how to update both the Strongly Ordered

State (SOS) and the Local Strongly Ordered State (LSOS), and present the two-pass algorithm

for reaching definitions. Throughout the section, we will prove key properties of our definitions,

showing that Chrysalis Analysis will not “miss an error” (meaning, it will never claim a definition

d does not reach a program point p when there was a way for that to happen). Extensions

of Chrysalis Analysis to Available Expressions, another classical dataflow analysis problem,

and ADDRCHECK, a memory lifeguard, appear in Sections 4.3 and 4.4, respectively. Later in

Section 4.5 we will give an example lifeguard, TAINTCHECK, based on reaching definitions.

4.2.1 Gen and Kill equations

We begin by defining GEN and KILL at all granularities, represented by G and K, respectively.

Instruction-Level

Let Gl,t,i = {d} if (l, t, i) generates d. Let Kl,t,i = {d|(l, t, i) kills d}.

Maximal Subblock-Level

We often wish to refer to a maximal subblock b as (l, t, (i, j)), meaning it is composed of instruc-

tions (l, t, i) through (l, t, j). If b = (l, t, (i, j)) then:
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Gb = Gl,t,(i,j) = Gl,t,j ∪ (Gl,t,(i,j−1) −Kl,t,j) Kb = Kl,t,(i,j) = Kl,t,j ∪ (Kl,t,(i,j−1) − Gl,t,j)

with Gl,t,(i,i) = Gl,t,i and Kl,t,(i,i) = Kl,t,i as base cases to the recursion. These are the standard

flow equations for GEN and KILL, defined now over maximal subblocks.

Side-Out and Side-In (Per Subblock)

In generalizing Butterfly Analysis’ treatment of Side-Out and Side-In, we must take into account

the additional information provided by the vector clocks. It now makes sense to consider Side-

Out and Side-In per maximal subblock b, rather than per block (l, t). In the event that there are no

happens-before arcs, the subsequent equations are equivalent to the original Butterfly Analysis

equations for Side-Out and Side-In. Let b and b′ be maximal subblocks, where b = (l, t, (j, k)).

Then the new equations for GEN-SIDE-OUT and GEN-SIDE-IN are:

GEN-SIDE-OUTb =
⋃
j≤i≤k Gl,t,i

GEN-SIDE-INb =
⋃
{b′|v(b′)∼v(b)} GEN-SIDE-OUTb′

Epoch-Level

We will define three useful sets, AFTER, MB and NOT-BEFORE, and use them to define Gl and

Kl for an epoch l. If b is a maximal subblock in l+ (the extended epoch of l), then:

MBl = {b|b is a maximal subblock in epoch l}.

AFTERb = {b′|b′ ∈ MBl+ and v(b) < v(b′)}

NOT-BEFOREb = {b′|b′ ∈ (MBl−1 ∪ MBl+)∧ (v(b) ∼ v(b′) ∨ v(b) < v(b′))}

Gl =
⋃
{b|b∈MBl+}

(
Gb −

⋃
b′∈AFTERb

Kb′
)

Kl =
⋃
{b|b∈MBl+}

(
Kb −

⋃
{b′|b′∈NOT-BEFOREb} Gb′

)
Lemma 6. If there exists a valid vector ordering (VVO) Ol of the instructions in l+ such that

d ∈ G(Ol) then d ∈ Gl.

Proof. d ∈ G(Ol) implies that there exists an instruction (l̂, t, i), l̂ ∈ l+, in the total order Ol such
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that (l̂, t, i) generates d and no subsequent instruction kills d. Let b be the maximal subblock

containing (l̂, t, i). By the definition of VVO, there is no instruction (l′, t′, i′) that kills d such

that either v(l̂, t, i) < v(l′, t′, i′) or (l̂, t, i) is before (l′, t′, i′) in the same block b. Thus, d ∈ Gb

(by construction) and d /∈
⋃
b′∈AFTERb

Kb′ , implying d ∈ Gl.

Lemma 7. If d ∈ Kl, then no valid vector ordering O of the instructions in epochs l− 1 through

l+ exists such that d ∈ G(O).

Proof. If d ∈ Kl, then by definition there exists a maximal subblock b such that d ∈ Kb and for

all maximal subblocks b′ such that v(b) ∼ v(b′) or v(b) < v(b′), d /∈ Gb′ . Let (l, t, k) be the last

instruction in b that kills d; d ∈ Kb implies that no instruction in b after (l, t, k) generates d. (Due

to data dependences, kills and generates of d are strictly ordered within a subblock.)

Consider any VVO O of the instructions in epochs l − 1 through l+. By the definition of

VVO, the only instructions following (l, t, k) in O that can kill or generate d are those belonging

to any maximal subblock b′ that is concurrent or occurs strictly after b. As argued above, d /∈ Gb′ ,

implying either (i) b′ never generates d or (ii) any generation of d in b′ is followed by a subsequent

kill of d also in b′, which would be reflected in O. Thus, any generation of d in O either occurs

strictly before (l, t, k), or else is followed by a kill of d; either way, d does not reach the end of

O. Hence, d /∈ G(O).

4.2.2 Strongly Ordered State

As in Butterfly Analysis, Chrysalis Analysis uses the epoch-level summaries Gl and Kl to com-

pute the Strongly Ordered State (SOS). This equation is unchanged from Butterfly Analysis; all

the changes are in the generalization of Gl and Kl.

SOS0 = SOS1 = ∅

SOSl = Gl−2 ∪ (SOSl−1 −Kl−2) ∀l ≥ 2
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The following theorem proves that if there exists any VVO such that a definition d reaches

the end of l epochs, then it will be in SOSl+2.

Theorem 8. If there exists a valid vector ordering Ol of the instructions in epochs [0, l+] such

that d ∈ G(Ol) then d ∈ SOSl+2.

Proof. Our proof will proceed by induction on l. In the base case of l = 0, we have SOSl+2 = G0

by an application of Lemma 6. Now assume that the lemma is true for all l < k, and show for

l = k. Suppose d ∈ G(Ol). As in Lemma 6, by the definition of VVO, there exists an instruction

(l̃, t̃, ĩ) in Ol generating d such that no subsequent instruction kills d. In particular, ∀(l′, t′, i′)

where v(l̃, t̃, ĩ) < v(l′, t′, i′), d /∈ Kl′,t′,i′ . There are two cases:

l̃ ≥ l: Let b be the maximal subblock containing instruction (l̃, t̃, ĩ). No subsequent instruction

in b can kill d. Thus, d ∈ Gb and b belongs to l+, which implies d ∈ Gl. Hence, d ∈ SOSl+2

by definition.

l̃ < l: Because, as argued above, there is no kill ordered after (l̃, t̃, ĩ), we have that d /∈ Kl and

there exists a VVO Ol−1 of the instructions in epochs [0, (l − 1)+] such that d ∈ G(Ol−1).

Applying the inductive hypothesis, we have that d ∈ SOSl+1. Thus, d ∈ SOSl+1 − Kl,

implying d ∈ SOSl+2.

4.2.3 Local Strongly Ordered State

Once we have computed the SOS, the next step is to calculate the Local Strongly Ordered State

(LSOS). As mentioned in Section 4.1.6, we face a few challenges in generalizing Butterfly Anal-

ysis’ LSOS update rule. Butterfly Analysis proposed an equation for calculating the LSOS from

the body (block (l, t)) based on the SOS, and the G and K from the head (block (l − 1, t)):

Butterfly Analysis: LSOSl,t = Gl−1,t ∪ (SOSl −Kl−1,t)∪

{d|d ∈ SOSl ∧ d ∈ Kl−1,t ∧ ∃t′ 6= t s.t. d ∈ Gl−2,t′}
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This rule took advantage of a specialized structure that does not hold in Chrysalis Analysis.

First, there was only one head, or direct predecessor, for any block, so Gl−1,t and Kl−1,t are

easily directly referenced. Second, removing a definition d ∈ Kl−1,t from SOSl was incorrect if

another thread t′ had actually generated d in epoch l − 1 or l − 2; only l − 2 had to be directly

added back in, because everything in epoch l − 1 was part of the GEN-SIDE-INl,t. The union

of the final set fixed the accuracy of the LSOS, but at the price of a deviation from the standard

OUT = GEN ∪ (IN − KILL) formulation.

Chrysalis Analysis must anticipate the possibility of a more generalized structure, where

subblocks have multiple direct parents, which may all execute before a particular subblock b, but

not necessarily be totally ordered amongst themselves. This is illustrated in Figure 4.3(c), where

b1 and b3 both occur before b2 but the taint status of p is uncertain (conservatively, tainted) before

b2. Dataflow analysis provides a natural way of handling such effects: the meet operator.

Our solution for Chrysalis Analysis will involve representing the local differences applied

to the SOS as transfer functions. We will use ING and OUTG for GEN difference, and INK and

OUTK for KILL. Furthermore, we will present a way of calculating the LSOS from the SOS

that will use the OUT = GEN ∪ (IN − KILL) structure, where IN = SOSl and OUT = LSOSb,

without involving extra sets.

The rest of the section focuses on the program point immediately before a maximal subblock

b. For instructions on the “interior” of b, we can use standard dataflow analysis techniques to

update the intermediate state, i.e., LSOSl,t,i+1 = Gl,t,i ∪ (LSOSl,t,i − Kl,t,i). We only require

a more general solution to the entry points of maximal subblocks. The meet operator (
d

) for

reaching definitions in Chrysalis Analysis is union (
⋃

).

LSOS: Representing GEN As Transfer Functions
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The LSOS transfer functions focus on the sliding window of epochs l − 1 through l + 1. Let

MB[l1,l2] =
⋃
l1≤li≤l2 MBli . Then, we define HB(b):

HB(b) = {b′|v(b′) <

v(b) where
(
b′ ∈ MB[l−1,l+1]

)
∨ (b′ ∈ MBl−2 ∧ ∃b′′ ∈ MBl−1 such that v(b′′) < v(b′))}

for maximal subblocks b and b′. Note that this captures all maximal subblocks b′ that happen

before b and are within the 3 epoch sliding window, as well as including those subblocks in

epoch l − 2 that have predecessors in epoch l − 1.

For the LSOS, we define Gb and Kb to be the standard dataflow formulations of G and K over

a maximal subblock b, restricted to the sliding window of epochs l − 1 through l + 1. Define

pred(b) to be the set of maximal subblocks b′ ∈ HB(b) such that either (i) b′ is the immediate

predecessor of b in thread t or (ii) the first instruction of b receives a send from (equivalently,

locks an unlock by) the last instruction of b′. Barriers are an all-to-all send/receive. Then we can

define the OUT and IN formulas for GEN:

OUTGb = Gb ∪ (INGb −Kb)

INGb =


∅ if b is a thread’s 1st subblock at level l − 1

d
b′∈pred(b) OUTGb′ otherwise

The following establishes the correctness of this formulation:

Lemma 9. If there exists a valid vector ordering O of the instructions in HB(b) such that d ∈

G(O) then d ∈ INGb .

Proof. Suppose HB(b) is not empty and d ∈ G(O). As in earlier proofs, the definition of VVO

implies that there exists in O an instruction (l′, t′, j′) that generates d in a maximal subblock b′,

such that no subsequent instruction kills d, and in particular, ∀ maximal subblocks b̃ ∈ HB(b)

with v(b′) < v(b̃), we have d /∈ Kb̃. It follows that d ∈ Gb′ , and hence d ∈ OUTGb′ . Moreover,

since d /∈ Kb̃ and b̃ is not the first subblock for its thread at level l − 1, we have that d ∈ OUTG
b̃

for all such b̃.

If b′ ∈ pred(b), then by the definition of INGb and the fact that b is not the first subblock for its
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thread at level l− 1, we have d ∈ INGb . If b′ /∈ pred(b), then b′ ∈ HB(b) implies that there exists a

b̃ ∈ pred(b) such that v(b′) < v(b̃). As argued above, d ∈ OUTG
b̃

, and hence d ∈ INGb .

INGb captures the set of local GEN differences to reflect in the LSOS at the entry point to b,

i.e., definitions from instructions that executed before b but may not be in the SOS.

LSOS: Representing KILL As Transfer Functions

The formula for OUTKb is similar to the formula for OUTGb :

OUTKb = Kb ∪ (INKb − Gb).

Recall that the meet function
d

is still union, even though we are combining kill sets.

In defining INKb , it helps to have the following set:

DEL-INKb′ = {b′′|(v(b′′) ∼ v(b′)) ∨ ((v(b′) < v(b′′)) ∧ (v(b) 6< v(b′′)))}

INKb =


∅ if b is a thread’s 1st subblock at level l − 1

d
b′∈pred(b)(OUTKb′−

(∪b′′∈DEL-INKb′
GEN-SIDE-OUTb′′)) otherwise

Lemma 10. If d ∈ INKb then ∀ valid vector orderings O composed solely of all instructions from

maximal subblocks b′ such that v(b′) < v(b), d /∈ G(O).

Proof. If d ∈ INKb then ∃b′ ∈ pred(b) such that d ∈ OUTKb′ and ∀b′′ such that b′′ is concurrent

with b′ or b′′ occurs after b′ but not after b, d /∈ GEN-SIDE-OUTb′′ .

Consider any O, restricted to subblocks that occur before b. It must have a nonempty suffix S

beginning with an instruction (l′, t′, i′) that is the last kill of d in b′. By the definition of VVO, the

remaining instructions in S must either be concurrent with b′ or happen after—precisely the set

encapsulated by DEL-INKb′ . By construction, if d ∈ OUTKb′ − (
⋃
b′′∈DEL-INKb′

GEN-SIDE-OUTb′′)

then
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d /∈ GEN-SIDE-OUTb′′ for all b′′ ∈ DEL-INKb′ , meaning no later instruction in S can define d.

Thus, since d ∈ K(S) for a nonempty suffix S implies d ∈ K(O), we have that d /∈ G(O).

Creating LSOS

We now have all the building blocks we need to adjust the formula for calculating LSOS at

subblock entry points. If b = (l, t, (i, j)) is a maximal subblock, let LSOSb indicate the LSOS

at the entry to block b, namely, LSOSl,t,i. Then LSOSb = INGb ∪ (SOSl − INKb ).

Theorem 11. If ∃ a valid vector ordering O of the instructions from epochs [0, (l − 2)+] and

HB(b) such that d ∈ G(O), then d ∈ LSOSb.

Proof. The proof follows from a straightforward extension of Lemma 9. Instead of limiting

ourselves to an ordering of instructions in HB(b), we consider all instructions from epochs

[0, (l − 2)+] and HB(b). Then if the instruction (l′, t′, i′) generating d has l′ > l − 2, Lemma 9

dominates. Otherwise, it is still the case the d is not in a later kill set (represented by INKb ). If we

restrict the ordering to the first [0, (l − 2)+] epochs, this is the same as the proof that d ∈ SOSl

(Theorem 4.2.2), so d ∈ SOSl − INKb.

4.2.4 In and Out Functions

We now consider what each instruction will compute for its IN and OUT functions. For an

instruction (l, t, i) that belongs to maximal subblock b = (l, t, (j, j′)):

INl,t,i = GEN-SIDE-INb
⋃

LSOSl,t,i

OUTl,t,i = Gl,t,i
⋃

(INl,t,i −Kl,t,i)

4.2.5 Applying the Two-Pass Algorithm

Reaching Definitions in Chrysalis Analysis, like in Butterfly Analysis, is implemented as a two-

pass algorithm. In the first pass, Gb, Kb and GEN-SIDE-OUTb are calculated. Once all threads
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finish the first pass, the second pass can begin. The second pass must respect the happens-before

arcs; if subblock b′ in thread t′ is an immediate predecessor of subblock b in thread t, thread t

cannot calculate INGb or INKb until the second pass of b′ has completed and OUTGb and OUTKb are

available. This means the LSOSb cannot be computed until just before the start of the second

pass for subblock b. Once all threads have completed the second pass, it is safe to update the

SOS.

4.3 Available Expressions

The adaptation of Available Expressions to Chrysalis Analysis proceeds in a similar manner to

Reaching Definitions, with the roles of G and K reversed. We will show the equations for G and

K at all granularities, or state when they are equivalent to Reaching Definitions. Due to the strong

similarity, when proofs are equivalent up to refactoring G andK, references to the corresponding

proofs are provided instead of duplicating them.

4.3.1 Gen and Kill equations

Instruction Level

Let Gl,t,i = {e} if instruction (l, t, i) generates expression e. Let Kl,t,i = {e|(l, t, i) kills e} (e.g.,

(l, t, i) may redefine e’s terms).

Maximal Subblock-Level

The equations for dataflow at the maximal subblock level are equivalent to those of Reaching

Definitions.
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Kill-Side-Out/Kill-Side-In

We define KILL-SIDE-OUTb, the analog of GEN-SIDE-OUTb in Reaching Definitions. As in

Reaching Definitions, we now have KILL-SIDE-OUTb and KILL-SIDE-INb at the maximal sub-

block level. For maximal subblock b = (l, t, (j, k)):

KILL-SIDE-OUTb =
⋃
j≤i≤kKl,t,i

KILL-SIDE-INb =
⋃
{b′|v(b′)∼v(b)} KILL-SIDE-OUTb′

Epoch-Level

In defining the epoch-level sets necessary for Available Expressions, we reuse the sets MBl,

AFTERb, and NOT-BEFOREb defined in Section 4.2.1. For an epoch l and maximal subblocks

b ∈ MBl+ , the epoch-level summaries are:

Kl =
⋃
{b|b∈MBl+}

(
Kb −

⋃
b′∈AFTERb

Gb′
)

Gl =
⋃
{b|b∈MBl+}

(
Gb −

⋃
{b′|b′∈NOT-BEFOREb}Kb′

)
Once more, the roles of K and G are reversed compared to Reaching Definitions. This cor-

respondence is evident in the correctness results we obtain for available expressions. The proofs

to Lemmas 12 and 13 are quite similar to those of Lemmas 7 and 6, respectively, with the roles

of G and K reversed. They are provided for completeness.

Lemma 12. If e ∈ Gl then ∀ valid vector orderings O of the instructions in l − 1 through l+,

e ∈ G(O).

Proof. Suppose e ∈ Gl. Then there must exist an instruction (l, t, k) in a maximal subblock b

such that e ∈ Gb and for all subblocks b′ such that v(b) ∼ v(b′) or v(b) < v(b′), e 6∈ Kb′ . This

follows from e ∈ Gl. Consider any VVO O.

Consider the suffix of O beginning with instruction (l, t, k). By definition of VVO, the only

instructions that can follow (l, t, k) are other instructions in b (while respecting data depen-

dences), and instructions belonging to any maximal subblock b′ which is concurrent with or
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strictly after b. We have shown that for such b′, e 6∈ Kb′ , implying either b′ never kills e or any

kill of e in b′ is followed by a subsequent generate of e also in b′. Applying the definition of VVO,

if a generate of e in b′ is followed by a kill of e in b′, this would be reflected in O. In particular,

it is also reflected in the suffix beginning with (l, t, k). Thus, for the suffix of O beginning with

(l, t, k), if e is killed at all, it is guaranteed to be followed by a generate of e. So any kill of e in O

either occurs strictly before (l, t, k) or else is followed by a generate of e. Either way, e reaches

the end of O, thus e ∈ G(O).

Lemma 13. If ∃ a valid vector ordering O of the instructions in l+ such that e ∈ K(O) then

e ∈ Kl.

Proof. First, there must exist an instruction (l, t, i) in O such that (l, t, i) kills e and no subsequent

instruction in O generates e. This follows from e ∈ K(O). This implies there is no instruction

(l′, t′, i′) such that e ∈ G(l′,t′,i′) and v(l, t, i) < v(l′, t′, i′) (by definition of VVO). Then let b

be the maximal subblock containing (l, t, i). We know that e ∈ Kb (by construction) and that

e /∈
⋃
b′∈AFTERb

Gb′ , so e ∈ Kl.

4.3.2 Strongly Ordered State

The equation for computing SOSl is unchanged from Reaching Definitions (Section 4.2.2); the

differences are captured in the new equations for Gl and Kl. However, the correctness result

we prove varies slightly compared to Reaching Definitions, reflecting the differences between

showing the existence of an interleaving where a property holds (Reaching Definitions) and

showing that a property holds across all interleavings (Available Expressions).

Theorem 14. If e ∈ SOSl+2 then for all valid vector orderings Ol of instructions in epochs

[0, l+], e ∈ G(Ol).

Proof. Our proof will proceed by induction on l. In the base case of l = 0, we have e ∈ SOS2 =

G0. Applying Lemma 12 proves the base case. Now assume the lemma is true for all l < j, and
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show for l = j. Suppose e ∈ SOSl+2. Then either e ∈ Gl or e ∈ SOSl+1 −Kl.

e ∈ Gl: We need a slight generalization of Lemma 12. Consider any VVO Ol of epochs [0, l+].

Again, there exists an instruction (l, t, k) in a maximal subblock b, e ∈ Gl,t,k, such that ∀b′

where v(b) ∼ v(b′) or v(b) < v(b′), e 6∈ Kb′ . We again consider the suffix of Ol beginning

at (l, t, k), and reach the same conclusion as Lemma 12. So e ∈ G(Ol).

e ∈ SOSl+1 −Kl: Both e ∈ SOSl+1 and e 6∈ Kl hold. Consider any VVO Ol of epochs [0, l+].

Let O′ be the restriction of Ol to epochs [0, (l − 1)+]. Applying the inductive hypothesis,

we know that e ∈ G(O′). There must be some instruction (l′, t, k) in O′ such e ∈ Gl′,t,k

and no instruction after (l′, t, k) in O′ kills e. We now return to Ol, and consider the suffix

of Ol beginning with (l′, t, k). The difference in the two suffixes must be solely made up

of instructions from l+.

By the contrapositive of Lemma 13, we know that no VVO O′′ of instructions in l+ can

kill e. It follows that no suffix of O′′ can kill e. Integrating a suffix of O′′ which does not

kill e with the suffix of O′ beginning with (l′, t, k) (also composed of instructions which

do not kill e) cannot kill e, so the suffix beginning at (l′, t, k) in Ol must generate e; thus

e ∈ G(Ol).

4.3.3 Local Strongly Ordered State

LSOS: Representing KILL As Transfer Functions

The OUTKb /INKb sets in Available Expressions strongly correspond to OUTGb /INGb in Reaching

Definitions. As in Reaching Definitions, the meet operator (
d

) for Available Expressions is

union(∪). These represent the expressions which should be killed in the LSOSb as compared to

the SOSl.

OUTKb = Kb ∪ (INKb − Gb)
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INKb =


∅ if b is a thread’s 1st subblock at level l − 1

d
b′∈pred(b) OUTKb′ otherwise

In our correctness result, we reuse the notation HB(b) as defined in Section 4.2.3.

Lemma 15. If ∃ a valid vector ordering O of the instructions in HB(b) such that e ∈ K(O) then

e ∈ INKb .

The proof for Lemma 15 is essentially identical to Lemma 9, with the roles of K and G

reversed.

LSOS: Representing GEN As Transfer Functions

The INGb /OUTGb sets in Available Expression strongly correspond to INKb /OUTKb in Reaching Def-

initions. These represent the expressions which should be added to the LSOSb as compared to

SOSl.

OUTGb = Gb ∪ (INGb −Kb)

DEL-INGb′ = {b′′|(v(b′′) ∼ v(b′)) ∨ ((v(b′) < v(b′′)) ∧ (v(b) 6< v(b′′)))}

INGb =


∅ if b is a thread’s 1st subblock at level l − 1

d
b′∈pred(b)(OUTGb′−

(∪b′′∈DEL-INKb′
KILL-SIDE-OUTb′′)) otherwise

Lemma 16. If e ∈ INGb then ∀ valid vector orderings O composed solely of all instructions from

maximal subblocks b′ such that v(b′) < v(b), e ∈ G(O).

The proof for Lemma 16 is essentially identical to the proof of Lemma 10, with the roles of

G and K reversed.

Creating LSOS

As with the SOS, the equation for the LSOS is unchanged compared to Reaching Definitions:
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LSOSb = INGb ∪ (SOSl− INKb ). The differences have been folded into the equations for INGb and

INKb .

Theorem 17. If e ∈ LSOSb, then ∀ valid vector orderings O of the instructions from epochs

[0, (l − 2)+] and HB(b), e ∈ G(O).

Proof. Suppose e ∈ LSOSb. Then either e ∈ INGb or e ∈ SOSl − INKb .

e ∈ INGb : Then e ∈ G(O) by application of Lemma 16.

e ∈ SOSl − INKb : In this case, e ∈ SOSl and e 6∈ INKb . Applying Theorem 14, we know that

for every VVO O′ of instructions in epochs [0, (l − 2)+], e ∈ G(O′). The contrapositive

of Lemma 15 implies that no VVO composed solely of instructions in HB(b) will kill

e. Finally, we note that if a sequence of instructions does not kill an expression e, then

interleaving that sequence of instructions with an O′ which generates e (while maintaing

all properties of a VVO) must still generate e. Thus, e ∈ G(O).

Applying the Two-Pass Algorithm

Available Expressions is also implemented as a two pass algorithm. In the first pass, Gb, Kb and

KILL-SIDE-OUTb are calculated. When all threads complete the first pass, threads begin the

second pass. During the second pass, threads wait for their predecessors b′ to compute OUTGb′

and OUTKb′ so they can compute the INGb , INKb and ultimately LSOSb. The KILL-SIDE-INb can

be computed on demand during the second pass. Finally, after all threads complete the second

pass, the SOS is updated.

4.4 AddrCheck

As in Butterfly Analysis, we model ADDRCHECK on available expressions. Allocations will

“generate” the memory location “expression”, and deallocations kill such “expressions”. Let
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Gl,t,i = {m} if and only if instruction (l, t, i) allocates memory location m and otherwise ∅.

Likewise, Kl,t,i = {m} if and only if instruction (l, t, i) deallocates memory location m and

otherwise ∅. Gb, Kb, Gl, Kl, INGb , INKb , SOS and LSOS all take their form from the Available

Expressions template. In addition, ADDRCHECK tracks a unified read/write set called ACCESS.

We extend the two modes of checking, local and isolation, introduced by Butterfly Analysis.

Local checking verifies that any address that was accessed or deallocated in a thread’s maximal

subblock was locally allocated at the start of the subblock; it also verifies that any address that

was allocated in a thread’s maximal subblock was locally deallocated at the start of the subblock.

Isolation checking ensures that these local checks do not miss interference by another thread; for

example, if Thread 1 believes address m to be locally allocated, but was unaware it had been

recently freed by Thread 2.

Local Checks

As in Butterfly Analysis, local checks are resolved via LSOS lookups. The formulas for the

LSOS generalize in the same ways the formulas for available expressions were generalized.

Isolation Checks and Summaries

Isolation checks again utilize a summary, which is now for a maximal subblock b instead of a

block (l, t). A summary is represented as sb = (Gb,Kb, ACCESSb), where ACCESSb contains all

addresses that subblock b read or wrote.

We create a “side-in” summary:

Sb = (
⋃
{b′|v(b′)∼v(b)} Gb′ ,

⋃
{b′|v(b′)∼v(b)}Kb′ ,⋃

{b′|v(b′)∼v(b)} ACCESSb′).

To verify isolation, we check that the following set is empty:

((sb.Gl,t ∪ sb.Kl,t)
⋂

(Sb.Gl,t ∪ Sb.Kl,t))
⋃
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(sb.ACCESSl,t
⋂

(Sb.Gl,t ∪ Sb.Kl,t))
⋃

(Sb.ACCESSl,t
⋂

(sb.Gl,t ∪ sb.Kl,t))

and otherwise flag an error.

Theorem 18. Any error detected by the sequential ADDRCHECK on a valid vector ordering O

for a given machine will also be flagged by Chrysalis Analysis.

Proof. The correctness proof follows the lines of the Theorem 3 in Chapter 3 for Butterfly Anal-

ysis. Observe that ADDRCHECK detects errors based on a pairwise interactions between op-

erations (i.e., allocations, accesses and frees). Suppose there was an execution E such that a

sequential ADDRCHECK would have caught an error on memory location x. Represent this

execution as E, with E|x the execution restricted to operations utilizing x. By the assumptions

of Chrysalis Analysis, a VVO O must exist such that O|x, is equivalent to E|x. Since Chrysalis

Analysis will take O into account, it will also catch the error.

4.5 TaintCheck

As in Butterfly Analysis, we build the Chrysalis Analysis extension of TAINTCHECK on top

of reaching definitions. TAINTCHECK presents a unique challenge, as it incorporates not only

dataflow but also inheritance. Instead of definitions, expressions, or addresses, a particular Gl,t,i

is actually a transfer function. An instruction can either taint a memory location x, untaint a

memory location x, be a unary operation on some location a or a binary operation on locations a

and b. More formally, as in Butterfly Analysis, define Gl,t,i as:

Gl,t,i =



(xl,t,i ← ⊥) if (l, t, i) ≡ taint(x)

(xl,t,i ← >) if (l, t, i) ≡ untaint(x)

(xl,t,i ← {a}) if (l, t, i) ≡ x := unop(a)

(xl,t,i ← {a, b}) if (l, t, i) ≡ x := binop(a, b)
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When x := unop(a), we say x inherits (metadata) from a and likewise x := binop(a, b)

indicates x inherits (metadata) from a and b. We use the set S = {>,⊥, {a}, {a, b}|a, b are

memory locations} to represent the set of all possible right-hand values in our mapping. We will

also utilize the function loc() that given (l, t, i) returns x, where x is the destination location

in instruction (l, t, i). As in Butterfly Analysis, Kl,t,i takes the form:

Kl,t,i = {(xl,t,j ← s)|s ∈ S, j < i,loc(l, t, j) = loc(l, t, i)}

Gb, Kb, GEN-SIDE-OUTb and GEN-SIDE-INb all follow the reaching definitions template, but

now track transfer functions instead of actual states. However, the LSOS and SOS still need to

be states, as in reaching definitions. In general, we would like GEN to track ⊥ and KILL to track

>. To convert between transfer functions and actual metadata, Butterfly Analysis introduced a

resolve, or checking, algorithm: resolve(m, l, t, i) takes a memory location m which is the

destination of instruction (l, t, i) and returns either > or ⊥.

Resolving Transfer Functions to Taint Metadata

TAINTCHECK requires resolving potential inheritance relationships when the ordering between

concurrent instructions is unknown. In Section 3.3.2, we introduced an algorithm for “resolving”

inheritance by recursively evaluating transfer functions in the wings, subject to two termination

conditions: one for sequential consistency and one for relaxed memory models. The addition

of vector clocks naturally prunes the search space any taint resolution algorithm has to explore:

we associate the vector clock with each predecessor and verify that the current path of vector

clocks is a VVO. The resolve algorithm is shown in Algorithm 2. Our resolve algorithm

takes an input a tuple (m, l, t, i) and a set T of transfer functions, and returns the taint status of

m at instruction (l, t, i). For brevity within resolve, loc(yi) will refer to the destination of

the instruction associated with yi.
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We define a proper predecessor of xl,t,i ← s to be any yl′,t′,i′ ← s′ such that loc(l′, t′, i′) ∈ s,

s ∈ S and v(l, t, i) 6< v(l′, t′, i′).

Algorithm 2 TAINTCHECK resolve(m, l, t, i) ALGORITHM

Input: m, (l, t, i), T
Initialize P (m, l, t, i) as the list of proper predecessors of (xl,t,i ← s) from T : {(y0 ←
s0), . . . , (yk ← sk)}, where loc(yi) ∈ s.
for all (yj ← sj) ∈ P (m, l, t, i) do

if sj = ⊥ then
Terminate with the rule (xl,t,i ← ⊥).

else if sj = > then
Remove the (yj ← >) from P (m, l, t, i), and continue

Add the proper predecessors (y′i′ ← s′i′) ∈ T of (yj ← sj) to P (m, l, t, i), subject to a
termination condition and verification that following these new arcs does not violate VVO
rules.

Postcondition: Either (xl,t,i ← s) converges to (xl,t,i ← ⊥), or P (m, l, t, i) becomes empty.
If P (m, l, t, i) is empty, conclude (xl,t,i ← >).

The sequential consistency and relaxed memory consistency models termination conditions

are maintained.4 Now, resolve will only replace a predecessor yj ← s with a new predecessor

yj′ ← s′ if, using vector clocks, the instruction associated with yj′ does not occur after the

instruction associated with yj .

Converting Transfer Functions Into Metadata

We will use the function LASTCHECK(x, b), introduced in Butterfly Analysis, which represents

the last taint status returned when resolving the metadata of location x in subblock b, modified

to summarize a subblock b instead of a block (l, t). If x was the destination for an instruction in

subblock b, then LASTCHECK(x, b) will return > or ⊥; otherwise, it returns ∅. This serves as a

proxy for Gb or Kb whenever we require states, not transfer functions.

4The sequential consistency termination condition required ensuring that a sequence of proper predecessor re-
placement operations, when restricted to a single thread, only allowed replacement if the associated instruction
occurred earlier within the thread; the relaxed memory consistency termination condition disallowed a predecessor
to eventually be replaced by itself. These are the same termination conditions presented in Section 3.3.2.
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Extracting GEN-SIDE-OUT into State

We introduce a new set DIDTAINTb for a maximal subblock b, which includes memory location

m if there exists an instruction (l, t, i) contained within b for which m was the destination, and

resolve(m, l, t, i) returned ⊥. More formally:

DIDTAINTb = {m|∃(l, t, v), i ≤ v ≤ j,m = loc(l, t, v) ∧ resolve(m, l, t, v)← ⊥}

If the resolve function for a location m ever returns ⊥, m ∈ DIDTAINTb. This set is now

used in place of the GEN-SIDE-OUT whenever we need an actual state versus transfer functions.

At this point, we have almost completed the adaptation of TAINTCHECK into Chrysalis Anal-

ysis. We have Gb, Kb, GEN-SIDE-OUT and GEN-SIDE-IN, and when necessary can move be-

tween transfer functions and actual states.

Complications: Calculating INKb

One complication arises that was not an issue for Butterfly Analysis. Butterfly Analysis had a

special case for updating the LSOS, which used the head. Because the head always executed

before the body, LASTCHECK for the head was always available. In Section 4.2.3, our gen-

eralization of the update rules for the LSOS requires access to GEN-SIDE-OUTb as states, not

transfer functions. We require them before we begin the second pass over subblock b, but they

are not guaranteed to be available until after each thread completes its entire second pass. Recall

the equations:

DEL-INKb′ = {b′′|(v(b′′) ∼ v(b′)) ∨ ((v(b′) < v(b′′)) ∧ (v(b) 6< v(b′′)))}

INKb =
d
b′∈pred(b)

(
OUTKb′ −

(⋃
b′′∈DEL-INKb′

GEN-SIDE-OUTb′′
))

At first, it seems paradoxical. However, the situation is salvageable after making a key ob-

servation. If b′′ ∈ DEL-INKb′ and v(b′′) 6< v(b), then v(b′′) ∼ v(b). (To see this, suppose instead

that v(b′′) > v(b). Because b′ ∈ pred(b), we have v(b′) < v(b), which implies v(b′) < v(b′′). But

then by the definition of DEL-INK, v(b) 6< v(b′′), a contradiction.) In other words, when we first

need to calculate INKb before the second pass over block b, if not all of the actual DIDTAINTb′′
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are available, at least the transfer functions are; and we will use them in the resolve process.

As long as our resolve process is accurate, our second pass will still be accurate.

However, there is another use of INKb and OUTKb , namely, seeding the next epoch’s initial INK

for the same thread. To fix this, we make a second observation: All of the subblocks in epoch

l+ had correct and complete DIDTAINT sets available once their second pass was completed.

Starting from the initial seed values of INK for the first subblock of epoch l in each thread, we

can recompute INK and OUTK for all subblocks so that the next sliding window can proceed.

While not every subblock from epoch l + 1 will have a DIDTAINT set ready, all subblocks (and

their GEN-SIDE-OUT) in epoch l + 1 remain available in the next sliding window.

Updating State

Once we have LASTCHECKb and DIDTAINTb as the state proxies for Gb, Kb, GEN-SIDE-OUTb

and GEN-SIDE-INb, we can calculate Gl,Kl and SOSl, using the same SOS update rules as

reaching definitions. With INKb , OUTKb , INGb and OUTGb , we can compute the LSOS.

Theorem 19. If resolve returns (xl,t,i ← >), then there is no valid vector ordering of the

instructions in epochs [0, (l + 1)+] such that x is ⊥ at instruction (l, t, i).

Proof. Suppose there were a VVO such that xl,t,i ← ⊥ at instruction (l, t, i). This implies a

finite sequence of transfer functions f̂ such that the associated instructions in order would (a)

taint x and (b) obey all vector orderings. Our resolve algorithm will follow all valid vector

orderings, so it would have discovered the xl,t,i ← ⊥ and returned ⊥, a contradiction.

It follows that any error detected by the original TAINTCHECK on a valid execution ordering for

a given machine (with a memory model that at least obeys intra-thread dependences and supports

cache coherence) will also be flagged by Chrysalis Analysis.
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4.6 Evaluation and Results

We now present our preliminary experimental evaluation of TAINTCHECK comparing the preci-

sion and performance of our TAINTCHECK implementation in Chrysalis Analysis to our imple-

mentation in Butterfly Analysis. Both the Chrysalis Analysis and Butterfly Analysis implemen-

tations of TAINTCHECK are new for this work.

4.6.1 Experimental Setup

Chrysalis Analysis, like Butterfly Analysis, is general purpose and can be implemented using a

variety of dynamic analysis frameworks, including those based on binary instrumentation [20, 71,

82]. We built Chrysalis Analysis on top of the Log-Based Architectures (LBA) framework [23].

In LBA, every application thread is monitored by a dedicated lifeguard thread running on a core

distinct from the application; as the application executes, a dynamic instruction trace is captured

and transported to the lifeguard through a log that resides in the last-level on-chip cache. LBA

itself is modeled using the Simics [108] full-system simulator.

We implemented a word-granularity version of TAINTCHECK in both Chrysalis and Butter-

fly Analyses. Some conservative assumptions were made in the resolve algorithm, such as

setting a threshold for how many predecessors (set at 1024) we will follow before cutting off the

resolve algorithm and conservatively tainting the destination. We tested our implementation

on four Splash-2 benchmarks [113], shown in Table 4.6.1, where we synthetically tainted the

benchmarks’ input data. We tested two different configurations for both Butterfly and Chrysalis

Analysis, shown in Table 4.3. To capture happens-before arcs, we leveraged the wrapper for

shared library calls used by LBA [23] and generated vector clocks on the producer side, which

were communicated to the lifeguard cores via the log.

5We used LBA to generate and communicate epoch boundaries, inserting epoch boundaries after hn instructions
had been executed by the entire application, where n is the number of application threads; h was set at 8K for these
experiments.
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Table 4.2: Splash-2 [113] benchmarks used in evaluation

Benchmark Inputs
BARNES 512 bodies

FFT m = 14 (214 sized matrix)
FMM 512 bodies

LU Matrix size: 128× 128, b = 16

Table 4.3: Simulator Parameters used in evaluation

Simulation Parameters
Cores {4, 8} cores

Application/Lifeguard {2/2, 4/4} Threads
L1-I, L1-D 64KB

L2 {2MB, 4MB}
Epoch boundaries Insert every 8K instructions/thread (on average)5

Table 4.4: Potential errors reported by our lifeguard. Two configurations are shown, each with a
Butterfly and Chrysalis implementation.

4-core 8-core
Butterfly Chrysalis Butterfly Chrysalis

BARNES 13 1 38 0
FFT 3 0 9 0
FMM 62 0 93 12
LU 5 0 10 0
Total 83 1 150 12

Our prior work on Butterfly Analysis, presented in Chapter 3, focused on ADDRCHECKas a

lifeguard, assumed pointers to memory in the benchmarks tested were properly allocated and thus

any reported errors were false positives. In contrast, our new TAINTCHECK tool reports potential

errors. Due to the introduction of synthetic tainting, true positives are possible if taint flows

from a synthetically tainted address to a jump target, for example. Accordingly, we treat the total

number of potential errors reported as a ceiling for false positives encountered. The reduction

in potential errors in our results comparing the Butterfly and Chrysalis precision numbers is

entirely due to Butterfly reporting false positives due to the lack of happens-before arcs. The

current Chrysalis implementation can only report potential errors, and not distinguish between

false and true positives.
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Figure 4.4: Chrysalis Analysis, normalized to Butterfly Performance.

4.6.2 Results

The primary motivation for Chrysalis Analysis was improved precision relative to Butterfly Anal-

ysis. As shown in Table 4.4, precision in TAINTCHECK improved significantly compared to But-

terfly Analysis for all benchmarks and both configurations (4- and 8-core). Some false positives

were possible in our implementation of TAINTCHECK as we made several conservative decisions

in both the Chrysalis and Butterfly Analysis implementations, such as fixing a threshold for ex-

ploring predecessors in resolve, tracking taint status at word (instead of byte) granularity, and

using synthetic tainting. Conservative decisions made in situations such as Figure 4.1(c), when

there is not enough ordering information to precisely determine taint status, could also lead to a

memory address being falsely tainted.

For the 4-core configuration, Chrysalis Analysis reports only one potential error across all

benchmarks, on the BARNES run. The equivalent Butterfly Analysis 4-core BARNES run has

13 potential errors. On the 8-core configuration, the only Chrysalis Analysis run to report

potential errors is FMM. Its Butterfly Analysis counterpart has 93 potential errors, compared

to 12 for Chrysalis, approximately a 7.8x reduction in false positives. The potential errors in

the 8-core Chrysalis FMM run correspond primarily to starting and exiting a thread as well as

pthread mutex lock. Note that the implementation of the high-level synchronization prim-
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itives that we capture cannot themselves be protected by the same high-level synchronization,

so we may miss some arcs that would prevent races. Over all benchmarks and configurations,

Chrysalis Analysis improved precision by a factor of 17.9x relative to Butterfly Analysis.

Next, we examine the performance overheads of Chrysalis Analysis relative to Butterfly

Analysis. Across all benchmarks, the slowdowns range from 1.5x to less than 2.6x. Over all

benchmarks and configurations, the geometric mean slowdown is approximately 1.9x. This

is not an unreasonable tradeoff; an average of less than two-fold slowdown in exchange for a

drastic improvement in precision. For BARNES, FFT, and FMM, the slowdowns remain fairly

constant when comparing the 8-core configuration to the 4-core configuration, indicating that

the Chrysalis Analysis implementation is scaling at the same rate as the Butterfly Analysis tool.

There is an increase in overhead for the 8-core LU, but even in this case its overheads are still

less than 2.6x.

Because our prototype of Chrysalis Analysis was intended to be a proof-of-concept rather

than a highly tuned piece of software, we believe that the results shown in Figure 4.4 are conser-

vative.

4.7 Related Work

This work significantly extends our previous work on Butterfly Analysis presented in Chapter 3,

making use of vector clocks to track synchronization events. Vector clocks [11, 24, 102] have

been used in a number of data race detectors [19, 37, 38, 76, 99, 121]. For example, Flanagan

and Freund proposed FastTrack [37], which primarily uses a compact representation to detect

data races but still uses vector clocks to track lock and unlock operations. FastTrack achieves

precision similar to full vector-clock based methods and performance similar to LockSet [98].

Muzahid et al. [76] divide thread execution into epochs to form a data race detector based on sig-

natures, and use vector clocks to determine happens-before relationships. In contrast, Chrysalis

Analysis is not simply a data race detector, but a general dataflow analysis framework for imple-
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menting a broad range of sophisticated lifeguards.

4.8 Chapter Summary

To retain the advantages of Butterfly Analysis while reducing the number of false positives, we

have proposed and evaluated Chrysalis Analysis, which incorporates happens-before informa-

tion from explicit software synchronization. Our implementation of the TAINTCHECK lifeguard

demonstrates that Chrysalis Analysis reduces the number of false positives by 17.9x while in-

creasing lifeguard overhead by an average of 1.9x.
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Chapter 5

Explicitly Modeling Uncertainty to

Improve Precision and Enable Dynamic

Performance Adaptations

In Chapter 4, we presented Chrysalis Analysis [44], a generalization of Butterfly Analysis [45]

which incorporates high-level synchronization-based happens-before arcs. Chrysalis Analysis

dramatically improved Butterfly Analysis’ precision–on average, approximately 17.9x–at a cost

of approximately 1.9x average slowdown relative to Butterfly Analysis. However, of the remain-

ing potential errors reported, Chrysalis Analysis did not offer any way to differentiate true errors,

or to explore the root cause of the error being flagged.

In adapting analyses such as TAINTCHECK to dataflow-analysis based dynamic parallel mon-

itoring, one formerly precise state taint became a conservative metadata state; a failed check

of tainted memory could now indicate a true error or a false positive due to conservative

analysis; it was impossible to tell. The untaint state remained precise, which allowed for the

theoretical guarantees that no errors were ever missed. However, programmers are interested in

more than just potential errors. It is much more useful to be able to differentiate between true

and potential errors.
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With Chaotic Butterfly (and similarly, Chaotic Chrysalis), the former precise metadata state

of taint is restored as precise once more. A new state of uncertain is introduced to the

metadata lattice. The purpose of the uncertain state is to explicitly capture the effects of conserva-

tive analysis. Consider a dynamic information flow tracking lifeguard such as TAINTCHECK [84],

which has two metadata states: taint and untaint. In both Butterfly Analysis and Chrysalis

Analysis, the untaint state is precise, meaning that an untaint judgment for memory lo-

cation m implies that under all possible orderings consistent with the observed partial ordering,

m is always untainted. The taint state, on the other hand, is conservative. If at least one

ordering of instructions would have taint m, then m is considered tainted.

However, anytime the analysis had to behave conservatively, we assumed the worst case and

returned taint. Thus, when the analysis reported a potential error, it could not distinguish

between a “true error” and false positives due to conservative analysis. Incorporating an explicit

uncertain state allows these conservative judgments to be isolated into an uncertain state. Thus,

the taint state becomes precise: if the analysis reports m is tainted, then under all possible

orderings, m is tainted. The uncertain state captures the cases where all orderings do not lead

to a single unified judgment of either taint or untaint, as well as any other cases where

the analysis makes a conservative judgment. We can still guarantee that no true error is ever

missed; however, it can now fall into a bucket of either a true positive or a potential error (when

the analysis does not have enough information to know if the error actually manifested).

Uncertainty Examples

Consider Figure 5.1. In Figure 5.1(a), an example of uncertainty within Butterfly Analysis is

shown. The untaint(p) in Thread 2, epoch 0 and the taint(p) in Thread 0, epoch 1

are both considered concurrent with respect to the dereference *p in Thread 1 epoch 1–leading

Thread 1 to conclude the metadata status of p is uncertain at the dereference point. Likewise,

casting this example into Chrysalis Analysis, as shown in Figure 5.1(c) does not necessarily
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Figure 5.1: (a) Uncertainty in Butterfly Analysis, with a data race in the wings. The different or-
derings of taint(p) in Thread 0 and untaint(p) in Thread 2, relative to the dereference *p in
Thread 1, causes the metadata state to be uncertain. (c) Recasting the example from (a) into Chrysalis
Analysis doesn’t guarantee that the data race will resolve, and the metadata state for *p is still uncer-
tain. (d) An example in Chrysalis Analysis which incorporates a data race which is known to resolve
before the dereference *p in b4. (b) An example which deceptively resembles (c) and (d)–here a data
race free program dereferences *(p+offset), where p is tainted and offset is untainted.
According to the rules of TAINTCHECK, *(p+offset) is treated as tainted

resolve the uncertainty of p’s metadata state. Finally, Figure 5.1(d) demonstrates a canonical

tension arising within Chrysalis Analysis: both the taint(p) and untaint(p) are resolved

before the *p, but their ordering relative to each other is still unknown, leading to an uncertain

metadata state for p. In Figure 5.1(b), a data race free program is shown where the dereference’s

safety derives from p, which is tainted, as well as from offset, which is untainted.

Unlike prior examples, *(p+offset) is considered tainted and not uncertain, as the

taint status for p is definitive.

Note that it makes sense to incorporate uncertainty into both Butterfly Analysis and Chrysalis

Analysis. If a programmer is only concerned about true errors (those which must have occurred),

and if Butterfly Analysis paired with explicit uncertainty can isolate true errors from potential
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errors well, then the performance advantage of Butterfly Analysis may make it the better choice.

For this reason, we have incorporated an uncertain state into both the Butterfly Analysis and

Chrysalis Analysis theoretical formulations.

5.1 “Subtyping” Uncertainty: Tracking Causes of Uncertainty

From a theoretical perspective, uncertainty is treated as only one state within the metadata lattice,

which is the new ⊥; our theoretical results will only have one uncertain state. However,

once we have proven guarantees about the uncertain state, we can further “subtype” it to track

the cause of the conservative judgment. In one case, the state of memory location m may be

considered uncertain if two different potential orderings are consistent with the observed

partial order, with one of them leading to taint and the other leading to untaint. In another

case, heuristics introduced into the analysis (such as thresholds for how long one should search

a graph for paths to tainted or untainted ancestors) may lead a search to be cut off early.

These two types of uncertainty have different root causes: in one case, while the error may not

have occurred, nothing prevents it from occurring on another run. In the other, a change of

threshold may lead to a more precise analysis, which is useful information for an end-user to

have.

5.2 Overview of Uncertainty

Incorporating uncertainty into dataflow-analysis based dynamic parallel monitoring requires a

few key changes. First, a new state must be introduced to capture uncertainty. Next, all the

dataflow equations must be updated. In the setting of TAINTCHECK, this means that the equa-

tions from when an address is tainted to separate true taint from potentially tainted; poten-

tially tainted addresses will now be considered uncertain. To understand how and where

these equations must change, it helps to examine different scenarios where uncertainty arises.
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Figure 5.2: Additional examples of uncertainty, shown in Butterfly Analysis. In (a), thread 0 issues
taint(p) concurrently with Thread 1 issuing *p; however, Thread 1 is uncertain whether it read
the tainted value or the untainted value reflected in the LSOS. In (b), even without concurrent threads
altering the metadata status for p, it is still possible for Thread 1 to consider the metadata for p
uncertain if the uncertainty arose earlier in analysis. Finally, (c) illustrates that uncertainty can arise
temporarily; at the end of epoch 3, it is clear that p is untainted, but in epoch 2, it is not possible for
Thread 1 to know whether it read a tainted or untainted version of p.

5.2.1 Uncertainty Examples: Scenarios where uncertainty arises

Consider Figure 5.1(a), depicting a threads 0 and 2 racing on pointer p; Thread 0 issues taint(p)

whereas Thread 2 issues untaint(p), shown in Butterfly Analysis. Thread 1 is dereferenc-

ing p. Note that the uncertainty does not arise merely because threads 0 and 2 are racing while

writing values to p; it arises because they are concurrent and the writes lead to conflicting meta-

data values: in this case, taint and untaint. We will call that a metadata race. This same

situation is possible in Chrysalis Analysis, if the program is not data race free, as shown in

Figure 5.1(c).

Its also not necessary that the metadata race occur simultaneously with the access. For in-

stance, in Figure 5.1(d), the metadata race is guaranteed to have resolved before Thread 1 issues

*p. However, simply knowing that the race has resolved does not mean the analysis knows how
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it has resolved. Figures 5.2(a) and 5.2(b) illustrate how uncertainty does not even necessarily

arise from a metadata race. In Figure 5.2(a), the LSOS indicates that p is untainted, whereas

Thread 0 in epoch 3 issues taint p. Based on the thread execution model, we know that in-

structions which are represented by the LSOS have already committed and thereby cannot have

been issued concurrently with instructions in epoch 3. However, Thread 1 is not sure whether

the taint(p) by Thread 0 occurs before or after it; if the taint(p) occurs after, then it

must have read the p: untainted value from its LSOS but if it occurs before, Thread 1 sees

p: tainted. Thus, despite these two events being ordered, it is still the case that Thread 1

is uncertain of the actual metadata value for p. Figure 5.2(b) reflects that uncertainty can

propagate into the SOS and into the LSOS, leaving a check by Thread 0 for the metadata of p

in *p to return uncertain even when no other thread is concurrently changing the metadata

status for p. Finally, Figure 5.2(c) illustrates how the metadata value for p, while uncertain for

Thread 1 in epoch 2, will be clarified by the end of epoch 3 after each thread completes the epoch

by issuing untaint(p).

5.2.2 Challenge: Dataflow Analysis Does Not Preserve Timing

Both Butterfly and Chrysalis Analysis are built on a foundation of dataflow analysis, adapted

to run dynamically at runtime and using a different thread execution model than the standard

control flow graph. Dataflow analysis tracks flow of information without the context of where

and when it flowed from. While Chrysalis Analysis required a slight deviation from pure dataflow

to incorporate the happens-before arcs, an even larger deviation will be necessary for correctly

tracking uncertainty. Where before it might have been sufficient to return conservative state and

continue analysis, now our goal is to keep the largest precise states as possible without admitting

error. This leads to complexities, especially in the context of Chrysalis Analysis.

Consider Figure 5.3(a) and Figure 5.3(b). From the perspective of subblock b1 in both fig-

ures, the taint(p) reaches the end of the subblock. However, for the analysis to be as precise
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(a) Taint before untaint before dereference

untaint(p) 
 

 Thread 1 

taint(p) 
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 Thread 0 
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(b) Concurrent taint, untaint

Figure 5.3: Incorporating uncertainty into Chrysalis Analysis requires tightening the equations for
taint, untaint and uncertain propagation. In both (a) and (b), p is tainted at the end
of b1. However, in (a) p should be considered untainted before b3 begins execution, since b2

executes after b0 and before b1; in (b) p should be considered uncertain. In standard dataflow
analysis, calculating IN uses what reaches the end of blocks b1 and b2 without considering when it
was generated or the ordering of the generates.

as possible, we must differentiate between these two cases at the input to subblock b3: in Fig-

ure 5.3(a), p should be considered untainted whereas in Figure 5.3(b), it should be consid-

ered uncertain. To accomplish this precision will require further refinements to the dataflow

equations to take into account the ordering information that pure dataflow cannot capture.

5.2.3 Challenge: Non-Binary Metadata Complications

Binary metadata makes performing checks straightforward. In traditional TAINTCHECK, if

something is not tainted, then it is untainted. In reaching definitions, a definition ei-

ther may reach a program point or it must not. Increasing the number of metadata states, from

two to three1, increases the complexity of computing the meet operation and transfer functions,

as well as the complexity of communicating and storing the metadata.

Metadata Datastructures

The metadata complications are nonintuitive. As dataflow analysis-based dynamic parallel mon-

itoring has such a large reliance on set operations such as union and intersection, particularly in

1or more, depending on how many types of uncertainty are tracked
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calculating the SIDE-OUT, SIDE-IN, and global state update, the metadata format which at first

seems natural (storing a metadata state per memory location) is less ideal than the reverse: storing

the memory locations that correspond to a given state in a set. With only two metadata states, the

reversal of the mapping does not overly complicate set membership queries or insertion/deletion

operations. With increasing numbers of sets, however, the set membership, insertion and deletion

operations become increasingly complication.

5.2.4 Challenge: Non-Identical Meet Operation and Transfer Functions

Likewise, with only two metadata states, there are only four mappings the meet operation and

transfer functions had to track. With n ≥ 3 metadata states, there are
(
n
2

)
mappings. Further-

more, for lifeguards like TAINTCHECK, the meet and transfer functions are no longer equivalent.

Consider the statement *(p+offset). If p maps to taint and offset to untaint, the

transfer function for TAINTCHECK dictates that the jump target p+offset is considered tainted

(e.g., Figure 5.1(b) ). On the other hand, TAINTCHECK will consider *p to be uncertain if

the wings show two different taint values possible for p (e.g., Figure 5.1(c)), because the meet of

taint and untaint is uncertain, whereas the transfer function ftransfer(taint, uncertain) =

taint.

TaintCheck Predecessor Resolution Complications

Both Butterfly Analysis and Chrysalis Analysis were able to leverage the fact that the meet and

transfer functions were identical when resolving the taint status of predecessor. If the predecessor

relationship were a graph, Butterfly and Chrysalis Analysis could perform a breadth first search,

and easily short circuit if a taint value were ever encountered: any encounter of taint always

mapped the destination address to taint. Now, the analysis must still perform a meet of the

different metadata values it sees in the wings, but then feed those values into a transfer function

whenever it is analyzing a statement of the form a := b + c, which implies a depth first
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search where meet and transfer functions are carefully applied at the right stages.

5.2.5 Challenge: State Computations Increasingly Complicated

While Chrysalis Analysis added an element of increased complexity to local state computations,

adding uncertainty layers yet more complexity. First, for both Butterfly Analysis and Chrysalis

Analysis, if an address x was considered tainted at the beginning of the subblock, then some

predecessor believed that x was potentially tainted (others may have disagreed, but at least one

agreed). Now, two predecessors can each believe x is in a precise state, where one predecessor

believes x is tainted and the other believes x is untainted. Instead of using either of those states,

the local state will have to map x to uncertain. While this example shows the complication for

LSOS, an analogous situation arises for updating the SOS.

5.3 Leveraging Uncertainty

Separating true errors from potential errors is not the only benefit of incorporating uncertainty

into dataflow-analysis based dynamic parallel monitoring. By being able to differentiate between

true errors and cases where the analysis lacks sufficient information to make a precise judgment,

we can attempt to dynamically increase the information available to the analysis and hopefully

yield a precise judgment. Furthermore, explicitly tracking uncertainty enables dynamic decisions

between faster and slower paths; if a fast but conservative pass leads to an uncertain result, a

slower but more precise result pass can be rerun. Depending on the frequency, these dynamic

adaptations give us the hope of improving both precision and performance.
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5.3.1 One Dynamic Adaptation: Dynamically Adjusting Epoch Sizes To

Balance Performance and Precision

One way to react to uncertainty is to dynamically reshape epoch boundaries. Recall from Chap-

ter 2 that epoch size is bounded from below but not from above; it needs to be large enough to

account for buffering in the system (e.g., reorder buffer, store buffer, maximum memory access

latency) but no upper bound is specified. With Butterfly Analysis, we showed that larger epoch

sizes corresponded to better performance but worse precision than smaller epoch sizes; dynam-

ically adapting epoch sizes offers the chance to achieve precision equivalent to smaller epochs

with performance similar to larger epochs.

There is one big challenge to dynamically adapting epoch sizes; epoch boundaries are emitted

on the application side based on the number of retired application instructions. By the time the

lifeguard encounters an uncertain result where it would desire more ordering information, it is too

late to extract that information from the application trace; uncertainty is not encountered until

the second pass of analysis, so at least one more epoch of instructions (and potentially more)

have already been retired by the application, and the boundaries of where it is safe to subdivide

an epoch are unclear to the lifeguard.

Insight: Always emit small epochs, frequently ignore heartbeats

The insight which enables dynamic epoch resizing is simple: just as there is no ceiling to epoch

size, there also is no requirement that a lifeguard thread honor each heartbeat it encounters, so

long as all lifeguard threads elide the same heartbeats. In essence, only honoring odd heartbeats,

or heartbeats that are multiples of 7, is simple making each individual epoch that much larger.

Armed with this insight, the path to enabling dynamic epoch resizing is clear: always emit

heartbeats sized for small epochs on the application side, but ignore many of these epoch bound-

aries on the lifeguard side. When a lifeguard thread encounters a potential error that it requires
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more information to resolve, coordinate a rollback to the smaller epochs (whose boundaries are

already correctly in the log) and restart analysis; the goal of this work is to recover the precision

of the smaller epoch size with the performance of the larger (simulated) epoch size.

5.4 Reaching Definitions

Both Butterfly Analysis and Chrysalis Analysis are examples of dataflow-analysis-based dy-

namic parallel monitoring: their theoretical formulations are adaptations of (traditionally static)

dataflow analysis to a dynamic parallel monitoring setting. As such, the addition of an uncertain

state to Butterfly Analysis and Chrysalis Analysis involves adapting the dataflow equations. For

our purposes, we will begin with calculating reaching definitions, a canonical dataflow analysis,

and show how to add an uncertain state to the metadata lattice.

It may be slightly more natural to consider using constant propagation as our model rather

than reaching definitions; it would be equivalent to an instruction yielding Not-A-Constant(NAC)

in constant propagation. While the uncertainty formulations of Butterfly Analysis and Chrysalis

Analysis could be expressed in terms of constant propagation, we have continued to use reach-

ing definitions for ease of comparison to the original formulations. However, note that moving

forward, both GEN and KILL are fully precise (“must”) states, as compared to prior formulations

in Chapters 3 and 4.

5.4.1 Butterfly Analysis: Incorporating Uncertainty

To provide full generality for analyses such as TAINTCHECK, we will assume the existence of a

magic instruction whose effects are uncertain; a definition d may or may not be generated This

eases proper modeling of inheritance in TAINTCHECK.

I will assume that we represent the dataflow primitives GEN and KILL as G and K, respec-

tively. I will represent uncertainty(“maybe-generated”) asM.
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Recall the structure of Butterfly Analysis, as represented in Figure 4.2(a). Butterfly Analysis

divides thread execution into epochs, sized to ensure that instructions in non-adjacent epochs (or

epochs that do not share a boundary) do not interleave. This reduces the window of concurrency

Butterfly Analysis must reason about to a three-epoch window. Within that window, a block is

specified by a thread-epoch pair. The head, body, tail and wings are illustrated in Figure 4.2(a).

5.4.2 Gen and Kill equations

We will useM to represent the set of definitions in an uncertain (or maybe-generated) state, to

reduce confusion with untaint and union.

Instruction-Level

. If an instruction generates d, kills d or marks d uncertain, then d is respectively in Gl,t,i, Kl,t,i or

Ml,t,i.

Block-level

We use the standard dataflow representations for generation/kill/uncertainty across a set of con-

secutive instructions (l, t, i) through (l, t, j) modified to incorporate uncertainty.

Gl,t,(i,i) = Gl,t,i ∀j > i, Gl,t,(i,j) = Gl,t,j
⋃

(Gl,t,(i,j−1) − (Kl,t,j ∪Ml,t,j)).

Kl,t,(i,i) = Kl,t,i ∀j > i, Kl,t,(i,j) = Kl,t,j
⋃

(Kl,t,(i,j−1) − (Gl,t,j ∪Ml,t,j)).

Ml,t,(i,i) =Ml,t,i ∀j > i, Ml,t,(i,j) =Ml,t,j

⋃
(Ml,t,(i,j−1) − (Kl,t,j ∪ Gl,t,j)).

Recall that a block in Butterfly Analysis represents a sequence of consecutive instructions be-

longing to epoch l and thread t, represented as block (l, t). We represent generation/kill/marking

uncertain across a block (l, t) which contains n + 1 instructions as:

Gl,t = Gl,t,(0,n)

Kl,t = Kl,t,(0,n)
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Ml,t =Ml,t,(0,n)

Side-Out and Side-In

We will use the intermediate sets ALLGl,t, ALLKl,t and ALLMl,t to compute the side-in and side-out.

ALLGl,t =
⋃
i Gl,t,i

ALLKl,t =
⋃
iKl,t,i

ALLMl,t =
⋃
iMl,t,i

Given these intermediate sets, we can calculate the side-out:

GSOl,t = ALLGl,t − (ALLKl,t ∪ ALLMl,t )

KSOl,t = ALLKl,t − (ALLGl,t ∪ ALLMl,t )

MSOl,t = ALLMl,t ∪ (ALLGl,t ∩ ALLKl,t)

This follows from the behavior of the wings. For example, any block which both generates

and kills a definition d will create an uncertain result in the minds of any block for which it

is in the wings, thus those results are moved from GSO to MSO. We can use a similar trick of

intermediate sets WINGGl,t , WINGKl,t and WINGMl,t to calculate the side-in:

WINGGl,t =
⋃
{t′ 6=t}

⋃
{l′|l−1≤l′≤l+1}

GSOl′,t′

WINGKl,t =
⋃
{t′ 6=t}

⋃
{l′|l−1≤l′≤l+1}

KSOl′,t′

WINGMl,t =
⋃
{t′ 6=t}

⋃
{l′|l−1≤l′≤l+1}

MSOl′,t′

GSIl,t = WINGGl,t − (WINGKl,t ∪WINGMl,t )

KSIl,t = WINGKl,t − (WINGGl,t ∪WINGMl,t )

MSIl,t = WINGMl,t ∪ (WINGGl,t ∩WINGKl,t)
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5.4.3 Incorporating Uncertainty Into Strongly Ordered State

Summarizing an epoch

We begin with the must-kill and must-generate equations to summarize an epoch, as we are trying

to represent generate and kill as precisely as possible. The inclusion of the prior epoch to account

for potential interference is extended from Butterfly Analysis. We use standard composition of

transfer functions (e.g.,G(l−1,l),t = Gl,t
⋃

(Gl−1,t− (Kl,t ∪Ml,t)) and symmetrically forM(l−1,l),t

and K(l−1,l),t).

Kl =
⋃
t

(
Kl,t −

(⋃
t′ 6=t

[G(l−1,l),t′ ∪M(l−1,l),t′ ]

))

Gl =
⋃
t

(
Gl,t −

(⋃
t′ 6=t

[K(l−1,l),t′ ∪M(l−1,l),t′ ]

))

Intuitively, a definition d is killed in an epoch if at least one subblock (l, t) kills d and for

all concurrent subblocks in epochs [l − 1, l], none have a net effect of definitely generating or

possibly generating d. Gl and Kl are symmetric because we are looking to achieve equivalent

precision for these two sets in this work.

Another way of viewing the definition of Kl (symmetrically, Gl) is by observing when defi-

nitions d /∈ Kl. By this definition, ∃t such that x /∈ Kl,t ∧ (x ∈ M(l−1,l),t ∨ x ∈ G(l−1,l),t) then

x /∈ Kl.

If, instead, we wanted to represent may-kill and may-generate, we would represent may-

kill as
⋃
tKl,t and may-generate as

⋃
t Gl,t. In fact, for Butterfly Analysis, we previously used

may-generate and must-kill.

To accurately capture the uncertainty within an epoch, we need to separate out and account

for separate sources of uncertainty. First, the difference between may-kill and must-kill, or may-

generate and must-generate, captures the fact that orderings may exist in which two different

outcomes are possible, when looking at all instructions in the epoch. Second, we must capture
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any organic uncertainty (e.g., a check within the wings returns “uncertain”, which persists to the

end of some block (l, t).

Ml = (
⋃
t

Ml,t)∪

⋃
t

⋃
{t′|t6=t′}

([
Kl,t ∩ (G(l−1,l),t′ ∪M(l−1,l),t′)

]
∪
[
Gl,t ∩ (K(l−1,l),t′ ∪M(l−1,l),t′)

])
Mutual Exclusion

By construction, we have thatMl,t, Gl,t and Kl,t are pairwise mutually exclusive sets. Now we

want to show that the epoch summarizations Gl,Ml,Kl are again pairwise mutually exclusive.

We do this by showing that x ∈ Kl ⇒ x /∈Ml∧x /∈ Gl and then that x ∈Ml ⇒ x /∈ Kl. As our

generate and kill formulations are now symmetric, we get two other implications by swapping

the roles of G and K, completing the proof.

Lemma 20. If x ∈ Kl then x /∈Ml and x /∈ Gl.

Proof. For both proofs, we will use x /∈ G(l−1,l),t implies x /∈ Gl,t (and likewise for all the

compositions over 2 epochs). This follows by construction.

First, we will show x ∈ Kl ⇒ x /∈ Gl. If x ∈ Kl, that implies there exists t such that x ∈ Kl,t

and ∀t′ 6= t, x /∈ G(l−1,l),t′ ∧ x /∈M(l−1,l),t′; it follows that x /∈ Gl,t′ ∧ x /∈Ml,t′ . This follows by

definition of Kl. Furthermore, as Kl,t ∩ Gl,t = ∅, x /∈ Gl,t. So ∀t, x /∈ Gl,t and therefore x /∈ Gl

by definition of Gl.

Now, we will show that x ∈ Kl ⇒ x /∈ Ml. If x ∈ Kl, then again there exists t such that

x ∈ Kl,t and ∀t′ 6= t, x /∈ G(l−1,l),t′ ∧ x /∈ M(l−1,l),t′; it follows that x /∈ Gl,t′ ∧ x /∈ Ml,t′ . As

before, x /∈ Ml,t as Kl,t ∩Ml,t = ∅ and likewise x /∈ Gl,t. So x /∈
⋃
tMl,t, as I have shown

x /∈Ml,t′∀t′.

Furthermore: I have shown ∀t, x /∈ Gl,t so x /∈
⋃
t

⋃
{t′|t6=t′}

[
Gl,t ∩ (K(l−1,l),t′ ∪M(l−1,l),t′)

]
.

Finally: As ∀t′, x /∈ G(l−1,l),t′∪M(l−1,l),t′ (including t′ = t), then for any t, x /∈
⋃
t′ 6=t(G(l−1,l),t′∪

M(l−1,l),t′). Thus, x /∈
⋃
t

⋃
{t′|t6=t′}

[
Kl,t ∩ (G(l−1,l),t′ ∪M(l−1,l),t′)

]
. So x /∈Ml.
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The following lemma is presented without proof; it follows by symmetry of Gl and Kl.

Lemma 21. If x ∈ Gl then x /∈Ml and x /∈ Kl.

For a full proof of mutual exclusivity, it remains to show that x ∈ Ml implies x /∈ Kl (and

by symmetry, x /∈ Gl).

Lemma 22. If x ∈Ml then x /∈ Kl and x /∈ Gl.

Proof by cases. It will suffice to show only that x ∈Ml ⇒ x /∈ Kl; we get x /∈ Gl by symmetry.

If x ∈Ml, then there ∃t such that at least one of the following cases holds:

(1) x ∈Ml,t or

(2) x ∈
⋃
t′ 6=tKl,t ∩ (G(l−1,l),t′ ∪M(l−1,l),t′) or

(3) x ∈
⋃
t′ 6=t Gl,t ∩ (K(l−1,l),t′ ∪M(l−1,l),t′)

I will show x ∈Ml implies x /∈ Kl for each case.

Case 1: xMl,t implies x /∈ Kl,t and x /∈ Gl,t. Furthermore, x ∈ M(l−1,l),t. Thus, ∀t′ 6= t, x /∈

Kl,t′ − (
⋃
t′′ 6=t′(G(l−1,l),t′′ ∪M(l−1,l),t′′)). Thus x /∈ Kl.

Case 2: If x ∈
⋃
t′ 6=tKl,t∩ (G(l−1,l),t′ ∪M(l−1,l),t′) then there must ∃t′ 6= t such that x ∈ Kl,t and

(a) x ∈ G(l−1,l),t′ or (b) x ∈M(l−1,l),t′ .

First, we will show that for all t′′ 6= t′, x /∈ Kl,t′′ −
(⋃

t̂6=t′′ [G(l−1,l),t̂ ∪M(l−1,l),t̂]
)

(a) If x ∈ G(l−1,l),t′ then ∀t′′ 6= t′, x /∈ Kl,t′′−G(l−1,l),t′⇒ x /∈ Kl,t′′−
(⋃

t̂6=t′′ [G(l−1,l),t̂ ∪M(l−1,l),t̂]
)

.

Likewise, if x ∈ M(l−1,l),t′ , then ∀t′′ 6= t′, x /∈ Kl,t′′ − M(l−1,l),t′ ⇒ x /∈ Kl,t′′ −(⋃
t̂6=t′′ [G(l−1,l),t̂ ∪M(l−1,l),t̂]

)
.

Now we must show this also holds for t′′ = t′, namely, x /∈ Kl,t′−
(⋃

t̂6=t′ [G(l−1,l),t̂ ∪M(l−1,l),t̂]
)

.

(b) If x ∈ G(l−1,l),t′ then x /∈ Kl,t′; and likewise (b) if x ∈ M(l−1,l),t′ , x /∈ Kl,t′ . There-

fore, applying the formula for Kl, x /∈ Kl.

Case 3: If x ∈ Gl,t, then ∀t′′ 6= t, x /∈ Kl,t′′ − G(l,l−1),t. Also, if x ∈ Gl,t then x /∈ Kl,t so

x /∈ Kl,t − A for any A. Thus, x /∈ Kl.

By symmetry, we get that x ∈Ml implies x /∈ Gl.
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Combining Lemmas 20,21 and 22 yields that all three sets have pairwise empty intersections.

Invariants for Epoch Summaries

Lemma 23. If d ∈ Kl then for all valid orderings O of instructions in epochs [l−1, l], d ∈ K(O).

Proof. If d ∈ Kl, then there exists thread t such that d ∈ Kl,t −
(⋃

t′ 6=t[G(l−1,l),t′ ∪M(l−1,l),t′ ]
)

.

Let (l, t, i) be the last instruction in block (l, t) to kill d. Consider any valid ordering O of

instructions in epochs [l − 1, l], and let O′ be the suffix of O beginning with (l, t, i). It can only

be followed by later instructions in block (l, t) or by other threads’ instructions in epochs [l−1, l].

Since d /∈
(⋃

t′ 6=t[G(l−1,l),t′ ∪M(l−1,l),t′ ]
)
∀t′ 6= t, then in particular any gen or “uncertain” by

a thread t′ must be followed in the same thread by a subsequent kill which is the final “operation”

on d as d /∈ G(l−1,l),t′ and d /∈ M(l−1,l),t′ . Thus, any generate or uncertain following instruction

(l, t, i) is itself followed by a kill, meaning d ∈ K(O′) and thus that d ∈ K(O).

By a symmetrical proof, the following lemma also holds:

Lemma 24. If d ∈ Gl then for all valid orderings O of instructions in epochs [l−1, l], d ∈ G(O).

The following invariant holds for the uncertain state:

Lemma 25. If at least one of the following three conditions holds:

(1) ∃ valid ordering O of instructions in epoch l such that d ∈M(O) or

(2) ∃ a valid ordering O of instructions in epochs [l − 1, l] and ∃ thread t such that d ∈ Gl,t and

d /∈ G(O) or

(3) ∃ a valid ordering O of instructions in epochs [l− 1, l] and ∃ thread t such that d ∈ Kl,t and

d /∈ K(O)

then d ∈Ml.

Proof by cases. I will show how if any of the three conditions holds, then d ∈Ml.

Case 1: If ∃ valid ordering O of instructions in epoch l such that d ∈ M(O), then there must

exist t such that d ∈Ml,t. This implies d ∈
⋃
tMl,t which further implies d ∈Ml.
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Case 2: Assume ∃ valid ordering O of instructions in epochs [l − 1, l] such that d /∈ G(O) and

∃t such that d ∈ Gl,t. Let (l, t, i) be the last instruction in (l, t) to generate d. Consider

the suffix of O′ of O beginning with (l, t, i). It must end with d ∈M(O′) or d ∈ K(O′).

[This follows by d /∈ G(O); if d ∈ G(O′) then d ∈ G(O) and since the first instruction

in O′ generates d, something later in O′ must reverse that effect.] So there must be at

least one other thread that either considers d in the uncertain state or kills d and does

not later generate d. Consider the last such (kill or “uncertain”) operation in O′. Let the

thread performing the operation be t′. Then d ∈ K(l−1,l),t′ ∪M(l−1,l),t′ and d ∈ Gl,t so

d ∈ Gl,t ∩ (K(l−1,l),t′ ∪M(l−1,l),t′), and applying properties of union, d ∈Ml.

Case 3: Follows by symmetry with case (2).

Strongly Ordered State Equations

There will now be three flavors of SOS. This is a change from Butterfly Analysis, where we only

specifically tracked generated metadata and implicitly tracked the other state. The equations that

follow hold for l ≥ 2; for l = 0 or l = 1, they are all identically empty, as in Butterfly Analysis.

SOSGl = Gl−2 ∪ (SOSGl−1 − (Kl−2 ∪Ml−2)).

SOSKl = Kl−2 ∪ (SOSKl−1 − (Gl−2 ∪Ml−2)).

SOSMl =Ml−2 ∪ (SOSMl−1 − (Gl−2 ∪ Kl−2)).

Invariants for Strongly Ordered State Formulations

Lemma 26. If one of the following is true:

(1) ∃ valid ordering O of instructions in epochs [0, l − 2] such that d ∈M(O) OR

(2) ∃ valid ordering O of instructions in epochs [0, l − 2] such that d /∈ G(O) and ∃ thread t

such that d ∈ Gl−2,t OR
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(3) ∃ valid ordering O of instructions in epochs [0, l − 2] such that d /∈ K(O) and ∃ thread t

such that d ∈ Kl−2,t OR

(4) (Propagation) ∃ l′ < l − 2 such that cases (1), (2), or (3) applies to instructions in epochs

[0, l′] and ∀l′′ such that l − 2 ≥ l′′ > l′, d /∈ (Gl′′ ∪ Kl′′)

then d ∈ SOSMl .

Proof by cases (using induction). We will consider each case in turn.

Case 1: Base case: l = 2. If there exists a valid ordering O of instructions in epoch 0, then there

is some last instruction (0, t, i) which marks d as uncertain where no later instruction in

O generates or kills d. Then d ∈M0,t ⇒ d ∈
⋃
t M0,t ⇒ d ∈M0 ⇒ d ∈ SOSMl .

Inductive hypothesis: assume condition (1) of the lemma is true for l < k, and then

show it holds for l = k.

Inductive step: Let (l′, t, i) be the last instruction in O such that d ∈ Ml′,t,i. There are

three subcases, where l′ = l − 2, l′ = l − 3 or l′ < l − 3.

case(a): l′ = l − 2. Then d ∈ Ml−2,t which implies d ∈
⋃
tMl−2,t which implies

d ∈Ml−2, so d ∈ SOSMl .

case(b): l′ = l − 3: Let O[0,l−3] be the restriction of O to epochs [0, l − 3], then d ∈

M(O[0,l−3]) and by the inductive hypothesis, d ∈ SOSMl−1. Let O[l−3,l−2] be

the restriction of O to instructions in epochs [l − 3, l − 2]. This must include

(l′, t, i), which will still be the last instruction such that d ∈ Ml′,t,i. Since

the relative ordering of instructions is preserved, d ∈ M(O[l−3,l−2]). By the

contrapositives of Lemmas 24 and 23, d /∈ Kl−2 ∧ d /∈ Gl−2, so d ∈ SOSMl−1 −

(Kl−2 ∪ Gl−2) and therefore d ∈ SOSMl .

case(c): l′ < l − 3: Proceeds similarly to case (b). Let O[0,l−3] be the restriction of

O to epochs [0, l − 3]. As in case (b), d ∈ M(O[0,l−3]) and applying the

inductive hypothesis, d ∈ SOSMl−1. As (l′, t, i) is the last instruction in O such

that d ∈Ml′,t,i, it cannot be the case that any instruction in epoch l − 2 would
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kill or generate d, as that would by necessity be ordered after (non-adjacent

epochs) and no later instruction in O has marks d as uncertain, which would

contradict d ∈ M(O). If no instruction in l − 2 kills or generates d, then

d /∈ Kl−2 ∧ d /∈ Gl−2 so d ∈ SOSMl−1 − (Kl−2 ∪ Gl−2)⇒ d ∈ SOSMl .

Case 2: Base Case: l = 2. If d ∈ G0,t but ∃ valid ordering O of instructions in epoch 0 such

that d /∈ G(O), then there must be some other thread t′ which either kills d or marks it

as uncertain, so d ∈ (M0,t′ ∪ K0,t′) and thus d ∈ G0,t ∩ (M0,t′ ∪ K0,t′), so d ∈M0 and

thus d ∈ SOSM2 .

Inductive hypothesis: we assume condition (2) of the lemma is true for l < k and show

it is true for l = k.

Inductive Step: The proof is a straightforward extension of the proof of Lemma 25, case

(2). Here, the valid ordering O spans epochs [0, l−2], but we can still examine the suffix

beginning with the last generate of d at instruction (l − 2, t, i). Such an instruction is

guaranteed to exist because d ∈ Gl−2,t. The only instructions that can follow (l− 2, t, i)

in O are again limited to those in epochs l − 3 or l − 2. Let O′ be the suffix of O

beginning immediately after instruction (l−2, t, i). By the argument in Lemma 25, case

(2), d ∈Ml−2 which implies d ∈ SOSMl .

Case 3: Follows by symmetry from Case 2.

Case 4: Suppose any of cases (1), (2) or (3) apply to instructions in epochs [0, l′]. Then, as

we have shown in each of the three prior cases, d ∈ SOSMl′+2. Applying the fact that

d /∈ Gl′+1 ∪Kl′+1, d ∈ SOSMl′+2 − (Gl′+1 ∪Kl′+1) which implies d ∈ SOSMl′+3; this holds

through d ∈ SOSMl−1 − (Gl−2 ∪ Kl−2), which shows that d ∈ SOSMl .

Lemma 27. If d ∈ SOSGl then ∀ valid orderings O of instructions in epochs [0, l− 2], d ∈ G(O).

Proof by induction. Base Case: l = 2. Then d ∈ SOSG2 = G0 according to our equations. We can

apply Lemma 24. [One caveat: no epoch before epoch 0 so we ignore the non-existent “prior”

epoch].
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We will assume the lemma is true for l < k, and show it holds for l = k. There are two cases.

If d ∈ SOSGl , then d ∈ Gl−2 or d ∈ SOSGl−1 − (Kl−2 ∪Ml−2).

Case 1: If d ∈ Gl−2 then ∃t such that d ∈ Gl−2,t and ∀t′ 6= t, d /∈ K(l−3,l−2),t′ ∧ d /∈M(l−3,l−2),t′ .

Let (l − 2, t, i) be the last instruction in (l − 2, t) to generate d. Consider any arbitrary

valid ordering O, and let O′ be the suffix of O beginning with instruction (l − 2, t, i).

All instructions in O′ must be from epochs [l − 3, l − 2] (as instructions in l′ < l − 3

executed strictly before any instruction in epoch l − 2). Let O′t′ be the restriction of O′

to any t′ 6= t. It follows from d /∈ M(l−3,l−2),t′ ∧ d /∈ K(l−3,l−2),t′ that for any t′ 6= t

that d /∈ M(O′t′) ∧ d /∈ K(O′t′). In addition, since d ∈ Gl−2,t and (l − 2, t, i) is the last

gen of d in the block, no later instructions in (l − 2, t) generate or mark as uncertain d.

Combining all these interleavings will not change the final status of d; thus, d ∈ G(O′)

and therefore d ∈ G(O).

Case 2: If d ∈ SOSGl−1 − (Kl−2 ∪Ml−2) then in particular d ∈ SOSGl−1 and d /∈ Kl−2 ∪Ml−2.

Consider any arbitrary valid ordering O of instructions in epochs [0, l − 2]. Let O[0,l−3]

be O restricted to instructions in epochs [0, l − 3]. By the inductive hypothesis, d ∈

G(O[0,l−3]). There must exist instruction (l′, t, i) in O[0,l−3] which is the last generate of

d. Let O′ be the suffix of O beginning with instruction (l′, t, i). We need to show that

d ∈ G(O′), which implies that d ∈ G(O).

Let O′[0,l−3] be the restriction of O′ to instructions in [0, l−3]. Then, d ∈ G(O′[0,l−3]); this

follows from the inductive hypothesis, as d ∈ G(O[0,l−3]) and O′[0,l−3] is simply the suffix

of O[0,l−3] beginning with instruction (l′, t, i). Our proof now proceeds by contradiction.

We will consider if d /∈ G(O′) and obtain a contradiction.

Let O′l−2 be the restriction of O′ to instructions in epoch l − 2. If d /∈ G(O′), then the

instructions in O′l−2 either killed d or marked d as uncertain (by our previous observa-

tion; no instructions in [0, l − 3] which occurred after (l′, t, i) could have done so). If

d ∈ K(O′l−2) then there must exist t′ such that d ∈ Kl−2,t′ . By our construction, d is
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in the may-kill set for epoch l − 2. In particular, definitions in the may-kill set either

belong to Kl−2 orMl−2, as shown earlier. This contradicts d /∈ Kl−2 ∪Ml−2. Simi-

larly, if d ∈ M(O′l−2) then ∃t′ such that d ∈ Ml−2,t′ which implies d ∈ Ml−2, which

contradicts d /∈Ml−2.

Thus, d ∈ G(O′), and d ∈ G(O).

The following lemma is provided without proof, but it follows by symmetry with Lemma 27.

Lemma 28. If d ∈ SOSKl then ∀ valid orderings O of instructions in epochs [0, l− 2], d ∈ K(O).

5.4.4 Calculating local state

We can again revisit the must-kill and must-gen versus may-kill and may-gen summaries for the

head. Recall that we must take into account interference of other threads in epoch l − 2 when

applying summaries from the head (l − 1, t) to the LSOS for block (l, t).

For block (l, t), the may-{kill, gen} formulations for the head are simply Kl−1,t and Gl−1,t.

The must-{kill,gen} formulations for the head of block (l, t) are simply:

G∗l−1,t = Gl−1,t −
⋃
t′ 6=t

(Kl−2,t′ ∪Ml−2,t′)

K∗l−1,t = Kl−1,t −
⋃
t′ 6=t

(Gl−2,t′ ∪Ml−2,t′)

Lemma 29. If d ∈ K∗l−1,t then ∀ valid orderings O of instructions in epoch l−2 and instructions

in block (l − 1, t), d ∈ K(O).

Proof. If d ∈ K∗l−1,t then d ∈ Kl−1,t, so there is some instruction (l − 1, t, i) in block (l − 1, t)

which kills d and is not followed by a generate or an operation that marks d as uncertain. Consider

the instructions in epoch l − 2. The instructions in block (l − 2, t) happen before (l − 1, t)

(applying intra-thread dependences). This leaves the instructions which are concurrent with
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those in (l − 1, t) (in the range we are considering), which consists of instructions in subblocks

(l − 2, t′)∀t′ 6= t. But ∀t′ 6= t, d /∈ Gl−2,t′ ∪Ml−2,t′ . So for any subblock (l − 2, t′), it either

also kills d or else does nothing to d. Thus, all valid orderings O of instructions in l − 2 with

instructions in block (l − 1, t) have d ∈ K(O).

The following lemma is presented without proof; it follows by symmetry to Lemma 29.

Lemma 30. If d ∈ G∗l−1,t then ∀ valid orderings O of instructions in epoch l− 2 and instructions

in block (l − 1, t), d ∈ G(O).

In representing what a block marks as uncertain, we want to include everything the head

(l − 1, t) marked as uncertain as well as anything the head may-but-not-must have {generated,

killed}.

M∗
l−1,t =Ml−1,t ∪

(
Gl−1,t ∩ (

⋃
t′ 6=t

Kl−2,t′ ∪Ml−2,t′)

)
∪

(
Kl−1,t ∩ (

⋃
t′ 6=t

Gl−2,t′ ∪Ml−2,t′)

)

Similarly, the next lemma is presented without proof but strongly resembles Lemma 25.

Lemma 31. If at least one of the following three conditions holds:

(1) d ∈Ml−1,t OR

(2) ∃ a valid ordering O of instructions in epoch l − 2 and block (l − 1, t) such that d /∈ G(O)

and d ∈ Gl,t OR

(3) ∃ a valid ordering O of instructions in epoch l − 2 and block (l − 1, t) such that d /∈ K(O)

and d ∈ Kl,t

then d ∈M∗
l−1,t.

Note that G∗l,t ⊆ Gl,t and K∗l,t ⊆ Kl,t, whileM∗
l,t ⊇Ml,t. Essentially, anything from the head

(l−1, t) which marks something as generate (killed) must not have been concurrent with another

thread t′ that either killed or marked uncertain (generated or marked uncertain) in epoch l−2, so

the precise sets get smaller. When we observe such potentially concurrent and interfering events,
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we add them toM∗, so the uncertain set grows.

Then we express the LSOS formulas as:

LSOSGl,t = G∗l−1,t ∪ (SOSGl − (K∗l−1,t ∪M∗
l−1,t))

LSOSKl,t = K∗l−1,t ∪ (SOSKl − (G∗l−1,t ∪M∗
l−1,t))

LSOSMl,t =M∗
l−1,t ∪ (SOSMl − (K∗l−1,t ∪ G∗l−1,t))

These formulas closely mirror how we summarized an epoch.

LSOS Invariants

Lemma 32. If d ∈ LSOSGl,t then ∀ valid orderings O of instructions in epochs [0, l − 2] and

instructions in block (l − 1, t), d ∈ G(O).

Proof. If d ∈ LSOSGl,t, then d ∈ G∗l−1,t or d ∈ SOSGl − (K∗l−1,t ∪M∗
l−1,t). If d ∈ G∗l−1,t, then

d ∈ Gl−1,t and for all threads t′ 6= t, d /∈
⋃
t′ 6=t(Kl−2,t′ ∪ Ml−2,t′). Within any ordering O,

instructions from the head can only interleave with instructions in epoch l− 2, and the net effect

of blocks in l − 2 is neither to generate nor mark uncertain d, so d ∈ G(O)∀O.

If d ∈ SOSGl − (K∗l−1,t ∪M∗
l−1,t), then d must have been generated in epoch l − 2 or earlier.

We know that d /∈ Ml−1,t, or we would have d ∈ M∗
l−1,t (contradiction). If d ∈ Kl−1,t, then it

either ends up in K∗l−1,t orM∗
l−1,t (contradiction). So the head cannot have killed or marked d as

uncertain. Thus, interleaving the instructions in the head with any ordering of [0, l− 2] must still

generate d.

Lemma 33. If d ∈ LSOSKl,t then ∀ valid orderings O of instructions in epochs [0, l − 2] and

instructions in block (l − 1, t), d ∈ K(O).

Proof symmetric to Lemma 32.
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Lemma 34. If one of the following is true:

(1) ∃ valid ordering O of instructions in epochs [0, l−2] and block (l−1, t) such that d ∈M(O)

OR

(2) ∃ valid ordering O of instructions in epochs [0, l−2] and block (l−1, t) such that d /∈ G(O)

and d ∈ Gl−1,t OR

(3) ∃ valid ordering O of instructions in epochs [0, l−2] and block (l−1, t) such that d /∈ K(O)

and d ∈ Kl−1,t OR

(4) (Propagation) One of the four conditions in Lemma 26 holds and d /∈ (K∗l−1,t ∪ G∗l−1,t).

then d ∈ LSOSMl,t .

Proof. We will proceed by cases.

Case 1: Proceed as in Case 1 of Lemma 26. Consider the valid ordering O, and let (l′, t, i)

be the last instruction which marks d as uncertain in O. The cases break down where

l′ = l − 1 and thus this instruction is in (l − 1, t) implying that d ∈ Ml−1,t and thus

d ∈M∗
l−1,t ⇒ d ∈ LSOSMl,t .

Otherwise, l′ ≤ l − 2; we can apply Case 1 of Lemma 26 to show that d ∈ SOSMl .

Finally, if all valid orderings O of instructions in epoch l − 2 and block (l − 1, t) were

to show that d was generated (or killed) we’d always have a suffix that generated (or

killed) d, contradicting the existence of an ordering where d ∈ M(O). Therefore, we

can apply the contrapositives of Lemmas 29 and 30 to yield that d /∈ K∗l−1,t ∪ G∗l−1,t,

showing that d ∈ (SOSMl − (K∗l−1,t ∪ G∗l−1,t)) and therefore d ∈ LSOSMl,t .

Case 2: By the contrapositive of Lemma 30, d /∈ G∗l−1,t (else all suffixes O′ of O would show

d ∈ G(O′) which would imply d ∈ G(O) – contradiction). However, d ∈ Gl−1,t.

Therefore, d ∈ Gl−1,t − G∗l−1,t = Gl−1,t ∩ (
⋃
t′ 6=tKl−2,t′ ∪Ml−2,t′)), which implies that

d ∈M∗
l−1,t and therefore that d ∈ LSOSMl,t .

Case 3: By symmetry with Case 2.
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Case 4: As Lemma 26 holds, then d ∈ SOSMl . Furthermore, d /∈ (K∗l−1,t ∪ G∗l−1,t). If d ∈

SOSMl − (K∗l−1,t ∪ G∗l−1,t) then d ∈ LSOSMl,t .

5.5 TaintCheck with Uncertainty in Butterfly Analysis

Our formulation of TAINTCHECK to include uncertainty will bear strong resemblance to

those introduced in Sections 3.3.2 and 4.5.

5.5.1 First Pass: Instruction-level Transfer Functions and Calculating Side-

Out

Unlike Butterfly Analysis, which captured the first pass transfer functions in Gl,t,i, we will sepa-

rate them, using Tl,t,i to be the transfer function associated with instruction (l, t, i):

Tl,t,i =



(xl,t,i ← ⊥) if (l, t, i) ≡ taint(x)

(xl,t,i ← >) if (l, t, i) ≡ untaint(x)

(xl,t,i ← {a}) if (l, t, i) ≡ x := unop(a)

(xl,t,i ← {a, b}) if (l, t, i) ≡ x := binop(a, b)

When x := unop(a), we say x inherits (metadata) from a and likewise x := binop(a, b)

indicates x inherits (metadata) from a and b. We use the set S:

S = {taint, untaint, uncertain, {a}, {a, b}|a, b are memory locations}

to represent the set of all possible right-hand values in our mapping. We will also utilize the

function loc() that given (l, t, i) returns x, where x is the destination location in instruction

(l, t, i).

At the end of the first pass, blocks in the wings will exchange the TRANSFER-SIDE-OUT

(TSO) and create the TRANSFER-SIDE-IN (TSI). The TRANSFER-SIDE-OUT of the transfer

functions for a block (l, t) is calculated as:
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Algorithm 3 TAINTCHECK TRANSFER(s1, s2) Algorithm
Input: s1, s2 ∈ {taint, untaint, uncertain}
if s1 == taint or s2 == taint then

return taint
else if s1 == uncertain or s2 == uncertain then

return uncertain
else

//s1 == untaint and s2 == untaint

return untaint

Algorithm 4 TAINTCHECK MEET(s1, s2) Algorithm
Input: s1, s2 ∈ {taint, untaint, uncertain}
if s1 == taint and s2 == taint then

return taint
else if s1 == untaint and s2 == untaint then

return untaint
else

//either s1 == untaint and s2 == taint

//or s1 == taint and s1 == untaint

//or either s1 == uncertain or s2 == uncertain

return uncertain

TSOl,t =
⋃
i Tl,t,i

5.5.2 Between Passes: Calculating Side-In

Likewise, the TRANSFER-SIDE-IN of the transfer functions for a block (l, t) is the union of the

TSO of the wings:

TSIl,t =
⋃
l−1≤l′≤l+1

⋃
t′ 6=t TSOl′,t′

Despite the notational difference, the TSO and TSI calculated in this section are identical to

those in Section 3.3.2, there called GSO and GSI.

5.5.3 Resolving Transfer Functions to Metadata

To convert between transfer functions and actual metadata in TAINTCHECK, we previously in-

troduced an algorithm to resolve potential inheritance relationships when the ordering between
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concurrent instructions is unknown, called resolve. It had two return values: taint and

untaint. We refine this algorithm so that for an instruction (l, t, i) which writes to destination

m, resolve now has three possible return values: taint, untaint or uncertain.

As previously described, resolve worked by recursively evaluating transfer functions in

the wings, subject to termination conditions. The addition of uncertainty introduces complexity

because the TRANSFER (Algorithm 3) and MEET (Algorithm 4) functions are no longer iden-

tical. TAINTCHECK defines a destination address m to be tainted if either of its sources m1

or m2 is tainted, e.g., transfer(m1, m2) = taint if m1 is tainted. Prior to explic-

itly tracking uncertainty, if m ← m1 and there were two possibilities in the wings, one where

m1 was tainted and one where m1 was untainted, we previously had to behave conservatively

and consider m tainted, since meet(taint, untaint) = taint. While this conserva-

tive analysis impacted precision, it enabled a performance optimization: we could organize the

resolve function as resembling a breadth first search of a “parent graph”; if an edge ever led

to taint, then the destination location was considered tainted.

Challenge: Meet Function Not Identical to Transfer Function

This is no longer the case. Consider Algorithm 3, the algorithm for TRANSFER. If at least one

of its inputs is tainted then it returns taint. In contrast, the MEET algorithm, shown in

Algorithm 4, only returns taint if both s1 and 2 evaluate to taint. This difference means we

can no longer implicitly short circuit when one tainted input is processed. Furthermore, there

is no new safe value to short-circuit on; one uncertain input not sufficient for TRANSFER to

return uncertain whereas MEET will always return uncertain if either input is uncertain.

Note: there is a difference between the instruction-level transfer functions, here represented

as Tl,t,i and the TRANSFER function. The instruction-level transfer functions specific a desti-

nation address and a source, where the source is either a raw metadata value, a single memory

location or a pair of memory locations. In contrast, the TRANSFER function operates slowly on
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pairs of metadata values. The TRANSFER function is used as a subroutine within the resolve

algorithm, whose purpose is to convert inheritance relations capture by TAINTCHECK into meta-

data values.

The transfer function is applied when evaluating a statement of the form x = m1 + m2. In

contrast, the MEET operation is used when it is unclear which metadata status a thread will read.

For example, we always must consider whether a thread will read its own local value (reflecting

LSOS metadata status), or a value from the wings (reflecting a need to resolve the wings). If

there are different values in the wings, the MEET conservatively calculates the “worst” of what

the thread sees.

One advantage of our new, more precise formulations of taint (respectively, untaint) is

that resolve can only return taint (untaint) at instruction (l, t, i) if all possible interleav-

ings show m = loc(l, t, i) is tainted (untainted) at (l, t, i). We will formally prove this

in Theorem 37.

A New Resolve Algorithm Incorporating Uncertainty

Algorithm 5 contains a pseudocode implementation of resolve for the uncertain Butterfly

Analysis version of TaintCheck. It now resembles depth first search. The initial call is to

resolve((s, (l, t, i), T ), which invokes the recursive do resolve(s, orig tid, (l, t, i), T, H) un-

til exhaustion.2 Algorithm 6 contains a pseudocode implemention of do resolve.

Our resolve algorithm takes an input a tuple (s, (l, t, i)) and a set T of transfer functions

in the wings, and returns the taint status of m at instruction (l, t, i), where m = loc(l, t, i) and

Tl,t,i = (m ← s). Note that to determine the new metadata value for m, we call resolve on s;

the current metadata value for m is irrelevant unless m serves as one of its own parents, in which

case either s = {m} or s = {m, b} for some other memory location b.

2In practice, to curtail long searches and bound memory usage, our implementation sets thresholds for how long
exploration of potential predecessors will continue, and explicitly tracks any early returns from exploration in a
separate state called heuristic.
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Algorithm 5 TAINTCHECK resolve(s, (l, t, i), T ) Algorithm
Input: s ∈ S, (l, t, i): instruction, T : set of transfer functions in wings
if s == taint or s == untaint or s == uncertain then

return s
else if s == {a} for memory location a then

a stateLSOS = metadata state of m in LSOS
a stateWING = do resolve(m, t, (l, t, i), T, (l, t, i))
resolve state = meet(a stateLSOS, a stateWING)
return resolve state

else
//s == {a, b} for memory locations a, b
//resolve metadata for a
a stateLSOS = metadata state of a in LSOS
a stateWING = do resolve(a, t, (l, t, i), T, (l, t, i))
a stateMEET = meet(a stateLSOS, a stateWING)

//resolve metadata for b
b stateLSOS = metadata state of b in LSOS
b stateWING = do resolve(b, t, (l, t, i), T, (l, t, i))
b stateMEET = meet(b stateLSOS, m2 stateWING)

//apply transfer function
resolve state = transfer(a stateMEET, m2 stateMEET)
return resolve state

We define a proper predecessor of xl,t,i ← s to be any yl′,t′,i′ ← s′ such that loc(l′, t′, i′) ∈ s,

s ∈ S and where (l′, t′, i′) executing before (l, t, i) does not violate any valid ordering rules of

the prior instructions in H .3. We denote the set of proper predecessors for xl,t,i ← s where

loc(l, t, i) = m by P (m, (l, t, i), T, H). For brevity within resolve, loc(yi) will refer to the

destination of the instruction associated with yi.

Note the cascading roles of MEET and TRANSFER; metadata state between the wings and the

LSOS is subject to a MEET operation. When a memory location has two parents, their metadata

status is subject to a TRANSFER function. Finally, keeping separate counters for the number of

times taint, untaint and uncertain are encountered (which could also be boolean values)

allows a final MEET calculation of all the metadata values possible via the wings.

3Among other requirements, valid ordering rules preclude an instruction repeating itself
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Algorithm 6 TAINTCHECK do resolve(m, orig tid, (l, t, i), T, H) Algorithm
Input: m: current destination address, orig tid: original thread, (l, t, i): current instruction,
T : set of transfer functions in wings, H: history of previously considered instructions
if m == taint or m == untaint or m == uncertain then

return m
num taint = num untaint = num uncertain = 0
for all (y(l′,t′,i′) ← sj) ∈ P (m, (l, t, i), T, H) do

if sj == taint or sj == untaint or sj == uncertain then
return sj

else if sj == a for memory location a then
a stateLSOS = metadata state of a in LSOS
a stateWING = do resolve(a, orig tid, (l′, t′, i′), T, (l, t, i) :: H)
resolve state = meet(a stateLSOS, a stateWING)
Increment counter of {num taint, num untaint, num uncertain} that matches
resolve state

else
//resolve metadata for a
//sj = {a, b} for memory locations a, b
a stateLSOS = metadata state of a in LSOS
a stateWING = do resolve(a, orig tid, (l′, t′, i′), T, (l, t, i) :: H)
a stateMEET = meet(a stateLSOS, a stateWING)

//resolve metadata for b
b stateLSOS = metadata state of b in LSOS
b stateWING = do resolve(b, orig tid, (l′, t′, i′), T, (l, t, i) :: H)
b stateMEET = meet(b stateLSOS, a stateWING)

//apply transfer function
resolve state = transfer(a stateMEET, b stateMEET)
Increment counter of {num taint, num untaint, num uncertain} that matches
resolve state

//all proper predecessors have recursively been explored
if num uncertain > 0 or (num taint > 0 and num untaint > 0) then

return uncertain
else if num taint > 0 then

//num untaint == 0
return taint

else
//num taint == 0
return untaint
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5.5.4 Second Pass: Representing TaintCheck as an Extension of Reaching

Definitions

The resolve function enables us to move from transfer functions for individual instructions

to metadata for locations. This enables us to express TAINTCHECK as an extension of reaching

definitions. The second pass of TAINTCHECK performs checks and resolve the transfer function

Tl,t,i = m← s to a metadata value for destination address m. We can therefore define:

Gl,t,i =


m resolve(s, (l, t, i), SIDE-IN)← taint

∅ otherwise

Kl,t,i =


m resolve(s, (l, t, i), SIDE-IN)← untaint

∅ otherwise

Ml,t,i =


m resolve(s, (l, t, i), SIDE-IN)← uncertain

∅ otherwise

The block equations for Gl,t, Kl,t andMl,t follow immediately once we have defined Gl,t,i,

Kl,t,i andMl,t,i, respectively. The motivation for allowing an instruction which might “mark d

uncertain” is now clear – our resolve function can return uncertain.

Note that this new definition of Gl,t, Kl,t andMl,t (separating the transfer functions from the

state calculations) naturally encapsulates what we previously expressed using LASTCHECK.

There are some situations where we might need GSI, KSI or MSI as state. We define

ALLtaint
l,t = {m|∃i s.t. Tl,t,i = (m← s) ∧ resolve(s, (l, t, i), SIDE-IN)← taint }

ALLuntaint
l,t = {m|∃i s.t. Tl,t,i = (m← s) ∧ resolve(s, (l, t, i), SIDE-IN)← untaint }

ALLuncertain
l,t = {m|∃i s.t. Tl,t,i = (m← s) ∧ resolve(s, (l, t, i), SIDE-IN)← uncertain }

ALLGl,t = ALLtaint
l,t

ALLKl,t = ALLuntaint
l,t

ALLMl,t = ALLuncertain
l,t

Then the equations for GSOl,t, KSOl,t and MSOl,t immediately follow, as do those for WINGGl,t,
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WINGKl,t and WINGMl,t and thus those for GSIl,t, KSIl,t and MSIl,t. We now have all the necessary

building blocks to calculate the epoch summaries Gl, Kl andMl. The SOS and LSOS equations

all immediately follow, as do their proofs (indeed, all earlier proofs follow as well).

Lemma 35. If resolve(s, (l, t, i), TSIl,t) returns untaint for location m = loc(l, t, i) at

instruction (l, t, i), then under all valid orderings of the first l + 1 epochs, m is untainted at

instruction (l, t, i).

Proof. If s = untaint, then this is trivially true. Likewise, if s = uncertain or s = taint,

resolve(s, (l, t, i), TSIl,t,i) will never return untaint. It remains to show this is true if s = {a}

or s = {a, b}. We will begin by making a simplifying assumption, namely s = {a}, and then

show how to generalize.

The resolve algorithm has two components. First, resolve looks up the metadata state

of a in the LSOS. If a is tainted or uncertain, resolve cannot return untaint. There-

fore, the LSOS must have a as untainted. We can apply Lemma 33 so that every valid

ordering of instructions in epochs [0, l − 2] and block (l − 1, t) must have a untainted.

It will suffice to show that all interleavings of instructions in the wings with (l, t, i) either

lead to a being untainted immediately before instruction (l, t, i), or else no instruction in the

wings modifies a. If no instruction modifies a, then the claim is shown. Otherwise, we observe

that resolve explores all proper predecessors (and thus all valid interleavings) of instructions

in the wings, so it will not miss an ordering of instructions in the wings that could potentially

lead to a being tainted or uncertain. Finally, we observe that by applying the MEET

function can never return untaint if it observes a potential interleaving that leads to either

uncertain or taint. If all instructions which happen before and which occur concurrent

with (l, t, i) untaint a, then a is untainted under all valid orderings. So, m must be

untainted when it inherits from a at (l, t, i).

To generalize, consider instead if s = {a, b}. Before returning, resolve performs

TRANSFER(a stateMEET, b stateMEET), which will only return untaint if both a and b are un-
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tainted, so each of a and b must meet the same criteria outlined above: LSOS reflects untaint,

and all interleavings of instructions of the wings show that both a and b are untainted imme-

diately before (l, t, i). Therefore, when m inherits from a and b at instruction (l, t, i), m inherits

untaint under all possible interleavings.

Lemma 36. If resolve(s, (l, t, i), TSIl,t) returns taint for location m = loc(l, t, i) at in-

struction (l, t, i), then under all valid orderings of the first l + 1 epochs, m is tainted at

instruction (l, t, i).

Proof. Proof proceeds in a similar manner to Lemma 35, with a few key differences. If s =

taint, the statement is trivially true. If s = untaint or s = uncertain, resolve will not

return taint. We will again begin by making a simplifying assumption, that s = {a}, and then

show how it holds with s = {a, b}.

Lemma 32 guarantees that every valid ordering of instructions in epochs [0, l − 2] and block

(l− 1, t) must have m tainted. As in Lemma 35, resolve explores all proper predecessors,

and will not miss an ordering of instructions in the wings that could potentially lead to . Once

more, the MEET function cannot return taint if it observes a potential interleavings of instruc-

tions in the wings that leads to untaint or uncertain. The proof when s = {a} completes

in the same manner as Lemma 35.

When s = {a, b}, the proof deviates slightly from Lemma 35. TRANSFER(a stateMEET, b stateMEET)

returns taint if at least one of a stateMEET or b stateMEET returns taint. This implies that un-

der all interleavings, at least one of a or b is always guaranteed to be tainted before (l, t, i)

executes. By the definition of TAINTCHECK, this implies that when m inherits from a and b at

instruction (l, t, i), m inherits taint under all possible interleavings.

Theorem 37. Any error detected by the original TAINTCHECK on a valid execution ordering

for a given machine (obeying intra-thread dependences and supporting cache coherence) will
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also be flagged by our butterfly analysis as either tainted or uncertain. Furthermore, any

failed check of a tainted address is an error the original TAINTCHECK would discover under

all valid execution orderings for a given machine. Thus, any potential false positives derive from

failed checks of uncertain.

Proof. First, if there exists a valid execution with a failed check of taint, then there exists

a valid ordering of the first l + 1 epochs such that m is tainted at instruction (l, t, i), and by

the contrapositive of Lemma 35, resolve will not return untaint for m at (l, t, i). So, m

will either be tainted or marked uncertain. The second statement follows directly from

Lemma 36. If everything marked as taint is a true error, and nothing marked by untaintis

ever an error, then all false positives must flow from a failed check of uncertain.

Incorporating Thresholds

In practice, rather than allowing Algorithms 5 and 6 to run until exhaustion, we incorporated

a threshold that cut off exploration. This was present in our prior implementation from Chapter 4

as well; whenever we encountered the threshold, we conservatively returned taint. Now,

with the addition of uncertainty, we were able to explicitly track the uncertainty that arises due

to encountering this threshold, which we have titled heuristic. This is explicitly tracked

separately from uncertain in our evaluation section.

5.6 Chrysalis Analysis: Incorporating Uncertainty

Chrysalis Analysis’ structure, as depicted in Figure 4.2(b), strongly resembles that of Butterfly

Analysis. The main difference is the asymmetry introduced by dividing blocks into maximal sub-

blocks based on happens-before arcs from high-level synchronization. The richer representation

of Chrysalis Analysis allows it to achieve higher precision. However, the asymmetry introduced
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by incorporating arcs and happens-before information adds additional complexity to standard

Chrysalis Analysis. Incorporating uncertainty further increases the complexity.

Vector Clocks and Maximal Subblocks

Chrysalis analysis uses maximal subblocks instead of blocks; the boundaries of a maximal sub-

block are formed by the beginning or ending of the containing block (l, t), as well as the location

of any SND or RCV instructions. For expediency, we will occasionally refer to a maximal sub-

block b as “subblock” as shorthand for “maximal subblock”. We will use v(b) to indicate the

vector clock associated with maximal subblock b. The relation v(b) < v(b′) indicates that sub-

block b has a vector clock that happened before subblock b′; equivalently, subblock b executed

before subblock b′. v(b) ∼ v(b′) indicates that b and b′ executed concurrently.

5.6.1 Gen and Kill Equations

Instruction-level

Chrysalis Analysis uses the same instruction-level equations as Butterfly Analysis.

Subblock-level

We will use the notation Gb,Kb andMb to represent the G,K,M primitives across a maximal

subblock b. If subblock b = (l, t, (i, j)), then the dataflow representations for subblock b are:

Gb = Gl,t,(i,j)

Kb = Kl,t,(i,j)

Mb =Ml,t,(i,j)
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Side-Out and Side-In

For a given maximal subblock b = (l, t, (j, k)), we first calculate ALLGb , ALLKb and ALLMb :

ALLGb =
⋃

{(l,t,i)|j≤i≤k}
Gl,t,i

ALLKb =
⋃

{(l,t,i)|j≤i≤k}
Kl,t,i

ALLMb =
⋃

{(l,t,i)|j≤i≤k}
Ml,t,i

We can then present the various Side-out equations:

GSOb = ALLGb − (ALLKb ∪ ALLMb )

KSOb = ALLKb − (ALLGb ∪ ALLMb )

MSOb = ALLMb ∪ (ALLGb ∩ ALLKb )

As in Butterfly Analysis, we use the WINGGb , WINGKb and WINGMb intermediate sets before

calculating side-in:

WINGGb =
⋃

{b′|v(b)∼v(b′)}
GSOb′

WINGKb =
⋃

{b′|v(b)∼v(b′)}
KSOb′

WINGMb =
⋃

{b′|v(b)∼v(b′)}
MSOb′

and then use these sets to calculate side-in:

GSIb = WINGGb − (WINGKb ∪WINGMb )

KSIb = WINGKb − (WINGGb ∪WINGMb )

MSIb = WINGMb ∪ (WINGGb ∩WINGKb )

5.6.2 Incorporating Uncertainty into Strongly Ordered State

Notation

We introduce notation to represent extended epochs that includes not only subblocks from epoch

l + 1 which execute before subblocks in epoch l, but also subblocks in epoch l − 1 which are

known to execute after at least one subblock in epoch l. Let l∓ denote the bilaterally extended
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epoch, defined as:

l∓ = l+ ∪ {b|b ∈ MBl−1 ∧ ∃b′ ∈ MBl s.t. v(b′) < v(b)}

or equivalently:

l∓ = MBl∪{b|b ∈ MBl−1∧∃b′ ∈ MBl s.t. v(b′) < v(b)}∪{b|b ∈ MBl+1∧∃b′ ∈ MBl s.t. v(b) < v(b′)}s

Summarizing an Epoch

As in Section 5.4.3, we will begin by specifying the must-kill and must-generate sets, as well as

may-kill and may-generate sets, across an epoch. The must-{kill, gen} sets will be Kl and Gl,

respectively, while the difference between may- and must- {kill, gen} will be folded intoMl.

We begin with must-kill over an epoch:

Kl =
⋃
b∈l+

Kb − ⋃
{b′|b′∈MBl∓}

(Gb′ ∪Mb′)

− ⋃
{b′′|v(b)∼v(b′′),b′′∈MB[l−1,l+]}

(Gb′′ ∪Mb′′)



We could equivalently express this (using the fact that (A − B) − C = A − (B ∪ C) in set

theory):

Kl =
⋃
b∈l+

Kb − ⋃
{b′|v(b)<v(b′)∨v(b)∼v(b′),b′∈MB[l−1,l+]}

(Gb′ ∪Mb′)


but it will be more useful to have the first formulation when calculating the difference be-

tween may-kill and must-kill.

Likewise, the must-gen set is:
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Gl =
⋃
b∈l+

Gb − ⋃
{b′|b′∈MBl∓}

(Kb′ ∪Mb′)

− ⋃
{b′′|v(b)∼v(b′′),b′′∈MB[l−1,l+]}

(Kb′′ ∪Mb′′)



If we simply wanted the may-{kill, gen} sets, those would be:

may-Kl =
⋃
b∈l+

Kb − ⋃
{b′|v(b)<v(b′),b′∈MB[l−1,l+]}

(Gb′ ∪Mb′)



may-Gl =
⋃
b∈l+

Gb − ⋃
{b′|v(b)<v(b′),b′∈MB[l−1,l+]}

(Kb′ ∪Mb′)


There are contrasts and similarities to the formulas in Section 5.4.3. First, this is not just⋃

bKb; we must subtract off the effects of subblocks which definitely occurred later, even in the

may-kill set. However, as in Section 5.4.3, the difference between the two formulas is that we do

not subtract off the effects of concurrent blocks. This motivates our formulation forMl:

Ml =
⋃
b∈l+

Mb −
⋃

{b′|v(b)<v(b′),b′∈MBl∓}

(Gb′ ∪ Kb′)


∪

Kb − ⋃
{b′|v(b)<v(b′),b′∈MB[l−1,l+]}

(Gb′ ∪Mb′)

 ∩ ⋃
{b′′|v(b)∼v(b′′),b′′∈MB[l−1,l+]}

(Gb′′ ∪Mb′′)


∪

Gb − ⋃
{b′|v(b)<v(b′),b′∈MB[l−1,l+]}

(Kb′ ∪Mb′)

 ∩ ⋃
{b′′|v(b)∼v(b′′),b′′∈MB[l−1,l+]}

(Kb′′ ∪Mb′′)


− (Gl ∪ Kl)

Once again, Ml is primarily composed of three parts. First, if a subblock in l+ marks d

as uncertain, and no strictly later subblock b′ generates or kills d (as net effect of its subblock)

then d ∈ Ml. Also, if at least one subblock b kills (generates) d, and no strictly later subblock
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generates (kills) d or marks it as uncertain (as net effect) but a concurrent subblock b′ either

generates (kills) or marks it as uncertain, then d ∈ Ml. To make mutual exclusion obvious, we

also subtract the Gl ∪ Kl, which is not circular as neither Gl nor Kl depend onMl.

Mutual Exclusion

Mutual exclusion will follow by construction. As Ml subtracts both Gl and Kl, it follows that

Ml ∩ Gl = Ml ∩ Kl = ∅. Lemmas 38 and 39 (proved in the next subsection) will provide

mutual exclusion between Gl and Kl – as it cannot be true that, for all VVO O defined over

identical ranges, d ∈ G(O) and d ∈ K(O).

Invariants for Epoch Summaries

Lemma 38. If d ∈ Kl then for all valid vector orderings O of instructions in epochs [l − 1, l+],

d ∈ K(O).

Proof. If d ∈ Kl then there exists maximal subblock b ∈ MBl+ such that d ∈ Kb, then (1) for

all subblocks b′ such that v(b) < v(b′), b′ ∈ MB[l−1,l+], d /∈ Gb′ and d /∈ Mb′ and (2) for all

subblocks b′′ such that v(b) ∼ v(b′′), b′′ ∈ MB[l−1,l+], d /∈ Gb′′ and d /∈Mb′′ .

Consider any valid vector ordering O. Let (l′, t, i) be the last instruction in b to kill d. Let

O′ be the suffix of O beginning with instruction (l′, t, i). The only instructions that can follow

(l′, t, i) are those that are concurrent or after (l′, t, i). However, all such instructions must belong

to a subblock b′ which is either concurrent with b or ordered after b; in either case, d /∈ Gb′ and

d /∈ Mb′ so even if an instruction in b′ generates or marks d as uncertain, there must be a later

instruction within b′ which kills d. Thus, d ∈ K(O′) and d ∈ K(O).

Lemma 39. If d ∈ Gl then for all valid vector orderings O of instructions in epochs [l − 1, l+],

d ∈ G(O).

Symmetric to Lemma 38.

Lemma 40. If at least one of the following three conditions holds:
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(1) ∃ valid vector ordering O of instructions in epoch l∓ such that d ∈ M(O) and the last

instruction to mark d as uncertain occurs in epoch l+ or

(2) ∃ subblock b ∈ MBl+ such that d ∈ (Gb −
⋃
{b′|v(b)<v(b′),b′∈MBl∓}

(Mb′ ∪ Kb′)) and ∃ a valid

vector ordering O of instructions in epochs [l − 1, l+] such that d /∈ G(O) or

(3) ∃ subblock b ∈ MBl+ such that d ∈ (Kb −
⋃
{b′|v(b)<v(b′),b′∈MBl∓}

(Mb′ ∪ Gb′)) and ∃ a valid

vector ordering O of instructions in epochs [l − 1, l+] such that d /∈ K(O)

then d ∈Ml.

Proof by cases. As in Lemma 25, the proof proceeds by cases.

1. ∃O of instructions in l∓ such that d ∈M(O) and the last instruction to mark d as uncertain

belongs to l+ implies ∃(l′, t, i) (with l′ = l or l′ = l + 1) such that d ∈ Ml′,t,i and no later

instruction in O kills or generates d. Let b be the subblock containing (l′, t, i). Since no

later instruction gen or kills d in O (and therefore in b), d ∈ Mb. Also, ∀b′ such that

v(b) < v(b′), d /∈ (Gb′ ∪Kb′), so d ∈Mb −
⋃
{b′|v(b)<v(b′),b′∈MBl∓}

(Gb′ ∪Kb′). It remains to

show that d /∈ Gl ∪ Kl. This follows as the suffix beginning with (l′, t, i) is a valid suffix

for some valid vector ordering O′ of instructions in epochs [l − 1, l+], so d ∈ M(O′) and

by applying the contrapositives of Lemmas 38 and 39, we get that d /∈ Gl ∪ Kl.

2. Let (l′, t, i) be the last instruction in b to generate d. Consider the suffix O′ of O beginning

with instruction (l′, t, i). It must hold that d ∈M(O′) or d ∈ K(O′) [follows by d /∈ G(O′),

since the first instruction of O′ generates d]. So there must be at least one other thread t′ 6= t

that either considers d as uncertain or kills d. Consider the last such operation in O′, and

label its subblock b′. As this is the last operation in O′ to mark d uncertain or kill d, it must

also be the last instruction in b′ to touch d (by definition, no later instruction will gen, kill

or mark d uncertain). Then d ∈ (Kb′ ∪Mb′). By construction v(b) 6< v(b′) [otherwise,

we have a contradiction]. Likewise, v(b′) 6< v(b) [otherwise, we contradict O a VVO] so

we must have that v(b′) ∼ v(b), which implies d ∈ (Gb −
⋃
{b′|v(b)<v(b′)}(Mb′ ∪ Kb′)) ∩

(
⋃
{b′′|v(b)∼v(b′′)}(Mb′ ∪ Kb′)).
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It remains to show that d /∈ Gl ∪ Kl. d /∈ Gl follows by construction. As d ∈ (Gb −⋃
{b′|v(b)<v(b′),b′∈MBl∓}

(Mb′ ∪ Kb′)), it follows that ∀b′ ∈ MB[l−1,l+] such that v(b) < v(b′),

d /∈ K′b. If d ∈ Kl, then ∃b̂ such that d ∈ Kb̂ and ∀b′ ∈ MB[l−1,l] such that v(b̂) < v(b′),

d /∈ Gb′ ∪Mb′ . We will consider all possible ordering relations between b and b̂, show that

each reaches a contradiction, and thus that d /∈ Kl.

If v(b) < v(b̂), then this contradicts d ∈ (Gb −
⋃
{b′|v(b)<v(b′),b′∈MBl∓}

(Mb′ ∪ Kb′)). If

v(b̂) < v(b), then this contradicts d ∈ Kl (as a subblock after b̂ generates d). Likewise, if

v(b̂) ∼ v(b), then this contradicts d ∈ Kl and thus d ∈Ml.

3. Follows by symmetry from case (2).

Strongly Ordered State Equations

Our modified equations for the SOS will take exactly the same form as in Section 5.4.3:

SOSGl = Gl−2 ∪ (SOSGl−1 − (Kl−2 ∪Ml−2)).

SOSKl = Kl−2 ∪ (SOSKl−1 − (Gl−2 ∪Ml−2)).

SOSMl =Ml−2 ∪ (SOSMl−1 − (Gl−2 ∪ Kl−2)).

SOS Invariants

We will use very similar invariants as in Section 5.4.3, only modified to take into account valid

vector orderings (VVO) versus valid orderings (VO).

Lemma 41. If d ∈ SOSKl then ∀ valid vector orderings Ô of instructions in epochs [0, (l −

2)+], d ∈ K(Ô).

Proof. By induction. Proof has similar structure to Lemma 27, but generalizes to use valid vector

orderings.
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Base cases: l < 2 then SOSKl = ∅; trivially true. l = 2, then SOSK2 = K0, and we can apply

Lemma 38 for epoch 0.

For the inductive hypothesis, we will assume the statement holds for k < l − 2 and show

it holds for k = l − 2. Then, if d ∈ SOSKl , there are two cases: either (1) d ∈ Kl−2 or (2)

d ∈ SOSKl−1 − (Gl−2 ∪Ml−2).

Case 1: If d ∈ Kl−2, then Lemma 38 applies. We assume the notation in that proof. In particular,

we can use the same construction, and observe that any suffix O′ of O (O consisting of

instruction in epochs [l − 3, (l − 2)+] as per the proof) beginning with the instruction

(l′, t, i) must have d ∈ K(O′), so every such suffix O′ has d ∈ K(O′).

Now consider an arbitrary VVO Ô of instructions in epochs [0, (l − 2)+]. It suffices to

observe that each Ô has a suffix Ô′ beginning with the same instruction (l′, t, i), and

where all subsequent instructions must belong to epochs [l− 3, (l− 2)+]. It follows that

Ô′ must have d ∈ K(Ô′) and thus d ∈ K(Ô).

Case 2: Begin with any VVO Ô of instructions in epochs [0, (l − 2)+]. Let Ô[0,l−3] be the

restriction of Ô to instructions from epochs [0, l − 3]. By the inductive hypothesis,

d ∈ K(Ô[0,l−3]). Let instruction (l′, t, i) be the last kill of d in Ô[0,l−3], and let O′ be the

suffix of Ô beginning with instruction (l′, t, i). It will suffice to show that d ∈ K(O′).

Let O′[0,l−3] be the suffix of O′ restricted to instructions from epochs [0, l − 3]. By

construction and the inductive hypothesis, d ∈ K(O′[0,l−3]). Our proof now proceeds by

contradiction. We will consider if d /∈ K(O′) and obtain a contradiction.

Let O′(l−2)+ be the restriction of O′ to instructions from extended epoch (l− 2)+. If d /∈

K(O′), then there exists a later instruction in O′(l−2)+ which either generated d or marked

d as uncertain with no subsequent instruction killing d (by our previous observation; no

instructions in [0, l − 3] which occurred after (l′, t, i) could have done so). This means

either (a) d ∈M(O′l−2) or (b) d ∈ G(O′l−2).

(a): Suppose d ∈ M(O′l−2); let (l′′, t′′, i′′) be the last instruction to mark d uncertain.
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Let b be the maximal subblock which contains (l′′, t′′, i′′). It must follow that d ∈Mb−⋃
{b′|v(b)<v(b′),b′∈MB(l−2)∓}

(Gb′ ∪ Kb′); otherwise, some instruction guaranteed to execute

after (l′′, t′′, i′′) would kill or generate d, contradicting d ∈ M(O′l−2). But then d ∈

Ml−2; contradiction.

(b): Suppose d ∈ G(O′l−2); as in case (a), let (l′′, t′′, i′′) be the last instruction to generate

d. Let b be the maximal subblock which contains (l′′, t′′, i′′). It must follow that d ∈

Gb −
⋃
{b′|v(b)<v(b′),b′∈MB(l−2)∓}

(Mb′ ∪ Kb′); otherwise, some instruction guaranteed to

execute after (l′′, t′′, i′′) would kill or mark d as uncertain, contradicting d ∈ G(O′l−2).

But then, by construction, d ∈Ml−2 or d ∈ Gl−2; either way, we achieve a contradiction.

So, d ∈ K(O′), and therefore d ∈ K(Ô) for any Ô, completing the proof.

Lemma 42. If d ∈ SOSGl then ∀ valid vector orderings Ô of instructions in epochs [0, (l −

2)+], d ∈ G(Ô).

This follows by symmetry with Lemma 41.

Lemma 43. If one of the following is true:

(1) ∃ valid vector ordering O of instructions in epochs [0, (l − 2)+] such that d ∈M(O) OR

(2) ∃ valid vector orderings O, O′ of instructions in epochs [0, (l− 2)+] such that d /∈ G(O′) but

d ∈ G(O), where the last generate of d in O occurs in epoch (l − 2)+ OR

(3) ∃ valid vector orderings O, O′ of instructions in epochs [0, (l − 2)+] such that d /∈ K(O′)

but d ∈ K(O), where the last kill of d in O occurs in epoch (l − 2)+ OR

(4) (Propagation) ∃ l′ < l − 2 such that cases (1), (2), or (3) applies to instructions in epochs

[0, l′] and ∀l′′ such that l − 2 ≥ l′′ > l′, d /∈ (Gl′′ ∪ Kl′′)

then d ∈ SOSMl .

Proof. We consider each case in turn.
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Case 1: Let (l′, t, i) be the last instruction in O which marks d as uncertain. There are two cases:

(a) l′ ∈ (l − 2)+ (e.g., l′ = l − 2 or l′ = l − 1) and (b) l′ < l − 2

(a): follows by Lemma 40, case (1) – the restriction of O to l∓ must also have d ∈

M(O), so d ∈Ml−2 which implies d ∈ SOSMl .

(b): Let OP be the prefix of O such that the last instruction of OP is (l′, t, i) and let OS

be the suffix of O beginning with the instruction immediately following (l′, t, i). If d ∈

Ml′ −
⋃
l−2≥l̃>l′(Kl̃ ∪ Gl̃) then d ∈ SOSMl (unpacking the recursion). By construction,

d /∈ K(OS) ∧ d /∈ G(OS). This implies that any kill or gen in OS would have to be

followed by an instruction which marks d uncertain; however, no such instruction can

exist since (l′, t, i) is the last instruction to mark d uncertain. Thus no instructions in OS

can generate or kill d, which implies ∀l̃ > l′, d /∈ Kl̃ ∧ d /∈ Gl̃. Therefore, d ∈ SOSMl .

Case 2: Given that d ∈ G(O) and that the last generate of d in O occurs in epoch (l − 2)+,

we know that there exists b ∈ MB(l−2)+ such that ∀b′ ∈ MB[0,(l−2)+] such that v(b) <

v(b′), d /∈ Kb′ ∪ Mb′ . [Applying the rules of valid vector orderings, we can restrict

this to b′ ∈ MB(l−2)∓].] This follows by definition of a VVO. Therefore, d ∈ Gb −⋃
{b′|v(b)<v(b′),b′∈MB(l−2)∓}

Kb′ ∪ Mb′ . By definition, this implies that d ∈ Gl−2 or d ∈

Ml−2.

Let (l′, t, i) be the last generate of d in b. Let O′′ be the suffix of O′ beginning with

instruction (l′, t, i); as d /∈ G(O′), then d /∈ G(O′′). Let O′[l−3,(l−2)+] be O′ restricted to

instructions from epochs [l − 3, (l − 2)+]. Note that O′′ is a valid suffix of O′[l−3,(l−2)+]

as well, since l′ ∈ (l − 2)+. So d /∈ G(O′[l−3,(l−2)+]). Applying Lemma 39, d /∈ Gl−2.

Therefore, d ∈Ml−2, which implies d ∈ SOSMl .

Case 3: Holds by symmetry with Case 2.

Case 4: Suppose any of Cases (1), (2) or (3) holds for instructions in epochs [0, l′+]. Then as

we have shown in all these cases, d ∈ SOSM(l′+2)+ . As in Lemma 26, we can apply that

∀l′′ s.t. l− 2 ≥ l′′ > l′, d /∈ (Gl′′ ∪Kl′′) to show that d ∈ SOSM(l′+2)+− (Gl′+1∪Kl′+1)⇒
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d ∈ SOSMl′+3; this holds through d ∈ SOSMl−1 − (Gl−2 ∪Kl−2), completing the proof that

d ∈ SOSMl .

5.6.3 Calculating Local State

Useful Ordering Relations

I will define two sets U and V , and their union X , which partition the subblocks b′′ which execute

before a subblock b ∈ MBl and either concurrently with or after a predecessor b′ of b, b′ ∈

MB[l−2,l+1]:

U(b, b′) = {b′′|v(b′′) < v(b) ∧ v(b′) < v(b′′) ∧ b′′ ∈ MB[l−2,l+1]}

V(b, b′) = {b′′|v(b′′) < v(b) ∧ v(b′) ∼ v(b′′) ∧ b′′ ∈ MB[l−2,l+1]}

X (b, b′) = U(b, b′) ∪ V(b, b′) = {b′′|v(b′′) < v(b) ∧ v(b′′) 6< v(b′) ∧ b′′ ∈ MB[l−2,l+1]}

For a given subblock b and immediate predecessor b′ ∈ pred(b), b′′ is in U(b, b′) if and only if

b′′ executes strictly before b and strictly after b′. Likewise, b′′ ∈ V(b, b′) if and only if b′′ executes

strictly before b and but concurrently with b′. X (b, b′) captures the set of all subblocks b′′ which

execute before b and which do not execute before b′.

In and Out: Subblock Level

We can now present the equations for OUT0
b , IN0

b , OUT1
b , IN1

b , OUTψb and INψb . As in Chrysalis

Analysis, the meet operator(
d

) is union (
⋃

).
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OUT0
b = Kb ∪ (IN0

b − (Gb ∪Mb))

IN0
b =

l

b′∈pred(b)

OUT0
b′ −

⋃
b′′∈X (b,b′)

(Gb′′ ∪Mb′′)


=

l

b′∈pred(b)

OUT0
b′ −

⋃
b′′∈U(b,b′)

(Gb′′ ∪Mb′′)

−
 ⋃
b′′∈V(b,b′)

(Gb′′ ∪Mb′′)



Note that IN0
b represents the set of definitions that must be killed prior to executing b. The

may-kill set is slightly different:
d
b′∈pred(b)

[
OUT0

b′ −
⋃
b′′∈U(b,b′) (Gb′′ ∪Mb′′)

]
. The difference

between the must-kill and may-kill sets will again be folded into our uncertain formulation, and

this difference can be represented as:

d
b′∈pred(b)

[(
OUT0

b′ −
⋃
b′′∈U(b,b′) (Gb′′ ∪Mb′′)

)
∩
(⋃

b′′∈V(b,b′) (Gb′′ ∪Mb′′)
)]

We can likewise define OUT1
b and IN1

b .

OUT1
b = Gb ∪ (IN1

b − (Kb ∪Mb))

IN1
b =

l

b′∈pred(b)

OUT1
b′ −

⋃
b′′∈X (b,b′)

(Kb′′ ∪Mb′′)


=

l

b′∈pred(b)

OUT1
b′ −

⋃
b′′∈U(b,b′)

(Kb′′ ∪Mb′′)

−
 ⋃
b′′∈V(b,b′)

(Kb′′ ∪Mb′′)



Let KILL-INb =
⋃

{b̂|b̂∈MB[l−1∓,l+1]∧v(b̂)<v(b)}
Kb̂−

⋃
{b′′∈X (b,b̂)}

Gb′′ ∪Mb′′ . We will show that IN0
b

and KILL-INb are equivalent, which aids in later proofs. While IN0
b resembles the dataflow equa-

tions introduced in Butterfly and Chrysalis Analyses, KILL-INb provides a much more amenable

for proving invariants.

Lemma 44. IN0
b = KILL-INb.
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The proof will require proving that X (b, b̂) = X (b, b′) ∪ X (b′, b̂) when v(b̂) < v(b′) < v(b).

X (b, b̂) = {b′′|v(b′′) < v(b) ∧ v(b′′) 6< v(b̂)}

= {b′′|v(b′′) < v(b) ∧ v(b′′) 6< v(b̂) ∧ v(b′′) < v(b′)}

∪ {b′′|v(b′′) < v(b) ∧ v(b′′) 6< v(b̂) ∧ v(b′′) 6< v(b′)}

v(b′) < v(b) ∧ v(b′′) < v(b′)⇒ v(b′′) < v(b)

v(b̂) < v(b′) ∧ v(b′′) 6< v(b′)⇒ v(b′′) 6< v(b̂)

= {b′′|v(b′′) 6< v(b̂) ∧ v(b′′) < v(b′)} ∪ {b′′|v(b′′) < v(b) ∧ v(b′′) 6< v(b′)}

= X (b′, b̂) ∪ X (b, b′)

Proof of Lemma 44 by Induction. Induction will proceed based on the number of predecessor

subblocks (not just immediate predecessors) in the window.

Base case: If there are no predecessors, then IN0
b = KILL-INb = ∅ trivially. With one

predecessor subblock b′ of b, then IN0
b = Kb′ −

⋃
{b′′∈X (b,b′)}

Gb′′ ∪Mb′′ = KILL-INb because⋃
{b′′∈X (b,b′)}

= ∅.

For the inductive hypothesis, we will assume the statement is true for k < n predecessors.

As the inductive step, we will show it holds if b has n predecessors.

We begin with the definition of IN0
b , and expand it using the definition of OUT0

b′ for an imme-

diate predecessor b′ of b:

IN0
b =

l

b′∈pred(b)

OUT0
b′ −

⋃
b′′∈X (b,b′)

(Gb′′ ∪Mb′′)


=

 ⋃
b′∈pred(b)

Kb′ −
⋃

b′′∈X (b,b′)

Gb′′ ∪Mb′′

 ∪
 ⋃
b′∈pred(b)

IN0
b′ − (Gb′ ∪Mb′ ∪

⋃
b′′∈X (b,b′)

Gb′′ ∪Mb′′)
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We can apply the inductive hypothesis to IN0
b′:

=

 ⋃
b′∈pred(b)

Kb′ −
⋃

b′′∈X (b,b′)

Gb′′ ∪Mb′′

 ∪
 ⋃
b′∈pred(b)

KILL-INb′ − (Gb′ ∪Mb′ ∪
⋃

b′′∈X (b,b′)

Gb′′ ∪Mb′′)


Now, we focus on expanding the right side term:

⋃
b′∈pred(b)

KILL-INb′ − (Gb′ ∪Mb′ ∪
⋃

b′′∈X (b,b′)

Gb′′ ∪Mb′′)

=
⋃

b′∈pred(b)

 ⋃
{b̂|b̂ ∈MB[l−1,(l+1)+] ∧ v(b̂)<v(b′)}

Kb̂ −
⋃

b′′∈X (b′,b̂

(Gb′′ ∪Mb′′)


−

Gb′ ∪Mb′ ∪
⋃

b′′∈X (b,b′)

Gb′′ ∪Mb′′


=

⋃
b′∈pred(b)

 ⋃
{b̂|b̂ ∈MB[l−1∓,(l+1)+] ∧ v(b̂)<v(b′)}

Kb̂ −

(
Gb′ ∪Mb′

⋃
b′′∈X (b′,b̂)∪X(b,b′)

(Gb′′ ∪Mb′′)

)
Apply: when v(b̂) < v(b′) < v(b),X (b, b′) ∪X(b′, b̂) = X (b, b̂) – shown earlier

=
⋃

b′∈pred(b)

 ⋃
{b̂|b̂ ∈MB[l−1∓,(l+1)+] ∧ v(b̂)<v(b′)}

Kb̂ −

(
Gb′ ∪Mb′

⋃
b′′∈X (b,b̂)

(Gb′′ ∪Mb′′)

)
Since v(b̂) < v(b′) < v(b), b′ ∈ X (b, b̂)

=
⋃

b′∈pred(b)

 ⋃
{b̂|b̂ ∈MB[l−1∓,(l+1)+] ∧ v(b̂)<v(b′)}

Kb̂ −

( ⋃
b′′∈X (b,b̂)

(Gb′′ ∪Mb′′)

)
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We can return to the equation for IN0
b :

=

 ⋃
b′∈pred(b)

Kb′ −
⋃

b′′∈X (b,b′)

Gb′′ ∪Mb′′

 ∪
 ⋃
b′∈pred(b)

KILL-INb′ − (Gb′ ∪Mb′ ∪
⋃

b′′∈X (b,b′)

Gb′′ ∪Mb′′)


=

 ⋃
b′∈pred(b)

Kb′ −
⋃

b′′∈X (b,b′)

Gb′′ ∪Mb′′

∪
 ⋃
b′∈pred(b)

 ⋃
{b̂|b̂ ∈MB[l−1∓,(l+1)+] ∧ v(b̂)<v(b′)}

Kb̂ −

( ⋃
b′′∈X (b,b̂)

(Gb′′ ∪Mb′′)

)


=
⋃

b′∈pred(b)

 ⋃
{b̂|b̂ ∈MB[l−1∓,(l+1)+] ∧ (b̂=b′∨v(b̂)<v(b′))}

Kb̂ −

( ⋃
b′′∈X (b,b̂)

(Gb′′ ∪Mb′′)

)
=

⋃
{b̂|b̂ ∈MB[l−1∓,(l+1)+] ∧ ∃b′∈pred(b) s.t. (b̂=b′∨v(b̂)<v(b′))}

Kb̂ −

( ⋃
b′′∈X (b,b̂)

(Gb′′ ∪Mb′′)

)

Note: {b̂|b̂ ∈ MB[l−1∓,(l+1)+] ∧ ∃b′ ∈ pred(b) s.t. (b̂ = b′ ∨ v(b̂) < v(b′))} =

{b̂|b̂ ∈ MB[l−1∓,(l+1)+] s.t. v(b̂) < v(b)}

=
⋃

{b̂|b̂ ∈MB[l−1∓,(l+1)+] s.t. v(b̂)<v(b)}

Kb̂ −

( ⋃
b′′∈X (b,b̂)

(Gb′′ ∪Mb′′)

)

= KILL-INb.

Lemma 45. If d ∈ IN0
b then ∀ valid vector orderings O of instructions in subblocks b̃ ∈

MB[l−2,l+1], such that v(b̃) < v(b), d ∈ K(O).

Proof. If d ∈ IN0
b then d ∈ KILL-INb which implies that ∃b̂ where v(b̂) < v(b) and b̂ ∈

MB[l−1∓,l+1] such that d ∈ Kb̂ −
⋃
b′′∈X (b,b̂) Gb′′ ∪Mb′′ . In other words, there exists some maxi-

mal subblock b̂ such that all subblocks b′′ which are concurrent with b̂ or after b̂ and also before

b do not have d ∈ Gb′′ ∪Mb′′ . Let (l′, t′, i′) be the last kill of d in b̂. For any VVO O, consider

the suffix Os beginning with (l′, t′, i′). The only other instructions which follow (l′, t′, i′) must
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belong to a subblock b′′ which both execute before b and after or concurrent with b̂. Furthermore,

none of them have d ∈ Gb′′ ∪Mb′′ so any instruction that generates or marks d as uncertain must

be followed within the same subblock with a kill of d. Thus, d ∈ K(Os)⇒ d ∈ K(O).

Lemma 46. If d ∈ IN1
b then ∀ valid vector orderings O of instructions in subblocks b̃ ∈

MB[l−2,l+1] such that v(b̃) < v(b), d ∈ G(O).

Proof. Follows by symmetry to Lemma 45.

Finally, we define OUTψb and INψb . Recall that X (b, b′) = U(b, b′)∪V(b, b′). As before, OUTψb

resembles OUT1
b and OUT0

b :

Likewise, INψb is quite similar to its counterpart Ml, which summarizes the effect of an

extended epoch l+:

OUTψb =Mb ∪ (INψb − (Kb ∪ Gb))

INψb =
l

b′∈pred(b)

OUTψb′ −
⋃

b′′∈U(b,b′)

(Kb′′ ∪ Gb′′)


∪

OUT0
b′ −

⋃
b′′∈U(b,b′)

(Gb′′ ∪Mb′′)

 ⋂
b′′∈V(b,b′)

(Gb′′ ∪Mb′′)


∪

OUT1
b′ −

⋃
b′′∈U(b,b′)

(Kb′′ ∪Mb′′)

 ⋂
b′′∈V(b,b′)

(Kb′′ ∪Mb′′)


−
(
IN1

b ∪ −IN0
b

)
Lemma 47. If at least one of the following three conditions holds:

(1) ∃b′ ∈ pred(b) such that d ∈ OUTψb′ and for all b′′ ∈ U(b, b′), d /∈ (Kb′′ − Gb′′) OR

(2) ∃ valid vector orderings O, O′ of instructions in ḃ ∈ MB[(l−1)∓,l+1] where v(ḃ) < v(b) such

that d ∈ K(O) but d /∈ K(O′), with the last kill of d in O occurring in subblock b̂ ∈

MB[(l−1)∓,l+1] OR
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(3) ∃ valid vector orderings O, O′ of instructions in ḃ ∈ MB[(l−1)∓,l+1] where v(ḃ) < v(b) such

that d ∈ G(O) but d /∈ G(O′), with the last gen of d in O occurring in subblock b̂ ∈

MB[(l−1)∓,l+1]

then d ∈ INψb .

Proof. We consider each case in turn.

Case (1) This corresponds trivially with part of the definition.

Case (2) It will suffice to show the following three facts:

• d /∈ IN0
b : By the contrapositive of Lemma 45.

• d /∈ IN1
b : As d ∈ Kb̂ −

⋃
b′′∈U(b,b̂)(Gb′′ ∪Mb′′), no subblock which occurs after

b̂ generates or marks d uncertain. Therefore, any b̃ ∈ MB[(l−1)∓,l+1] such that

v(b̃) < v(b), either occurs before or concurrently with b̂; by definition, then,

d /∈ IN1
b .

• ∃b′ ∈ pred(b) s.t. either d ∈ OUTψb′ −
⋃
b′′∈U(b,b′)(Gb′′ ∪ Kb′′) or d ∈ (OUT0

b′ −⋃
b′′∈U(b,b′)(Gb′′ ∪Mb′′))

⋂
b′′∈V(b,b′)(Gb′′ ∪Mb′′): Proof follows.

We will show inductively that in this situation, ∃b′ ∈ pred(b) such that either d ∈

OUTψb′−
⋃
b′′∈U(b,b′)(Gb′′ ∪ Kb′′) or d ∈

(
OUT0

b′ −
⋃
b′′∈U(b,b′)(Gb′′ ∪Mb′′)

)⋂
b′′∈V(b,b′)(Gb′′ ∪Mb′′),

which will imply d ∈ INψb .

Base case: Two immediate predecessors (necessarily unordered), one kills d and the

other either marks d uncertain or generates d. Then:

d ∈
(

OUT0
b̂
−
⋃
b′′∈U(b,b̂)(Gb′′ ∪Mb′′)

)⋂
b′′∈V(b,b̂)(Gb′′ ∪Mb′′)⇒ d ∈ INψb .

For our inductive hypothesis, we will assume this holds for k < n predecessors (not

necessarily immediate) and show it holds for k = n.

Since d ∈ K(O), with the last kill of d in O occurring in b̂, it must be the case that

d ∈ Kb̂ −
⋃
b′′∈U(b,b̂)(Gb′′ ∪Mb′′). This follows by definition of valid vector ordering.

Further, there cannot be a b′′ such that v(b̂) < v(b′′) where any instruction in b′′ kills d;

this would contradict the last kill of d in O occurring in b̂.
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If b̂ ∈ pred(b), then:

d ∈
(

OUT0
b̂
−
⋃
b′′∈U(b,b̂)(Gb′′ ∪Mb′′)

)⋂
b′′∈V(b,b̂)(Gb′′ ∪Mb′′)⇒ d ∈ INψb .

If b̂ /∈ pred(b), then ∃b′, b̃ such that b′ ∈ pred(b), v(b̂) < v(b′) and v(b̃) ∼ v(b̂) s.t. d ∈

(Gb̃ ∪Mb̃). Then (1) ∃b̃ ∈ V(b′, b̂) or (2) ∀ such b̃, b̃ ∈ V(b, b′). In other words, as

v(b̃) < v(b) but b̃ /∈ pred(b), there must be an immediate predecessor b′ of b such that

v(b̂) < v(b′). As b̃ is concurrent with b̂ and both occur before b, then either (1) at least

one such b̃ occurs strictly before b′ or (2) there exists at least one such b̃ and all that

exist are concurrent with b′.

(1): Since both b̂ and b̃ occur before b′, we can apply the inductive hypothesis for b′ to

conclude d ∈ INψb′ . Since v(b̂) < v(b′), we know that d /∈ Gb′ ∪Mb′ . Furthermore,

no subblock strictly after b̂ kills d, and we can apply transitivity to show that d /∈ Kb′ .

Therefore, d ∈ OUT0
b′ = Mb′ ∪ (INψb′ − (Gb′ ∪ Kb′), and furthermore, any subblock

after b′ is necessarily after b̂; by construction, nothing later generates or kills d; thus,

d ∈ OUTψb′ −
⋃
b′′∈U(b,b′)(Gb′′ ∪ Kb′′)⇒ d ∈ INψb .

(2): We will begin by expanding the term
(

OUT0
b̂
−
⋃
b′′∈U(b,b̂)(Gb′′ ∪Mb′′)

)⋂
b′′∈V(b,b̂)(Gb′′ ∪Mb′′)

in the definition of INψb .

First, we apply the definition of OUT0
b′:

(
OUT0

b′ −
⋃

b′′∈U(b,b′)

(Gb′′ ∪Mb′′)
) ⋂
b′′∈V(b,b′)

(
Gb′′ ∪Mb′′

)

=

(Kb′ ∪ (IN0
b′ − Gb′ ∪Mb′)

)
−

⋃
b′′∈U(b,b′)

(Gb′′ ∪Mb′′)

 ⋂
b′′∈V(b,b′)

(Gb′′ ∪Mb′′)

Then, we regroup terms:

=

Kb′ −
⋃

b′′∈U(b,b′)

(Gb′′ ∪Mb′′)

 ∪
(IN0

b′ − (Gb′ ∪Mb′)
)
−

⋃
b′′∈U(b,b′)

(Gb′′ ∪Mb′′)


⋂

b′′∈V(b,b′)

(Gb′′ ∪Mb′′)
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We apply Lemma 44 to substitute KILL-INb′ for IN0
b′:

=

Kb′ −
⋃

b′′∈U(b,b′)

(Gb′′ ∪Mb′′)

 ∪
(KILL-INb′ − (Gb′ ∪Mb′))−

⋃
b′′∈U(b,b′)

(Gb′′ ∪Mb′′)


⋂

b′′∈V(b,b′)

(Gb′′ ∪Mb′′)

=

[Kb′ −
⋃

b′′∈U(b,b′)

(Gb′′ ∪Mb′′)


∪

 ⋃
{b̂|v(b̂)<v(b′)}

Kb̂ −
⋃

b′′∈X (b′,b̂)

(Gb′′ ∪Mb′′)

− ⋃
b′′∈U(b,b′)∪{b′}

(Gb′′ ∪Mb′′)

]
⋂

b′′∈V(b,b′)

(Gb′′ ∪Mb′′)

We again regroup terms, and note that b′ ∈ X (b′, b̂) and U(b, b′) ⊆ U(b, b̂) ⊆ X (b, b̂):

=

[Kb′ −
⋃

b′′∈U(b,b′)

(Gb′′ ∪Mb′′)

 ∪
 ⋃
{b̂|v(b̂)<v(b′)}

Kb̂ −
⋃

b′′∈X (b′,b̂)∪{b′}∪U(b,b′)

(Gb′′ ∪Mb′′)

]
⋂

b′′∈V(b,b′)

(Gb′′ ∪Mb′′)

It will suffice to show that:

d ∈

 ⋃
{b̂|v(b̂)<v(b′)}

Kb̂ −
⋃

b′′∈X (b′,b̂)∪{b′}∪U(b,b′)

(Gb′′ ∪Mb′′)

 ⋂
b′′∈V(b,b′)

(Gb′′ ∪Mb′′)

Now by construction, b̃ ∈ V(b, b′), so d ∈ Gb′′ ∪Mb′′ (right hand side).

We know that b̃ 6= b′ as otherwise v(b̂) < v(b̃); likewise, if b̃ ∈ V(b, b′), then b̃ /∈

V(b, b′). We can decompose X (b′, b̂) = U(b′, b̂) ∪ V(b′, b̂). We know that b̃ does

not occur strictly after b̂, so b̃ /∈ U(b′, b̂). Furthermore, ∀ such blocks b̃ (where d ∈
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(Gb̃ ∪Mb̃)), b̃ /∈ V(b′, b̂). Putting this together, b̃ /∈ X (b′, b̂), which implies d ∈

Kb̂ −
⋃
b′′∈X (b′,b̂)∪{b′}∪U(b,b′)(Gb′′ ∪Mb′′) (left hand side).

Therefore, d ∈
(⋃

{b̂|v(b̂)<v(b′)}Kb̂ −
⋃
b′′∈X (b′,b̂)∪{b′}∪U(b,b′)(Gb′′ ∪Mb′′)

)⋂
b′′∈V(b,b′) (Gb′′ ∪Mb′′)

⇒ d ∈
(

OUT0
b̂
−
⋃
b′′∈U(b,b̂)(Gb′′ ∪Mb′′)

)⋂
b′′∈V(b,b̂)(Gb′′ ∪Mb′′)⇒ d ∈ INψb .

Case (3) By symmetry with Case 2.

LSOS equations

We begin by presenting the equations for LSOSGb , LSOSKb and LSOSMb .

K∗b =


Kb b ∈ MB[l,l+1]

Kb −
⋃


b̂|[v(b̂)∼v(b)∨v(b)<v(b̂)],

b∈MBl−1,b̂∈MBl−2

ff(Gb̂ ∪Mb̂) b ∈ MBl−1

G∗b =


Gb b ∈ MB[l,l+1]

Gb −
⋃


b̂|[v(b̂)∼v(b)∨v(b)<v(b̂)],

b∈MBl−1,b̂∈MBl−2

ff(Kb̂ ∪Mb̂) b ∈ MBl−1

M∗
b =


Mb b ∈ MB[l,l+1]

Mb ∪

Kb − ⋂


b̂|[v(b̂)∼v(b))],
b∈MBl−1,b̂∈MBl−2

ff(Gb̂ ∪Mb̂)

 ∪
Gb − ⋂


b̂|[v(b̂)∼v(b)],

b∈MBl−1,b̂∈MBl−2

ff(Kb̂ ∪Mb̂)

 b ∈ MBl−1

LSOSGb = IN1
b ∪ (SOSGl − (

⋃

b′|v(b′)<v(b)
b′∈MB[l−1,l+1]

ff(K∗b′ ∪M∗
b′)))
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LSOSKb = IN0
b ∪ (SOSKl − (

⋃

b′|v(b′)<v(b)
b′∈MB[l−1,l+1]

ff(G∗b′ ∪M∗
b′)))

LSOSMb = INψb ∪ (SOSMl − (
⋃


b′|v(b′)<v(b)
b′∈MB[l−1,l+1]

ff(G∗b′ ∪ K∗b′)))

Lemma 48. If d ∈ LSOSKb then ∀ valid vector orderings O of instructions in epochs [0, l − 2]

and subblocks b̃ ∈ MB[l−1,l+1] such that v(b̃) < v(b), d ∈ K(O).

Proof. If d ∈ LSOSK, then one of two conditions hold. Either d ∈ IN0
b or d ∈ SOSKl −⋃

b′|v(b′)<v(b)
b′∈MB[l−1,l+1]

ff(G∗b′ ∪M∗
b′).

Case (1): d ∈ IN0
b : For any O of instructions in epochs [0, l−2] and in subblocks b̃ ∈ MB[l−1,l+1]

such that v(b̃) < v(b), let O[l−2,l+1] be the restriction of O to instructions in l − 2 or

later. By Lemma 45, d ∈ K(O[l−2,l+1]). Furthermore, there must be a kill beginning

in epoch l − 1 or later which is the last kill of d in O[l−2,l+1] (by definition of d ∈ IN0
b ,

∃b′ ∈ pred(b) such that d ∈ OUT0
b′ , and unwinding the recursion requires that the kill

be within the [l − 1, l + 1] window). Let (l′, t′, i) be the last instruction which kills

d, and let OS be the suffix of O beginning with instruction (l′, t′, i). By definition,

d ∈ K(OS), as all instructions in OS must come from epochs [l − 2, l + 1] and thus

OS is a suffix of O[l−2,l+1]. d ∈ K(OS)⇒ d ∈ K(O).

Case (2): d ∈ SOSKl − (
⋃

b′|v(b′)<v(b)
b′∈MB[l−1,l+1]

ff(G∗b′ ∪M∗
b′)):

I will motivate the proof by assuming that G∗b′ is identically equal to Gb′ (likewise,M∗
b′

and Mb′), and then show that the proof still holds with the more complicated definitions

given.

Consider any valid vector ordering O. If d ∈ SOSKl then for all VVO O′ of instruc-

tions in epochs [0, (l − 2)+], d ∈ K(O′) – this follows by Lemma 41. Let Os be the

subsequence remaining when all instructions in [0, l − 2] are removed from O. Show-
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ing d /∈ G(Os) and d /∈ M(Os) is sufficient to complete the proof, as the interleaving

(maintaining order) of O′ and Os would then necessarily kill d.

Intuition: Suppose d ∈ G(Os). Then there must exist some instruction (l̃, t̃, ĩ) which

generates d belonging to subblock b̃ such that it is also true that d ∈ Gb̃ and v(b̃) < v(b),

b̃ ∈ MB[l−1,l+1]. But then d ∈ G∗
b̃
, contradicting d ∈ SOSKl − (

⋃
b′|v(b′)<v(b)
b′∈MB[l−1,l+1]

ff(G∗b′ ∪

M∗
b′)). The same intuition holds for d ∈M(Os).

More formally: If d ∈ Gb̃ and v(b̃) < v(b), then there are two cases. If b̃ ∈ MB[l,l+1],

the intuition can be followed exactly. If, however, d ∈ MBl−1, then interactions with

epoch l − 2 must be taken into account. The deviations are as follows:

(a) ∃b′ ∈ MBl−2 such that v(b′) ∼ v(b̃), d ∈ Gb̃ and d ∈ Kb′ ∪Mb′ . In essence, we

have a gen and a conflicting operation that are concurrent; this should be treated

as an “uncertain”, and indeed, the formula calls for d ∈ M∗
b̃
. We again reach the

contradiction that d ∈ SOSKl − (
⋃

b′|v(b′)<v(b)
b′∈MB[l−1,l+1]

ff(G∗b′ ∪M∗
b′)).

(b) ∃b′ ∈ MBl−2 such that v(b̃) < v(b′), d ∈ Gb̃ and d ∈ Kb′ ∪ Mb′ . In this case,

b̃ belongs to (l − 2)+, and its effects have been included when calculating the

SOSKl . Since d ∈ SOSKl , we can apply Lemma 41, yielding that the gen must be

guaranteed to always be followed by a kill in instructions [0, (l − 2)+]; we can

safely ignore this gen.

AsMb ⊆M∗
b , the intuition holds with minimal changes. This completes the proof.

Lemma 49. If at least one of the following is true:

(1) ∃ VVO O of instructions in epochs [0, l − 2] and subblocks b̃ ∈ MB[(l−1)∓,l+1] where v(b̃) <

v(b) such that d ∈ M(O), with the last instruction to mark d uncertain occurring in epoch

l − 1 or later OR
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(2) ∃ VVO O, O′ of instructions in epochs [0, l − 2] and subblocks b̃ ∈ MB[(l−1)∓,l+1] where

v(b̃) < v(b) such that d ∈ K(O) and d /∈ K(O′), with the last instruction to kill d in O

occurring in epoch l − 1 or later OR

(3) ∃ VVO O, O′ of instructions in epochs [0, l − 2] and subblocks b̃ ∈ MB[(l−1)∓,l+1] where

v(b̃) < v(b) such that d ∈ G(O) and d /∈ G(O′), with the last instruction to generate d in O

occurring in epoch l − 1 or later OR

(4) (Propagation) One of the conditions in Lemma 43 holds and instructions in subblocks b̃ ∈

MB[l−1,l+1] where v(b̃) < v(b) do not generate/kill d

then d ∈ LSOSMb .

Proof. Case (1) Let b′ be the last subblock to mark d uncertain in O. Then since O exists, it must

be the case ∀b′′ s.t. v(b′) < v(b′′), d /∈ Gb′′ ∪ Kb′′ . So d ∈ Mb′ −
⋃
b′′∈U(b,b′) Gb′′ ∪ Kb′′

which implies d ∈ OUTψb′ −
⋃
b′′∈U(b,b′′) Gb′′ ∪ Kb′′ . Note that if no block after b′

and before b kills or generates d, d will be in INψ
b̂

and OUTψ
b̂

for each intermedi-

ate block (follow by construction), so in particular, for some immediate predecessor

b̃ ∈ pred(b), d ∈ OUTb̃ −
⋃
b′′∈U(b,b̃) Gb′′ ∪ Kb′′ ⇒ d ∈ INψb and thus d ∈ LSOSMb .

Case (2) Let O[(l−1)∓,l+] be O restricted to instructions in epochs [(l − 1)∓, l+] and belonging to

b̃ ∈ MB[(l−1)∓,l+1] where v(b̃) < v(b). Note that by construction, d ∈ K(O[(l−1)∓,l+]).

Likewise, we can similarly construct O′[(l−1)∓,l+] by restricting the instructions to the

same window and note that d /∈ K(O′[(l−1)∓,l+]). ). Furthermore, we know that the last

kill of d in O occurs in epoch l−1 or later. Thus, we can apply Lemma 47 and conclude

d ∈ INψb ⇒ d ∈ LSOSM.

Case (3) Symmetric to case (2).

Case (4) As Lemma 43 holds, then d ∈ SOSMl . Furthermore, subblocks b′ such that v(b′) < v(b)

do not generate or kill d, so d ∈ SOSMl −
(⋃

{b′|v(b′)<v(b),b′∈MB[l−1,l+1]} (Gb′ ∪ Kb′)
)
⇒

d ∈ LSOSMb .
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5.7 TaintCheck with Uncertainty in Butterfly Analysis

We base our Chrysalis Analysis formulation of TAINTCHECK incorporating uncertainty on

the Butterfly Analysis formulation, described in Section 5.5.

5.7.1 First Pass: Instruction-level Transfer Functions, Subblock Level Trans-

fer Functions and Calculating Side-Out

As before, we define:

Tl,t,i =



(xl,t,i ← ⊥) if (l, t, i) ≡ taint(x)

(xl,t,i ← >) if (l, t, i) ≡ untaint(x)

(xl,t,i ← {a}) if (l, t, i) ≡ x := unop(a)

(xl,t,i ← {a, b}) if (l, t, i) ≡ x := binop(a, b)

We use the set S:

S = {taint, untaint, uncertain, {a}, {a, b}|a, b are memory locations}

to represent the set of all possible right-hand values in our mapping. We continue to utilize the

function loc() that given (l, t, i) returns m, where m is the destination location for instruction

(l, t, i).

At the end of the first pass, blocks in the wings will exchange the TRANSFER-SIDE-OUT

(TSO) and create the TRANSFER-SIDE-IN (TSI). If b = (l, t, (i, j)), then the TRANSFER-

SIDE-OUT of the instruction-level transfer functions are:

TSOb =
⋃
i≤k≤j Tl,t,k
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5.7.2 Between Passes: Calculating Side-In

Likewise, the TRANSFER-SIDE-IN for a maximal subblock b is the union of the TSO of maximal

subblocks b′ in the wings which are concurrent with b:

TSIb =
⋃
{b′|v(b′)∼v(b)} TSOb′

Despite the notational difference, the TSO and TSI calculated in this section are identical to

those in Section 4.2.1, there called GEN-SIDE-OUTb and GEN-SIDE-INb.

5.7.3 Resolving Transfer Functions to Metadata

As in Section 5.5.3, we will use a resolve algorithm to recursively evaluate instruction-level

transfer functions in the wings to metadata values. The TRANSFER and MEET algorithms (Al-

gorithms 3 and 4, respectively) introduced in Section 5.5.3 are unchanged. The resolve algo-

rithm, shown in Algorithm 7, as well as the do resolve algorithm shown in Algorithm 8, are

modified to take into account the vector clock vc associated with the maximal subblock b which

contains instruction (l, t, i).

There are two changes to the algorithm. The first change is to the definition of proper prede-

cessor for xl,t,i ← s, which is again any yl′,t′,i′ ← s′ such that loc(l′, t′, i′) ∈ s and s ∈ S; in

addition, we now enforce that (l′, t′, i′) executing before (l, t, i) does not violate any valid vec-

tor ordering rules (as compared to valid ordering) of prior instructions in H . We represent the

new proper predecessor relation as P (m, (l, t, i), vc, T,H). This necessitates the second change,

which is the history H is now composed of pairs of < (l, t, i), vc > of instructions (l, t, i) and

their associated vector clock vc.
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Algorithm 7 TAINTCHECK resolve(s, (l, t, i), vc, T ) Algorithm
Input: s ∈ S, (l, t, i): instruction (belonging to subblock b), vc: vector clock associated with
subblock b, T : set of transfer functions in wings
if s == taint or s == untaint or s == uncertain then

return s
else if s == {a} for memory location a then

a stateLSOS = metadata state of m in LSOS
a stateWING = do resolve(m, t, (l, t, i), T, < (l, t, i), vc >)
resolve state = meet(a stateLSOS, a stateWING)
return resolve state

else
//s == {a, b} for memory locations a, b
//resolve metadata for a
a stateLSOS = metadata state of a in LSOS
a stateWING = do resolve(a, t, (l, t, i), T, < (l, t, i), vc >)
a stateMEET = meet(a stateLSOS, a stateWING)

//resolve metadata for b
b stateLSOS = metadata state of b in LSOS
b stateWING = do resolve(b, t, (l, t, i), T, < (l, t, i), vc >)
b stateMEET = meet(b stateLSOS, m2 stateWING)

//apply transfer function
resolve state = transfer(a stateMEET, m2 stateMEET)
return resolve state

5.7.4 Second Pass: Representing TaintCheck as an Extension of Reaching

Definitions

As in Section 5.5.4, we can express TAINTCHECK as an extension of reaching definitions. The

second pass of TAINTCHECK will again perform checks and resolve instruction-level transfer

functions Tl,t,i to metadata value for destination address m = loc(l, t, i). Our definitions are

almost identical to those in Section 5.5.4, but with the updated signature for resolve:

Gl,t,i =


m resolve(m, (l, t, i), vc, SIDE-IN)← taint

∅ otherwise

Kl,t,i =


m resolve(m, (l, t, i), vc, SIDE-IN)← untaint

∅ otherwise
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Algorithm 8 TAINTCHECK do resolve(m, orig tid, (l, t, i), vc, T,H) Algorithm
Input: m: current destination address, orig tid: original thread, (l, t, i): current instruction
(belonging to subblock b), vc: vector clock associated with subblock b, T : set of transfer
functions in wings, H: history <previously considered instruction, associated vector clock>
if m == taint or m == untaint or m == uncertain then

return m
num taint = num untaint = num uncertain = 0
for all (y(l′,t′,i′) ← sj) ∈ P (m, (l, t, i), vc, T,H) do

if sj == taint or sj == untaint or sj == uncertain then
return sj

else if sj == a for memory location a then
a stateLSOS = metadata state of a in LSOS
a stateWING = do resolve(a, orig tid, (l′, t′, i′), T, < (l, t, i), vc >:: H)
resolve state = meet(a stateLSOS, a stateWING)
Increment counter of {num taint, num untaint, num uncertain} that matches
resolve state

else
//resolve metadata for a
//sj = {a, b} for memory locations a, b
a stateLSOS = metadata state of a in LSOS
a stateWING = do resolve(a, orig tid, (l′, t′, i′), T, < (l, t, i), vc >:: H)
a stateMEET = meet(a stateLSOS, a stateWING)

//resolve metadata for b
b stateLSOS = metadata state of b in LSOS
b stateWING = do resolve(b, orig tid, (l′, t′, i′), T, < (l, t, i), vc >:: H)
b stateMEET = meet(b stateLSOS, a stateWING)

//apply transfer function
resolve state = transfer(a stateMEET, b stateMEET)
Increment counter of {num taint, num untaint, num uncertain} that matches
resolve state

//all proper predecessors have recursively been explored
if num uncertain > 0 or (num taint > 0 and num untaint > 0) then

return uncertain
else if num taint > 0 then

//num untaint == 0
return taint

else
//num taint == 0
return untaint

Ml,t,i =


m resolve(m, (l, t, i), vc, SIDE-IN)← uncertain

∅ otherwise
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The subblock equations (Gb,Kb and Mb), equations for SIDE-OUT (ALLGb , ALLKb , ALLMb ,

GSOb, KSOb and MSOb) and equations for SIDE-IN (WINGGb , WINGKb , WINGMb , GSIb, KSIb, MSIb)

are all identical to those in Section 5.6.1. Likewise, the strongly ordered state equations follow

immediately from Section 5.6.2, and the LSOS equations from Section 5.6.3, as do their proofs

and guarantees.

Lemma 50. If resolve(s, (l, t, i), vc, TSIl,t) returns untaint for location m = loc(l, t, i)

at instruction (l, t, i), then under all valid vector orderings of the first l + 1 epochs, m is

untainted at instruction (l, t, i).

Proof. Proof is identical to that of Lemma 35, with the exception that we are now enforcing valid

vector orderings over valid orderings and our new definition of proper predecessor takes this into

account.

Lemma 51. If resolve(s, (l, t, i), vc, TSIl,t) returns taint for location m = loc(l, t, i) at

instruction (l, t, i), then under all valid orderings of the first l + 1 epochs, m is tainted at

instruction (l, t, i).

Proof. Proof is identical to that of Lemma 36, with the exception that we are now enforcing valid

vector orderings over valid orderings and our new definition of proper predecessor takes this into

account.

Theorem 52. Any error detected by the original TAINTCHECK on a valid execution ordering

for a given machine (obeying intra-thread dependences and supporting cache coherence) will

also be flagged by our butterfly analysis as either tainted or uncertain. Furthermore, any

failed check of a tainted address is an error the original TAINTCHECK would discover under

all valid execution orderings for a given machine. Thus, any potential false positives derive from

failed checks of uncertain.

Proof. As in Theorem 37, if there exists a valid execution with a failed check of taint, then

there exists a valid vector ordering of the first l + 1 epochs such that m is tainted at instruction
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Benchmark Inputs

BARNES 2048 bodies
FFT m = 20 (220 sized matrix)

OCEAN Grid size: 258× 258
LU Matrix size: 1024× 1024

Table 5.1: Benchmark Parameters

(l, t, i), and by the contrapositive of Lemma 50, resolve will not return untaint for m at

(l, t, i). So, m will either be tainted or marked uncertain. The second statement follows

directly from Lemma 51. If everything marked as taint is a true error, and nothing marked by

untaint is ever an error, then all false positives must flow from a failed check of uncertain.

5.8 Experimental Setup

We now present the experimental evaluation of a prototype TAINTCHECK Butterfly Analysis

tool which incorporates uncertainty. Like Butterfly and Chrysalis Analyses, the analysis is gen-

eral purpose and can be implemented using a variety of dynamic analysis frameworks, including

those based on binary instrumentation [20, 71, 82]. The results presented here extend the word-

granularity Butterfly Analysis implementation of TAINTCHECK previous described in Chap-

ter 3.3.2 and experimentally evaluated in Chapter 4.6, to incorporate uncertainty, as described in

Section 5.5. In addition to implementing and testing uncertainty, we also executed experiments

to measure the benefits of dynamic epoch resizing as described in section 5.3.1. The taint injec-

tion scheme described in Chapter 4.6 was modified to only taint 15% of the input data instead of

100% due to memory constraints.

All experiments were run on the Intel OpenCirrus4 cluster. Each experiment was run inside

an identically configured VM on an 8-core (2 Xeon E5440 quadcores) machine with 8GB of

4http://opencirrus.intel-research.net/
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available RAM, a 32KB L1 and a 4MB L2 cache; to manage resource contention, each machine

only ran one experiment at a time. For compatibility with LBA, a 32-bit OS was used, specif-

ically 2.6.20-16-server. Any epoch elision was performed as a pre-processing step before the

experiments were timed. The traces used in the experiments were copied from NFS to a local

disk to remove NFS network effects from performance measurements. Table 5.1 describes the

Splash-2.0 [113] benchmarks used in our experiments.

5.8.1 Gathering Fixed Traces

Unlike prior experiments for Butterfly Analysis and Chrysalis Analysis, presented in Chapters 3

and 4 respectively, our experimental evaluation involves an offline dynamic analysis of an execu-

tion trace. Using a fixed trace in our experiments allows us to gather performance and precision

measurements for different effective epoch sizes while controlling for the underlying interleav-

ing. We used LBA [23], which is implemented on top of Simics [108], to gather traces of thread

execution which included heartbeats sized at 1K instructions/thread5. One additional benefit to

using traces was that it enables the lifeguard itself to run natively, and larger input sizes than the

simulator could otherwise tolerate could be used. Each trace was gathered with the benchmark

running with four threads.

The traces were gathered using a “dummy” lifeguard which quickly returns from all handlers;

by using a lifeguard which does minimal work and runs as fast as possible within the simulator,

we minimize any slowdown or scheduling impact on the application whose trace is being gath-

ered. Traces were stored in compressed form, with a single trace file for each lifeguard thread to

consume.

5As before, for n threads, we inserted heartbeats after the LBA simulator observed n×1024 instructions executed
globally.
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5.8.2 Dynamic Epoch Resizing

Performance and precision measurements were taken for several configurations. First, SMALL

numbers for performance and precision were gathered, assuming the 1K instruction/thread epoch

size. Then, we tested LARGE, creating effective epoch sizes of 16K instructions per thread by

only respecting the 16th epoch boundary6. Any large epochs which experienced a failed check

due to uncertainty were recorded. Finally, we tested three dynamic epoch resizing schemes to

evaluate the limits of performance and precision that could be gained if a perfect oracle informed

the lifeguard whether to skip or respect an epoch boundary, telling it to respect the underly-

ing small epoch boundaries any time the corresponding larger epoch boundary had previously

incurred a failed check due to uncertainty.

The three different dynamic adaptations tested are shown in Figure 5.4. In a large run, we

assume epoch divisions that correspond with Figure 5.8.2(a). Suppose a thread observes a failed

check of UNCERTAIN in epoch l. Under the first scheme, DYNAMIC[l−1,l+1]will not elide the

smaller epochs to form larger epochs when those smaller epochs would have belonged to larger

epochs l − 1, l or l + 1; in other words, any large epoch in the sliding window is broken into

its constituent smaller epochs. This is shown in Figure 5.8.2(b), which illustrates large epochs

that correspond to three small epochs7. In a real system, DYNAMIC[l−1,l+1]may be more difficult

to implement, as it would require rollback of the second pass of epoch l − 1 as well as undoing

a commit to the SOS. Two more practical version of dynamic epoch resizing were also tested:

DYNAMIC[l,l+1], which would not group small epochs that otherwise belonged to large epoch l

and epoch l + 1–in other words, it attempts to expand the sliding window except for large epoch

l − 1–shown in Figure 5.8.2(c). Another variation is to only expand the epoch which experience

the failed check of uncertain, named DYNAMICl. This is shown in Figure 5.8.2(d).

6One exception were epochs at the termination of the program. To reduce complexity in handling edge cases in
the prototype, the baseline/original epoch boundaries are always respected during periods where threads are exiting.

7In our experiments, one large epoch corresponds to 16 smaller epochs.
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(d) DYNAMICl

Figure 5.4: Dynamic epoch resizing. When a check of uncertain fails in large epoch l (with
epoch divisions as in (a)), there are three possible dynamic adaptations. In (b), DYNAMIC[l−1,l+1]is
shown, where all three large epochs still in the sliding window revert to their underlying smaller
epochs (in this example, there are three smaller epochs to every larger epoch). (c) and (d) illustrate
DYNAMIC[l,l+1]and DYNAMICl, which revert large epochs l and l +1, and only epoch l, respectively,
to their underlying smaller epochs.

5.8.3 Types of Uncertainty

Our experiments will track two types of uncertainty: heuristic and uncertain. In the

first case, heuristic is a specific type of uncertainty which occurs when the threshold for

exploring potential parents in the wings is hit; in our experiments, that threshold is set at 512

parents. The second type of uncertainty, uncertain, is a catch-all that captures every other

type of uncertainty in the system. It is possible for an address which is originally marked as
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Benchmark Epoch Size Failed Taint Failed Uncertain Failed Heuristic

FFT-20 SMALL 0 0 0
LARGE 0 3 3
DYNAMICl 0 0 0
DYNAMIC[l,l+1] 0 0 0
DYNAMIC[l−1,l+1] 0 0 0

LU-1K SMALL 0 0 0
LARGE 0 3 3
DYNAMICl 0 0 0
DYNAMIC[l,l+1] 0 0 0
DYNAMIC[l−1,l+1] 0 0 0

OCEAN-258 SMALL 0 2 0
LARGE 0 38 6
DYNAMICl 0 2 0
DYNAMIC[l,l+1] 0 2 0
DYNAMIC[l−1,l+1] 0 2

BARNES-2K SMALL 0 0 0
LARGE 0 66 16
DYNAMICl 0 12 0
DYNAMIC[l,l+1] 0 12 0
DYNAMIC[l−1,l+1] 0 12 0

Table 5.2: Precision Results: Comparing a SMALL effective epoch size with LARGE effective epoch
size and three different varieties of dynamic epoch resizing.

heuristic to have its metadata transition to uncertain.

5.9 Evaluation

In this section, we will evaluate the precision gains and performance of the dynamic epoch resiz-

ing scheme, relative to a baseline SMALL epoch size of 1K instructions/thread and with LARGE

sized at 16K instructions/thread.
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5.9.1 Precision

Table 5.2 displays the precision results for the five different configurations tested for each bench-

mark. We observe that for three benchmarks, FFT, LU and OCEAN, the SMALL configuration

and the three DYNAMIC configurations experience the same precision. In fact, the DYNAMIC[l−1,l+1]

configurations for FFT and LU experience the same identically zero potential errors as the

SMALL configuration. For one benchmark, BARNES, the SMALL configuration has better preci-

sion than the three DYNAMIC configurations, but all are markedly better than the LARGE config-

uration. The LARGE configuration experiences failed checks of UNCERTAIN and HEURISTIC for

all the benchmarks tested.

One of the goals of this work was to demonstrate the elimination of false positives; we see a

0 in the column titled Failed Taint for all benchmarks and configurations, indicating that no code

checks failed due to a false check of TAINT. This is a marked improvement upon the results in

Chapters 3 and 4, where even Chrysalis Analysis still observed potential errors which it could

not disambiguate from true errors. While the number of failed checks of uncertain and

heuristic is on par with standard Butterfly Analysis implementations of TAINTCHECK in

the LARGE configuration, they now carry the additional information that they are not definitively

true positives, something impossible to know in earlier versions of Butterfly Analysis. While the

overall number of potential errors is similar to Chrysalis Analysis in the SMALL and DYNAMIC

configurations, we can now disambiguate that the potential errors all are due to failed checks of

uncertain and none are known true errors.

5.9.2 Performance

Figure 5.5(a) shows the performance of the parallel portion of execution, normalized to the

SMALL configuration of each benchmark. Results shown are averaged over ten timing runs,

with error bars indicating the 95% confidence interval. In most cases, the DYNAMIC and LARGE

runs are outperforming the SMALL runs, even if the margin is small. In the best case, OCEAN,
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(a) Parallel Performance. Averaged over six runs, with 95% confidence intervals
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) rollback passes boundary

(b) Parallel Performance. Execution divided into into BOUNDARY, PASSES and ROLLBACK
phases

Figure 5.5: (a) Parallel Performance, shown for SMALL, LARGE, and the three dynamic configu-
rations: DYNAMIC[l−1,l+1], DYNAMIC[l,l+1]and DYNAMICllabelled as dynamic3, dynamic2 and dy-
namic1, respectively. (b) Parallel Performance subdivided into BOUNDARY, PASSES and ROLLBACK.
The sum of BOUNDARY and PASSES equals the average performance shown in (a). ROLLBACK

is a cost only incurred by the dynamic schemes, estimated by dividing the average total running
time of each configuration by the number of epochs which experience uncertainty. In the case of
DYNAMIC[l−1,l+1] that estimate is multipled by two to cover the cost of rolling back not only the
epoch which encounters uncertainty, but the prior epoch as well.

we see that DYNAMIC[l−1,l+1] DYNAMIC[l,l+1] and DYNAMICl run at 0.91− 0.92X. No dynamic

scheme consistently outperforms the others; rather, each has at least one benchmark where it

performs the best.

To explore why larger epoch sizes were not having the expected speedup, we also measured
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the time each thread spent doing BOUNDARY calculations during the parallel phase. Examples

of boundary calculations include calculating the update to the global state, applying a pending

global state update and calculating a thread-local LSOS. In general, any computation triggered

by observing a heartbeat and which is not part of a linear pass (e.g., the first pass or second pass)

is considered a boundary calculation. Time spent in the parallel phase but not in the boundary

is represented by PASSES. Finally, we estimate the cost of rolling back computation to perform

dynamic epoch resizing in ROLLBACK. We calculate ROLLBACK by dividing the average total

running time of each configuration by the number of epochs which experience uncertainty. In the

case of DYNAMIC[l−1,l+1] that estimate is multiplied by two to cover the cost of rolling back not

only the epoch which encounters uncertainty, but the prior epoch as well. Both DYNAMIC[l,l+1]

and DYNAMICl only need to rollback the exact large epoch which experiences the uncertainty.

Figure 5.5(b) illustrates the breakdown of the parallel phase into BOUNDARY, PASSES and ROLL-

BACK. It is clear that LARGE as well as DYNAMIC configurations spend 29−54% less in parallel

time boundary calculations (compared to SMALL configurations). Our main expected expected

source of performance gain from larger epoch sizes was a reduction of time spent in boundary

calculations, so this goal was achieved as well.

While the overall boundary time is reduced for larger effective epoch sizes, the BOUNDARY

time itself is a not a large fraction (from 13−30%) of parallel execution, which helps explain why

the relatively large reduction in BOUNDARY calculations does not result in a larger improvement

of parallel performance for large epoch sizes. Incorporating dynamic adaptations to uncertainty

into Butterfly (respectively, Chrysalis) Analysis was not expected to reduce the time spent in

passes; each instruction still needed to be analyzed. One likely explanation is that a larger epoch

size corresponds to more elements in the wings, which may be slowing down the first and second

passes in LARGE configurations relative to SMALL configurations.
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5.9.3 Comparison of Dynamic Schemes

The competitive performance of DYNAMIC[l,l+1] and DYNAMICl along with their equivalent pre-

cision to DYNAMIC[l−1,l+1] among all benchmarks, is both surprising and advantageous. Our

original hypothesis had been that uncertainty could arise due to any event within the sliding

window, and thus DYNAMIC[l−1,l+1] was hypothesized to best improve precision. Instead, both

DYNAMIC[l,l+1] and DYNAMICl had equivalent precision, and very similar performance. This

is significant because the rollback requirements for DYNAMIC[l,l+1] and DYNAMICl are only to

the beginning of the second pass of the epoch which experiences a failed check of uncertainty;

in contrast, the DYNAMIC[l−1,l+1] scheme requires rolling back not only epoch epoch l, which

experiences the failed check of uncertain, but also the prior epoch l−1. Rolling back epoch l−1

would require a heavier cost; restarting epoch l− 1 as its constituent smaller epochs requires not

just a rollback, but also preservation of SOSl−1 and LSOSl−1,t. With both DYNAMIC[l,l+1] and

DYNAMICl performing as well as DYNAMIC[l−1,l+1], either is a competitive choice that reduces

complexity of analysis overhead and which successfully leverages the incorporation of uncer-

tainty into Butterfly Analysis to achieve performance similar to LARGE epochs with precision

approaching, if not matching, SMALL epochs.

5.10 Chapter Summary

To enhance the ability of Butterfly Analysis and Chrysalis Analysis to disambiguate known

errors from potential errors, we have proposed and evaluated adding an uncertain state to the

metadata lattice. By explicitly tracking uncertainty, we have shown that it is possible to enable

dynamic adaptations whenever a lifeguard experiences a failed check of an uncertain metadata

location. Our implementation of TAINTCHECK incorporating uncertainty within Butterfly Anal-

ysis showed (1) that our proposal effectively isolates known errors from potential errors and

(2) that dynamically adjusting the epoch size in the presence of potential error can recover the
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precision of a smaller epoch size with performance similar to a much larger epoch size. While

overall performance did not differ substantially between small and large effective epoch sizes,

we observed a substantial decrease in time spent in boundary calculations for all configurations

with a large overall effective epoch size, and precision close to or matching that of the underlying

smaller epoch sizes for all DYNAMIC configurations.
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Chapter 6

Conclusions

Despite programmer’s best efforts, and researcher’s attempts to help them, bugs persist in soft-

ware. Compared with sequential software, it is even more difficult to avoid bugs in parallel soft-

ware due to nonintuitive interleavings between threads. This increases the importance of tools

and frameworks to help programmers detect bugs in parallel software, whether those tools. This

thesis presented dataflow analysis-based dynamic parallel monitoring, a new software-based

general purpose framework to enable analysis of parallel programs at runtime.

One major contribution of this work was enabling dynamic parallel monitoring without mea-

suring inter-thread data dependences. This allowed us to avoid a reliance on hardware to measure

inter-thread data dependences, and made it easier to (1) create a software-based framework that

does not require specialized hardware and (2) support any shared-memory architecture regard-

less of its memory consistency model so long as it supported cache coherence. This was all made

possible by the development of a thread execution model closely tied to modern parallel proces-

sor design; creating a low-level abstraction enabled development of Butterfly Analysis without

making incorrect assumptions about the underlying hardware.

In developing Butterfly Analysis, we not only showed that it was possible to enable dynamic

parallel monitoring of applications with access only to a partial order of application events, but

we showed how such monitoring could proceed with provable guarantees to never miss an error
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in the monitored application. Our implementation of ADDRCHECK, a real world memory life-

guard, within the Butterfly Analysis framework, demonstrated that for ∼ 2.1x slowdown over

parallel unmonitored execution, you could enable parallel monitoring. To our knowledge, But-

terfly Analysis is the first generic platform designed to enable porting sequential analyses to the

parallel domain.

With the development of Chrysalis Analysis, we showed how to answer one of the shortcom-

ings of Butterfly Analysis: where Butterfly Analysis occasionally incurred false positives when

it was unaware of high-level synchronization preventing bad interleavings, Chrysalis Analysis

recovered this precision at the cost of a more complex thread execution model and subsequently,

more complicated analysis. We demonstrated that the provable guarantees provided by Butterfly

Analysis could be generalized to apply to Chrysalis Analysis (itself a generalization of Butterfly

Analysis). In a comparison of a TAINTCHECK implementation in both Butterfly and Chrysalis

Analyses, we showed that the Chrysalis Analysis implementation incurred an average 1.9x slow-

down but reduced false positivies by 17.9x.

Finally, by explicitly modeling uncertainty within dataflow analysis-based dynamic parallel

monitoring, we have shown that we can now provably isolate true errors from potential errors,

while maintaining guarantees (both in Butterfly and Chrysalis Analysis). This has intrinsic value

to programmers: knowing an error actually occurred during the monitored execution can in-

crease its importance in debugging relative to potential errors where the analysis is uncertain.

Furthermore, we’ve demonstrated the utility of uncertainty by illustrating how dynamic adapta-

tions to the analyses in the presence of uncertainty can lead to improved precision, and deliver

performance similar to large epoch sizes with precision similar to small epochs.

6.1 Future Directions

There are several directions for extending this work. Neither Butterfly Analysis or Chrysalis

Analysis assume prior knowledge of the application being monitored; one of their strengths is
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that both frameworks can deliver provably correct monitoring without requiring access to the

source code of the application.

Incorporating Profiling Information

However, given access to profiling information or incorporating a JIT, one direction would be to

optimize handlers whenever a memory location is provably thread-local; if a write operation only

affects global state, and never can affect another thread, then it does not need to be considered in

the SIDE-OUT or SIDE-IN, potentially minimizing the SIDE-IN and shrinking the search space

for lifeguards like TAINTCHECK. This has a similar flavor to work done by Ruwase et al. [95],

though there the optimizations could assume a sequential application and didn’t need to consider

how side effects of instruction reordering could affect other threads.

Paired with Static Analysis

Another interesting direction would be to couple dataflow analysis-based dynamic parallel mon-

itoring with a static analysis phase when the source code is available. If the static analysis phase

can prove that an operation is provably safe, then the dynamic analysis phase can elide checking

that instruction; this has the potential to improve performance without sacrificing any provable

guarantees.

Richer Uncertainty Analysis

Concentrating on the uncertainty analysis, another interesting direction would be to develop

a richer set of uncertain states. For example, the result of the meet(taint, untaint)

could be different than the meet(untaint, heuristic), whereas now they both map to

uncertain. Furthermore, the uncertainty analysis can itself become predictive and take into

account how many parents of each metadata state it encounters, and try to assign a probability of
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being a true error to each instance potential error reported.

More Analyses

Adapting more analyses to our frameworks would be yet another avenue to pursue. We have

shown how to present Reaching Definitions and Available Expressions within our framework for

both Butterfly Analysis and Chrysalis Analysis. In Chapter 5, we presented “Reaching Defini-

tions” with uncertainty–but this version of Reaching Definitions was equivalent to Constant Prop-

agation with only two precise states and equating uncertain with Not-A-Constant. Extending

our abstraction to a true Constant Propagation is straightforward: each precise (“constant”) state

extends the symmetry of the G and K formulas.

It is also interesting to explore what other analyses are expressable within our framework,

building on top of Reaching Definitions, Available Expressions, and Constant Propagation. Anal-

yses like MEMCHECK [80, 81], which verify that memory is allocated along all paths and ini-

tialized before any access, can be expressed similar to the cross product of ADDRCHECK and

TAINTCHECK. ADDRCHECK is suitable to ensure that memory is allocated along all paths;

a similar construct to TAINTCHECK allows initialization status to flow when a value is copied

from one address to another, and verify that there is not a path where an access is to unallocated

data. An analysis which performs bounds-checking on all pointers, ensuring all pointers are valid

and only used to access memory within their allocated region [9], is also expressible within our

framework. Like ADDRCHECK, it must ensure that all accesses are to allocated data, whether

stack or heap. Like TAINTCHECK, anytime a new pointer is derived from an old pointer, the new

pointer must inherit bounds from the old pointer.

Dataflow analysis-based dynamic parallel monitoring’s applications are not limited to cor-

rectness checking. An interesting performance-focused analysis that is easily expressible within

dataflow analysis-based dynamic parallel monitoring would be a false-sharing detector. False-

sharing arises when at least two processors are accessing disjoint memory locations on a shared
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cache line, Processor A issues a write, and Processor B then incurs a miss due to the cache

block being invalidated by Processor A. This occurs even though the data for that particular lo-

cation was unchanged, because cache coherence operates at a coarser granularity than individual

words [51]. Detecting this behavior is natural within dataflow analysis-based dynamic parallel

monitoring. During the first pass each block computes a read and write set as its SIDE-OUT. The

SIDE-IN likewise has two parts, the union of the concurrent reads and the union of the concurrent

writes. In the second pass, the lifeguard looks for instances where a local read and a concurrent

write or a local write and a concurrent write were to the same cache block but different mem-

ory words. This is a mere sampling of the analyses expressible within dataflow analysis-based

dynamic parallel monitoring.

New Architectures

Dataflow analysis-based dynamic parallel monitoringwas designed for coherent, shared-memory

multiprocessors. Interesting directions to extend the work would be to consider different archi-

tectures or settings: incorporating transactional memory as a first-class guarantor of atomicity, or

porting dataflow analysis-based dynamic parallel monitoring to increasingly important architec-

tures such as GPUs or heterogeneous multicores. One could even try to adapt Chrysalis Analysis

to cloud- or supercomputer-based parallelism, where instead of synchronization the arcs would

indicate communication between nodes. While the scale is vastly different than on-chip paral-

lelism, there are also many similarities: relaxed consistency models and a need for help writing

bug-free parallel programs.

This thesis presented dataflow analysis-based dynamic parallel monitoring, a new software-

based framework for monitoring parallel programs at runtime to detect bugs and security ex-

ploits. We have demonstrated that it is possible to create an efficient software-based dynamic

analysis framework based on windows of uncertainty which avoids the overhead of tracking de-

tailed inter-thread data dependences. We have explored the tradeoffs between performance and
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precision, from adjusting epoch size to including synchronization-based happens-before arcs and

explicitly isolating uncertainty within the analysis to enable dynamic adaptations. We have pre-

sented both theoretical guarantees as well as experimental evaluations of our frameworks for

both performance and precision. There are many future applications of this work, ranging from

reducing dynamic work by statically analyzing the code or executable, to looking at supporting

new architectures (non-homogeneous or potentially non-coherent), and extending to new areas

entirely, such as enabling analysis for cloud-based parallelism. Bugs are a persistent problem for

software developers, and dataflow analysis-based dynamic parallel monitoring is a new tool at

their disposal.
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