
Revisiting the Complexity of Stability
of Continuous and Hybrid Systems

Sicun Gao Soonho Kong Edmund M. Clarke
July 16, 2014

CMU-CS-14-112

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We develop a general framework for obtaining upper bounds on the “practical” computational
complexity of stability problems, for a wide range of nonlinear continuous and hybrid systems.
To do so, we describe stability properties of dynamical systems in first-order theories over the
real numbers, and reduce stability problems to the δ -decision problems of their descriptions. The
framework allows us to give a precise characterization of the complexity of different notions of
stability for nonlinear continuous and hybrid systems. We prove that bounded versions of the
δ -stability problems are generally decidable, and give upper bounds on their complexity. The un-
bounded versions are generally undecidable, for which we measure their degrees of unsolvability.

This research was sponsored by the National Science Foundation grants no. CNS1330014, no. CNS0926181 and
no. CNS0931985, the GSRC under contract no. 1041377, the Semiconductor Research Corporation under contract
no. 2005TJ1366, and the Office of Naval Research under award no. N000141010188.

Keywords: Stability, Dynamical Systems, Complexity

1 Introduction
Stability of dynamical systems is a central topic in control theory. The computational nature of
stability properties has been a topic of much recent investigation [3, 5, 6, 1, 13, 2]. A focus of
existing work is to establish various hardness results, i.e., lower bounds on complexity. It is shown
that stability of simple systems is hard or impossible to solve algorithmically. Such results are
proved by reducing combinatorial problems over graphs or matrices to stability problems, which
can be analyzed with techniques of standard complexity theory. A limitation is that reduction
techniques are usually not suitable for establishing upper bounds on complexity, and indeed most
questions about upper bounds are open [1].

Note that the existing approaches measure complexity of stability through symbolic manipu-
lation of their descriptions. While doing so is suitable for establishing hardness results (for sub-
classes of the systems), it is at the core different from the practice in control theory, which is mostly
based on numerical computations over real numbers. We argue that more general results for com-
plexity of stability need to take into account of how real numbers and real functions are computed,
as studied in computable analysis [14, 12, 8]. However, while complexity for real functions is
best measured in the model of Type 2 Turing machines [12], stability problems are still standard
decision problems that should be measured in the standard complexity classes. Moreover, it is im-
portant to distinguish the difficulty with manipulating real numbers from the intrinsic complexity
of control problems. For instance, if a real number x is represented numerically (as an infinite
Cauchy sequence of rationals), determining whether ”x = 0” is already undecidable [14]. Using
such hardness in measuring complexity of practical control problems would be misleading, be-
cause in practice, the problems are always solved up to some nonzero error bound. That is, |x|< δ

for a sufficiently small δ is what we need in practice, rather than the theoretically undecidable
equality testing. The computational nature of the problem is very different with such a relaxation.

We will show that δ -decisions over the real numbers [10, 9] provides a suitable framework
for measuring the intrinsic complexity of control problems to address the issues discussed above.
Within this framework, we can study the following version of stability problems. Given a dynam-
ical system and an arbitrarily small δ ∈Q+, we ask for one of the following answers:

• The system is stable.

• The system is unstable under numerical perturbations bounded by δ .

We call this the δ -stability problem. With this definition, we are able to give precise upper bounds
for the “practical complexity” of stability problems for a wide range of continuous and hybrid
systems. We are able to prove results of the following type:

• Bounded Lyapunov δ -stability resides in the complexity class (ΠP
3)

C, where C is the com-
plexity of continuous functions in the system. (ΠP

3 denotes the complexity class in the poly-
nomial hierarchy).

• Bounded asymptotic δ -stability resides in the complexity class (ΣP
4)

C.

• Unbounded Lyapunov δ -stability is undecidable, whose degree of undecidability is Π0
1. Un-

bounded asymptotic δ -stability is undecidable, whose degree of undecidability is in Σ0
2.

1

• Lyapunov methods reduce problems into lower complexity classes such as (Σ2)
C.

We believe these results are the first general characterization of the complexity of stability. More-
over, the importance of the results is not just theoretical. The past decade has seen great advance-
ment in decision procedures (SAT, QBF, and SMT solvers) that can handle many large instances
of NP-hard problems. The complexity analysis shows the possibility of developing generic algo-
rithmic approaches to control problems of nonlinear and hybrid systems.

In all, the main contributions of the paper are as follows:

• We define a framework for measuring the “practical complexity” of stability problems for
a wide range of nonlinear continuous and hybrid systems. To do so, we describe stability
properties of systems as first-order formulas over the real numbers, and reduce stability
problems to the δ -decision problems of these formulas.

• The framework allows us to obtain a precise characterization of the complexity of different
notions of stability that has not been discovered previously. We prove that bounded version
of the stability problems are generally decidable, and give upper bounds on their complexity.
The unbounded versions are generally undecidable, for which we measure their degrees of
unsolvability.

The paper is organized as follows. In Section II, we review definitions of complexity classes and
some main results from computable analysis. In Section III, we review the theory of δ -decisions
over the reals and introduce the logic language that can encode a wide range of dynamical systems
and properties. In Section IV, we study the complexity of stability of continuous systems. In
Section V, we study the same questions for hybrid systems. We conclude in Section VI and suggest
future directions.

2 Preliminaries

2.1 Oracle Machines, Polynomial and Arithmetic Hierarchies
We review the basic definitions for complexity hierarchies.

A (set-) oracle Turing machine M extends an ordinary Turing machine with a special read/write
tape called the oracle tape, and three special states qquery, qyes, qno. To execute M, we specify an
oracle language O ⊆ {0,1}∗ in addition to the input x. Whenever M enters the state qquery, it
queries the oracle O with the string s on the oracle tape. If s ∈ O, then M enters the state qyes,
otherwise it enters qno. Regardless of the choice of O, a membership query to O counts only as a
single computation step. A function-oracle Turing machine is defined similarly except that when
the machine enters the query state the oracle (given by a function f : {0,1}∗→{0,1}∗) will erase
the string s on the query tape and write down f (s). Note that such a machine must take | f (s)| steps
to read the output from the query tape. We write MO(x) (resp. M f (x)) to denote the output of M
on input x with oracle O (resp. f).

2

The polynomial hierarchy PH is a hierarchy of complexity classes that is defined through oracle
computation. The base case are the well-known complexity classes P and NP. The classes in the
hierarchy are recursively defined in the standard way:

ΣP
0 = ΠP

0 = P,ΣP
k+1(A) = NPΣP

k (A),ΠP
k+1(A) = coNPΣP

k (A)

It is well-known that PH ⊆ PSPACE. If P 6= NP, then each class in the hierarchy contains harder
problems than the previous ones. For undecidable problems, there exists an analogous arithmetic
hierarchy. The base case is Σ0

1, which is the class of the halting problem. The other classes in the
arithmetic hierarchy Π1

0,Σ
0
2, ... alternate in a similar way. The detailed definitions of polynomial

and arithmetic hierarchy can be found in standard textbooks on recursion theory and computational
complexity such as [4].

2.2 Type 2 Computable Functions
Given a finite alphabet Σ, let Σ∗ denote the set of finite strings and Σω the set of infinite strings
generated by Σ. For any s1,s2 ∈ Σ∗, 〈s1,s2〉 denotes their concatenation. An integer i ∈ Z used as
a string over {0,1} has its conventional binary representation. The set of dyadic rational numbers
is D= {m/2n : m ∈ Z,n ∈ N}.

Computations over Infinite Strings Standard computability theory studies operations over fi-
nite strings and does not consider real-valued functions. Real numbers can be encoded as infinite
strings, and a theory of computability of real functions can be developed with oracle machines
that perform operations using function-oracles encoding real numbers. This is the approach devel-
oped in Computable Analysis, a.k.a., Type 2 Computability. We will briefly review definitions and
results of importance to us. Details can be found in the standard references [14, 12, 7].

Definition 2.1 (Names). A name of a ∈ R is defined as a function γa : N→ D satisfying

∀i ∈ N, |γa(i)−a|< 2−i.

For~a ∈ Rn, γ~a(i) = 〈γa1(i), ...,γan(i)〉.

Thus the name of a real number is a sequence of dyadic rational numbers converging to it. For
~a ∈ Rn, we write Γ(~a) = {γ : γ is a name of~a}. Noting that names are discrete functions, we can
define

Definition 2.2 (Computable Reals). A real number a ∈ R is computable if it has a name γa that is
a computable function.

A real function f is computable if there is a function-oracle Turing machine that can take any
argument x of f as a function oracle, and output the value of f (x) up to an arbitrary precision.

3

Definition 2.3 (Computable Functions). We say a real function f :⊆Rn→R is Type 2 computable
if there exists a function-oracle Turing machine M f , outputting dyadic rationals, such that for any

~x ∈ dom(f), any name γ~x for~x, and any i ∈ N, the output of Mγ~x(i)
f satisfies that

|Mγ~x
f (i)− f (~x)|< 2−i,

which means that it approximates f (~x) up to 2−i.

In the definition, i specifies the desired error bound on the output of M f with respect to f (~x).
For any ~x ∈ dom(f), M f has access to an oracle encoding the name γ~x of ~x, and output a 2−i-
approximation of f (~x). In other words, the sequence

Mγ~x
f (1),M

γ~x
f (2), ...

is a name of f (~x). Intuitively, f is computable if an arbitrarily good approximation of f (~x) can be
obtained using any good enough approximation to any~x ∈ dom(f).

Proposition 2.4 ([14]). The following real functions are computable: addition, multiplication, ab-
solute value, min, max, exp, sin and solutions of Lipschitz-continuous ordinary differential equa-
tions. Compositions of computable functions are computable.

A key property of the above notion of computability is that computable functions over reals
must be continuous. In fact, over any compact set D ⊆ Rn, computable functions are uniform
continuous with a computable modulus of continuity. Intuitively, if a function has a computable
uniform modulus of continuity, then fixing any desired error bound 2−i on the output, we can
compute a global precision 2−m f (i) on the inputs from D such that using any 2−m f (i)-approximation
of any~x ∈ D, f (~x) can be computed within the error bound.

Complexity of real functions is usually defined over compact domains. Without loss of gen-
erality, we consider functions over [0,1]. Intuitively, a real function f : [0,1]→ R is (uniformly)
P-computable (PSPACE-computable), if it is computable by an oracle Turing machine M f that
halts in polynomial-time (polynomial-space) for every i ∈ N and every ~x ∈ dom(f). The formal
definition is as follows:

Definition 2.5 ([12]). A real function f : [0,1]n → R is in PC[0,1] (resp. PSPACEC[0,1]) iff there
exists a representation (m f ,θ f) of f such that

• m f is a polynomial function, and

• for any d ∈ (D∩ [0,1])n, e ∈ D, and i ∈ N, θ f (d, i) is computable in time (resp. space)
O((len(d)+ i)k) for some constant k.

Proposition 2.6. The following real functions all reside in Type 2 complexity class PC[0,1]: absolute
value, polynomials, binary max and min, exp, sin, and their bounded compositions.

It is shown that solutions of Lipschitz-continuous differential equations are computable in
PSPACEC[0,1]. In fact, it is shown to be PSPACE-complete in the following sense.

Proposition 2.7 ([11]). Let g : [0,1]×R→ R be polynomial-time computable and consider the
initial value problem d f (t)

dt = g(t, f (t)) for f (0) = 0 and t ∈ [0,1]. Then computing the solution
f : [0,1]→ R is in PSPACE. Moreover, there exists g such that computing f is PSPACE-complete.

4

3 LRF
-Formulas and δ -Decidability

3.1 LRF
-Formulas

We will use a logical language over the real numbers that allows arbitrary computable real func-
tions [14]. We write LRF

to represent this language. Intuitively, a real function is computable if
it can be numerically simulated up to an arbitrary precision. For the purpose of this paper, it suf-
fices to know that almost all the functions that are needed in describing hybrid systems are Type 2
computable, such as polynomials, exponentiation, logarithm, trigonometric functions, and solution
functions of Lipschitz-continuous ordinary differential equations.

More formally, LRF
= 〈F ,>〉 represents the first-order signature over the reals with the set

F of computable real functions, which contains all the functions mentioned above. Note that
constants are included as 0-ary functions. LRF

-formulas are evaluated in the standard way over
the structure RF = 〈R,FR,>R〉. It is not hard to see that we can put any LRF

-formula in a
normal form, such that its atomic formulas are of the form t(x1, ...,xn) > 0 or t(x1, ...,xn) ≥ 0,
with t(x1, ...,xn) composed of functions in F . To avoid extra preprocessing of formulas, we can
explicitly define LF -formulas as follows.

Definition 3.1 (LRF
-Formulas). Let F be a collection of computable real functions. We define:

t := x | f (t), where f ∈F (constants are 0-ary functions)
ϕ := t > 0 | t ≥ 0 | ϕ ∧ϕ | ϕ ∨ϕ | ∃xiϕ | ∀xiϕ.

In this setting ¬ϕ is regarded as an inductively defined operation which replaces atomic formulas
t > 0 with −t ≥ 0, atomic formulas t ≥ 0 with −t > 0, switches ∧ and ∨, and switches ∀ and ∃.

Definition 3.2 (Bounded LRF
-Sentences). We define the bounded quantifiers ∃[u,v] and ∀[u,v] as

∃[u,v]x.ϕ =d f ∃x.(u≤ x∧ x≤ v∧ϕ)

∀[u,v]x.ϕ =d f ∀x.((u≤ x∧ x≤ v)→ ϕ)

where u and v denote LRF
terms, whose variables only contain free variables in ϕ excluding x.

A bounded LRF
-sentence is Q[u1,v1]

1 x1 · · ·Q
[un,vn]
n xn ψ(x1, ...,xn), where Q[ui,vi]

i are bounded quanti-
fiers, and ψ(x1, ...,xn) is quantifier-free.

3.2 δ -Perturbations and δ -Decidability
Definition 3.3 (δ -Variants). Let δ ∈Q+∪{0}, and ϕ an LRF

-formula

ϕ : QI1
1 x1 · · ·QIn

n xn ψ[ti(~x,~y)> 0; t j(~x,~y)≥ 0],

where i ∈ {1, ...k} and j ∈ {k + 1, ...,m}. The δ -weakening ϕδ of ϕ is defined as the result of
replacing each atom ti > 0 by ti >−δ and t j ≥ 0 by t j ≥−δ :

ϕ
δ : QI1

1 x1 · · ·QIn
n xn ψ[ti(~x,~y)>−δ ; t j(~x,~y)≥−δ].

5

It is easy to see that the perturbed formula is implied by the original formula.

Proposition 3.4 ((see [10])). For any ϕ , we have ϕ → ϕδ .

In [10, 9], we have proved that the following δ -decision problem is decidable, which is the
basis of our framework.

Theorem 3.5 (δ -Decidability [10]). Let δ ∈Q+ be arbitrary. There is an algorithm which, given
any bounded LRF

-sentence ϕ , correctly returns one of the following two answers:

• δ -True: ϕδ is true.

• False: ϕ is false.

When the two cases overlap, either answer is correct.

Theorem 3.6 (Complexity [10]). Let S be a class of LRF
-sentences, such that for any ϕ in S, the

terms in ϕ are in Type 2 complexity class C. Then, for any δ ∈ Q+, the δ -decision problem for
bounded Σn-sentences in S is in (ΣP

n)
C.

4 Stability of Continuous Systems

4.1 LRF
-Representations

Consider an n-dimensional autonomous ODE system

dx(t)
dt

= f (x(t)) (1)

where f is Lipschitz-continuous and x(0) ∈ Rn. We define the LRF
-representation of the system

to be a logical formula that describes the all points on the trajectory of the dynamical system.

Definition 4.1. We say the system (1) is LRF
-represented by an LRF

-formula flow(x0,xt , t), if for
any x(t) ∈ R, x(t) is on the trajectory of the system iff the flow(x0,xt , t) is true.

From Picard-Lindelöf iteration, we know that the LRF
-representation for continuous systems

has an explicit form:

Proposition 4.2. The dynamical system in (1) has a trajectory that passes through a ∈ R iff the
following LRF

-formula is true:

flow(x0,xt , t) =d f (xt =
∫ t

0
f (x(s))ds+ x0)

Proposition 4.3. A continuous system has a LRF
-representation, when f is a Type 2 computable

function.

6

Since f can be any numerically computable function, this definition covers almost all dynami-
cal systems of interest. We can now speak of the dynamical system (1) and its LRF

-representation
flow(x0,xt , t) interchangeably.

The δ -perturbation on a system is defined through δ -perturbations on its LRF
-representation.

Definition 4.4. The δ -perturbation of a system that is LRF
-represented by flow(x0,xt , t) is the

system represented by flowδ (x0,xt , t).

To be clear, the flow formula has an explicit definition:

Proposition 4.5. The δ -perturbation of the system (1) is represented by

flowδ =d f |xt− (
∫ t

0
f (x(s))ds+ x0)|< δ .

Note that the δ -perturbed system is always an overapproximation of the original system:

Proposition 4.6. We have JflowK⊆ Jflowδ K.

4.2 Complexity of Lyapunov Stability
We first study stability in the sense of Lyapunov, which we can write stable i.s.L. Following stan-
dard definition, a system is stable i.s.L. if given any ε , there exists δ such that for any initial value
x0 that is within δ from the origin, the system stays in ε-distance from the origin. The LRF

-
representation of stability in the sense of Lyapunov is naturally the following formula.

Definition 4.7 (L stable). We encode conditions for Lyapunov stability with the formula L stable
as follows.

∀[0,∞)
ε∃[0,ε]δ∀[0,∞)t∀x0∀xt . (||x0||< δ ∧ xt =

∫ t

0
f (s)ds+ x0)→ ||xt ||< ε.

The bounded form of L stable is defined by bounding the quantifiers in the formula as follows:

∀[0,e]ε∃[0,ε]δ∀[0,T]t∀X x0∀X xt . (||x0||< δ ∧ xt =
∫ t

0
f (s)ds+ x0)→ ||xt ||< ε,

where e,T ∈ R+ and X is a compact set.

It is not hard to see that the formula encodes the definition of stability in the sense of Lyapunov.

Proposition 4.8. The origin is a stable equilibrium point iff L stable is true.

We can now define the δ -stability problem using the LRF
-representation.

Definition 4.9 (δ -Stability i.s.L.). The δ -stability problem i.s.L. asks for one of the following an-
swers:

7

• stable: The system is stable i.s.L. (L stable is true).

• δ -unstable: Some δ -perturbation of L stable is false.

We defined the bounded δ -stability problem by replacing L stable with the bounded form of
L stable in the definition.

Now, using the complexity of the formulas, we have the following complexity results for the
bounded version of Lyapunov stability.

Theorem 4.10 (Complexity). Suppose all terms in the LRF
-representation of a system are in

Type 2 complexity class C. Then the bounded δ -stability problem i.s.L. resides in complexity class
(ΠP

3)
C.

Proof. The LRF
-formula L stable is a σ3 formula. By Definition 5.11, the δ -stability problem

is equivalent to the δ -decision problem of the formula L stable. Following Theorem 3.6, we
have that the complexity of the δ -decision problem for the bounded form of L stable is in (ΠP

3)
C.

Consequently, the bounded δ -stability problem i.s.L. resides in (ΠP
3)

C.

Following the complexity for Lipschitz-continuous ODEs, we have an upper bound for the
complexity of a wide range of systems.

Corollary 4.11. Suppose that in the system (1), f is a Type 2 polynomial-time computable function.
Then the bounded δ -stability problem i.s.L. is in PSPACE.

Proof. The LRF
-representation flow can be evaluated in PSAPCE. Since (ΠP

3)
PSPACE ⊆ PSPACE,

we know that the problem resides in PSPACE.

We have mentioned that most of common functions and their compositions are polynomial-
time computable: polynomials, trigonometric functions, exponential functions, etc. Consequently,
for most nonlinear continuous systems of practical interest, the stability problem is in PSPACE.

The unbounded case involves testing the bounded formula for longer and longer time durations.
Thus, it is still undecidable. We can obtain the degree of undecidability of the unbounded case from
the logical encoding.

Theorem 4.12. The unbounded Lyapunov δ -stability problem is in Π0
1.

Proof. We compute δ -decisions of the bounded form of the formula L stable for increasingly
larger time bound T . If for any T the formula is δ -false, then the system is δ -unstable. On the
other hand, we will not be able to confirm that the system is stable as T approaches infinity. Thus,
the problem is in Π0

1 of the arithmetic hierarchy.

8

4.3 Complexity of Asymptotic Stability
Following standard terminology, we say a system is asymptotically stable if it is Lyapunov sta-
ble, and there exists some bound on the perturbation in the initial state such that the system will
converge to the origin eventually. We now study the complexity of this problem.

First, since asymptotic stability involves properties of the system at the limit, we need to be
express that as an LRF

-formula, as follows.

Definition 4.13. We define the following formula for limx→∞(f (x),c)

lim
x→∞

(f (x),c) =d f ∀[0,∞)
ε∃[0,∞)x∀[x,∞)x′ (| f (x)− c|< ε).

We can use the conventional notation limx→∞ f (x) = c. Also, for convergence at a point a ∈ R+,
we define

lim
x→a

(f (x),c) =d f ∀[0,∞)
ε∃[0,∞)

δ∀[a−δ ,a+δ]x (| f (x)− c|< ε).

Note that here the quantification on ε and δ can be easily bounded, since we do not need to
consider ε and δ that are very large. Although further parameterization on the bounds are needed,
for notational simplicity we simply treat this formula as a bounded LRF

-formula.

Now, asymptotic stability is defined as:

Definition 4.14 (A stable). We define A stable to be the following LRF
-formula

∀[0,∞)
ε∃[0,ε]δ∀[0,∞)t∀x0∀xt

(
(||x0||< δ ∧ xt =

∫ t

0
f (s)ds+ x0)→ ||xt ||< ε

)
∧∃[0,∞)

δ
′∀[0,∞)t∀x0∀xt

(
(||x0||< δ

′∧ xt =
∫ t

0
f (s)ds+ x0)→ lim

t→∞
||xt ||= 0

)
.

The bounded form of A stable is defined as:

∀[0,e]ε∃[0,ε]δ∀[0,T]t∀X x0∀X xt

(
(||x0||< δ ∧ xt =

∫ t

0
f (s)ds+ x0)→ ||xt ||< ε

)
∧∃[0,d]δ ′∀[0,T

′]t∀X x0∀X xt

(
(||x0||< δ

′∧ xt =
∫ t

0
f (s)ds+ x0)→ lim

t→T ′
||xt ||= 0

)
where e,T,T ′,d ∈ R+ and X is a compact set.

Proposition 4.15. The origin is asymptotically stable for a system iff the formula A stable is true.

We can now define the δ -stability problem using the LRF
-representation.

Definition 4.16 (Asymptotic δ -Stability). The δ -stability problem i.s.A. asks for one of the follow-
ing answers:

• stable: The system is stable i.s.A. (A stable is true).

• δ -unstable: Some δ -perturbation of A stable is false.

9

We defined the bounded δ -stability problem by replacing A stable with the bounded form of
A stable in the definition.

We can now obtain complexity results for the problem.

Theorem 4.17. Suppose all terms in the LRF
-representation of a system are in Type 2 complexity

class C. Then bounded asymptotic δ -stability is in (ΣP
4)

C.

Proof. The complexity of the formula is higher than the one encoding Lyapunov stability, because
of the quantification structure in the encoding of the limit. After rearranging the formula, we have

∀[0,e]ε∃[0,ε]δ∀[0,T]t∀X x0∀X xt

(
(||x0||< δ ∧ xt =

∫ t

0
f (s)ds+ x0)→ ||xt ||< ε

)
∧ ∃[0,d]δ ′∀[0,T

′]t∀X x0∀X xt∀[0,e
′]
ε
′∃[0,d

′]
δ
′′∀[−δ ′′,+δ ′′]t

(
(||x0||< δ

′∧ xt =
∫ t

0
f (s)ds+ x0)→ ||xt ||< ε

′
)

This is a Σ4-formula. Following Theorem 3.6 we know that the problem resides in (ΣP
4)

C.

The degree of undecidability for the unbounded version is, however, different from Lyapunov
stability. This is because we need to find the bound of perturbation that ensures the convergence to
the origin.

Corollary 4.18. Unbounded asymptotic δ -stability is in Σ0
2.

Proof. In the formula A stable, we need to incrementally search for a value for δ ′. Each of the
value corresponds to an unbounded search for the time bound, which is similar to the case of
Lyapunov complexity. Thus, we need to solve unbounded ∃∀ quantification, which means the
unbounded problem is in Σ0

2 of the arithmetic hierarchy.

It is probably interesting to note that the problem P 6=NP has the same degree of undecidability.
There is also the notion of “asymptotic stability in the large,” which ensures that for any per-

turbation on x(0), the system will stabilize. The quantification turns out to be slightly different:

Proposition 4.19 (Asymptotic Stability in the Large). The origin is an asymptotically stable equi-
librium point iff the following LRF

-formula is true

∀[0,∞)
ε∃[0,ε]δ∀[0,∞)t∀x0∀xt

(
(||x0||< δ ∧ xt =

∫ t

0
f (s)ds+ x0)→ ||xt ||< ε

)
∧∀[0,∞)

δ
′∀[0,∞)t∀x0∀xt

(
(||x0||< δ

′∧ xt =
∫ t

0
f (s)ds+ x0)→ lim

t→∞
||xt ||= 0

)
.

Computationally, this is in fact a simpler task than asymptotic stability. We state the following
result without duplicating the proofs.

Theorem 4.20. Suppose all terms in the LRF
-representation of a system are in Type 2 complexity

class C. Then bounded asymptotic δ -stability in the large is in (ΠP
3)

C. The unbounded case resides
in Π0

1.

10

4.4 Complexity of Lyapunov Methods
We show that Lyapunov methods reduce the complexity of stability problems. We only discuss the
first-order encodings of the problems, in which a Lyapunov function is considered with a template
function with unspecified parameters.

Proposition 4.21. Consider the dynamical system (1). Let V (p,x) be a function, parameterized by
p, whose partial derivative ∂V/∂x is a Type 2 computable function. Let D be the parameter space
for p and X be the state space of x. We then have

• The following LRF
-formula is a sufficient condition for stability in the sense of Lyapunov

∃pD∀X x
(

V (p,0) = 0∧ (x 6= 0→V (p,x)> 0)∧ ∂V (p,x)
∂x

f (x)≤ 0
)

• The following is a sufficient condition for asymptotic stability:

∃pD∀X x
(

V (p,0) = 0∧ (x 6= 0→V (p,x)> 0)∧
(

x = 0→ ∂V (p,x)
∂x

f (x) = 0
)
∧
(

x 6= 0→ ∂V (p,x)
∂x

f (x)< 0
))

Definition 4.22 (δ -Complete Lyapunov Test). Let V (p,x) be a proposed template for Lyapunov
function. The δ -complete Lyapunov test asks for one of the following answers:

• Success: There exists an assignment to p such that the Lyapunov function witness stability
of the system.

• δ -Fail: The Lyapunov conditions fail under δ -perturbations for all possible parameteriza-
tions of V (p,x) in the parameter space D.

Theorem 4.23. Suppose all terms in the LRF
-representation of the Lyapunov conditions are in

Type 2 complexity class C. The complexity of bounded δ -complete Lyapunov methods is in (ΣP
2)

C.

It is clear that for the fully unbounded case (where both D and X are unbounded), undecidability
comes from the search in larger and larger parameter and state space.

Corollary 4.24. The unbounded δ -complete Lyapunov test for an unbounded system is in Σ0
2.

5 Stability of Hybrid Systems
An important benefit of using logic formulas for describing systems is that discrete changes can
be naturally represented. Although the discrete components significantly complicates the LRF

-
representations of the problems, they do not change the quantification structure of the encodings.
Thus, we will see that the complexity upper bound of the continuous systems mostly carry over
to the case of hybrid systems as well. On the other hand, it is indeed easier to show hardness
results (lower-bound) using logical operations, and in this sense hybrid systems are intrinsically
more complicated than continuous systems.

11

5.1 LRF
-Representations of Hybrid Systems

We first show that LRF
-formulas can concisely represent hybrid automata.

Definition 5.1. A hybrid automaton in LRF
-representation is a tuple

H = 〈X ,Q,{flowq(~x,~y, t) : q∈Q},{invq(~x) : q∈Q},{jumpq→q′(~x,~y) : q,q′ ∈Q},{initq(~x) : q∈Q}〉

where X ⊆ Rn for some n ∈ N, Q = {q1, ...,qm} is a finite set of modes, and the other components
are finite sets of quantifier-free LRF

-formulas.

Notation 5.2. For any hybrid system H, we write X(H), flow(H), etc. to denote its corresponding
components.

Almost all hybrid systems studied in the existing literature can be defined by restricting the set
of functions F in the signature. For instance,

Example 5.3 (Linear and Polynomial Hybrid Automata). Let F lin = {+}∪Q and F poly = {×}∪
F lin. Rational numbers are considered as 0-ary functions. In existing literature, H is a linear
hybrid automaton if it has an LR

F lin -representation, and a polynomial hybrid automaton if it has
an LR

Fpoly -representation.

Example 5.4 (Nonlinear Bouncing Ball). The bouncing ball is a standard hybrid system model.
Its nonlinear version (with air drag) can be LRF

-represented as follows:

• X = R2 and Q = {qu,qd}. We use qu to represent bounce-back mode and qd the falling
mode.

• flow = {flowqu(x0,v0,xt ,vt , t),flowqd(x0,v0,xt ,vt , t)}. We use x to denote the height of the
ball and v its velocity. Instead of using time derivatives, we can directly write the flows as
integrals over time, using LRF

-formulas:

– flowqu(x0,v0,xt ,vt , t) defines the dynamics in the bounce-back phase:

(xt = x0 +
∫ t

0
v(s)ds)∧ (vt = v0 +

∫ t

0
g(1−βv(s)2)ds)

– flowqd(x0,v0,xt ,vt , t) defines the dynamics in the falling phase:

(xt = x0 +
∫ t

0
v(s)ds)∧ (vt = v0 +

∫ t

0
g(1+βv(s)2)ds)

where β is a constant. Again, note that the integration terms define Type 2 computable
functions.

• jump = {jumpqu→qd
(x,v,x′,v′), jumpqd→qu(x,v,x

′,v′)} where

– jumpqu→qd
(x,v,x′,v′) is (v = 0∧ x′ = x∧ v′ = v).

12

– jumpqd→qu(x,v,x
′,v′) is (x = 0∧ v′ = αv∧ x′ = x), for some constant α .

• initqd : (x = 10∧ v = 0) and initqu :⊥.

• invqd : (x >= 0∧ v >= 0) and invqu : (x >= 0∧ v <= 0).

Trajectories of hybrid systems combine continuous flows and discrete jumps. This motivates
the use of a hybrid time domain, with which we can keep track of both the discrete changes and
the duration of each continuous flow. A hybrid time domain is a sequence of closed intervals on
the real line, and a hybrid trajectory is a mapping from the time domain to the Euclidean space.

We now define δ -perturbations on hybrid automata directly through perturbations on the logic
formulas in their LRF

-representations. For any set S of LRF
-formulas, we write Sδ to denote the

set containing the δ -perturbations of all elements of S.

Definition 5.5 (δ -Weakening of Hybrid Automata). Let δ ∈Q+∪{0} be arbitrary. Suppose

H = 〈X ,Q,flow, jump, inv, init〉

is an LRF
-representation of hybrid system H. The δ -weakening of H is

Hδ = 〈X ,Q,flowδ , jumpδ , invδ , initδ 〉

which is obtained by weakening all formulas in the LRF
-representations of H.

Example 5.6. The δ -weakening of the bouncing ball automaton is obtained by weakening the
formulas in its description. For instance, flowδ

qu
(x0,v0,xt ,vt , t) is

|xt− (x0 +
∫ t

0
v(s)ds)| ≤ δ ∧|vt− (v0 +

∫ t

0
g(1−βv(s)2)ds))| ≤ δ

and jumpδ
qd→qu

(x,v,x′,v′) is

|x| ≤ δ ∧|v′−αv| ≤ δ ∧|x′− x| ≤ δ .

It is important to note that the notion of δ -perturbations is a purely syntactic one, defined on the
description of hybrid systems. Following Proposition 3.4, it can be easily seen that the syntactic
perturbations correspond to semantic over-approximation of H in the trajectory space.

5.2 Complexity of Stability
We now obtain complexity results for stability of hybrid systems. The main difference from the
continuous systems is that the set of reachable states of a hybrid system requires a more complex
encoding. However, we will see that they do not change the upper bound of the complexity, since
the quantification structure does not change.

First, we need to define a set of auxiliary formulas that will be important for ensuring that a
particular mode is picked at a certain step.

13

Definition 5.7. Let Q= {q1, ...,qm} be a set of modes. For any q∈Q, and i∈N, use bi
q to represent

a Boolean variable. We now define

enforceQ(q, i) = bi
q∧

∧
p∈Q\{q}

¬bi
p

enforceQ(q,q′, i) = bi
q∧¬bi+1

q′ ∧
∧

p∈Q\{q}
¬bi

p∧
∧

p′∈Q\{q′}
¬bi+1

p′

We omit the subscript Q when the context is clear.

Definition 5.8 (k-Step Reachable Set). Suppose H is invariant-free, and U a subset of its state
space represented by unsafe. The LRF

-formula ReachH,U(k,M) is defined as:∨
q∈Q

(
initq(~x0)∧flowq(~x0,~xt

0, t0)∧ enforce(q,0)∧∀[0,t0]t∀X~x (flowq(~x0,~x, t)→ invq(~x))
)

∧
k−1∧
i=0

(∨
q,q′∈Q

(
jumpq→q′(~x

t
i,~xi+1)∧flowq′(~xi+1,~xt

i+1, ti+1)∧∀[0,ti+1]t∀X~x (flowq′(~xi+1,~x, t)→ invq′(~x)))

∧enforce(q,q′, i)∧ enforce(q′, i+1)
))

Proposition 5.9 (Hybrid Lyapunov Stability). The origin is a stable equilibrium point if

∀[0,∞)
ε∃[0,ε]δ∀[0,∞)t∀x0∀xt(||x0||< δ ∧Reach(x0,xt , t))→ ||xt ||< ε.

Proposition 5.10 (Asymptotic Stability). The origin is an asymptotically stable equilibrium point
if

∀[0,∞)
ε∃[0,ε]δ∀[0,∞)t∀x0∀xt

(
(||x0||< δ ∧Reach(x0,xt , t))→ ||xt ||< ε

)
∧∃[0,∞)

δ
′∀[0,∞)t∀x0∀xt

(
(||x0||< δ

′∧Reach(x0,xt , t))→ lim
t→∞
||xt ||= 0

)
.

The definition is δ -stability is the same as in the continuous case.

Definition 5.11 (δ -Stability). The (Lyapunov or asymptotic) δ -stability problem of hybrid systems
asks for one of the following answers:

• stable: The system is stable.

• δ -unstable: Some δ -perturbation of the LRF
-representation of stability is false.

Theorem 5.12. Suppose all terms in the LRF
-representation of stability are in Type 2 complexity

class C. We have

• The bounded Lyapunov δ -stability problem of hybrid systems is in (ΠP
3)

C. The asymptotic
δ -stability of hybrid systems is in complexity class (ΣP

4)
C.

14

• The unbounded δ -stability problem of hybrid systems is in Π0
1 and asymptotic δ -stability is

in Σ0
2.

From these results, it may seem that hybrid systems are not harder than continuous systems,
in terms of the upper bounds on complexity. However, the discrete components of hybrid systems
make it much easier to reach a high lower bound on the complexity. For instance, it is easy to show
that the complexity results are tight in the following sense:

Theorem 5.13. Suppose the terms in describing the stability formulas are polynomial-time Type 2
computable. The bounded Lyapunov and asymptotic δ -stability of hybrid systems are both (ΠP

3)-
complete.

The reason is that logic formulas can be easily encoded as jumping conditions of hybrid sys-
tems. It is then straightforward to reduce complete problems in the complexity class to stability
problems of hybrid systems. We omit the full proof here.

6 Conclusion and Future Work
We defined a framework for measuring the “practical complexity” of stability problems for a wide
range of nonlinear continuous and hybrid systems. To do so, we describe stability properties of
systems as first-order formulas over the real numbers, and reduce stability problems to the δ -
decision problems of these formulas. The framework allows us to obtain a precise characterization
of the complexity of different notions of stability that has not been discovered previously. We prove
that bounded version of the stability problems are generally decidable, and give precise measure
of the upper bound of their complexity. The unbounded versions are generally undecidable, for
which we give precise measures of their degrees of undecidability.

We believe the results serve as a basis for developing computational methods towards nonlinear
and hybrid control techniques. An immediate next step is to use these methods to study other prob-
lems such as controllability and observability of nonlinear systems. On the other hand, the logical
descriptions of the problems can directly guide the development of practical decision procedures
for the problems.

References
[1] A. A. Ahmadi. Algebraic relaxations and hardness results in polynomial optimization and

Lyapunov analysis. PhD Thesis, Massachusetts Institute of Technology, 2011.

[2] A. A. Ahmadi, A. Majumdar, and R. Tedrake. Complexity of ten decision problems in con-
tinuous time dynamical systems. CoRR, abs/1210.7420, 2012.

[3] A. A. Ahmadi and P. A. Parrilo. Stability of polynomial differential equations: Complexity
and converse lyapunov questions. CoRR, abs/1308.6833, 2013.

[4] S. Arora and B. Barak. Complexity Theory: A Modern Approach. 2009.

15

[5] V. D. Blondel and J. N. Tsitsiklis. Complexity of stability and controllability of elementary
hybrid systems. Automatica, 35(3):479–489, 1999.

[6] V. D. Blondel and J. N. Tsitsiklis. A survey of computational complexity results in systems
and control. Automatica, 36(9):1249–1274, 2000.

[7] V. Brattka, P. Hertling, and K. Weihrauch. A tutorial on computable analysis. In S. B.
Cooper, B. Löwe, and A. Sorbi, editors, New Computational Paradigms, pages 425–491.
Springer New York, 2008.

[8] P. J. Collins. Computable Analysis With Applications To Dynamic Systems. CWI Techni-
cal Report MAC-1002, CWI, May 2010. This research was supported by the Nederlandse
Organisatie voor Wetenschappelijk Onderzoek (NWO) Vidi grant 639.032.408.

[9] S. Gao, J. Avigad, and E. M. Clarke. Delta-complete decision procedures for satisfiability
over the reals. In B. Gramlich, D. Miller, and U. Sattler, editors, IJCAR, volume 7364 of
Lecture Notes in Computer Science, pages 286–300. Springer, 2012.

[10] S. Gao, J. Avigad, and E. M. Clarke. Delta-decidability over the reals. In LICS, pages 305–
314, 2012.

[11] A. Kawamura. Lipschitz continuous ordinary differential equations are polynomial-space
complete. In IEEE Conference on Computational Complexity, pages 149–160. IEEE Com-
puter Society, 2009.

[12] K.-I. Ko. Complexity Theory of Real Functions. BirkHauser, 1991.

[13] P. Prabhakar and M. Viswanathan. On the decidability of stability of hybrid systems. In
C. Belta and F. Ivancic, editors, HSCC, pages 53–62. ACM, 2013.

[14] K. Weihrauch. Computable Analysis: An Introduction. 2000.

16

	1 Introduction
	2 Preliminaries
	2.1 Oracle Machines, Polynomial and Arithmetic Hierarchies
	2.2 Type 2 Computable Functions

	3 LRF-Formulas and -Decidability
	3.1 LRF-Formulas
	3.2 -Perturbations and -Decidability

	4 Stability of Continuous Systems
	4.1 LRF-Representations
	4.2 Complexity of Lyapunov Stability
	4.3 Complexity of Asymptotic Stability
	4.4 Complexity of Lyapunov Methods

	5 Stability of Hybrid Systems
	5.1 LRF-Representations of Hybrid Systems
	5.2 Complexity of Stability

	6 Conclusion and Future Work

