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Abstract

This technical report is a more detailed version of a published paper [14].

Statistical Model Checking (SMC) is a computationally very efficient verification technique
based on selective system sampling. One well identified shortcoming of SMC is that, unlike
probabilistic model checking, it cannot be applied to systems featuring nondeterminism, such
as Markov Decision Processes (MDP). We address this limitation by developing an algorithm
that resolves nondeterminism probabilistically, and then uses multiple rounds of sampling and
Reinforcement Learning to provably improve resolutions of nondeterminism with respect to
satisfying a Bounded Linear Temporal Logic (BLTL) property. Our algorithm thus reduces an
MDP to a fully probabilistic Markov chain on which SMC may be applied to give an approximate
solution to the problem of checking the probabilistic BLTL property. We integrate our algorithm
in a parallelised modification of the PRISM simulation framework. Extensive validation with both
new and PRISM benchmarks demonstrates that the approach scales very well in scenarios where
symbolic algorithms fail to do so.





1 Introduction
Model Checking [16] (MC) is a successful set of techniques aimed at providing formal guarantees
(usually expressed in some form of temporal logic) for models that can be specified as transition
systems. There has been a lot of interest in the MC community for extensions of the classical
algorithms to probabilistic settings, which are more expressive but significantly harder to analyse.
These extensions study the Probabilistic Model Checking (PMC) problem, where the goal is to
find the probability that a property holds in some stochastic model.

When solving the PMC problem, it is often possible to trade-off correctness for scalabil-
ity. There is extensive work on how the PMC problem can be solved through exact techniques
[18, 1, 8], which compute correct probability bounds. Exact techniques do, however, rely on
reasoning about the entire state space, which is widely considered to be the limiting factor in
their applicability to large problems. The complementary approach is known as Statistical Model
Checking (SMC), which is based on selectively sampling traces of the system until enough sta-
tistical evidence has been found. Although it trades away the iron clad guarantees of PMC for
statistical claims, SMC requires comparatively little memory, thus circumventing the most press-
ing limitation of classical PMC techniques. In addition, sampling is usually very efficient even for
large systems.

Currently, one shortcoming of SMC compared to exact methods is that it does not handle
systems with nondeterminism, since it is not clear how to resolve nondeterminism during sampling.
Thus, SMC can only be directly applied to fully probabilistic systems, such as Markov chains. In
this work, we address this problem.

We develop and study a statistical algorithm to enable the application of SMC in Markov de-
cision processes (MDPs), the de facto standard for modelling discrete systems exhibiting both
stochastic and nondeterministic behaviour. The main difficulty for the PMC problem in MDPs
is that it requires properties to hold in all resolutions of nondeterminism, or schedulers. Proper-
ties, expressed in temporal logic and interpreted over traces, often check for bad behaviour in the
modelled system. In this case, one would check that, for all schedulers, the probability of bad
behaviour occurring is less than some small value.

This goal can be reduced to finding the probability under a most adversarial, or optimal sched-
uler: one that maximises the probability of satisfying the property. Unfortunately, an exhaustive
study of all schedulers would not be computationally feasible. On the other hand, checking only
isolated schedulers would not give any significant insight about the behaviour of the system under
the optimal resolution of nondeterminism.

Exact methods typically find these optimal schedulers using a fixed point computation that
requires propagating information throughout the entire state space whereas our approach does a
guided search for the most adversarial schedulers. Because of this, we need to consider only a very
small fraction of the potential schedulers. We sample from the model under an arbitrary candidate
scheduler to estimate how “good” each transition is, i.e., how much it contributes to the satisfaction
of the property. Then we reinforce good transitions, provably improving the scheduler, and start
sampling again with this new candidate. Once we are confident that we have a sufficiently good
scheduler, we can use any method for solving the PMC problem for fully probabilistic systems
(like classical SMC) to settle the original query. One important advantage of this approach is that,
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like in non-probabilistic model checking, if the algorithm finds that the property is false, it provides
a counterexample scheduler, which can then be used for debugging purposes.

PRISM [18] is a state-of-the-art probabilistic model checker. We implemented our algorithm
in Java, using a parallelised version of PRISM’s simulation framework for trace generation. This
allows us to seamlessly use PRISM’s specifications for MDPs. We take care to ensure that our
multi-threaded modification of the framework remains statistically unbiased. We apply our algo-
rithm to both the PRISM benchmark suite as well as to new benchmarks and perform an extensive
comparison. The results show that the algorithm is highly scalable and efficient. It also runs
successfully on problems that are too large to be tackled by PRISM’s exact engine.

2 Related Work
Numerical methods compute high precision solutions to the PMC problem [1, 8, 18, 17, 7, 15],
but fail to scale for very large systems. Several authors [31, 19, 23, 24] have studied Statistical
Model Checking, which handles the PMC problem statistically in fully probabilistic systems. Sev-
eral implementations [29, 25] have already shown the applicability of SMC. One serious and well
identified shortcoming of SMC is that it cannot be applied to even partially nondeterministic sys-
tems. The canonical example is a Markov Decision Process (MDP), where one must guarantee
some probabilistic property regardless of the resolution of nondeterminism.

We are aware of two attempts at using statistical techniques to solve the PMC problem in non-
deterministic settings. In [21], Lassaigne and Peyronnet. deal with planning and verification of
monotone properties in MDPs using an adaptation of Kearn’s learning algorithm. In addition, in
[4], Bogdoll et al. consider this problem with the very restricted form of nondeterminism induced
by the commutativity of concurrently executed transitions in compositional settings (spurious non-
determinism).

To solve the general problem, we draw from the Reinforcement Learning literature [27, 6].
Real-Time Dynamic Programming [2] works in a setting similar to PMC. It also uses simulation
for the exploration of near-optimal schedulers, but still needs to store the entire system in memory,
suffering from the same limitations as numerical PMC techniques.

The scheduler optimisation stage of our algorithm works in a fashion similar to some Monte
Carlo methods [27], despite the fact that one maximises the probability of satisfying some path
property external to the model and the other maximises some discounted reward inherent to the
model. Monte Carlo methods estimate, through simulation, a “fitness” value for each state and
then use these values to greedily update their guess as to which is the best scheduler. An similar
idea is at the core of our algorithm.

3 Probabilistic Model Checking for MDPs
In this section we lay the necessary formal foundations to define the probabilistic model checking
problem.
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3.1 State Labeled Markov Decision Processes
Markov decision processes are a popular choice to model discrete state transition systems that
are both probabilistic and nondeterministic. Standard statistical model checking does not handle
nondeterminism and thus cannot be directly applied to these models. Schedulers are functions used
to resolve the nondeterminism in Markov decision processes. A MDP in which nondeterminism
has been resolved becomes a fully probabilistic system known as a Markov chain.

In the setting of PMC, it is customary to assume the existence of a state labelling function L
that associates each state with a set of propositions that are true in that state.

Definition 1 (Markov Decision Process). A State Labeled Markov Decision Process (MDP) is a
tupleM = 〈S, s, A, τ,L〉 where S is a (finite) set of states, s ∈ S is an initial state, A is a (finite)
set of actions, τ : S × A × S → [0, 1] is a transition function such that for s ∈ S, a ∈ A, either∑

s′∈S τ(s, a, s′) = 1 (a is enabled) or
∑

s′∈S τ(s, a, s′) = 0 (a is disabled), for each s ∈ S there
exists at least one action enabled from s and L : S → 2AP is a labelling function mapping each
state to the set of atomic propositions true in that state.

For each state s and enabled action a, τ(s, a, s′) gives the probability of taking action a in state
s and moving to state s′. At least one action needs to be enabled at each state. The transitions
are assumed to take one “time step” so there is no notion of real time. Because of this, MDPs
are particularly suited for reasoning about the ordering of events without being explicit about their
timing.

A scheduler for a MDP resolves the nondeterminism in each state s by providing a distribution
over the set of actions enabled in s.

Definition 2 (Scheduler). A memoryless scheduler for a MDPM is a function σ : S ×A→ [0, 1]
s.t.
∑

a∈A σ(s, a) = 1 and σ(s, a) > 0 only if a is enabled in s.

A scheduler for which either σ(s, a) = 1 or σ(s, a) = 0 for all pairs (s, a) ∈ S × A is called
deterministic. In this work, by scheduler, we mean memoryless scheduler.

Discrete time Markov chains are fully probabilistic models. They can be seen as MDPs where
the nondeterminism over the actions has been resolved and thus can be thought of as a system that
runs without the need of external input.

Definition 3 (Markov Chain). A State Labeled discrete time Markov chain is a tupleM = 〈S, s, A, P,L〉
where S is a (finite) set of states, s ∈ S is an initial state, A is a (finite) set of action names.
P : S × A × S → [0, 1] is a transition function such that for s ∈ S,

∑
a∈A

∑
s′∈S P (s, a, s′) = 1

and L : S → 2AP is a labelling function mapping each state to a set of atomic propositions that
are true in that state.

The inclusion of action names in this definition is a necessary technical detail. Given a MDP
M, any scheduler induces a Markov chain by eliminating nondeterminism; when dealing with
Markov chains induced in this way, we will use action names to discriminate which specific MDP
action generated each Markov chain transition. Action names have no meaningful semantics oth-
erwise.
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There is a set of paths associated with each Markov chain M . A path in M , denoted π ∈ M ,
is an infinite sequence π = s

a0−→ s1
a1−→ s2 . . . of states s.t. for all i ∈ N, P (si, ai, si+1) > 0.

Given a path π, the n-th state of π, denoted πn, is sn; the k-prefix of π, denoted π|k is the finite
subsequence of π that ends in πk; and the k-suffix of π, denoted π|k is the infinite subsequence of
π that starts in πk.

The transition function P induces a canonical probability space over the paths ofM as follows.
We define the function Prf , over finite prefixes: for prefix π̂ = s

a0−→ s1 . . .
ak−1−−→ ak, Prf (π̂) , 1 if

k = 0, Prf (π̂) , P (s, a0, s1)P (s1, a1, s2) . . . P (sk−1, ak−1, sk) otherwise. This function extends
to a unique measure Pr over the set of (infinite) paths of M [28].

Definition 4 (Markov chain induced by a scheduler). Given a MDP M = 〈S, s, A, τ,L〉 and a
scheduler forM, σ, the Markov chain induced by σ, is the Markov chainMσ = 〈S, s, A, P,L〉
where P (s, a, s′) , σ(s, a)τ(s, a, s′).

This resolution of nondeterminism will enable us to apply SMC techniques to MDPs, provided
wefind a suitable scheduler.

3.2 Bounded Linear Temporal Logic
Linear Temporal Logic (LTL) [22] is a formalism used to reason about the ordering of events
without introducing time explicitly. It is interpreted over sequences of states. Each state represents
a point in time in which certain propositional assertions hold. Once an event changes the truth
value of these assertions, the system moves to a new state.

Sampling and checking of paths needs to be computationally feasible. Since LTL may require
paths of arbitrary size, we instead use Bounded LTL, which requires only paths of bounded size
[32]. In addition, for each path, we may identify a smallest prefix that is sufficient to satisfy or
refute the property, which we will call the minimal sufficient prefix of the path. This notion is useful
in practice to avoid considering unnecessarily long paths. The syntax and semantics of BLTL are
summarised in Table 1.

Informally, F≤nϕ1 means “ϕ1 will become true within n transitions”; G≤nϕ1 means “ϕ1 will
be remain true for the next n transitions” and ϕ1U

≤nϕ2 means “ϕ2 will be true within the next n
transitions and ϕ1 remains true until then”. The classical connectives follow the usual semantics.

3.3 Probabilistic and Statistical Model Checking
LetM be a MDP, ϕ be a BLTL property and 0 < θ < 1 be a rational number. The problem of
PMC for these parameters, denoted P≤θ(ϕ), lies in deciding whether ∀σ : Pr({π : π ∈ Mσ, π |=
ϕ}) ≤ θ, that is, “Is the probability of the set of paths of Mσ that satisfy ϕ at most θ for all
schedulers σ?”

The formula ϕ usually encodes an undesirable property, e.g. reaching an error state or violating
a critical condition. If we can find the scheduler that maximises the probability of satisfying ϕ,
then we can compare that probability with θ to answer the PMC query, since all other schedulers
will achieve a lower value. It can be easily shown that deterministic schedulers are sufficient for
achieving this maximum probability.
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Syntax: ϕ := p | ¬ϕ | ϕ ∨ ϕ | F≤nϕ |G≤nϕ | ϕU≤nϕ
Semantics: π |= ϕ iff...
if ϕ is... Semantics

p p ∈ L(π0)
¬ϕ1 π 6|= ϕ1

ϕ1 ∨ ϕ2 π |= ϕ1 or π |= ϕ2

F≤nϕ1 ∃i≤n : π|i |= ϕ1

G≤nϕ1 ∀i≤n : π|i |= ϕ1

ϕ1U
≤nϕ2

∃i≤n∀k≤i : π|k |= ϕ1

and π|i |= ϕ2

Table 1: Syntax and semantics of BLTL. π = π0 a0−→ π1 a1−→ π2 . . . is a path. π|i is the suffix of π starting at πi. L
is given and maps states, πi, to the subset of atomic propositions that are true in that state.

Some state-of-the-art techniques for the PMC problem in MDPs [1, 18] usually rely on sym-
bolic methods to encode the state-action graph of the MDP in compact representations [9, 10].
Using this representation, such approaches compute the exact maximum probability of satisfying
the property through an iterative method that propagates information throughout the state space.

Fully probabilistic models, like Markov chains, exhibit probabilism but not nondeterminism.
These models admit only the trivial scheduler that selects the single available distribution at each
state. The PMC problem for fully probabilistic systems then reduces to deciding whether the
probability of satisfying ϕ under that scheduler is greater than θ. For solving this problem, there
exists an efficient sampling based technique known as Statistical Model Checking (SMC).

SMC comes in two flavours: hypothesis testing solves the PMC problem stated above; in-
dependent traces of a system are analysed until a meaningful decision can be reached about the
hypothesis “probability of satisfaction of ϕ is smaller than θ”. Without going into much detail, a
quantity that measures the relative confidence in either of the hypotheses, called the Bayes factor
(or the likelihood ratio in the case of the SPRT [31]), is dynamically recomputed until enough
statistical evidence has been gathered to make a decision. The other kind of SMC is interval esti-
mation, where traces are sampled until a probability of satisfaction can be estimated within some
confidence interval [20]. This value is then compared against θ. Hypothesis testing is often faster
than interval estimation, whereas interval estimation finds the actual probability of satisfying ϕ.
The suitability of either of the techniques, naturally, depends on the specific problem at hand.

In conclusion, since SMC solves the PMC problem statistically on Markov chains, SMC for
MDPs reduces to the problem of finding an optimal scheduler for the PMC problem.

3.4 Memoryless Schedulers
It can be shown that, for the PMC problem with unbounded properties, memoryless schedulers are
sufficient to achieve the maximal probability [3, 12]. Bounded LTL, does not share this property,
i.e. schedulers that maintain historic information may be more powerful than those relying only
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on the current state . However, it has been argued in the literature, that memoryless schedulers are
more realistic for resolving nondeterminism in some applications, like distributed systems [11].

p
s p

0.01

0.99

0.5 1

0.5

Figure 1: The optimal choice for satisfying the formula F≤2p is to take the dashed transition from the initial state.
However, if the system self loops on this choice and takes the dashed transition again, it will necessarily fail to reach
p within the time bound. It should follow the solid transition to salvage some probability of doing so. This scheduler
has no memoryless equivalent.

In view of this, we restrict the search space to memoryless schedulers, in order to reduce com-
putational cost. For problems that require history-dependent schedulers, we may add a “distance
to timeout” variable to AP that effectively allows states to store all relevant historic information.
This causes a significant increase in the number of states and, as such, is usually avoided.

4 Statistical Model Checking for MDPs
In this section, we present our algorithm for applying SMC to MDPs. We start with an overview
of the procedure and then discuss each of its stages in detail.

4.1 Overview
Up to confidence in the results of classical SMC, the algorithm we propose is a false-biased Monte
Carlo algorithm. This means that the algorithm is guaranteed to be correct when it finds a coun-
terexample and it can thus reject P≤θ(ϕ). When the algorithm does not manage to find a coun-
terexample, it can retry the search; if it fails once again, then its confidence about the inexistence
of such a counterexample becomes higher. In other words, negative answers can always be trusted,
and positive answers can eventually be trusted with arbitrarily high confidence. The goal of each
run of our algorithm (the flow of which is depicted in Figure 2) is to find a near-optimal scheduler
starting from an uninformative uniform candidate.

In an initial scheduler optimisation stage, we search for a candidate near-optimal scheduler by
iterating over two procedures: the scheduler evaluation phase consists in sampling paths from the
Markov chain induced by a candidate scheduler σ; using this information, we estimate how likely
it is for each choice to lead to the satisfaction of the property ϕ. The estimates are then used in
the scheduler improvement phase, in which we update the candidate scheduler σ by reinforcing
the actions that led to the satisfaction of ϕ most often. In this way, we obtain a provably better
scheduler that focuses on the more promising regions of the state space in the next iteration of the
scheduler evaluation phase.
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In the subsequent SMC stage, we use classical SMC (or we could use exact PMC for Markov
chains) to check if the candidate scheduler σ from the previous stage settles the original query. If
the property Pr({π : π ∈ Mσ, π |= ϕ}) ≤ θ is false under this scheduler σ, we can safely claim
that the MDP does not satisfy the property P≤θ(ϕ), because we found a counterexample scheduler
σ. Otherwise, we can restart the learning algorithm in an attempt to get a better scheduler. We will
show that doing this will exponentially increase confidence in the claim that the MDP satisfies the
property.

Scheduler
evaluation

Scheduler
improvement

Determinisation

SMC

False

True

σ uniform
Scheduler

Optimisation

σ improvedQ

σ candidate

deterministic σ

Figure 2: Flowchart of the MDP algorithm

In order to effectively use the sampling information to improve schedulers, we draw from rein-
forcement learning ideas [27] for choosing near-optimal schedulers in reward maximisation prob-
lems. In this setting, it is standard to focus on reinforcing “good” actions based on the immediate
rewards they are associated with. These reinforced actions will be preferentially picked by future
schedulers. In model checking there is no notion of how good an individual action is. Instead,
temporal properties induce rewards on whole paths rather than on individual actions. Therefore, a
path satisfying ϕ is evidence that the choices generated by the current scheduler along that path are
“good”. Thus, we reinforce actions that appear in many good paths more than those that appear in
few, and modify the scheduler to make them more likely.
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4.2 Scheduler Evaluation
Scheduler evaluation is the first of two alternating procedures within the scheduler optimisation
stage. It evaluates how good the choices made by a scheduler σ are by repeatedly sampling and
checking paths from the Markov chainMσ induced by σ.

This evaluation checks formula ϕ on each sampled path π, and reinforces each state-action
pair in π if π |= ϕ. In other words, reinforcement is guided by paths, but is applied locally on
choices (i.e. on state-action pairs). More formally, for a set of sampled paths P and state-action
pair (s, a) ∈ S × A, the reinforcements R+ and R− are defined as R+(s, a) , |{π ∈ P : (s, a) ∈
π and π |= ϕ}| and R−(s, a) , |{π ∈ P : (s, a) ∈ π and π 6|= ϕ}|.

The reinforcement information R+(s, a) and R−(s, a) can be used to estimate the probability
that a path crossing (s, a) satisfies ϕ. We denote this probability byQ(s, a), i.e. the quality of state-
action pair (s, a). As we shall see, a good estimator for Q(s, a) is Q̂(s, a) = R+(s,a)

R+(s,a)+R−(s,a)
. In

the absence of new information from this sampling stage, we leave the quality of (s, a) unchanged.
These concepts are formally laid out in Algorithm 1.

Algorithm 1 Scheduler Evaluation
1: Require: Scheduler σ, Maximum number of samples N
2: ∀(s,a)∈S×AR+(s, a)← 0, R−(s, a)← 0

3: ∀(s,a)∈S×AQ̂σ(s, a)← σ(s, a)
4: for i = 1, ..., N do
5: Sample minimal sufficient path π fromMσ

6: for j = 1, ..., |π| do
7: (s, a)← πj

8: if π |= ϕ then
9: R+(s, a)← R+(s, a) + 1

10: else
11: R−(s, a)← R−(s, a) + 1
12: end if
13: end for
14: end for
15: for R+/−(s, a) modified in lines 9 or 11 do
16: Q̂σ(s, a) = R+(s,a)

R+(s,a)+R−(s,a)

17: end for
18: return Q̂σ

Remark 1 (Minimal sufficient paths). Recall from Subsection 3.2 that, along any path, there is an
earliest point where we can decide if the path satisfies ϕ. After this point, the remainder of the path
becomes irrelevant for purposes of deciding about satisfaction or refutation of the property. Thus,
we only reward or penalise actions in the minimal sufficient prefix of a path. Any further reward
would not be informative.
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4.3 Scheduler Improvement
Scheduler improvement is the second procedure that alternates in the scheduler optimisation stage.
It is described in Algorithm 2. It takes as input a scheduler σ and the associated estimated quality
function Q̂ : S × A → [0, 1] from the previous stage. This procedure generates a scheduler σ′,
an improved version of σ, obtained by greedily assigning higher probability to the most promising
actions in each state, i.e. those that led to satisfying ϕ most often. The remaining probability is
distributed according to relative merit amongst all actions. We use a greediness parameter (1− ε)
that controls how much probability we assign to the most promising choice. This parameter can
be tailored to be small if the system does not require much exploration or large otherwise.

It is important to guarantee that the update does not create a scheduler that blocks the future
exploration of any path. If, in the present round, a state-action pair has very poor quality, we want
to penalise it, but not disable it entirely. Combining the new greedy choices with the previous
scheduler (according to a history parameter h) ensures that no choice is ever blocked as long as the
initial scheduler does not block any actions.

Algorithm 2 Scheduler Improvement
1: Require: Scheduler σ, History parameter 0 < h < 1, Greediness parameter 0 < ε < 1,

Quality function estimate Q̂
2: σ′ ← σ
3: for s ∈ S do
4: a∗ ← arg max

a∈A

{
Q̂σ(s, a)

}
5: ∀a∈A p(s, a)← I{a = a∗}(1− ε) + ε

(
Q̂σ(s,a)∑
b∈A Q̂

σ(s,b)

)
6: ∀a∈A σ′(s, a)← hσ(s, a) + (1− h)p(s, a)
7: end for
8: return σ′

4.4 Scheduler Optimisation
Scheduler optimisation simply consists in alternating the scheduler evaluation and the scheduler
improvement procedure to incrementally optimise a candidate scheduler.

Since we do not have any prior belief in what constitutes an optimal scheduler, the scheduler is
initialised with a Uniform distribution (unbiased!) in each state, ensuring no action is ever blocked.
1 The procedure is described in Algorithm 3.

Remark 2 (Dynamic sampling bounds). We propose and implement an optimisation to Algorithm
1. If during scheduler evaluation the algorithm has sampled enough satisfying traces to confidently
claim that the current scheduler is a counterexample to P≤θ(ϕ), then it has answered the original
query and may stop sampling. In fact, it may stop learning altogether. Fortunately, Bayesian hy-
pothesis testing provides us with a method to quantify the confidence with which we may answer

1In fact, any probabilistic scheduler that assigns positive probability to all actions would suffice. We choose the
uniform scheduler because it maximises entropy.
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Algorithm 3 Scheduler Optimisation
1: Require: σ, h, ε,N , Maximum number of alternations between evaluations and improvements
L.

2: for i = 1, ..., L do
3: Mσ ←MC induced by MDPM and scheduler σ
4: Q̂← SCHEDULEREVALUATE(σ,N )
5: σ ← SCHEDULERIMPROVEMENT(σ, h, ε, Q̂)
6: end for
7: return σ

a question. Since this method is computationally cheap, it can be used online to stop the algo-
rithm. Alternatively, SPRT [31] could be used to the same end. For further details, please refer to
Appendix .1.

4.5 Determinisation
Despite being sufficient to achieve maximum probabilities, deterministic schedulers are a poor
choice for exploring the state space through simulation: sampling with a deterministic scheduler
provides information only for the actions that it chooses. Probabilistic schedulers are more flexible,
explore further, and enable reinforcement of different actions. Thus, we always use probabilistic
schedulers in the exploration part of our algorithm.

Ideally, σ converges to a near-deterministic scheduler, but due to our commitment to explo-
ration, it will never do so completely. Before using SMC to answer the PMC question, we thus
greedily determinise σ. More precisely, we compute a scheduler that always picks the best esti-
mated action at each state. Formally, DETERMINISE(σ) is a new scheduler such that, for all s ∈ S
and a ∈ A

DETERMINISE(σ)(s, a) = I{a = arg max
α∈A(s)

σ(s, α)}

We thus hope to redirect the residual probabilities of choosing bad actions to the promising regions
of the state space. In practice, this step makes a significant difference.

4.6 Number of Runs
Although we will show that the scheduler optimisation stage converges towards optimal schedulers,
at any given point we cannot quantify how close to optimal the candidate scheduler is. Statistical
claims are possible, however. If the current candidate is sufficient to settle the original PMC query,
the algorithm can stop immediately. If it is not, it may be restarted after a reasonable number of
improvement iterations. These restarts help our algorithm finding and focusing on more promising
parts of the state space it might have missed before. Algorithms like this are called biased Monte
Carlo algorithms. Given a confidence parameter (p) on how likely each run is to converge, we can
make a statistical claim up to arbitrary confidence (η) on the number of times we have to iterate
the algorithm, Tη,p:
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Theorem 1 (Bounding Theorem [5]). For a false-biased, p-correct Monte Carlo algorithm (with
0 < p < 1) to achieve a correctness level of (1 − η), it is sufficient to run the algorithm at least a
number of times:

Tη,p =
log2 η

log2(1− p)

This result guarantees that, even in cases where the convergence of the scheduler learning
procedure in one iteration is improbable, we will only need to run the procedure a relatively small
number of times to achieve much higher confidence. Taking all these considerations into account,
the main SMC procedure for MDPs is laid out in Algorithm 4.

Algorithm 4 Statistical Model Checking for Markov Decision Processes
1: Require: h, ε,N, L, Confidence parameter for convergence p, Required confidence η
2: for i = 1, ..., Tη,p do
3: ∀s∈S∀a∈A(s) σ(s, a)← 1

|A|
4: σ ← OPTIMISESCHEDULER(σ, h, ε,N, L)
5: σ ← DETERMINISE(σ)
6: if HYPOTHESISTESTING(Mσ, ϕ, θ) = False then
7: return False
8: end if
9: end for

10: return Probably True

An important requirement of this algorithm and Theorem 1 is that we have a positive probability
of convergence to an optimal scheduler during scheduler learning. In the next section, we prove
this to be the case.

5 Convergence
In this section, we show that the algorithms presented in section 4 are correct. This means that the
schedulers found in Algorithm 4 converge to optimal schedulers, under the metric of maximising
the probability of satisfying ϕ.

5.0.1 Scheduler Evaluation

Reinforcement learning algorithms are typically based on estimating quality functions with respect
to particular schedulers – functions that quantify how good it is to perform a given action in a given
state. In our case, for a property ϕ, MDPM and a scheduler σ, the quality function Qσ : S×Σ→
[0, 1] associates to each enabled state-action pair (s, a), the probability of satisfying ϕ, having
taken a from s:

Qσ(s, a) =
Pr({π : (s, a) ∈ π, π |= ϕ})

Pr({π : (s, a) ∈ π})
, (1)
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which is, by definition, the probability of satisfying ϕ conditioned on having passed through (s, a).
Using a common abuse of notation, we will write this expression as

Qσ(s, a) = Pr(π |= ϕ | (s, a) ∈ π) (2)

Since our sampling is unbiased, each observation of (s, a) during sampling is an independent,
identically distributed estimate of the value of Qσ(s, a). By the Strong Law of Large Numbers,
the sequence of empirical averages of these observations converges to the true value of Qσ(s, a) as
long as there is a non-zero probability of reaching (s, a) [26]. Furthermore, we know the standard
deviation of the error decreases as 1/

√
n.

This is enough to guarantee that, with a sufficiently high number of samples, the quality esti-
mation function Q̂(s, a) computed in scheduler evaluation phase (Algorithm 1) approximates the
true quality function Q(s, a) arbitrarily well.

5.0.2 Scheduler improvement

In order to analyse scheduler improvement, it will be useful to introduce a quantity related to
quality, known as value. Value is a measure of how good it is to be in a state for purposes of
satisfying ϕ.

Formally, for a property ϕ, a MDPM and a scheduler σ, the value function V σ : S → [0, 1]
associates to each state s the probability of satisfying ϕ in a path that passes through s:

V σ(s) = Pr(π |= ϕ | (s, a) ∈ π, a ∈ A(s)}), (3)

Notice that we can compute V σ from Qσ by marginalising out the actions enabled at s in
Equation 1.

V σ(s) =
∑
a∈A(s)

σ(s, a)Qσ(s, a) (4)

It is important to notice that for the initial state s, V σ(s) = Pr({π : π |= ϕ}), which is exactly
the value we are trying to maximise. We will show that for a scheduler σ′ obtained from a scheduler
σ in Algorithm 2, V σ′(s) ≥ V σ(s). Since our goal is to maximise the probability of satisfying ϕ,
this is a guarantee that the algorithm makes progress towards a better scheduler. In order to prove
this inequality, we will use a well known theorem from reinforcement learning.

To understand the following results, it is useful to consider the notion of local update of a
scheduler. Consider two schedulers σ and σ′. The local update of σ by σ′ in s, denoted σ[σ(s) 7→
σ′(s)], is the scheduler obtained by following σ in all states except in state s, where decisions are
made by σ′ instead. Theorem 2 asserts that, if locally updating σ by σ′ always yields a better result
than not doing so, then globally updating σ by σ′ also yields a better result.

Theorem 2 (Scheduler improvement [27], Section 4.2). Let σ and σ′ be two schedulers and ∀s ∈
S : V σ[σ(s) 7→σ′(s)](s) ≥ V σ(s) then ∀s ∈ S : V σ′(s) ≥ V σ(s).

Proposition 3. Let σ be the input scheduler and σ′ be the output of Algorithm 2. Then ∀s ∈ S :
V σ′(s) ≥ V σ(s).

12



Proof. We first consider the case where the history parameter, h, is 0. In this case σ′(s, a) = I{a =

arg maxaQ
σ(s, a)}(1− ε) + ε

(
Qσ(s,a)∑
b∈AQ

σ(s,b)

)
.

If, for some states s, Q(s, a) = 0 for all a ∈ A, then σ(s) = σ(s′) and for such s, the
conditions of Theorem 2 are trivially met. Otherwise, define pε(s, a) = ε Q(s,a)∑

b∈A(s)Q(s,b)
. Notice that∑

a∈A pε(s, a) = ε and
∑

a∈A σ(s, a) = 1.

V σ[σ(s)7→σ′(s)](s)

=
∑
a∈A(s)

pε(s, a)Qσ(s, a) + (1− ε) max
a∈A(s)

Qσ(s, a) (5)

=
∑
a∈A(s)

pε(s, a)Qσ(s, a) +( ∑
a∈A(s)

σ(s, a)−
∑
a∈A(s)

pε(s, a)
)

max
a∈A(s)

Qσ(s, a)

(6)

=
∑
a∈A(s)

pε(s, a)Qσ(s, a) +

∑
a∈A(s)

[σ(s, a)− pε(s, a)] max
a∈A(s)

Qσ(s, a)

=
∑
a∈A(s)

pε(s, a)Qσ(s, a) +

∑
a∈A(s)

[
(σ(s, a)− pε(s, a)) max

a∈A(s)
Qσ(s, a)

]
≥
∑
a∈A(s)

pε(s, a)Qσ(s, a) +

∑
a∈A

[(σ(s, a)− pε(s, a))Qσ(s, a)] (7)

=
∑
a∈A(s)

pε(s, a)Qσ(s, a) +
∑
a∈A(s)

σ(s, a)Qσ(s, a)−

∑
a∈A(s)

pε(s, a)Qσ(s, a)

=
∑
a∈A(s)

σ(s, a)Qσ(s, a) (8)

=V σ(s)
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where the equalities in lines 5 and 8 follow from Equation 4 and the inequality in line 7 comes
from the fact that for all a ∈ A, maxa∈A(s)Q

σ(s, a) ≥ Qσ(s, a).
In the case where h 6= 0, we have

σ′(s, a) = (1− h)

[
I{a = arg max

a
Qσ(s, a)}(1− ε) +

+ ε

(
Qσ(s, a)∑
b∈AQ

σ(s, b)

)]
+ hσ(s, a)

We can now repeat the above derivation by multiplying all lines from 5 to 8 by (1− h) and adding
hσ(s, a) to each of them. All (in)equalities still hold.

Therefore, σ and σ′ from Algorithm 2 fulfil the conditions of Theorem 2 and the Corollary
holds.

Proposition 3 is enough to show that each round of scheduler evaluation and scheduler im-
provement produces a better scheduler for satisfaction of ϕ.

6 Evaluation
We evaluate our procedure on several well-known benchmarks for the PMC problem. First, we use
one easily parametrisable case study to present evidence that the algorithm gives correct answers
and then we present systematic comparisons with PRISM [18]. Our implementation extends the
PRISM simulation framework for sampling purposes. Because we use the same input language as
PRISM, many off-the-shelf models and case studies can be used with our approach2.

Remark 3 (Reinforcement Heuristics). Our approach allows us to tune the way in which we com-
pute quality and reinforcement information without destroying guarantees of convergence (under
easily enforced conditions) but netting significant speedups in practice. These optimisations range
from negatively reinforcing failed paths to reinforcing actions differently based on their estimated
quality. A description of these optimisations is beyond the scope of this paper; for further details,
please refer to Appendix .2.

All our benchmarks were run on a 32-core, 2.3GHz machine with 128Gb RAM. The Java
Virtual Machine used to run our algorithm was allocated 10Gb for the stack and 10Gb for the
heap. Similar amounts of memory were initially allocated to PRISM, but we found that whenever
PRISM needed substantial amounts of memory (close to 4Gb), the constraining resource became
time and the program timed out regardless of the amount of available memory.

2All experimental data such as models, results and scripts can be found
at http://www.cs.cmu.edu/jmartins/QEST12.zip. PRISM models can be found at
http://www.prismmodelchecker.org/casestudies/index.php
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6.1 Parametrisation
Our algorithm’s parameters generally affect both runtime and the rate of convergence, with depen-
dence on the MDP’s structure. In this section we will outline the methods used to decide values
for each parameter.

• History h: high h causes slower convergence, whereas small h makes convergence less
likely by making sampling variance a big factor. From a range of tests done over several
benchmarks, we found 0.5 to be a good overall value by achieving a balanced compromise.
To reduce h for specific benchmarks, one can fix the other parameters and reduce it until the
algorithm ceases to converge.

• Greediness ε: experimentally, the choice of 0 < ε < 1 influences the convergence of the al-
gorithm. However, the heuristics we use do not allow us to set ε explicitly but still guarantee
that 0 < ε < 1 (necessary for convergence). For details, we refer to Appendix .2.

• Threshold θ: θ is provided as part of the PMC query. To understand how the relation of θ to
the actual probability treshold affects performance, we present results for different values of
θ. These values are chosen by first obtaining p through PRISM and then picking values close
to it. In the absence of PRISM results, we gradually increase θ until the property becomes
false. Finally, interval estimation can give us hints on good estimates for thresholds.

• Numbers of samples N and iterations L: the main factor in runtime is the total number of
samples N × L. A higher N yields more confidence in the reward information R of each
iteration. A higher L makes the scheduler improve more often. Increasing L at the cost of N
without compromising runtime (N×L constant) allows the algorithm to focus on interesting
regions of the state space earlier. We ran several benchmarks using combinations of N and
L resulting in the similar total number of samples, and found that a ratio of around 65:1
N : L was a good overall value. The total number of samples is adapted to the difficulty of
the problem. Most benchmarks used N = 2000 and L = 30, with smaller values possible
without sacrificing results. Harder problems sometimes required up to N = 5000 and L =
250. If the ratio N : L is fixed, N and L are just a bound on runtime. If θ > p, the algorithm
will generally run N × L samples, but if θ < p, it will generally terminate sooner.

• Number of runs T : if a falsifying scheduler is found, the algorithm may stop (up to confi-
dence in SMC). If not, then confidence can be increased as detailed in Section 4.6. We used
between 5 and 10 for our benchmarks.

• Statistical Model Checking: the Beta distribution parameters used were α = β = 0.5 and
Bayes factor threshold T = 1000. For an explanation these parameters, see [32].

6.2 Correctness, Performance and Implementation
To showcase the correctness and performance of our implementation, we use a simple but easily
parametrisable mutex scenario: several processes concurrently try to access a critical region under
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# processes 10 20 30 50 100
# states ∼ 104 ∼ 107 ∼ 1010 ∼ 1015 ∼ 1031

out 0.9825 0.9850 0.9859 0.9850 0.9869
t (s) 98 325 497 1072 6724

Table 2: Mutex results for Algorithm 4 with 10 runs (Tη,p = 10).

a mutual exclusion protocol. All processes run the same algorithm except for one, which has a bug
that allows it to unlawfully enter the critical region with some small probability. We want to find
the scheduler that makes a mutex violation most likely. We can add processes to increase the state
and action space of the system, making it easy to regulate the difficulty of the problem.

Figure 3 demonstrates the behaviour of the learning algorithm (Algorithm 3). The graph plots
the ratio of satisfied to unsatisfied sampled traces as the learning algorithm improves the initial
scheduler. Although, as expected, learning takes longer for harder problems, the learning trend is
evident.
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Figure 3: Improvement of schedulers by Algorithm 3

Correctness and performance results for the main algorithm (Algorithm 4) with different pa-
rameters are summarised in Table 2. We vary the number of concurrently executing processes in
the mutex case study, exponentially increasing the state space. Notice that the time necessary to
run Algorithm 4 scales very favourably with the size of the state space. The probability presented
is the result of performing interval estimation [32] using the algorithm’s most improved sched-
uler3. It is not the estimated probability of satisfying the property with the optimal scheduler. The
maximal probability has been computed by exact methods to be 0.988 in all cases.

3Although we only present Algorithm 4 with hypothesis testing, interval estimation to produce probability esti-
mates for the best scheduler found.
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6.2.1 Parallelisation

One major advantage of using SMC is that sampling is highly and easily parallelisable: all sam-
pling threads have access to the original model and can work independently. This contrasts with
the more monolithic approach of exact methods. Consequently, there are significant improvements
with multi-threaded operation. However, since the rewards, R+ and R−, are shared information,
threads have to synchronise their access. This results in diminishing returns.

By going from one thread to ten threads, we reduced runtime to under 25% of its original value
and sometimes as low as 17%. Adding up to 20 threads still reduces runtime but only by another
5% of original runtime at best. This points at promising synchronisation reducing optimisations
for future work. For these reasons, we used 20 sampling threads.

It is also worth noting that the algorithm itself uses a single thread but is extremely lightweight
when compared to sampling. In all benchmarks, checking formulae, rewarding paths and updating
schedulers usually account for less than 5% of runtime, and always less than 10%. The remain-
ing time is spent sampling traces. Therefore, faster sampling methods for PRISM or other MDP
specifications have the potential to decrease runtime very significantly.

6.3 Comparison and Benchmarks
Statistical approaches are usually very efficient because they only search and store information for
a relatively small fraction of the state space. As such, to solve problems that intrinsically require
optimal scheduling decisions to be made on all states, any statistical method would need to visit
the entire state space, thus defeating its own purpose.

Fortunately, a large class of real life problems only require a relatively small set of crucial
decisions to be made correctly; symmetry and structure arise naturally in many situations, making
some regions of the state space more relevant than others for given properties. This notion of how
structured a system is turns out to be an important factor on the performance of our algorithm. In
this section, we explore some benchmarks where this phenomenon is evident and thus we divide
them in three broad categories:

1. Heavily structured systems: these models are symmetrical by their very nature or because
of simplifying assumptions. Common examples are distributed protocols, which have sev-
eral agents running the exact same algorithm. We present two benchmarks about wireless
communication taken from the PRISM benchmark suite.

2. Structured models: these models have some symmetry, but due to noise or irregularity of the
environment, not as much as the highly structured systems. Common examples are problems
like motion planning or task scheduling by robots. We present a new and comparatively
complex motion planning model to illustrate this case.

3. Highly unstructured (random) models: these models have no symmetry whatsoever and exist
more as a thought experiment to take the idea of lack of structure to the extreme. We have
implemented a random MDP generator for testing these models.
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6.3.1 Heavily Structured Systems

Heavily structured systems often have small regions of the state space that regulate the satisfaction
of pertinent properties, a feature that our algorithm exploits successfully. In these cases, exact
methods also do well, as they can use symbolic approaches that collapse the many symmetries
of these models to represent and manipulate the state space with very efficient encodings. Most
available benchmarks from the PRISM suite fall under this category.

Since our approach does not represent the state space symbolically, it is not surprising that
in several benchmarks of this kind we are outperformed by PRISM. We present only one of these
benchmarks as a representative of its class. However, as we move towards more and more complex,
unstructured benchmarks, our algorithm starts outperforming traditional methods. In Table 3, we
present two case studies: WLAN and CSMA. WLAN models a two-way handshake mechanism of
a Wireless LAN standard. We can parametrise a backoff counter. CSMA is a protocol for collision
avoidance in networks. We can parametrise the number of agents and a backoff counter. The
comparison with PRISM for these two benchmarks is presented in Table 3. Since it is known that
hypothesis testing for SMC is much harder when θ is close to the true probability threshold [32],
we choose most values of θ close to these thresholds to stress test the approach. Times (t) are
presented in seconds and are an average of the time spent by 10 different executions of Algorithm
4, each with Tη,p = 10, i.e. 10 restarts until claim of Probably True. The middle rows, out, show
the result of hypothesis testing for the values of θ in the top rows. It is important to notice that
an F∗ result means that not all executions of the algorithm were able to find the counterexample
scheduler.

Notice that for smaller values of θ, the elapsed time is typically shorter because we are allowed
to stop as soon as we find a counterexample, whereas when the property is actually satisfied, we
have to perform all Tη,p = 10 runs before claiming Probably True.

6.3.2 Structured Systems

Structured systems also make fair benchmarks for our algorithm. They still have enough structure
to cause some actions to be more important than others but, because of natural irregularity or noise,
lack the symmetry that characterises their highly structured counterparts. For this reason, symbolic
methods fail to scale in such systems.

We present a new motion planning case study. Each of two robots living in a n× n grid world
must plan a course of action to pick up some object and then meet with the other robot. At each
point in time, either robot can try to move 10 grid units in any of the four cardinal directions, but
each time a robot moves, it has some probability of scattering and ending up somewhere in a radius
of r grid units of the intended destination. Furthermore, robots can only move across safe areas
such as corridors or bridges. Table 4 showcases this benchmark with grids of several sizes. Times
(t) are presented in seconds and are an average of the time spent by 5 different executions of the
algorithm, each with Tη,p = 10 runs, i.e. 10 restarts until claim of Probably True. The middle
rows, out, show the result of hypothesis testing for the values of θ in the top rows. For this case
study, we use a negative reinforcement heuristic to aggressively avoid unsafe areas. 4

4PRISM has three engines: sparse, hybrid and MTBDD (symbolic). We always compare against the engine that
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C
SM

A
3

4

θ 0.5 0.8 0.85 0.9 0.95 PRISM
out F F F T T 0.86
t 1.7 11.5 35.9 115.7 111.9 136

C
SM

A
3

6

θ 0.3 0.4 0.45 0.5 0.8 PRISM
out F F F T T 0.48
t 2.5 9.4 18.8 133.9 119.3 2995

C
SM

A
4

4

θ 0.5 0.7 0.8 0.9 0.95 PRISM
out F F F F T 0.93
t 3.5 3.7 17.5 69.0 232.8 16244

C
SM

A
4

6

θ 0.5 0.7 0.8 0.9 0.95 PRISM
out F F F F F∗ timeout

t 3.7 4.1 4.2 26.2 258.9 timeout

W
L

A
N

5

θ 0.1 0.15 0.2 0.25 0.5 PRISM
out F F T T T 0.18
t 4.9 11.1 124.7 104.7 103.2 1.6

W
L

A
N

6

θ 0.1 0.15 0.2 0.25 0.5 PRISM
out F F T T T 0.18
t 5.0 11.3 127.0 104.9 102.9 1.6

Table 3: Experimental results in several PRISM benchmarks for queries about maximum probability. Times pre-
sented in seconds. A ∗ indicates that only some of the executions of the algorithm found a counterexample scheduler.
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r
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1

θ 0.9 0.95 0.99 PRISM

out F F F 0.999

t 23.4 27.5 40.8 1252.7

R
ob

ot

n
=

50

r
=

2

θ 0.9 0.95 0.99 PRISM

out F F F 0.999

t 71.7 73.9 250.4 3651.045
R

ob
ot

n
=

75

r
=

2
θ 0.95 0.97 0.99 PRISM

out F F F∗ timeout

t 382.5 377.1 2676.9 timeout

R
ob

ot

n
=

20
0

r
=

3

θ 0.85 0.9 0.95 PRISM

out F F T timeout

t 903.1 1129.3 2302.8 timeout

Table 4: Experimental results in the motion planning scenario. Times in seconds. A ∗ indicates that
only some of the executions of the algorithm found a counterexample scheduler. Checking the formula
P≤θ(

[
Safe1U

≤30 (pickup1 ∧
[
Safe′1U

≤30RendezVous
])]
∧
[
Safe2U

≤30 (pickup2 ∧
[
Safe′2U

≤30RendezVous
])]

).

As the size of the grid increases, so does the starting distance between the robots and con-
sequently the probability of failure. This is because the scattering effect has more chances to
compound and impact the robots’ trajectory. Since PRISM failed to return an answer for the last
two cases, we have analytically computed an upper bound on the expected probability of satisfying
the property. For the case n = 75, r = 2, we expect the probability of satisfying the property to be
lower than 0.998 and for the case n = 200, r = 3 it should be lower than 0.966. These are con-
servative estimates and the actual probabilities may be smaller than these values, as for example in
case n = 200, r = 3 with threshold 0.95.

6.3.3 Unstructured (Random) Systems

Completely unstructured systems are particularly difficult for the PMC problem. On one hand,
statistical approaches struggle, as no region of the space is more relevant, making directed search
ineffective. On the other hand, symbolic approaches cannot exploit symmetry to collapse the state
space and also fail to scale.

We implemented an unstructured MDP generator to evaluate performance in these systems for
both approaches. Unsurprisingly, exact methods designed to take advantage of symmetry do not
scale for these models and provide answers only for the smallest case studies. For large systems,
our algorithm also fails to converge quickly enough and after 5 hours (our time bound) the best

performs best in each benchmark, which is the hybrid in this case, and the MTBDD in all others.
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schedulers found tipically still only guarantee around 20% probability of success (out of more than
60% actual probability for optimal scheduling for most case studies). The main reason for timeout
is the slowdown of the method as larger and larger schedulers need to be kept in memory. Since
there is no structure in the system, all regions of the state space are roughly as important as all
others and as such, an explicit scheduling function must be built for all regions of the state space,
which defeats the purpose of approximate methods.

7 Conclusions and Future Work
Combining classical SMC and reinforcement learning techniques, we have proposed what is, to
the best of our knowledge, the first algorithm to solve the PMC problem in probabilistic nondeter-
ministic systems by sampling methods.

We have implemented the algorithm within a highly parallel version of the PRISM simulation
framework. This allowed us to use the PRISM input language and its benchmarks.

In addition to providing theoretical proofs of convergence and correctness, we have empirically
validated the algorithm. Furthermore, we have done extensive comparative benchmarks against
PRISM’s numerical approach. PRISM managed to outperform our method for the class of very
structured models, which a symbolic engine can represent efficiently. For large, less structured
systems, our method provided very accurate results for a fraction of the runtime in a number of
significant test cases. In fact, the statistical nature of our algorithm enabled it to run, without
sacrificing soundness, in benchmarks where PRISM simply failed to provide an answer due to
memory or time constraints.

Future challenges for improving the effectiveness of this technique include learning of compo-
sitional schedulers for naturally distributed systems, i.e. one scheduler for each agent, and sam-
pling strategies that skip over regions of the state space for which scheduling decisions are already
clear.

We did not attempt to optimise PRISM’s sampling method. Since sampling accounts for over
90% of our runtime, any increase in sampling performance can have a decisive impact on the
efficiency of the implementation. Further technical optimisations are possible by reducing syn-
chronisation requirements and making the implementation fully parallel.

This work is a first step in the statistical verification of probabilistic nondeterministic systems.
There are still many interesting possibilities for improving the functionality of the technique. For
example, it would be interesting to investigate how to handle schedulers with memory. Another
potentially interesting research direction would be adapting the work in [13] and [30] to extend our
algorithm to allow the verification of temporal properties without bounds.
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.1 Dynamic Sampling and Bounds
Bayesian hypothesis testing accumulates evidence for and against each hypothesis during sam-
pling. It decides which hypothesis to accept once the evidence in favour of one of the hypothesis
reaches a given threshold.

This evidence, called Bayes factor, denoted B, is computed from the original query and the
number of satisfying and falsifying samples [32]. One can also understand it as the confidence
with which some one of the two hypothesis can be definitely accepted. It thus makes sense to use
B as a stopping criterion for sampling.

The confidence threshold at which a definite decision is made is parametrisable. Since the
learning phase is more exploratory, the threshold can be more lax. The SMC phase can be a lot
more rigorous by increasing the threshold.

We know that hypothesis testing becomes much harder if θ approaches the real probability. This
becomes a problem if the algorithm stops learning exactly when the candidate scheduler achieves
near-θ probability. To avoid this, the dynamic bounds are calculated for confidence in answering
the P≤θ+ι(ϕ) query, where ι is a relatively small probability increment (0.05 by default). In this
situation, our algorithm can achieve a scheduler above the required θ, which makes the more
rigorous P≤θ(ϕ) much easier, and faster, to answer.

.2 Alternative Reinforcement
We allow the specification of different reward and scheduler update schemes under very mild
restrictions. As long as we start with a probabilistic scheduler that assigns positive probability to
each action and a scheduler update scheme that uses a history parameter h > 0, we are guaranteed
to preserve some exploration ability. After we have run a few aggressive learning rounds with the
unorthodox scheduler update scheme, we can revert to the usual update scheme and still guarantee
overall convergence. If the aggressive learning is enough to solve the initial query, of course, we
can stop the procedure prematurely as usual.

Negative last step reinforcement is a heuristic particularly suited for problems with some con-
cept of “safety constraints”, i.e. regions of the state space where the system must remain. In order
to converge to a near-optimal scheduler in fewer iterations, we may wish to very quickly avoid the
decisions that made a path cross from the safe region into the unsafe region.

The motion planning case study is a good example for negative reinforcement schemes. It
makes sense to assign a very large penalty (big negative reinforcement) to the actions that make
the robot leave the safe region. As a result, the robots wander around aimlessly at first, but quickly
learn which actions make them hit the walls or fall off the bridge. This allows them to more easily
converge towards better schedulers.

On the other hand, in other problems where satisfaction of the BLTL formula is hard, even
taking correct actions may have only a very small probability of success. In these cases, the few
positive reinforcements a “good” action would get are overwhelmed by the negative reinforcements
from all the unsatisfying paths. Negative reinforcement becomes a source of noise. The takeaway
is that there is no best heuristic, but the flexibility to use them allows us to tackle much larger
problems.
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.3 Action Accountability
In this section, we detail a formalisation of what we mean by “action responsible for failure” in
situations where safety regions exist.

It is a tedious explanation of a subtle concept and we largely believe it to be unnecessary and
cumbersome to the understanding of the paper. We present it, if the reviewers wish, for the sake of
completeness, to review this process.

We will eschew a bit of formalism to motivate the problem at first, before presenting the formal
framework.

As can be seen by the negative reinforcement heuristics from the motion planning case study,
explained in Appendix .2, identifying the action which was responsible for falsifying a property
can be critical.

There is a default way to assign action accountability to BLTL. This particular notion of ac-
countability will not always match the one we desire since it turns out that a good notion of ac-
countability is inherent to problem under study.

To illustrate, recall that the property with which each robot must comply in our motion planning
example is of the form ϕ = S1U

≤30 (Chk ∧
[
S2U

≤30G
])

, where S1 and S2 are safety zones, Chk
is a checkpoint, and G is the final goal. The property expresses that the robot should move within
the S1 safe region until it reaches the checkpoint, then move within the S2 safe region until it
reaches the goal. Given this intuition, it should be clear that an action responsible for falsifying
the property will belong to one of the following categories 1) violates S1, 2) reaches Chk and then
violates S2, or 3) reaches Chk but fails to reach G within the time bounds.

Also notice that a naı̈ve way to check this property (as any Until property) is to get a path, look
at the first state and say “Is the right side of the Until (S2U

≤30G) true in this state? If it is, I am
done and the formula is true. Otherwise, let me check if the left side of the Until (S1) is true in this
state. If it is not, I am done and the formula is false. Otherwise I ask the same question again in
the next state.”

Suppose that the robot is trying to reach Chk, but turns away from it and hits a wall. In this
case, S1 is violated and the last action, the one that made the robot hit the wall, is penalised. This
is correct.

Now suppose that we have a path where the robot has kept within the safe area S1, reached
the checkpoint Chk, took some steps in S2 but failed to remain there. Of course, we wish the
accountable action to be the one that violated S2. However, if we are checking ϕ naı̈veli, we will
move along S1 until we reach the checkpoint. At this point, we will ask “Is the right side of the
Until (S2U

≤30G) true in this state?”. Since it is not, and here lies the rub, instead of holding the
failure in S2 accountable, we will press on saying “Otherwise, let me check if the left side of the
Until (S1) is true in this state”. Since we (correctly) left S1 to be in S2 instead, we will naı̈vely
conclude that moving out of S1 to S2 was responsible for violating the property!

What we actually want is for the accountability to transfer to
[
S2U

≤30G
]

as soon as Chk is
satisfied.

We must then define a framework for specifying where the accountability lies. To this end, we
propose using a sequence of partial functions, called accountability functionsA : N×Π×F 7→ N,
where Π is the set of all finite paths, F is the set of all BLTL formulae. Akπ(ϕ) returns the position
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in π ∈ Π of the state-action pair that accounts for the satisfaction of ϕ ∈ F , in the suffix path π|k.
To find the accountable action, a call to Akπ(ϕ) applies the first function in the sequence whose
domain includes ϕ. We enforce that one rule always has to apply, i.e. the sequence is exhaustive
in F .

To make things clearer, for the naı̈ve semantics, accountability is given by the following rules.
The burden of checking a proposition is when evaluated: Akπ(p) = k. Negation simply passes the
burden to its inner formula: Akπ(¬ϕ) = Akπ(ϕ). The ∧ connective is a little more involved. For
ϕ = ϕ1 ∧ ϕ2,

Akπ(ϕ) =


max{Akπ(ϕ1), A

k
π(ϕ2)} π|k |= ϕ1, π|k |= ϕ2

Akπ(ϕ1) π|k 6|= ϕ1, π|k |= ϕ2

Akπ(ϕ2) π|k |= ϕ1, π|k 6|= ϕ2

min{Akπ(ϕ1), A
k
π(ϕ2)} π|k 6|= ϕ1, π|k 6|= ϕ2

Intuitively, the accountability for ϕ1 ∧ϕ2, if both are true, is given by whichever took longer to
check. When one of ϕ1, ϕ2 is false, the burden is on whichever side failed to be satisfied. Finally,
if both are true, the burden is on the first to fail. Alternatively, it could have been on ϕ1 exclusively,
as it happens, for instance, in programming languages: ϕ2 is never actually checked if ϕ1 is false.
The critical function is the one for ϕ = ϕ1U≤nϕ2.

Akπ(ϕ) =


Akπ(ϕ2) π|k |= ϕ2

Ak+1
π (ϕ1U≤n−1ϕ2) π|k |= ϕ1, π|k 6|= ϕ2, n > 0

k otherwise

So, the above functions, in any order, provide the default accountability semantics in the im-
plementation. For the motion planning case study, we wish to create a special rule to deal with
checkpoints. Therefore, anywhere before the rule for ϕ1U≤nϕ2, we add the following rule for
ϕ = S1U≤n1

(
Chk ∧

(
S2U≤n2G

))
.

Akπ(ϕ) =

• Akπ(S2U≤n2G) when π|k |= S1, π|k |= Chk, n > 0

• Ak+1
π

(
S1U≤n1−1

(
Chk ∧

(
S2U≤n2G

)))
when π|k |= S1, π|k 6|= Chk, n > 0

• k otherwise

By applying this function before the one that deals with arbitrary U’s, we achieve the desired
semantics. The first case finds the checkpoint and assigns accountability entirely to the inner U
as soon as the checkpoint is reached. Furthermore, since rules are recursive, it handles arbitrarily
many checkpoints.
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