
Delta-Complete Reachability Analysis (Part I)

Sicun Gao Soonho Kong Edmund M. Clarke
December 1, 2013
CMU-CS-13-131

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We give a new framework for safety verification of nonlinear hybrid systems, based on delta-
decidability of first-order logic formulas over the real numbers. We use expressive logic formulas
(which can contain nonlinear ODEs with no analytic solutions) to encode bounded model checking
and invariant-based reasoning. Based on the encoding, we solve bounded reachability and invariant
validation problems using delta-complete decision procedures. Such techniques allow us to take
into account of robustness properties of a system under delta-bounded numerical perturbations.
This report describes Part I of the work, focusing on basic definitions and bounded reachability
problems.

This research was sponsored by the National Science Foundation grants no. CNS1330014, no. CNS0926181 and
no. CNS0931985, the GSRC under contract no. 1041377, the Semiconductor Research Corporation under contract
no. 2005TJ1366, and the Office of Naval Research under award no. N000141010188.

Keywords: Hybrid Systems, Reachability, Bounded Model Checking

1 Introduction
Formal verification is difficult for hybrid systems with nonlinear dynamics and complex discrete
control [1, 9]. Few modern techniques from hardware and software verification have seen much
success on hybrid systems, because these techniques are all highly dependent on scalable logic
solvers. To apply them on hybrid systems, we have to solve logic formulas over the real numbers
with (often a large number of) nonlinear functions, which is highly challenging both theoretically
and practically.

In recent work [7, 6], we have shown that logic formulas over the real numbers become much
easier to solve when we shift our focus from the standard decision problem to the δ-decision prob-
lem: Given an arbitrary positive rational number δ, we ask if a logic formula is false or δ-true. The
latter answer can be given if the formula would become true under δ-bounded numerical perturba-
tions on its constant terms. The δ-decision problem is decidable, with reasonable complexity, for
bounded first-order sentences over the reals with arbitrary Type 2 computable functions, such as
polynomials, trigonometric functions, and Lipschitz-continuous ODEs [17].

This series of reports describes how we use δ-decidability over the reals to develop a new
framework for hybrid system verification.

First, δ-decidability results enable the use of an expressive first-order logic signature, which
we denote as LRF , to represent general nonlinear hybrid systems. Here, LRF allows the use of
arbitrary Type 2 computable real functions, which, for instance, include nonlinear ODEs that only
need to be numerically solvable. Almost all existing classes of hybrid systems that have been
studied in the literature can be defined through restrictions on LRF .

Next, bounded model checking and invariant-based reasoning techniques forLRF -representable
hybrid systems are naturally expressed as decision problems for LRF -formulas. The key observa-
tion is that, when we shift to solving the δ-decision problem for these formulas, the verification
results are not weakened. This motivates the definition of δ-strengthened versions of the verifica-
tion techniques. For instance, with δ-strengthened bounded model checking, we always obtain one
of the following answers:

• Safe (bounded): The system does not violate the safety property within a bounded time, and
a bounded unrolling depth (for discrete mode changes).

• δ-Unsafe: Under some δ-perturbation on its LRF -representation, the system would violate
the safety property.

Thus, when the procedure returns “safe”, it is a precise answer and no error is involved. On the
other hand, when we choose a small enough δ, a system that is “δ-unsafe” exhibits robustness
problems. Realistic hybrid systems interact with the physical world and it is impossible to avoid
slight perturbations. Thus, under δ-perturbations and should indeed be regarded as unsafe. Note
that such robustness problems can not be discovered by solving the precise decision problem. In
short, the framework turns numerical errors into stronger verification results.

It follows from δ-decidability that δ-strengthened bounded reachability and invariant validation
are computable for general nonlinear hybrid systems, which stands in sharp contrast to the standard
undecidability of reachability of simple systems. Moreover, after bypassing the difficulties with

1

exact real computations, we gain a better understanding of intrinsic properties of hybrid systems.
For instance:

• There exists a three-layer complexity hierarchy for bounded reachability, which depends on
the use of mode invariants and nondeterministic flows.

• The search for sound and complete rules for exact checking of invariants is a major challenge,
while switching to the δ-strengthened version allows a direct logical encoding.

This report focuses on basic definitions and theoretical results regarding bounded reachability.

2 LRF -Representations of Hybrid Automata

2.1 LRF -Formulas
We will use a logical language over the real numbers, written as LRF , that allows arbitrary com-
putable real functions. Computability of real functions is a notion well-developed in Computable
Analysis [17]. Intuitively, a real function is computable if it can be numerically simulated up to an
arbitrary precision. For the purpose of this paper, it suffices to know that almost all the functions
that are needed in describing hybrid systems are computable: polynomials, exponentiation, log-
arithm, trigonometric functions, and also the solution functions of Lipschitz-continuous ordinary
differential equations. Compositions of computable functions are computable. This, as we will
show, makes LRF very powerful and can express almost any realistic hybrid system.

Formally, LRF = 〈F , >〉 represents the first-order signature over the reals with the set F of
computable real functions, which contains all the functions mentioned above. Note that constants
are included as 0-ary functions. LRF -formulas are evaluated in the standard way over the corre-
sponding structure RF = 〈R,FR, >R〉. It is not hard to see that we can put any LRF -formula in a
normal form, such that its atomic formulas are of the form t(x1, ..., xn) > 0 or t(x1, ..., xn) ≥ 0,
with t(x1, ..., xn) composed of functions in F . This follows from the fact that t(~x) = 0 can be
written as −|t(~x)| ≥ 0, t(~x) < 0 as −t(~x) > 0, and t(~x) ≤ 0 as −t(~x) ≥ 0. Also, negations in
front of atomic formulas can be eliminated by replacing ¬t(~x) > 0 with−t(~x) ≥ 0, and ¬t(~x) ≥ 0
with −t(~x) > 0. To avoid extra preprocessing of formulas, we can explicitly define LF -formulas
as follows.

Definition 2.1 (LRF -Formulas). Let F be a collection of computable real functions. We define:

t := x | f(t(~x)), where f ∈ F (constants are 0-ary functions);
ϕ := t(~x) > 0 | t(~x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.

In this setting ¬ϕ is regarded as an inductively defined operation which replaces atomic formulas
t > 0 with −t ≥ 0, atomic formulas t ≥ 0 with −t > 0, switches ∧ and ∨, and switches ∀ and ∃.
Implication ϕ1 → ϕ2 is defined as ¬ϕ1 ∨ ϕ2.

For anyLRF -formulaϕwith n free variables, we write JϕK = {~a ∈ Rn : ϕ(~a) is true over 〈R,FR, >R

〉}. If ϕ is a sentence (no free variables), we use the standard notation R |= ϕ to denote that ϕ is
true over R.

2

Definition 2.2 (Bounded Quantifiers). The bounded quantifiers ∃[u,v] and ∀[u,v] are defined as

∃[u,v]x.ϕ =df ∃x.(u ≤ x ∧ x ≤ v ∧ ϕ),

∀[u,v]x.ϕ =df ∀x.((u ≤ x ∧ x ≤ v)→ ϕ),

where u and v denote LRF terms, whose variables only contain free variables in ϕ excluding x.

Definition 2.3 (Bounded LRF -Sentences). A bounded LRF -sentence is

Q
[u1,v1]
1 x1 · · ·Q[un,vn]

n xn ψ(x1, ..., xn),

where Q[ui,vi]
i are bounded quantifiers, and ψ(x1, ..., xn) is a quantifier-free LRF -formula.

2.2 δ-Perturbations and δ-Decidability
Definition 2.4 (δ-Variants). Let δ ∈ Q+ ∪ {0}, and ϕ an LRF -formula of the form

ϕ : QI1
1 x1 · · ·QIn

n xn ψ[ti(~x, ~y) > 0; tj(~x, ~y) ≥ 0],

where i ∈ {1, ...k} and j ∈ {k + 1, ...,m}. The δ-weakening ϕδ of ϕ is defined as the result of
replacing each atom ti > 0 by ti > −δ and tj ≥ 0 by tj ≥ −δ. That is,

ϕδ : QI1
1 x1 · · ·QIn

n xn ψ[ti(~x, ~y) > −δ; tj(~x, ~y) ≥ −δ].

It is clear that ϕ→ ϕδ (see [7]).

In [7, 6], we have proved that the following δ-decision problem is decidable. This result serves
as the basis of our framework.

Theorem 2.5 (δ-Decidability). Let δ ∈ Q+ be arbitrary. There is an algorithm which, given any
bounded ϕ, correctly returns one of the following two answers:

• “δ-True”: ϕδ is true.

• “False”: ϕ is false.

Note when the two cases overlap, either answer is correct.

We now turn to the complexity issues. Informally, a real function is (uniformly) P-computable
(PSPACE-computable) over a compact domain, simply if it can be numerically computed within
polynomial-time (polynomial-space). Details can be found in [14, 7]. It suffices to know that many
common real functions are P-computable, which includes the polynomials, exp, log, sin, etc. The
intuition is that they can be effectively approximated, for instance with Taylor expansions. It is also
shown that the solution functions of P-computable Lipschitz-continuous differential equations are
PSPACE-computable [14] (in fact, PSPACE-complete [13]).

To state the complexity of the δ-decision problems, we recall the definition of the relativized
complexity classes and polynomial hierarchy. The polynomial hierarchy, relativized to a set A, is
defined as (ΣP

0)A = (ΠP
0)A = PA, (ΣP

k+1)A = NP(ΣP
k)

A , and (ΠP
k+1)A = coNP(ΣP

k)
A .

Theorem 2.6 (Complexity [7]). Let S be a class of LRF -sentences, such that for any ϕ in S, the
functions in ϕ are in complexity class C. Then, for any δ ∈ Q+, the δ-decision problem for bounded
Σn-sentences in S is in (ΣP

n)C.

3

2.3 Hybrid Automata with LRF -Representations
Hybrid automata extend finite automata with continuous dynamics. We first show that LRF -
formulas can be used as a concise and natural representation of general hybrid systems.

Definition 2.7 (LRF -Representation). A hybrid automaton in LRF -representation is a tuple

H = 〈X,Q, {flowq(~x, ~x0, t) : q ∈ Q}, {invq(~x) : q ∈ Q},
{jumpq→q′(~x, ~x

′) : q, q′ ∈ Q}, {initq(~x) : q ∈ Q}〉,
where X ⊆ Rn for some n ∈ N, and Q = {q1, ..., qm} is a finite set of modes, and the other
components are sets of quantifier-free LRF -formulas.

Almost all hybrid systems studied in the existing literature can be defined by restricting the
signature F . For instance,

Example 2.8 (Linear and Polynomial Hybrid Automata). Let F lin = {+} ∪ Q and Fpoly =
{×} ∪ F lin (Rational numbers are considered as 0-ary functions.) In existing literature, we say H
is a linear hybrid automaton if it has an LRFlin

-representation, and a polynomial hybrid automaton
if it has an LRFpoly

-representation.

Example 2.9 (Nonlinear Bouncing Ball). The bouncing ball is a standard hybrid system model.
The point of the example is to emphasize that nonlinear components can be written directly in the
LRF -representation.

HBB = 〈X,Q, flow, jump, inv, init〉
where

• X = R2 and Q = {qu, qd}.

• flowqu(x0, v0, xt, vt, t):

(xt = x0 +

∫ t

0

v(s)ds) ∧ (vt = v0 +

∫ t

0

g(1− βv(s)2)ds)

flowqd(x0, v0, xt, vt, t):

(xt = x0 +

∫ t

0

v(s)ds) ∧ (vt = v0 +

∫ t

0

g(1 + βv(s)2)ds)

where β is a constant. Note that the integration terms define Type 2 computable functions,
and can be directly used in LRF -formulas.

• jumpqd→qu(x, v, x′, v′):

x = 0 ∧ v′ = v · exp(− cπ

2mωd
) ∧ x′ = x

jumpqu→qd(x, v, x
′, v′):

v = 0 ∧ x′ = x ∧ v′ = v

• initqd : x = 10 ∧ v = 0.

• invqd : x >= 0 ∧ v >= 0 and invqu : x >= 0 ∧ v <= 0.

4

2.4 Hybrid Trajectories
Trajectories of hybrid systems combine continuous flows and discrete jumps. This motivates the
use of a hybrid time domain, with which we can keep track of both the discrete changes and the
duration of each continuous flow.

Definition 2.10 (Hybrid time domain). A hybrid time domain is a subset of N× R of the form

Tm = {(i, t) : i < m and t ∈ [ti, t
′
i] or [ti,+∞)},

where m ∈ N ∪ {+∞}, {ti}mi=0 is an increasing sequence in R+, t0 = 0, and t′i = ti+1.

Definition 2.11 (Hybrid Trajectories). Let X ⊆ Rn be an Euclidean space and Tm a hybrid time
domain. A hybrid trajectory is any continuous function ξ : Tm → X.

To define trajectories of hybrid systems, we use a labeling function σξ,H(i) to map a step i to
the corresponding discrete mode in H . In each mode, the system flows continuously following the
dynamics defined by flow(q, ~x0, t). Note that (t− tk) is the actual duration in the k-th mode. When
a switch between two modes is performed, it is required that ξ(k+1, tk+1) is updated from the exit
value ξ(k, t′k) in the previous mode, following the jump conditions.

Definition 2.12 (Trajectories of a Hybrid Automaton). Let H be a hybrid automaton, Tm a hybrid
domain, and ξ : Tm → X a hybrid trajectory. We say that ξ is a trajectory of H of discrete depth
m, written as ξ ∈ JHK, if there exists a labeling function σξ,H : N→ Q such that:

• For some q ∈ Q, σξ,H(0) = q and RF |= initq(ξ(0, 0)).

• For any (i, t) ∈ Tm, RF |= invσξ,H(i)(ξ(i, t)).

• For any (i, t) ∈ Tm,

– When i = 0, RF |= flowq0(ξ(0, 0), ξ(0, t), t).

– When i = k + 1, where 0 < k + 1 < m, we have

RF |= flowσHξ (k+1)(ξ(k + 1, tk+1), ξ(k + 1, t), (t− tk+1)),

RF |= jumpσξ,H(k)→σξ,H(k+1)(ξ(k, t
′
k), ξ(k + 1, tk+1)).

We can write the time domain Tm of ξ as T (ξ).

Remark 2.13 (jump vs inv). The jump conditions specify when H may switch to another mode.
The invariants (when violated) specify when H must switch to another mode. They will lead to
different logical encodings in reachability analysis.

5

2.5 δ-Perturbations
The key benefit of using LRF -representations for describing hybrid automata is that operations on
the logic formulas can be directly transferred.

Definition 2.14 (δ-Perturbations). Let δ ∈ Q+ ∪ {0}. Suppose H = 〈X,Q, flow, jump, inv, init〉 is
an LRF -representation of hybrid system H . We define the δ-weakening of H as

Hδ = 〈X,Q, flowδ, jumpδ, invδ, initδ〉.

Example 2.15. The δ-weakening of the bouncing ball automaton has its component formulas by
their δ-weakening. For instance, flowδ

qu(x0, v0, xt, vt, t) is

|xt − (x0 +

∫ t

0

v(s)ds)| ≤ δ ∧ |vt − (v0 +

∫ t

0

g(1− βv(s)2)ds))| ≤ δ,

and jumpδqd→qu(x, v, x′, v′) is

|x| ≤ δ ∧ |v′ − v · exp(− cπ

2mωd
)| ≤ δ ∧ |x′ − x| ≤ δ.

It is important to note that the notion of δ-perturbations is a purely syntactic one (defined on the
description of hybrid systems), instead of a semantic one (defined on the trajectories). Note that
the syntactic perturbations naturally lead to a semantic over-approximation of H in the trajectory
space:

Proposition 2.16. For any H and δ ∈ Q+ ∪ {0}, JHK ⊆ JHδK.

Proof. Let ξ ∈ JHK be any trajectory of H . Following Definition 2.4, for any LRF sentence ϕ, we
have ϕ → ϕδ. Since ξ satisfies the conditions in Definition 2.12, after replacing each formula by
their δ-weakening, we have ξ ∈ JHδK.

Proposition 2.17. The δ-weakening of any hybrid automaton is nondeterministic.

2.6 Reachability
The safety/reachability problem for hybrid systems can now be formally stated as follows.

Definition 2.18 (Reachability). Let H be an n-dimensional hybrid automaton, and U a subset of
its state space Q×X . We say U is reachable by H , if there exists ξ ∈ JHK with its time domain T
and labeling function σHξ , such that there exists (i, t) ∈ T satisfying (σHξ (i), ξ(i, t)) ∈ U.

The bounded reachability problem for hybrid systems is defined by restricting the continuous
components and time duration to a bounded domain, and the number of discrete transitions to a
finite number.

6

Definition 2.19 (Bounded Reachability). Let H be an n-dimensional hybrid automaton, whose
continuous state space X is a bounded subset of Rn. Let U be a subset of its state space. Let
k ∈ N and M ∈ R. The (k,M)-bounded reachability problem asks whether there exists ξ ∈ JHK
with its time domain T (ξ) and labeling function σξ, such that there exists (i, t) ∈ T (ξ) with i ≤ k,
t =

∑k
i=0 ti where ti ≤M , and (σξ(i), ξ(i, t)) ∈ U.

Remark 2.20. By “step”, we mean the number of discrete jumps. We say H can reach U in k
steps, if there exists ξ ∈ JHK that contains k discrete jumps, entering and exiting the continuous
flows in k + 1 modes.

In the seminal work of [3, 2], it is shown that the bounded reachability problem for simple
classes of hybrid automata is undecidable. Note that a common restriction in the existing study is
that all constants are rational numbers, which does not need to be the case in our definitions.

3 Bounded Reachability
In this section we study the bounded δ-reachability problem and how to solve it practice. At the
core of our framework is the correspondence between δ-reachability problems of hybrid systems
and δ-decision problems of LRF -formulas.

3.1 Encoding Bounded Reachability in LRF

We first show how to encode bounded reachability using LRF -formulas. The encoding is mostly
standard bounded model checking. However, in hybrid systems the invariant conditions and non-
determinism in the continuous flows play a special role.

We say a hybrid system H is invariant-free if inv = ∅. We say H has nondeterministic flow if
for some q ∈ Q, there exists ~a0,~at,~a′t ∈ Rn and t ∈ R such that ~at 6= ~a′t and R |= flowq(~a0,~at, t)
and R |= flowq(~a0,~a

′
t, t).

Definition 3.1 (Unsafe Region). We use unsafe = {unsafeq : q ∈ Q} to denote theLRF -representation
of a subset of H . For each q ∈ Q, we have (JunsafeqK, q) = U ∩ (X × {q}). We also write
JunsafeK =

⋃
q∈QJunsafeK× {q}.

Now we define the encoding for three cases: hybrid systems that have trivial invariants, non-
trivial invariants with deterministic flow, and nontrivial invariants with nondeterministic flow.

Systems with no invariants. We start with the simplest case for hybrid systems with no invari-
ants. We define the following formula that checks whether an unsafe region is reachable after
exactly k steps of discrete transition in a hybrid system.

7

Definition 3.2 (k-Step Reachability, Invariant-Free Case). Suppose H is invariant-free, and U a
subset of its state space represented by unsafe. The LRF -formula ReachH,U(k,M) is defined as:

∃X~x0,q0∃X~xt0,q0 · · · ∃
X~x0,qm∃X~xt0,qm · · · ∃

X~xk,qm∃X~xtk,qm∃
[0,M]t0 · · · ∃[0,M]tk.∨

q∈Q

(
initq(~x0,q) ∧ flowq(~x0,q, ~x

t
0,q, t0)

)
∧
k−1∧
i=0

(∨
q,q′∈Q

(
jumpq→q′(~x

t
i,q, ~xi+1,q′) ∧ flowq′(~xi+1,q′ , ~x

t
i+1,q′ , ti+1)

))

∧
k∨
i=0

∨
q∈Q

unsafeq(~x
t
k,q).

Intuitively, the trajectories start with some initial state satisfying initq(~x0,q) for some q. In each
step, it follows flowq(~xi,q, ~x

t
i,q, t) and makes a continuous flow from ~xi to ~xti after time t. When H

makes a jump from mode q′ to q, it resets variables following jumpq′→q(~x
t
k,q, ~xk+1,q′).

xt
i

xi

xi+1

xt
i+1

flow(xi, x
t
i)

flow(xi+1, x
t
i+1)

jump(xt
i, xi+1)

Figure 1

Systems with invariants and deterministic flows. When the invariants are not trivial, we need
to ensure that during each continuous flow, the system always stays within the invariants. Such
checking requires universal quantification over time.

Definition 3.3 (k-Step Reachability, Nontrivial Invariant and Deterministic Flow). Suppose H
contains invariants and only deterministic flow , and U a subset of its state space represented by

8

unsafe. The LRF -formula ReachH,U(k,M) is defined as:

∃X~x0,q0∃X~xt0,q0 · · · ∃
X~x0,qm∃X~xt0,qm · · · ∃

X~xk,qm∃X~xtk,qm∃
[0,M]t0 · · · ∃[0,M]tk.∨

q∈Q

(
initq(~x0,q) ∧ flowq(~x0,q, ~x

t
0,q, t0) ∧ ∀[0,t0]t∀X~x (flowq(~x0,q, ~x, t)→ invq(~x))

)
∧
k−1∧
i=0

(∨
q,q′∈Q

(
jumpq→q′(~x

t
i,q, ~xi+1,q′) ∧ flowq′(~xi+1,q′ , ~x

t
i+1,q′ , ti+1)

∧∀[0,ti+1]t∀X~x(flowq′(~xi+1,q′ , ~x, t)→ invq′(~x)))
))

∧
k∨
i=0

∨
q∈Q

unsafeq(~x
t
k,q).

The extra universal quantifier for each continuous flow expresses the requirement that for all
the time points between the initial and ending time point (t ∈ [0, ti + 1]) in a flow, the continuous
variables ~x must take values that satisfy the invariant conditions invq(~x).

Systems with invariants and nondeterministic flows. In the most general case, a hybrid system
can contain nondeterministic flow. When that is the case, for each time point, there is multiple
possible values for the continuous variable. Yet it is not correct to universally quantify over all
such possible values, because only one trajectory is needed. This problem is solved by introducing
an additional level of existential quantification.

Definition 3.4 (k-Step reachability, Nontrivial Invariant, Nondeterministic Flow). SupposeH con-
tains invariants and nondeterministic flow, and U a subset of its state space represented by unsafe.
The LRF -formula ReachH,U(k,M) is defined as:

∃X~x0,q0∃X~xt0,q0 · · · ∃
X~x0,qm∃X~xt0,qm · · · ∃

X~xk,qm∃X~xtk,qm∃
[0,M]t0 · · · ∃[0,M]tk.∨

q∈Q

(
initq(~x0,q) ∧ flowq(~x0,q, ~x

t
0,q, t0)

∧∀[0,t0]t∀[t,t0]t′∃X~x∃X~x′(
invq(~x) ∧ invq(~x

′)flowq(~x, ~x
′, (t′ − t)) ∧ flowq(~x0,q, ~x, t) ∧ flowq(~x

′, ~xt0,q, t
′)
))

∧
k−1∧
i=0

(∨
q,q′∈Q

(
jumpq→q′(~x

t
i,q, ~xi+1,q′) ∧ flowq′(~xi+1,q′ , ~x

t
i+1,q′ , ti+1)

∧∀[0,ti+1]t∀[t,ti+1]t′∃X~x∃X~x′(
invq′(~x) ∧ invq′(~x

′) ∧ flowq′(~x, ~x
′, (t′ − t)) ∧ flowq′(~xi+1,q′ , ~x, t) ∧ flowq′(~x

′, ~xti+1,q′ , t
′)
))

∧
k∨
i=0

∨
q∈Q

unsafeq(~x
t
k,q).

9

y

y0

xi xt
i

Figure 2

Intuitively, at each time point, the innermost existential quantifier asks for an assignment to the
continuous variables ~x such that: first, there is a flow from the initial state in this step to the current
assignment, as encoded by flowq′(~xi+1,q′ , ~x, t); second, from the current assignment there is a flow
to ~xti+1,q′ , the value that the continuous variables are supposed to take after the rest of the flow.

In the next section we will use these encodings to connect between δ-reachability and δ-
decision problems of the corresponding LRF -formulas.

3.2 δ-Complete Bounded Reachability Analysis
Lemma 3.5. Let δ ∈ Q+ ∪ {0} be arbitrary. Suppose H is a hybrid system, U a subset of its state
space represented by unsafe, and ReachH,U(k,M) encodes (k,M)-bounded reachability. Let H ,
U , k, M all be arbitrary.

We always have R |= (ReachH,U(k,M))δ, iff, there exists a trajectory ξ ∈ JHδK such that for
some (k, t) ∈ TM(ξ), (ξ(k, t), σξ(k)) ∈ JunsafeδK.

Proof. We prove by induction on k, for the most general case of systems with nontrivial invariants
and nondeterministic flows. The simpler cases then automatically hold.

(i) Case k = 0. Suppose ReachδH,U(0,M) is true. Then there exists q ∈ Q, ~a0,~at0 ∈ Rn ∩ X
and t0 ∈ R+ ∩ [0,M] such that for all t ∈ [0, t0], there exists ~a(t) ∈ X satisfying:

initδq(~a0)∧flowδ
q(~a0,~a

t
0, t0)∧flowδ

q(~a0,~a(t), t)∧flowδ
q(~a(t),~at, t0−t)∧ invq(~a(t))∧unsafeδq(~at).

Note that there is no discrete jump. Accordingly, set a trajectory ξ to be:

ξ(0, 0) = ~a0, ξ(0, t0) = ~at0,

and for all time point t ∈ [0, t0], ξ(0, t) ∈ ~a(t). Following Definition 2.12 and Definition 2.7,
ξ ∈ JHδK, and ξ(0,~at0) ∈ JunsafeδK.

On the other hand, suppose there is a ξ ∈ JHδK such that ξ(0, t0) is in JunsafeqK for some
t0 ∈ [0,M]. We set ~a0 = ξ(0, 0), ~at0 = ξ(0, t0). Then following the conditions that ξ satisfies in
Definition 2.12, for every t ∈ [0, t0], there is ~a(t) such that flowδ

q(~a0,~a(t), t) and flowδ
q(~a(t),~at, t).

Consequently, ReachδH,U(0,M) is true, witnessed by these assignments.

10

(ii) Case k ≥ 1. Suppose ReachδH,U(k,M) is true. Then there exists

q0, ..., qk ∈ Q,~a0,~at0, ...,~ak,~atk ∈ X, and t0, ..., tk ∈ [0,M]

such that for all tq0 ∈ [0, t0], ..., tqk ∈ [0, tk] there exists ~a(tq0), ...,~a(tqk) ∈ X satisfying:

initδq(~a0) ∧ flowδ
q(~a0,~a

t
0, t0) ∧ flowδ

q(~a0,~a(t), t) ∧ flowδ
q0

(~a(t),~at0, t0 − t) ∧ invδq0(~a(t))

∧jumpδq0→q1(~a
t
0,~a1) ∧ · · · ∧ flowδ

qk−1
(~ak−1,~a

t
k−1, t0) ∧ flowδ

qk−1
(~ak−1,~a(tqk−1

), t)

∧flowδ
qk−1

(~a(tqk−1
),~atk, (tk−1 − t)) ∧ invδqk−1

(~a(tqk−1
))

∧jumpδqk−1→qk(~a
t
k−1,~ak) ∧ flowδ

qk
(~ak,~a

t
k, tk) ∧ flowδ

qk
(~ak,~a(tqk), tk)

∧flowδ
qk

(~a(tqk−1
),~atk, (tqk−1

− t)) ∧ invδqk−1
(~a(tqk)) ∧ unsafeδqk(~a

t
k).

Now, to perform induction, we truncate the last step in the formula and define a new region U ′

represented by:

unsafetailqk−1
(~x) = jumpqk−1→qk(~x,~ak) ∧ flowqk(~ak,~a

t
k, tk) ∧ flowqk(~ak,~a(tqk), tk)

∧flowqk(~a(tqk−1
),~atk, (tqk−1

− t)) ∧ invqk−1
(~a(tqk)) ∧ unsafeqk(~a

t
k).

We then see that the formula ReachδH,U ′(k − 1,M) is true, as simply witnessed by the trace above,
using the new formula unsafetailqk−1

to represent the last transition:

initδq(~a0) ∧ flowδ
q(~a0,~a

t
0, t0) ∧ flowδ

q(~a0,~a(t), t) ∧ flowδ
q0

(~a(t),~at0, t0 − t) ∧ invδq0(~a(t))

∧jumpδq0→q1(~a
t
0,~a1) ∧ · · · ∧ flowδ

qk−1
(~ak−1,~a

t
k−1, t0) ∧ flowδ

qk−1
(~ak−1,~a(tqk−1

), t)

∧flowδ
qk−1

(~a(tqk−1
),~atk, (tk−1 − t)) ∧ invδqk−1

(~a(tqk−1
)) ∧ (unsafetailqk−1

(~atk−1))
δ.

Consequently, by inductive hypothesis, there exists a trajectory ξk−1 ∈ JHδK that reaches the region
U ′. Now, we extend ξk−1 with the assignments in the k-the step, i.e.:

ξ = ξk−1 ∪ {(k,~a(tqk)) : t ∈ [0, tk]}

where ~a(0) = ~ak,~a(tk) = ~atk. We now obtain ξ ∈ JHδK such that ξ reaches the region represented
by unsafeδ.

On the other hand, suppose there is a trajectory ξ ∈ JHδK such that ξ reaches the region
represented by unsafeδ. Again, following an argument similar to the above, and Definition 2.12 we
can find the sequence of assignments that witnesses the formula ReachδH,U(k,M) to be true.

Now we can easily show that the bounded δ-reachability problems is decidable for any LRF -
representable hybrid system.

Theorem 3.6 (Decidability). Let δ ∈ Q+ be arbitrary. There exists an algorithm such that, for any
hybrid system LRF -represented by H and an unsafe region U LRF -represented by unsafe, solves
the (k,M)-bounded δ-reachability problem for H for any given bounds k ∈ N,M ∈ R+.

11

Proof. We need to show that there is an algorithm that correctly returns one of the following
answers:

• safe: H does not reach the region represented by unsafe within the (k,M)-bound;

• δ-unsafe: Hδ reaches the region represented by unsafeδ within the (k,M)-bound.

For this, we only need to solve the δ-decision problem for the formula ReachkH,U(i,M), from which
we obtain an answer of either ϕ is false, or ϕ is δ-true (Theorem 2.5).
• Suppose ϕ is false. Then we know that for any i ≤ k, ReachH,U(i,M) is false. Using

Lemma 3.5 for the special case δ = 0, we know that there does not exist a trajectory ξ ∈ JHK that
can reach U within i steps, and consequently the system is safe within the (k,M)-bound.
• Suppose ϕ is δ-true, we know that there exists i ≤ k such that ReachδH,U(i,M) is true. Using

Lemma 3.5 for δ ∈ Q+, we know that there exists a trajectory ξ ∈ JHδK that can reach the region
represented by unsafeδ in i-steps, i.e., within the (k,M)-bound.

From the structures of the LRF -formulas encoding δ-reachability, we can obtain the following
complexity results of the reachability problems.

Theorem 3.7 (Complexity). Suppose all the functions in the description of H is in complexity
class C. Then deciding the (k,M)-bounded δ-reachability problem is in

• NPC for an invariant-free H;

• (ΣP
2)C for H with nontrivial invariants and deterministic flows;

• (ΣP
3)C for H with nontrivial invariants and nondeterministic flows.

Proof. It is clear that the logic structures of the ReachH,U(k,M) formulas in the three cases are Σ1,
Σ2, and Σ3 respectively. Consequently, using complexity results for Theorem 2.6, the complexity
of the δ-decision problems resides in NPC, (ΣP

2)C, and (ΣP
3)C respectively.

The missing step here is that the ReachH,U(k,M) formulas are of exponential length, because
of the enumeration of all possible paths through the discrete modes requires an exponential number
(mk+1, where m is the number of discrete modes in H) of copies of the continuous variables. Thus
the ReachH,U(k,M) encodings do not provide a polynomial-reduction to the δ-decision problems.

Observe that, however, we can nondeterministically select single paths through the modes. This
is just what we did in the proof of Lemma 3.5. Here we show how to do this for the Σ3 case of
nontrivial invariants and nondeterministic flows and the other cases are subsumed. Nondetermin-
istically, we can choose a sequence of modes q0, ..., qk ∈ Q and solve the δ-decision problem for
the formula:

∃X~x0∃X~xt0 · · · ∃X~xq∃X~xtq∃[0,M]t0 · · · ∃[0,M]tk∀[0,t0]tq0 · · · ∀[0,M]tqk∃Xxq0 · · · ∃~xqk(
init(~x0) ∧ flowq0(~x0, ~x

t
0, t0) ∧ flowq0(~x0, ~xq0 , tq0) ∧ flowq0(~xq0 , ~x

t
0, (t0 − tq0))

∧invq0(~xq0) ∧ jumpq0→q1(~x
′
0, ~x1) ∧ · · · ∧ flowqk(~xk, ~xqk , tqk) ∧ flowqk(~xqk , ~x

t
k, (tk − tqk))

∧invqk(~xqk) ∧ unsafeqk(~x
t
k)
)

12

Now, this formula is polynomial in H , unsafe, k, M . Thus, we can use the nondeterministic
machine to randomly first select such a formula in polynomial time, and δ-decide its truth value,
which is in (ΣP

3)C. Thus, the complexity of the δ-reachability problem is still in (ΣP
3)C for this

case.

Corollary 3.8. For linear and polynomial hybrid automata, the bounded δ-reachability problem
ranges from being NP-complete to ΣP

3 -complete for the three cases. For hybrid automata that can
be LRF -represented with whose F contains the set of ODEs defined P-computable right-hand side
functions, the problem is PSPACE-complete.

Proof. The results come from the fact that the complexity of polynomials is in P, and the set of
ODEs in questions are PSPACE-complete.

References
[1] R. Alur. Formal verification of hybrid systems. In EMSOFT, pages 273–278, 2011.

[2] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An algorith-
mic approach to the specification and verification of hybrid systems. In R. L. Grossman,
A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of Lecture
Notes in Computer Science, pages 209–229. Springer, 1992.

[3] R. Alur and D. L. Dill. The theory of timed automata. In J. W. de Bakker, C. Huizing,
W. P. de Roever, and G. Rozenberg, editors, REX Workshop, volume 600 of Lecture Notes in
Computer Science, pages 45–73. Springer, 1991.

[4] M. Fränzle. Analysis of hybrid systems: An ounce of realism can save an infinity of states. In
J. Flum and M. Rodrı́guez-Artalejo, editors, CSL, volume 1683 of Lecture Notes in Computer
Science, pages 126–140. Springer, 1999.

[5] M. Fränzle, T. Teige, and A. Eggers. Engineering constraint solvers for automatic analysis of
probabilistic hybrid automata. J. Log. Algebr. Program., 79(7):436–466, 2010.

[6] S. Gao, J. Avigad, and E. M. Clarke. Delta-complete decision procedures for satisfiability
over the reals. In B. Gramlich, D. Miller, and U. Sattler, editors, IJCAR, volume 7364 of
Lecture Notes in Computer Science, pages 286–300. Springer, 2012.

[7] S. Gao, J. Avigad, and E. M. Clarke. Delta-decidability over the reals. In LICS, pages 305–
314, 2012.

[8] S. Gulwani and A. Tiwari. Constraint-based approach for analysis of hybrid systems. In
A. Gupta and S. Malik, editors, CAV, volume 5123 of Lecture Notes in Computer Science,
pages 190–203. Springer, 2008.

[9] T. A. Henzinger. The theory of hybrid automata. In LICS, pages 278–292, 1996.

13

[10] T. A. Henzinger and J.-F. Raskin. Robust undecidability of timed and hybrid systems. In
HSCC, pages 145–159, 2000.

[11] C. Herde, A. Eggers, M. Fränzle, and T. Teige. Analysis of hybrid systems using hysat. In
ICONS, pages 196–201, 2008.

[12] Z. Huang and S. Mitra. Computing bounded reach sets from sampled simulation traces. In
HSCC, pages 291–294, 2012.

[13] A. Kawamura. Lipschitz continuous ordinary differential equations are polynomial-space
complete. In IEEE Conference on Computational Complexity, pages 149–160. IEEE Com-
puter Society, 2009.

[14] K.-I. Ko. Complexity Theory of Real Functions. BirkHauser, 1991.

[15] P. Prabhakar, V. Vladimerou, M. Viswanathan, and G. E. Dullerud. Verifying tolerant systems
using polynomial approximations. In RTSS, pages 181–190, 2009.

[16] S. Ratschan. Safety verification of non-linear hybrid systems is quasi-semidecidable. In
TAMC, pages 397–408, 2010.

[17] K. Weihrauch. Computable Analysis: An Introduction. 2000.

14

	1 Introduction
	2 LRF-Representations of Hybrid Automata
	2.1 LRF-Formulas
	2.2 -Perturbations and -Decidability
	2.3 Hybrid Automata with LRF-Representations
	2.4 Hybrid Trajectories
	2.5 -Perturbations
	2.6 Reachability

	3 Bounded Reachability
	3.1 Encoding Bounded Reachability in LRF
	3.2 -Complete Bounded Reachability Analysis

