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Abstract

Revenue maximization in combinatorial auctions (and other multidimensional selling settings) is
one of the most important and most elusive problems in mechanism design. The design problem
is NP-complete, and the optimal designs include features that are not acceptable in many appli-
cations, such as favoring some bidders over others and randomization. In this paper, we instead
study a common revenue-enhancement approach - bundling - in the context of the most commonly
studied combinatorial auction mechanism, the Vickrey-Clarke-Groves (VCG) mechanism. A sec-
ond challenge in mechanism design for combinatorial auctions is that the prior distribution on
each bidder’s valuation can be doubly exponential. Such priors do not exist in most applications.
Rather, in many applications (such as premium display advertising markets), there is essentially
a point prior, which may not be accurate. We adopt the point prior model, and prove robustness
to inaccuracy in the prior. Then, we present a branch-and-bound framework for finding the opti-
mal bundling. We introduce several techniques for branching, upper bounding, lower bounding,
and lazy bounding. Experiments on CATS distributions validate the approach and show that our
techniques dramatically improve scalability over a leading general-purpose MIP solver.





1 Introduction
Revenue maximization in combinatorial auctions (and other multidimensional selling settings) is
one of the most important and most elusive problems in mechanism design. The optimal auction
for a single item is known [41] and has been generalized to multiple units of one item [38], but the
problem remains open even with just two items. The fact that the general optimal combinatorial
auction mechanism is unknown is not a coincidence: even a special case of that design problem
is NP-complete, even in the private values setting [18]. This suggests that, unlike for single-item
settings, a concise characterization of optimal combinatorial auctions cannot exist (unless P=NP).
This is one of the key motivations for automated mechanism design where an algorithm is used to
design the mechanism for the setting (prior probability distribution) at hand (e.g., [16, 17, 18, 50,
35, 36, 13]).

Even with automated design, and putting aside the computational complexity of the design
problem, it is not clear that optimal combinatorial auctions are viable in practice, for the following
reasons.

1. The revenue-optimal mechanism includes features that are not acceptable in many applica-
tions, such as favoring some bidders over others, and randomization.

2. The optimal mechanism is difficult to understand. This, itself, can be a deterrent to its
adoption.

3. Even in the private values setting, the prior distribution on each bidder’s valuation can have
support the size of which is doubly exponential. Specifically, if there are m items and a
bidder can have any of k values for each bundle, the support of the prior has k2m−1 points
because that is the size of the bidder’s type space. Such prior distributions have not been
(and cannot be) constructed in most applications.

In this paper, we study a practical automated mechanism design setting where we avert these
problems.

We avert the first two problems by only considering one common, practical way of increasing
revenue, bundling. Our mechanisms will be fair in the sense that they are symmetric across bid-
ders, and deterministic, unlike the optimal auction. Specifically, we will develop algorithms for
optimal bundling in the context of the most commonly studied combinatorial auction mechanism,
the Vickrey-Clarke-Groves mechanism (VCG) [58, 15, 24].1 In the VCG—even with bundling—
each bidder’s dominant strategy is to bid truthfully.

We avert the third problem by not assuming that we have access to such a prior. In many (ar-
guably most) applications there is essentially just a point prior, and it may not be accurate. In other
words, the seller has expectations about how much bidders would be willing to pay for various
bundles, but the seller does not have a sophisticated probabilistic model about any bidder’s valua-
tions (which are not independent across bundles). This is the case, for example, in TV advertising
sales and in premium, guaranteed display advertising sales. (In both of those markets, the sales

1While the VCG itself has taken some time to get adopted in applications, it is has been successfully adopted, for
example, by Facebook for its advertising auctions.
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occur manually, and the inventory is implicitly bundled in ad hoc ways today, with typically 2-4
targeting attributes.2) Therefore, we adopt the point prior model. However, we also acknowledge
the fact that in practice the point prior might not be accurate; we prove robustness of our approach
to inaccuracy in the prior. One might also ask why we do not simply make take-it-or-leave-it offers
to take the entire surplus for the seller given that we have a point prior. The reason we do not
use that mechanism is that it is highly nonrobust to error in the prior: even slight overpricing on a
bundle will cause the revenue from that bundle to drop to zero.

We develop a custom branch-and-bound framework for finding the optimal bundling. We show
that algorithms in that framework scale significantly better than a leading general-purpose integer
program solver, CPLEX. We design and compare several techniques for upper bounding, lower
bounding, branching, and lazy child node evaluation. Experiments on the leading combinatorial
auction test suite, CATS [34], validate the approach.

Our approach to bundling is computational. The goal is not to build insight from manual
analysis that can then loosely be applied to practice—although the computational approach can
help develop insight as well and fuel future theory. Rather, the goal is to develop a computational
methodology that can be used in practice. It is therefore key that we make the computational
techniques as scalable as possible.

1.1 Prior research on bundling
Most prior work on bundling has been analytical rather than computational, and has therefore
mainly studied simpler bundling settings than ours.

1.1.1 Bundle pricing (in posted prices)

Most prior work on bundling has been in the context of posted prices, that is, take-it-or-leave-it
offers, as in, for example, catalog pricing.

The first mention of being able to increase revenue via bundling is attributed to economist
George J. Stigler in his 1963 discussion of anti-trust Supreme Court rulings (the issue was whether
a movie studio should be allowed to bundle Gone with the Wind with another movie) [55]. Bundle
pricing in economics has often focused on analyzing two-item settings to provide insight into
the way monopolies can improve profits by offering goods in bundles [1, 19, 25, 39, 54]. (One
exception is that Armstrong [2] examinesm-item settings, but places severe restrictions on buyers’
utility functions. Another exception is that Manelli and Vincent [37] provide results for when
bundled catalog sales are optimal, mainly in the two- and three-item settings.) This work provides
sufficient conditions on when bundling is profitable and optimal pricing strategies under various
assumptions.

There has been some computational work on bundle pricing. For example, Hanson and Martin
[27] present a mixed integer program for optimizing bundle prices for a handful of market seg-

2This is in stark contrast to display ad exchanges where campaigns with guarantees cannot be bought. Rather, each
impression is sold on the fly as users visit web sites. The sale is typically conducted using a second-price auction. The
bidders are allowed to use larger numbers of targeting attributes to determine their bids [20, 40]. Premium display
advertising content is typically sold in the manual market and the exchanges get mainly remnant inventory.
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ments. They assume that each of the segments can be described by a single value for each bundle,
and that the value of every bundle for every market segment is known in advance. They also do not
describe how their bundle pricing strategy compares to using item prices. Rusmevichientong et al.
[46] investigate the problem of pricing different car configurations based on customer survey data
collected by GM’s Auto Choice Advisor web site. An extensive revenue management literature
also exists, but it tends to focus on pricing individual items in the face of stochastic demand and
limited supply, even when there are multiple distinguishable items for sale [56, 22]. Two notable
exceptions consider the problem of selling two products under different bundling policies [12, 57].
There has also been work on deriving valuation models from data, and on using those models to
price items and bundles. For example, Jedidi et al. [30] fit a customer valuation model for two
items; the need for non-trivial amounts of survey data prevent that method from being fully auto-
mated and scalable. Benisch and Sandholm [9] present a framework for automatically suggesting
high-profit bundle discounts based on historical customer purchase (shopping cart) data. They de-
velop techniques for fitting a probabilistic valuation model to the data, and search algorithms that
identify profit-maximizing prices and bundle discounts given the model. Computational experi-
ments demonstrate conditions under which offering discounts on bundles can benefit the seller,
the buyer, and the economy as a whole. In contrast to products typically suggested by recom-
mender systems, the most profitable products to offer bundle discounts on appear to be those that
are occasionally purchased together and often separately.

There has also been work on pricing bundles of information goods specifically, where it is
usually assumed that customers care only about how many goods are bundled together (i.e., their
valuation for a bundle depends only on its size, not its contents) and there are no marginal costs.
For example, Kephart et al. [33] and Brooks and Durfee [11] describe online approaches to pricing
in this domain. Additionally, Bakos and Brynjolfsson [6] provide an analytical treatment of this
problem with some valuable insights about when bundling is profitable. Hitt and Chen [28] and
Wu et al. [60] consider a bundle pricing mechanism for information goods that allows customers
to choose up to m′ items from a larger pool of m items.

Related pricing work in theory of computer science has focused primarily on pricing items
rather than bundles, and for single-minded customers that desire only one bundle. For example,
Balcan and Blum [7] and Balcan et al. [8] provide online and approximate algorithms for this
setting, and Guruswami et al. [26] show that finding the optimal pricing is APX-hard.

Walsh et al. [59] study inventory bundling in premium display advertisement campaign selling,
with the goal of making the winner determination problem smaller and easier. That goal is different
than revenue maximization.

1.1.2 Bundling in auctions

There has been some work on bundling in auctions. Palfrey [43] shows that bundling all items
is better than selling them separately if there are only two bidders. Chakraborty [14] shows that
under certain assumptions there is a critical number of bidders above which separate sales yield
higher revenue than pure bundling, and vice versa. Armstrong [3] shows that in a two-item auction
with two possible valuations per bidder, the revenue-maximizing auction is efficient. Avery and
Hendershott [5] show that even in a two-item setting, this is not the case in general, and that unlike
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in posted pricing where optimal bundling decisions are deterministic [39], in auctions, randomized
bundling can increase revenue. (A buyer may then receive a discount on a lower-valued product
without receiving a higher-valued product.) Automated mechanism design also produced random-
ized mechanisms for revenue-maximizing combinatorial auctions [17]. Since our paper focuses on
the VCG mechanism, our bundling is deterministic.

There has also been work on generalizing the VCG to higher-revenue dominant-strategy auc-
tion mechanisms (which do bundling as a side effect of running the mechanism). Likhodedov and
Sandholm [35, 36] study a generalization of VCG called virtual valuations combinatorial auctions
(VVCAs) and a generalization of them, affine maximizer combinatorial auctions, which are auc-
tions where the VCG is run on affine transformations of the bidders’ bids. That work includes
analysis and automated auction design algorithms. Those mechanism design algorithms scaled to
a handful of items. For the restricted setting of additive valuations, Jehiel et al. [31] analyze a
subclass of VVCAs called λ-auctions, which are nevertheless rich enough to allow the bundling to
depend on the bids. Our approach of bundling first and then simply running VCG is easier to for
buyers and sellers to understand. Also, none of the prior papers present any bundling algorithms.

Ghosh et al. [23] study bundling in sponsored search auctions with contexts. They prove hard-
ness results and design approximation algorithms.

To our knowledge, there has been no prior work in the setting of our paper.

2 Notation and problem formulation
We assume that we have a set of bidders N = {1, . . . , n}, a set of items M = {1, . . . ,m}, and a
set of bids B. (The bids represent the point prior.) Bi is the set of all bids for bidder i, and B−i the
set of all bids that do not belong to i. A bid is a tuple 〈Sj, vj〉, where Sj ⊆ M is the set of items
that the bid wants and vj ≥ 0 is a valuation.

We denote an allocation of items to bidders by α, and αi is the set of items allocated to bidder
i in the allocation. We overload vi(α) to be bidder i’s valuation for αi.

We work in the standard combinatorial auction setting with the XOR bidding language [49]
so each bidder can have at most one of her bids win. Every item can be assigned to at most one
bidder. There are no externalities: the valuation for each bidder i depends only on the items that i
receives. There is free disposal: the value of a subset of items M ′ ⊆M for bidder i is less than (or
equal to) the value of M .

A bundle b ⊆ M is a set of items from M . A bundling φ is a set of bundles that partitions M .
We denote the set of all possible bundlings by Φ.

We now define two different notions of overlap in bids, which we will use throughout the paper.

Definition 1 (intersect). Two bids i, j intersect if their item sets overlap: Si ∩ Sj 6= ∅.

Bundling can, in effect, introduce additional overlap between bids, and for this reason we need
a more general notion of overlap:

Definition 2 (bundling-intersect). Two bids i, j bundling-intersect in a given bundling φ if they
intersect or there exists at least one item in each of the two bids so that those two items have
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been included in the same bundle. Formally, two bids i, j bundling-intersect in bundling φ if they
intersect or ∃ai ∈ Si, aj ∈ Sj, b ∈ φ such that ai ∈ b, aj ∈ b. We denote the set of bundling-
intersecting items of the two sets by Si u Sj .

We will be running the VCG to auction the bundles simultaneously. In the vanilla VCG with-
out bundling, the allocation of items to bidders is computed so that it maximizes social welfare
(henceforth referred to simply as welfare): α∗ = maxα

∑n
i=1 vi(α). The payment from each bid-

der i is pi = W ∗,−i
M,B −W

∗,−i
M−i,B

, where W ∗,−i
M,B is the optimal welfare where i receives no items, and

W ∗,−i
M−i,B

=
∑

j 6=i vj(α
∗) is the welfare of the other agents in α∗. We denote by WB(α) the welfare

of an allocation α for bids B.
In our setting, we have to take the bundling into account in the VCG. For a given bundling

φ ∈ Φ, the VCG allocation α∗ is computed as before, but with the added constraint that no two
items that are in the same bundle can be allocated to different bidders (i.e., for any two winning bids
i and j, SiuSj = ∅). We denote the welfare of such an allocation byW ∗

φ,B = maxα∈Aφ
∑

i∈N vi(α),
and the welfare of the welfare-maximizing allocation over the bundling, where bidder i is excluded,
as W ∗,−i

φ,B = maxα∈Aφ
∑

j 6=i vj(α). Similarly, running VCG on bundling φ yields payments pi =

W ∗,−i
φ,B −W

∗,−i
φ−i,B

from each bidder i. Here, φ−i is the set of bundles from φ that are not allocated to
bidder i. The goal in optimal bundling is to find a bundling φ∗ such that the revenue rφ∗ =

∑n
i=1 pi

is maximized.

3 Basic properties of the approach
In this section we study some important basic properties of the proposed approach.

3.1 Number of bundlings
The number of bundlings grows extremely rapidly as the number of items grows. The number of
ways to bundle (that is, exhaustively partition) m items is called the Bell number, BELLm, of m.
The Bell numbers can be defined recursively: BELLm =

∑m−1
k=0

(
m−1
k

)
BELLk. Sandholm et al. [52]

proved that BELLm ∈ ω(m
m
2 ). Berend and Tassa [10] proved that BELLm < ( 0.792m

ln(m+1)
)m.

3.2 NP-hardness
We first prove that this bundling problem (i.e., revenue-maximizing bundling in the VCG setting
with a point prior) is NP-hard. This is the case even if one could compute the revenue of a given
bundling in polynomial time.

Theorem 3.1. Finding the optimal bundling is NP-hard, regardless of the hardness of computing
the revenue of a given bundling.

Proof. The proof is by reduction from bin packing. The bin packing problem is the following:
Given a set of n objects of sizes x1, ..., xn, and positive integers k and V , is it possible to fit the n
objects into k bins of size V ?
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For each bin i = 1, ..., k, we generate n + 1 items: abini and Gi = {gi1, ..., gin}, and two
bidders with bids bbini , bbini′ respectively, where Sbini = {abini } ∪ Gi, S

bin
i′ = {abini }, and valuations

vbini = V + M, vbini′ = M , for some M > V,M >
∑n

j=1 xj . For each of the objects j = 1, ..., n,
we generate an item aobjj and a bidder with bid bobjj with Sobjj = {aobjj }, and valuation vobjj = xj .
Note that the only pairs of bids that overlap before bundling are bbini , bbini′ .

We claim that there is a solution to the bin packing problem iff there is some bundling with
revenue r = kM +

∑n
j=1 xj for the above bundling problem. Now, assume that we have some

solution with revenue r ≥ kM +
∑n

j=1 xj . Clearly, it cannot be the case that any two items such
that Sbini ∩ Sbinj 6= ∅ for some bids bbini , bbinj are bundled together, as this would cause revenue
r ≤ (k − 1)M +

∑n
j=1 xj < kM , since only k − 1 bids with valuation above or equal to M can

now win, and the remaining bids can have aggregate valuation at most
∑n

j=1 xj < M . Hence, we
are guaranteed kM revenue from the bids {bbini , bbini′ : i = 1, ..., k}, and we know that they will
not be bundled together. Now, each of the bids bobjj must be contributing xj to revenue (either by
paying that amount or causing one other bidder to pay that much more), since they are the only
bids left that can be made bundling-intersecting with any other bid through bundling, and they have
no competition if unbundled. We also know that any two bids bobji , bobjj cannot be made bundling-
intersecting. If they were, the revenue obtained from the two would be at most max(vobji , vobjj )
(since they can be made bundling-intersecting with at most one winning bid, and alternatively if
one of the two bids wins, its payment cannot exceed its valuation). It follows that the bids bobjj
must bundling-intersect with the bids bbini , which are already contributing kM revenue. Let Bobj

i

be the set of bids bobjj that bundling-intersect with bbini . We must have M +
∑

j∈Bobji
xj ≤M + V ,

since otherwise r < kM +
∑n

j=1 xj , as some xj is then not contributing its full valuation. Now,
we can take the solution and turn it into a solution to the bin packing problem. Since we know that
all bobjj bundling-intersect with one bbini each, we take each such j and assign that object to bin i.
Since

∑
j∈Bobji

xj ≤ V for all i, we know that this is a valid packing.
Conversely, if there is a solution to the bin packing problem, there is a bundling such that all

bids bobjj bundling-intersect with one bbini each, andM+
∑

j∈Bobji
vobjj = M+

∑
j∈Bobji

xj ≤ V +M

for all i. Hence we can get revenue at least kM +
∑n

j=1 xj .

3.3 Revenue is nonmonotonic in bidders
It is known that the VCG is not revenue monotonic in bidders [4], that is, adding bidders can
decrease revenue. In fact, no dominant-strategy mechanism that satisfies participation, consumer
sovereignty, and weak maximality is revenue monotonic [44]. In our setting, even with an accurate
point prior, our approach does not satisfy weakly maximality, so that result does not apply. Never-
theless, we can show revenue nonmonotonicity in our setting. Consider the valuations in Figure 1
Left. The optimal bundling is to sell the items separately, in which case bidders 3 and 4 receive
items Y and X respectively, with payments 3 and 5, yielding total revenue of 8. If we remove
bidder 4, the optimal bundling is still to sell the items separately, where bidder 1 wins both items,
with a payment of 9, which is also the revenue. Thus removing bidder 4 can increase revenue.
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X Y XY
Bidder 1 0 0 10
Bidder 2 4 0 4
Bidder 3 0 5 5
Bidder 4 7 0 7

X Y XY
Bidder 1 10 0 10
Bidder 2 5 0 5
Bidder 3 0 2 2
Bidder 4 0 1 1
Bidder 5 0 20 20

Figure 1: Left: Bidder valuations for a game with 4 bidders and 2 items. Right: Bidder valuations
for a game with 5 bidders and 2 items. In both tables, the XY column denotes bidder valuations
for the bundle.

3.4 Coarseness of the optimal bundling is nonmonotonic in bidders
Perhaps surprisingly, the optimal bundling can become coarser with the addition of a bidder. An
example is given in Figure 1 Right. The optimal bundling without bidder 5 is to sell X and Y
separately, whereas with 5 it is optimal to bundle X and Y together.

3.5 Low worst-case revenue
It is well known that the VCG can be arbitrarily far from optimal in terms of revenue. Consider
two bidders, and items X and Y, where bidder 1 bids va for X and bidder 2 bids vb for Y, and there
are no other bids. In this case the VCG payments by each bidder equal 0. For settings such as this,
optimal bundling can have arbitrarily high revenue lift over VCG since we can bundle X and Y,
and thereby earn min(va, vb) for example using the Vickrey auction on the bundle.

Even with optimal bundling in the VCG, we can have arbitrarily high loss compared to what
is possible. This is because the seller would give away |v1 − v2| of the surplus (and this part can
be arbitrarily large) while with reserve prices of v1, v2 on the items, respectively, would allow the
seller to capture the entire surplus.

3.6 Robustness of the proposed approach
Using optimal reserve prices to extract surplus is not robust against error in the point prior. For
example, if the presumed winners actually have valuations even slightly lower than in the prior,
they will reject all the take-it-or-leave-it offers and pay nothing.

In contrast, bundling for the VCG is robust to error in the (point) prior:

Theorem 3.2. The revenue from the VCG with an optimal bundling (which may change based on
bidder valuations) is Lipschitz continuous in the valuations of the bidders with Lipschitz constant
n− 1. This bound is tight.

To prove this, we first prove the following lemma.

Lemma 3.3. The revenue from the VCG with any fixed bundling is Lipschitz continuous in the
valuations of the bidders with Lipschitz constant n− 1.

7



Proof. The revenue obtained from VCG on a bundling φ can be written as

rφ = −(n− 1) ·W ∗
φ,B +

n∑
i=1

W ∗,−i
φ,B (1)

where W ∗
φ,B is the welfare of the welfare-maximizing allocation for the bids B, and W ∗,−i

φ,B denotes
the same when bidder i’s bids are excluded.

Thus, it suffices to show that all the terms in Equation 1 are Lipschitz continuous in bidder
valuations.

Assume that some bidder i changes his valuation for some bid j, and let B′ be the new set of
bids, where v′j is the new valuation for bid j. We now show that the change in welfare ∆W =
|W ∗

φ,B −W ∗
φ,B′| is bounded by ∆vj = |vj − v′i|. For any allocation α such that j is winning, we

get that the change in welfare is ∆vj , whereas for any allocation α′ such that j is not winning, the
welfare remains the same. Hence, the previously winning allocation α can increase or decrease
by at most ∆vj . Since WB(α) ≥ WB(α′) for all α′, the new winning allocation α∗ satisfies
WB′(α

∗) ≤ WB(α) + ∆vj . For the lower bound, we have WB′(α) ≥ WB(α)−∆vj , and hence α∗

must satisfy WB′(α
∗) ≥ WB(α)−∆vj .

Since all terms are welfare maximizations over different sets of bidders, this proves that rφ is
Lipshitz continuous in bidder valuations, with a Lipschitz constant of n − 1 (because the n − 1
term and n terms in the summation change in opposite directions, and the summation over n terms
only has n− 1 terms that can change, as W ∗,−i

φ,B does not depend on vj).

With this lemma, we are now ready to prove Theorem 3.2.

Proof. There are two possible cases. In the first case, the optimal bundling does not change, and
in the second case it changes. The proof of the first case is immediate from Lemma 3.3. For the
second case, let φ1 and φ2 be the old and new optimal bundlings, respectively. By Lemma 3.3 we
can bound the revenue of a bundling under the new valuation using the old valuation:

rB(φ)− (n− 1) ·∆vi ≤ rB′(φ) ≤ rB(φ) + (n− 1) ·∆vi
By optimality,

rB′(φ2) ≥ rB′(φ1) ≥ rB(φ1)− (n− 1) ·∆vi
From the fact that φ1 is optimal for the original bids (B) we know that rB(φ2) ≤ rB(φ1) and

hence
rB(φ2) + (n− 1) ·∆vi ≤ rB(φ1) + (n− 1) ·∆vi

By Lemma 3.3, the left hand side of this inequality is an upper bound for rB′(φ2). Thus we get

rB(φ1)− (n− 1) ·∆vi ≤ rB′(φ2) ≤ rB(φ1) + (n− 1) ·∆Bi

So, the new optimal revenue is bounded both above and below as shown above, and is (by the
formulas above) Lipschitz continuous with Lipschitz constant n− 1.

Finally, we show that the bound is tight. Consider the case with 2 items X,Y and 3 bidders
{b1, b2, b3}, where b1 has valuation 1 for X, b2 has valuation 1 for Y and b3 has valuation 1

2
for X

and for Y. The optimal bundling yields revenue 1, but if b3 increases his valuation for both items
to 1, the revenue increases to 2, and the increase in revenue is 1 = 1

2
· (n− 1).
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4 Mixed integer program (MIP) formulation
One approach to finding the revenue-maximizing bundling is to formulate the problem as a mixed
integer program (MIP), and then use a general-purpose MIP solver—such as CPLEX—to solve
the formulation. (For a thorough textbook exposition of integer programming, see Nemhauser and
Wolsey [42].) In this section we give such a formulation. Later in the paper we present custom tree
search algorithms that scale significantly better than CPLEX, while still guaranteeing optimality.

Figure 2 shows our MIP formulation. The basic idea behind this MIP is that we have m
potential bundles, and the boolean variables δa,b denote whether item a is assigned to bundle b.
Based on these assignments, the VCG payments are computed.

To break symmetries, we only allow each item a = 1, ...,m to be assigned to bundles {1, ..., a}.
Furthermore, items with index a > b can only be assigned to the bundle with index b if the item
with index b is also assigned to the bundle.

Each bid j has boolean variables Ij and I−ij that denote whether the bid wins in the optimal al-
location and optimal allocation excluding bidder i, respectively. Each bidder has boolean variables
Πj(b) and Π−ij (b) that denote whether the bidder is allocated bundle b in the respective allocations,
and boolean variables πj(a, b), π−ij (a, b) that denote whether the bidder is allocated item a through
bundle b in the respective allocations. Finally, each real-valued variable pi denotes the payment
that bidder i must make.

The objective function, (2), is the sum over the payment variables of the bidders. Constraint 3
sets the payment for bidder i equal to the externality she imposes on the other bidders, i.e., her
VCG payment. Constraints 4-5 ensure that a bid j can only be winning if that bidder is assigned
all the items in Sj for each allocation. Constraints 6-7 ensure that each bundle is assigned to
only one bidder in each allocation. Constraints 8-11 ensure that a bidder can only receive item a
through bundle b in each allocation if the bidder wins the bundle, and δa,b = 1, i.e., the item is
in the bundle. Constraints 12-13 ensure that each bidder wins only one item in each allocation.
Constraints 14-15 ensure that each item is assigned to only one bundle and they break symmetries.
Finally, Constraint 16 ensures that the welfare-maximizing allocation is chosen for each bundling
φ by ensuring that if all the δa,b that are necessary to achieve φ are active, then the winning bids
are active.

This model suffers from several limitations, that we believe will be present in any MIP for-
mulation for solving the entire problem. First, the MIP has Ω(n|B|m2) boolean variables, which
rapidly becomes unmanageable. More importantly, Constraint 16 is required for every possible
bundling, of which there are an extremely large number as mentioned in Section 3.1; furthermore,
to generate each of these constraints, the welfare-maximizing allocation must be found, which is
NP-hard in itself. This could potentially be alleviated by using constraint generation techniques
(which generate constraints frugally on an as-needed basis, guided by the tentative optimal solu-
tion), but even this is unlikely to yield acceptable scalability, as each added constraint only cuts off
solutions at that specific bundling, and nowhere else. In addition, this would require resolving the
already large MIP every time a constraint is added.

9



max
n∑
i=1

pi (2)

pi ≤
∑
j∈B−i

vj · I−ij −
∑
j∈B−i

vj · Ij ∀i ∈ N (3)

Ij ≤
m∑
b=1

πi(a, b) ∀i ∈ N, j ∈ Bi, a ∈ Sj (4)

I−ij ≤
m∑
b=1

π−ik (a, b) ∀i, k ∈ N, j ∈ Bk, a ∈ Sj (5)

n∑
i=1

Πi(b) ≤ 1 ∀b = 1, ...,m (6)

n∑
k=1

Π−ik (b) ≤ 1 ∀i ∈ N, b = 1, ...,m (7)

πi(a, b) ≤ Πi(b) ∀i ∈ N, a = 1, ...,m, b = 1, ...,m (8)

π−ik (a, b) ≤ Π−ik (b) ∀i, k ∈ N, a = 1, ...,m, b = 1, ...,m (9)

πi(a, b) ≤ δa,b ∀i ∈ N, a = 1, ...,m, b = 1, ...,m (10)

π−ik (a, b) ≤ δa,b ∀i, k ∈ N, a = 1, ...,m, b = 1, ...,m (11)∑
j∈Bi

Ij ≤ 1 ∀i ∈ N (12)

∑
j∈Bk

I−ij ≤ 1 ∀i, k ∈ N (13)

a∑
b=1

δa,b = 1 ∀a = 1, ...,m (14)

δa,b ≤ δb,b ∀b = 1, ...,m, a = b, ...,m (15)∑
(a,b)∈α∗φ

δa,b − Ij ≤ |α∗φ| ∀φ ∈ Φ, j ∈ Bwin(M ′) (16)

Ij , I
−i
j , πj(a, b), π

−i
j (a, b),Πj(a, b),Π

−i
j (a, b), δa,b ∈ {0, 1}, pi ≥ 0 (17)

Figure 2: Mixed integer program for finding the optimal bundling M∗.
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5 Custom branch-and-bound approaches
We will now move on to discussing our custom branch-and-bound approaches. Later we show
that these scale significantly better than using a general-purpose MIP solver (CPLEX) on the MIP
described in the previous section.

5.1 Branching scheme
To find the optimal bundling we introduce a custom branch-and-bound algorithm, FIND-BUNDLING.
It is a tree search algorithm that branches on items. At each node in the search tree, the algorithm
branches on an item, with each branch adding the item to a different bundle. One of the branches
corresponds to adding it to the empty bundle.

The algorithm explores nodes in best-first order. The revenue obtained from the best solution
found so far is a global variable f ∗; initially f ∗ = 0. The pseudocode is given in Algorithm 1.

ALGORITHM 1: Custom branch-and-bound algorithm FIND-BUNDLING

Input: The set of items M , the set of bids B
Output: The optimal revenue LB, the optimal bundling

1 LB← 0
2 insert ({{CHOOSEBRANCHINGITEM(M,B)}},∞) in OPEN // Open is a priority queue of search tree

fringe
3 // nodes, sorted in descending order of
4 // the second argument
5 while OPEN not empty do
6 (CURRENT, VAL)← next in OPEN

7 if UB(CURRENT,M,B)>LB then
8 i← CHOOSEBRANCHINGITEM(CURRENT,M,B)
9 for b in CURRENT do

10 CHILD← CURRENT with i added to b
11 f∗ = MAX(LB(CHILD,M,B),f∗)
12 insert (CHILD, UB(CHILD,M,B)) in OPEN

13 end
14 CHILD← CURRENT with {i} appended to the list of bundles
15 insert (CHILD, UB(CHILD,M,B)) in OPEN

16 end
17 end

FIND-BUNDLING starts out with the bundling {{CHOOSEBRANCHINGITEM(M,B)}}, that is,
it chooses an item, and places it in a bundle by itself (Step 2). At each node, the next item i to
branch on is chosen (Step 8), and in Step 9-12 FIND-BUNDLING creates a branch for each of the
existing bundles, with i added to that bundle. For the last branch in Step 14-15, a new bundle is
added with i as the lone item in that bundle. The branching factor at a given node is therefore the
number of bundles already created plus one. For each node, the upper bound is used for deciding
where in the ordered OPEN list the node is inserted.

11



max
∑
j∈B

vj · Ij (18)

Ij + Ik ≤ 1 ∀j, k ∈ B s.t. Sj u Sk 6= ∅ (19)

Ij + Ik ≤ 1 ∀i ∈ N, j, k ∈ Bi (20)

Ij ∈ {0, 1} (21)

Figure 3: Mixed integer program for finding the welfare-maximizing allocation for a given
bundling b.

5.2 Lower bounding
In Step 11 FIND-BUNDLING computes a lower bound at the node. If a high lower bound is found,
we can update f ∗, and thereby achieve better pruning.

We use the following technique for lower bounding. For any node v in the search tree, we
simulate a VCG auction on the bundles decided on the search path from the root to v along with
all the yet-undecided (i.e., yet unbundled) items. Our lower bound is then the sum of the VCG
payments from the bidders.

Proposition 5.1. This is a valid lower bound.

Proof. One option for FIND-BUNDLING is to take the branch where every item is added in its own
separate bundle for all yet-undecided items. This path yields exactly the auction that is used in the
lower bound definition.

In the rest of the paper, whenever we refer to the revenue of a node, we mean the value defined
in this section.

To compute the lower bound, we make n + 1 calls (one overall and one with each bidder
removed in turn) to a subroutine that does (optimal) combinatorial auction winner determination.
We call that routine DETERMINE-WINNERS, and give the MIP formulation for it in Figure 3. (In
the experiments, we will use a leading general-purpose MIP solver, CPLEX, to solve this MIP,
which—while being NP-complete [45, 32]—is dramatically easier in practice than the bundling
problem.)

In order to reduce the number of calls to DETERMINE-WINNERS, we reuse the lower bound
on revenue from the parent node if the current node is the branch where the item is added alone in
a new bundle. This can be done because the MIP at that node is exactly the same as at the parent
node.

Typically in tree search/integer programming, if one does not use a lower-bounding technique
for the yet-undecided variables, one simply (implicitly) uses a lower bound equal to the value from
the variables that have been decided on the path from the root to the current node. For example,
in winner determination for combinatorial auctions, one uses the sum of the values of the bids that
have been accepted on that path (e.g., [48, 21, 51, 53]). Interestingly, in the bundling setting one
needs to be more careful. For example, using just the bids that are only interested in items that
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have already been bundled on the path would not give a valid lower bound. The reason is that this
could discard a bidder that causes revenue nonmonotonicity (as shown in Section 3.3.)

5.3 Upper bounding
In Steps 7 and 12, FIND-BUNDLING calls a function to upper bound the revenue obtainable in
the subtree rooted at the node. In this paper we propose, and investigate the performance of,
several such techniques. These techniques are discussed in each of the following subsubsections,
respectively. If the technique indeed gives an upper bound (as opposed to sometimes giving a
value that is below the actual revenue obtainable in the subtree rooted at the node), that is, the
upper-bounding heuristic is admissible, FIND-BUNDLING will always give the optimal solution.
In addition to admissibility of the different techniques, we will also study their monotonicity, that
is, whether the upper bound is nonincreasing down each search path.3

5.3.1 MAX-WELFARE

The first, and simplest, upper-bounding technique is to use the highest achievable welfare, con-
strained to honoring the bundling from the path so far. Specifically, the technique generates a
set of “items” M ′ consisting of the bundles created so far in the search, and the remaining items
unbundled, and then calls DETERMINE-WINNERS on the “item” set. We call this heuristic MAX-
WELFARE.

Proposition 5.2. MAX-WELFARE is admissible and monotonic.

Proof. We prove monotonicity first. In the computation of MAX-WELFARE, all yet-undecided
items at the search node are unbundled. So, MAX-WELFARE corresponds to the welfare of the
finest bundling achievable in that subtree. Naturally, the optimal welfare is nondecreasing as we
make strictly finer bundlings. It follows that MAX-WELFARE is monotonic.

We prove admissibility next. The welfare at a node upper bounds the revenue at the node.
For any descendant d of the current node, we have that MAX-WELFARE at d upper bounds the
revenue at d. From monotonicity we have that MAX-WELFARE at the current node is no less than
MAX-WELFARE at d. Thus MAX-WELFARE at the current node is an upper bound.

Note that we could compute the VCG revenue of M ′, but that would not give an upper bound
because VCG revenue can increase with more bundling. That is, a bundling with higher VCG
revenue may be found deeper in the current subtree.

5.3.2 EXTERNALITY-FLOW

Our second upper-bounding technique is based on the following proposition.

3Unlike in typical tree (or graph) search in artificial intelligence [47], here monotonicity does not imply admissi-
bility because there is no notion of the cost of the path from the root to the node.
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Proposition 5.3. For any bundling in the VCG, the payment for each winning bid j for bidder i
can never be more than the welfare of the welfare-maximizing allocation W ∗,−i

φ,Buj
, over the bids

Buj = {k∈B−i : Sj u Sk 6= ∅}.

Proof. Proof by contradiction. Suppose this were not the case, and let pi = W ∗,−i
φ,B −W

∗,−i
φ−i,B

be the
payment from i for such an allocation, and let W−i

φ,Sj
be the welfare of the bids that receive items

from Sj in W ∗,−i
φ,B . We then have pi = W ∗,−i

φ,B −W
∗,−i
φ−i,B

> W ∗,−i
φ,Buj

≥ W−i
φ,Sj
⇔ W ∗,−i

φ,B −W
−i
φ,Sj

>

W ∗,−i
φ−i,B

, which means that the welfare obtained from the items φ−i inW ∗,−i
φ,B is higher than inW ∗

φ,B,
contradicting the fact that W ∗

φ,B is a welfare-maximizing allocation.

Using Proposition 5.3, we introduce a MIP-based technique that we call EXTERNALITY-FLOW.
The basic idea of EXTERNALITY-FLOW is that for every winning bid i in the welfare-maximizing
allocation at the current node p, some number of other bids from other bidders do not win because
of this bid. We say that they potentially have externality-flow to i. Any bid j from a different bidder
such that SjuSi 6= ∅ can automatically send externality-flow to i. Additionally, for any bid k that is
not bundling-intersecting with i, if either Si∩Mp 6= ∅ or Sk∩Mp 6= ∅, whereMp is the set of items
not branched on yet, k can still send externality flow if the upper bound MIP decides to bundle one
such unbundled variable in a way that makes the two bids, i and k, bundling-intersecting.

The complete MIP is shown in Figure 4. For all bids j and all winning bids i, we have an
externality-flow variable fj,i and a boolean variable Ij,i that expresses whether flow is allowed
from i to j. For each winning bid i, we have a real-valued payment variable pi and variables
γini , γ

out
i that describe whether the bid can send or receive externality-flow from other winning

bids, where only one of the two can be true. Finally, for all c ∈ Mp, b ∈ φbr, where φbr is bundles
already created on the search path, we have a boolean variable δc,b that describes whether c is
bundled with b, and for all c, c′ ∈ Mp, b ∈ φbr we have a boolean variable that describes whether
the two unbundled items are sent to the same bundle.

Constraint 23 ensures that the payment is never more than the externality-flow to the bid. Con-
straint 24 ensures that flow is only sent if the boolean variable allowing flow between the two bids
is active. Constraints 25-27 ensure that winning bids only either send or receive flow from other
winning bids. Constraint 28, which uses φibr, the subset of φbr intersecting with Si, ensures that
for any two bids that are not bundling-intersecting in the current bundling, flow is only allowed
between them if they are made bundling-intersecting through bundling of the remaining unbun-
dled items. Constraint 29 ensures that two unbundled items are only considered intersecting if they
are sent to the same bundle. Constraint 30 ensures that each unbundled item is only added to one
bundle. Finally, Constraint 32 implements Proposition 5.3, that is, the set of bids that send flow to
bidder i must be a valid allocation.

We do not have a proof that this technique upper bounds the revenue found at any node in the
subtree, but for all experiments described in Section 6 it worked correctly. Furthermore, we decided
not to invest further time in generating a proof because the last two upper-bounding techniques,
discussed below, led to better performance anyway in terms of run time of the overall bundling
algorithm—due to tighter upper bounding and thus smaller search trees.
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max
n∑
i=1

pi (22)

s.t. pi ≤
∑
j 6=i

fj,i ∀i ∈ N (23)

fi,j ≤ vi · Ii,j ∀i, j ∈ B (24)

fj,i ≤ vj · γini ∀i, j ∈ B s.t. |αi| > 0, |αj | > 0
(25)

fi,j ≤ vi · γouti ∀i, j ∈ B s.t. |αi| > 0, |αj | > 0
(26)

γini + γouti = 1 ∀i ∈ N s.t. |αi| > 0 (27)

Ii,j ≤
∑
b∈φibr

∑
c∈Mj

p

δc,b +
∑
c∈M i

p

∑
b∈φjbr

δc,b +
∑
c∈M i

p

∑
c′∈Mj

p

∑
b∈φbr

δc,b,c′ ∀i, j ∈ B s.t. Sj u Si = ∅ (28)

2δc,a,c′ − δc,a − δc′,a ≤ 0 ∀c, c′ ∈Mp, a ∈ φp (29)∑
a∈φp

δc,a ≤ 1 ∀c ∈Mp (30)

vi ≥ pi ≥ 0, fi,j ≥ 0, Ii,j , γ
in
i , γ

out
i , δc,a, δc,a,c′ ∈ {0, 1} (31)∑

{j:j∈B,k∈Sj}

Ij,i ≤ 1 ∀i ∈ B s.t. |αi| > 0, k ∈M (32)

Figure 4: Mixed integer program for EXTERNALITY-FLOW.

5.3.3 VCG+

Our third upper-bounding technique is like computing VCG payments for the bundling at the node
but with the negative term chosen so as to maximize payments (under the condition that no bidder
pays more than her valuation). We call this technique VCG+.

Let us now formalize this idea. The sum of payments like the VCG payments for the bundling at
the node, but with the negative term chosen so as to maximize the payments, is maxα∈Aφ

∑
i∈N
∑

j 6=i[vj(α
∗
−i)−

vj(α)]. Here, α∗−i ∈ Aφ is the optimal allocation without bidder i, for the bundling, φ, at the node.
Aφ is the set of allocations consistent with bundling φ. Also, α ∈ Aφ is any allocation that satis-
fies the bundling at the node. We further tighten this upper bound by making sure that no bidder
is charged more than her valuation. This gives us the formula for our upper-bounding technique
VCG+:

max
α∈Aφ

∑
i∈N

min

{∑
j 6=i

[vj(α
∗
−i)− vj(α)], vi(α)

}
(33)

In the special case where α is the welfare-maximizing allocation at the current node, this equals
the revenue of running VCG at the node.

The MIP presented in Figure 5 implements this idea. Constraints 35 and 36 ensure that each
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max
n∑
i=1

pi (34)

pi ≤
∑
j∈Bi

vj · Ij ∀i ∈ N (35)

pi ≤
∑
j∈B−i

vj · I−ij −
∑
j∈B−i

vj · Ij ∀i ∈ N (36)

∑
j∈Bub

Ij ≤ 1 ∀b ∈ φp (37)

∑
j∈Bub

I−ij ≤ 1 ∀i ∈ N, b ∈ φp (38)

∑
j∈Bi

Ij ≤ 1 ∀i ∈ N (39)

∑
j∈Bk

I−ij ≤ 1 ∀i, k ∈ N (40)

Figure 5: Mixed integer program for VCG+. Here, Bub = {j ∈ B|Sj u b 6= ∅} is the set of all
bids that are interested in some bundle b.

bidder pays her VCG+payment. Constraints 37 and 38 ensure that only one bidder can win each
bundle in φp, the bundling at the node. Constraints 39 and 40 ensure that each bidder wins only
one of his bids.

We now prove that VCG+ gives an upper bound to the revenue found at any node in the subtree
rooted at the current node.

Proposition 5.4. VCG+ is admissible and monotonic.

Proof. Consider an arbitrary current node p.
We prove admissibility first. VCG+ selects the best set of winning bids from all legal alloca-

tions of winning bids for the bundling φp. For any descendant d, we get a bundling φd such that
if two items a, b ∈ M are bundled together in φp then they are also bundled together in φd. This
means that any valid set of winning bids at d is also a valid set of winning bids at p. In particu-
lar, the welfare-maximizing allocation at d is a valid set of winning bids at p; call this allocation
αd. Since αd is a valid allocation for VCG+at p, we just need to show that the payment that
VCG+can obtain at p by selecting this allocation is no smaller than rd =

∑n
i=1[W

∗,−i
φd,B
−W ∗,−i

φd,−i,B
],

the VCG revenue of φd. This is true because the negative term is the same (since the allocations
are the same), and for the positive term W ∗,−i

φd,B
, we have W ∗,−i

φd
≤ W ∗,−i

φp
since optimal welfare is

nonincreasing with more bundling.
Monotonicity follows from the fact that the VCG+ MIP for any descendant of d of p is the

VCG+ MIP for p with additional constraints added. Adding constraints cannot increase the value
of the MIP.
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5.3.4 VCG+
LB

In our fourth, final upper-bounding technique, VCG+
LB, we tighten the bound of VCG+ based on

the observation that any constraint that does not cut off any of the welfare-maximizing allocations
at any node in the subtree will preserve the upper bound. With this in mind, we add the following
constraint to the MIP of Figure 5, where WLB is a lower bound on the welfare found at any node
in the subtree. ∑

j∈B

vj · Ij ≥ WLB (41)

At each search node, we use two different ways of computing a value for WLB, and we use the
larger of the two. The first is the maximum valuation of any single bid, which is obviously a lower
bound since we can always let any single bid be the only winner. The second is obtained by taking
all the bundles created so far in the search path, and only auctioning off these bundles, with all
items not branched on being unavailable. In other words, we run DETERMINE-WINNERS on the
bids that do not use any of the yet-undecided items. This is clearly a lower bound on the welfare
of any node in that subtree because the allocation that it finds remains available for selection at all
those nodes.

Proposition 5.5. VCG+
LB is admissible and monotonic.

Proof. Admissibility follows immediately from the admissibility of VCG+ and the fact that both
ways of computing WLB indeed yield lower bounds as argued above.

Monotonicity follows from monotonicity of VCG+ and the fact that both ways of computing
WLB yield WLB values that are nondecreasing down each search path (because the set of bids to
choose from grows or stays the same).

5.4 Variable ordering
In Step 7, the function CHOOSEBRANCHINGITEM(node) chooses the item to branch on at the
node. Any choice will yield a correct algorithm, but some choices lead to smaller tress than others
and thus shorter run times. The motivation for our variable-selection heuristic is that we want to
pick an item that most likely needs to be bundled so that we get a fairly balanced search tree (where
the promising branches are the many branches where this item is bundled). In contrast, branching
on an item that likely should not be bundled would render the one “unbundling” branch the most
promising and would thus yield lopsided deep trees.

We introduce two branching heuristics, MAX-PRICE-GAP-SIZE and MAX-PRICE-GAP-LOG.
They both work by first computing the highest and second-highest “normalized bid price” for
each item. Then, the item that has the greatest difference between the highest and second-highest
“normalized bid price” is chosen for branching. The idea is that such items are promising for
bundling because there is not enough competition on them. MAX-PRICE-GAP-SIZE In MAX-
PRICE-GAP-SIZE, we use the following formula for “normalized bid price”: vj

|Sj | . In MAX-PRICE-
GAP-LOG, we use the following formula for “normalized bid price”: vj

log(|Sj |) .
Using the number of items in the bid, |Sj|, for normalization gives a more precise estimate of

the valuation of each item, but using the logarithm of |Sj| favors bids with a greater number of
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items, which can lead to more important decisions being made early. Logarithmic normalization
has been experimentally shown to perform well in the winner determination problem [53] so we
included that in the experiments in our setting as well.

5.5 Lazy bounding
Finally, we evaluate what we call lazy bounding. The idea is that in Step 12 of FIND-BUNDLING,
where UB(node, M,B) is called, we can use the upper bound of the parent for placing the node in
the open list—as opposed to computing the actual upper bound at the node.

The disadvantage is that this causes a slightly less precise choice of nodes to pop off of the
open list since the list is slightly out of order. Optimality is still maintained by continuing to pop
nodes off the open list until the (parent) value of all nodes on the open list is no greater than the
value of the best solution found.

The advantage is that we never need to invest the effort to compute the upper bound for nodes
that are never popped off the open list. In algorithms like ours, where the branching factor is large
(Ω(m) in our setting), this can have a great impact on performance (especially as the upper bound
we compute at each node is a mixed integer program and thereby NP-hard to compute in itself).

6 Experiments
We conducted experiments with all our different algorithmic approaches using the leading combi-
natorial auction benchmark suite, the Combinatorial Auction Test Suite (CATS) [34]. We generated
a test suite from all the CATS distributions (excluding the old, unrealistic “legacy” distributions).
So, we had five distributions: arbitrary, matching, paths, regions, and scheduling. For each distri-
bution we generated instances with 4-15 items, and bids equal to 0.2, 0.5, 1, 2, 5, and 10 times
the number of items, with 20 instances generated for each of these settings. For space reasons
we include only the most interesting results here. For some distribution and bids-to-items multi-
plier combinations, CATS was unable to generate the desired number of bids for smaller numbers
of items, and hence some of our experiments start at a larger number of items than 4 (up to 10 in
some cases). All experiments were conducted on a cluster of 7 computers, each with two quad-core
AMD Opteron 2.0GHz processors and 32GB of RAM, for a total of 56 cores. Each experiment
was run on one thread on one core. The operating system was Rocks Version 6.1. The MIP models
were solved using CPLEX 12.5 [29]. We used a time limit of 15 minutes for each run.

In Figures 8, 9, 10, 11, and 12, we present the results of our algorithms on an increasing number
of items, where the number of bids generated is five times the number of items.

In Figures 13, 14, 15, 16, and 17, we present the results of our algorithms when keeping the
number of items constant at 8 (for all distributions except scheduling, where CATS had to start at
10), while increasing the number of bids.

For each of the figures, the tables are split in three. The top table compares the basic MIP
approach to FIND-BUNDLING with all of the special techniques turned off (we denote this by
NONE), and FIND-BUNDLING with all of the best special techniques turned on (VCG+

LB, MAX-
PRICE-GAP-LOG, and LAZY-BOUND) (we denote this by MBL-MPGL-L).
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In the middle and bottom tables we present experiments on varying, or turning off, one heuristic
at a time while keeping the others at their best settings. The middle table presents experiments on
FIND-BUNDLING with the best upper bounding technique, VCG+

LB, and varies the other heuristics.
The best variant where we use the MAX-PRICE-GAP-LOG and LAZY-BOUND heuristics is not
included in this table because it is already presented in the top table. The variant we call MBL-
MPGS-L uses the MAX-PRICE-GAP-SIZE and LAZY-BOUND heuristics. The variant we call
MBL-MPGL uses the MAX-PRICE-GAP-LOG heuristic. The variant we call MBL-L uses the
LAZY-BOUND heuristic.

The bottom table compares the upper-bounding heuristics in FIND-BUNDLING. All of these
techniques use MAX-PRICE-GAP-LOG for variable oredering and LAZY-BOUND. Again, the
best variant where we use VCG+

LB is not included here because it is already included in the
top table. The variant we call MB-MPG-L uses VCG+. The variant we call EF-MPGL-L uses
EXTERNALITY-FLOW. The variant we call MSW-MPGL-L uses MAX-WELFARE.

In the following subsections we discuss the experimental results.

6.1 Basic MIP
For the basic MIP approach, to the left in the top tables, our experiments show that it is unable to
scale beyond 7 items for all of the distributions, when generating five times as many bids as items
(Figures 8, 9, 10, 11, and 12). This is not surprising, as just the size of the program very rapidly
becomes extremely large. When the number of items is kept at 8, while increasing the number of
bids, it is able to solve some instances for the arbitrary, regions, paths, and matching distributions
(Figures 13, 14, 15, and 16), while it is unable to solve any of the scheduling instances with 10
items, even with only 10 bids (Figure 17), and for all distributions, it does not solve any of the
instances with more than 16 bids.

6.2 Upper bounding heuristics
We conducted extensive experiments with each of the four upper-bounding techniques (VCG+

LB,
VCG+, EXTERNALITY-FLOW, and MAX-WELFARE) and with no upper bounding (NONE). For
all the tables presented, we kept the other heuristics constant at their best settings: MAX-PRICE-
GAP-LOG for variable ordering and LAZY-BOUND (except that for NONE, these techniques were
turned off to save run time because they make no difference since every node is expanded when
there is no upper bounding). For all figures, we have VCG+

LB in the right of the top tables, NONE

in the middle of the top tables, and VCG+, EXTERNALITY-FLOW, and MAX-WELFARE to the
left, middle, and right in the bottom tables, respectively.

For the experiments where we keep the bids-to-items multiplier fixed, on the arbitrary and
regions distributions (Figures 8 and 9), we see that VCG+

LB is able to solve at least 4 out of 20
instances for all item sizes, and more than 10 for item sizes 11 and lower. On these distribu-
tions, VCG+ performs almost as well, with only 7 fewer instances solved overall on the arbitrary
distribution and 34 fewer on the regions distribution. NONE, EXTERNALITY-FLOW, and MAX-
WELFARE all perform significantly worse on these two distributions, with EXTERNALITY-FLOW
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solving more than 40 instances less on both distributions, and NONE and MAX-WELFARE both
solving about 70 instances less for each distribution.

For the matching distribution (Figure 10), all algorithms have somewhat similar performance,
but the relative order of the upper-bounding heuristics is the same. VCG+

LB solving 27 out of 40
instances, whereas NONE solves 20.

For the paths and scheduling distributions (Figures 11 and 12), all the upper-bounding tech-
niques perform significantly worse. VCG+

LB only solves one instance at 12 items and one at 13
items, whereas for other distributions it solved 4 or more instances even at the highest number of
items. The relative performance of the upper-bounding techniques remains the same, except that
MAX-WELFARE slightly outperforms EXTERNALITY-FLOW on the paths distribution.

For the experiments where we vary the number of bids, all the upper-bounding techniques
except NONE solve every instance for the arbitrary, regions, matching, and paths distributions
(Figures 8, 9, 10 and 11). VCG+

LB solves up to a factor of 10 faster. For the scheduling distribution
(Figure 12), VCG+

LB performs significantly better than the other techniques. It solves 53 out
of 60 instances, whereas the other techniques solve 14 or fewer instances, except EXTERNALITY-
FLOW. Interestingly, for this distribution, when varying the number of bids, EXTERNALITY-FLOW

performs significantly better than all other upper-bounding techniques except VCG+
LB, which is

not the case for any other set of experiments.

6.3 Variable ordering heuristics
We experimented with all three settings for the variable ordering heuristic: MAX-PRICE-GAP-
LOG, MAX-PRICE-GAP-SIZE, and no variable ordering heuristic. In the figures that we present,
the other heuristics are kept constant, using the best settings for the other techniques: VCG+

LB

and LAZY-BOUND. For all the figures, we have the MAX-PRICE-GAP-LOG heuristic on the right
in the top tables, the MAX-PRICE-GAP-SIZE heuristic on the left in the middle tables, and no
heuristic on the right in the middle tables.

When we vary the number of items, the performance on the arbitrary and matching distributions
(Figures 8 and 10) is almost the same for all three heuristics, with MAX-PRICE-GAP-LOG solving
three more instances than MAX-PRICE-GAP-SIZE. For the regions distribution (Figure 9), we see
a more significant performance difference. There, MAX-PRICE-GAP-LOG solves 175 instances,
where MAX-PRICE-GAP-SIZE solves 154 instances, and using no heuristic solves 140. Finally,
for the paths and scheduling distributions (Figures 11 and 11), MAX-PRICE-GAP-SIZE performs
somewhat better than MAX-PRICE-GAP-LOG. On paths, it solves 123 instances while MAX-
PRICE-GAP-LOG solves 113. On scheduling, it solves 40 while MAX-PRICE-GAP-LOG solves
35.

For the experiments where we vary the number of bids, there is practically no performance
difference for any of the arbitrary, regions, matching, and paths distributions. For the scheduling
distribution, however, we see a significant difference, where MAX-PRICE-GAP-LOG and MAX-
PRICE-GAP-SIZE perform very similarly, with MAX-PRICE-GAP-SIZE performing slightly bet-
ter. Using no variable ordering heuristic causes performance to drop significantly: only 14 in-
stances get solved, as opposed to 53 using the heuristics. Interestingly, all 14 solved instances have
50 bids, for which the other two heuristics solve 15 instances each. This suggests that the variable

20



ordering heuristic is mainly important when the ratio of bids to items is low. One possible expla-
nation for this is that with more bids, one would expect the difference between the normalized first
and second price to be lower (especially given that we are using synthetic data), and hence the
heuristic item values are close to each other anyway.

6.4 Lazy bounding
We evaluated the performance of LAZY-BOUND, while again using the best settings for the other
heuristics: VCG+

LB for upper bounding and MAX-PRICE-GAP-LOG for variable ordering. The
results are to the right in the top tables, and the results without LAZY-BOUND are in the middle of
the middle tables.

For the experiments where we vary the number of bids on the scheduling distribution, we see
a significant performance improvement from LAZY-BOUND. It solves 53 out of 60 instances,
and only 14 without LAZY-BOUND. On all other experiments, the difference in performance is
negligible, with LAZY-BOUND performing slightly better on average runtime, but always lying
within one standard deviation of not using LAZY-BOUND.

6.5 Revenue increase and surplus extraction
Finally, we conducted experiments that empirically examine how well our approach can both
bridge the gap to the optimal revenue, and how much it improves over the VCG revenue. In
Tables 6 and 7 we see the results from running optimal bundling in the VCG, VCG (with no
bundling), and welfare computation on each of the five CATS distributions, when the number of
bids is 0.5 or 5 times the number of items, respectively. The ratios given are average ratios over 20
instances for each parameter setting.

When using a bids-to-items multiplier of 0.5, for almost all parameter settings, there is at least
one instance where VCG yields zero revenue and our optimal bundling in the VCG increases on
this revenue. On other parameter settings, the revenue increase ranges from 4% to 139%. For the
arbitrary, regions, and matching distributions, optimal bundling yields revenue that is about 50%
of the welfare, whereas for the paths and scheduling distributions it achieves significantly less.

For the bids-to-items multiplier 5, the revenue increase over VCG is more modest, and tends to
lie in the 2-20% range. This is to be expected because when there is more competition, bundling
does not increase revenue as much. We also see that about 90% of the welfare is obtained in
revenue for these settings.

For all distributions and bids-to-items multipliers, the fraction of welfare that our technique
obtains as revenue tends to increase with the number of items. This may be an artifact of the CATS
distributions. They tend to generate some number of bids with high valuations that span almost all
the items. With larger numbers of items, this type of bid is more likely to occur since the number
of bids is proportional to the number of items. If there are even just two such large high-value
bids, they generate enough competition to extract almost all of the welfare as revenue. This also
means that in real-life applications, where such bids may be unlikely to occur, the potential revenue
increase from using our bundling techniques is higher than these CATS-based experiments suggest.
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Another artifact of the CATS distributions is that they generate undominated bids, that is, bids
whose value is higher than what could be obtained in welfare from the items in the bid using other
bids that only want those items. This means that CATS generates artificially strong competition
for the given number of bids and items. This is another reason why one can expect our bundling
techniques to increase revenue more in real applications than in the CATS-based experiments.

7 Conclusion and future research
Revenue maximization in combinatorial auctions (and other multidimensional selling settings) is
one of the most important and most elusive problems in mechanism design. The design problem
is NP-complete, and the optimal designs include features that are not acceptable in many appli-
cations, such as favoring some bidders over others and randomization. In this paper, we instead
studied a common revenue-enhancement approach—bundling—in the context of the most com-
monly studied combinatorial auction mechanism, the VCG. A second challenge in mechanism
design for combinatorial auctions is that the prior distribution on each bidder’s valuation can be
doubly exponential. Such priors do not exist in most applications. Rather, in many applications,
there is essentially a point prior, which may not be accurate. We adopted the point prior model,
and proved robustness to inaccuracy in the prior. Then, we presented a custom branch-and-bound
framework for finding the optimal bundling. In that framework, we introduced several techniques
for branching, upper bounding, lower bounding, and lazy bounding. Experiments on CATS dis-
tributions validated the approach and showed that our techniques dramatically improve scalability
over a leading general-purpose MIP solver.

There are many interesting directions for future research. Affine maximizer auctions, vir-
tual valuations combinatorial auctions, and λ-auctions support unlimited, bidder-specific reserve
prices. In contrast, we studied bundling alone as a revenue-enhancement tool. There are many
interesting questions about the relative power of different forms of bundling and different forms of
reserve pricing, and combinations thereof—possibly both in the auction and catalog sales contexts.

Second, we plan to extend our algorithms to settings with structure. For example, in many
advertising markets, the inventory segments are defined by vectors of attributes, and that can, in
some settings, provide additional structure. We would also like to study cases where items are
divisible and/or bids can be accepted partially. Furthermore, we would like to field our approach
in real applications.
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APPENDIX

#items arbitrary-0.5 regions-0.5 matching-0.5 paths-0.5 scheduling-0.5
4 ∞ / 0.3717 ∞ / 0.4986 - / - - / - - / -
5 ∞ / 0.3832 ∞ / 0.2920 - / - ∞ / 0.0115 - / -
6 ∞ / 0.6545 ∞ / 0.4897 - / - ∞ / 0.1072 - / -
7 1.0645 / 0.7130 ∞ / 0.5704 - / - ∞ / 0.1586 - / -
8 ∞ / 0.6572 ∞ / 0.4275 ∞ / 0.4269 ∞ / 0.1093 - / -
9 ∞ / 0.5133 ∞ / 0.4985 - / - ∞ / 0.1597 - / -
10 ∞ / 0.4084 ∞ / 0.6559 - / - ∞ / 0.3345 ∞ / 0.2736
11 ∞ / 0.5804 1.0401 / 0.7726 - / - ∞ / 0.3848 ∞ / 0.2873
12 ∞ / 0.4525 ∞ / 0.6189 ∞ / 0.5384 ∞ / 0.3733 ∞ / 0.1459
13 ∞ / 0.4548 ∞ / 0.5035 - / - ∞ / 0.4526 ∞ / 0.1167
14 1.8161 / 0.6212 2.3901 / 0.5410 - / - ∞ / 0.3987 ∞ / 0.1906
15 ∞ / 0.5751 ∞ / 0.5271 - / - ∞ / 0.4215 ∞ / 0.2560

Figure 6: Ratios of the revenue of the optimal abstraction, rOPT , to the VCG revenue, rV CG,
and the social welfare, W ∗

M , for varying numbers of items for the CATS distributions, with a bid
multiplier of 0.5. The first number in each column is rOPT

rV CG
and the second is rOPT

W ∗M
. ∞ means that

VCG achieved 0 revenue, where optimal bundling received more.

#items arbitrary-5 regions-5 matching-5 paths-5 scheduling-5
4 1.0587 / 0.8942 1.0456 / 0.9051 - / - - / - - / -
5 1.0159 / 0.8990 1.0758 / 0.8731 - / - 1.0055 / 0.8940 - / -
6 1.0441 / 0.8995 1.2002 / 0.8211 - / - 1.0169 / 0.8563 - / -
7 1.0627 / 0.8705 1.2013 / 0.8399 - / - 1.0763 / 0.8521 - / -
8 1.0895 / 0.8786 1.1163 / 0.8357 1.0343 / 0.8428 1.0224 / 0.8665 - / -
9 1.0259 / 0.9232 1.0465 / 0.9135 - / - 1.0387 / 0.8752 - / -

10 1.0219 / 0.9108 1.0413 / 0.9168 - / - 1.0122 / 0.8878 1.0542 / 0.8751
11 1.0376 / 0.9195 1.0979 / 0.9207 - / - 1.0304 / 0.9062 1.0508 / 0.8826
12 1.0855 / 0.9151 1.0356 / 0.9220 1.0841 / 0.8910 1.0202 / 0.9149 1.0297 / 0.8649
13 1.0727 / 0.9485 1.0929 / 0.9252 - / - 1.0022 / 0.9338 1.0589 / 0.9339
14 1.0338 / 0.9233 1.0000 / 0.9703 - / - - / - 1.0358 / 0.8404
15 1.0000 / 0.9628 - / - - / - - / - 1.0731 / 0.8933

Figure 7: Ratios of the revenue of the optimal abstraction, rOPT , to the VCG revenue, rV CG,
and the social welfare, W ∗

M , for varying numbers of items for the CATS distributions, with a bid
multiplier of 5. The first number in each column is rOPT

rV CG
and the second is rOPT

W ∗M
.
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# items MIP NONE MBL-MPGL-L
4 10.48 2.74 20 0.79 0.15 20 0.37 0.25 20
5 91.89 59.59 20 3.02 0.75 20 0.77 0.67 20
6 608.47 180.54 17 12.37 2.41 20 2.09 2.27 20
7 746.31 120.76 2 52.43 10.38 20 5.73 6.69 20
8 - - 0 256.71 58.56 20 17.66 24.31 20
9 - - 0 - - 0 90.76 112.85 20

10 - - 0 - - 0 103.42 233.66 20
11 - - 0 - - 0 160.50 181.30 12
12 - - 0 - - 0 181.09 237.07 10
13 - - 0 - - 0 55.15 100.91 8
14 - - 0 - - 0 124.37 173.56 3
15 - - 0 - - 0 0.51 0.24 5

total - - 59 - - 100 - - 178
# items MBL-MPGS-L MBL-MPGL MBL-L

4 0.36 0.24 20 0.43 0.31 20 0.38 0.24 20
5 0.90 0.87 20 0.93 0.87 20 0.81 0.76 20
6 2.50 2.62 20 2.71 3.07 20 2.83 3.16 20
7 5.68 8.43 20 8.04 9.91 20 7.52 8.85 20
8 24.70 30.55 20 25.56 37.45 20 26.03 29.10 20
9 81.81 75.55 20 138.11 174.05 20 101.94 92.50 20

10 57.95 131.31 18 83.08 210.55 19 86.34 217.51 19
11 240.24 305.00 12 201.31 230.38 12 224.17 237.16 12
12 229.31 320.22 9 225.05 301.71 10 301.54 371.07 10
13 145.54 264.14 8 73.69 134.67 8 100.22 179.45 8
14 80.06 79.36 2 185.18 259.21 3 252.70 351.06 3
15 19.30 41.81 6 0.52 0.25 5 0.53 0.19 5

total - - 175 - - 177 - - 177
# items MB-MPGL-L EF-MPGL-L MSW-MPGL-L

4 0.41 0.26 20 0.37 0.24 20 0.91 0.20 20
5 0.90 0.79 20 1.21 1.03 20 3.36 0.92 20
6 2.61 2.58 20 3.41 2.96 20 13.27 2.58 20
7 7.87 9.39 20 14.90 12.70 20 46.59 11.84 20
8 30.78 36.52 20 71.21 59.50 20 251.27 50.44 20
9 123.63 137.07 20 284.66 237.96 20 605.44 205.89 7

10 46.52 163.46 17 0.51 0.52 11 - - 0
11 134.32 172.75 10 0.77 0.81 5 - - 0
12 237.21 336.51 9 0.46 0.15 4 - - 0
13 79.76 137.77 8 - - 0 - - 0
14 2.04 1.48 2 - - 0 - - 0
15 0.59 0.11 5 - - 0 - - 0

total - - 171 - - 140 - - 107

Figure 8: Performance characteristics over varying numbers of items for the arbitrary distribution.
The first two columns for each algorithm are average runtimes and standard deviation on the solved
instances, while the last column lists how many of the 20 instances were solved. Finally, the last
row gives the total number of instances solved for each algorithm.
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# items MIP NONE MBL-MPGL-L
4 10.21 4.35 20 0.85 0.20 20 0.65 0.41 20
5 166.07 100.97 20 3.48 0.63 20 2.75 0.81 20
6 811.83 111.40 3 17.12 3.06 20 8.95 3.36 20
7 - - 0 85.05 15.73 20 13.96 8.42 20
8 - - 0 429.32 80.50 20 27.18 17.17 20
9 - - 0 874.36 12.46 2 31.39 51.10 20

10 - - 0 - - 0 93.76 175.60 19
11 - - 0 - - 0 170.20 254.27 14
12 - - 0 - - 0 104.60 99.73 5
13 - - 0 - - 0 193.33 235.65 9
14 - - 0 - - 0 261.35 338.03 4
15 - - 0 - - 0 328.77 275.69 4

total - - 43 - - 102 - - 175
# items MBL-MPGS-L MBL-MPGL MBL-L

4 0.67 0.44 20 0.82 0.54 20 0.65 0.40 20
5 2.47 0.73 20 3.74 1.22 20 3.35 0.95 20
6 9.05 2.03 20 11.50 4.58 20 15.84 2.54 20
7 25.17 11.17 20 17.07 11.42 20 42.39 15.76 20
8 75.03 32.60 20 33.48 22.44 20 122.73 45.05 20
9 48.49 60.33 20 43.79 74.23 20 88.39 133.52 20

10 209.93 270.04 20 74.63 109.94 18 193.94 231.87 16
11 508.73 308.55 8 150.38 233.92 13 9.71 9.55 2
12 23.11 5.18 3 124.66 129.67 5 - - 0
13 34.77 17.14 2 137.46 158.13 8 65.23 0.00 1
14 0.31 0.00 1 74.79 76.17 3 0.27 0.00 1
15 - - 0 365.92 310.72 4 - - 0

total - - 154 - - 171 - - 140
# items MB-MPGL-L EF-MPGL-L MSW-MPGL-L

4 0.69 0.44 20 0.66 0.47 20 1.02 0.25 20
5 2.94 0.89 20 3.50 0.75 20 3.75 0.64 20
6 10.86 3.14 20 16.70 3.75 20 15.54 3.24 20
7 21.80 10.08 20 55.94 23.75 20 64.45 9.31 20
8 62.19 28.35 20 223.32 57.37 20 220.86 54.18 20
9 72.03 87.75 20 224.34 244.97 20 692.65 176.88 6

10 122.22 160.84 16 152.33 287.86 9 - - 0
11 160.48 217.05 3 0.34 0.00 1 - - 0
12 - - 0 - - 0 - - 0
13 2.61 0.00 1 - - 0 - - 0
14 0.34 0.00 1 - - 0 - - 0
15 - - 0 - - 0 - - 0

total - - 141 - - 130 - - 106

Figure 9: Performance characteristics over varying numbers of items for the regions distribution.
The first two columns for each algorithm are average runtimes and standard deviation on the solved
instances, while the last column lists how many of the 20 instances were solved. Finally, the last
row gives the total number of instances solved for each algorithm.
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# items MIP NONE MBL-MPGL-L
8 - - 0 495.74 65.32 20 38.24 19.60 20

12 - - 0 - - 0 507.84 146.89 7
total - - 0 - - 20 - - 27

# items MBL-MPGS-L MBL-MPGL MBL-L
8 38.86 20.06 20 46.84 25.11 20 30.50 16.18 20

12 515.05 151.54 7 513.13 74.09 6 722.19 78.68 3
total - - 27 - - 26 - - 23

# items MB-MPGL-L EF-MPGL-L MSW-MPGL-L
8 38.01 20.98 20 143.25 61.57 20 129.54 56.86 20

12 533.55 103.62 6 - - 0 - - 0
total - - 26 - - 20 - - 20

Figure 10: Performance characteristics over varying numbers of items for the matching distribu-
tion. The first two columns for each algorithm are average runtimes and standard deviation on the
solved instances, while the last column lists how many of the 20 instances were solved. Finally,
the last row gives the total number of instances solved for each algorithm.

30



# items MIP NONE MBL-MPGL-L
5 63.44 55.13 20 5.84 0.95 20 4.02 0.70 20
6 326.52 196.45 20 29.00 5.86 20 12.88 7.01 20
7 753.35 91.69 4 152.03 22.82 20 37.59 29.85 20
8 - - 0 781.62 117.91 16 128.51 159.80 20
9 - - 0 - - 0 283.12 96.71 17

10 - - 0 - - 0 518.51 259.06 10
11 - - 0 - - 0 476.97 211.32 5
12 - - 0 - - 0 793.18 0.00 1
13 - - 0 - - 0 - - 0
14 - - 0 - - 0 - - 0
15 - - 0 - - 0 - - 0

total - - 44 - - 76 - - 113
# items MBL-MPGS-L MBL-MPGL MBL-L

5 3.66 0.70 20 4.77 0.98 20 3.80 0.69 20
6 10.52 6.06 20 15.16 8.24 20 11.77 7.01 20
7 26.67 22.95 20 45.10 36.83 20 33.99 28.74 20
8 108.56 186.20 20 155.45 196.77 20 118.08 152.12 20
9 193.88 102.56 17 332.66 120.01 17 267.46 96.06 17

10 392.23 200.23 16 539.75 278.61 9 524.55 270.88 11
11 378.21 178.33 7 427.96 89.78 4 487.33 203.58 5
12 363.02 0.00 1 858.09 0.00 1 792.10 0.00 1
13 745.41 141.81 2 - - 0 867.22 0.00 1
14 - - 0 - - 0 - - 0
15 - - 0 - - 0 - - 0

total - - 123 - - 111 - - 115
# items MB-MPGL-L EF-MPGL-L MSW-MPGL-L

5 3.70 0.69 20 5.05 0.65 20 4.37 0.77 20
6 12.22 7.24 20 13.72 4.15 20 14.69 6.22 20
7 33.48 29.44 20 43.59 22.36 20 44.38 29.91 20
8 114.90 155.77 20 157.21 59.94 20 184.72 148.94 20
9 240.50 80.63 17 517.13 224.05 13 511.72 250.83 15

10 504.43 241.79 13 493.93 268.05 3 634.07 273.31 6
11 487.76 254.28 6 - - 0 837.36 0.00 1
12 689.76 0.00 1 - - 0 - - 0
13 724.36 0.00 1 - - 0 - - 0
14 - - 0 - - 0 - - 0
15 - - 0 - - 0 - - 0

total - - 118 - - 96 - - 102

Figure 11: Performance characteristics over varying numbers of items for the paths distribution.
The first two columns for each algorithm are average runtimes and standard deviation on the solved
instances, while the last column lists how many of the 20 instances were solved. Finally, the last
row gives the total number of instances solved for each algorithm.
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# items MIP NONE MBL-MPGL-L
10 - - 0 - - 0 116.20 237.27 15
11 - - 0 - - 0 268.38 283.65 12
12 - - 0 - - 0 198.90 251.02 7
13 - - 0 - - 0 8.95 0.00 1
14 - - 0 - - 0 - - 0
15 - - 0 - - 0 - - 0

total - - 0 - - 0 - - 35
# items MBL-MPGS-L MBL-MPGL MBL-L

10 110.95 212.07 15 85.08 167.90 14 157.68 246.94 14
11 58.70 118.51 12 342.56 345.25 12 180.30 226.79 8
12 347.59 321.53 11 259.04 333.26 7 151.66 250.43 4
13 265.65 262.40 2 29.09 0.00 1 8.22 0.00 1
14 - - 0 - - 0 - - 0
15 - - 0 - - 0 - - 0

total - - 40 - - 34 - - 27
# items MB-MPGL-L EF-MPGL-L MSW-MPGL-L

10 114.02 175.94 14 143.62 226.60 7 - - 0
11 233.21 320.67 8 0.43 0.00 1 - - 0
12 144.20 239.01 4 - - 0 - - 0
13 9.88 0.00 1 - - 0 - - 0
14 - - 0 - - 0 - - 0
15 - - 0 - - 0 - - 0

total - - 27 - - 8 - - 0

Figure 12: Performance characteristics over varying numbers of items for the scheduling distribu-
tion. The first two columns for each algorithm are average runtimes and standard deviation on the
solved instances, while the last column lists how many of the 20 instances were solved. Finally,
the last row gives the total number of instances solved for each algorithm.
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# bids MIP NONE MBL-MPGL-L
8 93.70 15.61 20 151.61 15.31 20 0.06 0.02 20
16 249.73 171.14 19 162.90 32.76 20 5.94 12.21 20
40 - - 0 256.71 58.56 20 17.66 24.31 20
80 - - 0 361.56 60.90 20 28.77 41.23 20

total - - 39 - - 80 - - 80
# bids MBL-MPGS-L MBL-MPGL MBL-L

8 0.06 0.02 20 0.06 0.02 20 0.08 0.06 20
16 10.32 28.11 20 8.34 17.25 20 10.12 32.43 20
40 24.70 30.55 20 25.56 37.45 20 26.03 29.10 20
80 39.12 41.30 20 45.55 76.28 20 31.18 34.67 20

total - - 80 - - 80 - - 80
# bids MB-MPGL-L EF-MPGL-L MSW-MPGL-L

8 0.08 0.03 20 20.95 27.76 20 170.62 15.75 20
16 12.50 30.80 20 25.09 31.97 20 181.70 34.93 20
40 30.78 36.52 20 71.21 59.50 20 251.27 50.44 20
80 40.82 55.53 20 108.69 94.23 20 234.50 73.04 20

total - - 80 - - 80 - - 80

Figure 13: Performance characteristics over varying numbers of bids for the arbitrary distribution.
The first two columns for each algorithm are average runtimes and standard deviation on the solved
instances, while the last column lists how many of the 20 instances were solved. Finally, the last
row gives the total number of instances solved for each algorithm.
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# bids MIP NONE MBL-MPGL-L
8 158.36 56.44 20 185.83 35.37 20 13.34 15.39 20
16 430.72 239.91 7 264.16 79.97 20 28.88 20.65 20
40 - - 0 429.32 80.50 20 27.18 17.17 20
80 - - 0 552.74 98.31 20 212.12 103.34 20

total - - 27 - - 80 - - 80
# bids MBL-MPGS-L MBL-MPGL MBL-L

8 18.27 15.59 20 14.43 15.20 20 47.62 40.47 20
16 50.44 32.43 20 37.36 29.44 20 76.33 45.28 20
40 75.03 32.60 20 33.48 22.44 20 122.73 45.05 20
80 172.20 85.86 20 283.80 143.26 20 290.92 86.11 20

total - - 80 - - 80 - - 80
# bids MB-MPGL-L EF-MPGL-L MSW-MPGL-L

8 28.80 23.13 20 113.02 50.45 20 169.26 36.34 20
16 54.97 28.78 20 179.90 81.79 20 210.28 45.01 20
40 62.19 28.35 20 223.32 57.37 20 220.86 54.18 20
80 220.82 109.06 20 386.84 110.35 20 249.24 67.07 20

total - - 80 - - 80 - - 80

Figure 14: Performance characteristics over varying numbers of bids for the regions distribution.
The first two columns for each algorithm are average runtimes and standard deviation on the solved
instances, while the last column lists how many of the 20 instances were solved. Finally, the last
row gives the total number of instances solved for each algorithm.
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# bids MIP NONE MBL-MPGL-L
8 240.61 106.41 20 262.61 34.76 20 24.84 11.06 20
16 489.58 206.26 11 358.20 70.36 20 54.89 29.32 20
40 - - 0 495.74 65.32 20 38.24 19.60 20
80 - - 0 567.70 72.31 20 35.90 17.76 20

total - - 31 - - 80 - - 80
# bids MBL-MPGS-L MBL-MPGL MBL-L

8 24.86 10.71 20 28.97 13.01 20 42.03 16.85 20
16 55.82 30.47 20 72.89 42.69 20 66.75 42.04 20
40 38.86 20.06 20 46.84 25.11 20 30.50 16.18 20
80 36.25 18.37 20 43.83 26.88 20 32.50 13.05 20

total - - 80 - - 80 - - 80
# bids MB-MPGL-L EF-MPGL-L MSW-MPGL-L

8 70.29 33.07 20 210.79 47.61 20 228.85 38.38 20
16 74.41 39.56 20 268.30 64.36 20 253.32 62.18 20
40 38.01 20.98 20 143.25 61.57 20 129.54 56.86 20
80 32.79 17.20 20 118.50 65.57 20 74.45 33.23 20

total - - 80 - - 80 - - 80

Figure 15: Performance characteristics over varying numbers of bids for the matching distribution.
The first two columns for each algorithm are average runtimes and standard deviation on the solved
instances, while the last column lists how many of the 20 instances were solved. Finally, the last
row gives the total number of instances solved for each algorithm.

# bids MIP NONE MBL-MPGL-L
8 537.58 262.93 15 329.42 67.20 20 48.96 37.83 20
16 691.89 83.43 2 594.38 96.82 20 196.88 120.90 20
40 - - 0 781.62 117.91 16 128.51 159.80 20

total - - 17 - - 56 - - 60
# bids MBL-MPGS-L MBL-MPGL MBL-L

8 84.85 65.83 20 62.06 49.35 20 64.74 37.68 20
16 160.71 116.34 20 242.63 150.85 20 153.77 85.81 20
40 108.56 186.20 20 155.45 196.77 20 118.08 152.12 20

total - - 60 - - 60 - - 60
# bids MB-MPGL-L EF-MPGL-L MSW-MPGL-L

8 241.78 94.71 20 375.83 92.47 20 354.61 70.92 20
16 212.76 128.48 20 454.85 95.12 20 449.85 108.35 20
40 114.90 155.77 20 157.21 59.94 20 184.72 148.94 20

total - - 60 - - 60 - - 60

Figure 16: Performance characteristics over varying numbers of bids for the paths distribution.
The first two columns for each algorithm are average runtimes and standard deviation on the solved
instances, while the last column lists how many of the 20 instances were solved. Finally, the last
row gives the total number of instances solved for each algorithm.
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# bids MIP NONE MBL-MPGL-L
10 - - 0 - - 0 24.41 65.93 20
20 - - 0 - - 0 80.76 189.60 18
50 - - 0 - - 0 116.20 237.27 15

total - - 0 - - 0 - - 53
# bids MBL-MPGS-L MBL-MPGL MBL-L

10 34.29 83.82 20 - - 0 - - 0
20 29.25 55.05 18 - - 0 - - 0
50 110.95 212.07 15 85.08 167.90 14 157.68 246.94 14

total - - 53 - - 14 - - 14
# bids MB-MPGL-L EF-MPGL-L MSW-MPGL-L

10 - - 0 177.10 278.46 13 - - 0
20 - - 0 179.39 253.61 14 - - 0
50 114.02 175.94 14 143.62 226.60 7 - - 0

total - - 14 - - 34 - - 0

Figure 17: Performance characteristics over varying numbers of bids for the scheduling distribu-
tion. The first two columns for each algorithm are average runtimes and standard deviation on the
solved instances, while the last column lists how many of the 20 instances were solved. Finally,
the last row gives the total number of instances solved for each algorithm.
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