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Abstract

We introduce differential game logic (dGL) for specifying and verifying properties of hybrid
games, i.e. games on hybrid systems combining discrete and continuous dynamics. Unlike hy-
brid systems, hybrid games allow choices in the system dynamics to be resolved adversarially by
different players with different objectives. The logic dGL can be used to study the existence of
winning strategies for such hybrid games. We present a simple sound and complete axiomatiza-
tion of dGL relative to the fixpoint logic of differential equations. We prove hybrid games to be
determined and their winning regions to require higher closure ordinals and we identify separating
axioms, i.e. axioms that distinguish hybrid games from hybrid systems.





1 Introduction
Hybrid systems [Hen96] are dynamical systems combining discrete dynamics and continuous dy-
namics, which are important, e.g., for modeling how computers control physical systems. Hybrid
systems combine difference equations and differential equations with conditional switching, non-
determinism, and repetition. Hybrid systems are not semidecidable [Hen96], but nevertheless
studied by many successful verification approaches. They have a complete axiomatization relative
to differential equations in differential dynamic logic (dL) [Pla08, Pla12a], which extends Pratt’s
dynamic logic of conventional discrete programs [Pra76] to hybrid systems by adding differential
equations and a reachability relation semantics on the real Euclidean space.

We consider hybrid games [TPS98, TLS00, BBC10, VPVD11], i.e. games of two players on
a hybrid system, which have found a number of interesting applications [TPS98, TLS00, BBC10,
PHP01, VPVD11, QP12]. Hybrid games extend hybrid systems by adding an adversarial resolution
of the choices in the system dynamics. We obtain hybrid games from hybrid systems simply by
adding the dual operator d for passing control between the players. Hybrid games without d are
single player hybrid games, i.e. hybrid systems, because control never passes to the other player.
Hybrid games using d give both players control over their respective choices (as indicated by d).
They can play in reaction to the outcome that the previous choices by the players have had on the
state of the system.

One of the most fundamental questions about a hybrid game is whether a player has a winning
strategy1, i.e. a way to resolve its choices that will lead to a state in which that player wins, no
matter how the other player resolves his choices. We introduce differential game logic (dGL)
[Pla12b] for studying the existence of winning strategies for hybrid games. It generalizes hybrid
systems to hybrid games by adding the dual operator d and a winning strategy semantics on the
real Euclidean space.

Games and logic have been shown to interact fruitfully in many ways [GS53, Ehr61, Par83,
Par85, Aum95, HS97, Sti01, AHK02, PP03, CHP07, AG11, Vää11]. We focus on using logic to
specify and verify properties of hybrid games. Our approach is inspired by Parikh’s game logic
[Par83, Par85, PP03]. Game logic generalizes (propositional discrete) dynamic logic to discrete
games played on a finite state space. Game logic is elegant but very challenging. Its expressiveness
has only begun to be understood after two decades [Ber03, BGL07].

Our logic dGL generalizes differential dynamic logic (dL) [Pla08, Pla12a] from hybrid systems
to hybrid games and, simultaneously, generalizes game logic [Par83, Par85, PP03] from games
on discrete systems to hybrid systems with their differential equations, uncountable state spaces,
uncountably many possible moves, and interacting discrete and continuous dynamics.

Hybrid games generalize discrete games [vNM55, Nas51]. The games we consider are rea-
sonably tame sequential, non-cooperative, zero-sum two-player games of perfect information with
payoffs ±1, except that they are played on hybrid systems, which makes backwards induction
for winning regions on hybrid games more difficult, because it requires higher closure ordinals.
Hybrid games provide a complementary perspective on differential games. Differential games

1 A closely related question is about ways to exhibit the winning strategy, for which existence is a prerequisite and
a constructive proof an answer. If we know from which states a winning strategy exists, local search is enough.
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formalize various notions of adversarial control on variables for a single differential equation
[Isa67, Fri71, Pet93], including solutions based on a non-anticipatory measurable input to an in-
tegral interpretation of the differential equations [Fri71], joint limits of lower and upper limits of
δ-anticipatory or δ-delayed strategies for δ → 0 [Pet93], and Pareto-optimal, Nash, or Stackelberg
equilibria, whose computation requires solving PDEs that quickly become ill-posed (e.g., for feed-
back Nash equilibria unless for dimension one or linear-quadratic games); see Bressan [Bre10] for
an overview. Hybrid games, instead, distinguish discrete versus continuous parts of the dynamics,
which simplifies several concepts and, simultaneously, has been argued to make other aspects more
realistic [TPS98, TLS00, BBC10, VPVD11, PHP01, QP12]. The situation is similar to hybrid sys-
tems, which provide a complementary perspective on dynamical systems [Hen96, Pla12a].

Our primary contributions are that we identify the logical essence of hybrid games and their
game combinators by introducing differential game logic for hybrid games with a simple modal
semantics and a simple proof calculus, which we prove to be a sound and complete axiomati-
zation relative to the fixpoint logic of differential equations. Completeness for game logics is a
subtle problem. Completeness of propositional game logic has been an open problem for 30 years
[Par83]. We do not address this case, but focus on hybrid games and prove a generalization of
Parikh’s calculus to be relatively complete for hybrid games. Our completeness proof is construc-
tive and identifies a fixpoint-style proof technique, which can be considered a modal analogue
of characterizations in the Calculus of Constructions [CH88]. This technique is practical for hy-
brid games, and even more efficient for hybrid systems than previous complete proof techniques.
These results suggest hybrid versions of influential views of understanding program invariants as
fixpoints [CC77, Cla79]. In particular, Harel’s convergence rule [HMP77], which poses significant
practical challenges for hybrid systems verification, turns out to be unnecessary for hybrid games,
hybrid systems, and programs.

We identify separating axioms capturing the logical difference of hybrid systems versus hybrid
games. We prove hybrid games to be consistent and determined, i.e. in every state, exactly one
player has a winning strategy, which is the basis for assigning classical truth to logical formulas
that refer to winning strategies of hybrid games. We show that winning regions of hybrid games
need higher closure ordinals.

We remark that a mere fragment of dGL can be used to verify tricky case studies in robotic fac-
tory automation [QP12] that are out of scope for other approaches. But we focus on the theoretical
development of the logic here, not its use.

2 Differential Game Logic
The hybrid games we consider have no draws. If a player is deadlocked, he loses right away.
If the game completes without deadlock, the player who reaches one of his winning states wins.
Thus, exactly one player wins each (completed) game play with complementary winning states.
The games are zero-sum games, i.e. if one player wins, the other one loses, with player payoffs
±1. Classically, the two players are called Angel and Demon. Our games are non-cooperative and
sequential games. In non-cooperative games, players do not negotiate binding contracts, but can
choose to act arbitrarily according to the rules represented in the game. Sequential (or dynamic)
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games are games that proceed in a series of steps, where, at each step, exactly one of the players
can choose an action based on the outcome of the game so far. Concurrent games, where both
players choose actions simultaneously, as well as equivalent games of imperfect information, are
interesting but beyond the scope of this paper yet related [vNM55, AHK02, BP09].

2.1 Syntax
Differential game logic (dGL) is for studying properties of many different hybrid games. The idea
is to describe the game form, i.e. rules, dynamics, and choices of the particular hybrid game of
interest, using a program notation and then study its properties by proving the validity of logical
formulas that refer to the existence of winning strategies for objectives of those hybrid games.
Even though hybrid game (forms) only describe the game form, we still simply refer to them as
hybrid games. The objective is defined as part of the logical formula.

Definition 1 (Hybrid games). The hybrid games of differential game logic dGL are defined by
the following grammar (α, β are hybrid games, x a vector of variables, θ a vector of (polynomial)
terms of the same dimension, H a formula of first-order real arithmetic, and φ is a dGL formula):

α, β ::= x := θ | x′ = θ&H | ?φ | α ∪ β | α; β | α∗ | αd

Definition 2 (dGL formulas). The formulas of differential game logic dGL are defined by the
following grammar (φ, ψ are dGL formulas, p is a predicate symbol, θi are (polynomial) terms, x
a variable, and α is a hybrid game):

φ, ψ ::= p(θ1, . . . , θk) | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∃xφ | 〈α〉φ | [α]φ

Operators >,=,≤, <,∨,→,↔, ∀x can be defined as usual, e.g., ∀xφ ≡ ¬∃x¬φ. Formula
〈α〉φ expresses that Angel has a winning strategy to achieve φ in hybrid game α, i.e. Angel has a
strategy to reach any of the states satisfying dGL formula φwhen playing hybrid game α, no matter
what strategy Demon chooses. The formula [α]φ expresses that Demon has a winning strategy to
achieve φ in hybrid game α, i.e. a strategy to reach any of the states satisfying φ, no matter what
strategy Angel chooses. Note that the same game is played in [α]φ as in 〈α〉φ with the same
choices resolved by the same players. The difference between both dGL formulas is the player
whose winning strategy they refer to. Both use the set of states where dGL formula φ is true as the
winning states for that player.

The atomic games of dGL are assignments, continuous evolutions, and tests. In the determinis-
tic assignment game x := θ, the value of variable x changes instantly and deterministically to that of
θ by a discrete jump without any choices to resolve. In the continuous evolution game x′ = θ&H ,
the system follows the differential equation x′ = θ where the duration is Angel’s choice, but Angel
is not allowed to choose a duration that would make the state leave the region where formula H
holds. In particular, Angel is deadlocked and loses if H does not hold in the current state, because
she cannot even evolve for duration 0 then. The test game or challenge ?φ has no effect on the
state, except that Angel loses the game if dGL formula φ does not hold in the current state.

The compound games of dGL are sequential composition, choice, repetition, and duals. The
sequential game α; β is the hybrid game that first plays hybrid game α and, when hybrid game α
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terminates without a player having won already, continues by playing game β. In the choice game
α ∪ β, Angel chooses whether to play hybrid game α or play hybrid game β. The repeated game
α∗ plays hybrid game α repeatedly and Angel chooses, after each play of α that terminates without
a player having won already, whether to play the game again or not, albeit she cannot choose to
play indefinitely but has to stop repeating ultimately. Most importantly, the dual game αd is the
same as playing the hybrid game α with the roles of the players swapped. That is Demon decides
all choices in αd that Angel has in α, and Angel decides all choices in αd that Demon has in α.
Players who are supposed to move but deadlock lose. Thus, while the test game ?φ causes Angel to
lose if formula φ does not hold, the dual test game (or dual challenge game) (?φ)d causes Demon
to lose if φ does not hold. The dual operator d is the only syntactic difference of dGL for hybrid
games compared to dL for hybrid systems [Pla08, Pla12a], but a fundamental one, because it is
the only operator where control passes from Angel to Demon or back. Without d all choices are
resolved uniformly by one player.

The logic dGL only provides logically essential operators. Many other game interactions for
games of perfect information can be defined from the elementary operators that dGL provides.
Demonic choice between hybrid game α and β is α ∩ β, defined by (αd ∪ βd)d, in which either the
hybrid game α or the hybrid game β is played, by Demon’s choice. Demonic repetition of hybrid
game α is α×, defined by ((αd)

∗
)d, in which α is repeated as often as Demon chooses to. In α×,

Demon chooses after each play of α whether to repeat the game, but cannot play indefinitely so
he has to stop repeating ultimately. The dual differential equation (x′ = θ&H)d follows the same
dynamics as x′ = θ&H except that Demon chooses the duration, so he cannot choose a duration
during which H stops to hold at any time. Hence he loses when H does not hold in the current
state. Dual assignment (x := θ)d is equivalent to x := θ, because it involves no choices.

Observe that every (completed) play of a game is won or lost by exactly one player. Even a
play of repeated game α∗ has only one winner, because the game stops as soon as one player has
won. This is different than the repetition of whole game plays (including winning/losing), where
the purpose is for the players to repeat the same game over and over again, win and lose multiple
times, and study who wins how often in the long run with mixed strategies. In our scenario, the
overall game is played once (even if some part of it constitutes in repeating action choices) and
stops as soon as either Angel or Demon have won. In applications, the system is already in trouble
even if it loses the game only once, because that may entail that a safety-critical property has
already been violated.

2.2 Semantics
A state s is a mapping from variables to R. An interpretation I assigns a relation I(p) ⊆ Rk to
each predicate symbol p of arity k. We let the interpretation also determine the set of states S,
which is isomorphic to a Euclidean space Rn when n is the number of relevant variables. For a
subset X ⊆ S we abbreviate S \X by X{. We use sdx to denote the state that agrees with state s
except for the interpretation of variable x, which is changed to d ∈ R. The value of term θ in
state s is denoted by [[θ]]s. The denotational semantics of dGL formulas is defined by simultaneous
induction with the denotational semantics, ςα(·) and δα(·), of hybrid games, defined in Def. 4.
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Definition 3 (dGL semantics). The semantics of a dGL formula φ for each interpretation I is the
subset [[φ]]I ⊆ S of states in which φ is true. It is defined inductively as follows

1. [[p(θ1, . . . , θk)]]
I = {s ∈ S : ([[θ1]]s, . . . , [[θk]]s) ∈ I(p)}

2. [[θ1 ≥ θ2]]I = {s ∈ S : [[θ1]]s ≥ [[θ2]]s}

3. [[¬φ]]I = ([[φ]]I){

4. [[φ ∧ ψ]]I = [[φ]]I ∩ [[ψ]]I

5. [[∃xφ]]I = {s ∈ S : srx ∈ [[φ]]I for some r ∈ R}

6. [[〈α〉φ]]I = ςα([[φ]]I)

7. [[[α]φ]]I = δα([[φ]]I)

A dGL formula φ is valid in I , written I |= φ, iff [[φ]]I = S. Formula φ is valid, � φ, iff I |= φ for
all interpretations I .

Definition 4 (Semantics of hybrid games). The semantics of a hybrid game α is a function ςα(·)
that, for each interpretation I and each set of Angel’s winning states X ⊆ S gives the winning
region, i.e. the set of states ςα(X) from which Angel has a winning strategy to achieveX (whatever
strategy Demon chooses). It is defined inductively as follows2

1. ςx:=θ(X) = {s ∈ S : s
[[θ]]s
x ∈ X}

2. ςx′=θ&H(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for some r ∈ R≥0 and (differentiable) ϕ : [0, r]→ S
such that ϕ(ζ) ∈ [[H]]I and dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) for all 0 ≤ ζ ≤ r}

3. ς?φ(X) = [[φ]]I ∩X

4. ςα∪β(X) = ςα(X) ∪ ςβ(X)

5. ςα;β(X) = ςα(ςβ(X))

6. ςα∗(X) =
⋂
{Z ⊆ S : X ∪ ςα(Z) ⊆ Z}

7. ςαd(X) = (ςα(X{)){

The winning region of Demon, i.e. the set of states δα(X) from which Demon has a winning
strategy to achieve X (whatever strategy Angel chooses) is defined inductively as follows

1. δx:=θ(X) = {s ∈ S : s
[[θ]]s
x ∈ X}

2 The semantics of a hybrid game is not just a reachability relation as for hybrid systems [Pla12a], because the
dynamic interactions and nested choices of the players have to be taken into account.
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2. δx′=θ&H(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for all r ∈ R≥0 and (differentiable) ϕ : [0, r]→ S
such that ϕ(ζ) ∈ [[H]]I and dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) for all 0 ≤ ζ ≤ r}

3. δ?φ(X) = ([[φ]]I){ ∪X

4. δα∪β(X) = δα(X) ∩ δβ(X)

5. δα;β(X) = δα(δβ(X))

6. δα∗(X) =
⋃
{Z ⊆ S : Z ⊆ X ∩ δα(Z)}

7. δαd(X) = (δα(X{)){

We write ςα(X) instead of ςIα(X) and δα(X) instead of δIα(X), because the interpretation I that
gives a semantics to predicate symbols in tests and evolution domains is clear from the context.
Strategies do not occur explicitly in the dGL semantics, because it is based on the existence of
winning strategies, not the strategies. The semantics is compositional, i.e. the semantics of a
compound dGL formula is a simple function of the semantics of its pieces, and the semantics of
a compound hybrid game is a function of the semantics of its pieces. This makes it possible to
identify a compositional proof calculus. Furthermore, existence of a strategy in hybrid game α to
achieve X is independent of any game and dGL formula surrounding α, but just depends on the
remaining game α itself and the goal X . By a simple inductive argument, this shows that one can
focus on memoryless strategies, because the existence of strategies does not depend on the context,
hence, by working bottom up, the strategy itself cannot depend on past states and choices, only the
current state, remaining game, and goal. This follows from a generalization of a classical result
[Zer13], but is directly apparent in our logical setting.

The semantics is monotone, i.e. larger sets of winning states induce larger winning regions.

Lemma 1 (Monotonicity). The semantics is monotone, i.e. ςα(X) ⊆ ςα(Y ) and δα(X) ⊆ δα(Y )
for all X ⊆ Y .

Proof. A simple check based on the observation that X only occurs with an even number of nega-
tions in the semantics. For example, ςα∗(X) =

⋂
{Z ⊆ S : X ∪ ςα(Z) ⊆ Z} ⊆

⋂
{Z ⊆

S : Y ∪ ςα(Z) ⊆ Z} = ςα∗(Y ) if X ⊆ Y . Likewise, X ⊆ Y implies X{ ⊇ Y {, hence
ςα(X{) ⊇ ςα(Y {), so ςαd(X) = (ςα(X{)){ ⊆ (ςα(Y {)){ = ςαd(Y ).

Monotonicity implies that the least fixpoint in ςα∗(X) and the greatest fixpoint in δα∗(X) are
well-defined [HKT00, Lemma 1.7]. The semantics of ςα∗(X) is a least fixpoint, which results in a
well-founded repetition of α, i.e. Angel can repeat any number of times but she ultimately needs
to stop at a state in X in order to win. The semantics of δα∗(X) is a greatest fixpoint, instead,
for which Demon needs to achieve a state in X after every number of repetitions, because Angel
could choose to stop at any time, but Demon still wins if he only postpones X{ forever, because
Angel ultimately has to stop repeating. Thus, for the formula 〈α∗〉φ, Demon already has a winning
strategy if he only has a strategy that is not losing by preventing φ indefinitely, because Angel
eventually has to stop repeating anyhow and will then end up in a state not satisfying φ, which
makes her lose. The situation for [α∗]φ is dual.
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Hybrid games branch finitely when the players decide which game to play in α ∪ β and α ∩ β,
respectively. The games α∗ and α× also branch finitely, because, after each repetition of α, the
respective player (Angel for α∗ and Demon for α×) may decide whether to repeat again or stop.
Repeated games may still lead to infinitely many branches, because a repeated game can be re-
peated any number of times. The game branches uncountably infinitely, however, when the players
decide how long to evolve along differential equations in x′ = θ&H and (x′ = θ&H)d, because
uncountably many nonnegative real number could be chosen as a duration (unless the system leaves
H immediately). These choices can be made explicit by relating the simple denotational modal
semantics of dGL to an equivalent operational game semantics (Appendix C).
Example 1. The following simple dGL formula

〈(x := x+ 1; (x′ = x2)d ∪ x := x− 1)
∗〉 (0 ≤ x < 1) (1)

is true in all states from which there is a winning strategy for Angel to reach [0,1). It is Angel’s
choice whether to repeat (∗) and, if she does, it is her choice (∪) whether to increase x and then
give Demon control over the duration of the differential equation x′ = x2 (left game) or whether
to decrease x (right game). Unlike the following variation, formula (1) is valid:

〈(x := x+ 1; (x′ = x2)d ∪ (x := x− 1 ∩ x := x− 2))
∗〉(0≤x<1)

3 Meta-Properties

3.1 Determinacy
Every particular game play in a hybrid game is won by exactly one player, because there are no
draws. That alone does not imply determinacy, i.e. that, from any initial situation, either one of the
players always has a winning strategy to force a win, regardless of how the other player chooses to
play.

In order to understand the importance of determinacy for classical logics, we consider the
semantics of repetition, which is defined as a least fixpoint. It is crucial that this defines a well-
founded repetition. Otherwise, the filibuster formula would not have a well-defined truth-value:

〈(x := 0 ∩ x := 1)∗〉x = 0 (2)

It is Angel’s choice whether to repeat (∗), but it is Demon’s choice (∩) whether to do x := 0 or
x := 1. The game in this formula never deadlocks (stalemates), because every player always has a
remaining move (here even two). But, without the least fixpoint, the game would have perpetual
checks, because no strategy helps either player win the game; see Fig. 1. Demon can move x := 1
and would win, but Angel observes this and decides to repeat, so Demon can again move x := 1.
Thus (unless Angel is lucky starting from an initial state where she has won already) every strategy
that one player has to reach x = 0 or x = 1 could be spoiled by the other player so the game would
not be determined, i.e. no player has a winning strategy. Every player can let his opponent win, but
would not have a strategy to win himself. Because of the least fixpoint ςα∗(X) in the semantics,
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Figure 1: The filibuster game formula 〈(x := 0 ∩ x := 1)∗〉x = 0 is false (unless x = 0 initially),
but would be non-determined without least fixpoints (strategies follow thick actions). Angel’s
action choices are illustrated by dashed edges from dashed diamonds, Demon’s action choices by
solid edges from solid squares, and double lines indicate identical states with the same continuous
state and a subgame of the same structure of subsequent choices. States where Angel wins are
marked � and states where Demon wins by �.

however, repetitions have to stop eventually (after an arbitrary unbounded number of rounds).
Hence, in the example in Fig. 1, Demon still wins and formula (2) is false, unless x = 0 holds
initially. In other words, the formula in (2) is equivalent to x = 0. Likewise, the dual filibuster
game formula x = 0 → 〈(x := 0 ∪ x := 1)×〉x = 0 is (determined and) valid, because Demon
has to stop repeating × eventually so that Angel will win if she just patiently plays x := 0 each
time. Similarly, it is important that Angel can only choose real durations r ∈ R≥0 for a continuous
evolution game x′ = θH & , not infinity, so she will ultimately stop.

For dGL to be a classical two-valued modal logic, hybrid games have no draws during any
game play. But, because modalities refer to the existence of winning strategies, they only receive
classical truth values if we additionally ensure that, from each state, one of the players has a
winning strategy for complementary winning conditions of a hybrid game α. That is, we need to
make sure that hybrid games are determined. Note that logic makes this proof very simple, without
the need to use the deep Borel determinacy theorem for winning conditions that are Borel in the
product topology induced on game trees by the discrete topology of actions [Mar75].
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Theorem 2 (Consistency & determinacy). Hybrid games are consistent and determined, i.e.
� ¬〈α〉¬φ↔ [α]φ.

Proof. We prove by induction on the structure of α that ςα(X{){ = δα(X) for all X ⊆ S and all I
with some set of states S, which implies the validity of ¬〈α〉¬φ↔ [α]φ using X def

= [[φ]]I .

1. ςx:=θ(X{){ = {s ∈ S : s
[[θ]]s
x 6∈ X}{ = ςx:=θ(X) = δx:=θ(X)

2. ςx′=θ&H(X{){ = {ϕ(0) ∈ S : ϕ(r) 6∈ X for some 0 ≤ r ∈ R and some (differen-
tiable) ϕ : [0, r]→ S such that dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[H]]I for all 0 ≤ ζ ≤ r}{
= δx′=θ&H(X), because the set of states from which there is no winning strategy for Angel
to reach a state in X{ prior to leaving [[H]]I along x′ = θ&H is exactly the set of states from
which x′ = θ&H always stays in X (until leaving [[H]]I in case that ever happens).

3. ς?φ(X{){ = ([[φ]]I ∩X{){ = ([[φ]]I){ ∪ (X{){ = δ?φ(X)

4. ςα∪β(X{){ = (ςα(X{) ∪ ςβ(X{)){ = ςα(X{){ ∩ ςβ(X{){ = δα(X) ∩ δβ(X) = δα∪β(X)

5. ςα;β(X{){ = ςα(ςβ(X{)){ = ςα(δβ(X){){ = δα(δβ(X)) = δα;β(X)

6. ςα∗(X{){ =
(⋂
{Z ⊆ S : X{ ∪ ςα(Z) ⊆ Z}

){
=
(⋂
{Z ⊆ S : (X ∩ ςα(Z){){ ⊆ Z}

){
=
(⋂
{Z ⊆ S : (X ∩ δα(Z{)){ ⊆ Z}

){
=
⋃
{Z ⊆ S : Z ⊆ X ∩ δα(Z)} = δα∗(X). 3

7. ςαd(X{){ = (ςα((X{){){){ = δα(X{){ = δαd(X)

One direction of Theorem 2 implies � ¬〈α〉¬φ→ [α]φ, i.e. � 〈α〉¬φ ∨ [α]φ, which means that,
from any initial state, either Angel has a winning strategy to achieve ¬φ or Demon has a winning
strategy to achieve φ. That is, hybrid games are determined, because there are no states from
which none of the players has a winning strategy (for the same hybrid game α and complementary
winning conditions ¬φ and φ, respectively). At least one player, thus, has a winning strategy for
complementary winning conditions. The other direction of Theorem 2 implies � [α]φ→ ¬〈α〉¬φ,
i.e. � ¬([α]φ ∧ 〈α〉¬φ), which means that there is no state from which Angel has a winning strat-
egy to achieve ¬φ and, simultaneously, Demon has a winning strategy to achieve φ. That is, hybrid
games are consistent, because at most one player has a winning strategy for complementary win-
ning conditions. Along with modal congruence rules which hold for dGL, Theorem 2 makes dGL
a classical modal logic [Che80].

Hybrid games α and β are equivalent if ςα(X) = ςβ(X) for all X and all I . By Theorem 2, α
and β are equivalent iff δα(X) = δβ(X) for all X and all I . Using the equivalences

(α ∪ β)d ≡ αd ∩ βd, (α; β)d ≡ αd; βd, (α∗)d ≡ (αd)×, αdd ≡ α

3The penultimate equation follows, e.g., from the µ-calculus equivalence νZ.Υ(Z) ≡ ¬µZ.¬Υ(¬Z) and from the
fact that least pre-fixpoints are fixpoints and that greatest post-fixpoints are fixpoints.
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on hybrid games, every hybrid game α can be transformed into an equivalent hybrid game in which
d only occurs right after atomic games or as part of the definition of the derived operators ∩ and ×.
Other equivalences include x′ = θ∗ ≡ x′ = θ.

3.2 Strategic Closure Ordinals
In order to examine whether we could directly implement the dGL semantics to compute winning
regions for formulas by a reachability computation, we investigate how many iterations the fixpoint
for the semantics ςα∗(X) of repetition needs. The interaction of the repetition operator and the
dual operator in dGL makes things more difficult compared to hybrid systems without d. The
combination of ∗ and d is also more challenging than bounded hybrid games without ∗, which can
be unfolded equivalently into logic for hybrid systems by a simple construction using our proof
calculus in Section 4.

3.2.1 Scott-Continuity

Repetitions in classical hybrid systems only repeat any finite number of times [Pla12a]. If the
semantics of dGL were Scott-continuous, we would know that this was the case for dGL as well.
Dual-free α are indeed Scott-continuous.

Lemma 3 (Scott-continuity of d-free dGL). For d-free α, the semantics is Scott-continuous, i.e.
ςα(
⋃
n∈J Xn) =

⋃
n∈J ςα(Xn) for all families {Xn}n∈J with any index set J .

Proof. By monotonicity,
⋃
n∈J ςα(Xn) ⊆ ςα(

⋃
n∈J Xn). We show the converse inclusion by a

simple induction on the structure of α: ςα(
⋃
n∈J Xn) ⊆

⋃
n∈J ςα(Xn). IH is short for induction

hypothesis.

1. ςx:=θ(
⋃
n∈J Xn) = {s ∈ S : s

[[θ]]s
x ∈

⋃
n∈J Xn} ⊆

⋃
n∈J{s ∈ S : s

[[θ]]s
x ∈ Xn} =⋃

n∈J ςx:=θ(Xn), since s[[θ]]s
x ∈

⋃
n∈J Xn implies s[[θ]]s

x ∈ Xn for some n.

2. ςx′=θ&H(
⋃
n∈J Xn) = {ϕ(0) ∈ S : dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[H]]I for all ζ ≤ r for
some (differentiable) ϕ : [0, r]→ S such that ϕ(r) ∈

⋃
n∈J Xn} ⊆

⋃
n∈J ςx′=θ&H(Xn) =

{ϕ(0) ∈ S : . . . ϕ(r) ∈ Xn}, because ϕ(r) ∈
⋃
n∈J Xn implies ϕ(r) ∈ Xn for some n.

3. ς?φ(
⋃
n∈J Xn) = [[φ]]I ∩

⋃
n∈J Xn =

⋃
n∈J([[φ]]I ∩Xn) =

⋃
n∈J ς?φ(Xn)

4. ςα∪β(
⋃
n∈J Xn) = ςα(

⋃
n∈J Xn) ∪ ςβ(

⋃
n∈J Xn)

IH
= (

⋃
n∈J ςα(Xn)) ∪ (

⋃
n∈J ςβ(Xn)) =⋃

n∈J(ςα(Xn) ∪ ςβ(Xn)) =
⋃
n∈J ςα∪β(Xn)

5. ςα;β(
⋃
n∈J Xn) = ςα(ςβ(

⋃
n∈J Xn))

IH
= ςα(

⋃
n∈J ςβ(Xn))

IH
=
⋃
n∈J ςα(ςβ(Xn)) =⋃

n∈J ςα;β(Xn)

ςα∗(
⋃
n∈J Xn) = (

⋃
n∈J Xn) ∪ ςα(ςα∗(

⋃
n∈J Xn)) is the least fixpoint. We will show that⋃

n∈J ςα∗(Xn) also is a fixpoint, implying ςα∗(
⋃
n∈J Xn) ⊆

⋃
n∈J ςα∗(Xn). Indeed,
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(
⋃
n∈J Xn) ∪ ςα(

⋃
n∈J ςα∗(Xn))

IH
= (
⋃
n∈J Xn) ∪

⋃
n∈J ςα(ςα∗(Xn)) =⋃

n∈J(Xn ∪ ςα(ςα∗(Xn))
µ
=
⋃
n∈J ςα∗(Xn). The equation marked µ uses that ςα∗(Xn) is a

fixpoint.

Games with both d and ∗, however, do not generally have a Scott-continuous semantics nor
an ω-chain continuous semantics, i.e. they are not even continuous for a monotonically increasing
chain X0 ⊆ X1 ⊆ X2 ⊆ . . . with index set ω:

R = ςy:=y+1×(
∞⋃
n=1

(−∞, n]) *
∞⋃
n=1

ςy:=y+1×((−∞, n]) = ∅

since � 〈y := y + 1×〉∃n :N y ≤ n

but 2 ∃n :N 〈y := y + 1×〉y ≤ n

This example shows that, even though Angel wins this game, there is no upper bound < ω on the
number of iterations it takes her to win, because Demon could repeat y := y + 1× arbitrarily often.
This phenomenon is directly related to a failure of the Barcan axiom (Section 4.4). The quantifier
∃n :N over natural numbers is not essential here [Pla08].

A continuous variation of this argument shows that the semantics is not ω1-based, where ω1

is the first uncountable ordinal. A function τ on sets is κ-based, for an ordinal κ, if for all X ,
x ∈ τ(X) implies x ∈ τ(Y ) for some Y ⊆ X of cardinality < κ. The semantics ςα(·) is not
ω1-based, because of Lemma 1 and removing just one state from the winning condition may lose
states in the winning region:

[0,∞) = ςx′=1d([0,∞))

but 0 6∈ ςx′=1d([0,∞) \ {a}) = (a,∞) for all a > 0

3.2.2 Fixpoints

While ω may not be the number of iterations for the winning region ςα∗(X), Knaster-Tarski’s
seminal fixpoint theorem entails that there is some ordinal λ̄ at which the iterations for the seman-
tics of α∗ stop. We use the following minor variation (starting with x at the bottom) of Kozen’s
formulation of the Knaster-Tarski theorem [HKT00, Theorem 1.12].

Let τ : L → L a monotone operator on a partial order L, then τλ(x)
def
= x ∪

⋃
κ<λ

τ(τκ(x)) for

all ordinals λ is equivalent to:

τ 0(x)
def
= x

τκ+1(x)
def
= x ∪ τ (τκ(x))

τλ(x)
def
=
⋃
κ<λ

τκ(x) λ 6= 0 a limit ordinal

11



Yet,
⋃

and τλ(x) are only guaranteed to exist if L is a complete partial order. If there is a λ̄ such
that τ λ̄(x) = τ λ̄+1(x), then τ λ̄(x) is the least fixpoint above x and for all κ:

τ †(x)
def
=
⋂
{z ∈ L : x ⊆ z, τ(z) ⊆ z} = τ λ̄(x) = τ λ̄+κ(x)

The least ordinal λ̄ with that property is called closure ordinal. If τ is Scott-continuous on a com-
plete partial order, then τ †(x) = τω(x) by Kleene’s fixpoint theorem, implying λ̄ ≤ ω. But ςα(·) is
not generally Scott-continuous, so λ̄ might potentially be greater. If τ is countably-continuous on
a complete partial order, then λ̄ ≤ ω1. But this is not the case for ςα(·) either, by the argument in
Section 3.2.1.

Theorem 4 (Knaster-Tarski [HKT00]). For every complete lattice L, there is an ordinal λ̄ of
cardinality ≤ |L| such that, for each monotone τ : L → L, i.e. τ(x) ⊆ τ(y) for all x ⊆ y, the
fixpoints of τ in L are a complete lattice and for all x and κ:

τ †(x)
def
=
⋂
{z ∈ L : x ⊆ z, τ(z) ⊆ z} = τ λ̄(x) = τ λ̄+κ(x)

We first collect useful properties of τκ(·). Since we use the extensive / inflationary definition
of τκ(x), τκ(x) is not just monotone in x but also monotone and homomorphic in κ:

Lemma 5. τ is inductive, i.e. τκ(x) ⊆ τλ(x) for all κ ≤ λ and homomorphic in κ, i.e.
τκ+λ(x) = τλ(τκ(x)) for all κ, λ.

Proof. Inductiveness, i.e. τκ(x) ⊆ τλ(x) for κ ≤ λ, which is monotonicity in κ, holds by definition
[HKT00, Lemma 1.11]. Homomorphy in κ, i.e. τκ+λ(x) = τλ(τκ(x)) can be proved by induction
on λ, which is either 0, a successor ordinal (second line) or a limit ordinal 6= 0 (third line):

τκ+0(x) = τκ(x) = τ 0(τκ(x))

τκ+(λ+1)(x) = x ∪ τ(τκ+λ(x)) = x ∪ τ(τλ(τκ(x)))

= τκ(x) ∪ τ(τλ(τκ(x))) = τλ+1(τκ(x))

τκ+λ(x) =
⋃

ι<κ+λ

τ ι(x) =
⋃
ι<κ

τ ι(x) ∪
⋃
ι<λ

τκ+ι(x)

=
⋃
ι<λ

τκ+ι(x) =
⋃
ι<λ

τ ι(τκ(x)) = τλ(τκ(x))

3.2.3 Higher Closure Ordinals

By Theorem 4, there is an ordinal λ̄ of cardinality ≤ |R| such that ςα∗(X) = ς λ̄α(X) for all α and
all X , because the powerset lattice is complete and ςα(·) monotone by Lemma 1. This iterative
definition ς λ̄α(X) corresponds to backward induction in classical game theory [vNM55, Aum95],
yet it terminates at ordinal λ̄ which may not be finite. How soon will this fixpoint iteration for
winning regions stop? Unfortunately, hybrid games may have higher closure ordinals, because
ω many repetitions of the operator (and even ωn many) may not be enough to compute winning
regions.
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Theorem 6 (Closure ordinals). The semantics of dGL has a closure ordinal ≥ ωω, i.e. for all
λ < ωω, there are α and X such that ςα∗(X) 6= ςλα(X).

Proof. We show an easier proof that the closure ordinal is≥ ω ·2 and show the full proof for≥ ωω

in Appendix E. The specific dGL formulas considered for these increasing lower bounds also show
that the closure ordinal is not a simple function of the syntactic structure, because minor syntactic
variations lead to vastly different closure ordinals. To see that the closure ordinal is > ω even with
just one variable, a single loop and dual, we consider the semantics of the following dGL formula,
i.e. the set of states in which it is true:

〈(x := x+ 1;x′ = 1d︸ ︷︷ ︸
α

∪ x := x− 1︸ ︷︷ ︸
β

)
∗〉 (0 ≤ x < 1)

We show that the winning regions for this dGL formula stabilize after ω · 2 iterations, because ω
many iterations are necessary to show that any positive real can be reduced to [0, 1) by choosing
β sufficiently often, whereas another ω many iterations are needed to show that choice α, which
makes progress ≥ 1 but possibly more under Demon’s control, can turn x into a positive real. It is
easy to see that ςωα∪β([0, 1)) =

⋃
n∈N ς

n
α∪β([0, 1)) = [0,∞), because ςnα∪β([0, 1)) = [0, n) holds for

all n ∈ N by a simple inductive argument:

ς1
α∪β([0, 1)) = [0, 1)

ςn+1
α∪β ([0, 1)) = [0, 1) ∪ ςα∪β(ςnα∪β([0, 1))) = [0, 1) ∪ ςα∪β([0, n))

= [0, 1) ∪ ςα([0, n)) ∪ ςβ([0, n)) = [0, 1) ∪ ∅ ∪ [1, n+ 1)

But the iteration for the winning region does not stop at ω, because ςω+n
α∪β ([0, 1)) = [−n,∞) holds

for all n ∈ N by another simple inductive argument:

ςω+n+1
α∪β ([0, 1)) = [0, 1) ∪ ςα∪β(ςω+n

α∪β ([0, 1)))

= [0, 1) ∪ ςα∪β([−n,∞))

= [0, 1) ∪ ςα([−n,∞)) ∪ ςβ([−n,∞))

= [−n− 1,∞) ∪ [−n,∞)

Thus, ςω·2α∪β([0, 1)) = ςω+ω
α∪β ([0, 1)) =

⋃
n∈N ς

ω+n
α∪β ([0, 1)) = R = ςα∪β(R). In this case, the closure

ordinal is ω · 2 > ω, since ς(α∪β)∗([0, 1)) = R 6= ςω+n
α∪β ([0, 1)) for all n ∈ N.

Consequently, the dGL semantics is more general than defining ςα∗(X) to be truncated to ω-
repetition ςωα (X) =

⋃
n∈N ς

n
α(X), which misses out on the existence of perfectly natural winning

strategies. The semantics of dGL is also different than advance notice semantics; see Appendix D.

4 Axiomatization
Simple dGL formulas can be checked by a tableau procedure that expands all choices and detects
loops for termination as in our game tree examples (Fig. 1). This principle does not extend to more
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general hybrid games with inherently infinite state spaces [Hen96] and which need higher ordinals
of iteration for computing winning regions by Theorem 6. Reachability computations for higher
ordinals may not terminate, except when widening to find approximations and risk incompleteness
[CC77]. Widening would be interesting, but we focus on axiomatizations in logic to identify the
logical essence.

4.1 Proof Calculus
Fig. 2 presents a proof calculus for proving validity of dGL formulas as a more general symbolic
proof technique.

[·] [α]φ↔ ¬〈α〉¬φ

〈:=〉 〈x := θ〉φ(x)↔ φ(θ)

〈′〉 〈x′ = θ〉φ↔ ∃t≥0 〈x := y(t)〉φ (y′(t) = θ)

〈?〉 〈?ψ〉φ↔ (ψ ∧ φ)

〈∪〉 〈α ∪ β〉φ↔ 〈α〉φ ∨ 〈β〉φ

〈;〉 〈α; β〉φ↔ 〈α〉〈β〉φ

〈∗〉 φ ∨ 〈α〉〈α∗〉φ→ 〈α∗〉φ

〈d〉 〈αd〉φ↔ ¬〈α〉¬φ

M
φ→ ψ

〈α〉φ→ 〈α〉ψ

FP
φ ∨ 〈α〉ψ → ψ

〈α∗〉φ→ ψ

Figure 2: Differential game logic axiomatization

The proof calculus of dGL shares axioms with dL [Pla12a] and game logic [PP03]. It is
based on the first-order Hilbert calculus (uniform substitution, modus ponens, and Bernays’ ∀-
generalization) with all instances of valid formulas of first-order logic as axioms, including first-
order real arithmetic [Tar51].

Axiom [·] describes the duality of winning strategies for complementary winning conditions
of Angel and Demon, i.e. that Demon has a winning strategy to achieve φ in hybrid game α if
and only if Angel does not have a counter strategy, i.e. winning strategy to achieve ¬φ in game α.
Axiom 〈:=〉 is Hoare’s assignment rule. Formula φ(θ) is obtained from φ(x) by substituting θ for
x, provided x does not occur in the scope of a quantifier or modality binding x or a variable of θ.
A modality containing x := or x′ outside the scope of ? binds x. In axiom 〈′〉, y(·) is the (unique
[Wal98, Theorem 10.VI]) solution of the symbolic initial value problem y′(t) = θ, y(0) = x. The
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duration t how long to follow y is for Angel to decide. It goes without saying that variables like
t are fresh in Fig. 2. Axioms 〈?〉, 〈∪〉, and 〈;〉 are as in dynamic logic [Pra76] and dL [Pla12a]
except that their meaning is different, because they refer to hybrid games instead of systems. The
challenge axiom 〈?〉 expresses that Angel has a winning strategy to achieve φ in the test game ?ψ
exactly from those positions that are already in φ (because ?ψ does not change the state) and satisfy
ψ for otherwise she would fail the test. Axiom 〈∪〉 expresses that Angel has a winning strategy
in a game of choice α ∪ β to achieve φ iff she has a winning strategy in either hybrid game α or
in β, because she can choose which one to play. Axiom 〈;〉 expresses that Angel has a winning
strategy in a sequential game α; β to achieve φ iff she has a winning strategy in game α to achieve
〈β〉φ, i.e. to get to a position from which she has a winning strategy in game β to achieve φ. The
iteration axiom 〈∗〉 characterizes 〈α∗〉φ as a pre-fixpoint. It expresses that, if the game is already
in a state satisfying φ or Angel has a winning strategy for game α to achieve 〈α∗〉φ, i.e. to get
to a position from which she has a winning strategy for game α∗ to achieve φ, then Angel has a
winning strategy to achieve φ in α∗. The converse of 〈∗〉 can be derived4 and is also denoted by
〈∗〉. Axiom 〈d〉 characterizes dual games. It says that Angel has a winning strategy to achieve φ in
dual game αd iff Angel does not have a winning strategy to achieve ¬φ in game α. By combining
axioms 〈d〉 and [·] we obtain 〈αd〉φ↔ [α]φ, i.e. that Angel has a winning strategy to achieve φ in
αd iff Demon has a winning strategy to achieve φ in α.

Rule M is the generalization rule of monotonic modal logic C [Che80]. It expresses that, if the
implication φ → ψ is valid, then, whenever Angel has a winning strategy in any hybrid game α
to achieve φ, she also has a winning strategy to achieve ψ. Fixpoint rule FP characterizes 〈α∗〉φ
as a least pre-fixpoint. It says that, if ψ is any other formula that is a pre-fixpoint, i.e. that holds
in all states that satisfy φ or from which Angel has a winning strategy in game α to achieve that
condition ψ, then ψ also holds where 〈α∗〉φ does, i.e. in all states from which Angel has a winning
strategy in game α∗ to achieve φ.

As usual, all substitutions in Fig. 2 are required to be admissible to avoid capture of variables,
i.e. they require all variables x that are being replaced or that occur in their replacements not to
occur in the scope of a quantifier or modality binding x. Recall that the uniform substitution rule
from first-order logic substitutes all occurrences of predicate p(·) by a dGL formula ψ(·), i.e. it
replaces all occurrences of p(θ) for any vectorial term θ by ψ(θ) simultaneously:

(US)
φ

φ
ψ(·)
p(·)

In particular, the uniform substitution rule requires all relevant substitutions of ψ(θ) for p(θ) to
be admissible and requires that no p(θ) occurs in the scope of a quantifier or modality binding a
variable of ψ(θ) other than those in θ; see [Chu56, §35,40]. If admissible, the formula ψ(θ) can use
variables other than those in θ, hence, the case where p is a predicate symbol without arguments
enables US to generate all instances from the dGL axioms, so that the axioms in Fig. 2 do not need
to be considered as axiom schemes [Chu56, §35,40].

4 φ ∨ 〈α〉〈α∗〉φ → 〈α∗〉φ derives by 〈∗〉. Thus, 〈α〉(φ ∨ 〈α〉〈α∗〉φ) → 〈α〉〈α∗〉φ by M. Hence, φ ∨ 〈α〉(φ ∨
〈α〉〈α∗〉φ)→ φ ∨ 〈α〉〈α∗〉φ by propositional congruence. Consequently, 〈α∗〉φ→ φ ∨ 〈α〉〈α∗〉φ by FP.
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The primary difference of the axiomatization of dGL compared to differential dynamic logic
for hybrid systems [Pla12a] is the addition of axiom 〈d〉 for dual games, the absence of axiom
K, absence of Gödel’s necessitation rule (dGL only has the monotonic modal rule M), absence
of the Barcan formula (the converse Barcan formula is still derivable), and absence of the hybrid
version of Harel’s convergence rule [HMP77]. Given the big semantical difference of a hybrid
system run versus a hybrid game, it is striking to see this concise difference in axioms. This is an
indication that these are the appropriate logical characterizations. Due to the absence of K, we will
see (in Section 4.4) why the induction axiom and the convergence axiom are absent in dGL, while
corresponding proof rules are still valid. The induction rule (ind) is derivable from FP.

Lemma 7 (Invariance). Rule FP and the induction rule (ind) of dynamic logic are interderivable
in the dGL calculus:

(ind)
ψ → [α]ψ

ψ → [α∗]ψ

Proof. Rule ind derives from FP: We first derive the following minor variant

(indR)
ψ → [α]ψ ψ → φ

ψ → [α∗]φ

From ψ → [α]ψ and ψ → φ propositionally derive ψ → φ ∧ [α]ψ, from which contraposition and
propositional logic yield ¬φ ∨ ¬[α]ψ → ¬ψ. With [·], this gives ¬φ ∨ 〈α〉¬ψ → ¬ψ. Now FP
derives 〈α∗〉¬φ→ ¬ψ, which, by [·], is ¬[α∗]φ→ ¬ψ, which gives ψ → [α∗]φ by contraposition.

The classical []-induction rule ind follows by φ
def≡ ψ. From ind, the variant indR is derivable again

by M on ψ → φ.
Rule FP derives from ind: From φ∨ 〈α〉ψ → ψ, propositionally derive φ→ ψ and 〈α〉ψ → ψ.

By M, the former gives 〈α∗〉φ→ 〈α∗〉ψ. By contraposition, the latter derives ¬ψ → ¬〈α〉ψ, which
gives ¬ψ → [α]¬ψ by [·]. Now ind derives ¬ψ → [α∗]¬ψ. By contraposition ¬[α∗]¬ψ → ψ,
which, by [·], is 〈α∗〉ψ → ψ. Thus, 〈α∗〉φ→ ψ by the formula derived above.

Example 2. The dual filibuster game formula (Section 3.1) proves easily by going back and forth
between players:

∗
R x = 0→0 = 0 ∨ 1 = 0
〈:=〉x = 0→〈x := 0〉x = 0 ∨ 〈x := 1〉x = 0
〈∪〉x = 0→〈x := 0 ∪ x := 1〉x = 0
〈d〉 x = 0→¬〈x := 0 ∩ x := 1〉¬x = 0
[·] x = 0→[x := 0 ∩ x := 1]x = 0
ind x = 0→[(x := 0 ∩ x := 1)∗]x = 0
〈d〉 x = 0→〈(x := 0 ∪ x := 1)×〉x = 0

More challenging hybrid games are provable in dGL; see [QP12] for a stress-test of a highly
interactive 11-dimensional nonlinear hybrid game in robotic factory automation.

16



4.2 Soundness
Crucially, we prove soundness of the dGL calculus, i.e. all derivable formulas are valid. The proof
uses the fact that the following congruence rule derives from two uses of rule M:

(RE)
φ↔ ψ

〈α〉φ↔ 〈α〉ψ

Theorem 8 (Soundness). The dGL proof rules in Fig. 2 are sound, i.e. all provable formulas are
valid.

Proof. In order to prove soundness of an implication axiom φ→ ψ, we fix any interpretation I
with any set of states S, and need to show [[φ]]I ⊆ [[ψ]]I . To prove soundness of an equivalence
axiom φ↔ ψ, we need to show [[φ]]I = [[ψ]]I . To prove soundness of a proof rule

φ

ψ

we assume that φ is valid, i.e. [[φ]]I = S in all interpretations I with any set of states S, and prove
that ψ is valid, i.e. [[ψ]]I = S in all I with any S. For most proof rules we prove the stronger
condition of local soundness, i.e. for any interpretation I with any set of states S: [[φ]]I = S implies
[[ψ]]I = S. We use the µ-calculus notation in this proof where µZ.Υ(Z) denotes the least fixpoint
of Υ(Z) and νZ.Υ(Z) denotes the greatest fixpoint. Soundness of modus ponens (MP) and ∀-
generalization is standard and not shown.

[·] [[[α]φ]]I = [[¬〈α〉¬φ]]I is a corollary to determinacy (Theorem 2).

〈:=〉 [[〈x := θ〉φ(x)]]I = ςx:=θ([[φ(x)]]I) = {s ∈ S : s
[[θ]]s
x ∈ [[φ(x)]]I} = {s ∈ S : s ∈ [[φ(θ)]]I} =

[[φ(θ)]]I , where the penultimate equation holds by the substitution lemma. The classical sub-
stitution lemma is sufficient for first-order logic φ(θ). Otherwise the proof of the substitution
lemma for dL [Pla10b, Lemma 2.2] generalizes to dGL.

〈′〉 [[〈x′ = θ〉φ]]I = ςx′=θ([[φ]]I) = {ϕ(0) ∈ S : for some ϕ : [0, r] → S such that ϕ(r) ∈ [[φ]]I

and dϕ(t)(x)
dt (ζ) = [[θ]]ϕ(ζ) for all ζ ≤ r}. Further, [[∃t≥0 〈x := y(t)〉φ]]I = {s ∈ S : srt ∈

[[〈x := y(t)〉φ]]I for some r ≥ 0} = {s ∈ S : srt ∈ {u ∈ S : u
[[y(t)]]u
x ∈ [[φ]]I} some r ≥

0} = {s ∈ S : (srt )
[[y(t)]]srt
x ∈ [[φ]]I for some r ≥ 0}. The inclusion “⊇” between both

parts, because the function ϕ(ζ) := (sζt )
[[y(t)]]

s
ζ
t

x solves the differential equation x′ = θ by
assumption. The inclusion “⊆” follows, because the solution of the smooth differential
equation x′ = θ is unique [Pla10b, Lemma 2.1].

〈?〉 [[〈?ψ〉φ]]I = ς?ψ([[φ]]I) = [[ψ]]I ∩ [[φ]]I = [[ψ ∧ φ]]I

〈∪〉 [[〈α ∪ β〉φ]]I = ςα∪β([[φ]]I) = ςα([[φ]]I) ∪ ςβ([[φ]]I) = [[〈α〉φ]]I ∪ [[〈β〉φ]]I = [[〈α〉φ ∨ 〈β〉φ]]I
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〈;〉 [[〈α; β〉φ]]I = ςα;β([[φ]]I) = ςα(ςβ([[φ]]I))

= ςα([[〈β〉φ]]I) = [[〈α〉〈β〉φ]]I .

〈∗〉 Since [[〈α∗〉φ]]I = ςα∗([[φ]]I) = µZ.([[φ]]I ∪ ςα(Z)) is a fixpoint, we know [[〈α∗〉φ]]I = [[φ]]I ∪
ςα([[〈α∗〉φ]]I). Thus, [[φ ∨ 〈α〉〈α∗〉φ]]I = [[φ]]I ∪ [[〈α〉〈α∗〉φ]]I = [[φ]]I ∪ ςα([[〈α∗〉φ]]I) =

[[〈α∗〉φ]]I . Consequently, [[φ ∨ 〈α〉〈α∗〉φ]]I ⊆ [[〈α∗〉φ]]I .

〈d〉 [[〈αd〉φ]]I = ςαd([[φ]]I) = ςα(([[φ]]I){){ = ςα([[¬φ]]I){ = ([[〈α〉¬φ]]I){ = [[¬〈α〉¬φ]]I by Def. 4.

M Assume the premise φ→ ψ is valid in interpretation I , i.e. [[φ]]I ⊆ [[ψ]]I . Then the conclusion
〈α〉φ→ 〈α〉ψ is valid in I , i.e. [[〈α〉φ]]I = ςα([[φ]]I) ⊆ ςα([[ψ]]I) = [[〈α〉ψ]]I by monotonicity
(Lemma 1).

FP Assume the premise φ ∨ 〈α〉ψ → ψ is valid in I , i.e. [[φ ∨ 〈α〉ψ]]I ⊆ [[ψ]]I . Thus, [[φ]]I ∪
ςα([[ψ]]I) = [[φ]]I ∪ [[〈α〉ψ]]I = [[φ ∨ 〈α〉ψ]]I ⊆ [[ψ]]I . That is, ψ is a pre-fixpoint of Z =

[[φ]]I ∪ ςα(Z). Now using Lemma 1, [[〈α∗〉φ]]I = ςα∗([[φ]]I) = µZ.([[φ]]I ∪ ςα(Z)) is the least
fixpoint and the least pre-fixpoint. Thus, [[〈α∗〉φ]]I ⊆ [[ψ]]I , which implies that 〈α∗〉φ→ ψ is
valid in I .

US Standard soundness proofs for US [Chu56] generalize to dGL. We show a proof in our
notation, because it is based on an elegant use of the soundness of RE. Assume the premise φ
is valid, i.e. [[φ]]I = S in all interpretations I with any set of states S. We can assume that the
uniform substitution is admissible, otherwise rule US is not applicable and there is nothing to
show. We prove that φψ(·)

p(·) is valid, i.e. [[φ
ψ(·)
p(·) ]]I = S for all I with S. Consider any particular

interpretation J with set of states S. Without loss of generality, we can assume p not to occur
in ψ(·) (otherwise first replace all occurrences of p in ψ(·) by q and then use rule US again to
replace those q by p). Thus, by uniform substitution, p does not occur in φψ(·)

p(·) and the value

of J(p) is immaterial for the semantics of φψ(·)
p(·) . We can, therefore, pass to an interpretation I

that modifies J by changing the semantics of p such that [[p(x)]]I = [[ψ(x)]]J for all values of
x. In particular, [[p(x)]]I = [[ψ(x)]]I for all values of x, since p does not occur in ψ(x). Thus,
I |= ∀x (p(x)↔ ψ(x)). Since M is locally sound, so is the congruence rule RE, which
derives from M. The principle of substitution of equivalents [HC96, Chapter 13] (from
A↔ B derive Υ(A)↔ Υ(B), where Υ(B) is the formula Υ(A) with some occurrences of
A replaced by B), thus, generalizes to dGL and is locally sound. Hence, for any particular
occurrence of p(u) in φ, we have I |= p(u)↔ ψ(u), which implies I |= φ↔ φ

ψ(u)
p(u) for the

ordinary replacement of p(u) by ψ(u). This process can be repeated for all occurrences
of p(u), leading to I |= φ↔ φ

ψ(·)
p(·) . Thus, S = [[φ]]I = [[φ

ψ(·)
p(·) ]]I . Hence, [[φ

ψ(·)
p(·) ]]J = S,

because p no longer occurs after uniform substitution φψ(·)
p(·) , since all occurrences of p with

any arguments will have been replaced at some point (since admissible). This implies that
φ
ψ(·)
p(·) is valid since interpretation J with set of states S was arbitrary.

The proof rules in Fig. 2 do not handle differential equations x′ = θ&H with evolution domain
constraintsH (other than true). Quite unlike in hybrid systems and (poor test) differential dynamic
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x, z

H

z := x
revert flow and time x0;
Demon checks H backwards until
t0

x′ = θ(x)

t0 := x0
r

z′ = −θ(z)

Figure 3: Angel evolves x forwards in time along x′ = θ(x), Demon checks evolution domain
backwards in time along z′ = −θ(z) on a copy z of the state

logic [Pla08, Pla12a], however, every hybrid game containing a differential equation with evolu-
tion domain constraints can be replaced equivalently by a hybrid game without evolution domain
constrains (even using poor tests, i.e. each test ?φ uses only first-order formulas φ).

Lemma 9. Evolution domains of differential equations are definable as hybrid games: For every
hybrid game α, there is a hybrid game β that is equivalent (i.e. ςα(X) = ςβ(X) for all X and all
I) but has no evolution domain constraints.

Proof. When, for notational convenience, we assume the (vectorial) differential equation x′ = θ(x)
to contain a clock x′0 = 1 and that t0 and z are fresh variables, then x′ = θ(x) &H(x) is equivalent
to the hybrid game:

t0 := x0;x′ = θ(x); (z := x; z′ = −θ(z))d; ?(z0 ≥ t0 → H(z)) (3)

See Fig. 3 for an illustration. Suppose the current player is Angel. The idea behind game equiva-
lence (3) is that the fresh variable t0 remembers the initial time x0, and Angel then evolves along
x′ = θ(x) for any amount of time (Angel’s choice). Afterwards, the opponent Demon copies
the state x into a fresh variable (vector) z that it can evolve backwards along (z′ = −θ(z))d for
any amount of time (Demon’s choice). The original player Angel must then pass the challenge
?(z0 ≥ t0 → H(z)), i.e. Angel loses immediately if Demon was able to evolve backwards and
leave region H(z) while satisfying z0 ≥ t0, which checks that Demon did not evolve backward
for longer than Angel evolved forward. Otherwise, when Angel passes the test, the extra variables
t0, z become irrelevant (they are fresh) and the game continues from the current state x that Angel
chose in the first place (by selecting a duration for the evolution that Demon could not invalidate).

Lemma 9 can eliminate all evolution domain constraints equivalently in hybrid games from
now on.

4.3 Completeness
Completeness of dGL is a challenging question and related to a famous open problem about com-
pleteness of propositional game logic [Par83]. Based on Gödel’s second incompleteness theorem,
dL is incomplete [Pla08] and so is dGL. So the right question to ask is that of relative completeness
[Coo78, HMP77].
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One natural choice for an oracle logic for the completeness study is LµD, the modal µ-calculus
of differential equations:

φ ::= X(θ) | p(θ) | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | 〈x′ = θ〉φ | µX.φ

where µX.φ requires all occurrences of X in φ to be positive. The semantics is the usual, e.g.,
µX.φ binds set variable X and real variable (vector) x and is interpreted as the least fixpoint X
of φ, i.e. the smallest denotation of X such that X(x) ↔ φ holds for all x [Koz83, Lub89]. A
more careful inspection of our proofs reveals that the two-variable fragment of LµD is enough.
The fixpoint logic LµD of differential equations exposes the most natural interactivity on top of
differential equations.

Lemma 10 (dGL expressibility). Logic dGL is expressible in LµD: for each dGL formula φ there
is a LµD formula φ[ that is equivalent, i.e. � φ↔ φ[.

Proof. By soundness of axiom [·], we do not need to consider the case [α], because [α]φ ≡ 〈αd〉φ.
Of course, (p(θ))[ = p(θ) etc. The inductive cases are:

(¬φ)[ ≡ ¬(φ[)

(φ ∧ ψ)[ ≡ φ[ ∧ ψ[

(∃xφ)[ ≡ ∃x (φ[)

(〈x := θ〉φ)[ ≡ ∀y (y = θ → (φyx)
[)

(〈x′ = θ〉φ)[ ≡ 〈x′ = θ〉φ[

(〈?ψ〉φ)[ ≡ (ψ ∧ φ)[

(〈α ∪ β〉φ)[ ≡ (〈α〉φ ∨ 〈β〉φ)[

(〈α; β〉φ)[ ≡ (〈α〉〈β〉φ)[

(〈α∗〉φ)[ ≡ µX.(φ ∨ 〈α〉X(x))[

(〈αd〉φ)[ ≡ (¬〈α〉¬φ)[

It is easy to check that φ[ is equivalent to φ. Note that (φ ∨ ψ)[ ≡ φ[ ∨ ψ[ is a consequence
of the above definitions and the abbreviation φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ). The substitution in the
definition of (〈x := θ〉φ)[ is necessary, because a substitution of θ for x may not be admissible, but
a variable renaming of fresh variable y for x in φ with the result φyx is always admissible. Note
that quantifiers are expressible in LµD via ∃xφ ≡ 〈x′ = 1〉φ∨〈x′ = −1〉φ. Recall that x′ = θ&H
is expressible by Lemma 9. The case (〈α∗〉φ)[ is defined as the least fixpoint of the reduction of
φ ∨ 〈α〉X(x), where x are the variables of α using classical short notation [Lub89]. In particular,
(〈α∗〉φ)[ satisfies φ ∨ 〈α〉(〈α∗〉φ)[ ↔ (〈α∗〉φ)[ and (〈α∗〉φ)[ is the formula with the smallest such
interpretation, which is all that our subsequent proofs depend on.

Theorem 11 (Relative completeness). The dGL calculus is a sound and complete axiomatization
of hybrid games relative to LµD, i.e. every valid dGL formula can be derived in the dGL calculus
from LµD tautologies.
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Proof. We write `D φ to indicate that dGL formula φ can be derived in the dGL proof calculus
from valid LµD formulas. It takes a moment’s thought to conclude that soundness transfers to
this case from Theorem 8, so we only need to show completeness. We have to prove that every
valid dGL formula φ can be derived from LµD axioms within the dGL calculus: from � φ we have
to prove `D φ. The proof proceeds as follows: By propositional recombination, we inductively
identify fragments of φ that correspond to φ1 → 〈α〉φ2 or φ1 → [α]φ2 logically. Then, we express
subformulas φi equivalently in LµD by Lemma 10 as needed, and derive these first-order Angel
or Demon properties. Finally, we prove that the original dGL formula can be re-derived from the
subproofs in the dGL calculus.

By appropriate propositional derivations, we can assume φ to be given in conjunctive normal
form. We assume that negations are pushed inside over modalities using the dualities¬[α]φ ≡ 〈α〉¬φ
and ¬〈α〉φ ≡ [α]¬φ that are provable by axiom [·], and that negations are pushed inside over quan-
tifiers using provable equivalences ¬∀xφ ≡ ∃x¬φ and ¬∃xφ ≡ ∀x¬φ. The remainder of the
proof follows an induction on a well-founded partial order ≺ induced on dGL formulas by the
lexicographic ordering of the overall structural complexity of the hybrid games in the formula and
the structural complexity of the formula itself and with LµD at the bottom. LµD is considered first-
order, thus of lowest complexity, by relativity. Well-foundedness of≺ is easy to see (formally from
projections into concatenations of finite trees), because the overall structural complexity of hybrid
games in any particular formula can only decrease finitely often at the expense of increasing the
formula complexity, which can, in turn, only decrease finitely often to result in a LµD formula.
The only important property for us is that, if the structure of the hybrid games in ψ is simpler
than those in φ (somewhere simpler and nowhere worse), then ψ ≺ φ even if the logical formula
structure of ψ is larger than that of φ, e.g., when ψ has more propositional connectives, quantifiers
or modalities (but of smaller overall complexity hybrid games). In the following, IH is short for
induction hypothesis.

0. If φ has no hybrid games, then φ is a first-order formula; hence provable by assumption (even
decidable [Tar51] if in first-order real arithmetic, i.e. no uninterpreted predicate symbols
occur).

1. φ is of the form ¬φ1; then φ1 is first-order, as we assumed negations to be pushed inside, so
case 0 applies.

2. φ is of the form φ1 ∧ φ2, then � φ1 and � φ2, so individually deduce simpler proofs for
`D φ1 and `D φ2 by IH, which combine propositionally to a proof for `D φ1 ∧ φ2.

3. The case where φ is of the form ∀xφ2, ∃xφ2, [α]φ2 or 〈α〉φ2 is included in case 4 with
φ1 ≡ false.

4. φ is a disjunction and—without loss of generality—has one of the following forms (other-
wise use provable associativity and commutativity to reorder disjunction):

φ1 ∨ [α]φ2

φ1 ∨ 〈α〉φ2

φ1 ∨ ∃xφ2

φ1 ∨ ∀xφ2.
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Let φ1 ∨ 〈[α]〉φ2 be a unified notation for those cases. Then, φ2 ≺ φ, since φ2 has less
modalities or quantifiers. Likewise, φ1 ≺ φ because 〈[α]〉φ2 contributes one modality or
quantifier to φ that is not part of φ1. By Lemma 10 there are LµD formulas φ[1, φ

[
2 with

� φi ↔ φ[i for i = 1, 2, By congruence, the validity � φ yields � φ[1 ∨ 〈[α]〉φ[2, which implies
� ¬φ[1 → 〈[α]〉φ[2. By induction we now derive

`D ¬φ[1 → 〈[α]〉 ∧ φ[2. (4)

Abbreviate the LµD formula ¬φ[1 by F and the LµD formula φ[2 by G, so that we need to
prove `D F → 〈[α]〉G. Observe that all subsequent proofs except for 〈[x′ = θ]〉 and ∃x also
work without encoding when simply using φ1 as F and φ2 as G.

(a) If 〈[α]〉 is the operator ∀x then � F → ∀xG, where we can assume x not to occur in F
by renaming. Hence, � F → G. Since G ≺ ∀xG, because it has less quantifiers, also
F → G ≺ F → ∀xG, hence `D F → G is derivable by IH. Then, `D F → ∀xG
derives by ∀-generalization of first-order logic, since x does not occur in F . It is even
decidable if in first-order real arithmetic [Tar51].
In the sequel, we conclude (F → ψ) ≺ (F → φ) from ψ ≺ φ without further notice.

(b) If 〈[α]〉 is the operator ∃x then � F → ∃xG, which is first-order (i.e. in LµD) and, thus,
provable by IH, because F,G are LµD formulas. It is even decidable if in first-order
real arithmetic [Tar51].

(c) � F → 〈x′ = θ〉G is an LµD formula and hence is provable by assumption, because
F,G are LµD formulas. Similarly for � F → [x′ = θ]G.

(d) � F → 〈x′ = θ&H〉G, then this formula is, by Lemma 9, equivalent to a formula
without evolution domain restrictions. Using equation (3) from the proof of Lemma 9
as a definitory abbreviation concludes this case by induction hypothesis. Similarly for
� F → [x′ = θ&H]G.

(e) The cases where α is of the form x := θ, ?ψ, β ∪ γ, or β; γ are consequences of the
soundness of the equivalence axioms 〈:=〉,〈?〉,〈∪〉,〈;〉 plus the duals obtained via du-
ality axiom [·]. Whenever their respective left-hand side is valid, their right-hand side
is valid and of smaller complexity (the games get simpler), and hence derivable by IH.
Thus, F → 〈α〉G derives by applying the respective axiom. We explicitly show the
cases that require some extra thought.

(f) � F → 〈x := θ〉G implies � F ∧ y = θ → Gy
x for a fresh variable y, where Gy

x is the
result of substituting y for x. Since F ∧ y = θ → Gy

x ≺ 〈x := θ〉G, because there
are less hybrid games, `D F ∧ y = θ → Gy

x is derivable by IH. Hence, 〈:=〉 derives
`D F ∧ y = θ → 〈x := y〉G. Propositional logic derives `D F → (y = θ →
〈x := y〉G), from which `D F → ∀y (y = θ → 〈x := y〉G) derives by ∀-generalization
of first-order logic. Since y was fresh it does not appear in θ and G, so substitution
validities of first-order logic derive `D F → 〈x := θ〉G. Note that direct proofs by
〈:=〉 are possible when the resulting substitution is admissible, but the substitution in
Gy
x is always admissible, because it is a variable renaming replacing x by y.
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(g) � F → 〈β ∪ γ〉G implies � F → 〈β〉G ∨ 〈γ〉G. Since 〈β〉G ∨ 〈γ〉G ≺ 〈β ∪ γ〉G, be-
cause, even if the propositional and modal structure increased, the structural complex-
ity of hybrid games β and γ is smaller than that of β ∪ γ (formula G did not change),
`D F → 〈β〉G ∨ 〈γ〉G is derivable by IH. Hence, 〈∪〉 derives `D F → 〈β ∪ γ〉G.

(h) � F → 〈β; γ〉G, which implies � F → 〈β〉〈γ〉G. Since 〈β〉〈γ〉G ≺ 〈β; γ〉G, be-
cause, even if the number of modalities increased, the overall structural complex-
ity of the hybrid games decreased because there are less sequential compositions,
`D F → 〈β〉〈γ〉G is derivable by IH. Hence, `D F → 〈β; γ〉G derives by 〈;〉.

(i) � F → 〈βd〉G implies � F → ¬〈β〉¬G, which implies � F → [β]G. Since [β]G ≺
〈βd〉G, because βd is more complex than β, `D F → [β]G can be derived by IH. Axiom
[·], thus, derives `D F → ¬〈β〉¬G, from which axiom 〈d〉 derives `D F → 〈βd〉G.

(j) � F → [βd]G implies � F → ¬〈βd〉¬G, hence � F → 〈β〉G. Since 〈β〉G ≺ [βd]G,
because βd is more complex than β, `D F → 〈β〉G can be derived by IH. Conse-
quently, `D F → ¬¬〈β〉¬¬G can be derived using M on ` G → ¬¬G. Hence, 〈d〉
derives `D F → ¬〈βd〉¬G, from which axiom [·] derives `D F → [βd]G.

(k) � F → [β∗]G can be derived by induction as follows. Formula [β∗]G, which expresses
that Demon has a winning strategy in game β∗ to satisfy G, is an inductive invariant
of β∗, because [β∗]G→ [β][β∗]G is valid, even provable by the variation [β∗]G →
G ∧ [β][β∗]G of 〈∗〉 that can be obtained from axioms 〈∗〉 and [·]. Thus, its equivalent
LµD encoding according to Lemma 10 is also an inductive invariant:

ϕ ≡ ([β∗]G)[.

F → ϕ and ϕ→ G are valid (Angel controls ∗) and (F → ϕ) ≺ φ and (ϕ → G) ≺ φ
by encoding, hence derivable by IH. By M, 〈d〉 and [·], the latter derivation `D ϕ→ G
extends to `D [β∗]ϕ→ [β∗]G. As above, ϕ→ [β]ϕ is valid, and thus derivable by
IH, since β has less loops. Thus, ind, which derives from FP by Lemma 7, derives
`D ϕ→ [β∗]ϕ. The above derivations combine propositionally (cut with [β∗]ϕ and ϕ)
to `D F → [β∗]G.

(l) � F → 〈β∗〉G. Let x the vector of free variables of 〈β∗〉G. Since 〈β∗〉G is the least
pre-fixpoint, for any dGL formula ψ with free variables in x:

� ∀x (G ∨ 〈β〉ψ → ψ)→ (〈β∗〉G→ ψ)

by a variation of the soundness argument for FP, which is also derivable by the (seman-
tic) deduction theorem from FP. In particular, this holds for a fresh predicate symbol p
with arguments x:

� ∀x (G ∨ 〈β〉p(x)→ p(x))→ (〈β∗〉G→ p(x))

Using � F → 〈β∗〉G, this implies

� ∀x (G ∨ 〈β〉p(x)→ p(x))→ (F → p(x))
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As ∀x (G ∨ 〈β〉p(x) → p(x)) → (F → p(x)) ≺ φ, because, even if the formula
complexity increased, the structural complexity of the hybrid games decreased, because
φ has one more loop, so this fact is derivable by IH:

`D ∀x (G ∨ 〈β〉p(x)→ p(x))→ (F → p(x))

By uniformly substituting 〈β∗〉G with free variables x for p(x), US derives using p 6∈
F,G:

`D ∀x (G ∨ 〈β〉〈β∗〉G→ 〈β∗〉G)→ (F → 〈β∗〉G) (5)

Yet, 〈∗〉 derives ` G∨〈β〉〈β∗〉G→ 〈β∗〉G, from which ` ∀x (G∨〈β〉〈β∗〉G→ 〈β∗〉G)
derives by ∀-generalization. Now modus ponens with (5) derives `D F → 〈β∗〉G.

This concludes the derivation of (4). Further � φ1 ↔ φ[1 implies � ¬φ1 → ¬φ[1, which is
derivable by IH, because φ1 ≺ φ. We combine `D ¬φ1 → ¬φ[1 with (4) (cut with ¬φ[1) to
derive

`D ¬φ1 → 〈[α]〉φ[2. (6)

Likewise � φ2 ↔ φ[2 implies � φ[2 → φ2, which is derivable by IH, as φ2 ≺ φ. From `D φ[2 → φ2

we derive `D 〈[α]〉φ[2 → 〈[α]〉φ2 by M if 〈[α]〉 is 〈α〉, by M and 〈d〉 if 〈[α]〉 is [α], by ∀-
generalization if 〈[α]〉 is ∀x, and by ∀-generalization and duality if 〈[α]〉 is ∃x. Finally
we combine the latter derivation propositionally with (6) by a cut with 〈[α]〉φ[2 to derive
`D ¬φ1 → 〈[α]〉φ2, from which `D φ1 ∨ 〈[α]〉φ2 derives propositionally.

This completes the proof of completeness (Theorem 11).

We highlight that the proof of Theorem 11 is constructive and nearly coding-free (except for
x′ = θ, ∃ and [β∗]). Using US, the case for 〈β∗〉G in the proof of Theorem 11 reveals an explicit
[-free reduction to a dGL formula with less loops, which can be considered a modal analogue of
characterizations in the Calculus of Constructions [CH88]. These two observations easily reprove a
classical result of Meyer and Halpern [MH82] about the semidecidability of termination assertions
(logical formulas F → 〈α〉G of uninterpreted dynamic logic with first-order F,G and regular
programs α without differential equations). In fact, this proves a slightly stronger result about
dynamic logic without any [α]· with loops [Sch84], yet still without ∃. Theorem 11 shows that
this result continues to hold for uninterpreted first-order game logic in the fragment where ∗ only
occurs with even d-polarity in 〈α〉 and only of odd d-polarity in [α] (the conditions on tests in α are
accordingly).

The completeness proof indicates a coding-free way of proving Angel properties 〈β∗〉G that
works efficiently in practice. Illustrative examples are shown in Appendix A. In particular, dGL
does not need Harel’s convergence rule [HMP77] for completeness and, thus, neither does logic for
hybrid systems, even though it was previously based on it [Pla12a]. These results correspond to a
hybrid reading of influential views of understanding program invariants as fixpoints [CC77, Cla79].

The coding-free constructive nature of Theorem 11 characterizes exactly which part of hybrid
games proving is difficult: finding computationally succinct weaker invariants for [α∗]G and find-
ing succinct differential (in)variants [Pla10a] for [x′ = θ] and 〈x′ = θ〉 of which a solution is a spe-
cial case [Pla12c]. The case ∃xG is interesting in that a closer inspection of Theorem 11 reveals
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that its complexity depends on whether it supports Herbrand disjunctions, which is the case for
uninterpreted first-order logic and first-order real arithmetic [Tar51], but not for G ≡ [α∗]ψ, which
already gives ∃xG the full Π1

1-complete complexity even for classical dynamic logic [HKT00].
An interesting question is whether dGL is complete relative to smaller logics, which Theo-

rem 11 reduces to a study of expressing (two-variable) LµD. This gives hybrid versions of Parikh’s
completeness results for fragments of game logic [Par83].

Corollary 12 (Relative completeness of ∗-free dGL). The dGL calculus is a sound and complete
axiomatization of ∗-free hybrid games relative to dL.

Proof. Lemma 10 reduces to dL, even the first-order logic of differential equations [Pla12a], for
∗-free hybrid games.

Corollary 13 (Relative completeness of d-free dGL). The dGL calculus is a sound and complete
axiomatization of d-free hybrid games relative to dL.

Proof. d-free loops are Scott-continuous by Lemma 3, so have closure ordinal ω and are, thus,
equivalent to their dL form, and even expressible in the first-order logic of differential equations
by [Pla12a, Theorem 9].

By Corollary 13, dL is relatively complete without the convergence rule that had been used
before [Pla08]. In combination with the first and second relative completeness theorems of dL
[Pla12a], it follows that the dGL calculus is a sound and complete axiomatization of ∗-free hy-
brid games and of d-free hybrid games relative to the first-order logic of differential equations.
When adding the numerical Euler integration axiom [Pla12a], both are sound and complete ax-
iomatizations of those classes of hybrid games relative to discrete dynamic logic [Pla12a]. Similar
completeness results for dGL relative to dL, and, thus, relative to first-order logic of differential
equations, follow from Theorem 11, e.g., for the case of hybrid games with winning regions that
are finite rank Borel sets.

As a corollary to Theorem 11 and an equi-expressibility result [Pla12a], dGL is complete with
the Euler axiom relative to (first-order) discrete µ-calculus interpreted over the reals. This aligns
the discrete and the continuous side of hybrid games in a constructive provably equivalent way sim-
ilar to corresponding results about hybrid systems [Pla12a]. Yet, the interactivity of two-variable
fixpoints still seems to stay.

4.4 Separating Axioms
In order to illustrate how and why dGL differs from differential dynamic logic dL [Pla08, Pla12a],
i.e. how reasoning about hybrid games differs from reasoning about hybrid systems, we identify
separating axioms, that is, axioms of dL that do not hold in dGL. We investigate the difference in
terms of important classes of modal logics; recall [HC96] or Appendix B.

Theorem 14. dGL is a subregular, sub-Barcan, monotonic modal logic without the induction ax-
iom of dynamic logic.
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The proof of Theorem 14 is in Appendix B, where, for each separating axiom, we give simple
counterexamples illustrating what makes hybrid games different than hybrid systems.

Note that Harel’s convergence rule is not a separating axiom, because it is sound for dGL, just
unnecessary. Furthermore, in light of Theorem 6, it is questionable whether the convergence rule
would even be relatively complete for hybrid games.

5 Related Work
Discrete games and the interaction of games and logic for various purposes have been studied
with much success[vNM55, Par85, Aum95, HS97, Sti01, AHK02, PP03, Ber03, CHP07, BGL07,
BP09, AG11, Vää11]. Propositional game logic [PP03] subsumes ∆PDL and CTL∗. After more
than two decades, it has been shown that the alternation hierarchy in propositional game logic
is strict and encodes parity games that span the full alternation hierarchy of the (propositional)
modal µ-calculus [Ber03] and that, being in the two variable fragment, it is less expressive than the
(propositional) modal µ-calculus [BGL07]. Another influential propositional modal logic, ATL∗

has been used for model checking[AHK02] and is related to propositional game logic [BP09].
Applications and relations of game logic, ATL∗ [AHK02], and strategy logic [CHP07] have been
discussed in the literature [AHK02, PP03, CHP07, BP09]. These logics for the propositional
case are interesting, but it is not clear how their decision procedures should be generalized to the
highly undecidable domain of hybrid games with differential equations, uncountable choices, and
higher closure ordinals. The logic dGL shows how such hybrid games can be proved and enjoys
completeness.

Differential games have been studied with many different notions of solutions [Isa67, Fri71,
Pet93, Bre10]. They are of interest when actions are in continuous time. We look at the com-
plementary model of hybrid games where the underlying system is that of a hybrid system with
interacting discrete and continuous dynamics, but the game actions are chosen at discrete instants
of time, even if they take effect in continuous time.

Reachability aspects of games for hybrid systems have been studied before. A game view on
hybrid systems verification has been proposed following a Hamilton-Jacobi-Bellman PDE formu-
lation [TMBO03, MBT05], with subsequent extensions by Gao et al. [GLQ07]. Their primary
focus is on adversarial choices in the continuous dynamics, which is very interesting, but not what
we consider here. Axioms of a proof calculus are easier to get sound than numerical approxi-
mations of PDEs, which is an interesting but extremely challenging problem [Pla12a]. WCTL
properties of STORMED hybrid games, which are restricted to evolve linearly in one “direction”
all the time, have been shown to be decidable using bisimulation quotients [VPVD11]. STORMED
hybrid games generalize o-minimal hybrid games which have been shown to be decidable earlier
[BBC10]. The case of rectangular hybrid games is known to be decidable [HHM99]. Not all appli-
cations fall into decidable classes [QP12], so that a study of more general hybrid games is called
for.

We take a complementary view and study logics and proofs for hybrid games instead of search-
ing for decidable fragments using bisimulation quotients [HHM99, BBC10, VPVD11], which do
not generally exist. We provide a proof-based verification technique for more general hybrid
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games with nonlinear dynamics. Our notion of hybrid games has more flexible nested hybrid
game choices for the agents than the fixed controller-plant interaction considered in related work.
We consider more general logical formulas with nested modal game operators. We do not consider
concurrent games [BBC10], though, only sequential games.

There is more than one way how logic can be used to understand games of hybrid systems.
Games can be added as separate constructs on top of unmodified differential dynamic logic [QP12],
which focuses on the special case of advance notice semantics. We follow a different principle
here. Instead of leaving differential dynamic logic untouched and adding several separate game
constructs on top of full hybrid systems reachability operators as in [QP12], we modify the logic to
be a game logic by adding a single operator d into the system dynamics. Our logic dGL results in
a much simplified but nevertheless more general logic with a simpler more general semantics (and
not restricted to advance notice) and simpler and more general calculus. We consider a Hilbert
calculus and focus on fundamental logical properties instead of automation. For practical aspects
like sequent calculus automation and a very challenging robotic factory automation case study that
translates to dGL, we refer to [QP12]. What is more difficult in dGL in comparison to that fragment
[QP12], however, is the need to carefully identify which axioms are no longer sound for games,
which is what we have pursued in Section 4.4.

The logic dGL we present here has some similarity with stochastic differential dynamic logic
(SdL) [Pla11], because both may be used to verify properties of the hybrid system dynamics with
partially uncertain behavior. Both approaches do, however, address uncertainty in fundamentally
different ways. SdL takes a probabilistic perspective on uncertainty in the system dynamics. The
dGL approach put forth in this paper, instead, takes an adversarial perspective on uncertainty. Both
views on how to handle uncertain behavior are useful but serve different purposes, depending on
the nature of the system analysis question at hand. A probabilistic understanding of uncertainty
can be superior whenever good information is available about the distribution of choices made by
the environment and other agents. Whenever that is not possible, adversarial views may be more
appropriate, since they do not lead to the inadequate biases that arbitrary probabilistic assumptions
would impose.

6 Conclusions and Future Work
We have introduced differential game logic (dGL) for hybrid games, which unifies logic of hybrid
systems with Parikh’s game logic. Despite the challenges of hybrid games like higher closure
ordinals of winning regions, dGL has a simple modal semantics and a simple proof calculus, which
we prove to be a sound and complete axiomatization of hybrid games relative to the fixpoint logic
of differential equations. Combining dGL with axioms for differential equations [Pla10a, Pla12a]
provides a way of handling hybrid games with nonlinear differential equations.

Our completeness proof is constructive and nearly coding-free, thereby exactly characterizing
the difficult parts of hybrid games proving. The proof identifies an efficient fixpoint-style proof
technique, which can be considered a modal analogue of characterizations in the Calculus of Con-
structions [CH88], and relates to hybrid versions of influential views of understanding program
invariants as fixpoints [CC77, Cla79].

27



The relative completeness results show that dGL has all axioms for dealing with hybrid games.
The study of (fragments of) dGL which are complete for smaller logics is interesting future work
and, by completeness, reduces to questions of expressiveness that gives rise to interesting problems
in descriptive set theory. The relation of the expressiveness of dL and dGL is an open question
related to open questions for the propositional case [Par85, BGL07], yet partially characterized by
smaller logics according to our expressibility results.

We observe that there is a striking similarity of the dGL calculus with the calculus for stochastic
differential dynamic logic SdL [Pla11], despite their fundamentally different semantical presuppo-
sitions (adversarial nondeterminism versus stochasticity), which indicates the existence of a deeper
logical connection relating stochastic and adversarial uncertainty.
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[Pla12b] André Platzer. Differential game logic for hybrid games. Technical Report CMU-CS-
12-105, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
March 2012.
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A Example dGL Proofs from Completeness Result
The completeness proof suggests the use of 〈∗〉 and US to prove 〈α∗〉 properties. We show how
easy this is in practice. Simple constructions and arithmetic close each of the following exam-
ples. Observe how logic programming style saturation with widening quickly proves the resulting
arithmetic here.
Example 3. The simple non-game dGL formula

x ≥ 0→ 〈(x := x− 1)∗〉0 ≤ x < 1

is provable as shown in Fig. 4, where 〈α∗〉0 ≤ x < 1 is short for 〈(x := x− 1)∗〉0 ≤ x < 1.

∗
R ∀x (0 ≤ x < 1 ∨ p(x− 1)→ p(x))→ (x ≥ 0→ p(x))
〈:=〉 ∀x (0 ≤ x < 1 ∨ 〈x := x− 1〉p(x)→ p(x))→ (x ≥ 0→ p(x))
US ∀x (0 ≤ x < 1 ∨ 〈x := x− 1〉〈α∗〉0 ≤ x < 1→ 〈α∗〉0 ≤ x < 1)→ (x ≥ 0→ 〈α∗〉0 ≤ x < 1)
〈∗〉,∀ ∀x (0 ≤ x < 1 ∨ 〈x := x− 1〉〈α∗〉0 ≤ x < 1→ 〈α∗〉0 ≤ x < 1)
MP x ≥ 0→ 〈α∗〉0 ≤ x < 1

Figure 4: dGL Angel proof for Example 3 using technique from completeness proof

Example 4. The dGL formula

x = 1 ∧ a = 1→ 〈(x := a; a := 0 ∩ x := 0)∗〉x 6= 1

which comes from (9) on p. 43 is provable as shown in Fig. 5, where β ∩ γ is short for x := a; a :=
0 ∩ x := 0 and 〈(β ∩ γ)∗〉x 6= 1 short for 〈(x := a; a := 0 ∩ x := 0)∗〉x 6= 1:

∗
R ∀x (x 6= 1 ∨ p(a, 0) ∧ p(0, a)→ p(x, a))→ (true → p(x, a))

〈;〉,〈:=〉 ∀x (x 6= 1 ∨ 〈β〉p(x, a) ∧ 〈γ〉p(x, a)→ p(x, a))→ (true → p(x, a))
〈∪〉,〈d〉 ∀x (x 6= 1 ∨ 〈β ∩ γ〉p(x, a)→ p(x, a))→ (true → p(x, a))

US ∀x (x 6= 1 ∨ 〈β ∩ γ〉〈(β ∩ γ)∗〉x 6= 1→ 〈(β ∩ γ)∗〉x 6= 1)→ (true → 〈(β ∩ γ)∗〉x 6= 1)
〈∗〉,∀,MP true → 〈(β ∩ γ)∗〉x 6= 1

R x = 1 ∧ a = 1→ 〈(β ∩ γ)∗〉x 6= 1

Figure 5: dGL Angel proof for Example 4 using technique from completeness proof

Example 5. The dGL formula

〈(x := 1;x′ = 1d ∪ x := x− 1)
∗〉0 ≤ x < 1

which comes from (10) on p. 45 is provable as shown in Fig. 6, where the notation 〈(β ∪ γ)∗〉0 ≤
x < 1 is short for 〈(x := 1;x′ = 1d ∪ x := x− 1)

∗〉0 ≤ x < 1: The proof steps for β use in 〈′〉 that
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∗
R ∀x (0 ≤ x < 1 ∨ ∀t≥0 p(0 + t) ∨ p(x− 1)→ p(x))→ (true → p(x))
〈:=〉 ∀x (0 ≤ x < 1 ∨ 〈x := 1〉¬∃t≥0 〈x := x+ t〉¬p(x) ∨ p(x− 1)→ p(x))→ (true → p(x))
〈′〉 ∀x (0 ≤ x < 1 ∨ 〈x := 1〉¬〈x′ = 1〉¬p(x) ∨ p(x− 1)→ p(x))→ (true → p(x))
〈;〉,〈d〉 ∀x (0 ≤ x < 1 ∨ 〈β〉p(x) ∨ 〈γ〉p(x)→ p(x))→ (true → p(x))
〈∪〉 ∀x (0 ≤ x < 1 ∨ 〈β ∪ γ〉p(x)→ p(x))→ (true → p(x))
US ∀x (0 ≤ x < 1 ∨ 〈β ∪ γ〉〈(β ∪ γ)∗〉0 ≤ x < 1→ 〈(β ∪ γ)∗〉0 ≤ x < 1)→ (true → 〈(β ∪ γ)∗〉0 ≤ x < 1)

〈∗〉,∀,MP true → 〈(β ∪ γ)∗〉0 ≤ x < 1

Figure 6: dGL Angel proof for Example 5 using technique from completeness proof

t 7→ x + t is the solution of the differential equation, so the subsequent use of 〈:=〉 substitutes 1
in to obtain t 7→ 0 + t. Recall that the winning regions for formula (10) need > ω iterations to
converge. It is still provable easily. A variation of this proof shows dGL formula (1) from p. 7,
where the handling of the nonlinear differential equation is a bit more complicated.

B Proof of Separating Axioms
This section shows a proof of Theorem 14 with an emphasis on simple counterexamples for each
separating axiom.

B.0.1 Subnormal Modal Logic

First, we show that, unlike dL, dGL is not a normal modal logic [HC96]. Axiom K, the modal
modus ponens from normal modal logic [HC96], dynamic logic [Pra76], and differential dynamic
logic [Pla12a], i.e.

[α](φ→ ψ)→ ([α]φ→ [α]ψ)

is not sound for dGL as witnessed using the choice α ≡ (x := 1 ∩ x := 0); y := 0 and φ ≡
x = 1, ψ ≡ y = 1; see Fig. 7. The global version of K, i.e. the implicative version of Gödel’s

xy

00
�

10
�

[α](x = 1→ y = 1)

xy

00
�

10
�
[α]x = 1

xy

00
�

10
�
[α]y = 1

Figure 7: Game trees for counterexample to axiom K using α ≡ (x := 1 ∩ x := 0); y := 0.

generalization rule is still sound and derives with 〈d〉 and [·] from M using α ≡ βd

φ→ ψ

[β]φ→ [β]ψ
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The normal Gödel generalization rule G, i.e.

φ

[α]φ

however, is not sound for dGL as witnessed by the choice α ≡ (?false)d, φ ≡ true.

B.0.2 Subregular Modal Logic

Regular modal logics are monotonic modal logics [Che80] that are weaker than normal modal
logics. But the regular modal generalization rule [Che80], i.e.

φ1 ∧ φ2 → ψ

[α]φ1 ∧ [α]φ2 → [α]ψ

is not sound for dGL either as witnessed by the choice α ≡ (x := 1 ∩ x := 0); y := 0, φ1 ≡ x =
1, φ2 ≡ x = y, ψ ≡ x = 1 ∧ x = y; see Fig. 8.
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[α]x = 1 ∧ x = y

Figure 8: Game trees for counterexample to regular modal rule using α ≡ (x := 1∩x := 0); y := 0.

B.0.3 Monotonic Modal Logic

The axiom that is closest to K but still sound for dGL is a monotonicity axiom. This axiom is
sound for dGL, yet already included in the monotonicity rule M:

Lemma 15 ([Che80, Theorem 8.13]). In the presence of rule RE from p. 16, rule M is interderiv-
able with axiom M:

〈α〉φ ∨ 〈α〉ψ → 〈α〉(φ ∨ ψ)

Proof. Axiom M derives from rule M: From φ → φ ∨ ψ, M derives 〈α〉φ → 〈α〉(φ ∨ ψ). From
ψ → φ∨ψ, M derives 〈α〉ψ → 〈α〉(φ∨ψ), from which propositional logic yields 〈α〉φ∨〈α〉ψ →
〈α〉(φ ∨ ψ).

Conversely, rule M derives from axiom M and rule RE: From φ → ψ propositional logic
derives φ ∨ ψ ↔ ψ, from which RE derives 〈α〉(φ ∨ ψ) ↔ 〈α〉ψ. From axiom M, propositional
logic, thus, derives 〈α〉φ→ 〈α〉ψ.
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Figure 9: Game trees for counterexample to converse monotone axiom using α ≡ x := 1 ∩ x := 0.

The converse of axiom M is sound for dL but not for dGL, however, as witnessed by α ≡ x :=
1 ∩ x := 0, φ ≡ x = 1, ψ ≡ x = 0; see Fig. 9:

〈α〉(φ ∨ ψ)→ 〈α〉φ ∨ 〈α〉ψ

The presence of the regular congruence rule RE and the fact that [α]φ↔ ¬〈α〉¬φ still make dGL
a classical modal logic [Che80]. Rule M even makes dGL a monotone modal logic [Che80].

B.0.4 Sub-Barcan

The most important axioms about the interaction of quantifiers and modalities in first-order modal
logic are the Barcan and converse Barcan axioms [Bar46], which, together, characterize constant
domain in normal first-order modal logics [HC96]. The Barcan axiom B, which characterizes anti-
monotonic domains in first-order modal logic [HC96], is sound for constant-domain first-order
dynamic logic and for differential dynamic logic dL when x does not occur in α [Pla12a]:

〈α〉∃xφ→ ∃x 〈α〉φ (x 6∈ α)

but the Barcan axiom is not sound for dGL as witnessed by the choice α ≡ y := y + 1× or
α ≡ y′ = 1d and φ ≡ x ≥ y. The equivalent Barcan formula

∀x [α]φ→ [α]∀xφ (x 6∈ α)

is not sound for dGL as witnessed by the choice α ≡ y := y + 1× or α ≡ y′ = 1d and φ ≡ y ≥ x.
The converse Barcan formula of first-order modal logic, which characterizes monotonic domains
[HC96], is sound for dGL and can be derived5 when x does not occur in α:

(
←−
B ) ∃x 〈α〉φ→ 〈α〉∃xφ where x 6∈ α

B.0.5 No Induction Axiom

The induction axiom
[α∗](φ→ [α]φ)→ (φ→ [α∗]φ) (7)

holds for dL, but, unlike induction rule ind, does not hold for dGL as witnessed by the choice
α∗ ≡ ((x := a; a := 0) ∩ x := 0)∗ and φ ≡ x = 1; see Fig. 10. Note that the failure of the induction

5From φ → ∃xφ, derive 〈α〉φ → 〈α〉∃xφ by M, from which first-order logic derives ∀x (〈α〉φ → 〈α〉∃xφ) and
then derives ∃x 〈α〉φ→ 〈α〉∃xφ, as x is not free in the succedent.
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Figure 10: Game trees for counterexample to induction axiom (notation: x, a) with game
α ≡ (x := a; a := 0) ∩ x := 0. (top) [α∗](x = 1 → [α]x = 1) is true by the strategy “if Angel
chose stop, choose x := a; a := 0, otherwise always choose x := 0” (bottom) [α∗]x = 1 is false by
strategy “repeat once and repeat once more if x = 1, then stop.” If a winning state can be reached
by a winning strategy, we enclose the mark in a circle � or �, respectively.
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axiom in the counterexample for (7) hinges on the fact that Angel is free to decide whether or not
to repeat α after each round depending on the state. This would be different if we had chosen an
advance notice semantics for α∗; see Appendix D. By a variation of the soundness argument for
FP, it can be shown, however, that a variation of the induction axiom is still sound if we translate
the induction rule ind into an axiom using the universal closure, denoted Cl∀ , with respect to all
variables bound in α:

Cl∀ (φ→ [α]φ)→ (φ→ [α∗]φ)

This trick with the universal closure does not work for the dual of the induction axiom, which
is called first arrival axiom. The first arrival axiom, 〈α∗〉φ→ φ ∨ 〈α∗〉(¬φ ∧ 〈α〉φ), which holds
for dL, expresses that, if φ holds after a repetition of α, then it either holds right away or α can be
repeated so that φ does not hold yet but can hold after one more repetition [PP03]. This axiom does
not hold, however, for dGL as witnessed by α∗ ≡ ((x := x− y ∩ x := 0); y := x)∗ and φ ≡ x = 0,
since two iterations surely yield x = 0, but one iteration may or may not yield x = 0, depending
on Demon’s choice; see Fig. 11.
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Figure 11: Game trees for counterexample to first arrival axiom (notation: x, y) with game
α ≡ (x := x− y ∩ x := 0); y := x. (top) 〈α∗〉x = 0 is true no matter which choices Demon makes
(bottom) 〈α∗〉(x 6= 0 ∧ 〈α〉x = 0) is false, because stop can be defeated by x := x− y and repeat
can be defeated by x := 0.

C Operational Game Semantics
In order to relate the intuition of interactive game play to the denotational semantics of hybrid
games, we show an operational semantics for hybrid games that is more complicated than the
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modal semantics from Section 2.2 but makes strategies explicit and more directly reflects the intu-
ition how hybrid games are played successively. The modal semantics is beneficial, because it is
simpler. The results in this section are not needed in the rest of the paper and play an informative
role. The operational semantics formalizes the intuition behind the game tree in Fig. 1 and relates
to standard notions in game theory and descriptive set theory. We prove in Theorem 16 below that
the operational game semantics is equivalent to the modal semantics from Section 2.2. The (deno-
tational) modal semantics is much simpler but the operational semantics makes winning strategies
explicit. As the set of actions A for a hybrid game, we choose:

{l, r, s, g, d} ∪ {(x := θ) : x variable, θ term}
∪ {(x′ = θ&H@r) : x variable, θ term, H formula, r ∈ R≥0}

∪ {?φ : φ formula}

For game α∪β, action l decides to descend left into α, r is the action of descending right into β. In
game α∗, action s decides to stop repeating, action g decides to go back and repeat. Action d starts
and ends a dual game for αd. The other actions represent the actions for atomic games: assignment
actions, continuous evolution actions (in which time r is the critical decision), and test actions.

We use standard notions from descriptive set theory. The set of finite sequences of actions is
denoted by A(N), the set of countably infinite sequences by AN. The empty sequence of actions
is (). The concatenation, sˆt, of sequences s, t ∈ A(N) is defined as (s1, . . . , sn, t1, . . . , tm) if
s = (s1, . . . , sn) and t = (t1, . . . , tm). For an a ∈ A, we write aˆt for (a)ˆt and write tˆa for tˆ(a).
For a set S ⊆ A(N), we write Sˆt for {sˆt : s ∈ S} and tˆS for {tˆs : s ∈ S}. The state btcs
reached by playing a sequence of actions t ∈ A(N) from a state s in interpretation I is inductively
defined by applying the actions sequentially, i.e. as follows:

1. bx := θcs = s
[[θ]]s
x

2. bx′ = θ&H@rcs = ϕ(r) for the uniqueϕ : [0, r]→ S differentiable, ϕ(0) = s, dϕ(t)(x)
dt (ζ) = [[θ]]ϕ(ζ)

and ϕ(ζ) ∈ [[H]]I for all ζ ≤ r. Note that bx′ = θ&H@rcs is not defined if no such ϕ exists.

3. b?φcs =

{
s if s ∈ [[φ]]I

not defined otherwise

4. blcs = brcs = bscs = bgcs = bdcs = b()cs = s

5. baˆtcs = btc(bacs) for a ∈ A and t ∈ A(N)

A tree is a set T ⊆ A(N) that is closed under prefixes, that is, whenever t ∈ T and s is a prefix of t
(i.e. t = sˆr for some r ∈ A(N)), then s ∈ T . A node t ∈ T is a successor of node s ∈ T iff t = sˆa
for some a ∈ A. By leaf(T ) we denote the set of all leaves of T , i.e. nodes t ∈ T that have no
successor in T .

Definition 5 (Operational game semantics). The operational game semantics of hybrid game α is,
for each state s of each interpretation I , a tree g(α)(s) ⊆ A(N) defined as follows (see Fig. 12 for a
schematic illustration):
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Figure 12: Operational game semantics for hybrid games of dGL
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1. g(x := θ)(s) = {(x := θ)}

2. g(x′ = θ&H)(s) = {(x′ = θ&H@r) : r ∈ R, r ≥ 0, ϕ(0) = s for some (differentiable)
ϕ : [0, r]→ S such that dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[H]]I for all ζ ≤ r}

3. g(?φ)(s) = {(?φ)}

4. g(α ∪ β)(s) = lˆg(α)(s) ∪ rˆg(β)(s)

5. g(α; β)(s) = g(α)(s) ∪
⋃

t∈leaf(g(α)(s))

g(β)(btcs)

6. g(α∗)(s) =
⋃
n∈N

fn({(s), (g)})

where fn is the n-fold composition of the function
f(Z)

def
= Z ∪

⋃
tˆg∈leaf(Z) tˆgˆg(α)(btˆgcs)ˆ{(s), (g)}

7. g(αd)(s) = dˆg(α)(s)ˆd

In the definition of g(α)(s), note that we implicitly close under prefixes as necessary for read-
ability reasons. For example, we write g(αd)(s) = dˆg(α)(s)ˆd to mean g(αd)(s) = {(), (d)} ∪
dˆg(α)(s) ∪ dˆg(α)(s)ˆd.

Angel gets to choose which action to take at node t ∈ g(α)(s) if t has an even number of
occurrences of d, otherwise Demon gets to choose. In the former case we say Angel acts at t, in
the latter Demon acts at t. Thus, at every t, exactly one of the players acts at t. If the player who
acts at t is deadlocked, then that player loses immediately. A player who acts at t ∈ g(α)(s) is
deadlocked at t if t 6∈ leaf(g(α)(s)) and no successor s is enabled, i.e. bscs is not defined. This can
happen if the last action in s has a condition that is not satisfied like ?x ≥ 0 or x′ = θ&x ≥ 0 at a
state where x < 0. Note that the player who acts at t ∈ g(α∗)(s) cannot choose g infinitely often
for that loop.

A strategy for Angel from initial state s is a nonempty subtree σ ⊆ g(α)(s) such that

1. for all t ∈ σ at which Demon acts, tˆa ∈ σ for all a ∈ A such that tˆa ∈ g(α)(s).

2. for all t ∈ σ at which Angel acts, if t 6∈ leaf(g(α)(s)), then there is a unique a ∈ A with
tˆa ∈ σ.

Strategies for Demon are defined accordingly, with “Angel” and “Demon” swapped. The action
sequence σ ⊕ τ played from state s in interpretation I when Angel plays strategy σ and Demon
plays strategy τ from s is defined as the sequence (a1, . . . , an) ∈ A(N) of maximal length such that

an+1 :=



a if Angel acts at (a1, . . . , an)

and (a1, . . . , an)ˆa ∈ σ
a if Demon acts at (a1, . . . , an)

and (a1, . . . , an)ˆa ∈ τ
not defined otherwise
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By definition of a strategy for Angel/Demon, the a is unique. A winning strategy for Angel for
winning condition X ⊆ S from state s in interpretation I is a strategy σ ⊆ g(α)(s) for Angel from
s such that, for all strategies τ ⊆ g(α)(s) for Demon from s: Demon deadlocks or bσ ⊕ τcs ∈ X .
A winning strategy for Demon for (Demon’s) winning condition X ⊆ S from state s in interpre-
tation I is a strategy τ ⊆ g(α)(s) for Demon from s such that, for all strategies σ ⊆ g(α)(s) for
Angel from s: Angel deadlocks or bσ ⊕ τcs ∈ X .

We show that the denotational modal semantics from Section 2.2 is equivalent to the operational
semantics:

Theorem 16 (Equivalent semantics). The modal semantics of dGL is equivalent to the game tree
operational semantics of dGL, i.e. for each hybrid game α, each initial state s in each interpreta-
tion I , and each winning condition X ⊆ S:

s ∈ ςα(X)⇐⇒ there is a winning strategy σ ⊆ g(α)(s)

for Angel to achieve X from s

s ∈ δα(X{)⇐⇒ there is a winning strategy τ ⊆ g(α)(s)

for Demon to achieve X{ from s

Proof. We proceed by simultaneous induction on the structure of α and prove equivalence. As part
of the equivalence proof, we construct a winning strategy σ achieving X using that s ∈ ςα(X).
The simultaneous induction steps for δα(X{) are simple dualities, except for the case of α∗. It
is easy to see that Angel and Demon cannot both have a winning strategy from the same state s
for complementary winning conditions X and X{ in the same game g(α)(s). By Theorem 2, we
further know δα(X{) = ςα(X){.

1. s ∈ ςx:=θ(X) ⇐⇒ s
[[θ]]s
x ∈ X ⇐⇒ bσ ⊕ τcs = bx := θcs = s

[[θ]]s
x ∈ X , using

σ
def
= {(x := θ)} = g(x := θ)(s). The converse direction follows, because the strategy σ

follows the only permitted strategy.

2. s ∈ ςx′=θ&H(X) ⇐⇒ s = ϕ(0), ϕ(r) ∈ X for some r ∈ R and some (differentiable)
ϕ : [0, r]→ S such that dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[H]]I for all ζ ≤ r ⇐⇒ bσ ⊕
τcs = bx′ = θ&H@rcs = ϕ(r) ∈ X , using σ def

= {(x′ = θ&H@r)} ⊆ g(x′ = θ&H)(s).
The converse direction follows, because this σ has the only permitted form for a strategy
where different values of r that lead to X are equivalently useful.

3. s ∈ ς?φ(X) = [[φ]]I ∩ X ⇐⇒ bσ ⊕ τcs = b?φcs = s ∈ X , with s ∈ [[φ]]I using
σ

def
= {(?φ)} = g(?φ)(s). The converse direction uses that this σ is the only permitted

strategy and it deadlocks exactly if s 6∈ [[φ]]I .

4. s ∈ ςα∪β(X) = ςα(X) ∪ ςβ(X) ⇐⇒ s ∈ ςα(X) or s ∈ ςβ(X). By induction hypothesis,
this is equivalent to: there is a winning strategy σα ⊆ g(α)(s) for Angel for X from s or
there is a winning strategy σβ ⊆ g(β)(s) for Angel for X from s. This is equivalent to
σ ⊆ g(α ∪ β)(s) being a winning strategy for Angel for X from s, using either σ def

= lˆσα or
σ

def
= rˆσβ .
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5. s ∈ ςα;β(X) = ςα(ςβ(X)). By induction hypothesis, this is equivalent to the existence
of a strategy σα ⊆ g(α)(s) for Angel such that for all strategies τ ⊆ g(α)(s) for Demon:
bσα ⊕ τcs ∈ ςβ(X). By induction hypothesis, bσα ⊕ τcs ∈ ςβ(X) is equivalent to the ex-
istence of a winning strategy στ for Angel (which depends on the state bσα ⊕ τcs that the
previous α game led to) with winning condition X from bσα ⊕ τcs. This is equivalent to
σ ⊆ g(α; β)(s) being a winning strategy for Angel for X from s, using

σ
def
= σα ∪

⋃
(σα ⊕ τ)ˆστ (8)

The union is over all leaves σα ⊕ τ ∈ leaf(g(α)(s)) for which the game is not won by a
player yet. Note that σ is a winning strategy for X , because, for all plays for which the
game is decided during α, the strategy σα already wins the game. For the others, στ wins the
game from the respective state bσα ⊕ τcs that was reached by the actions σα ⊕ τ according
to the strategy τ that Demon was observed (when α terminates) to have played during α. The
converse direction uses that strategies do not depend on moves that have not been played yet
and that any strategy can be factorized by prefixes of what has actually been played to be
coerced into the form (8).

6. We prove both inclusions of the case α∗ separately. If W denotes the set of states from
which Angel has a winning strategy in g(α∗)(s) to achieve X , then we need to show that
ςα∗(X) = W . For ςα∗(X) ⊆ W , it is enough to show that W is a pre-fixpoint, i.e. X ∪
ςα(W ) ⊆ W , because ςα∗(X) is the least (pre-)fixpoint. Consider any s ∈ X ∪ ςα(W ) ⊆ W .
If s ∈ X then s ∈ W with the winning strategy σ def

= {(s)} for Angel to achieve X in α∗

from s. Otherwise, s ∈ ςα(W ) ⊆ W implies, by induction hypothesis, that there is a winning
strategy σα ⊆ g(α)(s) for Angel in α to achieve W from s. By definition of W , Angel has
a winning strategy in g(α∗)(s) to achieve X from all states reached after playing α from s
according to σα, i.e. bσα ⊕ τcs ∈ W for all strategies τ of Demon. Thus, by composing σα
with the respective (state-dependent) winning strategies στ for all possible resulting states
(which are all in W ) corresponding to the respective possible strategies τ that Demon could
play during the first α, we obtain a winning strategy of the form

σ
def
= gˆσα ∪

⋃
gˆ(σα ⊕ τ)ˆστ

for Angel to achieveX in α∗ from s, where the union is over all leaves σα ⊕ τ ∈ leaf(g(α)(s))
in any strategy τ of Demon for which the game is not won by a player yet during the first α.

The converse inclusion ςα∗(X) ⊇ W is equivalent to ςα∗(X){ ⊆ W {. For this, we recall that
ςα∗(X){ = δα∗(X

{) =
⋃
{Z ⊆ S : Z ⊆ X{ ∩ δα(Z)} by Theorem 2. Thus, since ςα∗(X){

is a greatest (post-)fixpoint, it is enough to show Z ⊆ W { for all Z with Z ⊆ X{ ∩ δα(Z).
Since, Z ⊆ δα(Z), Demon has a winning strategy in α to achieve Z from all s ∈ Z, by
induction hypothesis. By composing the respective winning strategies for Demon, we obtain
a winning strategy τ for Demon to achieve Z in α∗ for any number of repetitions that Angel
chooses (recall that Angel cannot choose to repeat α∗ infinitely often to win). Since Z ⊆ X{,
Angel cannot have a winning strategy to achieve X in α∗ from any s ∈ Z by Theorem 2.
Thus, Z ⊆ W {.
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7. s ∈ ςαd(X) = ςα(X{){. ⇐⇒ s 6∈ ςα(X{). By induction hypothesis, this is equivalent
to: there is no winning strategy σ ⊆ g(α)(s) for Angel winning X{ in α from s. Since
ςαd(X) = δα(X) by Theorem 2, this is equivalent to: there is a winning strategy τ ⊆ g(α)(s)
for Demon winning X in α from s. Since the nodes where Angel acts swap with the nodes
where Demon acts when moving from α to αd, this is equivalent to: there is a winning
strategy σ ⊆ g(αd)(s) for Angel winning X in αd from s using σ def

= dˆτ ˆd. The converse
direction uses that all strategies permitted for αd begin and end with d.

D Alternative Semantics
To argue why the dGL semantics is both natural and general, we briefly discuss alternative choices
for the semantics, focusing on the role of repetition in the context of hybrid games.

D.1 Advance Notice Semantics
One alternative semantics is the advance notice semantics for α∗, which requires the players to
announce the number of times that game α will be repeated when the loop begins. The advance
notice semantics defines ςα∗(X) as

⋃
n∈N ςαn(X) where αn+1 ≡ αn;α and α0 ≡ ?true and defines

δα∗(X) as
⋂
n∈N δαn(X). When playing α∗, Angel, thus, announces to Demon how many repeti-

tions n are going to be played when the game α∗ begins and Demon announces how often to repeat
α×. This advance notice makes it easier for Demon to win loops α∗ and easier for Angel to win
loops α×, because the opponent announces an important feature of their strategy immediately as
opposed to revealing whether or not to repeat the game once more one iteration at a time as in
Def. 4.

In hybrid systems, the advance notice semantics and the least fixpoint semantics are equivalent
(Lemma 3), but the advance notice semantics and dGL’s least fixpoint semantics are different for
hybrid games. The following formula is valid in dGL (see Fig. 13), but would not be valid in the
advance notice semantics:

x = 1 ∧ a = 1→ 〈((x := a; a := 0) ∩ x := 0)∗〉x 6= 1 (9)

If, in the advance notice semantics, Angel announces that she has chosen n repetitions of the game,
then Demon wins (for a 6= 0) by choosing the x := 0 option n − 1 times followed by one choice
of x := a; a := 0 in the last repetition. This strategy would not work in the dGL semantics, because
Angel is free to decide whether to repeat α∗ after each repetition based on the resulting state of the
game.

Conversely, the dual formula would be valid in the advance notice semantics but is not valid in
dGL:

x = 1 ∧ a = 1→ [((x := a; a := 0) ∩ x := 0)∗]x = 1

The dGL semantics is more general, because advance notice games can be expressed easily in dGL
by having the players choose a counter c before the loop that decreases to 0 during the repetition.
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Figure 13: Game trees for x = 1 ∧ a = 1 → 〈α∗〉x 6= 1 with game α ≡ (x := a; a := 0) ∩ x := 0
(notation: x, a). (top) valid in dGL by strategy “repeat once and repeat once more if x = 1, then
stop” (bottom) false in advance notice semantics by the strategy “n− 1 choices of x := 0 followed
by x := a; a := 0 once”, where n is the number of repetitions Angel announced
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The advance notice semantics can be expressed in dGL, e.g., for (9) as

x = 1 ∧ a = 1→ 〈c := 0; c := c+ 1∗;

(((x := a; a := 0) ∩ x := 0); c := c− 1)∗; ?c = 0〉x 6= 1

The dGL semantics cannot, however, be expressed conversely in an advance notice semantics, so
the dGL semantics is strictly more general.

D.2 ω-Strategic Semantics
Another alternative choice for the semantics would have been to allow only arbitrary finite itera-
tions of the strategy function for computing the winning region by using the ω-strategic semantics,
which defines ςα∗(X) as ςωα (X) =

⋃
n∈N ς

n
α(X) along with a corresponding definition for δα∗(X).

Like the dGL semantics, but quite unlike the advance notice semantics, the ω-strategic semantics
does not require Angel to disclose how often she is going to repeat when playing α∗. Similarly,
Demon does not have to announce how often to repeat when playing α×. Nevertheless, the seman-
tics are different. The ω-strategic semantics would make the following valid dGL formula invalid:

〈(x := 1;x′ = 1d ∪ x := x− 1)
∗〉 (0 ≤ x < 1) (10)

By a simple variation of the argument in the proof of Theorem 6, ςωα ([0, 1)) = [0,∞), because
ςnα([0, 1)) = [0, n) for all n ∈ N. Yet, this ω-level of iteration of the strategy function for winning
regions misses out on the perfectly reasonable winning strategy “first choose x := 1;x′ = 1d and
then always choose x := x − 1 until stopping at 0 ≤ x < 1”. The existence of this winning
strategy is only found at the level ςω+1

α ([0, 1)) = ςα([0,∞)) = R. Even though any particular use
of the winning strategy in any game play uses only some finite number of repetitions of the loop,
the argument why it will always work requires > ω many iterations of ςα(·), because Demon can
change x to an arbitrarily big value, so that ω many iterations of ςα(·) are needed to conclude that
Angel has a winning strategy for any positive value of x. There is no upper bound < ω on the
number of iterations it takes Angel to win. But it does converge after ω + 1 iterations. According
to Theorem 6, the same shortcomings of the ω-semantics apply at higher closure ordinals.
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E Proof of Higher Closure Ordinals
Proof of Theorem 6. In this proof, we proceed in stages of increasing difficulty. We have already
shown above that the closure ordinal is ≥ ω · 2 in Appendix ??. Now we prove the bounds ≥ ω2

and finally ≥ ωω. In order to see that the closure ordinal is at least ω2 even for a single nesting
layer of dual and loop, we follow a similar argument using more variables. Consider the family of
formulas (for some N ∈ N) of the form

〈
(
xN := xN − 1;x′N−1 = 1d ∪ . . . ∪ x2 := x2 − 1;x′1 = 1d ∪ x1 := x1 − 1︸ ︷︷ ︸

α

)∗〉 N∧
i=1

xi < 0

We show that the winning regions for this dGL formula stabilize after ω · N iterations, because
ω many iterations are necessary to show that any x1 can be reduced to (−∞, 0) by choosing the
last action sufficiently often, whereas another ω many iterations are needed to show that x2 can
then be reduced to (−∞, 0) by choosing the second-to-last action sufficiently often, increasing
x1 arbitrarily under Demon’s control, which can still be won because this adversarial increase in
x1 can be compensated for by the first part of the winning strategy. We use the vector space of
variables (xN , . . . , x1) in that order. It is easy to see that ςωα ((−∞, 0)N) =

⋃
n∈N ς

n
α((−∞, 0)N) =

(−∞, 0)N−1 × R, because ςn+1
α ((−∞, 0)) = (−∞, 0)N−1 × (−∞, n) holds for all n ∈ N, n by a

simple inductive argument:

ς1
α((−∞, 0)N) = (−∞, 0)N

ςn+1
α ((−∞, 0)N) = (−∞, 0)N ∪ ςα(ςnα((−∞, 0)N)) = (−∞, 0)N ∪ ςα((−∞, 0)N−1 × (−∞, n− 1))

= (−∞, 0)N−1 × (−∞, n)

Inductively, ςω·(k+1)
α ((−∞, 0)N) =

⋃
n∈N ς

ω·k+n
α ((−∞, 0)N) = (−∞, 0)N−k−1 × Rk+1, because

ςω·k+n+1
α ((−∞, 0)) = (−∞, 0)N−k−1 × (−∞, n)× Rk holds for all n ∈ N by a simple inductive

argument:

ςω·k+n+1
α ((−∞, 0)N) = (−∞, 0)N ∪ ςα(ςω·k+n

α ((−∞, 0)N)) = (−∞, 0)N ∪ ςα((−∞, 0)N−k−1 × (−∞, n− 1)× Rk)

= (−∞, 0)N−k−1 × (−∞, n)× Rk

Consequently, ςα∗((−∞, 0)N) = ςω·Nα ((−∞, 0)N) 6= ς
ω·(N−1)+n
α ((−∞, 0)N), which makes ω · N

the closure ordinal for α. Since we can consider hybrid games α of the above form with arbitrarily
big N ∈ N, the common closure ordinal has to be ≥ ω ·N for all N ∈ N, i.e. it has to be ≥ ω2.

In order to see that the closure ordinal is at least ωω, we follow an argument expanding on the
previous case. Consider the family of formulas (for some N ∈ N) of the form

〈
(

?xN−1 < 0;x′N−1 = 1d;xN := xN − 1 ∪ . . . ∪ ?x1 < 0;x′1 = 1d;x2 := x2 − 1 ∪ x1 := x1 − 1︸ ︷︷ ︸
α

)∗〉 N∧
i=1

xi < 0

We prove that the winning regions for this “clockwork ω” formula stabilize after ωN iterations,
ω many iterations are necessary to show that any x1 can be reduced to (−∞, 0) by choosing the
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last action sufficiently often, whereas another ω many iterations are needed to show that x2 can
then be reduced to (−∞, 0) by choosing the second-to-last action sufficiently often in case x1 has
already been reduced to (−∞, 0). Every time the second-to-last action is chosen, however, Demon
increases x1 arbitrarily, which again takes ω many steps of the last action to understand how x1

can again be reduced to (−∞, 0) before the second-to-last action can be chosen again to decrease
x2 further. This phenomenon that ω many actions on xi−1 are needed before xi can be decreased
by 1 holds for all i recursively. Note that in any particular game play, Demon can only increase xi
by some finite amount. But Angel does not have a finite bound on that increment, so she will first
have to convince herself that she has a winning strategy that could tolerate any change in xi, which
takes ω many iterations of the previous argument.

We use the vector space of variables (xN , . . . , x1) in that order. For bN , . . . , b1 ∈ N∪{∞}, we
use the short hand notation

bN . . . b2b1
def
= (−∞, bN)× · · · × (−∞, b2)× (−∞, b1)

and also write bni for (−∞, bi)n in that context. Let~b = (bN , . . . , b1). We prove that ∀∀n ∈ N ∀∀j ∈ N, j > 0

ςω
j(n+1)

α (bN . . . bj . . . b1) = bN . . . (bj+1 + n)∞j if 1© bN , . . . , bj <∞, j > 0

ςω
j(n+1)

α (bN . . . bj+1∞j) = bN . . . (bj+1 + n+ 1)∞j if 2© bN , . . . , bj+1 <∞, bj =∞ = . . . b1

ςω
j(n+1)

α (bN . . . bk+1∞k−j∞j) = bN . . . (bk+1 + 1)1k−j−1(n+ 1)∞j ∪~b if 3© bN , . . . , bk+1 <∞, bk =∞, k > j

by induction on the lexicographical order of j and n. Note that, in the case 3©, there are some
subordinate cases which we do not need to track in our analysis, because they are strategic dead
ends. IH is short for induction hypothesis.

The base case j = 0, n = 0 is vacuous for 1© and can be checked easily for 2©.

ςω
01

α (bN . . . b1∞0) = ς1
α(bN . . . b1) = bN . . . (b1 + 1) = bN . . . (b1 + 1)∞0

ςω
0(n+1)

α (bN . . . b1∞0) = ~b ∪ ςα(ςnα(bN . . . b1)) = ~b ∪ ςα(bN . . . (b1 + n)) = bN . . . (b1 + n+ 1)

For 3©, the case j = 0 holds only after an extra offset k, however:

ς1
α(bN . . . bk+1∞k) = ~b ∪ bN . . . (bk+1 + 1)0∞k−1

ςn+1
α (bN . . . bk+1∞k) = ςnα(bN . . . bk+1∞k) ∪ bN . . . (bk+1 + 1)1n0∞k−n−1 for n < k

ςk+n+1
α (bN . . . bk+1∞k) = ςk+n

α (bN . . . bk+1∞k) ∪ bN . . . (bk+1 + 1)1k−1(n+ 1)

So instead, we prove base case j = 1, n = 0, because the finite extra offset k has been overcome
at ω:

ςω
11

α (bN . . . b1) =
⋃
n∈N

ςω
0(n+1)

α (bN . . . b1∞0) =
⋃
n∈N

bN . . . (b1 + n+ 1) = bN . . . b2∞ if 1©

ςω
11

α (bN . . . b2∞) =
⋃
n∈N

ςω
0(n+1)

α (bN . . . b2∞1) = bN . . . (b2 + 1)∞ if 2©

ςω
11

α (bN . . . bk+1∞k) =
⋃
n∈N

ςω
0(n+1)

α (bN . . . bk+1∞k) =
⋃
n∈N

bN . . . (bk+1 + 1)1k−1(n+ 1) ∪~b

= bN . . . (bk+1 + 1)1k−1∞∪~b if 3©
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In case 3©, there are some subordinate cases ∪~b coming from mixed occurrences bN . . . (bk+1 +
1)i0∞k−i−1, but we do not need to track them in our analysis, because they are strategic dead ends.
By construction of α, no counter can be changed without resetting all smaller variables to 0 first as
indicated.

j y j + 1, n = 0: For the step from j to j + 1 we prove the case n = 0 as follows.

ςω
j+1·(0+1)

α (bN . . . bj . . . b1) = ςω
j ·ω

α (bN . . . bj . . . b1) =
⋃
n∈N

ςω
j ·(n+1)

α (bN . . . bj . . . b1)

IH
=


⋃
n∈N bN . . . (bj+1 + n)∞j if 1©⋃
n∈N bN . . . (bj+1 + n+ 1)∞j if 2©⋃
n∈N bN . . . (bk+1 + 1)1k−j−1(n+ 1)∞j ∪~b if 3©

IH
=


bN . . . bj+2∞j+1 if bN , . . . , bj <∞
bN . . . bj+2∞j+1 if bN , . . . , bj+1 <∞
bN . . . (bj+2 + 1)∞j+1 if bN , . . . , bj+2 <∞, bj+1 =∞, k = j + 1

bN . . . (bk+1 + 1)1k−j−21∞j+1 ∪~b if bN , . . . , bk+1 <∞, bk =∞, k > j + 1

n y n + 1: Within any level j, we prove the step from n to n + 1 as follows. If n = 0, then
ς
ωj(n+1)
α (bN . . . bj . . . b1) = ςω

j

α (bN . . . bj . . . b1) already has the property by induction hypothesis.
Otherwise n > 0, which allows us to conclude:

ςω
j(n+1)

α (bN . . . bj . . . b1) = ςω
jn+ωj

α (bN . . . bj . . . b1)
Lemma 5

= ςω
j

α (ςω
jn

α (bN . . . bj . . . b1))

IH
=


ςω

j

α (bN . . . (bj+1 + n− 1)∞j) if 1©
ςω

j

α (bN . . . (bj+1 + n)∞j) if 2©
ςω

j

α (bN . . . (bk+1 + 1)1k−j−1n∞j ∪~b) if 3©

IH
=


bN . . . (bj + n)∞j if 1©
bN . . . (bj + n+ 1)∞j if 2©
bN . . . (bk+1 + 1)1k−j−1(n+ 1)∞j ∪~b if 3©

Consequently, ςα∗((−∞, 0)N) = ςω
N

α ((−∞, 0)N) = RN 6= ςω
N−1·n

α ((−∞, 0)N) for all n ∈ N, which
makes ωN the closure ordinal for α. Since we can consider hybrid games α of the above form with
arbitrarily big N ∈ N, the common closure ordinal has to be ≥ ωN for all N ∈ N, i.e. it has to be
≥ ωω.
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