
A Type System for Borrowing Permissions

Karl Naden Robert Bocchino
Jonathan Aldrich Kevin Bierhoff

May 2012
CMU-CS-11-142

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This material is based upon work supported by the National Science Foundation under grant #CCF-1116907,
“Foundations of Permission-Based Object-Oriented Languages,” grant #CCF-0811592, “Practical Typestate Verifica-
tion with Assume-Guarantee Reasoning,” and grant #1019343 to the Computing Research Association for the CIFel-
lows Project.

Keywords: programming language, permissions, borrowing

Abstract

In object-oriented programming, unique permissions to object references are useful for checking
correctness properties such as consistency of typestate and noninterference of concurrency. To be
usable, unique permissions must be borrowed — for example, one must be able to read a unique
reference out of a field, use it for something, and put it back. While one can null out the field
and later reassign it, this paradigm is ungainly and requires unnecessary writes, potentially hurting
cache performance. Therefore, in practice borrowing must occur in the type system, without re-
quiring memory updates. Previous systems support borrowing with external alias analysis and/or
explicit programmer management of fractional permissions. While these approaches are power-
ful, they are also awkward and difficult for programmers to understand. We present an integrated
language and type system with unique, immutable, and shared permissions, together with new lo-
cal permissions that say that a reference may not be stored to the heap. Our system also includes
change permissions such as unique>>unique and unique>>none that describe how per-
missions flow in and out of method formal parameters. Together, these features support common
patterns of borrowing, including borrowing multiple local permissions from a unique reference and
recovering the unique reference when the local permissions go out of scope, without any explicit
management of fractions in the source language. All accounting of fractional permissions is done
by the type system “under the hood.” We present the syntax and static and dynamic semantics of a
formal core language and prove soundness results. We also illustrate the utility and practicality of
our design by using it to express several realistic examples.

1 Introduction
Permissions are annotations on pointer variables that specify how an object may be aliased, and
which aliases may read or write to the object [Boyland et al., 2001]. For example, unique [Holt
et al., 1988] indicates an unaliased object, immutable [Noble et al., 1998] indicates an object
that can be aliased but cannot be mutated, and shared [Bierhoff and Aldrich, 2007] indicates an
object that may be aliased and can be mutated. Permission systems have been proposed to address
a diversity of software engineering concerns, including encapsulation [Noble et al., 1998], protocol
checking [Fähndrich and DeLine, 2002, Bierhoff and Aldrich, 2007], safe concurrency [Boyapati
et al., 2002, Boyland, 2003], security [Bokowski and Vitek, 1999], and memory management [Boy-
land et al., 2001, Grossman et al., 2002]. Recently, new programming languages have incorporated
permissions [Wolff et al., 2011] or related affine types [Tov and Pucella, 2011] as fundamental parts
of the type system.

In order to leverage permissions in practice, programmers must be able to manipulate them
effectively. One form of manipulation is permission splitting: for example, converting a unique
permission into multiple shared permissions, or alternatively into multiple immutable permissions.
A shared (or immutable) permission can then be split further into more shared (respectively im-
mutable) permissions. A second important form of manipulation is borrowing: extracting a per-
mission from a variable field, using it temporarily, and then returning all or part of it to the source.
For example, a method may require an immutable permission to the receiver; if we have a unique
permission to an object, we’d like to call the method on that object, and provided the method does
not allow an alias to the receiver to escape, we’d like to get our unique permission back at the end.
Crucially, recovering the permission should not require reassigning the original variable (which
may not even be assignable).

Borrowing was originally proposed by [Hogg, 1991]; however, good support for this feature
has remained an open and difficult problem. Prior type-based systems [Hogg, 1991, Minsky, 1996,
Aldrich et al., 2002] provided a borrowed annotation, but they did not support the immutable ref-
erences that are an essential part of many recent systems [Boyland, 2003, Bierhoff and Aldrich,
2007, Wolff et al., 2011]. A number of systems supported borrowing via a program analysis [Boy-
land, 2001, Bierhoff et al., 2009], but the program analysis relies on shape analysis, which is
fragile and notoriously difficult for programmers to understand. Boyland proposed fractional per-
missions [Boyland, 2003] to support splitting and recombining permissions, with borrowing as a
special case, but its mathematical fraction abstraction is unnatural for programmers, to such an
extent that the automated tools we know of once again hide the fractions behind an (inscrutable)
analysis [Bierhoff and Aldrich, 2007, Heule et al., 2011].

A good borrowing facility should have a number of properties. It should support a natural
programming style (e.g. avoid awkward constructs like replacing field write with a primitive swap
operation [Harms and Weide, 1991], or a requirement to thread a reference explicitly from one call
to the next by reassigning the reference each time [Tov and Pucella, 2011]). Reasoning abstractions
should likewise be natural (not fractions [Boyland, 2003]). It should support borrowing from
unique, immutable, and shared variables and fields. Rules should be local so the programmer can
understand them and predict how they operate (vs. a non-local analysis [Boyland, 2001, Bierhoff
and Aldrich, 2007] or constraint-based inference).

1

The contribution of this paper is the first borrowing approach that meets all of the above
properties. We provide a type system for a Java-like language with permissions that are tracked
through local, predictable rules. Our technical approach includes a number of innovations, includ-
ing change permissions that show the incoming and outgoing permissions to a method parameter,
local permissions that modify shared or immutable permissions to denote that they cannot escape,
an expressive rule for handling borrowing across conditional branches, and a way to safely restore
permissions to the variable or field from which they were borrowed. We formalize our type system,
prove it sound, and demonstrate it via a series of examples which can be checked by our prototype
implementation.1

The work described here was partially presented at POPL 2012 [Naden et al., 2012]. The
differences between the published system and the one detailed here are given in section 3.6.

We describe the features of the language in the next section. Section 3 formalizes our type
system and gives soundness results. We cover additional related work in section 4, and section 5
concludes.

2 Language Features
In this section we informally explain the features of our language; the next section gives a more
formal treatment. Our language is based on Plaid [Wolff et al., 2011]. For our purposes, Plaid is
similar to Java, except:

• Instead of classes, Plaid uses states. This is because Plaid has a first-class notion of types-
tate, which can be used to model object state and transitions between states. We don’t use
typestate in this work, but we adhere to the Plaid syntax.

• Plaid has a match construct that evaluates an argument and then uses its type to pick which
of several cases to execute.

• Plaid has no null value in the surface syntax or programmer-visible semantics. Instead,
every object field and variable is initialized to a non-null object.

• Plaid has a first-class notion of permissions. Supporting typestate is one important applica-
tion of permissions, including the novel borrowing mechanisms discussed in this work.

In the rest of this section we first give an overview of the permissions in our language. Then
we explain the mechanisms for creating aliases of variables and fields with consistent permissions.
Then we explain the mechanism of change permissions, which allows modular checking of per-
mission flow in and out of methods. Finally, we explain local permissions, which provide a way
to split a unique permission into several permissions and later recombine them to unique, without
explicit fractions.

1available at http://code.google.com/p/plaid-lang/

2

2.1 Access Permissions
Permissions are a well-known way of controlling aliasing in applications such as typestate [Bier-
hoff and Aldrich, 2007] and concurrency control [Boyland, 2003]. Our permission system is
adapted from the access permissions system of [Bierhoff and Aldrich, 2007]. An access per-
mission is a tag on an object reference that says how the reference may be used to access the fields
of the object it refers to and how aliases of that reference may be created. In this work, we use the
following permissions:

• A unique permission to object reference o says that this is the only usable copy of o: if any
alias of o exists, then it has permission none. The reference may be used to read and write
fields of the object O that it points to.

• A none permission says that the reference may not be used to read or write the object it
points to.

• An immutable permission says that the reference o may be used only for reading, and
not writing, the fields of the object O that it points to. Further, all other usable (non-none)
references to O are guaranteed to be immutable, so no aliased reference can be used to
write O either.

• A shared permission says that the reference o may be used for reading and writing, and
there is no restriction on aliases of o (so shared is like an ordinary reference in Java).

• A local immutable or local shared permission is like an immutable (respec-
tively shared) permission, except it can only be passed around in local variables, and can’t
be assigned to the heap. Local permissions are new with this work and are explained further
in Section 2.4.

If any alias of a unique reference is created, then the unique permission must be consumed (but
it can be transferred to the alias). A unique permission is therefore like a linear resource [Girard,
1987]. By contrast, immutable and shared references may be freely replicated.

While other access permissions are possible, these permissions suffice to illustrate the concepts
in this paper. Further, these permissions can express a wide range of computation patterns. Other
permissions could be added to the system without difficulty.

2.2 Aliasing Variables and Fields
In contrast to a language like Java with unrestricted aliasing, a language with access permissions
must maintain careful control over how aliases are created. We now discuss how our language
manages permissions for aliases of variables and object fields.
Aliasing Variables: In our language the following rules govern aliasing of local variables:

1. Our local variables are single-assignment (i.e., they are assigned to only in their declaration)
and are declared with explicit permissions, so the needed permission is always available on
the left-hand side of a variable assignment.

3

(a) Borrowing Unique from a Variable

1 unique x = new S1; // x:unique
2 {
3 unique y = x; // x:none,y:unique
4 } // x:unique

(b) Borrowing Unique from One of Two Variables

1 unique x = new S1; // x:unique
2 unique y = new S2; // x:unique,y:unique
3 {
4 unique z = match(...) {
5 S1=>x; S2=>y; // x:none,y:none,z:unique
6 }
7 } // x:unique,y:unique

(c) Taking Unique from a Variable

1 unique x = new S2; // x:unique
2 unique y = new S1; // x:unique,y:unique
3 {
4 unique z = x; // x:none,y:unique,z:unique
5 y.f1 = z; // x:none,y:unique,z:none
6 } // x:none,y:unique

Figure 1: Examples of variable aliasing.

2. In typing and assignment, we compute all variables and fields such that the value returned
by the right-hand side of the assignment may be obtained by reading the variable or field.
Because we can’t statically resolve which match case will be taken, there may be more than
one.

3. We maintain a typing environment, which we call a context, with the permission associated
with each variable. For each possible source variable, we make sure there is enough permis-
sion in the context to extract the needed permission. We use permission splitting rules, given
formally in the next section, to compute the permission remaining in the source variables
after the extraction, and we update the context accordingly.

4. At the end of the scope of the assignee variable, we restore whatever permission is left in that
variable to the source variables. For this operation we use permission joining rules, which
are the reverse of the splitting rules.

Figure 1 shows examples, where the definitions of states S1 and S2 are as follows:

4

state S1 { unique S1 f1 = new S2; }
state S2 case of S1 { unique S1 f2 = new S3; }
state S3 case of S2 {}

Here case of is like extends in Java and denotes subclassing. In Figure 1(a), variable x is
declared unique and initialized with a fresh object in line 1. In line 3, variable y is created and
takes the unique permission out of x, leaving none in x. When y goes out of scope in line 4,
its unique permission flows back into x. Figure 1(b) is similar, except that in line 5, we don’t
know which variable (x or y) will be read from at runtime, so we take permissions out of both,
record both as source variables, and restore permissions to both at the end of z’s scope in line 7.
The match statement in lines 4–5 says to evaluate the selector expression (represented as ellipses
here) to an object reference o, then evaluate the whole expression to x if the type of o matches S1,
to y if the type of o matches S2, and to halt if there is no match. While this example is simple, in
general typing match in our language is subtle and requires merging the contexts generated by the
different match cases; the details are given in Section 3.2.4. Figure 1(c) shows an example where
the permission read out of x into z is stored into the heap, so it can’t be returned to x at the end of
z’s scope.

(a) Borrowing Unique from a Field

1 unique x = new S1; // x:unique
2 {
3 unique y = x.f1; // x:(unique,f1:none),y:unique
4 } // x:unique

(b) Borrowing Unique from a Variable or Field

1 unique x = new S1; // x:unique
2 unique y = new S1; // x:unique,y:unique
3 {
4 unique z = match(...) {
5 S1=>x; S2=>y.f1;
6 // x:none,y:(unique,f1:none),z:unique
7 }
8 } // x:unique,y:unique

(c) Taking Unique from a Field

1 unique x = new S1; // x:unique
2 unique y = new S1; // x:unique,y:unique
3 y.f1 = x.f1; // x:(unique,f1:none),y:unique

Figure 2: Examples of field aliasing.

5

Aliasing Fields: The rules for aliasing of fields are similar to those for aliasing of local variables,
with two exceptions. First, pulling a permission out of a field can cause the residual permission
to violate the statically declared field permission. For example, pulling unique out of a field
declared unique causes the field to have permission none. In this case, we say the field is
unpacked [DeLine and Fähndrich, 2004]. If an object has any unpacked fields, then we say the
object is unpacked. We must account for the actual permissions when accessing the fields of an
unpacked object. Second, since fields can be assigned to, the reference in the field at the point of
permission restore may not be the same reference that the permission came from. In this case, we
must be careful not to restore permissions to the wrong reference, which would violate soundness.
Unpacking fields: To address the first issue, we store the current permission of each unpacked field
of each object in the context. Figure 2 shows examples, where S1 and S2 are defined as before. In
Figure 2(a), line 3 shows the context after taking a unique permission out of x.f1. The notation
x:(unique,f1:none) means that x has unique permission and points to an unpacked object
with none permission for field f1. Figure 2(b) shows how to use the same mechanism from
Figure 1 to pull a permission out of either a variable or a field. Figure 2(c) shows an example of
taking a unique permission from a field and assigning it to another field.

To ensure soundness, we place three restrictions on field unpacking. First, an object can be
unpacked via a variable with unique permission, but not immutable or shared permission. This is
so outstanding aliases to the object don’t become inconsistent.2 Our language also allows taking
an immutable permission out of a unique field v.f given immutable permission to v. In this case
our type system does not report v as unpacked in the context; this is sound because once an object
is seen with immutable permission it can never become unique again.

Second, once an object o stored in variable v is unpacked, permission to o may not be assigned
to another variable or the heap until v is packed again; otherwise we would not be able to track the
unpacked state of o through v’s information in the context. For example, the following code is not
allowed, because x is unpacked when it is assigned to z:

1 unique x = new S1; // x:unique
2 unique y = x.f1; // x:(unique,f1:none),y:unique
3 unique z = x; // Disallowed because x is not packed

Third, a variable v must be packed at the point where it goes out of scope; in particular method
formal parameters must be packed at the end of a method body. That is because the permission
stored in v could be flowing back to a different (packed) variable that gave its permission to v when
v was declared.

In practice, the programmer can comply with the latter two requriements by carefully managing
the scopes of variables that read permissions from unique fields and/or writing fresh objects into
the fields to pack the fields at appropriate points. While in some cases these writes may not be
strictly necessary, the requirements do not seem to be onerous in the examples we have studied.
These restrictions could be relaxed at the cost of additional language complexity (for example,
stating in method signatures which fields of an incoming parameter must be packed).

2Local permissions, discussed in Section 2.4, provide an additional way to unpack objects.

6

Consistent permission restore: As an example of the second issue identified above (erroneous per-
mission restore), consider the following code:

1 unique x = new S2; // x:unique
2 {
3 unique y = x.f1; // x:(unique,f1:none),y:unique
4 x.f1 = new S2; // x:unique,y:unique
5 x.f2 = x.f1; // x:(unique,f1:none),y:unique
6 } // x:(unique,f1:none)

Restoring a permission to x.f1 at the end of y’s scope in line 6 would create an alias between
x.f1 and x.f2, both with unique permission. The problem is that the reference in field x.f1 in
line 6 is not the same reference to which permission was taken in line 3, so restoring to it would be
wrong.

To prevent this from happening, the static typing rules maintain an identifier that is updated ev-
ery time a field goes from packed to unpacked. The permission restore occurs only if the identifier
at the point of the field access matches the identifier at the point of restoration. For example, in the
code shown above, at line 3 where x.f1 is unpacked and its permission read into y, an identifier
i is associated with x.f1 and with y. Then in line 5, when x.f1 is unpacked again, x.f1 gets a
fresh identifier i′. In line 6, when y goes out of scope, its identifier i does not match the identifier
i′ of the source location x.f1, so permission is not restored from y into the location. Thus the
identifier mechanism approximates object identity at runtime; the approximation is conservative
because each assignment is assumed to assign a different object reference, even if the same one is
actually assigned twice.

2.3 Modular Checking with Change Permissions
To support modular checking of permission flow across method scopes, we introduce a language
feature called a change permission. Change permissions are inspired by, and similar to, change
types in Plaid [Wolff et al., 2011]. However, whereas a change type in Plaid says that an object
may transition from one state to another (to support typestate), in our language change permissions
specify only that a reference permission changes from a stronger to a weaker permission; the object
type always persists. Further, while previous systems can distinguish borrowed and consumed per-
missions at method boundaries [Boyland, 2001, DeLine and Fähndrich, 2001], change permissions
are more flexible, because they can record a change to any weaker permission (not just none).

Syntactically, a change permission looks like π>>π′, where π and π′ are permissions. Change
permissions appear on method formal parameters, including the implicit parameter this. For
example, a formal parameter can be declared π>>π′ s x, where s is a state name. This declaration
says the caller must ensure that on entry to the method permission π is available for the reference
o stored in x, while the callee must ensure that on exit from the method permission π′ is available
for o. The bare permission π can also function as a change permission; it is shorthand for π>>π.

7

Change permissions naturally support both borrowing and non-borrowing uses of unique per-
missions. For example, a change permission unique>>unique says that the permission in the
parameter value must be unique on entry to the method, and the unique permission will be restored
at the end of the method; whereas unique>>none says that a unique permission is taken and not
returned (for example, because it is stored on the heap).

1 state Cell {}
2 state Cons case of Cell {
3 immutable Data data;
4 unique Cell next;
5 }
6 state List {
7 unique Cell head = new Cell;
8 void prepend(immutable Data elt) unique {
9 unique Cons newHead = new Cons with {

10 this.data = elt;
11 this.next = this.head; // this:(unique,head:none)
12 }
13 this.head = newHead; // this:unique
14 }
15 }
16

17 unique List list = new List; // list:unique
18 list.prepend(new Data); // list:unique

Figure 3: List prepend example.

Figure 3 shows an example using unique>>unique (written in shorthand form as unique)
to update a list with unique links. Line 1 defines a Cell state representing an empty list cell.
Lines 2–5 define a Cons cell which is a substate of Cell; it has a data field with immutable
permission and a next field with unique permission. Lines 6 and following define the actual
list. It has a unique Cell for its head and a method prepend that (1) accepts an immutable
permission in elt and a unique permission in this (unique in line 8 represents the change
permission associated with this); (2) leaves a unique permission in this on exit; and (3)
returns nothing. The comments in lines 11 and 13 show what happens when checking the method
body. In line 11, this is unpacked when the unique permission is taken out of this.head and
assigned into newHead. In line 14, this is packed back up when newHead is assigned into
this.head.

Lines 17–18 show how things look from the point of view of a caller of prepend. In line
17, list gets a fresh reference with unique permission. This unique permission is passed into
prepend in line 18. However, because of the change permission unique>>unique, the per-
mission is restored on return from the method, and list still has unique permission at the end
of line 18. Note that we could also have restored the permission by returning a reference from

8

prepend and assigning it back into list but this is awkward and would require assignment into
local variables.

1 state Data {
2 immutable Data publish() unique>>immutable {
3 // Add timestamp
4 this;
5 }
6 ...
7 }
8

9 unique List list = new List;
10 unique Data data = new Data; // data:unique
11 data.publish(); // data:immutable
12 list.prepend(data); // data:immutable

Figure 4: Publication example.

Figure 4 shows another example, this time using a change permission unique>>immutable.
In this example, the Data class has a publish method that (1) requires a unique permission to
this; (2) uses the unique permission to write a time stamp to the object; then (3) “freezes” the
object in an immutable state so it can only be read and never written by the rest of the program.
Lines 9–12 show how this state might be used. Line 10 creates a fresh Data object with unique
permission. Line 11 calls publish on Data, changing its permission to immutable. Line 12
puts the immutable permission into a list. Notice that since publish also returns an immutable
permission to this, we could also have written list.prepend(data.publish()); but
using the change permission on variable data makes clear in the client code that the same object
is going into publish and into prepend.

2.4 Local Permissions
An important pattern for access permissions is to divide a unique permission up into several weaker
permissions, use the weaker permissions for a while, and then put all the permissions back together
to reform the original unique. Doing this requires careful accounting to ensure there are no
outstanding permissions to the reference (other than none) at the point where the unique is
recreated. One way to do this accounting is to use fractions [Boyland, 2003]. However, while
powerful, fractions are also difficult to use and suffer from modularity problems [Heule et al.,
2011]. Instead, we observe the following:

• The complexity of fraction-based solutions arises in large part because they allow permis-
sions to be stored into the heap, then taken out of the heap and recombined into unique.

• A common use of permissions split off from unique is to pass them into methods, where they
are used in local variables and then returned, i.e., they never go into the heap.

9

Motivated by these observations, we introduce a new kind of permission called a local permis-
sion. A local permission is designated with the keyword local, which may modify a shared or
immutable permission. A local permission annotates a local variable; it says that any aliases of
the variable created during its lifetime exist only in local variables and are never stored to the heap.
(Local permissions are not necessary for unique or none, because the permission itself already
contains all the information about aliasing to the heap: a unique local variable says there is no
alias on the heap or anywhere else, and a none local variable says it doesn’t matter.) Since local
permissions exist only in local variables, when all the variables that borrowed local permissions go
out of scope, we can reform the original unique permission.
Borrowing Local Permissions from Variables: A local permission may be borrowed from a
variable with unique permission, leaving a special borrow permission in the context. The bor-
row permission is used internally for accounting purposes, but never appears in the programmer-
visible language syntax. For example, borrowing local immutable from a unique variable
leaves borrow(unique,immutable,1) in the context for that variable. This entry says we
are borrowing local immutable permissions from a unique permission, and one alias is
outstanding. Borrowing again from the same variable increments the counter, while joining decre-
ments the counter. Thus the counter tracks the number of outstanding local aliases to the original
unique permission; when the counter is 1, joining the last local permission recreates unique.
Note that we do this counting only when creating local permissions, because in this language
immutable or shared permissions are never joined to unique.

Figure 5(a) shows an example. The counter for x becomes 1 in line 4 when y borrows from it,
and 2 in line 7 when z borrows from it. When z goes out of scope, the counter goes back down
to 1, and when y goes out of scope, x becomes unique again. When the counter exceeds one
(as in line 7), we don’t rejoin to unique yet because there are still aliases outstanding. Notice
how the counters in the borrow permissions effectively account for fractions of permissions, by
counting outstanding aliases. However, these fractions are hidden in the typing and never seen or
manipulated by the programmer.

We must carefully account for local permissions that might escape the current scope; otherwise
we could not soundly reason that all local permissions are out of scope when the local variables
holding them are out of scope. Figure 5(b) shows how we do this. In line 3, y takes a local
immutable permission from x, and line 5 attempts to return the local immutable permission to the
caller, while retaining the unique permission in x (as shown in the signature in line 1 — remember
that unique x is shorthand for unique>>unique x). Of course this should not be allowed.
This example doesn’t type check, because when y goes out of scope at the end of the method,
two borrow permissions would have to be joined, and our typing rules don’t allow this. Only a
local permission can be joined with a borrow permission. More generally, all aliases borrowed
from a local permission must be rejoined before the local permission can be rejoined to unique.
However, if the method signature in line 1 said unique>>none S x, then the example would
type check, because now x wouldn’t have to be rejoined to unique to satisfy the parameter’s
change permission.
Borrowing Local Permissions from Fields: Our language also allows borrowing local permis-
sions from unique fields. This is particularly useful when the permission to the object is local.

10

(a) Rejoining Local Permissions to Unique

1 unique x = new S; // x:unique
2 {
3 local immutable y = x;
4 // x:borrow(unique,immutable,1),y:local immutable
5 {
6 local immutable z = x;
7 /* x:borrow(unique,immutable,2),
8 y:local immutable,z:local immutable */
9 }

10 // x:borrow(unique,immutable,1),y:local immutable
11 }
12 // x:unique

(b) This Example Does Not Type Check

1 local immutable S escape(unique S x) none {
2 // x:unique
3 local immutable y = x;
4 // x:borrow(unique,immutable,1),y:local immutable
5 y; // Local immutable permission taken here
6 /* x:borrow(unique,immutable,1),
7 y:borrow(local immutable,immutable,1) */
8 }

Figure 5: Borrowing local permissions from variables.

Otherwise, we would need unique permission to the object even to read a unique field of the ob-
ject, and it is well known that this requirement is very restrictive (essentially, any access to a linear
reference must be through a chain of linear references) [Fähndrich and DeLine, 2002].

Figure 6 shows how this works for a simple example that computes the size of a list with unique
references, requiring read-only access to the list. In line 15, size requires local immutable
permission to the list (line 11), so local immutable permission is borrowed from list as discussed
above, then put back to reform unique at the end of the method call. Inside the size method
of List, in line 9, this has local immutable permission at the start of the method. At the call
of this.head.size(), local immutable permission is borrowed from this.head. At that
point, the context entry for this is

this:(local immutable,head:borrow(unique,immutable,1))

saying that this has local immutable permission and points to an unpacked object with one local
immutable reference borrowed from its head field. On return from this.head.size(), the

11

1 state Cell { int size() none {0;} }
2 state Cons case of Cell {
3 immutable Data data;
4 unique Cell next;
5 int size() local immutable { 1 + this.next.size(); }
6 }
7 state List {
8 unique Cell head = new Cell;
9 int size() local immutable { this.head.size(); }

10 ...
11 }
12

13 unique List list = new List; // list:unique
14 list.prepend(new Data); // list:unique
15 int size = list.size(); // list:unique

Figure 6: List size example.

permissions are put back together to repack the object. The same thing happens in Cell.size
(line 5). Notice that the ability to borrow local permissions is very useful here: without it, we
would either have to permanently convert the unique to immutable, thereby destroying the
unique permission to the list to compute its size, or we would have to require unique permission to
the list for the size computation, which is too restrictive.

One subtlety of this mechanism is that it allows multiple local variables that point to the same
object to have different information about whether the object is packed. For example, consider an
object O with a unique field f and two aliases of O, x and y, where y was created as an alias of
x by pulling a local σ from the unique permission in x. This leaves x with the permission
local σ as well, which allows us to pull a local σ from x.f , unpacking x. Since the type
system does not explicitly track what variables are aliases y remains packed. This is fine because
the splitting rules prevent anything other than a local σ from being pulled out through y.f .
Furthermore, by the time y leaves scope and x becomes unique again, all local aliases to the
field f of O must have been returned leaving it unique as well. Thus, it will be safe to pull
a unique permission from x.f as allowed by the static rules. At runtime, we will know that
x and y are in fact aliases and do the proper accounting for the permission in field f even when
permission are pulled from the field through different aliases. More details on this mechanism are
given in Section 3.

3 Formal System
Our formal system is built off a standard nominally-typed object system. We extend reference
types with an access permissions (section 3.2.1).

12

3.1 Syntax
3.1.1 States

States are like classes in standard languages and contain a set of methods and fields.

State S ::= state s case of s {F ∗ M∗}
Field F ::= π s f = e

Method M ::= π s m(π>>π s x) π>>π { e }
A state is declared using the state keyword with a name s which introduces a nominal type.
Each state is a case of another state (possibly itself), from which it inherits method and field
declarations. We assume, but do not check, that there are no cycles in the inheritance hierarchy
as this is orthogonal from the primary thrust of this work. We also do not model overriding or
overloading of declared members and so implicitly require that all declarations have distinct names
from the other declarations in the state as well as any declarations inherited from the case of
state. No members are inherited when the declared state is a case of itself. Each field f is
annotated with a permission and a state characterizing the kind of references that can be stored
in the field. We require that an initialization expression e is provided. Because permissions to a
given reference may change over the execution of an expression, method specifications include a
summary of how the permissions to each of its inputs change as a result of the execution of method
body. This is indicated by a change type π ≫ π which gives the starting and ending permission.
Each method declaration includes the state and permission of the returned object, the method name
m, the change type and state of the method parameter, the change type of the receiver (the state of
the receiver is the state in which the method is declared), and finally a method body e.

3.1.2 Expressions

Our system includes the following expressions:

Expression e ::= new s ∣ let π x=e in e ∣ match(e){(s=>e;)+} ∣

v ∣ v.f ∣ v.f=e ∣ e.m(e) ∣ {(e;)+} ∣

Value v ::= x ∣ this

Expressions are standard for an object system, including object creation (new), field reads, assign-
ments, variable references, and a series of expressions to be executed in sequence. We also allow
new variables to be introduced with let. Included in this expression form is the initial permission
given to the variable. Finally, a match expression determines which branch to execute based on
the state of the matched expression.

3.1.3 Programs

A program is made up of a collection of state declarations and an expression to execute:

Program P ::= S∗ e

13

3.2 Static Semantics
Our type system is designed to track the flow of permissions through references in the program
over the course of execution.

3.2.1 Permissions

The set of possible permissions in our system includes:

Permission π ::= unique ∣ local σ ∣ σ ∣ none ∣ borrow(π,σ, n)
Symmetric Permission σ ::= immutable ∣ shared

A permission serves two purposes. First it restricts what can be done to the referenced object
through this pointer and second it provides guarantees about how other aliases can impact the
object.

• none: A none permission provides no abilities and no guarantees. While a reference has
none permission, it is unusable.

• unique: A unique permissions is a linear permission that gives the reference full access
to update and modify the object. Furthermore, it guarantees that no other references in the
system can update or access the object. In other words, all other aliases of the object must
have permission none.

• σ: Symmetric permissions σ are non-linear in the sense that they can be freely duplicated.
An immutable permission provides only read access but guarantees that all other aliases of
the object have at most read-only access as well. A shared permission provides modifying
access to the object, but does not guarantee that other aliases of the object might update it.

• local: A local σ permission provides the same abilities and guarantees as the underly-
ing σ permission with the additional restriction that any aliases created from this reference
be temporary. In practice this means that a local reference cannot be assigned into a field.
This means we can view a local permission as a temporarily non-linear permission.

• borrow(π,σ, n): A borrow permission also represents a temporarily non-linear permis-
sion but records the tracking information that may allow the linear permission to be regained.
It includes the original permission π, the underlying non-linear permission σ, and the num-
ber of outstanding local aliases that have been created from this reference. The borrow
permission provides the same abilities and guarantees as the underlying σ permission and
the same extra restriction as a local permission. In addition, once all of the outstanding
local aliases have been returned, the original permission can be regained. borrow per-
missions are used for internal tracking only and never appear in the source (in fact such a
program would not typecheck as per lemma 3.8 below).

14

Permission Splitting: When a new alias is created from an existing reference and given permission
π the permission to the existing reference must be updated to maintain the invariants guaranteed
by the permissions. We capture this with the splitting judgment.

π⇛ π ⊗ π

This judgment says that given the first permission, we can pull the second permission out of it and
leave the third.

π⇛ π ⊗ π
P-SPLIT-UNIQUE

unique⇛ unique⊗ none

P-SPLIT-UNIQUE-SYMMETRIC

unique⇛ σ ⊗ σ

P-SPLIT-SYMMETRIC

σ⇛ σ ⊗ σ

P-SPLIT-UNIQUE-LOCAL

unique⇛ local σ ⊗ borrow(unique, σ,1)

P-SPLIT-LOCAL

local σ⇛ local σ ⊗ borrow(local σ,σ,0)

P-SPLIT-LOCAL-INCREMENT
n ∈ N

borrow(π,σ,n)⇛ local σ ⊗ borrow(π,σ,n + 1)

P-SPLIT-BORROW-SYMMETRIC
n ∈ N

borrow(unique, σ, n)⇛ σ ⊗ σ

P-SPLIT-SYMMETRIC-LOCAL

σ⇛ local σ ⊗ σ

P-SPLIT-NONE

π⇛ none⊗ π

Pulling a non-none permission from a unique forces us to drop the existing unique permis-
sion as expected for a linear permission. We can transfer the unique permission, leaving none
(P-SPLIT-UNIQUE) Alternatively, we can make the permission permanently non-linear by pulling
a symmetric permission (P-SPLI-UNIQUE-SYMMETRIC), or temporarily non-linear by pulling a
local σ permission (P-SPLIT-UNIQUE-LOCAL). The latter case leaves a borrow permission
to keep track of the outstanding local permissions and allow the potential to regain the linear
permission at a later point. In contrast, non-linear permissions σ can be freely duplicated either as
symmetric or local permissions (P-SPLIT-SYMMETRIC, P-SPLIT-SYMMETRIC-LOCAL). Only
further local σ permissions can be split from an existing local σ permission in which case
the residual permission is a borrow permission (P-SPLIT-LOCAL). borrow(π,σ, n) permis-
sions can split into further local σ where the residue includes an incremented count (P-SPLIT-
LOCAL-INCREMENT), or in the case that π is unique a full σ permission can be split, which
consumes the borrow permission and reduces it to a σ as well (P-SPLIT-BORROW-SYMMETRIC).

We can prove that multiple permission splits commute and also characterize the conditions
under which the original permission and the residue are the same.

Lemma 3.1 (Permission Pull is Commutative). If π⇛ π1 ⊗π′ and π′ ⇛ π2 ⊗π′′, then π⇛ π2 ⊗ π̂
and π̂⇛ π1 ⊗ π′′.

Proof. By straightforward exhaustive case analysis on π, π1, and π2.

Lemma 3.2 (Permission Pull Maintain Residue). If π ⇛ π′ ⊗ π, then π = σ and either π′ = σ or
π′ = local σ.

15

Proof. By straightforward analysis on the splitting rules.

Field Splitting: Aliases can also be created from fields and so we must be able to split permissions
from fields as well. In order to preserve the permission invariants, we must take the permission
of the enclosing object into account. In all cases expect pulling a σ from the unique field of an
object with permission σ, we rely on the permission splitting judgment but restrict what can be
pulled. The one exception (P-SPLIT-FIELD-SYMMETRIC) allows us to treat the linear permission
locked inside the field of a non-linear object as if it is also non-linear.

π.π⇛ π ⊗ π

P-SPLIT-FIELD-UNIQUE
π⇛ π′ ⊗ π′′

unique.π⇛ π′ ⊗ π′′

P-SPLIT-FIELD-PRESERVE
π ≠ none π′ ⇛ π′′ ⊗ π′

π.π′ ⇛ π′′ ⊗ π′

P-SPLIT-FIELD-SYMMETRIC

σ.unique⇛ σ ⊗ unique

P-SPLIT-FIELD-LOCAL
π⇛ local σ ⊗ π′

local σ.π⇛ local σ ⊗ π′

P-SPLIT-FIELD-BORROW
π′ ⇛ local σ ⊗ π′′

borrow(π,σ,n).π′ ⇛ local σ ⊗ π′′

We verify the close relationship between normal splitting and field splitting by proving that the
latter implies the former.

Lemma 3.3 (Field Split Implies Split). If π1.π2 ⇛ π ⊗ π′, then π2 ⇛ π ⊗ π′′.

Proof. Follows directly from the premises of all rules except P-SPLIT-FIELD-SYMMETRIC. In
that case, we have unique⇛ σ ⊗ σ by P-SPLIT-UNIQUE-SYMMETRIC.

Permission Joining: When references go out of scope, they may return their permission to the
location it came from at which point the system must join the returned permission to the permission
present in the destination. In most cases we can simply reverse the splitting judgment. However,
when the permission that is being returned is a symmetric permission, we can only get a symmetric
permission back (P-JOIN-SYMMETRIC). We do not restrict what permissions can be returned to
fields and so are handled with the same judgment.

π ⊗ π⇛ π

P-JOIN-NOT-SYMMETRIC
π /= σ π′′ ⇛ π ⊗ π′

π ⊗ π′ ⇛ π′′

P-JOIN-SYMMETRIC
π′ ∈ {σ,none}
σ ⊗ π′ ⇛ σ

Permission Downgrade: While typing, many permissions can be pulled or even dropped from a
single location, but only in certain circumstances so as to ensure that our invariants are maintained
as described below (section 3.4). We capture this with the downgrade judgment. Splitting implies
downgrading (P-DOWN-SPLIT). All permissions except local permissions and their borrow
counterparts can be downgraded to none (P-DOWN-NONE). unique can be downgraded to any

16

permission (P-DOWN-UNIQUE) and its borrow form can be downgraded to borrowed local
with a higher count (P-DOWN-BORROW-UNIQUE). Finally local permissions can be down-
graded to borrow permissions (P-DOWN-LOCAL-BORROW) and the count of a borrow per-
mission can be increased (P-DOWN-BORROW).

π ↓ π

P-DOWN-SPLIT
π1 ⇛ π̂ ⊗ π2
π1 ↓ π2

P-DOWN-NONE
π /= local σ π /= borrow(local σ,σ,n)

π ↓ none

P-DOWN-UNIQUE

unique ↓ π

P-DOWN-BORROW-UNIQUE
n,n′ ∈ N n′ ≥ n

borrow(unique, σ, n) ↓ borrow(local σ,σ,n′)

P-DOWN-LOCAL-BORROW
n ∈ N

local σ ↓ borrow(local σ,σ,n)

P-DOWN-BORROW
n,n′ ∈ N n′ > n

borrow(π,σ,n) ↓ borrow(π,σ,n′)

With these definitions, we can state and prove several important lemmas. First, we know that
joining preserves a downgrade relationship.

Lemma 3.4 (Join Same to Unequal Permissions). If π ⊗ π1 ⇛ π′1 and π ⊗ π2 ⇛ π′2 for π1 ↓ π2,
then π′1 ↓ π

′
2.

Proof. By straightforward case analysis on the possible permission combinations.

Second, slitting an returning must either result in the original permission or σ. If the returned
permission is downgraded first, then the resulting permission is a downgrade from the original
permission.

Lemma 3.5 (Split and Return). If π1 ⇛ π ⊗ π2 and π ⊗ π2 ⇛ π3, then either π1 = π3 or π = σ,
π3 = σ, and π1 ↓ π3.

Proof. This is straightforward since the restore rules are reversal of the splitting rules with the
restriction that anytime a σ permissions can be returned, the result must be σ.

Lemma 3.6 (Split, Downgrade, and Return). Given π1 ⇛ π ⊗ π2 where π ↓ π̂ and π2 ↓ π′2. If
π̂ ⊗ π′2 ⇛ π3, then π1 ↓ π3.

Proof. This is similarly straightforward. The fact that the return succeeds restricts what permis-
sions π′2 and π̂ can be and leads to this result.

Finally, we can prove several properties about downgrading and splitting.

Lemma 3.7 (Downgrading and Splitting). Given π1 ↓ π2.

1. If π2 ⇛ π ⊗ π′2, then π1 ↓ π′2. Furthermore, π1 ⇛ π ⊗ π′1 with π′1 ↓ π
′
2.

2. If π ⊗ π1 ⇛ π′1, then π′1 ↓ π2.

3. If π2 ↓ π3, then π1 ↓ π3.

Proof. By straightforward exhaustive case analysis on the permissions and associated rules.

17

3.2.2 Permission tracking

In order to track the flow of permissions through a program, we introduce two structures which
provide the means for recording where permissions are located.

Linear context:
The linear context maps a value v to permissions π.

Linear Context ∆ ::= ∆, v ∶ (π s; Π) ∣ ∅

In addition to the permission of the value, we also track its state s which records the fields and
methods available in the referenced object, and any of the fields which are currently unpacked,
Π. When a permission is split off of a field such that the permission of the reference in the field
no longer fulfills the permission declared for the field in the state, we consider the field to be un-
packed. The unpacked fields are of a reference are tracked in Π:

Unpacked Environment Π ::= Π, f ∶ (π, i) ∣ ∅

Each unpacked field f is mapped to its current permission π and to a field id i. Because we
allow assignment to fields, there is no guarantee the field has not been updated between the time a
permission is pulled and it is returned. As detailed below (see Return Rules in section 3.2.4), the
field id provides a lightweight mechanism to prevent the permission from being returned in this
case as returning a permission to a different object would be unsound.

Source Locations:
In order to give the returned reference a permission, that permission must have been taken from

somewhere. A source location records a place that a permission has been pulled from:

Source Location ` ::= v ∣ (v.f, i)

The location is either a value v, or a field v.f . A field source location includes an field id i used to
ensure that permissions pulled from one reference are not returned to a field containing a different
reference.

Because of nonDet, the specified permission may come from one of several locations at run-
time. So, we consider lists of source locations `∗, called a source location list (SLL hereafter).

Well-formed SLL: SLLs refer to locations in a given context where a permission may later be
returned. Hence we make sure that only locations actually in ∆ appear in its associated `∗.

18

∆ ⊢ `∗ ok
SLL-EMPTY

∆ ⊢ ∅ ok

SLL-VAL-IN-SCOPE
v ∶ (π s; Π) ∈ ∆ ∆ ⊢ `∗ ok

∆ ⊢ `∗, v ok

SLL-FIELD-IN-SCOPE
v ∶ (π s; Π) ∈ ∆ ∆ ⊢ `∗ ok

∆ ⊢ (`∗, v.f, i) ok

3.2.3 Useful sets, predicates, and functions

We define several notational abbreviations for properties used throughout the typing judgments
below.

State properties:
The sets fields(P, s) and methods(P, s) respectively contain all of the methods and fields

defined in the state s declared in program P , including definitions from superstates.

fields(P, s) = {F ∣ state s case of s′ { F ∗ M∗ } ∈ P ∧ (F ∈ F ∗
∨ F ∈ fields(P, s′))}

methods(P, s) = {M ∣ state s case of s′ { F ∗ M∗ } ∈ P ∧ (M ∈M∗
∨M ∈methods(P, s′))}

Depending on the context and information needed, we will sometimes omit pieces of the field
definition when classifying a field declaration as in the set of fields of a state (i.e f ∈ fields(P, s)).

We also have a function field-type(P, s, f) that returns the declared permission and state of
field f from state s declared in P .

field-type(P, s, f) = π s′⇐⇒ π s′ f = e ∈ fields(P, s)

Domains:
We use the notation dom to denote the set of keys in a map, including a context ∆, a heap H ,

a unpacked environment Π, or a field map Ξ (see section 3.3.1).

Context properties:
Given a mapping v ∶ (π s; Π) ∈ ∆ there are several important properties of the various compo-

nents. First, a field from state s is packed if it does not appear in Π.

packed(f,Π)⇐⇒ f /∈ dom(Π)

An unpacked field may have a different permission than it is declared to have. The cur-field-perm
of a field f takes the permission from the unpacked environment Π if it is mapped there or from
the definition of state s in P if it is not.

cur-field-perm(P ; s; f ; Π) = π⇐⇒ f ∶ (π, i) ∈ Π ∨ (f /∈ Π ∧ π s′ f = e ∈ fields(P, s, f))

19

Not all permissions allow assignment to the fields of the object reference associated with it. A
permission π is assignable if it is unique or some form of shared.

assignable(π)⇐⇒ (
π = unique ∨ ∃πo, n.π = borrow(πo,shared, n) ∨

π = shared ∨ π = local shared
)

3.2.4 Typing

Substates:
We use the nominal substate relation in the process of typechecking. The relationship is the

reflexive and transitive closure of the case of relations declared for each state.

P ⊢ s ⪯ s′
SUBSTATE
state s case of s′ { F ∗ } ∈ P

P ⊢ s ⪯ s′
SUBTYPE-REFLEXIVE

P ⊢ s ⪯ s

SUBSTATE-TRANSITIVE
P ⊢ s ⪯ s′ P ⊢ s′ ⪯ s′′

P ⊢ s ⪯ s′′

Top-Level checks:
To check programs, we check that each state is well-formed and that the program expression

can be given a none permission in the empty context. For a state to be valid, we require that
the state it is a case of is in the program and that each declared field and method is valid. A
field cannot be declared with a local σ or none. Otherwise we require that the initializing
expression e can be given the declared permission in the empty context. The resulting state of the
expression must be a substate of the declared state of the field. For a method to be valid, we must
be able to type the method body to the specified return permission in the context with the receiver
this and the parameter x mapped to their initial permission and state and packed. The resulting
permission for each must be the specified output of the change permission.

⊢ P

T-PROGRAM
∀S ∈ S∗.(P ⊢ S) P ;∅;none ⊢ e ∶ s ⊣ ∅;∅

⊢ S∗ e

P ⊢ S

T-STATE
state s′ case of s′′ { F ′∗ M ′∗ } ∈ P ∀F ∈ F ∗.(P ⊢ F) ∀M ∈M∗.(P, s ⊢M)

P ⊢ state s case of s′ { F ∗ M∗ }

P ⊢ F
T-FIELD
state s case of ŝ { F ∗ M∗ } ∈ P π /= local σ π /= none P ;∅;π ⊢ e ∶ s′ ⊣ ∅;∅ P ⊢ s′ ⪯ s

P ⊢ π s f=e;

P, s ⊢M

T-METHOD
P ⊢ s P ⊢ s2

P ;this ∶ (π1 s1;∅), x ∶ (π2 s2;∅);π ⊢ e ∶ s′,this ∶ (π′1 s1;∅), x ∶ (π′2 s2;∅); `∗

P, s1 ⊢ π s m(π2>>π
′
2 s2 x) π1>>π

′
1 { e }

20

Return Rules:
During typing we periodically return a permission to each of the locations in a SLL. The return

judgment P ∶ ∆;π ⊢ `∗ ⊣ ∆ outputs a context that is the result of returning permission π to
the locations indicated by `∗ in the input context. The rules consider each location in the SLL
separately.

∆;π ⊢ `∗ ⊣∆
RESTORE-EMPTY

P ; ∆;π ⊢ ∅ ⊣∆

RESTORE-VALUE
∆ = ∆̂, v ∶ (π′ s; Π) π ⊗ π′ ⇛ π′′ P ; ∆̂, v ∶ (π′′ s; Π);π ⊢ `∗ ⊣∆′

P ; ∆;π ⊢ v, `∗ ⊣∆′

RESTORE-FIELD-PACKED
v ∶ (π′ s; Π) ∈ ∆ packed(f,Π) P ; ∆;π ⊢ `∗ ⊣∆′

P ; ∆;π ⊢ (v.f, i), `∗ ⊣∆′

RESTORE-FIELD-STALE
v ∶ (π′ s; Π, f ∶ (π′′, j)) ∈ ∆ i ≠ j P ; ∆;π ⊢ `∗ ⊣∆′

P ; ∆;π ⊢ (v.f, i), `∗ ⊣∆′

RESTORE-FIELD-UNPACKED
∆ = ∆′, v ∶ (π s; Π, f ∶ (π2, i))

field-type(P, s, f) = π′ s′ π1 ⊗ π2 ⇛ π3 π3 ≠ π′ P ; ∆′, v ∶ (π s; Π, f ∶ (π3, i));π1 ⊢ `∗ ⊣∆′′

P ; ∆;π1 ⊢ (v.f, i), `∗ ⊣∆′′

RESTORE-FIELD-PACK
∆ = ∆′, v ∶ (π s; Π, f ∶ (π2, i)) field-type(P, s, f) = π′ s′ π1 ⊗ π2 ⇛ π′ P ; ∆′, v ∶ (π s; Π);π1 ⊢ `∗ ⊣∆′′

P ; ∆;π1 ⊢ (v.f, i), `∗ ⊣∆′′

Returning to an empty list or a value is straightforward and uses the permission join judgment
for the later case. Fields are more complicated because of reassignment. In the case that the field is
already packed, it already has its maximal permission, so there is nothing to do RESTORE-FIELD-
PACKED. Similarly, if the field ids in the source location and unpacked environment do not match,
this means that the field may not contain the same object as when the permission was pulled and
so we conservatively do not return the permission RESTORE-FIELD-STALE. In the last two cases,
the field is unpacked with the same field id, so we use the permission join judgment to return the
permission, packing the field if the resulting permission is the same as the declared permission of
the field RESTORE-FIELD-PACK, otherwise leaving it unpacked RESTORE-FIELD-UNPACKED.

Typing Expressions:
Typing an expression in our system guarantees that a new alias can be created for the returned

reference with the specified permission. To type an expression e, we need a program P , an input
context ∆, and a needed permission π. We output the state of the reference, an updated context ∆′

and a SLL `∗ representing all the locations that the needed permission may have been taken from
in ∆′.

P ; ∆;π ⊢ e ∶ s ⊣∆′; `∗

We have two classes of typing rules: syntactic rules and equalizing rules.

Syntactic rules:
The syntactic rules describe how to type each of the expression forms.

21

P ; ∆;π ⊢ e ∶ s ⊣∆; `∗
T-NEW
state s case of s′ { F ∗ M∗ } ∈ P unique⇛ π ⊗ π′

P ; ∆;π ⊢ new s ∶ s ⊣∆;∅

T-VARIABLE
π⇛ π′ ⊗ π′′

P ; ∆, x ∶ (π s;∅);π′ ⊢ x ∶ s ⊣∆, x ∶ (π′′ s;∅);x

T-LET
P ; ∆;π1 ⊢ e1 ∶ s1 ⊣∆1; `∗1 P ; ∆1, x ∶ (π1 s1;∅);π ⊢ e ∶ s ⊣∆2, x ∶ (π2 s1;∅); `∗, ˆ̀∗ ∆2 ⊢ `∗ ok P ; ∆2;π2 ⊢ `∗1 ⊣∆′

P ; ∆;π ⊢ let π1 x = e1 in e ∶ s ⊣∆′; `∗

T-FIELD-ACCESS-PACKED-PACKED
v ∶ (π′ s; Π) ∈ ∆ packed(f,Π) field-type(P, s, f) = π′′ s′ π′.π′′ ⇛ π ⊗ π′′

P ; ∆;π ⊢ v.f ∶ s′ ⊣∆;∅

T-FIELD-ACCESS-PACKED-UNPACKED
∆ = ∆′, v ∶ (π1 s; Π)

packed(f,Π) field-type(P, s, f) = π2 s
′ π1.π2 ⇛ π3 ⊗ π4 π2 ≠ π4 fresh(i) ∆′′ = ∆′, v ∶ (π1 s; Π, f ∶ (π4, i))

P ; ∆;π3 ⊢ v.f ∶ s′ ⊣∆′′; (v.f, i)

T-FIELD-ACCESS-UNPACKED-MAINTAIN
∆ = ∆′, v ∶ (π1 s; Π, f ∶ (π2, i)) field-type(P, s, f) = π3 s

′ π1.π2 ⇛ π4 ⊗ π2
P ; ∆;π4 ⊢ v.f ∶ s′ ⊣∆;∅

T-FIELD-ACCESS-UNPACKED-UPDATE
∆ = ∆′, v ∶ (π1 s; Π, f ∶ (π2, i))

field-type(P, s, f) = π3 s
′ π1.π2 ⇛ π4 ⊗ π5 π2 /= π5 ∆′′ = ∆′, v ∶ (π1 s; Π, f ∶ (π5, i))

P ; ∆;π4 ⊢ v.f ∶ s′ ⊣∆′′; (v.f, i)

T-FIELD-ASSIGN-PACKED
v ∶ (π1 s1; Π) ∈ ∆ field-type(P, s1, f) = π2 s2

P ; ∆;π2 ⊢ e ∶ s3 ⊣∆′; `∗ v ∶ (π3 s1; Π′) ∈ ∆′ assignable(π3) packed(f,Π′) P ⊢ s3 ⪯ s2 π2 ⇛ π ⊗ π2
P ; ∆;π ⊢ v.f=e ∶ s3 ⊣∆′;∅

T-FIELD-ASSIGN-UNPACKED
v ∶ (π1 s1; Π) ∈ ∆ field-type(P, s1, f) = π2 s2 P ; ∆;π2 ⊢ e ∶ s3 ⊣∆1; `∗

∆1 = ∆2, v ∶ (π3 s1; Π′, f ∶ (π4, i)) assignable(π3) P ⊢ s3 ⪯ s2 π2 ⇛ π ⊗ π2 ∆3 = ∆2, v ∶ (π3 s1; Π′)
P ; ∆;π ⊢ v.f=e ∶ s3 ⊣∆3;∅

T-INVOKE
P ; ∆;π1 ⊢ e1 ∶ s′1 ⊣∆1; `∗1 π s m(π2>>π

′
2 s2 x) π1>>π

′
1 { e } ∈ methods(P, s1)

P ; ∆1;π2 ⊢ e2 ∶ s′2 ⊣∆2; `∗2 P ; ∆2;π′2 ⊢ `∗2 ⊣∆3 P ; ∆3;π′1 ⊢ `∗1 ⊣∆′

P ; ∆;π ⊢ e1.m(e2) ∶ s ⊣∆′;∅

T-SEQUENCE-SINGLE
P ; ∆;π ⊢ e ∶ s ⊣∆′; `∗

P ; ∆;π ⊢ {e;} ∶ s ⊣∆′; `∗

T-SEQUENCE-MULTIPLE
P ; ∆;none ⊢ e ∶ s ⊣∆′; ˆ̀∗ P ; ∆′;π ⊢ {(e′;)+} ∶ s′ ⊣∆′′; `∗

P ; ∆;π ⊢ {e; (e′;)+ } ∶ s′ ⊣∆′′; `∗

T-MATCH-SINGLE
P ; ∆;none ⊢ e ∶ s ⊣∆′; ˆ̀∗ ∃sl.P ⊢ sl = lub(s, sc) P ; ∆′;π ⊢ e′ ∶ s′; ∆′′; `∗

P ; ∆;π ⊢ match(e){sc=>e′;} ∶ s′ ⊣∆′′; `∗

T-MATCH-MULTIPLE
P ; ∆;π ⊢ match(e){(sc=>e1;)+} ∶ s ⊣∆1; `∗ P ; ∆;π ⊢ match(e){s′c=>e2;} ∶ s; ∆2; `∗ ∆1

ID≈ ∆2 ⊣∆′ `∗3 = `∗1 ∪ `∗2
P ; ∆;π ⊢ match(e){(sc=>e1;)+ s′c=>e2;} ∶ s; ∆′; `∗

22

• T-NEW: Since a new expression creates a new object, it can be given any permission that
can be split from unique and gives an empty SLL since the object was created anew. The
restriction on the permission ensures that objects cannot start with a borrow permission.

• T-VARIABLE: When typing a variable x we simply use the permission splitting judgment,
update the outgoing context to include the residual permission from the split for x and give
x as the SLL. To ensure that the invariants on the state of the returned reference hold, we
require that the variable be packed.

• T-LET: When we encounter a let expression, we first pull the required permission for x
from the bound expression. We then type the body in the resulting context with x added to
the context. Whatever permission remains to x after typing the body is then returned to the
SLL generated by typing the bound expression. We give the context resulting from the return
as output along with the portion of the SLL generated by typing the body that is well-formed
in the output context.

• T-FIELD-ACCESS-*: These rules each deal with a different case of field read. In each,
the needed permission is pulled from the current type of the field f , given either by the
permission for f in the unpacked environment, or the declared permission for the field if
f is packed. If the field remains packed or the permission otherwise is not changed by
the pull, we make no updates and do not include the field in the SLL. If the permission is
updated, then the unpacked environment is updated with the new permission. f is added to
the environment with a fresh field id if it is not present already. The field with its current
field ID from the unpacked environment is given as the SLL.

• T-FIELD-ASSIGN-*: Assignment to a field always packs up the field. The assignment is
only possible if for the permission to the object π3 after typing the value expression we have
assignable(π3). We type the target expression with the declared permission of the field
and ensure that its state is a substate of the required state for the field. The reference that is
returned is an alias to the object assigned into the field, so we ensure that we can pull the
needed permission from the permission to the field without reducing it. Since our system
does not track permission returns through fields, the SLL is empty.

• T-INVOKE: Method calls require that we find the method declaration in the type of the
receiver (non-deterministically, or through a pre-pass). We then chain the typing of the
receiver and parameter expressions using the input permissions for the method as the needed
permission. We then return the output permission specified in the change permission for
each input reference to the SLL generated by the typing of the respective expressions. We
require that the needed permission is the permission specified for the return.

• T-SEQUENCE-*: Sequence expressions are typed by typing each expressions in the sequence
in order using none for the needed permission of all (T-SEQUENCE-MULTIPLE) but the
last expression in the sequence from which is pulled the permission needed from the whole
expression (T-SEQUENCE-SINGLE).

23

• T-MATCH-*: The final syntactic form is match which requires more explanation. Since we
do not know at compile time which of the branches will be executed, we must be conservative
and output and come up with a context that captures the updates made by either branch. The
primary tool we use to do this are the equalizing typing rules, described below, which serve
two purposes. First, they allow modifications of the outgoing context that could occur as part
of typing an expression to occur without the expression. Second, they allow the resulting
permission of a unique permission that ended as immutable in one branch and shared
in the other to be harmonized at none. However, the output contexts could still be different
in terms of the field ids appearing. We conservatively use the id-equalizing judgment to
harmonize these ids.

∆
ID≈ ∆ ⊣∆

ID-EQUIV-EMPTY

∅ ID≈ ∅ ⊣ ∅

ID-EQUIV-PACKED

∆1
ID≈ ∆2 ⊣∆′

∆1, v ∶ (π s;∅) ID≈ ∆2, v ∶ (π s;∅) ⊣∆′, v ∶ (π s;∅)

ID-EQUIV-UNPACKED-EQUAL
∆1 = ∆′

1, v ∶ (π s; Π1, f ∶ (π′, i))
∆2 = ∆′

2, v ∶ (π s; Π2, f ∶ (π′, i)) ∆′
1, v ∶ (π s; Π1)

ID≈ ∆′
2, v ∶ (π s; Π2) ⊣∆′, v ∶ (π s; Π′)

∆1
ID≈ ∆2 ⊣∆′, v ∶ (π s; Π′, f ∶ (π′, i))

ID-EQUIV-UNPACKED-DIFFERENT
∆1 = ∆′

1, v ∶ (π s; Π1, f ∶ (π′, i))
∆2 = ∆′

2, v ∶ (π s; Π2, f ∶ (π′, j)) ∆1, v ∶ (π s; Π1)
ID≈ ∆2, v ∶ (π s; Π2) ⊣∆′, v ∶ (π s; Π′) i /= j k fresh

∆1
ID≈ ∆2 ⊣∆′, v ∶ (π s; Π′, f ∶ (π′, k))

If the field ids for a given unpacked field f are the same between contexts, it is maintained,
otherwise each is changed to a newly generated fresh id. One could imagine a more permis-
sive, but still safe variant, but we will use this conservative approximation to keep the rules
relatively simple.

With this, typing a match with a single case (T-MATCH-SINGLE) requires that the matched
expression can be typed to the none permission and that the case expression can be typed
to the needed permission in the resulting context. We also require that the least upper bound
of the states of the matched expression and the particular case state exists. This is strictly a
well-formedness requirement that prevents cases that could never apply from typechecking.
To typecheck a match with multiple cases, we type each case individually to the same
context and then harmonize the field ids and join the SLLs (T-MATCH-MULTIPLE).

Equalizing rules:
Equalizing rules simulating typing an expression without the expression, allowing us to non-

deterministically find a typing that outputs the same context (modulo field ids) for two different
expressions.

24

T-EQ-PULL-VAL
P ; ∆;π ⊢ e ∶ s ⊣∆′; `∗ v /∈ `∗ P ; ∆′;π ⊢ v ∶ s′ ⊣∆′′; v

P ; ∆;π ⊢ e ∶ s ⊣∆′′; `∗, v

T-EQ-PULL-FIELD
P ; ∆;π ⊢ e ∶ s ⊣∆′; `∗ /∃ i.(v.f, i) ∈ `∗ P ; ∆′;π ⊢ v.f ∶ s′ ⊣∆′′; (v.f, j)

P ; ∆;π ⊢ e ∶ s ⊣∆′′; `∗, (v.f, j)

T-EQ-DROPPERM-VAL
P ; ∆;π ⊢ e ∶ s ⊣∆′, v ∶ (π′ s′;∅); `∗ π′ ↓ π′′ π′ /= π′′

P ; ∆′;π ⊢ e ⊣∆′, v ∶ (π′′ s′;∅)`∗

T-EQ-DROPPERM-FIELD-PACKED
P ; ∆;π ⊢ e ∶ s ⊣∆′, v ∶ (π1 s1; Π); `∗ packed(f,Π) field-type(P, s1, f) = π2 s2 π2 ↓ π′2 π2 /= π′2 fresh(i)

P ; ∆;π ⊢ e ∶ s ⊣∆′, v ∶ (π1 s1; Π, f ∶ (π′2, i)); `∗

T-EQ-DROPPERM-FIELD-UNPACKED
P ; ∆;π ⊢ e ∶ s ⊣∆′, v ∶ (π1 s′; Π, f ∶ (π2, i)); `∗ π2 ↓ π′2 π2 /= π′2

P ; ∆;π ⊢ e ∶ s ⊣∆′, v ∶ (π′ s′; Π, f ∶ (π′2, i)); `∗

T-EQ-DROPRET
∆;π ⊢ e ∶ s ⊣∆′; `, `∗

∆;π ⊢ e ∶ s ⊣∆′; `∗

T-EQ-SUPERSTATE
∆;π ⊢ e ∶ s′ ⊣∆′; `∗ P ⊢ s′ ⪯ s

∆;π ⊢ e ∶ s ⊣∆′; `∗

We can add a location to the SLL if it is not already there and typing the expression representing
that location adds it to the SLL (T-EQ-PULL-VAL,T-PULL-FIELD). Recall that fields are not
added to the SLL if their permission is not changed. Otherwise, we can simply downgrade the
permission of any value or field as if we pulled permissions from it (T-EQ-DROPPERM-*). T-
EQ-DROPRET allows a location to be removed from the SLL and T-EQ-SUPERSTATE allows us
to lose information about the state of resulting reference.

Properties of expression typing:
There are several important properties of typing of expressions that we note and prove now. In

general, the inputs and outputs of the typing judgment follow a well-defined pattern.

Lemma 3.8 (Properties of Typing). Given P ; ∆;π ⊢ e ∶ s ⊣∆′; `∗, then

1. x ∶ (π1 s1; Π1) ∈∆ if and only if x ∶ (π2 s2; Π2) ∈∆′ and s1 = s2.

2. ∆ ⊢ `∗ ok.

3. There exists no πo, σ, and n ∈ N such that π = borrow(πo, σ, n).

Proof. By straightforward induction on the typing rules.

With a little bit more information about the inputs or the rules used, we can get further guaran-
tees. If an equalizing rule was the last rule used, we have very specific information about how the
output changed as a result of applying that rule.

25

Lemma 3.9 (Equalizing Effects). Given P ; ∆;π ⊢ e ∶ s ⊣ ∆′; `∗ where the last rule used in the
typing derivation is one of T-EQ-* the premise of which gives P ; ∆;π ⊢ e ∶ s′ ⊣ ∆̂; ˆ̀∗. Then,
v ∶ (π1 s1; Π1) ∈ ∆̂ if and only if v ∶ (π2 s1; Π2) ∈∆′ and for each such v,

1. π1 ↓ π2, and

2. For all f ∈ fields(P, s1), cur-field-perm(P ; s1; f ; Π1) ↓ cur-field-perm(P ; s1; f ; Π2)

Proof. By straightforward case analysis on the equalizing rules.

When a variable starts with a none permission, we know it ends with it, too.

Lemma 3.10 (Start none, End none). If P ; ∆, x ∶ (none s1;∅);π ⊢ e ∶ s ⊣∆′, x ∶ (π′ s1; Π); `∗,
then π′ = none, Π = ∅, and if x ∈ `∗ then π = none.

Proof. By straightforward induction on the typing rules.

This fact allows us to characterize how permissions in the context can change as a result of
typing, in particular if their location appears in the SLL.

Lemma 3.11 (Typing Permission Change for Variables). Given any of the following sets of `, π1,
and π2

1. P ; ∆, x ∶ (π1 s1; Π1);π ⊢ e ∶ s ⊣∆′, x ∶ (π2 s1; Π2); `∗ with ` = x.

2. P ; ∆, x ∶ (π′ s′; Π1, f ∶ (π1, i));π ⊢ e ∶ s ⊣ ∆′, x ∶ (π′ s′; Π2, f ∶ (π2, i)); `∗ with ` = f ∶

(π2, i).

3. P ; ∆, x ∶ (π′ s′; Π1);π ⊢ e ∶ s ⊣ ∆′, x ∶ (π′′ s′; Π2, f ∶ (π2, i)); `∗ where packed(f,Π1) or
f ∶ (π2, j) ∈ Π1 for i /= j with ` = f ∶ (π2, i).

A. The following implications regarding the starting and ending permission hold:

(a) π1 = σ implies π2 ∈ {σ,none}.

(b) π1 = local σ implies there exists n ∈ N such that π2 ∈ {local σ,borrow(local σ,σ, n)}.

(c) π1 = borrow(πo, σ, n) implies either

i. π2 = borrow(πo, σ, n′) where n′ ≥ n, or
ii. πo = unique and π2 ∈ {σ,none}.

B. If, furthermore, ` ∈ `∗, then

(a) π = unique implies π1 = unique and π2 = none.

(b) π = σ implies exists n ∈ N such that π1 ∈ {unique,borrow(unique, σ, n), σ} and
π2 ∈ {σ,none}.

(c) π = local σ implies exists n ∈ N such that π1 ∈ {unique,local σ,borrow(π̂, σ, n), σ}
and

26

i. π1 = σ implies π2 ∈ {σ,none}.
ii. π1 ∈ {unique,local σ} implies π2 = borrow(π1, σ, n̂) for some n̂ ∈ N.

iii. π1 = borrow(π̂, σ, n) implies borrow(π̂, σ, n′) where n′ > n.

Proof. By straightforward induction on the typing derivation and exhaustive analysis of the per-
missions involved. The variable case is the basic case. The first field case follows from the variable
analysis since having the same field ID in the incoming and outgoing contexts means that the field
cannot have been reassigned like variables. The last case follows since either through starting
packed or through getting reassigned, all permission changes reflected in the outgoing context
must have happened after that point.

Corollary 3.12 (Typing Downgrades Variables). If P ; ∆, x ∶ (π1 s1; Π1);π ⊢ e ∶ s ⊣ ∆′, x ∶

(π2 s1; Π2); `∗, then π1 ↓ π2.

3.3 Dynamic Semantics
We model execution of programs in our system using a standard heap-based semantics with an
extra level of indirection to explicitly track permissions to aliases.

3.3.1 Heap

Our heap keeps explicit track of aliases to objects so that we can track the permissions of the dif-
ferent aliases and ensure they are compatible. Thus, our heap contains both objects O and object
references o:

Heap H ::= H,O ↦ s{Ξ} ∣ H,o↦ O ∣ null
Field Map Ξ ::= Ξ, f ↦ o ∣ ∅

Allocated objects O appear in the heap mapped to a state s and a field map Ξ which maps fields
f to object references. Each object reference o is mapped to an object O. The heap also always
includes the distinguished object reference null which is used for uninitialized fields.

3.3.2 Intermediate Expressions

We extend the expression language with to include partially executed forms and add object refer-
ences into the class of values:

Expressions e ::= . . . ∣ alias(o) ∣ bind o in e ∣ alias(o).f ∣ alias(o).f=e
Values v ::= . . . ∣ o

First, we have a bind form indicating that o replaced the bound variable in the body e and that
after e the permissions in o should be returned to their source location. The form alias(o) gives
computational meaning to alias creation. Field references can appear with alias(o) as the target
expression.

27

3.3.3 Evaluation Contexts

We use standard evaluation contexts to specify in what subexpressions reduction can occur:

Eval Ctx E ::= ◻ ∣ let π x=E in e ∣ bind o in E ∣ {E; (e;)∗} ∣

alias(o).f=E ∣ E.m(e) ∣ o.m(E) ∣

match (E) {(case si⇒ ei)+ }

3.3.4 Reduction Rules

Expressions are executed in the context of a heap and produce an updated heap and expression.

• E-CONGRUENCE: a step is taken in a subexpression as defined by the evaluation context

• E-NEW: to execute a new expression, we create a new object O and object reference o. The
fields of O are initially all mapped to null, but the resulting expression includes a sequence
that assigns each field to its initialization expression. Thus, each field will be non-null before
it is ever accessed in a well-typed program as the field initializer must typecheck without
access to the object.

• E-LET: let expressions that have an object reference o as the bound expression reduce to
a bind expression with the bound variable x replaced with alias(o) in the body e. Using
the alias form instead of the raw o ensures that any uses of x in e will create new aliases
of o and allow us to track the permissions separate from the original alias.

• E-BIND: Here we simply remove the bind once the body is reduced to an object reference.

• E-MATCH: To reduce match, we can replace it with the expression case corresponding the
the first case state which the matched object is in a substate of.

• E-ALIAS: An alias(o) expression reduces to a fresh object reference o′ that is mapped to
the same object O in H as the original object reference o.

• E-FIELD: Like an alias, executing a field creates a new object reference that aliases the
object mapped to by the field f of the object of o.

• E-ASSIGN: Assignment updates the field mapping of f to the provided object reference o′

and then generates a new alias of the same object as the result of the reduction.

• E-INVOKE: A method call gets turned into a bind expression binding both the receiver and
parameter object reference with the body the method body with this and x replaced by
alias expressions of the respective object references.

• E-SEQUENCE-*: Reducing a sequence proceeds by removing each expression in turn as it
is reduced to an object reference until it can return the result of the final expression.

28

P ⊢ H; e→ H; e

E-CONGRUENCE
P ⊢ H; e→ H′; e′

P ⊢ H;E[e]→ H′;E[e′]

E-NEW
fields(P, s) = {(πi si fi=ei)i∈[1,n]} o,O /∈ dom(H) H′ = H,o↦ O,O ↦ s{(fi ↦ null)i∈[1,n]}

P ⊢ H;new s→ H′;{(alias(o).fi = ei;)i∈[1,n] o;}

E-LET

P ⊢ H;let π1 x = o in e→ H;bind o in e[x← alias(o)]

E-BIND

P ⊢ H;bind o in o′ → H; o′

E-MATCH
H = H′, o↦ O O ↦ s{Ξ} ∈ H′ P ⊢ s ⪯ sj ¬∃k ∈ [1, j − 1].(P ⊢ s ⪯ sk)

P ⊢ H;match (o) {(si ⇒ ei)i∈[1,n]}→ H; ej

E-ALIAS
o′ /∈ dom(H) H = H′, o↦ O

P ⊢ H;alias(o)→ H,o′ ↦ O; o′

E-FIELD
H = H′, o↦ O,O ↦ s{Ξ, f ↦ o′}, o′ ↦ O′ o′′ /∈ dom(H) H′′ = H,o′′ ↦ O′

P ⊢ H;alias(o).f → H′′; o′′

E-ASSIGN
H;alias(o′)→ H′; o′′ H′ = H′′, o↦ O,O ↦ s{Ξ, f ↦ o′′′} H′′′ = H′′, o↦ O,O ↦ s{Ξ, f ↦ o′′}

P ⊢ H;alias(o).f=o′ → H′′′; o′

E-INVOKE
o↦ O,O ↦ s{Ξ} ∈ H πr sr m(π2>>π

′
2 s2 x) π1>>π

′
1 { e } ∈ methods(P, s)

e′ = bind o in bind o′ in e[this← alias(o), x← alias(o′)]
P ⊢ H; o.m(o′)→ H; e′

E-SEQUENCE-SINGLE

P ⊢ H;{o;}→ H; o

E-SEQUENCE-MULTIPLE

P ⊢ H;{o; (e;)+}→ H;{(e;)+}

3.4 Safety
We will prove the safety of our system using standard progress and preservation proofs. Before
we state and prove the theorems, we introduce typing rules for intermediate expressions and state
lemmas for key properties used in the proof.

3.4.1 Intermediate Typing Rules

In order to provide correct source locations for object references, we extend the context to return
specifications of the form o ⇒ `, mapping object reference o to location ` where o will return its
permissions after its scope.

Linear Context ∆ ::= . . . ∣ ∆, o⇒ `

29

T-OBJREF1
∆ = ∆′, o ∶ (π s;∅), o⇒ ` unique⇛ π ⊗ π′

P ; ∆;π ⊢ o ∶ s ⊣∆′; `

T-OBJREF2
/∃ `.o⇒ ` ∈ ∆ unique⇛ π ⊗ π′

P ; ∆, o ∶ (π s;∅);π ⊢ o ∶ s ⊣∆;∅

T-BIND1
o ∶ (π′ s′; Π) ∈ ∆ P ; ∆;π ⊢ e ∶ s ⊣∆1, o ∶ (π′′ s′;∅), o⇒ `; `∗, ˆ̀∗ ∆1 ⊢ `∗ ok ∆1;π′′ ⊢ ` ⊣∆′

P ; ∆;π ⊢ bind o in e ∶ s ⊣∆′; `∗

T-BIND2
(π′ s′; Π) ∈ ∆ /∃ `.o⇒ ` ∈ ∆ ∆;π ⊢ e ∶ s ⊣∆′, o ∶ (π′′ s′;∅); `∗, ˆ̀∗ ∆′ ⊢ `∗ ok

∆;π ⊢ bind o in e ∶ s ⊣∆′; `∗

T-ALIAS
π⇛ π′ ⊗ π′′

∆, o ∶ (π s;∅);π′ ⊢ alias(o) ∶ s ⊣∆, o ∶ (π′′ s;∅); o

T-ALIAS-FIELD-ACCESS
x /∈ dom(∆) P ; ∆, x ∶ (π s,Π);π′ ⊢ x.f ∶ s′ ⊣∆, x ∶ (π s,Π′); `∗

P ; ∆, o ∶ (π s,Π);π′ ⊢ alias(o).f ∶ s′ ⊣∆, o ∶ (π s,Π′); `∗[x← o]

T-ALIAS-FIELD-ASSIGN
x /∈ dom(∆) P ; ∆, x ∶ (π s,Π);π′ ⊢ x.f=e ∶ s′ ⊣∆′, x ∶ (π′ s,Π′);∅

P ; ∆, o ∶ (π s,Π);π′ ⊢ alias(o).f=e ∶ s′ ⊣∆′, o ∶ (π′ s,Π′);∅

• (T-OBJREF1/2): When we type an object reference o, we require that it have exactly the
permission we are looking for, which itself must be able to be pulled from unique (making
sure object references cannot be typed to a borrow permission), that it be packed, and we
do not include it in the outgoing context. The intuition for this is that the object reference
was created explicitly for one of four purposes: to be substituted for a let bound variable
(E-LET), to be assigned into a field (E-ASSIGN), to be used in a method invocation (E-
INVOKE), or discarded in a sequence (E-SEQUENCE-MULTIPLE). Removing it from the
context ensures that it does not appear anywhere else in the expression which might impact
its ability to perform these functions (see lemma 3.17 which relies on this property). We also
discard any return specification pertaining to the bound variable. The SLL consists of the
specified return location for o in the context if it exists and is empty otherwise.

• (T-BIND1/2): We type a bind similar to a let except that the expression is already bound.
Thus all we do is type the body to the needed expression and then return the permission
remaining in the bound object reference o to its return location if specified. Since the life-
span of o is over, we can safely remove it along with its return specification from the context
for typing future expressions.

• (T-ALIAS): An alias is typed just like a variable, splitting the permission from the specified
object reference and using it as the return specification.

• (T-ALIAS-FIELD-*): Typing the field of an alias proceeds just like the field of a variable.
We reuse the variable typing rules by choosing a fresh variable to substitute in temporarily.

A note on the decision to remove object references and return specifications from the context
following the typing of an object reference or exiting a bind scope. The problem with leaving

30

them in, even with a none permission, is that it would allow expressions that later restore permis-
sion to the object reference such that it could be used again. Removing the object reference from
the context means that our proofs do not have to consider this case.

We also have two extra equalizing rules. The rules T-EQ-FRESH-FIELD-ID* are used in the
proof of safety as match statements are reduced away and these rules are pushed through the
typing.

T-EQ-FRESH-FIELD-ID
fresh(j)

P ; ∆;π ⊢ e ∶ s ⊣∆′, v ∶ (π′ s′; Π, f ∶ (π′′, i)); `∗

P ; ∆;π ⊢ e ∶ s ⊣∆′, v ∶ (π′ s′; Π, f ∶ (π′′, j)); `∗

T-EQ-FRESH-FIELD-ID-PRESERVERET
fresh(j)

P ; ∆;π ⊢ e ∶ s ⊣∆′, v ∶ (π′ s′; Π, f ∶ (π′′, i)); `∗, (v.f, i)
P ; ∆;π ⊢ e ∶ s ⊣∆′, v ∶ (π′ s′; Π, f ∶ (π′′, j)); `∗, (v.f, j)

3.4.2 Properties of typing intermediate expressions

We introduce several lemmas that will be useful in proving preservation. First, we characterize
what additions can be made to the context without impacting the typing derivation.

Lemma 3.13 (Typing in an Extended Context). Given P ; ∆;π ⊢ e ∶ s ⊣ ∆′; `∗ where ∆ contains
only mappings of the form x ∶ (π′ s′; Π′) (variables only), then for all ∆̂, P ; ∆, ∆̂;π ⊢ e ∶ s ⊣
∆′, ∆̂; `∗.

Proof. By straightforward induction on the typing derivation. Since the original context contains
no object references, we know that none of the intermediate typing rules may apply. All other
typing rules act only on variables in the context, so weakening the context with new information
will not impact the typing or the new mappings.

Lemma 3.14 (Context Weakening). If P ; ∆;π ⊢ e ∶ s ⊣ ∆′; `∗, then P ; ∆, v ∶ (π1 s1; Π);π ⊢ e ∶
s ⊣∆′, v ∶ (π1 s1; Π); `∗.

Proof. By straightforward induction on the typing derivation. Since v was not there originally, we
cannot even return to it.

Other changes to the context impact the derivation in a very predictable way.

Lemma 3.15 (Typing with Substate). If P ; ∆, v ∶ (π1 s1; Π1);π ⊢ e ∶ s ⊣ ∆′; `∗ and P ⊢ s′1 ⪯ s1,
then P ; ∆, v ∶ (π1 s′1; Π1);π ⊢ e ∶ s′ ⊣∆′; `∗ and P ⊢ s′ ⪯ s.

Proof. By straightforward induction on the typing derivation. The T-OBJREF1/2, T-VARIABLE,
and T-ALIAS cases are those in which the state may become more specific. Everything else can
use the induction hypothesis.

Lemma 3.16 (Typing With Stronger Permission). Given P ; ∆, v ∶ (π1 s1; Π1);π ⊢ e ∶ s ⊣ ∆′, v ∶
(π2 s1; Π2); `∗ where π1 ↓ π2. If π̂1 ↓ π1, then P ; ∆, v ∶ (π̂1 s1; Π1);π ⊢ e ∶ s ⊣∆′, v ∶ (π̂2 s1; Π2); `∗

where π̂2 ↓ π2.

Proof. By straightforward induction on the typing derivation.

31

The reduction of let bindings substitutes alias expressions for variables in the body. We
prove as a lemma that given a typing derivation before this step, one exists afterwards as well in
the appropriately modified context.

Lemma 3.17 (Alias Substitution). Given P ; ∆, x ∶ (π1 s1;∅);π ⊢ e ∶ s ⊣ ∆′, x ∶ (π′1 s1;∅); `∗.
If o /∈ dom(∆), then for ∆̂ = ∅ or ∆̂ = o ⇒ `, we have P ; ∆, o ∶ (π1 s1;∅), ∆̂;π ⊢ e[x ←
alias(o)] ∶ s ⊣∆′, o ∶ (π′1 s1;∅), ∆̂; `∗[x← o].

Proof. By structural induction on the typing rules. The only interesting rule is T-VARIABLE since
that is where the substitution happens in both the expression and the SLL, but it is straightforward
since we instead use the rule T-ALIAS which mirrors T-VARIABLE.

We can also prove several lemmas regarding the outputs of a typing derivation. In particular,
bindings cannot be added to the context, SLLs are well-formed, and return specifications cannot
be self-referential.

Lemma 3.18 (Mappings Not Added). Given P ; ∆;π ⊢ e ∶ s ⊣∆′; `∗.

• If o⇒ o′ ∈∆′, then o⇒ o′ ∈∆.

• If v ∈ dom(∆′), then v ∈ dom(∆).

Proof. By straightforward induction on the typing derivation as no rules add return specifications,
object references, or variables.

Lemma 3.19 (Source Location Lists Are Well-formed). If P ; ∆;π ⊢ e ∶ s ⊣ ∆′; `∗ and ⊢ ∆ ok,
then ∆ ⊢ `∗ ok.

Proof. By straightforward induction on the typing derivation, using lemma 3.20 that an object
reference cannot return to itself for the cases T-OBJREF1/2.

Lemma 3.20 (Objects Cannot Return to Themselves). Given o = ` ∈ ∆ with ` = (o′.f, o′′) or
` = o′. If P ; ∆;π ⊢ bind o in e ∶ s ⊣∆′; `∗ then o /= o′.

Proof. By straightforward induction on the typing derivation. The last non-equalizing rule used
must have been T-BIND1. By inversion on this rule, we know that the return succeeded in a context
in which o did not appear. Therefore, o′ must appear in the context and be distinct from o.

While the rule to type an object reference o is straightforward, the presence of equalizing rules
in our system means that a typing derivation for o might be more complicated than the single rule.
However, there are still strict limits on the changes from the input to the output as characterized by
the following lemma.

Lemma 3.21 (Effects of Object Reference Typing). If P ; ∆, v ∶ (π1 s1; Π1);π ⊢ o ∶ s ⊣ ∆′, v ∶
(π′1 s1; Π′

1); `
∗ then v /= o and π1 ↓ π′1. Furthermore,

1. If π1 /= π′1, then Π1 = ∅.

32

2. If Π′
1 = ∅, then Π1 = ∅ and there exists no f, i such that (v.f, i) ∈ `∗.

3. If f ∶ (π′f , i) ∈ Π′
1, then either packed(f,Π1) or f ∶ (πf , j) ∈ Π1 where πf ↓ π′f where either

j = i or fresh(j).

4. If v ∈ `∗, then π1 ⇛ π ⊗ π̂1 where π̂1 ↓ π′1.

5. If (v.f, i) ∈ `∗, then letting cur-field-perm(P ; s1; f ; Π1) = πf and cur-field-perm(P ; s1; f ; Π′
1) =

π′f , then πf ⇛ π ⊗ π̂f where π̂f ↓ π′f .

Proof. By straightforward induction on the typing derivation which can only include equalizing
rules and T-OBJREF1/2. v cannot be o since o will not appear in the outgoing context. Only
equalizing rules can update the permission of v since it remains in the context after typing, therefore
it can only be reduced. For the first additional requirement, since the equalizing rules do not allow
permissions to be pulled once the reference is unpacked, we must have v at least started unpacked
if its permission was changed. The second follows from the fact that fields cannot be packed by
equalizing rules, so permissions must decrease and only one field id can appear in both the input
and output context. Third, since equalizing rules can not pack fields, then if v ends packed, then it
also starts packed. Rules that add fields of v to the SLL must unpack v, so cannot apply. We are
allowed to update the field ID of an unpacked field, so that can chance. For the forth, we know that
T-EQ-PULL-VAL must be applies on v at some point. Regardless of the order or pulls or drops
from v by lemma 3.7 we know that π can be pulled from the initial permission of v. For the fifth,
we use the same ideas as the third.

At certain points during the execution of a program, permissions may be returned to a location
in the context. This occurs when bind expressions are reduced away, so we can consider only the
case when we are typing an object reference o. The following lemma shows that if we can return a
permission to a value v in the context before and after typing o, then there exists a typing derivation
with the updated input and output permissions for v.

Lemma 3.22 (Object Reference Typing Change). Given P ; ∆, v ∶ (π1 s1; Π1);π ⊢ o ∶ s ⊣ ∆′, v ∶
(π′1 s1; Π′

1); `
∗. If π̂ ⊗ π1 ⇛ π̂1 and π̂ ⊗ π′1 ⇛ π̂′1, then P ; ∆, v ∶ (π̂1 s1; Π1);π ⊢ o ∶ s ⊣ ∆′, v ∶

(π̂′1 s1; Π′
1); `

∗

Proof. We know that v /= o, so thus, only equalizing rules apply to v in the derivation. We can
remove all rules pulling permissions from v from the derivation to get P ; ∆, v ∶ (π1 s1; Π1);π ⊢
o ∶ s ⊣ ∆′, v ∶ (π1 s1; Π′

1);
ˆ̀∗ We can then update the permission for π1 to π̂1 which will give a

derivation of P ; ∆, v ∶ (π̂1 s1; Π1);π ⊢ o ∶ s ⊣ ∆′, v ∶ (π̂1 s1; Π′
1);

ˆ̀∗. If π̂1 = π̂′1, then we are
done. Otherwise, it must be the case that π1 /= π′1. By lemma 3.21 we know that π1 ↓ π′1 and
also Π1 = ∅. Applying lemma 3.4 to conclude that π̂1 /= π̂′1. Now, we know that we can add
instances of equalizing rules to pull permissions from v before the equalizing rules that unpack
v. If v ∈ `∗, then we use lemma 3.21 clause 4 to find that π̂1 ⇛ π ⊗ π̃1 and π̃1 ↓ π̂′1. In this
case we add T-EQ-PULL-VAL and if π̃1 /= π̂′1 T-EQ-DROPPERM-VAL. Otherwise, we just use
T-EQ-DROPPERM-VAL and we are done.

33

Removing a bind expression also removes the point from the typing where the bound object
reference o′ and its return specification are returned. The following lemma proves that at this point,
typing the body o can proceed without o′ in the context.

Lemma 3.23 (Removing Object References). If P ; ∆, ∆̂, o′ ∶ (π1 s1;∅);π ⊢ o ∶ s ⊣ ∆′, ∆̂, o′ ∶
(π′1 s1;∅); `∗, ˆ̀∗ where o′ /∈ `∗, ˆ̀∗ = ∅ or ˆ̀∗ = o′, exists no `1 such that o′ ⇒ `1 ∈ ∆ and
∆̂ = o′⇒ ˆ̀or ∆̂ = ∅, then P ; ∆;π ⊢ o ∶ s ⊣∆′; `∗.

Proof. By induction on the derivation of the typing which can only include equalizing rules and
T-OBJREF1/2, case analyzing on the last rule used.

1. T-OBJREF1/2: Since e = o, typing does not depend on o′, so removing it from the context
has no impact on the typing other than removing o′ from the output context as well. Further-
more, ˆ̀∗ = ∅, so nothing more is needed for that. The rule also does not use o′ ⇒ ` since
o /= o′ so if ∆̂ = o′⇒ `, then it can be removed too.

2. T-EQ-*: In each case we can apply the induction hypothesis on the premise P ; ∆, o′ ∶
(π1 s1;∅);π ⊢ o ∶ s ⊣ ∆′′, o′ ∶ (π′′1 s1;∅); `∗1,

ˆ̀∗
1 with o′ /∈ `∗1 and ˆ̀∗

1 = ∅ or ˆ̀∗
1 = o′, to

get P ; ∆;π ⊢ o ∶ s ⊣ ∆′′; `∗1 . ∆̂ can always be removed because equalizing rules never use
return specifications. Now, we have different cases for each specific rule.

case: T-EQ-PULL-VAL

Then `∗ = `∗1, o
′′. If o′′ /= o′, then the rule’s premises do not require o′, so it applies with o′

removed from the context. If o′′ = o′, then we can remove this rule since it does not impact
`∗ or the context other than o′.

case: T-EQ-PULL-FIELD

Then `∗ = `∗1, (o
′′.f, ô). If o′′ /= o′, then the rule’s premises do not require o′, so it applies

with o′ removed from the context. o′′ cannot be o′ since we know that o′ is packed in the
final context and applying this rule would force it to be unpacked.

case: T-EQ-DROPPERM-VAL

There there exists some v ∶ (π2 s2;∅) in the input context where v ∶ (π′2 s2;∅) is in the
output context and π2 ↓ π′2. If v /= o′, the the rule applies with o′ removed from the context.
Otherwise, we can simply remove the rule since the rule does not impact any part of the
output except the mapping of o′ in ∆. `∗ = `∗1 so there is nothing more to prove.

case: T-EQ-DROPPERM-FIELD-*
There there exists some v ∶ (π2 s2; Π2) in the input context where v ∶ (π2 s2; Π′

2) is in the
output context and Π2 /= Π′

2. If v /= o′, the the rule applies with o′ removed from the context.
v cannot be o′ since either rule would leave o′ unpacked which we know not to be the case.
`∗ = `∗1 so there is nothing more to prove.

34

case: T-EQ-FRESH-FIELD-ID*
Since o′ is packed, then these rules cannot apply to it, so we are done.

case: T-EQ-DROPRET

Then `∗ = ˆ̀∗, ` for some `. We know from 3.21 that ` /= (o′.f, i) for any f, i since o′ is
packed. If ` = o′, then ˆ̀∗

1 = o′, so we do not need this rule anymore. If neither is the case
then it does not depend on o′ in the context.

case: T-EQ-SUPERSTATE

This rule does not need any information from the context.

Finally, we can characterize the typing of object references appearing inside an evaluation
context.

Lemma 3.24 (Object Reference in an Evaluation Context). Given ∆ = ∆̂,∆m where o ∶ (π s; Π) ∈

∆̂. If P ; ∆;π′ ⊢ E[o] ∶ s′ ⊣∆′; `∗, then P ; ∆̂;π ⊢ o ∶ s′′ ⊣ ∆̂′; ˆ̀∗. In other words,

1. unique⇛ π ⊗ π̂,

2. Π = ∅, and

3. o /∈ dom(∆′).

Proof. By straightforward induction on the structure of E[o]. At each point, typing the hole is the
first this that happens, which will either by o or a recursive definition E′[o]. The only exception is
the form o′.m(E) in which case the only effect on the context is to remove o′. As this can be done
an arbitrary number of times before we type o, we allow the context to shrink in this way. When
we do eventually type o, we can get the extra information by inversion on the typing rule.

3.4.3 Environment Invariants

Safety in this system hinges on never begin able to gain a linear unique permission to an object
for which there there exist other aliases with non-none permissions. The key goal of our system
is to track returns under the covers and allow unique permissions to be safely regained. Our
invariants are designed to ensure that each step preserves this property and they focus heavily on
ensuring that if the typing tells us that a return succeeds, then it succeeds in our tracking and
preserves the correct accessibility. This is especially tricky for fields because unlike variables, the
permission of the field in the context is decoupled from the permission of the field representative.

For our purposes, we consider an environment to include a program P , a context ∆, a needed
permission π, a heap H , and an expression e. We define judgments that define the consistency of
different parts of this environment.

Useful sets and predicates:

35

We define here several useful notations used to summarize concepts in the rules below.

Permission sets: We have two important classes of permissions that we will refer to below. The
first is the set LINEAR, which contains all permissions that through any series of joins may end
up at unique. Thus, it includes unique itself, along with any borrow permissions that have
unique as the original permission. We define LINEAR itself as the union of the set restricted
to borrow permissions of a single σ:

LINEAR(σ) = unique ∪ {borrow(unique, σ, n) ∣ n ≥ 1}

LINEAR = LINEAR(shared) ∪LINEAR(immutable)

The second is the set LOCAL(σ), which includes local σ and all borrow permissions with
local σ as the original permission.

LOCAL(σ) = local σ ∪ {borrow(local σ,σ, n) ∣ n ≥ 0}

Object reference permission class: We also define a predicate characterizing the permission of an
object reference in a context as local. local(∆; o;σ) says that o is mapped to a permission from
the set LOCAL(σ) in ∆.

local(∆; o;σ)⇐⇒ o ∶ (π s; Π) ∈∆ ∧ π ∈ LOCAL(σ)

Heap and context returns: A return specification o⇒ ` provides both the location in the context
and in the heap where permissions are returned. In the case that ` is an object reference, those lo-
cations coincide. However for fields ` = (o′.f, o′′), o′.f is the location in ∆ and o′′ is the location
inH . In this case we also need to checkH to verify that o and o′ actually point to the same location
as a field assignment may have invalidated the heap return. The predicate heapRet(∆;H; o; o′) to
captures this

heapRet(∆;H; o; o′)⇐⇒ o⇒ o′ ∈∆ ∨ (o⇒ (o′′.f, o′) ∈∆ ∧ o↦ O,o′ ↦ O ∈H) .

Similarly, an object reference o returns to the context when its return specification points to
another object reference, or a field location that still exists in the context.

ctxRet(∆; o; o′)⇐⇒ o⇒ o′ ∈∆ ∨ (o⇒ (o′′.f, o′) ∈∆ ∧ o′′ ∶ (π s; Π, f ∶ (πf , o
′)))

Restore borrow: The count n of a permission borrow(πo, σ, n) records how many outstanding
splits of a local σ there are from this permission. However, for other bookkeeping reasons, the
number is interpreted differently depending on the original permission πo. We include a predicate
restoreOrig that abstracts away this difference.

36

restoreOrig(borrow(πo, σ, n), n′)⇐⇒ (πo = unique∧n′ = n)∨(πo = local σ∧n′ = n+1)

Valid object permissions:
There are two requirements for the set of permissions to a single object to be valid. First, the

list of permissions must be consistent. Second, the return structure amongst the aliases must be
well-formed.

Consistent permission lists: Given a context ∆ and a heapH , we can collect all of the permissions
to aliases of a given object O into a single list [π∗]. We simply recurse over the heap finding all
object reference o which point to O and record the permission of o from ∆.

PERMS-NO-MATCH
o↦ O /∈ H

perms(∆,H,O) = []

PERMS-MATCH
H = o↦ O,H′ o ∶ π ∈ ∆ perms(∆,H′,O) = [π̂∗]

perms(∆,H,O) = [π]++[π̂∗]

Now we can define what a consistent permission list, [π∗] consistent looks like. We have
three cases.

1. (C-UNIQUE): if there is a unique permission in the list, then all other permissions must be
none.

2. (C-BORROWUNIQUE): If there is a borrow(unique, σ, n) permission in the list, then
there is the possibility that the linear unique permission may be regained at a later point.
We honor this by ensuring that all non-linear permission are temporary and have the same
underlying symmetric permission. Finally, there must be exactly the right number of local
permissions needed to restore all borrow permissions such that only the unique remains.

3. (C-GENERAL): If no borrow(unique, σ, n) is in the list, then there is no chance that the
unique permission can be regained, so we allow any permissions so long as all non-linear
permissions have the same underlying symmetric permission.

[π∗] consistent
C-UNIQUE

[(none)∗] ++ [unique] consistent

C-BORROWUNIQUE

L = [(local σ)∗] B = [(borrow(local σ,σ,ni))i∈[1,m]] m ≥ 0 n′ +
m

∑
i=1

ni = ∣L∣

[(none)∗] ++ L ++ B ++ [borrow(unique, σ, n′)] consistent

C-GENERAL
L = [(local σ)∗] B = [(borrow(local σ,σ,ni))∗]

[(none)∗] ++ L ++ [(σ)∗] ++ B consistent

37

Downgrade, Splitting, and Joining preserve permission list consistency.

Lemma 3.25 (Preservation of Permission List Consistency). Given [π∗]++[π1]++[π2] consistent.

1. (Pull) If π2 ⇛ π ⊗ π′2, then [π∗]++[π1]++[π′2]++[π] consistent.

2. (Join) If π1 ↓ π′1 and π′1 ⊗ π2 ⇛ π, then [π∗]++[π]++[none] consistent.

3. (Downgrade) If π2 ↓ π′2 and unique⇛ π′2 ⊗ π̂, then [π∗]++[π1]++[π′2] consistent

Proof. By straightforward analysis on the permission splitting and joining rules. The downgrade in
the second clause is allowed because if a unique or local σ is downgraded to a borrow per-
mission, then the return will fail. In all other cases the downgrade is not problematic. The require-
ment that the newly downgraded permission can be pulled from unique ensures that borrow
permission cannot be created that would invalidate the local permission accounting.

Valid return structure: Simply having a consistent list of permissions using rule C-BORROWUNIQUE

does not ensure that permissions can be returned correctly to allow the unique permission to be
regained. This requirement gives rise to three additional restrictions on every object reference
o with permission π which maps to object O in the heap. First, any object reference o′ that o
returns to must also be mapped to O in the heap. Also, if another object reference o′ with per-
mission π in the set LOCAL(σ) returns to o in the heap, then π cannot be unique. Finally, if
π = borrow(πo, σ, n), then the number of object references with permissions from LOCAL(σ)
that return to o in the heap must be exactly the number of joins of local σ permissions to π
needed to restore the original permission.

OBJ-PERMS-VALID
perms(∆;H;O) consistent

∀o↦ O ∈ H.o ∶ (π s; Π) ∈ ∆ ∧
⎛
⎜
⎝

(heapRet(∆;H; o; o′) Ô⇒ o′ ↦ O ∈ H)∧
(heapRet(∆;H; o′; o) ∧ local(∆, o′, σ) Ô⇒ (π /= unique)∧
(π = borrow(πo, σ, n) Ô⇒ restoreOrig(π, ∣{o′∣heapRet(∆;H; o′; o) ∧ local(∆, o′, σ)}∣))

⎞
⎟
⎠

∆;H ⊢ O validPerms

The validPerms property is independent of other invariants, and so we can prove that it is
preserved by the important manipulations of permissions in the system, including splitting, joining,
and downgrading.

Lemma 3.26 (Aliasing Preserves validPerms). Given ∆;H ⊢ O validPerms with o ↦ O ∈ H
and ∆ = ∆′′, o ∶ (π s;∅). If π ⇛ π′ ⊗ π′′, fresh(o′), ∆′ = ∆′′, o ∶ (π′′ s;∅), o′ ∶ (π′ s;∅), o′ ⇒ `,
and H ′ = H,o′ ↦ O where heapRet(∆′;H ′; o′; o), then ∆′;H ′ ⊢ O validPerms.

Proof. We updated o and added o′ to the list of aliases of O. By lemma 3.25, we know that per-
mission list consistency is maintained since the updated permission are defined by a pull operation
on an existing permission to O.

38

We check that the three requirements hold for added object reference o′. The first holds since
the we specified o′ to return o which mapped to the object we chose to map o′ to. The second holds
trivially since o′ is fresh which means that there cannot be any object references which return to it.
The third is also trivially true since the permission π′ of o′ was successfully pulled from another
permission which means that it cannot be a borrow permission.

Finally, we check that the three requirements hold for updated object reference o. The first
holds by the assumption since we did not update any existing return specifications or object refer-
ence mappings. The second holds by assumption if π′ /= local σ since the pull either does not
create or change a borrow permission or it removes the borrow using rule P-SPLIT-BORROW-
SYMMETRIC replacing it with a σ which would mean the implication still holds. In the case that
π′ = local σ then since o′ returns to o and has a local σ permission the premise is true, but by
the definition of permission split π′′ is of the form borrow(πo, σ, n) which means that the conclu-
sion is also true. The final requirement is also true by assumption in the case that π′ /= local σ
for the same reason, and if π′ = local σ is true because adding o′ increased the number of
object references returning to o with a local permission and pulling the local σ from π must
result in π′′ with a borrow count increased by 1, or a new borrow, either of which will preserve
restoreOrig.

Lemma 3.27 (Return Preserves validPerms). Given ∆;H ⊢ O validPerms with heapRet(∆;H; o1; o2)

and o1 ↦ O,o2 ↦ O ∈ H , ∆ = ∆′, o1 ∶ (π1 s1; Π1), o2 ∶ (π2 s2; Π2). If π1 ↓ π′1 and π′1 ⊗ π2 ⇛ π̂2,
then we have ∆′, o1 ∶ (none s1; Π1), o2 ∶ (π̂2 s2; Π2);H ⊢ O validPerms.

Proof. By lemma 3.25, we know that permission list for O with π1 and π2 is consistent. Therefore,
downgrading π1 to π′1 and returning it results in a consistent permission list for the output. Since
we updated the permission of o1 and o2, we need to check that the other three requirements are
preserved. In both cases, the first is trivially maintained since no updates are made to return
specifications.

For o1, the second and third requirements trivially because the conclusion of the second is true
and the premise of the third is false.

For o2, we need to check that the updated permission π̂2 still satisfies the requirements. If
π′1 = none, then no change occurs and so we are done. Otherwise, we continue by case analysis
on π2:

case: π2 = borrow(πo, σ, n):
π′1 must have been local σ for the return to have succeeded, which implies that π1 = local σ
as well. By the assumption of validPerms, we know that there are exactly the right number of
reference that return to o2 and have local permissions to restore the original permission. o1 must
be one of these. Therefore, after the join, n has been reduced by 1 and o1 no long has a local
permission, so the last implication is maintained, or π̂2 is no longer a borrow, in which case it is
trivially true. In this later case though, there actually cannot be any more such oi since we started
with exactly the right number, so the premise of the second implication is false. Otherwise, the
premise is still true, as is the conclusion.

case: π2 = σ

39

After the return, we know that π̂2 = σ as well, so no changes are made that can have an impact on
the implications for this object reference, so the assumption suffices.

case: otherwise
The returned permission cannot have been local, so there has not been any chances in local per-
missions in the system meaning the implications cannot have changed.

Lemma 3.28 (Downgrade Preserves validPerms). Given ∆, o ∶ (π s; Π);H ⊢ O validPerms
with o ↦ O ∈ H and π ↓ π′ with π /= π′. If unique ⇛ π′ ⊗ π̂, then ∆, o ∶ (π′ s; Π);H ⊢

O validPerms.

Proof. By lemma 3.25, we know that permission list consistency is maintained. Since borrow
permission cannot be pulled and π′ must be distinct from π, we know that π cannot be inLOCAL(σ)
or borrow(unique, σ, n) for any σ and n. Therefore, we have not broken the requirements of
any object references that return to o. Furthermore, since we know that the new permission for o is
not unique or borrow, its requirements are trivially maintained as well because the conclusion
of the second is true and the premise of the third is false.

Valid object:
A valid return structure is only part of what makes an Object well-formed in an environment.

In particular, we also need to check that the fields of the object have valid representatives. Each
object O in H is mapped to a state ŝ and a field map Ξ. We require that for every field π s f = ef
from fields(P, ŝ) f is mapped to a representative object reference of . This object reference can
either be null or mapped to permission π′ and state s′ in ∆. In the later case it fulfills the following
requirements:

1. The declared permission π can be downgraded to the representative permission π′

2. The declared state s must be a superstate of the representative state s′.

3. Either any object references that return to this field in the context also return to this field rep-
resentative in the heap, or the current permission of the field representative π′ is inLINEAR
and the set of object references that return to this field in the heap and are local (by valid-
Perms must be exactly the number needed to regain unique) is a subset of those object
references that return to the field in the context and are local.

4. If the field is declared to be unique and there exists an alias of O that has a permission
from the set LINEAR, then π′ must also come from LINEAR.

The first two requirements are straightforward. The third requirement is needed to help keep
fields and their representatives in sync. Either returns happen in both places or we allow some extra
local permissions to be outstanding in the context (this accounts for reassignment of unique fields
in objects with a permission from LOCAL(shared)). The fourth requirement stems from the

40

fact that a unique permission can be taken from a unique field of a unique reference. Thus,
if an alias of O has a unique permission or could have one later in the execution, then the field
representative must also be able to have a unique permission to make the permission available
when it could be pulled. Other invariants make this more precise.

We capture these requirements formally with the following judgment:

P ; ∆;H ⊢ O ok

OBJ-ID-OK
∆;H ⊢ O validPerms O ↦ ŝ{Ξ} ∈ H

∀π s f ∈ fields(P, ŝ).f ↦ null ∈ Ξ ∨

⎛
⎜⎜⎜⎜⎜
⎝

f ↦ o ∈ Ξ ∧ o ∶ (π′ s′; Π) ∈ ∆ ∧ π ↓ π′ ∧ P ⊢ s′ ⪯ s ∧
⎛
⎜
⎝

(∀o′.ctxRet(∆; o′; o) Ô⇒ heapRet(∆;H; o′; o)) ∨

(π′ ∈ LINEAR ∧ ({o′∣heapRet(∆;H; o′, o) ∧ local(∆, o′, σ)} ⊆
{o′∣ctxRet(∆;H; o′, o) ∧ local(∆, o′, σ)}

))
⎞
⎟
⎠
∧

(π = unique ∧ ∃π̂ ∈ perms(∆;H;O).π̂ = borrow(unique, σ, n) Ô⇒ π′ ∈ LINEAR)

⎞
⎟⎟⎟⎟⎟
⎠

P ; ∆;H ⊢ O ok

Field fulfillment:
One requirement for a valid object reference is that the permission of each field must be fulfilled

by the permission of the representative object reference. A permission π1 fulfills a field permission
π2.π3 if any permission that can be split from π2.π3 can also be pulled from π1. In order to ensure
that a unique access can be regained if needed, we require that if the object permission and its
field permission are in the set LINEAR, then so is the fulfilling permission.

π▷ π.π

FIELD-FULFILL
∀π ∈ {π̂∣π2.π3 ⇛ π̂ ⊗ π̂′}.π1 ⇛ π ⊗ π′

π2 ∈ LINEAR ∧ π3 ∈ LINEAR Ô⇒ π1 ∈ LINEAR
π1 ▷ π2.π3

We can identify several specific cases where we know that field fulfillment holds:

Lemma 3.29 (Fulfillment of none). For all π and π′, we have π▷ none.π′.

Proof. Since we cannot pull any permissions from fields of an object with a none permission,
any permission can approximate any of its fields and none /∈ LINEAR so the implication holds
trivially.

Lemma 3.30 (Same Permission Fulfills). For all π and π′ we have π▷ π′.π.

Proof. By lemma 3.3, we know that if a permission can be pulled from a field, it can be pulled
from the raw permission in the field. The implication for LINEAR holds since the field and its
rep are the same.

Lemma 3.31 (unique Permission Fulfills). For all π and π′ we have unique▷ π′.π.

41

Proof. Any permission that can be split can be split from unique and unique ∈ LINEAR.

Furthermore, the common manipulations of permissions that we care about also maintain field
fulfillment.

Lemma 3.32 (Object Permission Downgrade Preserves Fulfillment). If π ▷ π1.π2 and π1 ↓ π′1,
then π▷ π′1.π2.

Proof. By straightforward case analysis on the possible combinations. Reducing the permission
to the owning object only reduces the set of permission that could be pulled from the field and
therefore fulfillment is maintained. π does not change and π′1 cannot become LINEAR, so the
implication is also preserved based on the assumption.

Lemma 3.33 (Field Permission Return Preserves Fulfillment). If π▷ π1.π2 and π̂ ⊗ π⇛ π′, then
π′▷ π1.π2.

Proof. Follows from the fact that returning gives a stronger permission from which can be pulled
anything that could be pulled from the weaker permission. If π ∈ LINEAR, then the return cannot
take it out of the set LINEAR so the implication is maintained.

Lemma 3.34 (Pull Preserves Field Fulfillment). Given π3 ▷ π1.π2. If π1.π2 ⇛ π ⊗ π′2 and
π3 ⇛ π ⊗ π′3, then π′3 ▷ π1.π′2. Furthermore, if [π∗]++[π1] consistent, then for all π̂ ∈ π∗ If
π3 ▷ π̂.π̂2 then π′3 ▷ π̂.π̂2.

Proof. By straightforward exhaustive case analysis on the permissions. For the condition on fields
of other consistent permissions, we only need to consider unique permissions because they are
the only fields that can really get unpacked. It follows from the fact that if there is a single unique
permission to the object, in which case fulfillment of the fields through the other none references
is trivial via lemma 3.29. Otherwise, the only permissions that can be pulled from a unique field
are σ or local σ. In either case, pulling one from the field does not prevent more from being
pulled, so field fulfillment through all other aliases is maintained. We also need to worry about the
LINEAR implication. However, if π3 starts LINEAR then it can only become non-linear in the
following situations

1. π1 = unique and π = unique or π = σ: In this case π′2 cannot be linear either so the
implication is maintained.

2. π1 = σ and π = σ: But then π1 /∈ LINEAR, so the implication holds trivially.

In each case there cannot be any other permission in the list that is inLINEAR, so the requirement
for the other object references holds as well.

Lemma 3.35 (Alias Fulfills). Given π1 ▷ π2.π3. If π2 ⇛ π ⊗ π′2, then π1 ▷ π.π3.

Proof. By exhaustive case analysis on the permissions. Many of the cases are taken care of by
lemma 3.32. Splitting off a local σ permission can occur from a permission that does not
downgrade to a local σ. However, in all cases the permissions that can be pulled from the fields
do not increase. The last trivial case is π = none which comes from lemma 3.29. π can be in
LINEAR only if π2 is, so that means that the implication must be preserved as well.

42

Valid object reference:
We also have well-formedness conditions on object references appearing in ∆. Given o ∶

(π s; Π) ∈∆, we require that o is mapped to object O in the heap, and O itself has type s′ and field
map Ξ. Based on this we have several requirements:

1. The state s from the context should be a superstate of the state s′ from the heap.

2. If o has permission none, then it is packed (Π = ∅).

3. If field f is unpacked in Π with object reference o′ as a field id, then f is mapped to o′ in Ξ.

4. For each field π1 s1 f = ef declared in s, f is mapped to an object reference of in the field
map Ξ of O. Furthermore, either of is null and f is unpacked in Π to permission none, or
the following are true given the current permission π′1 of the field through the type of o in ∆:

(a) The declared permission of the field π1 downgrades to π′1.

(b) The permission of of fulfills the field permission π.π′1.

(c) If the current permission in the field is borrow(πo, σ, n), then the context contains
exactly the right number of object references o′ that return to this field and are local in
terms of their permission.

P ; ∆;H ⊢ o ok

OBJ-REF-OK
o ∶ (π s; Π) ∈ ∆ o↦ O,O ↦ s′{Ξ} ∈ H P ⊢ s′ ⪯ s
π = none Ô⇒ Π = ∅ f ∶ (πf , o′) ∈ Π Ô⇒ f ↦ o′ ∈ Ξ

∀π1 s1 f ∈ fields(P, s).(f ↦ null ∈ Ξ ∧
f ∶ (none, i) ∈ Π

) ∨
⎛
⎜⎜⎜
⎝

cur-field-perm(P ; s; f ; Π) = π′1 ∧ π1 ↓ π′1 ∧
f ↦ o1 ∈ Ξ ∧ o1 ∶ (π′′1 s′1; Π′) ∈ ∆ ∧ π′′1 ▷ π.π′1 ∧

(π′1 = borrow(πo, σ, n) Ô⇒
restoreOrig(π′1, ∣{o′∣o′ ⇒ (o.f, o1) ∈ ∆ ∧ local(∆, o′, σ)}∣))

⎞
⎟⎟⎟
⎠

P ; ∆;H ⊢ o ok

The second requirement ensures that fields cannot be unpacked if the reference is unusable.
The third ensures that the unpacked state matches the reality in the heap which is needed to make
sure that the field representative tracks the permission in the field appropriately. The final require-
ment makes sure that the permission of the field recorded in the type is valid and that the field
representative accurately represents the field from the stand point that if the type system indicates
that a permission can be pulled from or returned to the field, then the same is true of the underlying
representation.

Distinct fields:
In the judgments above, we have mixed object references that represent fields and those that do

not. However, when stating and proving preservation, we will need to keep these sets separate so
as to ensure that updates to the permission of a local variable do not also update the permission of a

43

field. In other words, we need to enforce our model that each alias in the program, including local
variables and field references, is represented by a separate object reference. The typing judgments
that remove object references from the context after they appear in the expression enforce this
property for local variables. The distinctFields judgment provides this guarantee. it requires that
given a context ∆ and an object reference o appearing in a field map Ξ in heap H

1. o must be null or mapped to a permission and packed in ∆, and

2. o must be null or distinct from all other object reference appearing in a field map in H .

∆ ⊢ H distinctFields

DISTINCT-FIELDS
O ↦ s{Ξ, f ↦ o} ∈ H Ô⇒ (o = null ∨ o ∶ (π s;∅) ∈ ∆)

(O ↦ s{Ξ, f ↦ o} ∈ H ∧O′ ↦ s′{Ξ′, f ′ ↦ o} ∈ H) Ô⇒ (o = null ∨ (O = O′ ∧ f = f ′))
∆ ⊢ H distinctFields

Environment well-formed:
For an environment consisting of program P , context ∆, needed permission π, heap H , and

expression e, we consider it to be well-formed when the following hold.

1. P can be typed.

2. The set of non-null object references mapped in ∆ an H must be the same.

3. The context can be split in two pieces, ∆f which proves that H has distinctFields, and ∆e

in which e can be typed with needed permission π.

4. All non-null object references (those in the context ∆) are well-formed.

5. All objects are well-formed.

ENV-OK
⊢ P {o ∣ o ∈ dom(H) ∧ o /= null} = {o ∣ o ∈ dom(∆)}

∆ = ∆e,∆f P ; ∆e;π ⊢ e ∶ s ⊣∆′; `∗ ∆f ⊢ H distinctFields
∀o ∈ dom(∆). (P ; ∆;H ⊢ o ok) ∀O ∈ dom(H). (P ; ∆;H ⊢ O ok)

P ; ∆;π ⊢ H; e ∶ s ⊣∆′; `∗

44

3.4.4 Lemmas

There are some manipulations used in the proof of preservation that we use over and over again.
First we create aliases which should be well-formed object references.

Lemma 3.36 (Alias Generation). Given

1. o↦ O ∈H

2. ∆ = ∆′, o ∶ (π s;∅),

3. P ; ∆;H ⊢ o ok,

4. o′ /∈ dom(∆), and

5. P ⊢ s ⪯ s′.

If π ⇛ π′ ⊗ π̂, then letting ∆̂ = ∆′, o ∶ (π̂ s;∅), o′ ∶ (π′ s′;∅) and Ĥ = H,o′ ↦ O, we have
P ; ∆̂;H ⊢ o′ ok.

Proof. By 4 and 3, we know that the actual type of object O is a substate of s which is itself a
substate of the s′ the state of o′. By transitivity of substates this invariant holds for o′. o′ starts
packed and so the implications regarding the permission of o′ and the unpacked state and field
mappings in the heap are both trivially true. For the fields, we know that since o is packed that
none of the fields of O can be mapped to null. Thus since both o and o′ are packed, the only
thing we have to check is that given that a field f with declared permissions πf is fulfilled by field
representative permission π′f when the object permission is π (π′f ▷ π.πf), then π′f ▷ π′.πf . This
follows from lemma 3.35.

Second, we return permissions to the context. These returns always happen after arbitrary
equalizing rules which must come after the return once the execution step for the return has been
taken.

Lemma 3.37 (Move Return Forward). Given [π∗]++[π1]++[π2] consistent where π1 = local σ
implies π2 /= unique. If π1 ↓ π′1, π2 ↓ π′2, and π′1 ⊗ π

′
2 ⇛ π̂′, then π′1 ⊗ π2 ⇛ π̂ where π̂ ↓ π̂′.

Proof. We case analyze on π′1.

1. π′1 = none: This case is trivial since returning none is a no-op and we know by assumption
π2 ↓ π′2.

2. π′1 = unique: By the definition of downgrade, we know that π1 is also unique. By
consistency, π2 = none and again by the definition of downgrade, π′2 = none. Thus
π̂ = π̂′ = unique and we are done since downgrade is reflexive.

45

3. π′1 = σ: By the definition of permission joining, we know that returning a σ always re-
sults in a σ, but is only possible when returning to σ or none. We know that π′2 is in
that set. By the definition of downgrade, π1 ∈ {unique, σ,borrow(unique, σ, n)} and
π2 ∈ {unique, σ,none}. Regardless of which permission π1 is by consistency the only
valid choices for π2 are none or σ (cannot be σ in the case of borrow), so the return must
succeed and we are done.

4. π′1 = local σ: By the definition of downgrade, we must have π′1 = local σ as well.
Thus, by our assumption, π2 /= unique. Since the return of a local permission succeeds,
we know that π2 = borrow(πo, σ, n) or π2 = σ. In the first case, by the definition of down-
grading π′2 = borrow(π′o, σ, n

′) where n′ ≥ n. Returning a local σ to each succeeds
and also preserves the downgrading relationship. In the second case, by the definition of
downgrading plus the fact that the return of a local permission succeeded, we know that
π′2 = σ as well. Thus, π̂ = σ = π̂′.

Moving Equalizing Rules
These lemmas deal with moving equalizing rules when the object reference they surround is

reduced away.

Lemma 3.38 (Move Downgrade Value). Given P ; ∆, v ∶ (π1 s1; Π1);π ⊢ e ∶ s ⊣∆′, v ∶ (π′1 s1; Π′
1); `

∗.
If π̂1 ↓ π1, then P ; ∆, v ∶ (π̂1 s1; Π1);π ⊢ e ∶ s ⊣∆′, v ∶ (π′1 s1; Π′

1); `
∗.

Proof. By straightforward induction on the typing derivation. In short, there is always a place to
insert a equalizing rule to drop the permission before a return occurs (which could cause problems).

Lemma 3.39 (Move Downgrade Field). Given P ; ∆, v ∶ (π1 s1; Π1, f ∶ (π2; i));π ⊢ e ∶ s ⊣ ∆′, v ∶
(π′1 s1; Π′

1); `
∗. If π̂2 ↓ π2, then P ; ∆, v ∶ (π1 s1; Π̂1);π ⊢ e ∶ s ⊣∆′, v ∶ (π′1 s1; Π′

1); `
∗ where

cur-field-perm(P ; s1; f ; Π̂1) = π̂2.

Proof. By straightforward induction on the typing derivation. It is exactly the same as for values in
the case that f ∶ (π′2, i) ∈ Π′

1. Otherwise, we know that f must have been reassigned and therefore
adding permissions at the start has no impact on either typing or the result.

Lemma 3.40 (Move Pull Value). Given π1 ⇛ π ⊗ π′1 and π ↓ π̂. If P ; ∆, v ∶ (π′1 s1; Π1);πe ⊢

e ∶ s ⊣ ∆′, v ∶ (π′′1 s1; Π′
1); `

∗ and P ; ∆′′, v ∶ (π′′1 s1; Π′
1); π̂ ⊢

ˆ̀∗, v ⊣ ∆′′′, v ∶ (π̂1 s1; Π′
1), then

P ; ∆, v ∶ (π1 s1; Π1);πe ⊢ e ∶ s ⊣∆′, v ∶ (π̂1 s1; Π′
1); `

∗.

Proof. By straightforward induction on the typing derivation. The variable and alias cases follow
from the commutativity of permission pulls (lemma 3.1) and the effect of splitting and pulling
(lemma 3.5) which is used to prove that an instance of T-EQ-DROPPERM-VAL can be added to
the existing derivation to ensure that we can make up for the extra permission to v that we started
with. The rest of the cases are by the induction hypothesis because we can always revert the first
outgoing context to the old output and use the assumption for the rest.

46

Lemma 3.41 (Move Pull Field). Given π̂2 ⇛ π ⊗ π2 where π2 /= π′2 and π ↓ π̂. If P ; ∆, v ∶

(π1 s1; Π1, f ∶ (π2, i));πe ⊢ e ∶ s ⊣ ∆′, v ∶ (π′1 s1; Π′
1); `

∗ and P ; ∆′′, v ∶ (π′1 s1; Π′
1); π̂ ⊢

ˆ̀∗, (v.f, i) ⊣ ∆′′′, v ∶ (π′′1 s1; Π′′
1), then P ; ∆, v ∶ (π1 s1; Π̂1);πe ⊢ e ∶ s ⊣ ∆′, v ∶ (π′′1 s1; Π′′

1); `
∗

where
cur-field-perm(P ; s1; f ; Π̂1) = π̂2.

Proof. By straightforward induction on the typing derivation. Follows the same argument as the
corresponding lemma for values in the case that f ∶ (π′2, i) ∈ Π′

1 because the return will occur to the
field. Otherwise, the return will be a no-op by either rule RESTORE-FIELD-STALE or RESTORE-
FIELD-PACKED. Therefore, adding permission to the field at the start of the typing has no impact.

Lemma 3.42 (Move Field Havok). If P ; ∆, o ∶ (π1 s1; Π1, f ∶ (π2, i));π ⊢ e ∶ s ⊣ ∆′, v ∶

(π′1 s1; Π′
1); `

∗, then P ; ∆, o ∶ (π1 s1; Π1, f ∶ (π2, j));π ⊢ e ∶ s ⊣∆′, o ∶ (π′1 s1; Π′
1); `

∗

Proof. As with moving a downgrade, the important thing is to insert the field ID havok before
any returns occur. However, we also need to ensure that we preserve the relationship between any
returns in `∗ and the context. We need to worry about this because a field read could be the first
thing that occurs. In this case, we can use the T-EQ-FRESH-FIELD-PRESERVERET rule to ensure
that the return is still valid.

The only case we have not yet handled is when we reduce the permission of an object reference
that is then directly typed in the body. In this case, we can safely downgrade the permission of the
object reference in the context without breaking the necessary invariants.

Lemma 3.43 (Remove Equalizing Rule By Updating Context). Given

1. P ; ∆, o ∶ (π s; Π);π1 ⊢ o′ ∶ s1 ⊣∆1, o ∶ (π′ s; Π′); `∗1 where π /= π′ and π ↓ π′,

2. P ; ∆1, o ∶ (π′ s; Π′);π2 ⊢ E[o] ∶ s2 ⊣∆2; `∗2 ,

3. P ; ∆′
2;π3 ⊢ `∗1 ⊣∆3, and

4. o↦ O ∈H .

If P ; ∆, o ∶ (π s; Π) ⊢ o ok and P ; ∆, o ∶ (π s; Π) ⊢ O ok, then

I. P ; ∆, o ∶ (π′ s; Π);H ⊢ o ok,

II. P ; ∆, o ∶ (π′ s; Π);H ⊢ O ok, and

III. P ; ∆, o ∶ (π′ s; Π);π1 ⊢ o′ ∶ s1 ⊣∆1, o ∶ (π′ s; Π′); `∗1 .

Proof. By lemma 3.21, we know that Π = ∅. Furthermore, by lemma 3.24, we know that Π′ = ∅

and o /∈ dom(∆2). Therefore, since the return succeeded, o /∈ `∗1 and also there are no elements of
`∗1 of the form (o.f, o′′). Therefore, we can construction a derivation of P ; ∆, o ∶ (π′ s; Π);π1 ⊢

o′ ∶ s1 ⊣∆1, o ∶ (π′ s; Π′); `∗1 by eliminating any equalizing rules that update o.

47

To prove that P ; ∆, o ∶ (π′ s; Π);H ⊢ o ok, we only need to verify that all the fields are fulfilled.
This is given by lemma 3.32, which tells us that downgrading the permission to the object does not
impact field fulfillment. Since the object reference was already packed, we do not need to check
that requirement. All other requirements are not impacted by changing the permission to o.

For P ; ∆, o ∶ (π′ s; Π);H ⊢ O ok, we need only to verify that ∆, o ∶ (π′ s; Π);H ⊢ O validPerms
since the other requirements only pertain to field representatives. Lemma 3.24 tells us that unique⇛
π′ ⊗ π̂ for some π̂ so we can use lemma 3.28 to conclude that validPerms is maintained.

Lemma 3.44 (Move Equalizing Rule for value not in output Context). Given

1. P ; ∆, o ∶ (π s; Π);π1 ⊢ o′ ∶ s1 ⊣ ∆1, o ∶ (π′ s; Π′); `∗1 where π /= π′, π ↓ π′, and for all
f ∶ (πf , if) ∈ Π′ we have, letting cur-field-perm(P ; s; f ; Π) = π′f , π′f ↓ πf and π′f /= πf .

2. P ; ∆1, o ∶ (π′ s; Π′);π2 ⊢ e ∶ s2 ⊣∆2; `∗2 where o /∈ dom(∆2),

3. /∃ E such that e = E[o]

4. P ; ∆′
2;π3 ⊢ `∗1 ⊣∆3, and

5. o↦ O ∈H .

Then, exists E′, e′ such that e = E′[e′] where P ; ∆, o ∶ (π′ s; Π′); π̂ ⊢ e′ ∶ ŝ ⊣ ∆̂, o ∶ (π′′ s; Π′); ˆ̀∗

and π′ ↓ π′′. Furthermore, there exists a derivation P ; ∆1, o ∶ (π s; Π);π2 ⊢ e ∶ s2 ⊣∆2; `∗2 .

Proof. By lemma 3.21, we know that Π = ∅. Since o /∈ dom(∆2) and the return succeeded,
o /∈ `∗1 and also there are no elements of `∗1 of the form (o.f, o′′). Therefore, we can summarize
the effects of all equalizing rules that impact o in the derivation of P ; ∆, o ∶ (π s; Π);π1 ⊢ o′ ∶
s1 ⊣ ∆1, o ∶ (π′ s; Π′); `∗1 in terms of π ↓ π′ where π /= π′ and similar field pulls. Thus, if we can
find a E′ and e′ as above, we can add an instances of T-EQ-DROPPERM-VAL followed by T-EQ-
DROPPERM-FIELD to construct the new typing. Even if the permission has been downgraded, this
is fine since downgrades can be moved after pulls by lemma 3.7.

We find this E′ and e′ by induction on the length of the derivation of 2. Since there exists no
E such that e = E[o], we will eventually find a sub-derivation where o is in the output context.
If the permission is greater, then it must have been returned to in an inner scope, so we can keep
recursing until inside the bind that performs the return. In this way, we will eventually find the
E′ and e′ needed.

Lemma 3.45 (Move Equalizing Rule). Given ∆ and ∆̂ with ∆ ⊆ ∆̂ where

1. P ; ∆;π1 ⊢ o ∶ s1 ⊣∆1; `∗1 ,

2. P ; ∆1, o ∶ (π1 s1;∅);π ⊢ e ∶ s ⊣∆2, o ∶ (π′1 s1;∅); `∗2 ,

3. P ; ∆2;π′1 ⊢ `
∗
1 ⊣∆3,

4. ∀o ∈ dom(∆̂). (P ; ∆̂;H ⊢ o ok), and

48

5. ∀O ∈ dom(H). (P ; ∆̂;H ⊢ O ok).

where the length of the derivation of 1. is greater than 1 rule. Then there exists ∆′ ⊆ ∆, such that
there are derivations of

I. P ; ∆′;π1 ⊢ o ∶ s′1 ⊣∆′
1; ˆ̀∗

1

II. P ; ∆′
1, o ∶ (π1 s′1;∅);π ⊢ e ∶ s ⊣∆′

2, o ∶ (π
′
1 s

′
1;∅); `∗2 ,

III. P ; ∆′
2;π′1 ⊢

ˆ̀∗
1 ⊣∆3,

IV. ∀o ∈ dom(∆̂). (P ; ∆̂;H ⊢ o ok), and

V. ∀O ∈ dom(H). (P ; ∆̂;H ⊢ O ok).

such that the derivation of I. is strictly shorter than that of 1.

Proof. Since the derivation of 1. is greater than 1 rule, we know that the last rule used must be an
equalizing rule. We case analyze on this equalizing rule. In all cases except the last two, we do not
change the context at all so D and E imply IV and V.

case: T-EQ-SUPERSTATE

By lemma 3.15, we know that we can substitute a substate in for the state of a variable in the
context and get a typing derivation that is the same except for the output state of that value and the
output state of the derivation, which may be a substate of the original. Since the value in our case
is the one going out of scope, we can ignore it. If the updated derivation results in a substate, we
can add instances of T-EQ-SUPERSTATE to the derivation to restore it to the original output.

case: T-EQ-FRESH-FIELD-ID
We cannot have the field impact o since o is packed. Then we can use lemma 3.42 to show what is
needed.

case: T-EQ-FRESH-FIELD-ID-PRESERVERET

We cannot have updated a field of o since o is packed. Thus we can get rid of this rule because it is
essentially a no-op.

case: T-EQ-DROPRET

This means that we have a derivation of P ; ∆;π1 ⊢ o ∶ s1 ⊣ ∆1; `∗1, ` for some `. If there exists a
first use of a rule of the form T-EQ-PULL-* that adds ` to the SLL backwards up the derivation
tree, then we have two cases. First, if it is not the exactly previous rule, then we can reorder
the equalizing rules, moving this use of T-EQ-DROPRET backwards until it is right before the
paired T-EQ-PULL-* possibly with some instances T-EQ-FRESH-FIELD-ID-PRESERVERET in
between. We then restart the case analysis on the newly exposed last rule. In the second case,
we can either get rid of this series of rules, or turn them into a use of T-EQ-DROPPERM-*. If
T-EQ-PULL-* leaves the permission of ` the same as before the pull, then removing each rule
results in the same output. If T-EQ-PULL-* reduces the permission, then we can replace it with

49

T-EQ-DROPPERM-* since pulling implies downgrading by rule P-DOWN-SPLIT and remove the
instance of T-EQ-DROPRET. In either case, we have reduced the length of the derivation but left
the outputs the same.

If there exists no such rule of the form T-EQ-PULL-*, then we know that it must be the case
that ∆ = ∆′, o⇒ `. ∆′ meets our criteria and then we can remove this use of T-EQ-DROPRET to
make the derivation strictly shorter but with the same outputs.

case: T-EQ-PULL-VAL

By lemma 3.21, we know that this cannot apply to o, so the output for o is the same. The premise
of the lemma gives that v ∶ (πv sv; Πv) ∈ ∆ and πv ⇛ π1 ⊗ π′v. The fact that the return succeeds
tells us that v ∈ dom(∆2), so lemma 3.40 tells us that we can adapt the derivation of the typing of
e to incorporate the downgrade into it.

case: T-EQ-PULL-FIELD

Analogous to the previous case using lemma 3.41.

case: T-EQ-DROPPERM-VAL

By lemma 3.21, we know that this cannot apply to o, so the output for o is the same. The premise of
the lemma gives that v ∶ (πv sv; Πv) ∈ ∆ and πv ↓ π′v. We have three cases: First, if v ∈ dom(∆2),
then we can can apply lemma 3.38 to find a derivation that removes the need for this pull and gives
the same output permission for v without the return. Otherwise v /∈ dom(∆2) and v = o′ since
variables cannot be removed from the context except within scopes where they were added. Our
second case is if If e = E[o′] for some evaluation context E. then we can use 3.43 to remove this
and all instances of equalizing rules that update o′. This shortens the derivation and also preserves
well-formedness as needed. In the third case, we cannot find E such that e = E[o′], and so we
instead use 3.44 without changing the context.

case: T-EQ-DROPPERM-FIELD-*
Analogous to the previous case using lemma 3.39 in the first case. The second case cannot occur
because in that case o′ could not be unpacked as this rule would make it. The third case is handled
as in the last by 3.44.

Corollary 3.46 (Equivalent Let). Given P ; ∆;π ⊢H;let π1 x=o in e ∶ s−∆′; `∗. There exists
∆̂ and choices of ∆̂e and ∆̂f such that ∆ = ∆̂e, ∆̂f , P ; ∆̂;π ⊢H;let π1 x=o in e ∶ s−∆′; `∗,
and the derivation of P ; ∆̂e;π1 ⊢ o ∶ s1 ⊣∆1; `∗1 is only a single rule long.

Proof. By repeated application of lemma 3.45. Each application maintains all of the invariants as
well as shortens the derivation of typing the let bound object reference o.

Corollary 3.47 (Equivalent Sequence and Match). Given P ; ∆;π ⊢ H; e ∶ s − ∆′; `∗ where e =
{o; e+} or e = match (o) {case si⇒ ei} There exists ∆̂ and choices of ∆̂e and ∆̂f such that
∆ = ∆̂e, ∆̂f , P ; ∆̂;π ⊢ H; e ∶ s −∆′; `∗, and the derivation of P ; ∆̂e;π1 ⊢ o ∶ s1 ⊣ ∆1; `∗1 is only a
single rule long.

Proof. By inversion on either typing rule, we know P ; ∆;none ⊢ o ∶ s1 ⊣ ∆1; `∗1 and P ; ∆1;π ⊢
e′ ∶ s ⊣ ∆′; `∗ where e′ is the “rest” of the expression: the other expressions in the sequence

50

or the case. Since returning none is a no-op, we also know that P ; ∆′;none ⊢ `∗1 ⊣ ∆′. By
lemma 3.14 we can also add o ∶ (none s1;∅) to get P ; ∆1, o ∶ (none s1;∅);π ⊢ e′ ∶ s ⊣ ∆′, o ∶
(none s1;∅); `∗ since we know that o cannot be mapped in ∆1. Thus, we can invoke lemma 3.45
repeatedly. Each application maintains all of the invariants as well as shortens the derivation of
typing the object reference o that comes first in the sequence.

Corollary 3.48 (Equivalent Method Receiver). Given P ; ∆;π ⊢ H; o.m(e) ∶ s − ∆′;∅. There
exists ∆̂ and choices of ∆̂e and ∆̂f such that ∆ = ∆̂e, ∆̂f such that P ; ∆̂;π ⊢H; o.m(e) ∶ s−∆′;∅

and the derivation of P ; ∆̂;π1 ⊢ o ∶ s1 ⊣∆1; `∗1 is only a single rule long.

Proof. By inversion on the typing rule, we know

1. P ; ∆;π1 ⊢ o ∶ s1 ⊣∆1; `∗1

2. P ; ∆1;π2 ⊢ e1 ∶ s2 ⊣∆2; `∗2

3. P ; ∆2;π′2 ⊢ `
∗
2 ⊣∆3

4. P ; ∆3;π′1 ⊢ `
∗
1 ⊣∆′

Since we are guaranteed by the typing of the method and corollary 3.12 that π1 ↓ π′1, and the fact
that o cannot appear in ∆1 that we can find a derivation of P ; ∆1, o ∶ (π1 s1;∅);π2 ⊢ e1 ∶ s2 ⊣∆2, o ∶
(π′1 s1;∅); `∗2 . o also cannot appear in `∗2 , so P ; ∆2, o ∶ (π′1 s1;∅);π′2 ⊢ `

∗
2 ⊣∆3, o ∶ (π′1 s1;∅). The

use of lemma 3.45 can handle the extra return, so we use is to achieve the intended goal.

3.4.5 Progress

The progress theorem for our system is straightforward.

Theorem 3.49 (Progress). If P ; ∆;π ⊢H; e ∶ s ⊣∆′, `∗, then either e = o or P ⊢H; e→H ′; e′ or
execution is stuck at a match for which no cases apply.

Proof. By straightforward induction on the typing rules.

3.4.6 Preservation

For preservation, we prove that a well-formed environment is preserved by taking a step.

Theorem 3.50 (Preservation). If P ; ∆;π ⊢ H; e ∶ s ⊣ ∆′; `∗ and P ⊢ H; e → H ′; e′, then there
exists ∆̂ such that dom(∆) ⊆ dom(∆̂) and P ; ∆̂;π ⊢H ′; e′ ∶ s ⊣∆′; `∗

Proof. We start with the following information given from P ; ∆;π ⊢H; e ∶ s ⊣∆′; `∗:

A) ⊢ P

B) {o ∣ o ∈ dom(H) ∧ o /= null} = {o ∣ o ∈ dom(∆)}

C) ∆ = ∆e,∆f

51

D) P ; ∆e;π ⊢ e ∶ s ⊣∆′; `∗

E) ∆f ⊢H distinct fields

F) ∀o ∈ dom(∆). (P ; ∆;H ⊢ o ok)

G) ∀O ∈ dom(H). (P ; ∆;H ⊢ O ok)

We continue by structural induction on the derivation of the typing from D, case analyzing on the
last rule used, proving for each case that the above properties are preserved. A is always preserved
since P never changes.

case T-NEW:

1. This rule only applies if e = new s, so we know by inversion on the typing rule that ∆′ = ∆e

and `∗ = ∅.

2. We know that reduction rule E-NEW must apply, so by inversion on that rule we know

(a) state s case of s′ { (πi si fi = ei)i∈[1,n] M∗ } ∈ P
(b) H ′ = H,O ↦ s{(fi ↦ null)i∈[1,n]}, o↦ O where o,O /∈ dom(H)

(c) e′ = {(alias(o).fi = ei;)i∈[1,n] o;}.

3. We have two cases for the updated context.

(a) If n from 2a is 0 (there are no fields), then let ∆̂e = ∆e, o ∶ (π s;∅).

(b) If n from 2a is at least 1, then let ∆̂e = ∆e, o ∶ (unique s; Π) where for all i ∈ [1, n]
we have fi ∶ (none, ji) ∈ Π with the ji fresh.

In both cases, let ∆̂f = ∆f and ∆̂ = ∆̂e, ∆̂f . Since we added a mapping for o regardless,
the domain of ∆̂ is strictly larger than that of ∆ as needed. In each case, we have added o to
both ∆̂ and H ′, so B is maintained. F is also maintained since we did not update ∆f and the
only field mappings we added for O were null which are handled as a special case.

4. From A along with 2a we know that for all i ∈ [1, n] P ⊢ πi si fi = ei. Thus P ;∅;πi ⊢
ei ∶ si ⊣ ∅; `∗i . Since each field can be typed in the empty context by lemma 3.13 we know
P ; ∆̂e;πi ⊢ ei ∶ si ⊣ ∆̂e; `∗i . Furthermore, by the definitions of T-ALIAS-ASSIGN and T-
ASSIGN-UNPACKED (since each field starts unpacked), we know that P ; ∆e, o ∶ (π s; Πi, fi ∶
(none, ji));πi ⊢ alias(o).fi=ei ∶ si ⊣∆e, o ∶ (π s; Πi);∅ packing field fi.

5. By the typing rule T-OBJREF2, we have P ; ∆e, o ∶ (π s;∅);π ⊢ o ∶ s ⊣∆e;∅.

6. In the case that state s has no fields, we know e′ = {o;}, so by T-OBJREF2, typing re-
quirement D is proven. Otherwise, we start with o having a unique permission and must
downgrade it to π. This is possible since unique can downgrade to any other permission.
Thus, we add an instance of rule T-EQ-DROPPERM-VAL to the derivation of the type of the

52

last assignment. Now, using the definition of the typing for sequences along with 4, we know
that because each field gets packed in turn, P ; ∆̂e;π ⊢ {(alias(o).fi=ei ∶ si)i∈[1,n]} ∶ sn ⊣

∆e, o ∶ (π s;∅);∅ leaving o packed. Then we can use 5 to get P ; ∆̂e;π ⊢ e′ ∶ s ⊣∆e;∅ when
o is added to the sequence. Therefore, the typing requirement D is satisfied.

7. To prove that F is maintained, we only need to consider o because the rest of the heap is not
changed. For o, we have that o has the same state s in the context and heap. For the fields of
s, each field is mapped to null in the heap, but they are also all unpacked to none in Π.

8. To prove that G is maintained, we only need to consider O because the rest of the heap is not
changed. O is well-formed because it has only one object reference o and a list of a single,
non-borrow permission is always consistent. Furthermore, all of the fields of O map to
null.

case T-LET:
This rule only applies if e = let π1 x=e1 in e2, so by inversion of the typing rule from F,

we know

I) P ; ∆e;π1 ⊢ e1 ∶ s1 ⊣∆1; `∗1

II) P ; ∆1, x ∶ (π1 s1;∅);π ⊢ e2 ∶ s ⊣∆2, x ∶ (π′1 s1;∅); `∗, ˆ̀∗

III) ∆2 ⊢ `∗ ok

IV) P ; ∆2;π′1 ⊢ `
∗
1 ⊣∆′

We have two cases for the reduction rule:

• E-CONGRUENCE:

1. By inversion on the reduction rule, we know that P ⊢ H; e1 → H ′; e′1. Furthermore,
we know by I along with our original assumption that P ; ∆;π1 ⊢ H; e1 ∶ s1 ⊣ ∆1; `∗1
since all the other conditions do not involve the expression. The induction hypoth-
esis guarantees that there exists ∆̂ such that P ; ∆̂;π1 ⊢ H ′; e′1 ∶ s1 ⊣ ∆1; `∗1 where
dom(∆) ⊆ dom(∆̂).

2. Inversion on 1 tells us that there exists ∆̂e such that P ; ∆̂e;π1 ⊢ e′1 ∶ s1 ⊣∆1; `∗1

3. 2 with II, III, and IV prove that P ; ∆̂e;π ⊢ let π1 x=e′1 in e2 ∶ s ⊣∆′; `∗.

4. The induction hypothesis from 1 with 3 gives us P ; ∆̂;π ⊢H ′;let π1 x=e′1 in e2 ∶

s ⊣∆′; `∗ where dom(∆) ⊆ dom(∆̂).

• E-LET:

1. By inversion on the reduction rule, we know

(a) e1 = o

53

(b) e′ = bind o in e2[x← alias(o)].

2. By lemma 3.46, we know that we can update the context structure of the derivation to
move all of the equalizing rules out of the typing of o. We assume this has occurred
and use the same context variables.

3. With 1a, 2, and I we know that

(a) ∆e = ∆′
e,∆

′′
e , o ∶ (π1 s1;∅) with o⇒ ˆ̀∈∆′

e for no ` and ∆′′
e = ∅ or ∆′′

e = o⇒ `,
(b) ∆1 = ∆′

e, and
(c) If o⇒ ` ∈∆e, then `∗1 = `, otherwise `∗1 = ∅.

4. II with lemma 3.17 implies P ; ∆′
e,∆

′′
e , o ∶ (π1 s1;∅);π ⊢ e2[x ← alias(o)] ∶ s ⊣

∆2,∆′′
e , o ∶ (π

′
1 s1;∅); (`∗, ˆ̀∗)[x← o]

5. By III and the meaning of a well-formed SLL, we know that x cannot have appeared in
`∗ since it is not mapped in ∆2. Thus, `∗[x ← o] = `∗. Thus, we still have ∆2 ⊢ `∗ ok
since ∆2 also does not map o to a type.

6. Let ∆̂ = ∆ and choose ∆̂e = ∆e. We can use 4 and 5 with either rule T-BIND1
or T-BIND2. T-BIND1 will be used in the case that o ⇒ ` ∈ ∆e, in which case by
2c, we have `∗1 = `, so we have from IV that P ; ∆2;π′1 ⊢ ` ⊣ ∆′ which means that
all the premises are fulfilled. In case /∃ `.o ⇒ ` ∈ ∆e, then by 3c we have `∗1 = ∅.
By rule RESTORE-EMPTY ∆′ = ∆2, so T-BIND2 applies. In either case, we have
P ; ∆e;π ⊢ e′ ∶ s ⊣∆′; `∗, so D is maintained.

7. For the rest of the requirements, they are also true by our assumption since neither ∆
nor H changed.

case T-BIND1/2: These rules only apply if e = bind o in e1, so by inversion on the typing
rule from F, we know

I) ∆e = ∆′
e, ∆̂e, o ∶ (π1 s1; Π) where o⇒ ` /∈∆′

e, and ∆̂e = ∅ or ∆̂e = o⇒ `.

II) P ; ∆e;π ⊢ e1 ∶ s ⊣ ∆1,∆′
1, o ∶ (π

′
1 s1;∅); `∗, ˆ̀∗ with ∆′

1 = o ⇒ ` if T-BIND1 used and
∆′

1 = ∅ otherwise.

III) ∆1 ⊢ `∗ ok

IV) P ; ∆1;π′1 ⊢ ` ⊣∆′ only if T-BIND1 used, otherwise ∆′ = ∆1.

We have two possibilities for reduction rules:

• E-CONGRUENCE:

1. By inversion on the reduction rule, we know that P ⊢ H; e1 → H ′; e′1. Furthermore,
we know by II along with our original assumption that P ; ∆;π ⊢ H; e1 ∶ s1 ⊣ ∆1, o ∶
(π′1 s1;∅); `∗, ˆ̀∗ since all the other conditions do not involve the expression. The in-
duction hypothesis guarantees that there exists ∆̂ such that

54

(a) P ; ∆̂;π1 ⊢H ′; e′1 ∶ s ⊣∆1, ∆̂1, o ∶ (π′1 s1;∅); `∗, ˆ̀∗

(b) dom(∆) ⊆ dom(∆̂)

2. 1a shows that there exists a ∆̂e such that P ; ∆̂e;π1 ⊢ e′1 ∶ s ⊣∆1, ∆̂1, o ∶ (π′1 s1;∅); `∗, ˆ̀∗.
Lemma 3.18 tells us that o ∶ (π̂ s1; Π) ∈ ∆̂e.

3. Lemma 3.18 tells us that if it was the case by II that o⇒ ` ∈ ∆̂1, then o⇒ ` ∈ ∆e and
also it must then be the case that o ⇒ ` ∈ ∆̂e. Therefore, o ⇒ ` ∈ ∆e if and only if
o⇒ ` ∈ ∆̂e.

4. 2 and 3 along with III and IV prove that T-BIND1/2 still apply and provide the same
outputs.

• E-BIND:

1. By inversion on the reduction rule, we know that

(a) e1 = o′

(b) e′ = o′

(c) H ′ = H

2. I and II along with 3.21 give π1 ↓ π′1 and Π1 = ∅.

3. o⇒ ` ∈∆1 only if o⇒ ` ∈∆e by lemma 3.18.

4. By lemma 3.23 with I and II, we know that P ; ∆′
e ⊢ o

′ ∶ s ⊣∆1; `∗, ˆ̀∗.

5. To construct ∆̂ = ∆̂e, ∆̂f , we case analyze on where o returns to:

case: T-BIND2 - permissions not returned
From 2 and 3, we know that ∆e = ∆′

e, o ∶ (π1 s1;∅). Let ∆̂e = ∆′
e and ∆̂f = ∆f , o ∶

(π1 s1;∅), ∆̂1. 4 gives us that D is maintained. E is maintained because adding ele-
ments to ∆f does not add requirements, only adding fields to H . F and G are main-
tained since the heap and context do not change.

case: T-BIND1 and o⇒ o′′ ∈∆
IV gives us P ; ∆1;π′1 ⊢ o′′ ⊣ ∆′. By inversion on this rule, we know that ∆1 =
∆′

1, o
′′ ∶ (π2 s2; Π2) and π′1 ⊗ π2 ⇛ π′2 and o′′ ∶ (π′2 s2; Π2) ∈ ∆′. We know by lemma

3.18 that ∆′
e = ∆′′

e , o
′′ ∶ (π̂2 s2; Π̂2). By lemma 3.21, we know that π̂2 ↓ π2. Since

o ⇒ o′′ ∈ ∆, we know that heapRet(∆;H; o; o′′). We must have o ↦ O ∈ H since
P ; ∆;H ⊢ o ok. It must also be the case that P ; ∆;H ⊢ O ok, which means that
∆;H ⊢ O validPerms. This requires that π1 = local σ implies π2 /= unique.
Also, since we know heapRet(∆;H; o; o′′) we have o′ ↦ O ∈ H . Therefore, π1 and
π̂2 are both in the permission list for O which must be consistent. We can now apply
lemma 3.37 to conclude that π′1 ⊗ π̂2 ⇛ π̂′2 where π̂′2 ↓ π̂2. This gives us enough to
apply lemma 3.22 for o′′ to conclude with 4 that P ; ∆′′

e , o
′′ ∶ (π̂′2 s2; Π̂2) ⊢ o′ ∶ s ⊣

∆′
1, o

′′ ∶ (π′2 s2; Π2); `∗, ˆ̀∗. Furthermore, we know that we must in fact have ∆′
1, o

′′ ∶
(π̂′2 s2; Π2) = ∆′.

55

Thus, we let ∆̂e = ∆′′
e , o

′′ ∶ (π̂′2 s2; Π̂2), ∆̂f = ∆f , o ∶ (π1 s1;∅), ∆̂1, and ∆̂ = ∆̂e, ∆̂f .
This maintains D as shown and E as in the previous argument. We need to check that
P ; ∆̂;H ⊢ O ok since we changed the permissions. By lemma 3.27, we know that
∆̂;H ⊢ O validPerms. We need nothing else because we did not change any field
representatives. Next we need to check that P ; ∆̂;H ⊢ o ok since we updated its
permission to none. We know that all fields are still fulfilled by lemma 3.29. The only
other requirement now that its permission is none is that o must be packed, which we
are given by 2. Finally, we need to check that P ; ∆̂;H ⊢ o′′ ok. For this, we need to
check that field fulfillment is maintained. We case analyze on the returned permission
π′1. We don’t need to check π′1 = none because no changes are made.

(a) π′1 = unique: This implies that π1 = unique as well. Since we assumed that
P ; ∆;H ⊢ o ok, we know that all of the fields of o were fulfilled. o was packed
and o′′ is as well since it must have had a none permission in ∆ (by permission
list consistency) and P ; ∆;H ⊢ o′′ ok. Thus, o′′ looks exactly like o did in ∆ and
so fields must still be fulfilled for o′′ as they were for o.

(b) π′1 = σ: Since the return succeeded, then π2 = none or π2 = σ and in either
case π̂′2 = σ. By the definition of downgrade π1 must have been either unique,
borrow(unique, σ, n), or σ. Since all of these downgrade to σ, we know by
lemma 3.32 that since the fields of o were fulfilled when o had permission π1 that
they are also fulfilled with permission σ and we are done.

(c) π′1 = local σ: We know from downgrades that π1 = local σ as well. Fur-
thermore, since the return succeeded, we know that π2 = σ or π2 = borrow(πo, σ, n).
In the former case, there is nothing to prove since the permission is not updated.
In the later case, we case analyze on π̂′2.

– π̂′2 = borrow(πo, σ, n−1): Then there is nothing to prove since decrementing
the count of the borrow does not allow access of more permissions from fields,
so we have it by the assumption.

– π̂′2 = πo: If πo = local σ, then we have nothing to prove because the same
permissions can be pulled from fields with a borrow or a local permission. If
πo = unique, then we need to be sure that for any unique field f declared
in state s2, we have that they are either represented by a unique permission,
or they are unpacked. Since the permission list of O is consistent and π̂′2 =
unique all other aliases of O must be packed and so f is only unpacked if
o′′ is unpacked. We also know that since π2 ∈ LINEAR that f must also be
represented by a permission πf ∈ LINEAR. Furthermore, P ; ∆;H ⊢ O ok
tells us via validPerms that if πf = borrow(unique, σ, n) then there are
exactly the right number of local permissions waiting to be returned to πf .
Finally, the number of local permissions waiting to be returned to the field in
the context must be a superset of these permissions, implying that if πf is a
borrow permission, then f must be unpacked in o′′. So πf = unique if and
only if f /∈ dom(Π̂2). All other field permissions don’t need to be checked for
fulfillment since we can always pull σ from σ.

56

case: T-BIND1 and o⇒ (o′′.f, o′′′) ∈∆
We further case analyze on the typing rule used for P ; ∆1;π′1 ⊢ (o′′.f, o′′′) ⊣∆′ given
by IV:

(a) RESTORE-FIELD-PACKED: In this case, no update to the context is made. There-
fore, we are free to ignore the return From 2 and 3, we know that ∆e = ∆′

e, o ∶
(π1 s1;∅), o ⇒ (o′′.f, o′′′). Let ∆̂e = ∆′

e and ∆̂f = ∆f , o ∶ (π1 s1;∅), o ⇒
(o′′.f, o′′′). 4 gives us that D is maintained. E is maintained because adding ele-
ments to ∆f does not add requirements, only adding fields to H does that. F and
G are maintained since the heap and context do not change.

(b) RESTORE-FIELD-STALE: As in the previous case no permissions are actually re-
turned to the context, so we can ignore the return in the heap too.

(c) RESTORE-FIELD-UNPACKED: By inversion on this rule, we know that ∆1 =
∆′

1, o
′′ ∶ (π2 s2; Π2, f ∶ (π3, o′′′)) with π′1 ⊗ π3 ⇛ π′3 where π′3 is not the de-

clared permission of field f in state s2 and o′′ ∶ (π2 s2; Π2, f ∶ (π′3, o
′′′)) ∈ ∆′.

From lemma 3.18 we can conclude that o′′ was not added during the typing and
so ∆′

e = ∆′′
e , o

′′ ∶ (π̂2 s2; Π̂2). Furthermore, we know from lemma 3.21 that ei-
ther packed(f,Π2) or Π̂2 = Π̂′

2, f ∶ (π̂3, o′′′). In the former case, we treat the
return as with the previous return rules because the return doesn’t really need to
occur. We might be concerned that doing so would break our ability to regain
a unique permission to a field. However, this is only the case if the field rep-
resentative has a LINEAR permission in which case the well-formedness con-
ditions on objects means that the set of object references that return to the field
in the heap is a subset of those that return to the field in the context. Since
o′ does not return to the field in the context, this means it cannot return to the
field in the heap either. In the later case, we are guaranteed by lemma 3.21
that π̂2 = π2. We are also guaranteed by the well-formedness of the object ref-
erence o′′ that o′′ ↦ O′′,O′′ ↦ s′′{Ξ′′, f ↦ o′′′} ∈ H . Therefore, we have
∆f = ∆′

f , o
′′′ ∶ (π4 s4;∅). Now we consider two further cases:

case heapRet(∆;H; o′, o′′′):
Since this is true, we know o′′′ ↦ O ∈ H , the same object that o points to. We
need to update the permissions of both the field in the context and possibly the
permission representative in the heap. By lemma 3.33, since we don’t change the
field permission of any other references, fulfillment is maintained, so it suffices to
check that fulfillment for o′′ is maintained.
We know that the permission list of O is consistent, including π1 and π4. This re-
stricts the possible values of π4 which in turn restricts what the unpacked permis-
sion of the field π̂3 in ∆ can be. We need to prove the following for each possible
combination: π′1 ⊗ π̂3 ⇛ π̂′3 where π̂′3 ↓ π

′
3, and π′1 ⊗ π4 ⇛ π′4 with π′4 ▷ π2.π̂′e,

or π4 ▷ π2.π̂′e. In doing this, we will let ∆̂e = ∆′
e, o

′′ ∶ (π2 s2; Π̂′
2, f ∶ (π̂′3, o

′′′),
∆̂f = ∆′

f , o
′′′ ∶ (π̂4 s4;∅), o ∶ (none s1;∅), ∆̂e, where π̂4 is π4 if no join is needed

and π′4 otherwise, and ∆̂ = ∆̂e, ∆̂f . Since π̂′3 ↓ π
′
3, this context will fulfill the

57

typing for condition D and also preserve E since we don’t add new heap represen-
tatives in H .
We case analyze on π1.

i. π1 = unique: Then π4 = none by permission list consistency and π̂3 =
none as well by field fulfillment. This also implies that π3 = none and we
know that we can return π′1 to π3. Therefore, the returns work, π̂′3 = π′3 so the
downgrade follows by reflexivity, and field fulfillment follows by lemma 3.30.
Since the return only makes π′4 be non-borrow permissions, we don’t need
to prove anything more for O well-formed and the field fulfillment argument
gives that all the o are well formed too, so we are done.

ii. π1 = σ: Then π′1 = none for which we do not need to make any changes,
or π′1 = σ. In the latter case, π3 is either σ or none. Since the field is
unpacked in ∆ before the downgrade and after the return, we know that the
permission of the field must be unique and π̂3 must also be σ or none (or
borrow(unique, σ, n). In this side case, the return fails, but would result
in a weaker permission anyway, so we do not make any updates.), or the field
must be σ and π̂3 = none. In the first case, π4 or π′4 must be at least σ, so
we can easily preserve field fulfillment. The downgrade requirement holds
because the permission is σ at the start and end. In the later case the return
must be none to keep the field unpacked which is the trivial case. Again
since we don’t introduce any new borrow permissions, we do not need to
prove anything extra for O well-formed and so we are done.

iii. π1 = local σ: In this case π′1 must also be local σ. π3 must then be
a borrow permission or σ. Therefore, we know from validPerms that π4

cannot be unique. Since f was originally unpacked, we know that π̂3 must
come from this same set. It follows that local σ⊗ π̂3 ⇛ π̂′3 and furthermore
it is easy to show that this return leaves π̂′3 ↓ π

′
3. Since π4 cannot be unique,

it is also either borrow or σ which means that local σ ⊗ π4 ⇒ π′4. In
the case that π4 = σ, π′4 = σ as well and since the field remains unpacked
after the return, fulfillment will remain as does the well-formedness of O. If
π′4 = borrow(πo, σ, n), then we have further invariants to check. For valid-
Perms, this is given by lemma 3.27. For O well-formed, we have decreased
the number of local object references that return in both the heap and context
to this field by one and otherwise unchanged the set of object reference that
heap and context return to o′′′, so it must still hold (since the representative is
still in LINEAR as well).

case otherwise:
Since we know that ctxRet(∆; o; o′′′), this means that by O well-formed, we must
have π4 ∈ LINEAR. We take ∆̂e = ∆′

e, o
′′ ∶ (π2 s2; Π̂′

2, f ∶ (π
′
3, o

′′′), ∆̂f = ∆f , o ∶

(none s1;∅), ∆̂e, and ∆̂ = ∆̂e, ∆̂f . Since we have updated the permission of
the field in the context, we need to check that the field is still fulfilled. We case

58

analyze on π4. If π4 = borrow(unique, σ, n) for some σ, then we know by
O well formed that there are the right number of local object references which
heap return to it to restore it to unique. Therefore, π2 = unique and π′3 =
borrow(unique, σ, n′) or π2 ∈ LOCAL(σ)∪LINEAR(σ)∪σ and some other
alias is unpacked. In either case the borrow permission in π4 can fulfill the field
f of o′′. Also, we reduced the number of object references that return to the field in
the context, but since this one did not return to the heap, we maintain the required
subset relation for O well-formed. If π4 = unique, then by lemma 3.31 we know
that any permission in the field is fulfilled.

(d) RESTORE-FIELD-PACK: This case is much that same as the previous case. How-
ever, there is one more consideration that we have to deal with. Since the field is
packed up, it might be the case that access to a unique permission in a field might
become available again. The two ways this could happen is if unique is returned
to the field. This is the simple case since by permission list consistency we know
that the field representative must be none and so it also becomes unique.
The second case where a local σ is returned to a field of a unique object
and gets packed back to unique itself. By field fulfillment, we know that the
representative permission of the field must have also be in LINEAR. Now, it is
possible by O well-formed that the return to the field only occurs in the context
and not in the heap. However, we know from object reference well-formedness
that there are exactly enough local object references to restore the field to packed.
These are included in the set of local references that return to the field representa-
tive in the context, which is a superset of those that restore to the field representa-
tive in the heap. Since this object reference has a unique permission, we know
that all the other aliases of O have a none permission and are therefore packed.
Therefore, there can be no other object references that return to the context at this
field. Therefore, there either must be no object references that return to the field in
the heap, in which case its permission cannot be borrow by validPerms and so
would have to be unique, or there must be exactly one, the same that is currently
being returned, which means that it gets restored to unique as well and we are
done.

case T-ALIAS

1. This rule applies only if e = alias(o). By inversion on the typing rule, we know

(a) ∆e = ∆′
e, o ∶ (π1 s;∅)

(b) π1 ⇛ π ⊗ π′1

(c) ∆′ = ∆′′, o ∶ (π′1 s;∅)

2. By inversion on the reduction rule, we know

(a) o′ /∈ dom(H)

59

(b) H = Ĥ, o↦ O

(c) e′ = o′

(d) H ′ = H,o′ ↦ O

3. Let ∆̂e = ∆′
e, o ∶ (π

′
1 s;∅), o′ ∶ (π s;∅), o′ ⇒ o and ∆̂ = ∆̂e,∆f . We have dom(∆̂) ⊆

dom(∆) as needed and we also maintained B by adding o′ to both the heap and context. We
did not change any field representatives, so E is maintained.

4. We know that o is still well formed since by lemma 3.32, we can downgrade the permission
without impacting field fulfillment.

5. We know by lemma 3.36 that o′ is also well formed.

6. Finally, by lemma 3.26 we know that validPerms for O is maintained, and since we didn’t
touch any field representatives, that also means that O is well-formed and we are done.

case T-FIELD-ACCESS-PACKED-PACKED

1. This rule applies and e reduces only if e = alias(o).f . which by inversion on reduction
and the typing rule from D implies

(a) H = Ĥ, o↦ O,O ↦ s{Ξ, f ↦ ô}, ô↦ O′

(b) o′ /∈ dom(H)

(c) H ′ = H,o′ ↦ O′

(d) e′ = o′

(e) ∆e = ∆′
e, o ∶ (π1 s1; Π1) and ∆′ = ∆e

(f) packed(f,Π1)

(g) field-type(P, s1, f) = πf s

(h) π1.πf ⇛ π ⊗ πf

(i) `∗ = ∅

2. We know by assumption that ∆f = ∆′
f , ô ∶ (π̂ ŝ;∅) and furthermore that π̂▷ π1.πf .

3. 2 tells us that since π1.πf ⇛ π ⊗ πf by 1h, there exists π̂′ such that π̂⇛ π ⊗ π̂′.

4. Let ∆̂e = ∆e, o′ ∶ (π s;∅) and ∆̂f = ∆′
f , ô ∶ (π̂

′ ŝ;∅). Now if ∆̂ = ∆̂e, ∆̂f , then dom(∆) ⊆

dom(∆̂) as required. B is maintained because we added o′ to both the heap and the context.
E is maintained because we didn’t update any field mappings or the contents of ∆f , only
their permissions.

5. We know that P ; ∆e, o′ ∶ (π s;∅);π ⊢ o′ ∶ s ⊣ ∆e;∅ by the typing rule T-OBJREF2, so D is
maintained.

60

6. Since we updated the permission of a field representative, we need to ensure that field fulfill-
ment is maintained for each existing object reference mapped toO, including o. This follows
from lemma 3.34.

7. We need to check that the new object reference o′ is well-formed. This follows from lemma
3.36.

8. Finally, we need to check that P ; ∆̂;H ′ ⊢ O ok. We know by lemma 3.26 that validPerms
is maintained. Now, since we have updated the permission of field f , we need to check that
we have not broken any invariants on it. By lemmas 3.3 and 3.2, we know that since the
permission of the field did not change that π = none, which is trivial since no changes
were made, π = σ, which is also fine because it cannot introduce any borrow or local
permissions, or π = local σ. In this last case, it is possible that the field representative
could have a unique permission. However, since we must be pulling a local σ from a
field declared as σ, we can actually replace that unique permission with a σ. This preserves
permission list consistency by lemma 3.25 given our assumption about consistency before
the update. This also will not break field fulfillment for any object references since one can
only pull a σ from a field declared to be σ and unpacked fields must have less permissions
(ie could not have unique). We assume this is done in the original environment. Now
this case is the same as the last since pulling a local from a σ does not generate a borrow
permission. Thus, we have proved that G is maintained.

case T-FIELD-ACCESS-PACKED-UNPACKED

1. This rule applies and e reduces only if e = alias(o).f . which by inversion on reduction
and the typing rule from D implies

(a) H = Ĥ, o↦ O,O ↦ s{Ξ, f ↦ ô}, ô↦ O′

(b) o′ /∈ dom(H)

(c) H ′ = H,o′ ↦ O′

(d) e′ = o′

(e) ∆e = ∆′
e, o ∶ (π1 s1; Π1) and ∆′ = ∆e

(f) packed(f,Π1)

(g) field-type(P, s1, f) = πf s

(h) π1.πf ⇛ π ⊗ π′f where πf /= π′f

(i) fresh(i),

(j) ∆′ = ∆′
e, o ∶ (π1 s1; Π1, f ∶ (π′f , i))

(k) `∗ = (o.f, i)

61

2. This case is similar to T-FIELD-ACCESS-PACKED-PACKED. There are two differences.
First, we need to update the type of o and second, we need to add a return specification
for o′. We unpack f using the object reference ô that is the field representative (we can
assume that this is the field id that was chosen). So ∆̂e = ∆′

e, o ∶ (π1 s1; Π1, f ∶ (π′f , ô)), o
′ ∶

(π s;∅), o′⇒ (o.f, ô). ∆̂f is defined again as ∆f = ∆′
f , ô ∶ (π̂

′ ŝ;∅).

3. We can use the same arguments as the previous case to see that B, D, and E are maintained.
Lemma 3.34 still proves that the existing object references still have their fields fulfilled
and lemma 3.36 checks the new object reference o′. In the case that π = local σ and
πf = unique, we know that the new alias now returns this field in the context and is
local. Therefore, π′f = borrow(unique, σ,1). Thus, the last clause of o well-formed
holds because we have exactly the right number of local object references returning to o.f
to restore it to unique.

4. We must check that P ; ∆̂;H ′ ⊢ O ok. We know by lemma 3.26 that validPerms is main-
tained. Now, since we have updated the permission of field f and added a return to it, we
need to check that we have not broken any invariants. We case analyze on the permission π
that caused the field to become unpacked. We know that π cannot be none, so we disregard
that case:

(a) π = unique: Then πf = unique and it must be the case that π1 = unique as well.
π′f = none, which is not a LINEAR, so we need to ensure that any object references
that return to the field in the context also return in the heap. However, this is trivial
because the field was previously packed on this object reference and all others aliasing
O (since they must have permission none which implies packed). Therefore, by the
definition of ctxRet there cannot be any such object references in the original context.
Following, the new alias returns to both the context and the heap, so the implication
holds.

(b) π = σ: Then πf = unique as well since pulling from σ does not change the permis-
sion and so would not unpack. In this case π′f = σ which is not LINEAR, so we need
to show that all object references that return in the context also return in the heap. As
in the previous case, since the permission of the object is unique and this field was
previously packed, we cannot have any existing object references of this nature. The
new alias will return to both and so the implication holds.

(c) π = local σ: It must again be the case that πf = unique, so π′f = borrow(unique, σ,1).
Now, by assumption, we know that P ; ∆;H ⊢ O ok. Therefore, π̂ ∈ LINEAR if there
is an outstanding borrow permission originally unique as the permission to some
o′′ pointing to O. If this is the case, π̂′ = borrow(unique, σ, n) for some n ≥ 1.
Therefore, the second implication is maintained. The first is also maintained because
π̂′ ∈ LINEAR and adding o′ ⇒ (o.f, ô) and mapping o′ to a local σ permission
increases the set of object reference returning to this field in both the heap and context
by 1, thus maintaining the inclusion of the heapRet set. Thus, even if f just became
unpacked, the inclusion will be maintained. If π̂ is not necessarily in LINEAR, then

62

in could also be σ since local σ can be pulled from σ. In that case, all object refer-
ences returning to the field in the context must also return in the heap. As before, the
new alias preserves this.

That completes the proof that O is well-formed and we are done.

case T-FIELD-ACCESS-UNPACKED-MAINTAIN

This is exactly the same as case T-FIELD-ACCESS-PACKED-PACKED since the set of permissions
that can be pulled without changing the original permission is the same.

case T-FIELD-ACCESS-UNPACKED-CHANGE

This case is similar to T-FIELD-ACCESS-PACKED-UNPACKED. The only difference is that the
field must start unpacked, which means that π cannot be unique. However as before the assump-
tion is strong enough that when we create the new alias which returns to both the heap and the
context, it is all maintained.

case T-FIELD-ASSIGN-PACKED

This case applies only if e = alias(o)=e1. Inversion on the typing rule tells us

I) ∆e = ∆′
e, o ∶ (π1 s1; Π1)

II) field-type(P, s1, f) = π2 s2

III) P ; ∆e;π2 ⊢ e1 ∶ s′2 ⊣∆2, o ∶ (π′1 s1; Π′
1); `

∗ where assignable(π′1) and P ⊢ s′2 ⪯ s2.

IV) π2 ⇛ π ⊗ π2

There are two possibilities for reduction rules. The first is E-CONGRUENCE which is unin-
teresting because we can simply use the induction hypothesis on III which is the first action that
the rule takes, so everything else comes from the guarantees of the induction hypothesis. The rule
E-ASSIGN is more interesting:

1. By inversion on the reduction rule, we know

(a) e1 = o′

(b) o′′ /∈ dom(H)

(c) H = Ĥ, o↦ O,O ↦ s′1{Ξ, f ↦ of}, o′ ↦ O′
f

(d) H ′ = Ĥ, o↦ O,O ↦ s′1{Ξ, f ↦ o′′}, o′ ↦ O′
f , o

′′ ↦ O′
f

(e) e′ = o′′

2. From III, we know that ∆e = ∆′′
e , o ∶ (π1 s1; Π1), o′ ∶ (π2 ŝ2;∅) and P ; ∆e;π2 ⊢ o′ ∶ s′2 ⊣

∆1, o ∶ (π′1 s1; Π′
1).

63

3. Let ∆̂e = ∆′′
e , o ∶ (π1 s1; Π1), o′ ∶ (π s2;∅) and ∆̂f = ∆f , o′′ ∶ (π2 ŝ2;∅). Then by using

∆̂ = ∆̂e, ∆̂f , we have expanded the domain of ∆ and also included o′′ in both the heap and
context, so B is maintained.

4. The typing requirement D follows from updating the permission of o′ in the context as o′ is
still removed from the outgoing context.

5. distinctFields (E) is maintained because we added o′′ which was assigned into the field to
∆̂f .

6. We need to check that the new object reference o′′ is well formed, which comes from lemma
3.36.

7. We need to check that O′
f is still well-formed. However, this comes from showing that

validPerms still holds with lemma 3.26. No fields were updated.

8. We need to check that O is still well-formed as well as the field fulfillment of object refer-
ences point to O. We case analyze on the permission list to O assuming that o must have an
assignable permission. We only consider fields that are declared unique since they are the
only fields that can be effectively unpacked.

(a) perms(∆;H;O) = [none∗]++[unique]: Then we know that π1 = unqiue and
so all other object references have permission none by permission list consistency.
Therefore, since object references are well-formed, all of them must be packed. This
means that replacing the permission in the type of their field is the same as the new
representative, which by lemma 3.30 means that field fulfillment is preserved for all
object references point to O. Since f is now packed in all object references that point
to O the borrow requirement holds trivially. For O well-formed, we did not update
any of the permissions of object references point to O, so validPerms must still hold.
If the field f is declared to be unique then we might need to worry about the other
implications of O well-formedness. Since o′ was newly generated, there cannot be
any object references that return to it and since all objects pointing to O are packed,
there cannot be an object references that return to the field in the context so the return
requirement holds.

(b) borrow(unique,shared, n) ∈ perms(∆;H;O): We know that since the field is
declared to be unique and there is a borrow originally unique permission to O
that πf , the permission to old field representative of must also be in LINEAR. This
implies that the set of object references that return to of in the heap are a subset of the
object references that return to (ô.f, of) in the context for any ô that is an alias of O.
In this case, we must update all return specifications of this form to (ô.f, o′′). This
means that the set of object references that returns in the context to the field remains
constant. However, these will not return to the heap because of the mismatch between
the new object in the field O′

f which must distinct from the original field object since
we have the single unique permission to O′

f already. This is fine because the subset

64

relationship is maintained. In order to preserve the return structure of of , we change its
permission in ∆̂f to shared. This is safe since of cannot be used either as a field or
in the expression any longer. In this way the invariants are preserved.

(c) shared ∈ perms(∆;H;O): It is possible as in the last case for other object references
to be unpacked. However πf does not have to be in LINEAR, so we do not have to
track as carefully. Thus, we update the return specifications as before, but we do not
need to update the permission to πf .

case T-FIELD-ASSIGN-UNPACKED

This case is exactly the same in its details as the previous case. The only additional step is packing
f in o, which is no different than updating the mapping of a packed field.

case T-INVOKE

The invoke case is much like the T-LET case with a few differences. First, we have two possibilities
for the congruence rule. The first operates on the receiver expression and follows directly from the
induction hypothesis. The second operates on the parameter expression when e = o.m(e1). For
this, we cannot use the induction hypothesis directly because some typing occurs as a part of typing
o that could update the context. Thus, we first apply corollary 3.48 to move this typing to e1. Now,
while typing removes o and its return specification from the output context, since these were the
only changes by T-OBJREF1/2, we can reconstruct the original context by adding them back to
∆f . This does not change the typing or distinctFields and so we can make use of our assumptions
to invoke the induction hypothesis on the reduction of e1 and we are done.

The final problem is reducing to the nested bind expression using E-INVOKE when e =
o.m(o′). By the typing rules, we know that o /= o′. By the typing of the method body e2, we know
that P ;this ∶ (π1 s1;∅), x ∶ (π2 s2;∅);π ⊢ e2 ∶ s ⊣ this ∶ (π′1 s1;∅), x ∶ (π′2 s2;∅); `∗. Thus, we
can apply lemma 3.17 twice to get P ; o ∶ (π1 s1;∅), o′ ∶ (π2 s2;∅);π ⊢ e2[this← alias(o), x←
alias(o′)] ∶ s ⊣ o ∶ (π′1 s1;∅), o′ ∶ (π′2 s2;∅); `∗[this← o, x← x]. Using corollary 3.48 we can
remove the extra typing rules from the receiver and move them to the parameter. Now, by adding o
to the typing of o′ using lemma 3.14, we can invoke lemma 3.45 in order to move equalizing rules
into the body e2. This gives us the correct ∆ and choices of ∆e and ∆f in order to type the updated
expression bind o in bind o′ in e2 as needed.

case T-SEQUENCE-MULTIPLE

e = {e1; e2;+ }. We have two possibilities for the reduction rule. The congruence rule reduces e1

and we get what we need directly from the induction hypothesis. Otherwise, E-SEQUENCEMULTIPLE

must have been used so e = {o; ê;+ } and e′ = {ê;+ }. As with T-LET, we need to move equalizing
rules since o is being reduced away. We can use corollary 3.47 to do this. To finish, we choose the
same context, but move o and any return specification for it from ∆e to ∆f and as with bind.

case T-SEQUENCE-SINGLE

This case is simple, using only the straightforward congruence rule for which we can use the
induction hypothesis, or E-SEQUENCE-SINGLE for which no changes are needed since the object
reference is just pulled out the sequence but left in the expression.

65

case T-MATCH-SINGLE

We have two cases for reduction. Either the E-CONGRUENCE rules is used in which case we simply
use the induction hypothesis, or E-MATCH is used to select the single expression. However, we can
apply lemma 3.47 to move all equalizing rules into the case body. Then we can type the updated
expression, which will be the case body, in the same context with o and any return specification
for it moved from ∆e to ∆f and as with bind.

case T-MATCH-MULTIPLE

We have the same cases for reduction. Since T-MATCHSINGLE is ultimately applied to each case
body, the same reasoning follows as for T-MATCHSINGLE. The only extra step we have to take is
to account for the equalizing of field ids. This can be done by adding instances of T-EQ-FRESH-
FIELD-ID to the end of the typing.

case T-EQ-*:
All of these cases follow directly from the induction hypothesis on the premise of the rule that
types the expression before making the equalizing updates. Since we get the same outputs after the
reduction via the induction hypothesis, we can still make the same equalizing updates.

3.5 Deterministic Algorithm
The algorithm specified by the typing rules above is non-deterministic because the existence of a
resulting context of a match expression is asserted, but no algorithm is given to compute it. This
is undesirable for an implementation of our system. Therefore, we define deterministic rules for
typing match. We believe, but do not prove, that these two formulations are equivalent.

3.5.1 Merging permissions:

To develop a deterministic algorithm, we first need a way to merge two permissions. The mergePerms
judgment takes two permissions and gives the merged permission as an output.

π = mergePerms(π1, π2)

We merge two permissions by either taking the permission π2 that can be obtained by pulling
some permission π from π1 (P-MERGE-PULL), or the borrow permission with a larger count (P-
MERGE-BORROW), or none (P-MERGE-INCOMPATIBLE).

P-MERGE-SYMMETRIC
π = merge(π2, π1)

π = merge(π1, π2)

P-MERGE-PULL
∃π.π1 ⇛ π ⊗ π2

π2 = mergePerms(π1, π2)

P-MERGE-BORROW
π2 ∈ {π} ∪ {borrow(π,σ, n′) ∣ n′ ≤ n}

borrow(π,σ, n) = mergePerms(borrow(π,σ, n), π2)

66

P-MERGE-INCOMPATIBLE
π1 ∈ {σ1,local σ1,borrow(π,σ1, n1)}

π2 ∈ {σ2,local σ2,borrow(π,σ2, n2)} σ1 /= σ2

none = mergePerms(π1, π2)

The definition mergePerms provides several useful properties:

Lemma 3.51 (Merged Permissions). If π = mergePerms(π1, π2), then

1. πi ↓ π for i = 1,2, and

2. π ∈ {π1, π2,none}.

Proof. By exhaustive case analysis on the rules for mergePerms.

3.5.2 Merging contexts:

Next, we provide explicit rules for computing the merge of two contexts.

∆ = merge(∆1; ∆2)
C-MERGE-EMPTY

∅ = merge(∅;∅)

C-MERGE-PACKED
∆3 = merge(∆1; ∆2) π = mergePerms(π1, π2)

∆3, v ∶ (π s;∅) = merge(∆1, v ∶ (π1 s;∅); ∆2, v ∶ (π2 s;∅))

C-MERGE-UNPACKED1
∆3 = merge(∆1; ∆2) π2 ↓ π1

∆, v ∶ (π1 s; Π) = merge(∆1, v ∶ (π1 s; Π); ∆2, v ∶ (π2 s;∅))

C-MERGE-UNPACKED2
∆3 = merge(∆1; ∆2) π1 ↓ π2

∆, v ∶ (π2 s; Π) = merge(∆1, v ∶ (π1 s;∅); ∆2, v ∶ (π2 s; Π))

C-MERGE-UNPACKED-BOTH1
∆3, v ∶ (π s; Π) = merge(∆1, v ∶ (π s; Π1); ∆2, v ∶ (π s; Π2)) π′ = mergePerms(π1, π2)

∆, v ∶ (π s; Π, f ∶ (π′, i)) = merge(∆1, v ∶ (π s; Π1, f(π1, i)); ∆2, v ∶ (π s; Π2, f(π2, i)))

C-MERGE-UNPACKED-BOTH2
∆3, v ∶ (π s; Π) = merge(∆1, v ∶ (π s; Π1); ∆2, v ∶ (π s; Π2)) π′ = mergePerms(π1, π2) i /= j fresh(k)

∆, v ∶ (π s; Π, f ∶ (π′, k)) = merge(∆1, v ∶ (π s; Π1, f(π1, i)); ∆2, v ∶ (π s; Π2, f(π2, j)))

For packed values, we simply take the merged permission. For values in which only one of
the two is unpacked, we take the unpacked state as long as the permission of the version that is
unpacked downgrades to the other. Otherwise, we would be conceptually pulling permissions from
an unpacked value. We take the merged unpacked permission for fields and either the field ID in
both contexts if it is the same, or a fresh one if they are not.

3.5.3 Combining source location lists:

We also need a judgment to deterministically reconcile the SLLs that come from each arm of a
nonDet. This judgment says that given the output context ∆ and requested permission π, SLL `∗1
associated with context ∆1 merges with the SLL from the pair ∆2; `∗2 to produce `∗. Once we have
gone through all of the elements from both SLL, we are done. The COMBINE-SYMMETRIC rule

67

indicates that, as in merging permissions, order does not matter. When any source location appears
in both lists, we include it in the output (COMBINE-BOTH). If a variable appears in only one of the
lists, we include it only if the required permission π can be pulled from the variable in the other con-
text without changing the output of mergePerms (COMBINE-VAR-ONE-INCLUDE). Otherwise
the variable is not included in the SLL (COMBINE-VAR-ONE-EXCLUDE1, COMBINE-VAR-ONE-
EXCLUDE2). The case is similar for fields with the additional case that the field appears in both
SLL with different field IDs. In this case, it is not included (COMBINE-VAR-ONE-EXCLUDE3).

∆;π ⊢ combine(∆1; `∗1 ; ∆2; `∗2) = `∗

COMBINE-EMPTY

∆;π ⊢ combine(∆1;∅; ∆2;∅) = ∅

COMBINE-SYMMETRIC
∆;π ⊢ combine(∆2; `∗2 ; ∆1; `∗1) = `∗

∆;π ⊢ combine(∆1; `∗1 ; ∆2; `∗2) = `∗

COMBINE-BOTH
∆;π ⊢ combine(∆1; `∗1 ; ∆2; `∗2) = `∗

∆;π ⊢ combine(∆1; `∗1 , `; ∆2; `∗2 , `) = `∗, `

COMBINE-VAR-ONE-INCLUDE
∆, x ∶ (π′ s; Π′);π ⊢ combine(∆1, x ∶ (π1 s; Π1); `∗1 ; ∆2, x ∶ (π2 s; Π2); `∗2) = `∗

x /∈ `∗1 P ; ∆1, x ∶ (π1 s; Π1);π ⊢ x ∶ s ⊣∆1, x ∶ (π′1 s; Π1);x π′ = mergePerms(π′1, π2)
∆, x ∶ (π′ s; Π′);π ⊢ combine(∆1, x ∶ (π1 s; Π1); `∗1 ; ∆2, x ∶ (π2 s; Π2); `∗2 , x) = `∗, x

COMBINE-VAR-ONE-EXCLUDE1
∆, x ∶ (π′ s; Π′);π ⊢ combine(∆1, x ∶ (π1 s; Π1); `∗1 ; ∆2, x ∶ (π2 s; Π2); `∗2) = `∗

x /∈ `∗1 P ; ∆1, x ∶ (π1 s; Π1);π ⊢ x ∶ s ⊣∆1, x ∶ (π′1 s; Π1);x π′ /= mergePerms(π′1, π2)
∆, x ∶ (π′ s; Π′);π ⊢ combine(∆1, x ∶ (π1 s; Π1); `∗1 ; ∆2, x ∶ (π2 s; Π2); `∗2 , x) = `∗

COMBINE-VAR-ONE-EXCLUDE2
∆;π ⊢ combine(∆1; `∗1 ; ∆2; `∗2) = `∗ x /∈ `∗1 /∃ ∆′

1.P ; ∆1;π ⊢ x ∶ s ⊣∆′
1;x

∆;π ⊢ combine(∆1; `∗1 ; ∆2; `∗2 , x) = `∗

COMBINE-FIELD-ONE-INCLUDE
∆, x ∶ (π3 s; Π′, f ∶ (π3, i));π ⊢ combine(∆1, x ∶ (π1 s; Π1); `∗1 ; ∆2, x ∶ (π2 s; Π2, f ∶ (π′2, i)); `∗2) = `∗

(x.f, i) /∈ `∗1 P ; ∆1, x ∶ (π1 s; Π1);π ⊢ x.f ∶ s ⊣∆1, x ∶ (π1 s; Π′
1, f ∶ (π′1, i)); ` π3 = mergePerms(π′1, π′2)

∆, x ∶ (π3 s; Π′, f ∶ (π3, i));π ⊢ combine(∆1, x ∶ (π1 s; Π1); `∗1 ; ∆2, x ∶ (π2 s; Π2, f ∶ (π′2, i)); `∗2 , (x.f, i)) = `∗, (x.f, i)

COMBINE-VAR-ONE-EXCLUDE1
∆, x ∶ (π3 s; Π′, f ∶ (π3, i));π ⊢ combine(∆1, x ∶ (π1 s; Π1); `∗1 ; ∆2, x ∶ (π2 s; Π2, f ∶ (π′2, i)); `∗2) = `∗

(x.f, i) /∈ `∗1 P ; ∆1, x ∶ (π1 s; Π1);π ⊢ x.f ∶ s ⊣∆1, x ∶ (π1 s; Π′
1, f ∶ (π′1, i)); ` π3 /= mergePerms(π′1, π′2)

∆, x ∶ (π3 s; Π′, f ∶ (π3, i));π ⊢ combine(∆1, x ∶ (π1 s; Π1); `∗1 ; ∆2, x ∶ (π2 s; Π2, f ∶ (π′2, i)); `∗2 , (x.f, i)) = `∗, (x.f, i)

COMBINE-FIELD-ONE-EXCLUDE2
∆;π ⊢ combine(∆1; `∗1 ; ∆2; `∗2) = `∗ (x.f, i) /∈ `∗1 /∃ ∆′

1, `.P ; ∆1, x ∶ (π1 s; Π1);π ⊢ x.f ∶ s ⊣∆′
1; `

∆;π ⊢ combine(∆1; `∗1 ; ∆2; `∗2 , (x.f, i)) = `∗

COMBINE-VAR-ONE-EXCLUDE3
∆;π ⊢ combine(∆1; `∗1 ; ∆2; `∗2) = `∗ i /= j

∆;π ⊢ combine(∆1; `∗1 , (x.f, i); ∆2; `∗2 , (x.f, j)) = `∗

3.6 Comparison to the Published POPL System
Following the camera-ready deadline for the version of this work published at POPL 2012 [Naden
et al., 2012], we found two flaws in the proof claimed in the paper. First, there was a soundness
issue with regards to the handling of SLLs generated by match expressions. Second, the invariants

68

for the proof of soundness were found to be insufficient. As a part of fixing the proof, we also
switched the rules for match to what we believe is the non-deterministic equivalent of the published
rules. This change substantially simplified the proof without impacting the core ideas presented.

The following section outlines the changes that we made to the system following publication
at POPL 2012.

3.6.1 Changes to Permission Operations

New splitting rule
Splitting rule P-SPLIT-BORROW-SYMMETRIC was added to allow a σ permission to be split

from a borrow(unique, σ, n). This is needed because the POPL system allowed a σ permission
to be split from a unique, followed by a local σ:

unique⇛ σ ⊗ σ⇛ local σ ⊗ σ ⊗ σ.

However, it was not possible to first split a local σ and then a σ from a unique:

unique⇛ local σ ⊗ borrow(σ,unique,1)⇛ σ ⊗ local σ ⊗ σ.

There are examples using match for which progress will fail without allowing both splitting
orders. The new rule corrects this.

Joining Characterization
With the original joining rules there existed pairs of permissions for which either rule could

apply, though both gave the same result. For each pair of input permissions only one of the two
updated rules can apply.

Permission Downgrades
Permission downgrades π ↓ π, or the weaker relationship as it was called in the POPL system,

was used in the original proof of safety to relate contexts before and after an evaluation step. In
the updated system, downgrading represents the effect of multiple permission splits from a single
permission and is used in typing rules as well as the invariants and safety proof. We found that
more cases were needed in the updated system.

3.6.2 Changes to Typing Judgments

The biggest change in the system occurred in the typing judgements. These changes resolved a
soundness issue and simplified the proof by using non-deterministic rules.

Soundness Issue
Consider the following example. In a local scope the variable t is given a unique permission

that comes either from a new object or the local variable s from the outer scope. However, in
the case that a new object is returned, the permission for s is placed into a field, consuming it

69

state S { }
state C { unique S f = new S; }

1 unique C c = new C;
2 unique S s = new S;
3 {
4 unique S t = match (...)
5 S=>{
6 c.f = s;
7 new S; //s:none, no return
8 };
9 C=>s; //s:none, return to s

10 } //s:none, return to s
11 } //s:unique
12 unique S u = s; //unsafe!

permanently. After this inner scope, a unique alias of s is created. This last alias is unsafe
because in the case that the first case was executed, s must have a none permission.

In order to remove the unsoundness, we defined a judgment for combining source local lists
(see section 3.5.3). These rules take the type of the location in the outgoing context from each case
into account when deciding whether a particular location should be included in the combined SLL.

Non-deterministic Rules
In addition, we determined that our proof would be simpler and easier to understand if we

switched to non-deterministic rules for match typing. The deterministic rules are important and
necessary for an implementation of our system, but were awkward in our formalization. Thus,
the T-MATCH-MULTIPLE rule was updated to require that each case output the same context and
SLL, modulo generated field IDs. We also introduced a set of equalizing rules in section 3.2.4.
These rules prevent the soundness issue by allowing locations to be dropped from the output SLL
at any time (T-EQ-DROPRET), but require the needed permission to be pulled from the location
in the output context in order to add a location to the SLL (T-EQ-PULL-*). Thus, in the example
above s could not be added to the SLL of the first case since at the end of the case it did not have a
unique permission available to be split from s.

In section 3.5, we also provide a set of deterministic rules that we use in our implementation of
this work. We believe that these rules are equivalent to the non-deterministic formulation, though
we have not proved this.

Source Locations
We made three cosmetic changes to source locations and the return rules to make the formalism

cleaner.

• Source locations that are not present in the associated output context are removed and the
return rules no longer allow for missing locations.

70

• In order to be consistent with field source locations, we added the rule T-FIELD-ACCESS-
UNPACKED-MAINTAIN so that any split that did not change the permission of the field
would not add the field to the SLL, regardless of whether the field was packed or unpacked.

• For the intermediate typing rules, we no longer provide an empty return location, so we
distinguish rules for object references and bind expressions depending on if the there is a
return specification for their object reference in the context.

Permission for new
To ensure that permission lists for all objects were consistent, we restricted the permissions

that a new object could be allocated at to those that could be split from unique. In particular, this
restriction excludes isolated borrow permissions from being created with new.

3.6.3 Changes to Reduction

In the POPL system reduction rules removed object references from the heap when they went out
of scope. In the updated formalism, these object references are left in the heap. We decided that it
was cleaner to handle this issue as a part of the safety proof.

3.6.4 Changes to Safety Statement

The statements of progress in each system are the same. For the statement of preservation, the
use of equalizing rules in the new system allowed us to keep the outputs after the reduction the
same. This saved us from the need to relate the original outputs to the new outputs and prove that
typechecking succeeded in the new outputs. Instead, the only extra condition we need is that the
context for typechecking grows monotonically larger to account for newly created references. We
feel that this change results in a much simpler statement of preservation.

3.6.5 Changes to Invariants

The invariants included in the judgement P ; ∆;π ⊢ H; e ∶ s ⊣ ∆′, `∗ for the system presented
here are much more explicit than those in the POPL system. We found that the original invariants
were not quite strong enough to guarantee that when a unique permission was regained all of
the other non-none aliases of the object were actually gone. To this end, the OBJECT-REF-
OK judgment now includes an extra requirement that if the permission to the field of an object
reference o.f is a borrow permission, then exactly the right number of object references with
a local permission will return their permissions to o.f to restore its original permission. The
field fulfillment judgment was also strengthened to ensure that if a unique permission might at
some later point become available through the type of the object and field, then the permission to
the representative object reference must also potentially be unique at a later point. In particular,
it will need to become unique prior to the unique permission becoming available through the
field.

This last point is guaranteed partly by the new judgment OBJ-ID-OK which strengthens the
requirement on the permissions to different references of a single object IDO. In the POPL version,

71

we only required that the permission list generated by the permissions of each object reference oi
that point to O, be consistent. The new judgment also requires that the return structure between
the various oi is also well-formed. This is captured by the rule OBJ-PERMS-VALID as explained
above. Secondly, there are additional restrictions placed on the fields of O which correspond to the
added restrictions on fields of an object reference.

4 Related Work
Wadler first introduced the concept of temporarily converting a linear (unique) reference into a
non-linear reference using the let! construct [Wadler, 1990]. Other early uniqueness type sys-
tems built on his work and added support for borrowing as a special annotation, such as “borrowed”
or “lent” [Hogg, 1991, Minsky, 1996, Aldrich et al., 2002]. While convenient, these systems did
not support borrowing immutable pointers, and generally provided weak guarantees: multiple bor-
rowed pointers could co-exist and interfere with one another. Boyland devised alias burying to
address this issue, using shape analysis to ensure that whenever a unique variable was read, all
aliases to it were dead (or “buried”) [Boyland, 2001]. While this approach works well in an anal-
ysis tool, it is inappropriate for a type system: programmers would have to understand a shape
analysis to comprehend and fix a type error message. The authors of Plural [Bierhoff and Aldrich,
2007], which also uses analysis to support borrowing, have observed this to be a problem in prac-
tice. In contrast, our system provides a more natural abstraction for reasoning by modeling the
flow of permissions through locations in the source.

Boyland proposed fractional permissions as a generalization of borrowing that does not require
a stack discipline for creating and destroying borrowed aliases [Boyland, 2003]. Although frac-
tions have received a lot of attention in the verification community, we know of no practical tool
support that leverages fractions—possibly because programmers find fractions an unintuitive ab-
straction. Instead, tools like Plural [Bierhoff and Aldrich, 2007], Chalice [Heule et al., 2011], and
VeriFast [Jacobs et al., 2011] provide abstractions (including borrowing) that hide fractions from
users, but the use of program analysis and theorem provers makes these systems less predictable
and more difficult to understand than the type system presented here. Boyland and Retert later
developed a type system that allows borrowing unique permissions [Boyland and Retert, 2005].
Like our system, their system tracks permissions taken out of individual fields using a technique
they call “carving.” However, where they use a substructural logic for tracking permissions, we use
a more predictable linear context to type individual variables.

One of the authors previously observed the importance of borrowing for tracking permissions
and presented the first fraction-free permission type system we are aware of that supports borrow-
ing unique and immutable permissions [Bierhoff, 2011]. While the technical details are somewhat
different, the system presented in [Bierhoff, 2011], similar to this system, avoids fractions by
counting split-off permissions in variable types. We propose local permissions to distinguish
borrowed permissions syntactically, as well as none permissions, both of which remain implicit
in [Bierhoff, 2011]. Our system additionally supports share permissions, match expressions and
sequences, and our system tracks permissions taken out of individual fields. Unlike [Bierhoff,
2011], we provide a dynamic semantics and prove our system sound.

72

Other programming languages have incorporated the ideas of uniqueness and borrowing into
their type systems but use less flexible or more complicated mechanisms. The Clean programming
language [Smetsers et al., 1994] is a functional language with support for unique references. How-
ever, since the language is functional, there is no concept of returning permissions to a location as
in our system.

The Vault programming language [Fähndrich and DeLine, 2002] allows linear (unique) ref-
erences to be split into guarded (immutable) types that are valid in the scope of a key. Their
use of type-level keys adds notational and algorithmic complexity to the scoping of borrowed per-
missions that we avoid by using our simpler local permissions. On the other hand, Vault supports
adoption whereby a linear permission stored in a field of a non-linear object can be treated linearly.
Vault also includes annotations on methods that consume permissions similar to our change per-
missions. However ours are strictly more flexible because in our richer set of permissions we can
specify a partial return of a permission (e.g. unique>>immutable).

The Cyclone language [Hicks et al., 2004] has a feature similar to Vault’s keys. Cyclone also
includes explicit support for borrowing through reference counting that is similar to the mecha-
nism that underlies our local permissions. However, unlike our approach, it is exposed to the
programmer in the syntax. Also, Cyclone allows borrowing only for permissions stored in local
variables; field accesses occur via swap, which is awkward. In contrast, we have designed a field
unpacking mechanism that supports direct field access.

Other recent work on the Plaid type system [Wolff et al., 2011] integrates permissions with
typestate and uses change types, providing some of the expressiveness of our system. While this
other work can express the publication example from Figure 4, it has very limited support for
borrowing, and can only change field values with a swap operation, which is unnatural for pro-
grammers.

An alternative to borrowing is explicitly “threading” references from one call to another, as
supported in Alms [Tov and Pucella, 2011]. In this approach, the permission is tied to the reference;
it is given up permanently when the reference is passed to a function, but the function may return
the reference again along with a permission. This approach is very clear and explicit, but it is quite
awkward and furthermore results in additional writes when the result reference is re-assigned to
the reference variable.

Overall, the system presented in this paper is distinguished by supporting natural program-
ming and reasoning abstractions together with a broad set of permissions including immutable,
unique, and shared. As a type system defined by local rules, it is easy for programmers to fol-
low, and separating permission flow from references makes it more succinct than systems in which
references must be threaded explicitly. We hope it will serve as a robust foundation for making
permission-based programming languages such as Plaid practical enough for widespread use.

5 Conclusion and Future Work
We have described a new type system for flexible borrowing of unique, shared, and immutable
permissions without explicit fractions. As future work, we would like to integrate our borrowing
mechanism with Plaid’s typestate features, and gain experience using the type system on larger

73

codebases.

References
Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias Annotations for Program Un-

derstanding. In OOPSLA, 2002.

Kevin Bierhoff. Automated program verification made SYMPLAR: SYMbolic Permissions for
Lightweight Automated Reasoning. In Onward!, 2011.

Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In OOPSLA,
2007.

Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich. Practical API protocol checking with
access permissions. In OOPSLA, 2009.

B. Bokowski and J. Vitek. Confined types. In OOPSLA, 1999.

Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe programming:
preventing data races and deadlocks. In OOPSLA, 2002.

J. Boyland. Checking interference with fractional permissions. In Static Analysis Symposium,
2003.

John Boyland. Alias Burying: Unique Variables without Destructive Reads. Software Practice
and Experience, 6(31):533–553, 2001.

John Boyland, James Noble, and William Retert. Capabilities for sharing: A generalisation of
uniqueness and read-only. In ECOOP, 2001.

John T. Boyland and William Retert. Connecting Effects and Uniqueness With Adoption. In
POPL, 2005.

Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level software. In
PLDI, 2001.

Robert DeLine and Manuel Fähndrich. Typestates for objects. In ECOOP, 2004.

Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical linear types for imperative
programming. In PLDI, 2002.

J.-Y. Girard. Linear logic. Theoretical Comp. Sci., 50(1):1–102, 1987.

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney.
Region-based memory management in cyclone. In PLDI, 2002.

74

D.E. Harms and B.W. Weide. Copying and Swapping: Influences on the design of reusable soft-
ware components. Trans. Software Engineering, 17(5):424–435, May 1991.

Stefan Heule, Rustan Leino, Peter Müller, and Alexander Summers. Fractional permissions with-
out the fractions. In FTfFP, 2011.

Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience with safe manual
memory-management in cyclone. In ISMM, 2004.

John Hogg. Islands: Aliasing Protection in Object-Oriented Languages. In OOPSLA, 1991.

Richard C. Holt, Philip A. Matthews, J. Alan Rosselet, and James R. Cordy. The Turing Language:
Design and Definition. Prentice-Hall, 1988.

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA
Formal Methods, 2011.

Naftaly H. Minsky. Towards alias-free pointers. In ECOOP, 1996.

Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierhoff. A type system for borrowing
permissions. In POPL, 2012.

J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In ECOOP. Springer, 1998.

Sjaak Smetsers, Erik Barendsen, Marko van Eekelen, and Rinus Plasmeijer. Guaranteeing safe
destructive updates through a type system with uniqueness information for graphs. In Dagstuhl
Seminar on Graph Transformations in Comp. Sci., volume 776 of LNCS. Springer, 1994.

Jesse A. Tov and Riccardo Pucella. Practical affine types. In POPL, 2011.

Philip Wadler. Linear types can change the world! In Working Conf. on Programming Concepts
and Methods, 1990.

Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. Gradual typestate. In ECOOP,
2011.

75

