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Abstract
Recent explosion of genomic data have enabled in-depth investigation of com-

plex genetic mechanisms for various applications such as the inference on the human
evolutionary history or the search for the genetic basis of phenotypic traits. Although
great advances have been made in the analysis of genetic processes underlying such
data, most statistical methods developed so far deal with the closely related genetic
objects separately using specialized methods, and do not capture the intrinsic re-
latedness among multiple properties that have resulted from a common inheritance
process. Moreover, these approaches often ignore the inherent uncertainty about the
genetic complexity of the data and rely on inflexible models resulting from restrictive
assumptions.

In this thesis, we develop nonparametric Bayesian models for learning ancestral
genetic processes, which provide more flexible control over the complexity of the
genetic data, and at the same time, utilize the structured data in a more principled
way. Under a unified inheritance framework built on the assumption of hypotheti-
cal founder haplotypes that generate modern individual chromosomes, hierarchical
Bayesian models based on Dirichlet process are developed for the following related
applications in population genetics: the problem of haplotype inference from multi-
population genotype data, joint inference of population structure and the recombi-
nation events, and the local ancestry estimation in admixed populations. This new
approach allows one to explicitly exploit the shared structural information in the
data from multiple populations. The resulting methods have shown to significantly
outperform other existing methods that do not utilize such relatedness properly.
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Chapter 1

Introduction

1.1 Overview

Recent advances in biotechnology have led to an explosion of genomic data. Understanding of
hidden mechanisms underlying such data is crucial for many applications such as the inference
on the evolutionary history of human population or the search for the genetic basis of various
phenotypic traits (Chakravarti, 2001; Clark, 2003; Li et al., 2009; Price et al., 2006; Wang et al.,
2010; Xu et al., 2008; Xu and Jin, 2008). A lot of statistical methods have been developed to
uncover the genetic mechanisms and ancestral processes from the genetic data, for example, for
the analysis of recombination rates and hotspots (Anderson and Novembre, 2003; Daly et al.,
2001; Patil et al., 2001; Zhang et al., 2002), for the reconstruction of haplotypes given genotype
sequences (Browning and Browning, 2009; Excoffier and Slatkin, 1995; Li et al., 2010; Qin et al.,
2002; Scheet and Stephens, 2006; Stephens and Scheet, 2005), or for the population structure and
ancestry estimation in admixed populations (Falush et al., 2003; Pasaniuc et al., 2009; Patterson
et al., 2004; Price et al., 2009; Sundquist et al., 2008). Although great advances have been
made in these studies through efficient utilization of the increasing amount of data, conventional
approaches developed so far often rely on the restrictive parametric models that do not capture
the intrinsic relatedness among multiple genetic objects, and deal with the closely related genetic
properties separately using specialized methods. The overall goal of this thesis is to propose
a more flexible statistical framework that addresses these issues in a principled way. For the
inference of ancestral genetic processes that can enhance our understanding about the genetic
mechanisms, we develop non-parametric Bayesian models that provide more flexible control
over the complexity of the genetic data and at the same time utilize the structured data in a more
principled way.

We especially focus on the haplotype data constructed from genetic polymorphisms called
single nucleotide polymorphisms (SNPs). On the assumption of hypothetical founders that gen-
erate haplotypes in modern populations, we employ a new haplotype inheritance model in Xing
et al. (2007) that allows one to incorporate various genetic processes in a unified framework.
Under this framework, the distribution of haplotypes in a population is modeled as a Dirich-
let process (DP) mixture model. It offers a principled approach to take into account the inherent
uncertainty regarding the size of the hypothetical founder pool, so the number of the founder hap-
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lotypes does not need to be pre-specified and can be naturally inferred from the given population
data. Furthermore, it provides a reasonable approximation to the well-known theory called the
coalescence in population genetics by utilizing the partition structure resulting from the Dirichlet
process.

Using the DP-based haplotype inheritance model as a building block, we develop flexible
non-parametric Bayesian models for ancestral genetic processes in the following three major ap-
plications. First, we consider the problem of inferring haplotypes using genotypes from multiple
populations. Most previous approaches for haplotype inference either ignore the sub-population
structure, or handle each of the sub-population separately and therefore also ignore the close re-
lationship between different populations. We adopt a hierarchical Dirichlet process that enables
one to overcome this limitation systematically. The resulting haplotype model explicitly exploits
the population labels and shows significantly enhanced performance over previous methods.

We further generalize this model to incorporate the recombination process as well as the
mutation process from the hypothetical founders to the modern individuals. The haplotype in-
heritance under these two processes is modeled by an infinite hidden Markov process in which
the hidden state corresponds to a founder haplotype and the observation corresponds to the indi-
vidual haplotype. It enables one to infer the population structure and the recombination events
jointly in a single framework by tracing the association between the founders and the individuals
along the chromosome. Moreover, this extended model offers an alternative way of charac-
terizing a population in terms of the association pattern between the founders and the modern
individuals, which can be reflected in the estimated infinite hidden Markov model parameters.
This alternative population representation can provide richer information about the genome than
the traditional representations such as the allele frequency profiles.

Finally, this generalized inheritance model is applied to the problem of local ancestry esti-
mation in an admixed population. When multiple ancestral populations have contributed to a
modern admixed population over generations, the information about which allele in an modern
admixed individual is inherited from which ancestral population can reveal essential clues in dis-
ease association studies. We associate each of the ancestral populations with an infinite hidden
Markov model that captures the population-specific characteristics, and hierarchically link these
infinite HMMs together to model an admixture event among these populations. This hierarchical
model is able to utilize the genetic relatedness among the ancestral populations effectively, and
hence the resulting model leads to a robust estimation of local ancestry in an admixed population,
which significantly outperforms the existing methods that mostly ignore such relationship.

1.2 Summary of contributions
The main contribution of this thesis is two-fold. Statistically, it provides well-defined appli-
cations of the Dirichlet process and its extensions. Unlike typical applications of the Dirichlet
process such as document modeling or image analysis, in which the accuracy of the application or
the advantage of the non-parametric models is hard to measure directly, the applications we show
allow direct evaluation of such models in terms of the quantitative accuracy measure and high-
light the effectiveness of the flexible non-parametric Bayesian models. Biologically, it produces
accurate and robust tools for various kinds of ancestral inference using genetic polymorphism
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data.
Specifically, the contributions of this thesis work can be detailed as follows.
• We efficiently exploit the shared structural information contained in the genetic data from

multiple populations by using hierarchical statistical models that describe grouped data in
an effective way. A hierarchical Dirichlet process or hierarchically linked infinite hidden
Markov models applied to multi-population data utilize the population labels or shared ge-
netic characteristics systematically and enhances the performance of the resulting methods
substantially.

• The genetic inheritance models based on the Dirichlet process allow one to model the in-
herent uncertainty about the size of the genetic components in the data. The number of
founder haplotypes that correspond to the mixture components in the DP mixture model
can be inferred from the given data, which also offers valuable information about the com-
plexity of the given population data.

• The proposed models are built on a unified inheritance framework on the assumption of
hypothetical founders. This serves as a very flexible framework that can be generalized
into various scenarios, for example, to model multiple population data or to incorporate
admixture events to the original model designed for the homogeneous population. It makes
it easy to further incorporate other important genetic processes such as natural selection or
to consider more complex demographic scenarios.

• Important genetic parameters can be jointly inferred from the model in a single unified
framework, for example, the mutation rate that reflects the relative age of the study popu-
lation, the recombination rate, or population diversity and sub-structure. These parameters
can play critical roles in elucidating the genetic history of study populations.

• These applications highlight the effectiveness of the non-parametric Bayesian models in
real applications where the accuracy can be explicitly assessed. The developed models can
serve as valuable resources that can extract important information from the genetic data
essential for various kinds of downstream analyses.

The remainder of this thesis is organized as follows. We first introduce the basic terms and
biological background in Chapter 2, and explain the theoretical background of non-parametric
models based on the Dirichlet process in Chapter 3. Chapter 4 describes a haplotype inheritance
framework modeled as a Dirichlet process mixture, which would be used as a building block
for the models developed in this thesis. Then we include three major applications under this
inheritance framework using non-parametric Bayesian models: the haplotype inference from
multi-population data using a hierarchical Dirichlet process (Sohn and Xing, 2009; Xing et al.,
2006)(Chapter 5), joint inference of population structure and recombination events by an infinite
Hidden Markov model (Sohn and Xing, 2007a,b; Xing and Sohn, 2007) (Chapter 6), and the local
ancestry estimation in admixed populations using hierarchically linked infinite hidden Markov
models (Sohn et al., 2011) (Chapter 7). We summarize and conclude the thesis in Chapter 8.
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Chapter 2

Background

The genetic diversities observed in DNA sequences of modern individuals come from many
different sources: inheritance processes such as mutation and recombination, or population mi-
gration and the resulting admixture between different populations. By putting the main focus
on the genetic data we analyze, in this chapter, we introduce the basic biological terms used in
population genetics and explain the common genetic processes that affect the characteristics of
the genetic data. This is explored in different perspectives depending on at which level the ge-
netic diversity is created. We first explain the basic inheritance mechanism that passes genetic
materials from the parental chromosomes to the chromosomes of offsprings within a population.
We then consider more global scale of effect, admixture, that involves interaction between dif-
ferent populations. The well-known genealogical tree model called the coalescent is also briefly
introduced.

2.1 Genetic inheritance process: mutation and recombination

Diploids like humans have two copies of each chromosome, one maternal copy and one paternal
copy. When the two parental chromosomes join and create new offspring chromosomes during
meiosis, the genetic information in the parental chromosomes is not identically copied to the off-
spring, and instead, certain genetic processes can change the chromosomal composition during
the inheritance. The mutation and recombination processes are the most commonly considered
genetic processes. A simple example about the effect of the mutation is that when a parental
chromosome has a nucleotide ‘A’ at a certain locus on the chromosome, the genetic mutation can
change the nucleotide to ‘C’ during meiosis, and as a result, the chromosome of its offspring has
‘C’ instead of ‘A’ at the locus. Therefore, this creates new alleles in individual chromosomes and
thus adds a new genetic sequence to a population. The increased genotypic diversity in turn in-
creases the phenotypic diversity as well, and it is generally believed that natural selection works
by this genetic mutation as a major source. That is, among the various heritable traits generated
by the genetic mutations, those traits that are advantageous in survival and reproduction become
more and more common in a population over generations.

Recombination is the genetic process by which a strand of genetic material is broken and then
joined into a different strand. When a pair of parental chromosomes are copied and inherited to
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the offspring, parts of their genetic materials can be exchanged by the recombination and produce
offspring chromosomes that can be decomposed into segments from both of the parents. When a
recombination occurs between two loci, it tends to decouple the alleles carried at those loci in its
descendants. Since the probability of recombination at different loci is different, this plays a key
role in producing a block-like pattern on the chromosome called Linkage Disequilibrium (LD)
such that within each block only low level of diversities are present in a population. Several
combinatorial and statistical approaches have been developed for uncovering optimum block
boundaries on the chromosome (Anderson and Novembre, 2003; Daly et al., 2001; Patil et al.,
2001; Zhang et al., 2002), and these advances have important applications in genetic analysis
of disease propensities and other complex traits. Also the problem of inferring chromosomal
recombination rates and hotspots is essential for understanding the origin and characteristics of
genome variations (Fearnhead and Donnelly, 2001; Stephens and Scheet, 2005).

2.2 SNPs, genotypes and haplotypes
Genetic polymorphisms refer to the differences in DNA sequences between individuals or pop-
ulations. One of the most important kinds of such genetic variations is a single nucleotide poly-
morphism (SNP), which is a single-nucleotide-based polymorphism. It refers to the existence of
two or more possible nucleotide bases from {A,C,G, T} at a chromosomal locus in a popula-
tion. SNPs form the largest class of individual differences in DNA and have long been targeted
for many biological and medical applications such as disease association study as these genetic
variations underlie differences in our susceptibility to various types of heritable diseases.

Contiguous sequences of multiple SNPs on a chromosome are often looked at together and
these are called haplotypes. The haplotypes have recently gained great popularity as an alter-
native basis for the association study and other applications because of the richer information
they convey than just the set of independent single SNPs. In diploids, a pair of haplotypes, one
from each of one’s parents, form a genotype that represents unordered pairs of alleles from the
haplotypes. That is, it does not carry information about which allele is from which chromosome
copy – its phase. Common biological methods for assaying genotypes typically do not provide
phase information for individuals with heterozygous genotypes at multiple loci. Although phase
can be obtained at a considerably higher cost via molecular haplotyping (Patil et al., 2001), or
sometimes from analysis of trios (Hodge et al., 1999), the automatic and robust computational
methods for inferring haplotypes from the inexpensive genotype data are still desired.

A lot of effort has been devoted to the problem of haplotype inference for reconstructing the
most feasible haplotypes from genotypes of a study population. The PHASE (Li, 2003; Stephens
et al., 2001) program is one of the most widely used softwares with its notable accuracy. It
is based on Product of Approximate Conditionals (PAC) that approximates the marginal proba-
bilities of the current haplotypes in a population by assuming each individual haplotype as the
progeny of a randomly-chosen existing haplotype. This inheritance model has been successfully
used in wide range of applications dealing with ancestral inheritance processes such as recombi-
nation analysis (Li, 2003), gene conversion rate estimation (Gay et al., 2007), and local ancestry
estimation (Price et al., 2009). However, it does not scale up to the recent large scale datasets
due to the high computational cost. More recent approaches such as fastPHASE (Scheet and
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Stephens, 2006), MACH (Li et al., 2010), or BEAGLE (Browning and Browning, 2007) have
improved the speed considerably, but at the expense of accuracy.

2.3 Admixture and genetic ancestry
Population migration is another important source of variation in genomic sequences. When pop-
ulations that are genetically different meet through migration and the individuals mate to produce
descendants over generations, the chromosomes in the admixed population contain the genetic
materials from both of the ancestral populations. The investigation of the genetic ancestry in such
an admixed population allows us to track the migration history of the populations and also pro-
vides important clues about the disease related genes especially when the ancestral populations
have significantly different allele frequencies or disease susceptibility.

A number of statistical admixture models for genetic polymorphisms have been proposed
for the analysis of population structure. In a global ancestry estimation as in Alexander et al.
(2009); Falush et al. (2003); Patterson et al. (2006); Pritchard et al. (2000); Rosenberg et al.
(2002), the information about the ancient populations is typically assumed to be unknown and
the ancestry of a modern individual is represented as the average proportion of each contributing
population across the genome. Therefore, this can be considered as an unsupervised problem.
The admixture models identify each ancestral population mostly by focusing on the specific
allele frequency profile for each ancestral population.

On the other hand, the local ancestry estimation problem is more concerned with a locus-
by-locus ancestry given reference population data that are close to the real ancestral population
data (Pasaniuc et al., 2009; Price et al., 2009; Sundquist et al., 2008; Tang et al., 2006). As men-
tioned earlier, genetic recombination tends to break the LD and generates block-structure on the
chromosomes. Therefore, the chromosomes of the admixed individual can be partitioned into
blocks of distinct ancestry. A common example is to decompose the chromosomes of modern
African Americans into blocks with either African or European ancestry given the population
data close to ancient African and European populations. The locus-specific ancestries are typ-
ically traced along the chromosome using statistical models such as hidden Markov models.
These approaches for the local ancestry are either based on the allele frequency profiles as ref-
erence information (Pasaniuc et al., 2009; Tang et al., 2006), or utilize the haplotypes from the
reference population data directly as in Price et al. (2009); Sundquist et al. (2008). Although
significant progress has been made by these previous approaches, they share the limitation of
ignoring the possible sub-structures among the ancestral populations. In addition, the restrictive
modeling assumptions such as two-way admixture involving only two ancestral populations can
also limit the general applicability of these models to the analysis of detailed ancestral structure
in an admixed population under complex migration histories.

2.4 Coalescence
We include the brief description of the genealogical model called coalescent (Kingman, 1982)
that has been widely studied in population genetics. It describes the theoretical inheritance model
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for a group of individuals in a population. The ancestral relationships among a sample of mod-
ern individuals can be described by a tree model known as the coalescent. By associating the
modern individuals with the leaf nodes in the tree, it traces the parental individuals of the sample
sequences backward in time until a single ancestral sequence is met, known as the most recent
common ancestor (MRCA). Different assumptions regarding the genetic processes involved and
the demographic scenarios under consideration can lead to different statistical properties in the
coalescent theory. The simplest case can start from just assuming the mutation as a single genetic
process. Consider two distinct sample sequences who differ at a single nucleotide by mutation.
At each step backward in time, either these two samples find their distinct parents, or coalesce
into a single parent, implying the occurrence of mutation at the corresponding time span and
forming a tree. The common parent encountered by this later case corresponds to the MRCA
of these sample individuals. Extensions for more complex processes such as recombination, se-
lection, and population migration have also been studied and their mathematical properties have
been investigated rigorously.

Despite its mathematical elegance, however, the marginalization over all the possible coales-
cent trees given sample sequences is widely known as intractable. Therefore, the full coalescence
model is not easily applicable to the general ancestral inference problems. Alternatively, an ap-
proximation scheme such as Product of Approximate Conditionals (PAC) (Li, 2003) has been
employed for different applications. However, the PAC model makes the implicit assumption
that there exists an ordering of the given individual samples, and therefore the resulting like-
lihood is not exchangeable. Moreover, the latent demographic information such as founding
chromosomes and their mutation rates are not directly captured in the PAC model as it involves
no explicit ancestral genealogy over existing individual chromosomes.
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Chapter 3

Dirichlet process and its extensions

A non-parametric Bayesian model called a Dirichlet process has gained great popularity in recent
years especially for its usefulness in mixture scenarios. In this chapter, we introduce the non-
parametric Bayesian models based on Dirichlet process, which include a hierarchical Dirichlet
process and an infinite Hidden Markov Model.

3.1 Dirichlet process and its mixture models
The Dirichlet process describes a distribution over distributions and is formally defined as fol-
lows: a random probability measure Q on a measurable space (Φ,B) is generated by a Dirich-
let process DP(γ,Q0) if for every measurable partition (B1, . . . , Bk) of the sample space Φ,
the vector of random probabilities Q(Bi) follows a finite dimensional Dirichlet distribution:
(Q(B1), . . . , Q(Bk)) ∼ Dir(γQ0(B1), . . . , γQ0(Bk)) where γ > 0 denotes a scaling parame-
ter and Q0 denotes a base measure defined on (Φ,B) (Ferguson, 1973). Therefore, the draw Q
from the Dirichlet process is itself a random measure and we write Q ∼ DP(γ,Q0).

A useful representation of DP(γ,Q0) is the stick-breaking construction by Sethuraman (1994).
This representation is based on sequences of independent random samples {π′i}∞i=1 and {φi}∞i=1

generated in the following way:

π′i ∼ Beta(1, γ) (3.1)
φi ∼ Q0

where Beta(a, b) is the Beta distribution with parameters a and b. Analogous to a process of
repetitively breaking a stick at fraction π′l, the following sequence of πi can be constructed from
the sequence of π′i:

πi = π′i

k−1∏
l=1

(1− π′l). (3.2)

Sethuraman (1994) showed that the random measure Q arising from DP(γ,Q0) admits the rep-
resentation

Q =
∞∑
i=1

πiδφi . (3.3)
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The discrete atoms φi’s can be thought of as the locations of samples in their space, and the
πi’s are the weights of these samples. Note that

∑∞
i=1 πi = 1 with probability one. Therefore,

we may think the sequence π = (π1, π2, . . .) as a distribution on the positive integers. Following
the notation in Teh et al. (2010), we write π ∼ GEM(γ) if π is defined by Equations (3.1) and
(3.2).

The discrete nature of the DP, as obviated from the stick-breaking construction, is well suited
for the problem of placing priors on the parameters of the mixture model. This property can also
be easily explained by another constructive definition of DP called Pólya urn scheme (Blackwell
and MacQueen, 1973). Consider an urn that contains a ball of a single color. At each step we
either draw a ball from the urn and replace it with two balls of the same color, or with a probability
proportional to γ, we are given a ball of a new color which we place in the urn. Such a scheme
leads to a partition of the balls according to their colors. By mapping each ball to a sample and
each color to its mixture component, this naturally defines the clustering of samples. Blackwell
and MacQueen (1973) showed that this Pólya urn model yields samples whose distributions are
those of the marginal probabilities under the Dirichlet process.

Suppose we have observed n samples with values (φ1, . . . , φn) from DP(γ,Q0). Considering
this urn model, the conditional distribution of the value of the (n+ 1)th sample is given by :

φn+1|φ1, . . . , φn, τ, Q0 ∼
n∑
i=1

1

n+ γ
δφi(·) +

γ

n+ γ
Q0(·)

=
K∑
k=1

nk
n+ γ

δφ∗k(·) +
γ

n+ γ
Q0(·), (3.4)

where K denotes the number of unique values in the n samples drawn so far, φ∗k denotes the
distinct values of φis, and nk denotes the number of samples with value φ∗k. This expression
implies that each new sample has positive probability of being equal to an existing unique value in
the drawn samples, and moreover, the probability is proportional to nk. This creates a clustering
effect on the samples and the popular components that have larger values of nk tend to become
more popular as more samples are considered.

In a DP mixture model, these samples φi from the Dirichlet process serve as the mixture
components to which each observation xi is assigned. This DP mixture model can be defined by
using the following conditional probabilities:

Q | γ,Q0 ∼ DP (γ,Q0)

φi | Q ∼ Q (3.5)
xi | φi ∼ F (φi)

where xi denotes the i-th observation, and φi is the mixture component associated with the
observation xi, and F denotes the likelihood function that generates the observation xi given
its mixture component.

Equivalently, we can incorporate an indicator variable ci ∈ {1, 2, . . .} that selects the mixture
component φi for each observation xi such that φi = φ∗ci for the distinct values φ∗k of φis. Then
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the DP mixture model can also be expressed as follows:

π | γ ∼ GEM(γ)

ci | π ∼ π

φ∗k | Q0 ∼ Q0

xi | ci, (φ∗k)∞k=1 ∼ F (φ∗ci) (3.6)

Note that a DP mixture requires no prior specification of the number of components, which is
typically unknown in general data clustering problems. This allows the mixture model setting of
unknown cardinality and gives more flexibility to the model and the inference. It is important to
emphasize that the Dirichlet process is used as a prior distribution of mixture components. Mul-
tiplying this prior by a likelihood that relates the mixture components to the actual data yields
a posterior distribution of the mixture components, and the design of the likelihood function is
completely up to the modeler based on specific problems. MCMC algorithms have been devel-
oped to sample from the posterior associated with DP priors (Escobar and West, 1995; Ishwaran
and James, 2001; Neal, 2000). This nonparametric Bayesian formalism forms the technical foun-
dation of the ancestral inference algorithms developed in this thesis.

3.2 Hierarchical Dirichlet process
A hierarchical Dirichlet process (HDP) (Teh et al., 2010) is a non-parametric Bayesian model that
is very useful for describing data from multiple related groups, especially when each group has
unique characteristics that can be captured by Dirichlet process, but multiple groups still need to
be coupled together. For example, in document modeling, the distribution of words in a document
is typically modeled as a mixture model in which the observation corresponds to the number of
appearances of each word in the document and the mixture component corresponds to the topic
that is assumed to generate the word. The DP mixture model described in the previous section
allows to model this scenario without pre-specifying how many topics we should consider. Now,
suppose we have a collection of such documents, each of which is modeled as a DP mixture
model. While each document may have been written under a different theme, it is often more
desirable to assume a common set of possible topics across the multiple documents, rather than
to use a separate set of topics for each of the documents. More generally, given data that can be
partitioned into a set of groups, we may want to cluster the data within each group, while still
allowing the clusters to be shared across the groups.

A hierarchical Dirichlet process provides a model-based approach for clustering such grouped
data. Suppose we have data from J groups, and each group j for j = 1, . . . , J is associated with
a probability measure Qj distributed as a Dirichlet process for generating mixture components
in group j. Let the scale parameter τ and the base measure Q0 shared by all the groups:

Qj ∼ DP(τ,Q0)

Nonetheless, the use of a common base measure Q0 does not necessarily ensure the mixture
components to be shared across the multiple groups. If Q0 is a continuous distribution, for
instance, then the random draws from this distribution would be distinct with probability one, so
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different groups would have disjoint sets of mixture components with probability one. To allow
the clusters to be shared across groups, an additional mechanism is necessary.

A hierarchical Dirichlet process handles this by assuming that the shared base measure Q0

follows another Dirichlet process with a scale parameter γ and the base measure H:

Q0 | γ,H ∼ DP (γ,H)

Since the distribution Q0 drawn from a Dirichlet process is discrete as seen in the stick-breaking
construction in Equation (3.3), the individual values drawn from the distribution Q0 can be re-
peated even if the base measure H is continuous. Therefore, this hierarchical model enables
the atoms of random measures Qj to be shared across groups and induces a very useful mixture
model where multiple groups share mixture components while admitting each of those to have
its own components.

The stick-breaking construction makes it clear how the atoms of Qj under HDP are shared
and how the weights of atoms are related to the global weight π. Since Q0 is distributed as
DP(γ,H), it can be written as follows:

Q0 =
∞∑
k=1

πkδφ∗k

where φ∗k ∼ H and the sequence of πk is constructed from the stick-breaking process in Equa-
tions (3.1) and (3.3). Since Qj has the same support as its base measure Q0, it also allows the
following representation:

Qj =
∞∑
k=1

πjkδφ∗k (3.7)

The weights πjk have the following correspondence to the global weights as derived in Teh et al.
(2010):

π′jk ∼ Beta
(
τπk, τ(1−

k∑
l=1

πl)
)

πjk = π′jk

k−1∏
l=1

(1− π′jl)

A modified Pólya urn scheme gives an intuitive explanation about how samples are generated
under a hierarchical Dirichlet process prior. At the bottom level, we set up J urns which are used
to define the DP mixture for data in each group j. Additionally, we also set up a single urn at the
top level that contains balls of colors that are represented by at least one ball in the urns at the
bottom level. To draw a sample for a group j, we either draw a ball randomly and put back two
balls of the same color to the urn j, or we go to the top level urn with probability proportional to
τ , instead of getting a ball of a new color immediately as in the plain Dirichlet process. At the
top level urn, we can either draw a ball from the urn and put back two balls of the same color to
the top level urn and also to the urn for group j, or, with probability proportional to γ, we now
get a ball of a new color and put back a ball of this color to both the top-level urn and the urn
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j. Essentially, the top-level urn defines the master DP that generates atoms for the bottom level
DPs. While each urn has its own color distribution of the balls in it, the colors can be shared
across groups, which demonstrates how the mixture components are shared across groups in a
hierarchical Dirichlet process mixture model.

In summary, the following conditional probabilities define the HDP mixture model:

Q0 | γ,H ∼ DP (γ,H)

Qj | τ,Q0 ∼ DP (τ,Q0)

φji | Qj ∼ Qj (3.8)
xji | φji ∼ F (φji)

where xji denotes the i-th observation in group j, φji is the mixture component associated with
the observation xji, and F is the likelihood function that is specific to the mixture problem to be
considered.

This HDP model can be extended to multiple levels, that is, a tree can be constructed such that
each node is associated with a DP generating a base measure for its children and the atoms are
shared across descendants, which enables the sharing of clusters at multiple levels of resolution
(Teh et al., 2010).

3.3 Infinite Hidden Markov model
A hidden Markov model (HMM) is a widely used statistical model for describing sequential
data such as speech signals or DNA sequences that can be written as (x1, x2, . . . .xT ). Under a
hidden Markov model, the observation sequence xt depends on its hidden state qt such that given
the state qt, the observation xt is independent of other observations x′t and states q′t for t′ 6= t.
Moreover, qt is assumed to have Markov property which means qt is conditionally independent
of {qt−2, ..., q2, q1} given qt−1, that is, p(qt | qt−1, qt−2, . . . , q1) = p(qt | qt−1). Therefore, the
HMM can be defined by the following three components:
• the initial probabilities πi0 = P (q0 = i) for generating the initial hidden state q0

• the transition probabilities πij = P (qt = j | qt−1 = i) that define the probability of each
transition from hidden state i to state j

• the emission probabilities bi(xt) = P (xt | qt = i) for a hidden state to emit each of the
observation variables .

A traditional HMM assumes K possible hidden states and thus qt ∈ {1, . . . , K}. Then the
transition probabilities are represented as a K by K matrix where each row of the matrix sums to
one. The initial probabilities are written as a K-dimensional vector which also sums to one. In
many practical applications, however, it is not straightforward to determine the number of hidden
states and we may often want to infer the number as well as the hidden state sequence or other
HMM parameters.

A non-parametric extension of the traditional HMM to an infinite state space was first in-
troduced in Beal et al. (2002) and formally defined later in a context of a hierarchical Dirichlet
process in Teh et al. (2010). Since each row i of the transition matrix defines the probability of
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transition from the source state i to all the states, the transition probabilities in an infinite Hidden
Markov model are represented by an infinite matrix in which both the columns and rows are
infinite dimensional. Formally, the followings summarize the infinite Hidden Markov Model:

β | γ ∼ GEM(γ)

πi | τ, β ∼ DP(τ, β)

φi | H ∼ H

qt | qt−1, (πi)
∞
i=1 ∼ πqt−1

xt | qt, (φi)∞i=1 ∼ F (φqt)

where F defines the emission probability. Here, the DP representation using the indicator vari-
ables as in Equation (3.6) has been adopted because the hidden state variable qt actually corre-
sponds to the indicator variable to select the atom from the Dirichlet process. We can see that
each row of the infinite-dimensional transition matrix is described by π and these are coupled by
the common base measure β under the Dirichlet process. Since a draw from a DP is a discrete
measure with probability 1, atoms drawn from this measure—atoms which are used as targets
for each of the (unbounded number of) source states—are not generally distinct. Indeed, the
transition probabilities from each of the source states have the same support.

To construct such a stochastic matrix of infinite dimensionality, we can exploit the fact that
in practice only a finite number of states will be visited by each source state, and we only need
to keep track of those states. The following sampling scheme based on a hierarchical Pólya urn
model captures this spirit and shows how to generate a transition matrix in an infinite HMM. As
in the urn model for a hierarchical Dirichlet process, a two-level hierarchy of the urn model is
considered. The “stock” urn at the top level contains balls of colors that are represented by at
least one ball in the urns at the bottom level. At the bottom level, we have a set of urns which are
used to define the initial and the transition probabilities from each source state. Recall that in a
mixture model scenario, the color of the ball represents the mixture component that the ball (or
the observation) is associated with. In an infinite HMM, the color corresponds to the hidden state
the observation is generated from, and each urn at the bottom level defines the probabilities of
state-transition from each source state observed so far. Therefore, each bottom-level urn is used
to describe the Dirichlet process mixture for each row of the transition matrix. Specifically, the
transition probability from a source state i to a target j at the current step is proportional to the
number of times the same transition occurs so far, which is equal to the number of the balls of
the color j in the urn i. But with the probability proportional to the scale parameter τ , we refer
to the top-level urn to select the target state. At this top level, the transition probability to the
source state j is either proportional to the number of previous visits to j by this top level urn that
corresponds to the number of balls of color j at the stock urn. Or with probability proportional
to γ, a ball of a new color is created, which means a new state has been initiated. In this case, we
set up a new urn to define the DP mixture at the newly initiated state. As pointed out in Teh et al.
(2010), this model can be viewed as an instance of the hierarchical Dirichlet process mixture
model, with row-specific DP mixtures that are coupled by the top level DP.

The inference under an infinite hidden Markov model becomes more tricky because the tra-
ditional method for the standard HMM such as the forward-backward algorithm or Viterbi de-
coding is not directly applicable due to the dimensionality. We can apply a traditional MCMC
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sampling, although this involves book-keeping about the number of previous transitions between
each pair of states. In Van Gael et al. (2008), a more efficient inference algorithm called the Beam
sampling algorithm has also been introduced. This extends the traditional forward-backward al-
gorithm to an infinite state space by combining a slice sampling and dynamic programming
scheme, which is shown to be more robust and to outperform the traditional Gibbs sampling. In
the following chapters, we show the application of these non-parametric Bayesian models using
both the traditional MCMC sampling schemes and the beam sampling algorithm.
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Chapter 4

Haplotype inheritance model based on
Dirichlet process

Before describing the specific applications considered in this thesis, we first describe the general
haplotype inheritance model adopted in this thesis. The distribution of haplotypes in a population
can be formulated as a mixture model, where the set of mixture components corresponds to the
pool of ancestral haplotypes, or founders, of the population (Excoffier and Slatkin, 1995; Kimmel
and Shamir, 2004; Qin et al., 2002). However, the size of this pool is unknown. Indeed, knowing
the size of the pool would correspond to knowing something significant about the genome and
its history. On the other hand, while pure coalescence-based models can provide elegant math-
ematical properties for the genetic patterns in the populations, it is hard to perform statistical
inference of ancestral features and many other interesting genetic variables because for a large
population, the number of hidden variables in a coalescence tree is prohibitively large. (Stephens
et al., 2001). In most practical population genetic problems, usually the detailed genealogi-
cal structure of a population as provided by the coalescent trees is of less importance than the
population-level features such as the pattern of major common ancestor alleles or founders in
a population bottleneck, or the age of such alleles. In this case, the Dirichlet process mixture
offers a principled approach to generalize the finite mixture model for haplotypes to an infinite
mixture that models uncertainty regarding the size of the ancestor haplotype pool. At the same
time, it provides a reasonable approximation to the coalescence model by utilizing the partition
structure resulting from it but still allowing further mutations within each partite to introduce
further diversity among descents of the same founder.

The Dirichlet process mixture model for describing haplotypes was first proposed in Xing
et al. (2004) although with no consideration about the recombination process. As this model
will be used as a basic building block for the applications developed in this thesis, we include
the description of each component of the statistical model in this chapter. In more recent work
in Sohn and Xing (2009), we notice that there is an interesting connection of the DPM-based
methods to the Wright-Fisher model and Kingman’s coalescent with an infinitely-many-alleles
(IMA) mutation process for allele evolution. On a coalescent tree with n lineages under an
infinitely-many-alleles (IMA) model with rate τ/2, a new haplotype is created with probability
τ/(n − 1 + τ), and an existing haplotype is replicated with probability (n − 1)/(n − 1 + τ)
(Hoppe, 1984). This is identical to the Pólya urn scheme described in Section 3.1 with a scaling
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parameter τ and a uniform base distribution. We include brief discussion about this connection
as well.

4.1 DP mixture model for haplotype modeling
The model starts from the assumption that a haplotype population H is originated from an un-
known number of founder chromosomes, which has gone through mutation. Then H can be nat-
urally modeled as a mixture model by considering modern chromosomes as mixtures of founder
chromosomes. The Dirichlet process mixture model is especially well suited for this purpose
as it allows the number and the configuration of founder chromosomes to be unknown a priori
and inferred from data. As a brief recap of the Dirichlet proces, the distinct atoms φ∗k from a
Dirichlet process in Equation (3.3) act as the mixture components in a Dirichlet process mixture
model. Under the haplotype inheritance model as a DP mixture, each unique value φ∗k from a
DP is associated with a possible founder and its mutation probability, i.e., {ak, θk}. Specifi-
cally, let hi = [hi1, . . . , hiT ] denote the haplotype of individual i over T contiguous SNPs. Let
ak = [ak1, . . . , akT ] denote an ancestor haplotype and θk denote the mutation rate of ancestor
k; and let ci denote the indicator variable that specifies the ancestor of haplotype hi. Ph(h|a, θ)
represents the inheritance model according to which individual haplotypes are derived from a
founder. Let γ be the scale parameter of the Dirichlet process, and F be the base measure that
generates the founder haplotype ak and its mutation rate θk jointly. The complete DP mixture
model for haplotype inheritance can be summarized as follows:

π | γ ∼ GEM(γ)

ci | π ∼ π

(ak, θk) | F ∼ F

hi | ci, (ak, θk)∞k=1 ∼ Ph(· | aci , θci)

We let F (A, θ) = p(A)p(θ), where p(A) is uniform over all possible haplotypes and p(θ) is a
beta distribution introducing a prior belief of a low mutation rate.

The haplotype inheritance model Ph is defined as a single-locus mutation model where Ph(h |
a, θ) is decomposed into the product of the likelihood at each locus represented as:

Ph(hit|ci, (akt, θk)∞k=1) = (1− θ)I(hit=acit)
(

θ

|A| − 1

)I(hit 6=acit)

(4.1)

where I(·) is the indicator function and |A| is the size of the allele space. It defines the model
to generate an individual haplotype h from a founder a with a mutation rate θ. This model
corresponds to a star genealogy resulting from infrequent mutations over a shared ancestor, and is
widely used as an approximation to a full coalescent genealogy starting from the shared ancestor
such as in the BLADE model for mapping (Liu et al., 2001), and numerous models for haplotype
inference (Zhang et al., 2006).

To allow the inference of haplotypes given genotypes under this inheritance model, Xing
et al. (2007) has adopted the following additional components to the basic model above. Since
diploids like human have two copies of each haplotype, one can write the individual haplotypes
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using the notation hie for e ∈ {0, 1}, where e denotes the index to indicate either the maternal or
the paternal copy of individual i. Then the genotype at a locus is determined by the paternal and
maternal alleles of this site with some random noise via the following genotyping model:

Pg(git|hi0t, hi1t; ξ) = ξI(hit=git)[µ1(1− ξ)]I(hit 6=1git)[µ2(1− ξ)]I(hit 6=2git) (4.2)

where hit , hi0t ⊕ hi1t denotes the unordered pair of two actual SNP allele instances at locus
t; “ 6=1 ” denotes set difference by exactly one element; “ 6=2 ” denotes set difference of
both elements, and µ1 and µ2 are appropriately defined normalizing constants. A beta prior
Beta(αg, βg) is placed on ξ for smoothing.

The complete process that generates individual haplotypes and genotypes from the founder
haplotypes under the DP mixture model are summarized as the following generative scheme.

• Draw first haplotype:

(a1, θ1) | DP(τ,Q0) ∼ Q0(·), sample the 1st founder and its mutation rate;

h1 ∼ Ph(·|a1, θ1), sample the 1st haplotype from an inheritance model
defined on the 1st founder;

• for subsequent haplotypes:

– sample the founder indicator for the ith haplotype:

ci | DP(τ,Q0) ∼


P (ci = cj for some j < i|c1, ..., ci−1) =

ncj
i−1+τ

P (ci 6= cj for all j < i|c1, ..., ci−1) = τ
i−1+τ

where nci is the occupancy number of founder aci .

– sample the founder of haplotype i:

aci , θci | DP(τ,Q0)


= {acj , θcj} if ci = cj for some j < i

∼ Q0(a, θ) if ci 6= cj for all j < i

– sample the haplotype according to its founder:

hi | ci ∼ Ph(·|aci , θci).
• sample all genotypes according to a mapping between haplotype index i and allele index ie:

gi | hi0 , hi1 ∼ Pg(·|hi0 , hi1).
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Given this inheritance model, and under a beta prior Beta(αh, βh) for the mutation rate θ,
it can be shown that the marginal conditional distribution of a haplotype sample h = {hi : i ∈
{1, 2, ..., I}} takes the following form resulted from an integration of θ in the joint conditional:

p(h|a, c) =
K∏
k=1

R(αh, βh)
Γ(αh + lk)Γ(βh + l′k)

Γ(αh + βh + lk + l′k)

(
1

|A| − 1

)l′k
, (4.3)

where R(αh, βh) = Γ(αh+βh)
Γ(αh)Γ(βh)

, lk =
∑

i,t I(hit = akt)I(ci = k) is the number of alleles which
are identical to the ancestral alleles, and l′k =

∑
i,t I(hit 6= akt)I(ci = k) is the total number of

mutated alleles.
The only observed variable in this problem is the individual genotypes gi and all the other

variables of hi, ci, ak will be inferred from the posterior inference. Under the above model spec-
ifications, it is standard to derive the posterior distribution of each haplotype hie given all other
haplotypes and all genotypes, and the posterior of any missing genotypes, by integrating out pa-
rameters θ or ξ and resorting to the Bayes theorem, which enables collapsed Gibbs sampling step
where necessary.

By using a Dirichlet process prior we essentially maintain a pool of haplotype founders that
grows as observed individual haplotypes are processed. But notice that the above generative
model assumes each modern haplotype originates from a single ancestor where no recombination
is involved, which is only true for haplotypes spanning a short region on a chromosomal.

4.2 Population genetic implication of DP haplotype model

The Dirichlet-process-based models relate to the fundamental stochastic models from population
biology in a very interesting way, somewhat justifying their application to haplotype modeling
from a statistical genetic point of view. Given a sample of n chromosomes, under neutrality
and random-mating assumptions as in Wright (1931), Fisher (1930),and Kingman (1982), the
distribution of the genealogy trees of the sample can be approximated by that of a random tree
known as the n-coalescent (Kingman, 1982). Additionally, on each lineage there can be a point
process of mutation events. In an infinitely-many-alleles (IMA) model, each mutation in the
lineage produces a novel mutant that is independent of the parental allele; thus IMA can be
understood as an independent Poisson process with rate, say, τ/2 (note the intentional use of the
same symbol as the scaling parameter in the Dirichlet process, which implies a close relationship
between IMA on n-coalescent with DP, which we shall reveal shortly), which is determined by
the size of the evolving population N (usually N >> n) and the per-generation mutation rate
µ (i.e., τ = 4Nµ) (Kingman, 1982). The IMA model refers to such a situation where each
mutation produces a novel haplotype a. (Without loss of generality, here we assume that the
haplotype-generating mutation does not have to be a point mutation that changes one SNP locus
only, but can be a “macroscopic” event that produces an entirely new T -loci haplotype.) Hoppe
(1984) observed that the IMA model with rate τ/2 on an n-coalescent extends haplotype lineages
on the tree according to the following law: with probability τ/(n − 1 + τ) it instantiates a new
haplotype, and with probability (n− 1)/(n− 1 + τ) it replicates an existing haplotype lineage.
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This is exactly the Pólya urn scheme described in Eq (3.4) with scaling parameters τ and uniform
base distribution over A, a Dirichlet process DP (τ,Uniform).

There is a mapping between the distinct founders φ∗k ≡ {ak, θk},∀k arising from a DP, to
the novel haplotypes generated according to IMA on a coalescent tree at the birth of every new
lineage. Samples from the DP that share a common haplotype corresponds to the descendant
(i.e., non-mutating) lineages rooted from the founder; but the genealogical relationships between
distinct haplotypes are not preserved under an IMA model (once a new haplotype is instantiated
from a mutation, it “forgets” its “progenitor” because the mutation is independent of the parental
haplotype). Thus a basic DP cannot capture relationships between different haplotypes in a
population.

The parental-dependent-mutation model posits that, in a sequential generation process of
haplotypes, if the next haplotype does not match exactly with an existing haplotype, it will tend
to differ by a small number of mutations from an existing one, rather than be completely different.
Under a DP mixture, modern individual haplotypes hi are marginally dependent, because similar
but nonidentical haplotypes can be grouped around possible founders according to an inheritance
model Ph(H|A, θ) that permits further changes on top on founders. As discussed later, this leads
to an exchangeable P (H) that captures the effect of parent-dependent mutations.
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Chapter 5

Haplotype inference from multi-population
data

5.1 Introduction

We now consider the specific applications of the non-parametric Bayesian models described in
Chapters 3 and 4. SNPs represent the largest class of individual differences in DNA sequences.
Recall that a SNP refers to the existence of two possible nucleotide bases from {A,C,G, T} at
a chromosomal locus in a population. Each variant, denoted as 0 or 1, is called an allele. A
haplotype refers to the joint allelic identities of a contiguous list of polymorphic loci within a
study region on a given chromosome. As introduced in Chapter 2, diploid organisms such as
human beings have two haplotypes in each individual, one from each of the parents. When the
parental chromosomes come in pairs, two haplotypes go together and make up a genotype which
consists of the list of allele-pairs at every locus. A genotype is resulted from a pair of haplotypes
by omitting the phase information regarding the specific association of each allele with one of the
two chromosomes at every locus. Common biological methods for assaying genotypes typically
do not provide phase information for individuals with heterozygous genotypes at multiple loci.
The problem of haplotype inference concerns determining which phase reconstruction among
many alternatives is more plausible.

Key to the inference of individual haplotypes based on a given genotype sample is the for-
mulation and tractability of the marginal distribution of the haplotypes of the study population.
Consider the set of haplotypes, denoted as H = {h1, h2, . . . , h2n}, of a random sample of 2n
chromosomes of n individuals. Under common genetic arguments, the ancestral relationships
among the sample back to its most recent common ancestor (MRCA) can be described by a ge-
nealogical tree known as the coalescent. Computing P (H) involves a marginalization over all
possible coalescent trees compatible with the sample, which is widely known to be intractable.
In Li (2003), it was suggested to approximate P (H) by a Product of Approximate Condition-
als (PAC). The PAC model tries to incorporate a desirable evolution assumption known as the
parental-dependent-mutation (PDM) by modeling each hi as the progeny of a randomly-chosen
existing haplotype, and it forms the basis of the PHASE program, which has set the state-of-the-
art benchmark in haplotype inference. However, the PAC model implicitly assumes existence of
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an ordering in the haplotype sample, therefore the resulting likelihood is not exchangeable as one
would expect for the true P (H). Moreover, since PAC involves no explicit ancestral genealogy
over existing haplotypes, certain latent demographic information such as founding haplotypes
and their mutation rates are not directly captured in the model.

The finite mixture models represent another class of haplotype models that rely very little on
demographic and genetic assumptions of the sample (Excoffier and Slatkin, 1995; Kimmel and
Shamir, 2004; Qin et al., 2002; Zhang et al., 2006). Under such a model, haplotypes are treated as
latent variables associated with specific frequencies, and the haplotype inference problem can be
viewed as a missing value inference and parameter estimation problem, for which numerous sta-
tistical inference approaches have been developed, such as the maximum likelihood approaches
via the EM algorithm (Excoffier and Slatkin, 1995; Fallin and Schork, 2000; Hawley and Kidd,
1995; Long and Williams, 1995), and a number of parametric Bayesian inference methods based
on Markov Chain Monte Carlo (MCMC) sampling (Qin et al., 2002; Zhang et al., 2006). How-
ever, this class of methods has rather severe computational requirements in that a probability
distribution must be maintained on a large set of possible haplotypes. Indeed, the size of the
haplotype pool, K, which reflects the diversity of the genome, is unknown for any given popu-
lation data and needs to be inferred. There is a plethora of combinatorial algorithms based on
various hypothesis such as the “parsimony” principles that offer control over the complexity of
the inference problem (see Gusfield (2004) for an excellent survey).

Recently, substantial efforts have also been made to speed up haplotype inference on large
scale data. Notable programs include Beagle (Browning and Browning, 2007) which uses a lo-
calized haplotype model based on variable-length Markov chains, and MACH (Li and Abecasis,
2006), which significantly improves PHASE in terms of computation time.

It is noteworthy that current progresses on approximating P (H),K, and on scalability to long
SNP sequences, are made while ignoring potentially useful information on population structures
in a genetic sample. In particular, statistical models developed so far are inadequate for ad-
dressing the multi-population haplotype sharing problems concerned in this chapter. Consider
for example a genetic demography study, in which one seeks to uncover ethnic- or geographic-
specific genetic patterns based on a sparse census of multiple populations. In particular, suppose
that we are given a sample that can be divided into a set of subpopulations; e.g., African, Asian
and European. We may not only want to discover the sets of haplotypes within each subpopula-
tion, but also which haplotypes are shared between subpopulations, and what their frequencies
are. Empirical and theoretical evidence suggests that an early split of an ancestral population fol-
lowing a populational bottleneck may lead to ethnic-group-specific population diversity, which
features both ancient haplotypes shared among different ethnic groups, and modern haplotypes
uniquely present in different ethnic groups (Pritchard, 2001). This structure is analogous to a
co-clustering in which different groups comprising multiple clusters may share clusters with
common centroids, and its implication on haplotype reconstruction has not been thoroughly in-
vestigated.

We have developed a new haplotype model for multi-population data based on a hierarchi-
cal Dirichlet process (HDP) (Teh et al., 2010; Xing et al., 2006). Recall that a hierarchical
Dirichlet process over a measurable space (Φ,B) specifies a set of coupled random distributions
{Q1,Q2, . . . ,QJ} on Φ for data from J groups. For modeling haplotypes in multiple popula-
tions, we let Φ ≡ A×E where E = [0, 1] andA = {0, 1}T denote the space of the mutation rates
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and joint allele configurations, respectively, of the ancestral haplotypes of T SNP loci. Each
Qj is a population-specific Dirichlet process (DP) (Blackwell and MacQueen, 1973; Ferguson,
1973) which defines a nonparametric prior over the ancestral haplotypes and their frequencies of
being inherited within the population, and thereby induces a Dirichlet process mixture (DPM)
model for all the individual haplotypes in that population. To allow every ancestral haplotype in
a particular population to also have non-zero probability of being inherited in a different popu-
lation (albeit with different frequencies), a hyper-prior Q0, which is also a Dirichlet process and
therefore discrete on Φ, is used to define the base measures of each population-specificQj , ensur-
ing that they are all realized on a common set of supports (i.e.,founders) in Φ. Our model differs
from other methods reviewed earlier in the following ways: 1) Instead of resorting to empirical
assumptions or model selection over the number of population haplotypes, we introduce a non-
parametric prior over haplotype ancestors, which facilitates posterior inference of the haplotypes
in an “open” state space accommodating arbitrary sample size. 2) Our model explicitly exploits
the population labels of individuals and potentially latent sub-population structures to improve
haplotyping accuracy. 3) Our model captures similar genetic properties as those emphasized
in Stephens et al. (2001), including the parent-dependent-mutations, but with an exchangeable
likelihood function.

We have developed an efficient MCMC-based software program Haploi, based on our pro-
posed model, and using a variant of the Partition-Ligation scheme by Niu et al. (2002) to han-
dle complexity explosion due to long input sequences. It can be readily applicable to multi-
population genotype sequences, at a time-cost often at least two-orders of magnitude less than
that of the state-of-the-art PHASE program, with competitive performance. We also show that
Haploi can significantly outperform other popular haplotype inference algorithms on both simu-
lated and real short SNPs data.

5.2 The Statistical Model

Our proposed model for multi-population haplotype inference is based on a basic Dirichlet pro-
cess mixture model described in Chapter 3 developed for a simple demographic scenario where
individual ethnic labels are ignored and no recombination is assumed in the sample. In the
model, the DP is used as the prior over the components in an unbounded ancestral space. This
prior requires no specification of the size of the ancestor pool.

In this section, we describe the hierarchical Dirichlet process mixture for haplotypes from
multiple population in detail.

5.2.1 Hierarchical DP mixture for multi-population haplotypes

We consider the case where there exist multiple ethnic or geographic populations. Instead of
modeling these populations independently by unrelated Dirichlet process mixtures, we place all
the population-specific Dirichlet process mixtures under a common prior such that the ancestors
in any of the population-specific mixtures can be shared across all the mixtures, but the weight
of an ancestral haplotype in each mixture is unique.
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To tie population-specific DP mixtures together in this way, we employ a hierarchical DP
(HDP) mixture model (Teh et al., 2010) described in Section 3.2, in which the base measures
of the all population-specific DPMs admit a common discrete prior defined by another Dirichlet
process DP(γ, F ). An HDP defines a distribution over a set of dependent random probability
measures, {Qj j = 1, . . . , J}, and another master random probability measure Q0 that con-
trols all the Qj’s. Each Qj is a population specific DP with common (or population-specific)
scaling parameter τ , and a shared base measure defined by Q0. Moreover, Q0 itself follows a
Dirichlet process DP(γ, F ). Following a hierarchical Pólya urn scheme, for mj random draws
φj = φj,1, . . . , φj,mj from Qj described in Section 3.2, we can derive the following conditional
probability for (φmj |φ−mj) (Xing et al., 2006), where the subscript −mj denotes the index set of
all but the mj-th sample:

φmj |φ−mj ∼
K∑
k=1

mj,k + τ nk
n−1+γ

mj − 1 + τ
δφ∗k(φmj) +

τ

mj − 1 + τ

γ

n− 1 + γ
F (φmj)

=
K∑
k=1

π′j,kδφ∗k(φmj) + π′j,K+1F (φmj) (5.1)

where nk denotes the number of samples under Q0 drawn from the global measure F and equal
to φ∗k; mj,k denotes the number of samples in the j-th group which are equal to φ∗k; and

π′j,k :=
mj,k + τ nk

n−1+γ

mj − 1 + τ

π′j,K+1 =
τ

mj − 1 + τ

γ

n− 1 + γ

The vector ~π′j = (π′j,1, π
′
j,2, . . .) gives the a priori conditional probability of a new sample in

group j. As shown later, this formula in Equation (5.1) will be useful for implementing a Gibbs
sampler for posterior inference under HDP mixtures.

Based on the HDP described above, we now define an HDP mixture (HDPM) model for the
genotypes in J populations. Elaborating on the notational scheme used earlier in Section 4.1,
let G(j)

i = [G(j)

i1 , . . . , G
(j)

iT ] denote the genotype of T contiguous SNPs of individual i from ethnic
group j; and let H (j)

ie
= [H (j)

ie1
, . . . , H (j)

ieT
] denote a haplotype of individual i from ethnic group j.

The atoms φ(j)

ie
under a hierarchical Dirichlet process correspond to the founder haplotype and its

mutation rate associated with the individual haplotype hie in population j. The basic generative
structure of multi-population genotypes under an HDPM is defined as follows.

Q0 | γ, F ∼ DP(γ, F )

Qj | τ,Q0 ∼ DP(τ,Q0)

φ(j)

ie
|Qj ∼ Qj

h(j)

ie
|φ(j)

ie
∼ Ph(·|φ(j)

ie
)

g(j)

i |h
(j)

i0
, h(j)

i1
∼ Pg(·|h(j)

i0
, h(j)

i1
)
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Figure 5.1: The haplotype-genotype generative process under HDPM, illustrated by an example concerning three
populations. At the first level, all haplotype founders from different populations are drawn from a common pool
via a Pólya urn scheme, which leads to the following effects: 1. The same founder can be drawn by either multiple
populations (e.g., the red founder in population 1 and 2, and the blue one in population 1 and 3), or only a single
population (e.g., the grey founder in population 1); 2. Shared founders can have different frequencies of being
inherited. Then at the second level, individual haplotypes were drawn from a population-specific founder pool also
via a Pólya urn scheme, but this time through an inheritance models Ph that allows mutations with respect to the
founders, as indicated by the underscores at the mutated loci in the individual haplotypes. Finally, genotypes are
related to the haplotype pairs of every individual via a noisy channel Pg .

Here, the first three steps follow the general HDP scheme to generate the atoms of founder
haplotypes and their mutation rates. The fourth step describes the mixture formalism in which
the individual haplotype is generated given its founder from the haplotype inheritance model
Ph. The last step corresponds to the noisy genotyping model to generate the genotype given a
pair of haplotypes in each individaul. Recall that in an HDP, the base measure Q0 is a random
distribution of the pool of haplotype founders and their associated mutation rates. It ensures that
all the population-specific child DPs can be defined on a common unbounded pool of candidate
founder patterns. The child DPs place different mass distributions, i.e., a priori frequencies of
haplotype founders, on this common support, in a population-specific fashion. This generative
procedure is also illustrated graphically in Figure 5.1:

The base measure F in the above generative process is defined as a distribution from which
haplotype founders φk ≡ {Ak, θk} are drawn. Thus it is a joint measure on both A and θ. As
defined in Section 4.1, we let F (A, θ) = p(A)p(θ), where p(A) is uniform over all possible
haplotypes and p(θ) is a beta distribution introducing a prior belief of low mutation rate. For
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other building blocks of the haplotype inheritance model Ph and the noisy genotype observation
model Pg, we adopt the model described in Equations (4.1) and (4.2).

5.2.2 Hyperprior for scaling parameters
To capture uncertainty over the scaling parameters of Dirichlet process, e.g., γ, we use a vague
inverse Gamma prior:

p(γ−1) ∼ G(1, 1)⇒ p(γ) ∝ γ−2 exp(−1/γ)). (5.2)

In general, the probability density function of inverse Gamma distribution with shape parameter
ι and scale parameter κ is given as follows:

p(x; ι, κ) =
κι

Γ(ι)
x−ι−1 exp

(
−κ
x

)
.

Under this prior, the posterior distribution of γ depends only on the number of instances n, and
the number of componentsK, but not on how the samples are distributed among the components:

p(γ|k, n) ∝ γk−2 exp(1/γ)Γ(γ)

Γ(n+ γ)
. (5.3)

The distribution p(log(γ)|k, n) is log-concave, so we may efficiently generate independent sam-
ples from this distribution using adaptive rejection sampling (Rasmussen, 2000). It is noteworthy
that in an HDPM we need to define vague inverse Gamma priors also for the scaling parame-
ters τ of population-specific DPs at the bottom level. We use a single concentration parameter
τ for these DPs; it is also possible to allow separate concentration parameters for each of the
lower-level DPs, possibly tied distributionally via a common hyperparameter.

5.2.3 Posterior inference via Gibbs sampling
Based on the two-level Pólya urn implementation of the HDP mixture model described in Sec-
tion 3.2, an efficient MCMC algorithm can be derived to sample from the posterior associated
with the HDP mixture model. Recall that the mixture components correspond to the ancestral
haplotypes ak with their mutation rates θk, and the samples correspond to individual haplotypes
h. Therefore, after integrating out θk according to Equation (4.3), the variables of interest are akt,
h(j)

iet
, c(j)iet, γ and τ , and g(j)

it (the only observed variables). We may assume that the represented
mixture components are indexed by 1, ..., K, the weights of the founders at the top level DP is

β̂ =

(
n1

n− 1 + γ
, ...,

nK
n− 1 + γ

,
γ

n− 1 + γ

)
where γ

n−1+γ
is the total weight corresponding to some unrepresented founder K + 1; and the

weights of founders at the bottom-level DP for, say, the jth population, are

π̂j =

(
mj,1

mj − 1 + τ
, ...,

mj,K

mj − 1 + τ
,

τ

mj − 1 + τ

)
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where τ
mj−1+τ

corresponds to the probability of consulting the top-level DP. The Gibbs sampler
alternates between three coupled stages. First, we sample the scaling parameters γ and τ of the
DPs according to Equation (5.3).

Then, we sample the c(j)ie and akt given the current values of the hidden haplotypes and the
scaling parameters. Before sampling c(j)ie , we first erase its contribution to the sufficient statistics
of the model. If the old c(j)ie was k′, set mjk′ = mjk′ − 1. If it was sampled from the top level DP,
we also set nk′ = nk′ − 1. Note that c(j)ie ≤ K + 1 (i.e., indicating existing founders, plus a new
one to be instantiated). Now we can sample c(j)ie from the following conditional distribution:

p(c(j)ie = k|c[−j,ie],h, a) ∝ p(c(j)ie = k|c[−j,ie],m,n)p(h(j)

ie
|ak, c,h[−j,ie])

∝ (m[−j,ie]
jk + τβk)p(h

(j)

ie
|ak, l[−j,ie]k ) (5.4)

for k = 1, ..., K + 1, where m[−j,ie]
jk represents the number of c(j)i′

e′
that are equal to k, except c(j)ie

in group j, and mj,K+1 = 0; l[−j,ie]k denotes the sufficient statistics associated with all haplotype
instances originating from ancestor k, except h(j)

ie
. If as a result of sampling c(j)ie a formerly rep-

resented founder is left with no haplotype associated with it, we remove it from the represented
list of founders. If on the other hand the selected value k is not equal to any other existing index
c(j)ie , i.e, c(j)ie = K + 1, we increment K by 1, set nK+1 = 1, update β accordingly, and sample
aK+1 from its base measure F .

Now, from Equations (4.1) and (4.2), we can use the following posterior distribution to sam-
ple ak:

p(ak,t|c,h) ∝ (5.5)∏
j,ie|c(j)iet=k

p(h(j)

iet
|akt, l(j)kt ) =

Γ(αh + lkt)Γ(βh + l
′

kt)

Γ(αh + βh +mk)(|A| − 1)l
′
kt

R(αh, βh)

where lkt is the number of allelic instances originating from the founder haplotype k at locus t
across the groups that are identical to the founder, when the founder has the pattern akt. If k was
not represented previously, we can just use zero values of lkt which is equivalent to using the
probability p(a|h(j)

ie
).

We now proceed to the third sampling stage, in which we sample the haplotypes h(j)

ie
, given

the current state of the ancestral pool and the ancestral haplotype assignment for each individual,
according to the following conditional distribution:

p(h(j)

iet
|h(j)

[−iet], c, a, g) ∝ p(g(j)

it |h
(j)

iet
, h(j)

ie,t
,u(j)

[−iet])p(h
(j)

iet
|ak′t, l(j)k′,[−iet]) (5.6)

= Rg
Γ(αg + u)Γ(βg + (u′ + u′′))

Γ(αg + βg + IJ)
[µ1]u

′
[µ2]u

′′

× Rh

Γ(αh + l
(j)
k′,iet

)Γ(βh + l
′(j)
k′,iet

)

Γ(αh + βh + nk)(|A| − 1)
l
′(j)
k′,iet

where k′ ≡ c(j)ie , l(j)k,iet = l
(j)
[−iet] + I(h(j)

iet
= akt), and u(j)

[−iet] are the set of sufficient statistics
recording the inconsistencies between the haplotypes and genotypes in population j.
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Figure 5.2: The partition-ligation scheme used in Haploi.

5.3 Partition-ligation and the Haploi program

As for most haplotype inference models proposed in the literature, the state space of the proposed
HDPM model scales exponentially with the length of the genotype sequence, and therefore it
cannot be directly applied to genotype data containing hundreds or thousands of SNPs. To deal
with haplotypes with a large number of linked SNPs, (Niu et al., 2002) proposed a divide-and-
conquer heuristic known as Partition-Ligation (PL), which was adopted by a number of haplotype
inference algorithms including PL-EM (Qin et al., 2002), PHASE (Li, 2003; Stephens et al.,
2001), and CHB (Zhang et al., 2006). We equipped the HDPM model with a variant of the PL
heuristic, and present a new tool, Haploi for haplotype inference of multiple population genotype
data over long SNPs sequences.

The original PL-scheme in Niu et al. (2002) first divides the entire sequence into disjoint
short blocks and reconstructs haplotypes within each block. Then pairs of blocks are recursively
ligated into larger (non-overlapping) haplotypes via Gibbs sampling under a fixed-dimensional
Dirichlet prior over the frequencies of the ligated haplotype in the product space (or a subset)
of all the “atomistic haplotypes” of every pair of blocks. This bottom-up approach can recover
haplotypes of every individual either hierarchically or progressively. However, this PL scheme
does not scale well to long sequences because the number of possible haplotypes in the product
space can quickly become intractable as the size of the non-overlapping blocks to be ligated
grows multiplicatively during the iteration. Unlike their approach, our PL-scheme generates
partially overlapping intermediate blocks from smaller blocks phased at the lower level. The
pairs of overlapping blocks are recursively merged into larger ones by leveraging the redundancy
of information from overlapping regions, as well as overall parsimonious criteria. Empirically
we found that this strategy can lead to a significant reduction of the size of the haplotype search
space for long genotypes, and therefore facilitates a more efficient inference algorithm.

Figure 5.2 outlines the PL-procedure adopted by Haploi, which can be divided into three
steps. In step 1, we begin by partitioning given genotype sequences into L short blocks of length
T (e.g., T ≤ 10 as suggested in Niu et al. (2002)). Then we phase each atomistic block using
the proposed HDPM (Figure 5.2 step 1). By doing this, we obtain all the individual haplotypes
and also the population haplotype pool (i.e., founders) for each block. In the next step, we
ligate every pair of neighboring blocks. Naively the candidate population haplotype pool for
the ligated segment can be a Cartesian product of the haplotype pools in neighboring blocks.
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But such an unconstrained product is in fact unnecessary. Since each individual harbors only
two possible haplotypes within each blocks, for each pair of adjacent blocks, we can impute
at most four new stitched haplotypes from an individual, but in practice we get much fewer
because an individual can be homozygous on one or both blocks and the stitched haplotypes may
have been imputed already from earlier individuals; also, not all combinations of haplotypes
in the two pools are necessary because some combinations may never exist in any individual.
We pool such stitched haplotypes imputed from all individuals, which usually leads to only
a small subset of the Cartesian product of the two haplotype pools. Then based on a finite
dimensional Dirichlet prior over the candidate pool, we do Gibbs sampling as in Niu et al.’s
PL scheme to obtain individual haplotypes for each overlapping 2T region. Essentially, our
procedure produces a more parsimonious set of population haplotypes by using an individual-
based population haplotype imputation scheme. In addition, comparing to the ligation in Niu et
al.’s scheme, we stitch every neighboring pairs of blocks (ith with (i+ 1)th) whereas they ligate
every odd numbered block with the next even numbered block (i.e., (2i − 1)th with (2i)th). In
step 3, we hierarchically ligate overlapping adjacent blocks from the previous iteration, until the
full sequence is covered (Figure 5.2, step 3). The ligation strategy is again different from that of
Niu et al.’s due to the haplotype consistency constraints imposed by overlapping SNPs, which
helps to reduce the candidate haplotype space of the merged blocks. More details about the entire
partition-ligation process can be found in Appendix A.1.

As we reduce the search space based on feasible individual haplotype pairs, there may be
possibility of missing some haplotypes in the haplotype space construction if the ligation is only
based on disjoint blocks. However, our ligation process considers two blocks with an overlapping
region and takes into account all the possible inconsistencies for the every heterozygous locus.
Therefore, the actual number of haplotypes added to the space can be greater than four in general
except for the first pairwise ligation stage in Step 2 (see Appendix for a detailed example of
this). Moreover, even in the pairwise ligation from the non-overlapping atomic blocks, this
risk can be reduced by considering every neighboring pairs, not every odd-numbered and even-
numbered pairs as noted above, as the information in one block can be propagated into both side
of neighbors and can be preserved better. Empirically, this new scheme leaded to more accurate
result than the original PL scheme with greatly improved computational cost, as the original PL
scheme cannot be applied to more than a few hundreds of SNPs.

The underlying intuition of our ligation procedure is to allow recombination-like transition
on the overlapping regions for including only all the necessary new haplotype configurations,
but also to maximally preserve the haplotypes obtained at previous steps. This heuristic typi-
cally results in a population haplotype space of the merged block that is much smaller than the
naive product-space of non-overlapping lower-level blocks. Moreover, individuals whose atom-
istic haplotypes of the pre-merged blocks have no discrepancy in the overlapping region would
not only contribute only very few but high-confidence population haplotypes to the pool, but
also they need not to be phased again in that ligation step. This constitutes the main source of
efficiency and effectiveness of our algorithm.

In summary, comparing to the PL scheme in Niu et al. (2002), our method attempts to build
more parsimonious set of population haplotypes at each ligation iteration by using an individual-
based population-haplotype imputation scheme that leverages haplotypic diversity constraints
imposed by individual genotypes and overlapping blocks. However, these modifications only
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help to better trim the population haplotype space; statistically, our haplotype inference still
follows a well-defined MCMC scheme.

5.4 Results
We evaluated the proposed HDPM model on both simulated genotype data and real genotype
sequences from the International HapMap database. The haplotype inference accuracy under
HDPM via the Haploi program is compared to that of the the baseline DP mixture model, and
to PHASE 2.1.1 (Stephens and Scheet, 2005; Stephens et al., 2001), fastPHASE (Scheet and
Stephens, 2006), MACH1.0 (Li and Abecasis, 2006), and Beagle 2.1.3 (Browning and Brown-
ing, 2007), in their default parameter settings unless otherwise specified. Two different error
measures are used: errs, the ratio of incorrectly phased SNP sites over all non-trivial heterozy-
gous SNPs, and dw, the switch distance, which is the number of phase flips required to correct the
predicted haplotypes over all non-trivial cases. For short SNP sequences, we primarily use errs;
whereas for long sequences we compare dw according to common practice. In addition to hap-
lotype inference, we also estimated other metrics of interest, such as the haplotype frequencies,
the mutation rates θ of each founding haplotypes, and the number of reconstructed haplotype
founders K to assess the consistency of our model.

5.4.1 Simulated multi-population SNP data
To simulate multi-population genotypes, we used a pool of haplotypes taken from the coalescent-
based synthetic dataset in Stephens et al. (2001), each containing 10 SNPs, as the hypothetical
founders; and we drew each individual’s haplotypes and genotype by randomly choosing two
ancestors from these founders and applying the mutation and noisy genotyping models described
in the methodology section. For each of our synthetic multi-population data set, we simulated
five populations each with 20 individuals. Each population is derived from 5 founders, where
two of them are shared across all the populations, and the other three are population-specific.
Thus the total number of founders across the five populations is 17. We test our algorithm on
two data sets with different degrees of sequence diversity. In the conserved data set, we set the
mutation rate θ to be 0.01 for all populations and all loci in the simulation; in the diverse data
set, θ is set to be 0.05. All populations and loci are assumed to have the same genotyping error
rate. Fifty random samples were drawn from both the conserved and the diverse data sets.

5.4.2 Haplotype Accuracy
We compare Haploi using the HDP mixture and other methods applied in two modes on synthetic
data. Given multi-population genotype data, to use DP or other extant methods, one can either
adopt mode-I: pool all populations together and jointly solve a single haplotype inference prob-
lem that ignore the population label of each individual; or follow mode-II: apply the algorithm
to each population and solve multiple haplotype inference problems separately. Haploi takes a
different approach, by making explicit use of the population labels and jointly solving multiple
coupled haplotype inference problems. Note that when only a single population is concerned, or
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Figure 5.3: A comparison of HDP with the baseline DP on the synthetic multi-population data. DP-II: DP run on
each separate population (mode-II). DP-I: DP run on a merged population (mode-I). The errors measured by site-
discrepancies over 50 random samples are presented for (a) conserved datasets (θ = 0.01) and (b) diverse datasets
(θ = 0.05).

no population label is available, Haploi is still applicable and is equivalent to a baseline DP with
one more layer of DP hyper-prior over the base measure. We compare the overall performance of
Haploi on the whole data with other algorithms run in mode-I; and also the accuracy of Haploi
within each population with those of other methods run in mode-II. Since fastPHASE can also
take account of populations labels if specified, we supplied the labels to fastPHASE in mode-I
experiments.

We first test how much HDP can gain by the hierarchical structure on multiple populations
compared to the baseline DP. Figure 5.3 compares the result of HDP with the baseline-DP in
mode-I (denoted by DP-I) and that in mode-II (denoted by DP-II) on synthetic multiple popu-
lations. On both the conserved samples, which are presumably easier to phase, and the diverse
samples, which are more challenging, HDP significantly outperformed DP in both modes (with
p = 0.0336 against DP-II on the conserved samples, and p ≤ 1.83 × 10−6 in all other com-
parisons, according to a paired t-test). In addition, as a baseline case, we applied HDP to each
single-population separately as DP in mode-II, assuming the scenario of a single population
or individuals without population labels. Again, HDP applied to all populations jointly out-
performed this baseline HDP significantly as the latter is deprived of the gain by information
sharing. Moreover, this baseline HDP also dominates DP in mode-II significantly, especially on
diverse datasets (p ≤ 0.0017). It appears that the hierarchical structure of HDP which intro-
duces a non-parametric hyper-prior over the base measure of a DPM allows more flexibility in
the model and gives better performance than a plain DPM with fixed base measure.

Figure 5.4 compares the performance of Haploi with those of the benchmark algorithms.
When other algorithms are run in mode-I (Figure 5.4 (a)), Haploi outperforms all of them signif-
icantly on both the conserved and diverse samples (p ≤ 8.9×10−5). Haploi remains competitive
in comparison with other methods when the latter are run in mode-II, i.e., on each population
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Figure 5.4: A comparison of HDP with other algorithms (fPh:fastPHASE, Ph:Phase, Ma:Mach, Be:Beagle) running
in (a) mode-I, and (b) mode-II, on synthetic multi-population data.

separately (Figure 5.4 (b)). On the conserved data, PHASE shows the best result, but the differ-
ences between algorithms are not significant (p ≤ 0.11). Whereas on the diverse data, Haploi
outperforms other algorithms significantly (p ≤ 0.0043).

5.4.3 Parameter estimation and sensitivity analysis
Typically, with random initialization, the Gibbs sampler for Haploi converges within 1000 it-
eration on the synthetic data. This contrasts sampling algorithms used in some of the other
haplotype models, which typically need tens of thousands of iterations to reach convergence.
The fast convergence is possibly due to Haploi’s ability to quickly infer the correct number of
founding haplotypes underlying the genotypes samples, which leads to a model significantly
more compact (i.e., parsimonious) than that derived from other methods.

Estimating K and θ

We compared the estimated K— the number of recovered ancestors via both HDP and DP mix-
tures. Recall that we expect K to be 17. Overall, the estimated K under both the DP and HDP
models turns out to be very close to this number on the conserved datasets. From the diverse
datasets, HDP can still offer a good estimate of the number of ancestors, whereas DP recov-
ered more ancestors (around 25 on average) than the true number. This is not surprising since a
haplotype which appears in more than one population can have different frequencies in different
populations, the baseline DP cannot capture such sub-population structure, and the higher diver-
gence due to both mutation and population diversification can make it generate more ancestors
to describe the given dataset.

Our Gibbs sampler also provides reasonable estimates of the mutation rates of each haplotype
founder. We observe that for the conserved data sets, HDP yields highly consistent and low
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Table 5.1: A sensitivity analysis to the hyper-parameters of HDP on conserved dataset. Result with different hyper-
parameters ι and κ for inverse Gamma prior is shown. The number of founders for each population (Ki) and the
total number of ancestors across all the populations are shown in columns 4–9. The estimated mutation rate θ and
the haplotyping errors (errs) are also shown through columns 10 – 11. The sensitivity of θ estimate to the hyper
prior is examined over a wide range of both different magnitudes (0.1 to 1000) and ratios (0.0001 to 10000) of ι and
κ.

κ ι κ/ι K1 K2 K3 K4 K5 total K (17) θ (0.005) errs
0.1 0.1 1 5.0 5.0 5.0 5.0 5.0 17.8 0.005 0.0058

0.5 0.2 5.0 5.0 5.0 5.0 5.0 17.5 0.004 0.0116
1 0.1 5.0 5.0 5.0 5.0 5.0 18.0 0.004 0.0000

10 0.01 5.0 5.0 5.0 5.0 5.0 18.0 0.004 0.0087
100 0.001 5.0 4.0 5.0 5.0 4.0 16.0 0.007 0.0029

1000 0.0001 5.0 5.0 5.0 5.0 4.0 17.0 0.004 0.0029
0.5 0.1 5 5.0 5.1 5.0 5.0 5.0 18.1 0.004 0.0087

0.5 1 5.0 4.1 5.0 5.0 5.0 17.1 0.007 0.0029
1 0.5 5.0 5.0 5.0 5.0 5.0 18.0 0.004 0.0029

10 0.05 5.0 5.0 5.0 5.0 5.0 18.0 0.004 0.0145
100 0.005 5.0 5.0 5.0 5.0 4.0 17.0 0.004 0.0029

1000 0.0005 5.0 5.0 5.0 5.0 4.0 17.0 0.005 0.0087
1 0.1 10 5.0 5.0 5.0 6.0 5.0 18.0 0.006 0.0116

0.5 2 5.0 5.0 5.0 5.0 5.0 18.0 0.004 0.0058
1 1 5.0 5.0 5.0 5.0 5.0 18.0 0.004 0.0087

10 0.1 5.0 5.0 5.0 5.0 5.0 18.0 0.004 0.0029
100 0.01 5.0 4.0 5.0 5.0 4.0 16.0 0.007 0.0087

1000 0.001 5.0 4.9 5.0 5.0 4.0 16.9 0.005 0.0087
10 0.1 100 5.0 5.0 5.0 5.3 5.0 17.1 0.004 0.0000

0.5 20 5.0 5.0 5.0 5.0 5.0 18.0 0.004 0.0087
1 10 5.0 5.0 5.0 5.0 5.0 18.1 0.004 0.0029

10 1 5.0 5.0 5.0 5.0 5.0 18.0 0.004 0.0000
100 0.1 5.0 4.0 5.0 5.0 5.0 17.0 0.007 0.0058

1000 0.01 5.0 5.0 5.0 5.0 4.0 17.0 0.004 0.0087
100 0.1 1000 5.8 5.5 5.6 6.1 6.0 18.2 0.010 0.0116

0.5 200 5.2 5.2 5.2 5.8 5.5 18.4 0.008 0.0116
1 100 5.1 6.2 5.4 5.5 5.2 17.3 0.006 0.0087

10 10 5.0 5.0 5.1 5.0 5.1 18.1 0.005 0.0029
100 1 5.0 5.0 5.0 5.0 5.0 18.0 0.004 0.0000

1000 0.1 5.0 5.0 5.0 5.0 4.0 17.0 0.004 0.0000
1000 0.1 10000 6.8 6.3 8.5 6.0 10.3 25.6 0.003 0.0087

0.5 2000 7.1 7.0 7.4 6.6 8.5 24.5 0.006 0.0116
1 1000 6.4 6.5 7.7 6.4 8.4 22.8 0.005 0.0145

10 100 5.3 6.5 6.3 5.8 7.0 17.8 0.010 0.0260
100 10 5.1 5.1 5.0 5.0 5.1 18.1 0.005 0.0087

1000 1 5.0 5.0 5.0 5.0 5.0 18.0 0.004 0.0029
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variance estimations of θ, and the quality of the estimates due to DP is slightly worse. For the
diverse data both algorithms tend to slightly underestimate the mutation rates, and the variance
is also higher. It is noteworthy that in principal, high haplotype diversity of a population can
be explained by two competing sources: high mutation rate from ancestors to descendants, and
large number of ancestors. Indeed K and θ cannot be independently determined, following a
similar argument of the un-identifiability of the evolution time and population size under IAM
model. But empirically, HDP appears to strike a reasonable balance between K and θ, and offers
plausible estimates of both.

A more thorough sensitivity analysis with respect to the hyper-parameters in our model is
detailed in Table 5.1. The proposed HDP model has two scale parameters, γ and τ , for the upper
and lower level DP, which are under inverse Gamma priors as discussed in Section 5.2.2. To
see the sensitivity of the K and θ estimations under different priors, we applied various values
of hyper parameters ι and κ (the same for both γ and τ ) on one of the 50 random conserved
datasets. Columns 4 – 9 in Table 5.1 show the number of recovered founders within each sub-
population (the correct number is 5 for each), and the total number of distinct founders over all
the populations. Overall, over a wide range of values for the hyper-parameters, Haploi gives
low-bias and low-variance estimation of the number of founders of each sub-population as well
as the total number of distinct founders. In columns 10-11, we show the inferred mutation rate
and the haplotyping error. Even when incorrect numbers of founders are recovered, the actual
haplotyping errors are not significantly affected, which shows the robustness of the proposed
approach for haplotype recovering application. The test on the diverse dataset shows similar
tendency while the result is slightly less stable (see Table A.1 in Appendix for more details).

Estimating haplotype frequencies

Figure 5.5 summarizes the accuracy of population haplotype frequencies estimated by each al-
gorithm. The discrepancy between the true frequencies and estimated ones is measured by the
KL-Divergence DKL(p||q) =

∑
x p(x) log p(x)

q(x)
. The top row shows the accuracy of HDP along

with those of DP in mode-II and in mode-I, and the bottom row shows the comparison of HDP
with other benchmark algorithms. The left column of Figure 5.5 (a) reports DKL computed on
ALL haplotypes frequencies estimated by different algorithms from the conserved data sets and
the right column of Figure 5.5 (a) shows the result when measured only on the frequent haplo-
types (i.e., with frequencies ≥ 0.05). Comparing to the baseline-DP, HDP is as accurate when
only frequent haplotypes are considered. When all the frequencies are considered, however,
the margin of HDP over DP becomes significant, especially on the diverse dataset (p=0.0009).
Overall,Haploi, PHASE, and MACH work equally well without significant difference in perfor-
mance on conserved datasets. For more difficult diverse data sets (Figure 5.5 (b)), HDP achieves
the lowest discrepancy by a significant margin over all the other algorithms. The runner-up,
PHASE beats fastPHASE and MACH with a small margin. When measured only on the frequent
haplotypes (i.e., the right column of Figure 5.5 (b)), the discrepancies decrease significantly, but
the relative ordering of all the compared algorithms remains similar, except that now fastPHASE
outperforms PHASE (p = 0.0036).
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Figure 5.5: A comparison of the accuracies of haplotype frequencies. Top: the result from HDP, DP in mode-II
(DP-II), and DP in mode-I (DP-I). Bottom: the result from HDP and three benchmark algorithms. (a) Box-plots of
DKL’s estimated from the conserved data sets. Left column shows measurements on all haplotypes, right column
shows measurements on only the frequent haplotypes. (b) Same measurements on the diverse datasets.
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5.4.4 Result on HapMap Data

We also test Haploi on both short SNP segments (i.e., ∼ 6 SNPs), and long SNP sequences
(i.e., ∼ 102 − 103 SNPs) available from the International HapMap Project. This data contains
SNP genotypes from four populations: Utah residents with ancestry from northern and western
Europe (CEU); Yoruba in Ibadan, Nigeria (YRI); Han Chinese in Beijing (CHB); and Japanese
in Tokyo (JPT), with 60, 60, 45, and 44 unrelated individuals, respectively. Although haplotype
inference can be, and in some test scenarios, was performed on all populations, evaluation of
the outcome is on only the CEPHs and Yorubas since the true haplotypes can be almost un-
ambiguously deduced from trios only in these two populations. The individual genotypes that
cannot be unambiguously phased from the trios were ignored in the scoring. We consider three
different population-composition scenarios in our experiments below: 1) using all the four popu-
lations together for haplotype inference (FourPop); 2) using only CEPH and Yoruba populations
for inference (TwoPop); and 3) phasing CEPH and Yoruba separately (OnePop). Essentially, in
the FourPop and TwoPop scenarios we solve a bigger haplotype inference problem on data that
contain richer population information.

Short SNP sequences

Phasing short SNPs is the basic operation of large-scale haplotype inference problems that rely
either on a partition-ligation heuristic, or on a model-based methods, such as recombination pro-
cesses, to integrate short phased haplotype segments into long haplotypes. Figure 5.6 shows a
comparison of the phasing accuracy on 6-SNP segments (following a recommendation in Niu
et al. (2002) on the optimal size-range of basic units for subsequent ligation) by four algorithms.
The test was done on randomly selected 100 sets of 6-SNPs segment from chromosome 21. For
each of the three population-composition scenarios, we applied all methods to different popula-
tion sizes, i.e., 60, 30, 20, and 10 individuals per population, to examine the effect of population
size on phasing accuracy.

Several aspects of Haploi’s performance on real data are revealed by Figure 5.6. First, com-
paring the performances of Haploi under the three different population-composition scenarios,
we observe that Haploi improves steadily as more populations are included in haplotype infer-
ence, and the improvements are statistically significant. The p-values of the differences between
FourPop and OnePop scenarios are 0.00024, 0.000038, 0.0016, and 0.000022 for data with 60,
30, 20, 10 individuals per population, respectively; and the p-values of the margins of TwoPop
over OnePop are 0.0014, 0.0002, 0.0053, and 0.00047, respectively, in the same order. The
improvement in FourPop over TwoPop is less significant, with p-values 0.35, 0.11, 0.16, and
0.023, respectively, suggesting that the possible gain in haplotype accuracy enabled by the HDP
model via exploring shared information among populations can be capitalized the most when we
change from single-population inference to joint-inference in multiple population; whereas the
effect of having more populations in the multi-population scenario appears to be less obvious in
this dataset.

Second, comparing the performances of Haploi under different population sizes, we observe
that the performance-gain through information sharing among populations tends to be greater
when the population sizes decrease. For example, the performance differences of Haploi in
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multi-population over single-population become most significant when the number of individuals
per population is the smallest (#Individual per pop=10). This observation suggests that HDP is
especially advantageous under data scarcity situation where information from each population
becomes insufficient to warrant reliable inference within the population.

Third, other methods such as PHASE, MACH, and Beagle, appear not able to benefit from
increased population diversity as indicated by the significant drop of their accuracies when more
populations are involved. The performance of fastPHASE (with known population labels) im-
proves substantially when two populations are used together, while the performance becomes
slightly worse in the case of four populations. Comparing the results from the most preferred
scenario of each algorithm, that is, Haploi under FourPop, fastPHASE under TwoPop, and all
the others under OnePop, Haploi and PHASE worked similarly well when all the available data
were used (i.e. #Individual per pop=60), with mean error rate of each algorithm at 0.0174,
0.0198, 0.0173, 0.0229, and 0.0222, respectively (with p =0.05,0.89,0.10,0.01 over differences
of Haploi with other algorithms). When the population sizes decrease, Haploi starts to surpass
others more substantially, and works more reliably than others. For example, on 10 individuals
per population, the mean error rates of the five algorithms were 0.0424, 0.0460, 0.0512, 0.0777,
and 0.0945, and the p-values of the margin of Haploi over others are 0.17, 0.02, 1.2 × 105,
6.7× 106, respectively.

Long SNP sequences

Finally we test Haploi on very long genotype sequences with 102 ∼ 103 SNPs. We selected 10
ENCODE regions from the HapMap DB, each spanning roughly 500 Kb and containing from 254
to 972 common SNPs across all four populations (see Table A.2 in Appendix for more details).
We performed haplotype inference under three different population-composition scenarios as
before, but due to the extremely high cost in computational time in these experiments, we only
worked on the full-size data sets. Figure 5.7 shows a comparison of haplotype reconstruction
quality, using PHASE, fastPHASE, MACH, Beagle and Haploi equipped with the PL heuristic 1.
Out of the 30 experiments we performed (10 regions and three scenarios), the PHASE program
failed to yield results in 5 experiments after a 31-day runtime, so we omit the corresponding
results in our summary figure.

The conclusion from Figure 5.7 is less clear than the ones from previous sections from ex-
periments on short SNP sequences and on simulation data. Overall, Beagle dominates all the
algorithms with a small margin, PHASE also shows comparable result to Beagle when con-
verged, but all the other algorithms work comparably in most cases across different datasets and
different scenarios. In terms of computational cost, Beagle was the fastest, it took less than a
minute for each task; fastPHASE and MACH mostly took less than 1 hour for each task, Haploi
took from 1-10 hours, depending on the length of the sequence; whereas PHASE took one to two
orders of magnitude longer, and was indeed impractical for phasing very long sequence.

In summary, our result shows that Haploi is competent and robust for phasing long SNP se-
quences from diverse genetic origins at reasonable time cost, even though it has not yet employed

1We could not get output of PHASE for these long sequences within acceptable running time (> 800hours).
Instead we included fastPhase result, which is said to be much faster than PHASE with a slight performance degra-
dation (Scheet and Stephens, 2006).
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any sophisticated way for processing long sequences, such as the recombination process. Since
Haploi appeared to outperform other methods over short SNPs, we believe that the competence
of Haploi on long SNPs is due to a better inference power endowed by the HDP model for multi-
population haplotypes; and we expect that an upgrade that incorporates explicit recombination
models in conjunction with HDP for long SNPs are likely to lead to more accurate haplotype
reconstructions.

5.5 Discussion
We have proposed a new Bayesian approach to haplotype inference for multiple populations
using a hierarchical Dirichlet process mixture. By incorporating an HDP prior which couples
multiple heterogeneous populations and facilitates sharing of mixture components (i.e., founder
haplotypes) across multiple Dirichlet process mixtures, the proposed method can infer the true
haplotypes in a multi-ethnic group with an accuracy superior to the state-of-the-art haplotype
inference algorithms.

There emerged new models related to our HDP model, the closest being the nested Dirichlet
process (NDP) by Rodriguez et al. (2006). In an NDP, instead of using a hyper-DP as a common
base measure as in HDP to allow sharing of founders across populations, the population-specific
DPs are directly drawn from a prior DP, so that not only the founders, but also their frequencies
can be shared across populations. Although this model can be more expressive in many appli-
cations, it may be less appropriate than HDP for multi-population haplotype problems where
excessive structural sharing across populations is not warranted, especially when different pop-
ulations bear very distinct demography and genetic prototypes. Another strategy proposed by
Muller et al. (2004) employs an explicit stochastic convex combination of a population-specific
prior and a universal prior for each founder. Under such a model, once a founder is destined to be
shared across populations, it will appear with equal frequency in all populations. HDP subsumes
this scenario, but also allows more flexible sharing of the founders.

The proposed model achieves the desirable properties of PAC regarding mutation dynamics
(Li, 2003), including the parental-dependent-mutation effect, albeit in a very different way. For
example, to see the PDM property, note that when a next haplotype is to be sampled accord-
ing to Equation (3.4), we pick an ancestor of some previously drawn haplotypes, and apply a
mutation process to the ancestor, rather than to one of the previously drawn haplotypes as in
PAC. This operation implicitly results in a PDM effect among haplotypes by relating them to
their corresponding founder via a tractable star genealogy equipt with a common mutation pro-
cess Ph(|founder). A new haplotype generated from this process will bear mutations over its
corresponding founders rather than been completely random. Above these founders, we model
their genealogy and type history by a coalescent-with-IMA model, whose resulting marginal is
equivalent to that of the Dirichlet process. Here a new founder can be sampled independent
of the type-history in the coalescent from the base measure, rather than according to a PDM,
with probability proportional to the IMA mutation rate. Putting everything together, the DP
mixture model essentially implements a combination of IMA and PDM: it models the geneal-
ogy and type history of hypothetical ancestors presumably corresponding to a bottleneck with a
coalescent-with-IMA model; below the bottleneck, it uses multiple (indeed, can be countably in-
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finite many) star genealogies rooted at the ancestors present in the bottleneck and equipt with an
ancestor-dependent Poisson mutation process, to approximate the coalescent-with-PDM model.
The time of the bottleneck depends on the value of the scaling parameter α of the DP. One can
introduce a prior to this parameter so that it can be estimated a posteriori from data.

It is well-known that under Kingman’s n-coalescent, a dominant portion of the depth of the
coalescent tree is spent waiting for the earliest few lineages to coalesce to the MRCA and the
majority of lineages of even a very large population can actually coalesce very rapidly into a
few ancestors, which means that the net mutation rates from each of these ancestors to their
descendants in a modern haplotype sample do not vary dramatically among the descendants.
Thus qualitatively a star genealogy provides a reasonable approximation to the actual (heavily
time-compressed) genealogy of a modern haplotype sample up to these ancestors. As a reward
of such approximation, a well-known property of DP mixture is that it defines an exchangeable
distribution of the samples. Furthermore, the Pólya urn construction of DP enables simple and
efficient Monte Carlo for posterior inference of haplotypes and other parameters of interest, and
the DPM formalism offers a convenient path for extensions that capture more complex demo-
graphic and genetic scenarios of the sample, such as the multi-population haplotype distribution
as we explored.

Unlike the models underlying PHASE and fastPhase, the PL heuristic used in the Haploi
program does not explicitly model the recombination process that shapes the LD patterns of long
SNP sequences. Since an HDP model without the aid of the PL-scheme dominates PHASE and
fastPhase over short SNPs, we believe that an upgrade that incorporates an explicit recombina-
tion model in conjunction with HDP is likely to lead to more accurate reconstruction of long
haplotypes. The hidden Markov Dirichlet process recently developed by us to model recombina-
tion in open ancestral space offers a promising path for such an upgrade (Xing and Sohn, 2007).
Under the proposed statistical framework for modeling haplotype and genotype distribution, it
is also straightforward to handle various missing value problems in a principled way. In another
possible extension, although in the present study we have assumed that the population labels of
individuals are known, it is straightforward to generalize our method to situations in which the
ethnic group labels are unknown and to be inferred. This opens the door to applications of our
method to large-scale genetic studies involving joint inference over markers and demography.
The HDP model is also a natural formalism for applications outside of population genetics, such
as in text modeling, where one can use an HDPM to model co-clustering of documents from
different journals (analogous to different populations here) according to both shared and unique
topics defined by, e.g, a latent Dirichlet allocation model (Blei et al., 2003); and also in network
modeling, where the neighbor profiles of every node can be modeled by a low-level DPM whose
likelihood function is defined by, e.g., a mixed membership stochastic block model (Airoldi et al.,
2006), and the entire network corresponds to an HDP over all nodes.

41



 

 

Four pops Two pops One pop

HDP fPh Ph Ma Be
0

0.2

0.4

0.6

0.8

#Individual per pop=60

HDP fPh Ph Ma Be
0

0.2

0.4

0.6

0.8

#Individual per pop=30

HDP fPh Ph Ma Be
0

0.2

0.4

0.6

0.8

#Individual per pop=20

HDP fPh Ph Ma Be
0

0.2

0.4

0.6

0.8

#Individual per pop=10

Figure 5.6: A comparison of haplotyping error on CEPH+Yoruba population over randomly chosen 100 sets of
6-SNP segments from Chromosome 21. The results were obtained under three population-composition scenarios:
(i) FourPops: when data from all the four populations were used (blue) for inference; (ii) TwoPops: when data from
CEPH and Yoruba populations were used together (green); (iii) OnePop: when each of CEPH and Yoruba population
was used separately (gray). Different sample sizes, with 60, 30, 20, and 10 individuals per each population, were
used.
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Figure 5.7: Performance on the full sequences of the selected ten ENCODE regions. (a) Error rates under four
population scenario (b) Under the two-population scenario. (c) Under the one population scenario. For cases of
which the program does not converge (NC) within a tolerable duration (i.e., 800 hours), we cap the bar with a “≈”
to indicate that the results are not available (NA).
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Chapter 6

Joint inference of population structure and
recombination events

6.1 Introduction

SNPs are remnants of ancient DNA alterations dated back to a time measured at a genealogi-
cal scale. They contain finer-grained information on molecular evolution than that revealed by
orthologous genomic sequences from multiple species. In general, the higher the frequency of
a SNP allele, the older the mutation that produced it, so high-frequency SNPs largely predate
human population diversification whereas low-frequency ones appeared afterwords. Therefore,
population-specific alleles may bear important information about human evolution such as spe-
cific migrations and genetic diversifications (Stoneking, 2001).

A number of variants of statistical admixture models for genetic polymorphisms have been
proposed for the analysis of current population structure (Falush et al., 2003; Pritchard et al.,
2000; Rosenberg et al., 2002). These models are instances of a more general class of hierarchical
Bayesian models known as mixed membership models (Erosheva et al., 2004), which postulate
that genetic markers of each individual are iid (Pritchard et al., 2000) or spatially coupled (Falush
et al., 2003) samples from multiple population-specific fixed-dimensional multinomial distribu-
tions (known as ancestry proportions (Falush et al., 2003), or AP) of marker alleles. Under this
assumption, the admixture model identifies each ancestral population by a specific AP (that de-
fines a unique allele frequency profile for each ancestral population for each marker) and displays
the fraction of contributions from each AP in a modern individual chromosome as a structural
map. Fig. 6.1 shows an example of structural maps of four modern populations inferred from a
portion of the HapMap multi-population dataset by Structure 2.1 (Falush et al., 2003; Pritchard
et al., 2000). In this population structural map, each individual is represented as a thin verti-
cal line which shows the fraction of the individual’s chromosome which originated from each
ancestral population, as given by a unique AP.

However, since an AP merely represents the frequency of alleles in an ancestral population,
rather than the actual allelic content or haplotypes of the alleles themselves, the admixture model
does not model genetic drift due to mutations from the ancestral alleles. Moreover, in the extant
admixture models, the correlations between loci along the chromosome are only captured by the
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Figure 6.1: Population structural map inferred by Structure 2.1 on HapMap multi-population data consisting of
CEU, YRI, HCB and JPT populations.

linkage disequilibrium due to variation in the AP fractions over all markers among individuals,
or due to a “recombination” process between APs , rather than ancestral chromosomes, for sam-
pling markers along a modern chromosome. These two scenarios are known as “mixture LD”
and “admixture LD” respectively (Falush et al., 2003). Neither one captures the actual recombi-
nation events at the ancestral chromosome level, so they do not enable inference of the founding
genetic patterns, the recombination events, the age of the founding alleles, or the composition of
individual chromosomes at founding chromosome level (Excoffier and Hamilton, 2003). Actu-
ally, while this model aims to provide ancestry information for each individual and each locus,
there is no explicit representation of “ancestors” as a real chromosome haplotype. Therefore, the
inferred population structural map emphasizes revealing the contributions of abstract population-
specific ancestral proportion profiles, which does not directly reflect individual diversity. This
representation may not be optimal, as seen in Figure 6.1: each modern population is represented
by a very homogenous, but distinct population structural sub-map, which reflects little about the
actual genetic diversity of each population and individual and little about the relative similarity
between populations. For example, the YRI population from Africa is known to be genetically
diverse, but in Figure 6.1 it appears to be the most homogeneous.

We have presented a new method, Spectrum, for inferring and representing population struc-
tures, using a unified statistical framework for modeling the genetic inheritance process that
allows both recombination among an unspecified number of founding haplotypes and mutations
from these founders. Based on this model, which represents a well-defined generative model for
the observed chromosomes, we represent the population structure in terms of an ancestral spec-
trum which shows the ancestral composition of each modern individual chromosome in terms
of its origin among the chromosomal ancestors. By considering the different ancestral associa-
tion patterns among populations, this spectrum helps to separate the sub-populations, as well as
reveal the diversity among individuals and populations. Moreover, our model allows us to re-
cover the recombination events in each individual chromosome. In fact, the population structure
can play an important role for the LD analysis. Figure 6.2 shows the LD measurements for all
pairwise loci on the ENm010 region from HapMap DB. When we compute LD in three popula-
tions of CEU (European ancestry), HCB and JPT (Asian ancestry) together (Figure 6.2(a)), some
degree of block-like patterns are visible, but when CEU (European ancestry) and YRI (African
ancestry) populations are mixed (Figure 6.2(b)), the block structure is less obvious. This re-
sult implies the existence of different genetic processes in the evolutionary history of the two
populations. Hence, if we perform LD or recombination analysis on a population which may
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(a) CEU + HCB + JPT (b) CEU + YRI

Figure 6.2: The LD measurements, |D′| (upper right), and the p-values for Fisher’s exact test (lower left), of HapMap
DB (Thorisson et al., 2005). In each of the LD maps, starting from the upper-left corner, all the markers are listed in
top-down and left-right directions, and each marker is at a spatial position corresponding to its actual genetic distance
with respect to the first marker at the upper-left corner. Note the LD-block structures on the mixed populations of
CEU and YRI in shown (b) are rather opaque compared to the LD patterns of CEU+HCB+JPT populations in (a).

have a concealed sub-population structure, it would be more informative to perform LD analy-
sis on each sub-population separately, and our ancestral spectrum offers a way to classify such
sub-populations on genetic basis. While the statistical methodologies developed so far mostly
deal with ancestral inference and LD analysis separately using specialized models that do not
capture the close statistical and genetic relationships of these two problems, we propose a uni-
fied framework which allows joint inference of the population structure and the recombination
patterns.

We assume that individual chromosomes in a modern population originated from a number
of ancestral chromosomes via biased random recombination and mutation. By associating each
ancestor with a hidden state, the recombination between the ancestors can follow a state transition
process, and the mutation can follow an emission process in the hidden Markov model. Hence
each individual chromosome can be thought of as a “mosaic” of ancestral chromosomes under
this model.

Several existing methods have employed similar ideas. For example, Daly et al. (2001) and
Greenspan and Geiger (2004) have developed hidden Markov models for locating recombina-
tion hotspots in haplotypes; Anderson and Novembre (2003) proposed a minimum description
length (MDL) method for optimal haplotype block finding. While these models are based on a
similar assumption that each observed haplotype is a “mosaic” of ancestral haplotypes and the
formation of the mosaic is governed by a hidden Markov process over the ancestor space, these
HMMs cannot be used easily to infer individual recombination events because the block bound-
aries which conceptually correspond to the recombination sites of all individual chromosomes
are decided outside the model via model selection, and the only intrinsic stochasticity lies in
the choice of the “ancestors” at each block for each chromosome rather than the genomic loca-
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tions of recombination events in each chromosome. It is also unclear to what extent this class
of approaches might be helpful for applications involving explicit ancestral map inference as
in Rosenberg et al. (2002) and for interpreting LD patterns that do not have sharp block bound-
aries as in Figure 6.2(b).

While most of the previous approaches ignore the inherent uncertainty in the genetic com-
plexity (e,g., the number of genetic founders of a population) of the data, our new approach
employs a non-parametric Bayesian model of infinite hidden Markov model which we call Hid-
den Markov Dirichlet Process to extend a closed genetic inheritance model based on a fixed
number of founders to an open ancestral space, which allows more flexible control over the num-
ber of genetic founders than has been provided by the statistical methods proposed thus far. We
report validation of Spectrum on both simulated data and on two real datasets of HapMap and
Daly data, and compare with a number of established methods.

6.2 The statistical model
We describe a statistical model for generating individual haplotypes in a modern population
from a hypothetical pool of ancestral haplotypes via recombination and mutations. We begin
our exposition with a parametric Bayesian model of genetic inheritance involving recombination
and mutation over a fixed number of ancestors; then we extend the model to open ancestral space
which requires no ad hoc specification of the number of ancestors, via a nonparametric Bayesian
approach.

6.2.1 Hidden Markov model for recombination and mutation in closed an-
cestral space

We begin with the assumption that modern chromosomes are derived from ancestral chromo-
somes via biased random recombination and mutation. This assumption corresponds to an ideal-
ized noninterference model for chromosomal crossover and a star genealogy over every inherited
site. If the number of ancestors is known to be K, sequential selection of recombination targets
from a set of ancestral chromosomes can be modeled as a hidden Markov process, where the
hidden states correspond to the founders, the transition probabilities correspond to the recombi-
nation rates between the recombining chromosome pairs, and the emission model corresponds to
a mutation process that passes the chosen chromosome in the founders to the descendants.

Assuming that individual haplotypes over T SNPs Hie = [Hie,1, . . . , Hie,T ] for e = 1, 2 are
given unambiguously for the study population, as is the case in many LD and haplotype-block
analyses (Anderson and Novembre, 2003; Daly et al., 2001), we can now treat the paternal and
maternal haplotypes of N individual as 2N iid samples and omit the parental index e. Although
this assumption may seem stringent, our model can easily generalize to unphased genotype data
by incorporating a simple genotype model, as will be explained later in this section.

Now, let Ak = [Ak,1, . . . , Ak,T ] for k = 1, . . . , K be the K ancestral haplotypes, and let
Ci = [Ci,1, . . . , Ci,T ] denote the sequence of inheritance variables that specify the index of the
ancestral chromosome at each SNP locus for each chromosome i. Also suppose that the transi-
tion probabilities of the HMM are given as a K × K matrix π. When no recombination takes

48



place during the inheritance process that produces the haplotype Hi from an ancestor k as as-
sumed in the HDP model in Chapter 5, then Ci,t = k for all t = 1, . . . , T . When recombination
occurs between a locus t and t + 1, we have Ci,t 6= Ci,t+1. We can introduce a Poisson point
process to control the duration of non-recombinant inheritance. That is, given that Ci,t = k, then
with probability e−dtr + (1 − e−dtr)πkk, where dt is the physical distance between two loci, r
reflects the rate of recombination per unit distance, and πkk is the self-transition probability of
ancestor k defined by HMM, we have Ci,t+1 = Ci,t; otherwise, the source state (i.e., ancestor
chromosome k) pairs with a target state (e.g., ancestor chromosome k′) between loci t and t+ 1
with probability (1− e−dr)πkk′ . That is,

P (Ci,t+1 = k′ | Ci,t = k) = e−drπk,k′ + (1− e−dr)δ(k, k′) (6.1)

Hence, each haplotype Hi can be thought of as a mosaic of segments of multiple ancestral chro-
mosomes from the ancestral pool {Ak}Kk=1.

The emission process of this model corresponds to a mutation model from an ancestor to
the matching descendent.We adopt the single-locus mutation model explained in Equation (4.1).
As discussed in Liu et al. (2001), this model corresponds to a star genealogy resulting from
infrequent mutations over a shared ancestor and is widely used in statistical genetics as an ap-
proximation to a full coalescent genealogy starting from the shared ancestor. Assuming that the
mutation rate θk admits a Beta prior with hyperparameter (αh, βh), the marginal conditional like-
lihood of all the haplotype instances h = {hi,t : i ∈ {1, 2, . . . , I}, t ∈ {1, 2, . . . , T}} given the
set of ancestors a = {a1, . . . , aK} and the ancestor indicators c = {ci,t : i ∈ {1, 2, . . . , I}, t ∈
{1, 2, . . . , T}} can be obtained by integrating out θ from the joint conditional probability starting
from Equation (4.1) which reduces to:

P (h|c, a) =
∏
k

R(αh, βh)
Γ(αh + lk)Γ(βh + l′k)

Γ(αh + βh + lk + l′k)

( 1

|B| − 1

)l′k
(6.2)

where Γ(·) is the gamma function, R(αh, βh) = Γ(αh+βh)
Γ(αh)Γ(βh)

is the normalization constant associ-
ated with Beta(αh, βh) (which is a prior distribution for θ), lk =

∑
t

∑
i I(hit = akt)I(cit = k)

is the number of alleles which were not mutated with respect to the ancestral allele, and l′k =∑
t

∑
i I(hit 6= akt)I(cit = k) is the number of mutated alleles. The counting record lk = {lk, l′k}

is a sufficient statistic for the parameter θk. Note that the main difference between this deriva-
tion and the one for the HDP mixture model is that we now deal with a locus-specific indicator
variable Cit that varies along the markers on the chromosome as the recombination is explicitly
considered in this model.

The model described above can be easily generalized to un-phased genotype sequence data
by introducing a genotyping model as described in Chapter 5. We assume that the observed geno-
type at a locus is determined by the paternal and maternal alleles of this site via the genotyping
model in Equations (4.2) and (4.1).

It is noteworthy that the proposed model presents a well-defined generative model for the
observed haplotypes or genotypes based on a spatial point process for stochastic recombination
and also random mutations over a pool of complete ancestral chromosomes. The difference in
our model compared to approaches with a similar HMM assumption (Anderson and Novem-
bre, 2003; Daly et al., 2001; Patil et al., 2001) is that, in those models, the “ancestors” are
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defined independently for each block rather than as whole chromosomes, which is biologically
less meaningful. Although such a generative process is still a simplification of the real biolog-
ical mechanism, it enables the joint statistical characterization of a number of genetic variables
of interest, via posterior inference based on well-founded statistical principles, and it strikes a
reasonable tradeoff between being biologically meaningful and computationally manageable.

6.2.2 Hidden Markov Dirichlet Process for Inheritance in open ancestral
space

So far, we have been assuming that recombination and mutation take place in a closed ancestral
space; that is, the number of ancestral chromosomes is known a priori. But this assumption,
which is also widely adopted in other existing approaches for LD analysis and ancestral infer-
ence, ignores the inherent uncertainty in the genetic complexity of populations. Model selection
according to information theoretic score or Bayes factors is a typical solution to problems of this
nature, but it can be inflexible when the hypothesis space is large. We have developed a nonpara-
metric Bayesian framework for modeling genetic polymorphism based on the Dirichlet process
(DP) mixtures and extension (Sohn and Xing, 2007a,b; Xing et al., 2004; Xing and Sohn, 2007),
which allows more flexible control over the number of genetic founders.

Using an infinite Hidden Markov model which we also call the Hidden Markov Dirichlet
Process (HMDP) (Sohn and Xing, 2007a,b; Xing and Sohn, 2007), we extend the HMM model
proposed in Section 6.2.1 to work in an infinite ancestral space. Recall that in the HMM inheri-
tance model described earlier, the transition probabilities can be represented as a K ×K matrix,
and each row of the matrix indicates the probabilities of transitioning (i.e., recombination) from
the source state (e.g., founder k) to all the target states (all the founders in the pool), which sums
to one. Now we do not restrict ourselves with such a K and generalize the HMM to a space with
countably infinite ancestors in principal. Our generalization can be understood as modeling each
row of transition probabilities from a specific founder of an HMM with a unique DP over open
ancestral space, letting all these DPs (each of which is over a particular row) follow a higher level
DP to ensure that they are all defined on the same open ancestral space. We have developed a
hierarchical Pólya urn scheme to realize this model and facilitate sampling based posterior infer-
ence. But at a high level, the recombination probability under HMDP P (Ci,t+1 = k′ | Ci,t = k)
can be expressed by the same formula as in Equation (6.1), except that the πkk′ now indicates
the transition probability from a source state k to a target state k′ in an open ancestral space
under HMDP (see Xing and Sohn (2007) for the somewhat cumbersome form for this variable).
This πkk′ specifies the probability of ancestor chromosome k pairing with ancestor k′ given that
a recombination is taking place, and k′ can grow arbitrarily large as needed conditioning on the
given data.

The generative process described above leads naturally to an algorithm for population ge-
netic inference. Unlike the classical coalescence models for recombination (Hudson, 1983),
which have been primarily used for theoretical analysis and simulation and are not feasible for
reverse ancestral inference based on observed genetic data, Spectrum provides a nonparametric
Bayesian formalism for recombination and inheritance that is well suited for data-driven poste-
rior inference on the latent variables that can yield rich information of the population ancestry
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and genetic structure of the study population. For example, using Spectrum, given the haplotype
(or genotype) data, one can infer the ancestral structure, LD and recombination patterns of a
population using the posterior distribution of inheritance variable c and ancestral state a, as we
will elaborate in the sequel.

6.3 MCMC Inference

In this section, we describe a Gibbs sampling algorithm for posterior inference under HMDP.
Recall that a Gibbs sampler draws samples of each random variable in the model from the con-
ditional distribution of the variables given (previously sampled) values of all the remaining vari-
ables. The variables of interest in our model include {Cit}, the inheritance variables specifying
the origins of SNP alleles of all loci on each haplotype, and {Akt}, the founding alleles at all
loci of each ancestral haplotype. All other variables in the model, e.g., the mutation rate θ, are
integrated out.

The Gibbs sampler alternates between two stages. First it samples the inheritance variables
{cit}, conditioning on all given individual haplotypes h = {h1, . . . , h2N} and the most recently
sampled configuration of the ancestor pool a = {a1, . . . , aK}; then given h and current values
of the cit’s, it samples every ancestor ak.

To improve the mixing rate, we sample the inheritance variables one block at a time. That
is, every time, we sample δ consecutive states ct+1, . . . , ct+δ starting at a randomly chosen locus
t+1 along a haplotype. For simplicity we omit the haplotype index i here and in the forthcoming
expositions when it is clear from context that the statements or formulas apply to all individual
haplotypes. Let c− denote the set of previously sampled inheritance variables. Let n and m
denote the sufficient statistics for the transitions between ancestors in HMDP Pólya urn scheme.
And let lk denote the sufficient statistics associated with all haplotype instances originated from
ancestor k. The predictive distribution of a δ-block of inheritance variables can be written as:

P (ct+1:t+δ |c−,h, a) ∝
t+δ∏
j=t

P (cj+1|cj,m,n)
t+δ∏
j=t+1

P (hj|acj ,j, lcj) (6.3)

This expression is simply Bayes’ theorem with
∏t+δ

j=t+1 p(hj|acj ,j, lcj) playing the role of the like-
lihood and p(ct+1:t+δ |c−,h, a) playing the role of the posterior. Note that, naively, the sampling
space of an inheritance block of length δ is |A|δ where |A| represents the cardinality of the an-
cestor pool. However, if we assume that the recombination rate is low and block length is not
too big, then the probability of having two or more recombination events within a δ-block is very
small and thus can be ignored. This approximation reduces the sampling space of the δ-block
to O(|A|δ), i.e., |A| possible recombination targets times δ possible recombination locations.

51



Accordingly, Equation (6.3) reduces to:

p(ct+1:t+δ | c−,h, a)

∼ p(at most one recombination in[t, t+ δ] |c−,h, a)

∝ p(ct′ |ct′−1 = ct,m,n)p(ct+δ+1 |ct+δ = ct′ ,m,n)×
t+δ∏
j=t′

p(hj|act′ ,j, lct′ ) (6.4)

for some t′ ∈ [t+ 1, t+ δ]. Recall that in an HMDP model for recombination, given that the total
recombination probability between two loci d-units apart is λ ≡ 1− e−dr ≈ dr (assuming d and
r are both very small), the transition probability from state k to state k′ is:

p(ct′ = k′ |ct′−1 = k,m,n, r, d)

=


λπk,k′ + (1− λ)δ(k, k′)

for k′ ∈ {1, ..., K}, i.e., transition to an existing ancestor,
λπk,K+1

for k′ = K + 1, i.e., transition to a new ancestor,

(6.5)

where πk,· represents the transition probability vector for ancestor k under HMDP.
Note that when a new ancestor aK+1 is instantiated, we need to immediately instantiate a new

DP under F to model the transition probabilities from this ancestor to all instantiated ancestors
(including itself). Since the occupancy record of this DP, mK+1 := {mK+1} ∪ {mK+1,k : k =
1, . . . , K + 1}, is not yet defined at the onset, with probability 1 we turn to the top-level DP
when departing from state K + 1 for the first time. Specifically, we define p(·|ct′ = K + 1)
according to the occupancy record of ancestors in the stock urn. For example, at the distal border
of the δ-block, since ct+δ+1 always indexes a previously inherited ancestor (and therefore must be
present in the stock-urn), we have:

p(ct+δ+1 |ct+δ = K + 1,m,n) = λ×
nct+δ+1

n− 1 + α
. (6.6)

Now we can substitute the relevant terms in Equation (6.3) with Equations (6.5) and (6.6). The
marginal likelihood term in Equation (6.3) can be readily computed based on Equation (4.1), by
integrating out the mutation rate θ under a Beta prior (and also the ancestor a under a uniform
prior if ct′ refers to an ancestor to be newly instantiated) (Xing et al., 2004). Putting everything
together, we have the proposal distribution for a block of inheritance variables. Upon sampling
every ct, we update the sufficient statistics n, m and {lk} as follows. First, before drawing the
sample, we erase the contribution of ct to these sufficient statistics. In particular, if an ancestor
gets no occupancy in either the stock or the HMM urns afterwards, we remove it from our
repository. Then, after drawing a new ct, we increment the relevant counts accordingly. In
particular, if ct = K + 1 (i.e., a new ancestor is to be drawn), we update n = n + 1, set
nK+1 = 1, mct = mct + 1,mct,K+1 = 1, and set up a new (empty) HMM urn with color K + 1
(i.e. instantiating mK+1 with all elements equal to zero).
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Now we move on to sample the founders {ak,t}. From the mutation model in Equation (4.1),
we can derive the following posterior distribution to sample the founder ak.

p(akt|c,h) ∝
∫ ( ∏

i|cit=k

p(hit|akt, θ)
)

Beta(θ|αh, βh)dθ

=
Γ(αh + lkt)Γ(βh + l

′

kt)

Γ(αh + βh + lkt + l
′
kt)(|B| − 1)l

′
kt

R(αh, βh), (6.7)

where lkt is the number of allelic instances originating from ancestor k at locus t that are identical
to the ancestor, when the ancestor has the pattern akt; and l′kt =

∑
i I(cit = k | akt) − lkt repre-

sents the complement. The normalization constant of this proposal distribution can be computed
by summing the right-hand side of Equation (6.7) over all possible allele states of an ancestor
at the locus being sampled. If k is not represented previously, we can just set lkt and l′kt both to
zero. Note that when sampling a new ancestor, we can only condition on a small segment of an
individual haplotype. To instantiate a complete ancestor, after sampling the alleles in the ancestor
corresponding to the segment according to Equation (6.7), we first fill in the rest of the loci with
random alleles. When another segment of an individual haplotype needs a new ancestor, we do
not naively create a new full-length ancestor; rather, we use the empty slots (those with random
alleles) of one of the previously instantiated ancestors, if any, so that the number of ancestors
does not grow unnecessarily.

6.4 Results
We validated Spectrum on a simulated dataset and analyzed two real datasets: the HapMap four-
population data (Thorisson et al., 2005) and the single-population data from Daly et al. (2001).
Although Spectrum can be applied to the case of genotype data as well, we primarily focus on
haplotype data for simplicity. The HapMap data includes 209 individuals’ haplotypes (phased
by PHASE software (Stephens and Scheet, 2005; Stephens et al., 2001)) on the ENm010 region
of chromosome 7. The Daly data includes 256 individuals (after excluding one person due to
severe missing data), whose haplotypes (512 in total) can be recovered from trio data. For each
dataset, we focus on the analysis of population structure and recombination patterns based on the
ancestral origin of each SNP locus in each individual haplotype.

6.4.1 Analyzing a simulated haplotype population
We simulated a population of individual haplotypes with a fixed number Ks of randomly gener-
ated founder haplotypes, on each of which a set of recombination hotspots were pre-specified.
Then we applied a recombination process, which is defined by a Ks-dimensional HMM, to the
ancestor haplotypes to generate Ns individual haplotypes via sequentially recombining segments
of different ancestors according to the simulated HMM states at each locus and mutating certain
ancestor SNP alleles according to the emission model. All the ancestor haplotypes were set to
be 100 SNPs long. The hotspots are pre-specified at every 10-th loci in the ancestor haplotypes.
Overall, 30 datasets, each containing 100 individuals (i.e., 200 haplotypes) with 100 SNPs, were
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Figure 6.3: Sampling trace of the top three most occupied factors that correspond to the founder haplotypes. The
x-axis represents the sampling iteration, and the y-axis represent the fraction of the occupancy (i.e., be chosen as
recombination target) of each factor over total occupancy.

generated from Ks = 5 ancestor haplotypes. Since there is no extant method that can perform
both structural analysis and recombination analysis, we compared our method with existing al-
gorithms specialized for each of our tasks. For ancestral inference, we implemented 3 standard
fixed-dimensional HMMs, with 3, 5, and 10 hidden states, respectively, where 5 corresponds
to the true number of founders for the simulation. For recombination analysis, we selected the
widely used LDhat 2.0 (Fearnhead and Donnelly, 2001) for comparison. Structure 2.1 yields
a different kind of population map that is not quantitatively comparable to that from Spectrum.
Therefore, we only show empirical comparisons on real data.

We integrated out the mutation rate θ as before, and sample variables {ak,t} and {ci,t} itera-
tively. We monitor convergence based on the occupancy counts of the top factors in the master
DP. Typically, convergence was achieved after around 3000 samples (Figure 6.3), and the sam-
ples obtained after convergence with proper de-autocorrelation, i.e., by using samples from every
10 iterations over 5000 ∼ 10000 samples are used for computing relevant sufficient statistics. To
increase the chance of proper mixing, 10 independent runs of sampling, with different random
seeds, are simultaneously performed.

Founder reconstruction

Using HMDP, we successfully recovered the correct number (i.e., K = 5) of founders in 21
out of 30 simulated populations; for the remaining 9 populations, we inferred 6 founders, as the
mode of the posterior distribution. From samples of founder states {akt}, we reconstructed the
ancestral haplotypes under the HMDP model. For comparison, we also inferred the ancestors
under the 3 standard HMM using an EM algorithm. We define the ancestor reconstruction error
εa for each ancestor to be the ratio of incorrectly recovered loci over all the chromosomal sites.
The average εa over 30 simulated populations under 4 different models are shown in Figure 6.4.
In particular, the average reconstruction errors of HMDP for each of the five ancestors are 0.026,
0.078, 0.116, 0.168, and 0.335, respectively. There is a good correlation between the reconstruc-
tion quality and the population frequency of each ancestor. Specifically, the average (over all
simulated populations) fraction of SNP loci originated from each ancestor among all loci in the
population is 0.472, 0.258, 0.167, 0.068 and 0.034, respectively. As one would expect, the higher
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the population frequency of an ancestor is, the better its reconstruction accuracy. Interestingly,
under the fixed-dimensional HMM, even when we use the correct number of ancestor states, i.e.,
K = 5, the reconstruction error is still very high (Figure 6.4), typically 2.5 times or higher than
the error of HMDP. We conjecture that this is because the non-parametric Bayesian treatment
of the transition rates and ancestor configurations under the HMDP model leads to a desirable
adaptive smoothing effect and also less constraints on the model parameters, which allow them
to be more accurately estimated. Whereas under a parametric setting, parameter estimation can
easily be sub-optimal due to lack of appropriate smoothing or prior constraints, or deficiency of
the learning algorithm such as local-optimality of EM.

Structural analysis

Spectrum uncovers the genetic origins of all loci of each individual haplotype in a population
from Gibbs samples of the inheritance variables {ci,t}. For each individual, we define an em-
pirical ancestor composition vector ηe, which records the fractions of every ancestor in all the
cit’s of that individual. Figure 6.5 displays an ancestral spectrum constructed from the ηe’s of all
individuals. In this spectrum, each individual is represented by a vertical line which is partitioned
into colored segments in proportion to the ancestral fraction recorded by ηe. Five spectrums are
shown in Figure 6.5, each of which corresponds to (1) true ancestor compositions, (2) ancestor
compositions inferred by Spectrum, and (3-5) ancestor compositions inferred by HMMs with 3,
5, 10 states, respectively. To assess the accuracy of our estimation, we calculated the distance
between the true ancestor compositions and the estimated ones as the mean squared distance
between true and estimated ηe over all individuals in a population, and then over all 30 simulated
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Figure 6.4: Analysis of simulated haplotype populations. A comparison of ancestor reconstruction errors for the
five founders indexed along x-axis. The vertical lines show ±1 standard deviation over 30 populations.
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Figure 6.5: Analysis of simulated haplotype populations. The true (panel 1) and estimated (panel 2 for Spectrum,
and panel 3-5 for 3 HMMs) population maps of ancestral compositions in a simulated population.

Table 6.1: False positive and false negative rates for recombination hotspot detection over 30 population samples.
Two kinds of threshold ω’s are used. The results with different tolerance windows wtol are also shown.

Spectrum LDhat 2.0 HMM (K = 5)
wtol 0 ± 1 ± 2 0 ± 1 ± 2 0 ± 1 ± 2

ω= FPR 0.16 0.11 0.07 0.19 0.09 0.06 0.18 0.12 0.11
3rd quartile FNR 0.11 0 0 0.22 0.11 0.11 0.33 0.11 0.11

ω s.t. FPR 0.16 0.11 0.07 0.22 0.11 0.07 0.18 0.12 0.11
FNR∼FAR FNR 0.11 0 0 0.22 0.12 0.11 0.33 0.11 0.11

populations. We found that the distance between the Spectrum-derived population spectrum and
the true spectrum is 0.190±0.0748, whereas the distance between HMM-spectrum and true spec-
trum is 0.319± 0.0676, significantly worse than that of Spectrum even though the HMM is set to
have the true number of ancestral states (i.e., K = 5). Because of dimensionality incompatibility
and apparent dissimilarity to the true spectrum for other HMMs (i.e., K = 3 and 10), we forgo
the above quantitative comparison for these two cases.

Recombination Analysis

From the Gibbs samples of {cit}, we can also infer the recombination status of each locus of
each haplotype. We define the empirical recombination rates λe to be the ratio of individuals
who are determined to have recombinations at each locus over the total number of haplotypes
in the population. We classify a locus to be a recombination hotspot if its λe is greater than an
empirical threshold ω, which is set to be the 3rd quartile value of the estimated recombination
rates. Alternatively we can set ω to be the λe value at which the false positive rate and the false
negative rate become equal in a held-off set. Due to the stochastic nature of the recombination
position in our simulation, we score a correct hit of recombination hotspot if the identified hotspot
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Spectrum

Structure 2.1

K = 2 K = 3

K = 4 K = 5

Figure 6.6: Inferred population structure of HapMap four population data from Spectrum, and Structure 2.1 with
different pre-specified numbers of population K.

based on λe-thresholding falls within a small window around the true position, and the window
is set to be 0, ±1, and ±2, respectively. Table 1 summarizes the results of the performance
comparison for the recombination hotspot detection, which shows that Spectrum outperforms
LDhat 2.0 and HMM in most of the cases.

6.4.2 Analyzing real datasets
Population Structure Analysis

We analyzed the population structure of HapMap data (on the ENm010 region) based on the an-
cestor composition vector ηe. Figure 6.6 shows the results from Spectrum and from Structure 2.1
with different pre-determined numbers of populationsK. Both algorithms successfully identified
the major geographical populations grouped as CEU, YRI, and HCB+JPT populations. However,
the population map from Structure 2.1 does not reflect the diversity of each population or sim-
ilarity between populations as mentioned earlie. In contrast, the result from Spectrum reveals
the relative diversity of each population clearly by showing the ancestral association fraction for
each individual from shared ancestors.

For further comparison, we applied each method to the YRI population only. In Figure 6.7,
panel (a) shows the ancestral spectrum of YRI when this population only is subject to analysis
by Spectrum; and panel (b) re-displays the YRI spectrum extracted from Figure 6.6(a), where all
four populations were analyzed together. Figure 6.7 (c) and (d) present the maps from Structure
2.1 applied to YRI only, under three- and five-cluster assumptions, respectively. While it is not
straightforward to match (a) with (b) pictorially, both maps reveal that this population is rather
diverse. On the other hand, Figure 6.7 (c) and (d), both from Structure 2.1, show two very differ-
ent structures from those in Figure 6.6, where the 4 populations were analyzed together. Since
Structure 2.1 maps each individual locus to its origin of population represented by a unique AP,
rather than to its origin of ancestral chromosome, this result is not surprising considering the
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(a) Spectrum (YRI only) (b) Spectrum (from Fig.6.6)

(c) Structure 2.1 (K = 3) (d) Structure 2.1 (K = 5)

Figure 6.7: Inferred population structure of HapMap YRI population data from (a)-(b) Spectrum , and (c)-(d) Struc-
ture 2.1 with different number of clusters K.

Figure 6.8: The estimated population map of the Daly dataset. The ordering of all individuals in the sample popula-
tion was determined by a K-means clustering with K = 6, followed by a within-cluster ordering of samples based
on their distances to the cluster centroid. The black vertical bars show the K-means cluster boundaries.

different level of details of the two (i.e., our spectrum and their map) representations. It seems
that our method provides an arguably more robust and consistent way of showing the popula-
tion structure in terms of origin of ancestral haplotypes, which clearly illustrates the sharing of
ancestors between populations, as well as the diversities of each population. It is also notewor-
thy that in Structure 2.1 the choice of K can significantly affect the result, and it is not always
easy to choose the best K, as shown in Figure 6.7. In contrast, our method does not rely on a
fixed number of ancestors, instead giving a flexible model for the genetic inheritance under a
nonparametric Bayesian framework.

Next, we analyzed the 256 individuals (i.e., 512 haplotypes) from the Daly data set with 103
SNPs. For a more informative revelation of the underlying population structure captured by the
empirical ancestor composition vector ηe, we clustered the individuals based on their ηe’s and
then ordered all individuals accordingly (Figure 6.8). Specifically, all individuals were clustered
into 6 clusters, which is an empirical choice for illustration, using the K-means algorithm. Within
each group, individual orderings were determined by their distances to the cluster centroid. In-
terestingly, we can see that although the Daly data were reported to be from a European-derived
population that is expected to be genetically less diverse, our ancestral map suggests that in this
population there exists distinct sub-structures, each with a unique ancestral composition.

Recombination analysis

For the analysis of recombination events in real datasets, rather than picking an empirical thresh-
old, we determined the recombination hotspots as follows. We fitted the estimated λe’s of all loci
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Figure 6.9: A mixture of Gaussian fitting of the estimated λe on HapMap data

with a one-dimensional mixture of Gaussians (Figure 6.9). Then we used the intersection point
of the two Gaussian components as the threshold for determining hotspot loci. This threshold is
essentially the point where the posterior probabilities of λe being a baseline recombination rate
or a hotspot recombination rate are equal. The mass in the area where the two Gaussians overlap
represents the Bayes-error of loci classification under this model. One can also employ more
rigorous model-based methods for hotspot classification, and we will return to this point in the
discussion section.

Figure 6.10 shows the recovered recombination rates on the ENm010 region of chromosome
7 for each population in HapMap DB. While the algorithm was run with all the populations
together, according to the implications about the distinct genetic structure reflected in the an-
cestral map (Figure 6.6), we estimated the empirical recombination rates separately for each
population (i.e., CEPH, YRI and HCB+JPT) by using the posterior samples belonging to each
population only. Figure 6.10 shows the recombination rate estimates and the detected recombi-
nation hotspots, together with the corresponding LD-measurement. While each recombination
pattern largely agrees with the given LD patterns, noticeably different patterns of recombination
hotspots of the three groups are observed, which may reflect different recombination histories of
the ancestors of these populations and the need for the population-based recombination analysis.
For comparison, the result on the mixed populations are also shown together for Spectrum and
LDhat 2.0 in the last column of Figure 6.10.

We also give the comparison of the recombination hotspot estimation on the Daly dataset
with those reported in Daly et al. (2001) which was based on an HMM employing different
numbers of states at different chromosome segments, and in Anderson and Novembre (An-
derson and Novembre, 2003) which is based on a minimal description length (MDL) principle.
In Figure 6.11, we show the plot of the empirical recombination rates estimated from Spectrum,
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Figure 6.10: For each population of HapMap data, the LD measure with the estimated recombination rates along
the chromosomal position are shown together with the detected recombination hotspots. The last column shows the
result on the mixed four populations from both Spectrum and LDhat 2.0.

side-by-side with the reported recombination hotspots. We also display the LD measurements to-
gether. Note that according to Spectrum, certain estimated recombination hotspots are very close
to each other; for example, at locus 398kb, two hotspots are right next to each other. This finding
suggests that the actual LD patterns in a population sample may not simply fall into blocks with
sharp boundaries universal to all individuals, as assumed in Daly’s HMM model. It is more ap-
propriate to define “hotspot regions” (i.e., stretches of consecutive hotspot loci) rather than point
“hotspot loci”, where necessary, to delineate haplotype blocks, as discussed in Li (2003). For
example, according to the estimated λe’s shown in Figure 6.11, 15 hotspot loci/regions (repre-
sented as thick solid vertical bars in Figure 6.11) were identified, and they divide the entire study
region into 16 haplotype blocks of low diversity. Note that in Figure 6.11, the x-axis represents
the actual genetic locations of the SNP loci (starting from 274kb at the leftmost with respect
to a genetic reference). Since the SNPs of interest are not located uniformly in this region, the
spatial-intervals as seen from Figure 6.11 between hotspots may not reflect the “lengths” of the
haplotype blocks. For example, the block between 445-518kb contains 15 SNPs. At the same
time, the seemingly longest interval between 738-877kb contains only 3 SNPs, two of which have
high recombination rates, which render this interval to be a hotspot region as explained below.
Biologically, this is not surprising because the probability of recombination between adjacent
SNPs increases with their physical distance, in addition to depending on the intrinsic recombina-
tion rate. This “hotspot region” between 738-877kb is more likely to be merely a consequence
of sparse location-sampling of SNPs in this region, rather than a biologically meaningful hotspot
region.

For more quantitative comparison of the results, we computed information-theoretic (IT)
scores based on the estimated within-block haplotype frequencies and the between-block transi-
tion probabilities under each model for a comparison. Figure 6.12 shows a comparison of these
scores for haplotype blocks obtained from HMDP and the other two sources. The left panel of
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Figure 6.11: Analysis of the Daly data. Upper panel: the LD-map of the data. Lower panel: a plot of λe estimated
via Spectrum; and the haplotype block boundaries according to Spectrum (black solid line), HMM (Daly et al.,
2001) (red dotted line), and MDL (Anderson and Novembre, 2003) (blue dashed line). Note that the thickness of
the black solid lines delineating the haplotype blocks is proportional to the width of the hotspot regions between
adjacent blocks.

Figure 6.12 shows the total pairwise mutual information between adjacent haplotype blocks seg-
mented by the recombination hotspots uncovered by the three methods. The right panel shows
the average entropies of haplotypes within each block. The number above each bar denotes the
total number of blocks. The pairwise mutual information score of the HMDP block structure
is similar to that of the Daly structure, but smaller than that of MDL. Similar tendencies are
observed for average entropies. Note that the Daly and the MDL methods allow the number of
founder haplotypes to vary across blocks to get the most compact local ancestor constructions.
Thus their reported scores are an underestimate of the true global score because certain segments
of an ancestor haplotype that are not or rarely inherited are not counted in the score. Thus the low
IT scores achieved by HMDP suggest that HMDP can effectively avoid inferring spurious global
and local ancestor patterns. This is confirmed by the population map shown in Figure 6.8, which
shows that HMDP recovered 6 ancestors and among them the 3 dominant ancestors account for
98% of all the modern haplotypes in the population.

Table 6.2 summarizes the summary statistics that characterize each haplotype block and
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Figure 6.12: Analysis of the Daly data. Information-theoretic scores for haplotype blocks from each method. The
left panel shows cross-block MI and the right shows the average within-block entropy. The total number of blocks
inferred by each method are given on top of the bars.

hotspot regions. We used the threshold of 0.005 determined by the mixture of Gaussians as
described above to identify recombination hotspots. The blocks were determined accordingly,
with the constraint that the lengths of the identified blocks were at least three SNPs long, to avoid
over-fragmenting the haplotypes. In column 1 of Table 6.2, the blocks with blockID starting with
an “r” represent the hotspot regions which contain more than 2 SNPs, and others represent the
haplotype blocks. The number of SNPs within the blocks varied from 3 to 15 (the second column
of Table 6.2). The actual genomic region and length of each block are shown in the third and the
fourth columns, respectively. The lengths of the smallest and the biggest blocks were 1.3kb and
93kb, respectively, while the average was 22kb. We also report the total number of distinct hap-
lotypes as a reflection of diversity for each block, of which the most diverse is, not surprisingly,
one of the largest blocks (which spans 71kb), which contains 17 different haplotypes. This is
significantly lower than the 217 possible different haplotypes one could observe had there existed
no co-inheritance among loci in this block. Note that the 17 haplotypes reported here indicate
the actual total observed diversity in this region among the study population, not the number of
prototypes underlying these haplotypes that parsimoniously account for the majority of the ob-
served diversity when small amounts of mutation are allowed, as reported in Daly et al. (2001).
The actual demographic diversity of these blocks is much lower than that which is reflected by
the total number of haplotypes, as shown by the results in columns 6-15. In columns 6-11 of
Table 6.2, we report the ancestor association frequencies of haplotypes within each block, where
the associations were directly estimated from the inheritance variable cit’s sampled by our al-
gorithm. We can see that, overall, 6 founders sufficed to fully account for our data, and indeed
within each block, only 3-4 of them were significantly used. We present the number of necessary
haplotypes to cover over 95% and 90% of the entire population, which were mostly around 3
with a few blocks with higher diversity around 10.
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6.5 Discussion
We have proposed a new Bayesian method, Spectrum, for jointly modeling genetic recombi-
nation with mutation and population structure. Under a pool of complete founder haplotypes,
Spectrum describes the underlying genetic process of recombination and mutation explicitly in
terms of the association between founders and modern individuals. By incorporating a hidden
Markov Dirichlet Process prior, which facilitates a well-defined transition process between in-
finite ancestor spaces, the proposed method can efficiently infer a number of important genetic
variables such as recombination hotspots and ancestor patterns, jointly under a unified statistical
framework.

Our model provides a new way of representing a population structure in terms of an ancestral
spectrum which shows the ancestral association composition of each modern individual chromo-
some with the chromosomal ancestors. While the existing method based on admixture models
(Falush et al., 2003) gives some degree of clear population label information, it is less informative
in showing the population diversity or relationship between populations in the genetic history.
In contrast, the Spectrum identifies the structure of sub-populations by considering the different
ancestral association patterns among populations, in addition to displaying the diversity among
individuals and populations, which yields a more informative representation for the population
structure among shared ancestors across the populations.

Moreover, Spectrum allows us to recover the recombination events in each individual chro-
mosome. Unlike other existing methods based on HMMs for recombination analysis which
assume fixed recombination sites for the population and consider block-wise ancestors, we pro-
posed a full generative model for haplotype inheritance which explicitly models the individual-
level genetic recombination and mutation along the chromosome. Note that the recombination
rate provided by Spectrum is defined with respect to the hypothetical founder pool and has not
been modeled as a per-generation rate typically used in traditional recombination rate estimation
models. Therefore, it is more suited for recombination hotspot analysis or for downstream ap-
plications that can benefit from the recombination block-structures such as admixture analysis or
association studies.

As of now, Spectrum does not intrinsically capture the heterogeneity of recombination rates
over loci, and the recombination rates are determined by the posterior distribution of recombina-
tion events under a universal recombination rate, rather than directly by a maximum likelihood
estimation of site-specific recombination rates as in Li (2003). Also, we have not addressed the
issues of threshold calculations and confidence measures of hotspot predictions as in Li (2003).
These problems are of importance in various applications such as linkage-based quantitative train
locus mapping and disease-gene mapping. One way of addressing these issues is to explicitly
introduce more recombination states, for example, for both base-line recombination and hotspot-
recombination, into the infinite HMM we proposed. Another possible extension to the existing
model is to introduce priors for site-specific recombination rates for Bayesian inference.
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Chapter 7

Robust estimation of local genetic ancestry
in an admixed population

7.1 Introduction

The problem of inferring genetic ancestries in a population has been widely investigated for var-
ious applications such as disease gene mapping and population history inference. For example,
the inferred ancestry information has been used in correcting the confounding effect by popula-
tion stratification in association studies (Price et al., 2006; Wang et al., 2010). The examination of
loci that have elevated probabilities of a specific ancestry has also given critical clues in selecting
out potential causal variants of certain diseases in admixture mapping (Cheng et al., 2009, 2010;
Zhu et al., 2011). Broadly, two different problem settings have been commonly considered for
ancestral structure analysis (Alexander et al., 2009), one on the ‘global ancestry’ that considers
the average proportion of each contributing population across the genome in an un-supervised
way (Alexander et al., 2009; Falush et al., 2003; Patterson et al., 2006); and the other on the ‘lo-
cal ancestry’ that is more concerned with a locus-by-locus ancestry given reference population
data (Pasaniuc et al., 2009; Price et al., 2009; Tang et al., 2006). We consider the problem of
estimating the local ancestry in an admixed population. A common scenario is to decompose the
chromosomes of modern African Americans into blocks that have either African or European
ancestry given the population data close to ancient African and European populations, which we
call ancestral populations. The populations of CEU and YRI are the most typical choices for
such ancestral population data when an admixed population of African Americans is considered.
We present a new haplotype-based method for local ancestry estimation that can deal with an
arbitrary number of ancestral populations in a non-parametric Bayesian framework.

A natural approach to this problem involves a Hidden Markov Model (HMM) that traces
the ancestry of each individual along the markers on a chromosome. A number of different
approaches have been proposed and theses methods can be largely categorized into two fami-
lies depending on how they represent the ancestral populations so that the local ancestry in an
admixed population can be estimated with respect to the reference information encoded by the
population representation method. The first family of methods use population-specific allele fre-
quency profiles as reference information as in traditional admixture studies (Alexander et al.,
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2009; Falush et al., 2003; Huelsenbeck and Andolfatto, 2007; Pritchard et al., 2000). Despite its
simplicity, low computational cost, and availability of such frequency profiles in representative
datasets, it is rather unnatural to model Linkage Disequilibrium (LD) under this setting because
the correlations between loci are reflected only by the variation in such allele frequencies and not
by the actual recombination events at the chromosome level. Therefore, either a subset of mark-
ers in low LD has to be selected in a preprocessing step, or a recombination process often needs
to be indirectly embedded to utilize a denser set of markers (Pasaniuc et al., 2009; Patterson
et al., 2004; Tang et al., 2006). The representation power of this family of methods thus tends to
diminish when the correlations between markers are not carefully considered (Price et al., 2008).

Another family of methods are based on haplotype data that may contain richer informa-
tion. These methods utilize representative haplotypes taken from each ancestral population data
as reference information for the local ancestry estimation (Price et al., 2009; Sundquist et al.,
2008). Each haplotype in an ancestral population, which we call an ancestral haplotype, consti-
tutes a hidden state in an HMM and the basic transition mechanism involves traversing among
these ancestral haplotypes. Although these approaches provide a more natural way to reflect the
underlying admixing process by simulating recombinations at a real chromosome level, the in-
ference result can be rather sensitive to the size and the choice of such ancestral haplotype data.
Moreover, few existing methods make use of the genetic relatedness between ancestral popula-
tions resultant from ancient population history and therefore the populations have been typically
treated as independent. To improve the robustness and the accuracy in light of these issues, HAP-
MIX (Price et al., 2009) introduces a ‘miscopying’ parameter that allows a small possibility for
an allele to be copied from population 2 even when it is assumed to be originated from ancestral
haplotype in population 1. In this way, it prevents unnecessary transitions among ancestral popu-
lations during inference and the allelic information in one population can be naturally borrowed
by another population. However, this method is limited to two-way admixture that involves only
two ancestral populations, and it is not trivial to generalize this model to consider more general
demographic scenarios.

We propose a new Bayesian approach for local ancestry estimation that utilizes the multi-
population haplotype data in a more systematic way. Our method is built on the assumption
of a common pool of hypothetical founder haplotypes from which the ancestral haplotypes in
multiple ancestral populations are to be inherited, and from which in turn the individuals in an
admixed population are generated as well by the admixing process between ancestral popula-
tions. Motivated by the population model described in Chapter 6 and in Sohn and Xing (2007b,
2009), we represent the ancestral population data by an infinite hidden Markov model in which
the hidden states correspond to the unknown number of hypothetical founder haplotypes. The
recombination and mutation events are then modeled with respect to these founders as transition
and emission process. For an individual in an admixed population, we extend the hidden state
space to a joint space of founder haplotypes and ancestral populations. That is, we incorporate
a hidden state variable consisting of two indicator variables, one for selecting the hypotheti-
cal founder haplotype and the other for selecting the ancestral population that it is originated
from. The hidden state variable corresponding to the ancestral population determines the local
admixing status and hence defines the local ancestry along the markers. Furthermore, population-
specific time parameters are incorporated and scale the recombination rates in the corresponding
populations accordingly to explain the gap between the hypothetical era of founder haplotypes
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and each of the ancestral populations. We observe that this also enhances the robustness of our
model under scenarios that deviates from the common modeling assumption that all the popula-
tions participate in the admixture simultaneously.

A subtle issue in the proposed representation is how to choose the number of founders and
how to construct them efficiently across multiple populations. Naı̈vely, we may assume K
founders per population, but under this setting, not only one has to employ a non-trivial model
selection process to determine K, but also there is in general no correspondence between the K
founders in one population and another set of K founders in a different population. This prob-
lem would not only result in serious identifiability and multi-modality issue that can severely
slow down inference, but also, it will restrict the information sharing across populations and
hence compromise the accuracy of ancestry estimation as well. On the other hand, if we are to
use one shared set of K founders, the representational power of population-specific HMM can
also be limited. A non-parametric Bayesian framework using an infinite hidden Markov model
gives a natural solution for this (Beal et al., 2002; Teh et al., 2010). Under an infinite HMM,
an unbounded number of founder haplotypes can be systematically handled to describe a study
population. If we employ multiple such infinite HMMs defined over the same set of founders,
one infinite HMM per population, then it allows the founders to be shared between populations,
while different populations do not have to include all these founders and can have a unique set
of founders with its own frequency and recombination patterns among them. The number and
the haplotypes of the founders are recovered as a result of posterior inference from data. Un-
der a Dirichlet process prior, the posterior typically yields a parsimonious set of founders. This
non-parametric Bayesian framework allows us to exploit the genetic relatedness between popu-
lations in a principled way by describing the ancestral populations in terms of a common set of
founder haplotypes. In Sohn and Xing (2009), a similar approach using a hierarchical Dirichlet
process has been successfully used for the problem of haplotype inference from multi-population
data. However, the recombination process was not explicitly modeled in that work and a rather
heuristic approach was employed to handle the linkage disequilbrium structure.

The proposed approach is fully model-based and fundamentally different from conventional
haplotype-based approaches that model genetic processes directly on the given haplotypes in the
ancestral population data. In our model, genetic processes such as recombination or mutation
take place with respect to the hypothetical founders, and not between the ancestral haplotypes
and the admixed individuals. By basing our model on the hypothetical founders that lie on top of
and give rise to both ancestral and admixed population data, we utilize the multi-population data
and their relatedness efficiently, unlike most existing approaches that ignore such information.

In summery, the proposed model-based approach for ancestral inference enjoys enhanced ro-
bustness and accuracy, evidenced by its substantially less sensitivity to the choice and the amount
of ancestral population data comparing to other benchmark algorithms. In particular, our method
shows very competitive performance even when the sample size of the ancestral population data
is very small. This highlights the potential usefulness of this method in the analysis involving
underrepresented populations of limited data availability. In addition, the compact population
characterization by an infinite hidden Markov model improves the model flexility over existing
approaches so that it can naturally handle an arbitrary number of ancestral populations instead of
only two, and can be easily generalized to cases with even more complex demographic scenarios.
It is also robust even under deviation from the typical modeling assumption that multiple popu-
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lations participate in the admixture at the same time. Our method can utilize the whole admixed
population data together to recover the model parameters such as the population proportion, or
the time-scaled recombination rate, while most existing approaches require those parameters as
input. The estimated parameters can reveal important clues on the history and the characteristics
of the study population as will be shown in our empirical data analysis.

7.2 The statistical model

7.2.1 Problem setting

We consider an admixed population in which J ancestral populations have mixed since G gen-
erations ago. For example, if we are to recover the local ancestry of individuals in a Latino
population (admixed population), we can incorporate J = 3 populations of ancient African, Eu-
ropean, and Native American as our ancestral populations. In our problem setting, we assume
that the haplotypes of single nucleotide polymorphisms are given for the ancestral populations
and the admixed population. We will recover the pool of hypothetical founder haplotypes and
their associations to individuals by statistical inference. The association of admixed individuals
to the ancestral populations will be recovered along with their association to the founders, which
would lead to the estimation of local ancestry.

7.2.2 Overview of admixture model based on founder haplotypes

The choice of representation about how to characterize a population is the crucial starting point
in admixture modeling. Unlike most previous approaches that typically use allele frequency pro-
files (Pasaniuc et al., 2009; Sankararaman et al., 2008a) or representative ancestral haplotypes in
their raw forms (Price et al., 2009; Sundquist et al., 2008), we employ a new haplotype-based
method that builds on an assumption of hypothetical founder haplotypes of unknown cardinality.
The founder-based population model with explicit recombination modeling has been introduced
in Sohn and Xing (2007b) with the application to population structure and recombination analy-
sis. Under this approach, each individual in a population is generated from the hypothetical pool
of founders via a series of recombination and mutation. An individual chromosome can then be
viewed as a mosaic of the founders whose pattern is determined by the association with founders.
This mosaic process could be modeled as a Hidden Markov model in which the founders corre-
spond to the hidden states, the individual haplotypes correspond to the observation sequences,
the transition process is modeled by the recombination process, and the emission process by the
mutation from founders to the individuals. By employing an infinite hidden Markov model, the
number and the haplotypes of the founders can be recovered through posterior inference rather
than being pre-specified; and the (local) inheritance association between the founders and the
study individuals can also be derived.

Now we further extend this approach to model admixture events from an arbitrary number
of ancestral populations. When the ancestral populations start to mix and form an admixed
population, each individual chromosome in the admixed population can be decomposed into
blocks with distinct ancestry. For each of these blocks, we can trace back the source of the
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Figure 7.1: Graphical illustration of the proposed model

genetic materials to a haplotype in the corresponding ancestral population. Now, recall that this
‘ancestral haplotype’ is modeled as a mosaic of its founders. This means that each ancestry block
in an admixed individual is further dissected into a finer-grained mosaic of founders. Therefore,
the admixed inheritance process is a composite process with two different resolutions, one from
the founders to ancestral haplotypes, and the other from the ancestral haplotypes to the admixed
individuals. A graphical illustration of the proposed model is shown in Figure 7.1. A variant of
the infinite hidden Markov model is employed to make the choice of founders and the ancestral
populations at the same time along the chromosome.

7.2.3 Statistical model for generating ancestral and admixed population
data

We now describe in detail the admixed inheritance model as a generative process of the individ-
ual chromosomes in ancestral populations and an admixed population with respect to a set of
hypothetical founders.

Transition and emission probabilities

Our model involves a mosaic of two related jump processes of different genetic resolutions:
recombination between founders, and admixture over ancestral populations. For ease of descrip-
tion, we assume that the individuals are haploids. Let individual haplotypes be indexed by i,
ancestral populations by j, and the markers by t. And let Hit ∈ {0, 1} and Akt ∈ {0, 1} repre-
sent the allele of individual i and founder k at marker t, respectively. We introduce a set of hidden
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state variables Sit = (Cit, Zit) where Cit ∈ {1, 2, ...} and Zit ∈ {1, ..., J} represent the indicator
variables that select a founder and an ancestral population, respectively, on an i-th individual
chromosome at marker t. For each ancestral population j, let νjk be the initial and background
probability of founder k, and let πjk′k be the transition probability that determines the recombi-
nation probability from founder k′ to founder k. To take into account the different strength and
pattern of the recombination across different populations, we also introduce a set of time param-
eters, Tj ∈ (0,∞), for each ancestral population j, such that Tj corresponds to the hypothetical
time (generations) from the pool of founders to an ancestral population j. Similarly, G ∈ [0,∞)
represents the time since admixture, that is, the time from ancestral populations to the admixed
population. Let η = (η1, ..., ηJ) denote the population proportion variable such that ηj is the
expected proportion of ancestral population j in an admixed population. r = (r1, r2, ...rT ) and
d = (d1, . . . , dT ) represent the recombination rate and the physical distance between each neigh-
boring markers, respectively. The final transition probabilities and the emission probabilities are
defined as follows:

P (Si,0 = (k, j)) = P (Zi,0 = j)P (Ci,0 = k) = νjkηj

P (Sit = (k, j) | Si,t−1 = (k′, j′)) = (1− e−rtdtG)νjkηj +

e−rtdtGe−rtdtTjδ(k = k′)δ(j = j′) +

e−rtdtG(1− e−rtdtTj)πjk′kδ(j = j′) (7.1)

P (Hit | Sit = (k, j), Akt) = θ
I(Hit 6=Akt)
k (1− θk)I(Hit=Akt) (7.2)

We assume a founder-specific mutation parameter θk that determines the probability of mutation
from a founder k to individuals.

The overall idea underlying this representation is the two-layered inheritance framework, one
from the time of hypothetical founders to ancestral populations, and the other from those ances-
tral populations to the admixed population. If we set G = 0 in Equation (7.1), this two-layered
framework is reduced to the model of the first layer that characterizes the ancestral populations
with respect to the founder haplotypes. Under the reduced model, each population is associated
with its own hidden Markov model parameters and the recombination rate scaled by Tj . Suppose
(Ci,t−1, Zi,t−1) = (k′, j′) which means i-th chromosome has inherited from founder k′ at marker
t− 1 in ancestral population j′. At the next marker t, it either selects a new founder k with prob-
ability (1 − e−Tjrtdt)πjk′,k and set Cit = k, or no recombination takes place with the remaining
probability and Cit = Ci,t−1. If we trace the values of Cit across all the t, it will decompose the
chromosome i into blocks with distinct associated founders. Therefore, each chromosome can
be thought of as a mosaic of such founders.

Now, at the second layer which involves the admixture, this sequential process for selecting
founders Cit occurs within the same ancestral population with probability e−rtdtG so that Zit =
Zi,t−1. Or with probability (1 − e−rtdtG), a new population j as well as a new founder k is
chosen jointly with a probability proportional to the product of population proportion ηj and the
background probability νjk. Therefore, chromosomes both in the ancestral populations and in the
admixed population are modeled as mosaics of founders determined by the sequence of Cit. In
addition, each admixed individual i is associated with another resolution of mosaic determined
by the sequence of Zit across t. The estimation of local ancestry can be done by tracing the
posterior probability of Zit along the markers.
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Note that even when no admixture is assumed, we still have the flexibility of choosing a
different founder chromosome. This feature helps to control the number of transitions among
populations effectively so that the hidden state doesn’t need to change excessively. Moreover,
the population-specific time parameters scale the recombination probabilities accordingly so that
more ancient populations can have higher probabilities of recombination with respect to the
founders. This representation is especially useful in producing heterogenous resolution of mo-
saics in different ancestral populations. Although we assume the J populations participate in the
admixture simultaneously, those parameters allow various resolution of recombination patterns
in ancestral haplotypes and this greatly improves robustness of the model against the violations
of such modeling assumption as well as the accuracy of the ancestry estimation.

The cardinality of the founder space

Instead of fixing the number of hypothetical founders by doing statistical model selection, we
adapt a more flexible non-parametric approach by employing an infinite hidden Markov model
(Beal et al., 2002; Teh et al., 2010) so that the number of hidden states does not need to be pre-
specified. Recall that if we consider a finite, say K, hidden states, the transition probabilities
will be represented as a K × K matrix. Each row k of this matrix sums to one and defines the
probabilities of switching from a source state k to all the target states.

Now, if we consider an infinite hidden state space, each row of the transition matrix would be
an infinite dimensional vector which sums to one and the Dirichlet Process (DP) (Blackwell and
MacQueen, 1973; Ferguson, 1973) has been effectively used to describe such probability distri-
butions. To ensure all the row-specific DPs are built on the same state space, another Dirichlet
Process is shared as a common base measure at a top level, which actually corresponds to a hi-
erarchical Dirichlet Process model (Teh et al., 2010). Basically, (k, k′)-element of the transition
matrix πj defines the transition probability from state k to state k′ in population j, and for a
given source state k, the target state index k′ can increase as large as needed by the given data.
Infinite-dimensional vector of initial probabilities νj can be defined in a similar way under the
same hierarchical Dirichlet process framework. Since we consider multiple such infinite HMMs
for multiple populations, we let the same base measure shared across all the populations. This
infinite HMM-based framework leads to a very simple solution to how many founders to con-
sider and how to construct the founder space across multiple populations. The HMM parameters
of our admixture model thus can be summarized as follows:

β ∼ GEM(γ)

νj ∼ DP (τ, β)

πjk ∼ DP (τ, β)

where τ and γ define the scale parameters for the population-specific DPs and the top level DP,
respectively.

Other parameter description

We assume Beta prior for each of the mutation parameters θk, and Dirichlet distribution prior for
the population proportion parameter η ∼ Dirichlet(ξ1, ..., ξJ).
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For simplicity of inference, we transform the variables such that rt and Tj are combined as
grjt = rtTj . Similarly, we use the notation Gr

t := rtG. We assume these variables are i.i.d under
Gamma prior. Then Equation (7.1) is transformed as follows:

P (Sit = (k, j) | Si,t−1 = (k′, j′)) = e−G
r
t dte−g

r
jtdtδ(k = k′)δ(j = j′) +

e−G
r
t dt(1− e−grjtdt)δ(j = j′)πjk′k +

(1− e−Grt dt)νjkηij (7.3)

In summary, infinite hidden Markov model parameters combined with population genetics
parameters are used to capture different characteristics in populations and to describe admixture
event from an arbitrary number of populations in a unified framework. While we assume an
infinite number of founders a priori, the posterior inference usually produces a small number of
founders and this gives a compact representation of populations for the admixture analysis.

7.2.4 Posterior Inference

To overcome the drawbacks of slow convergence in traditional Gibbs sampling, we employ a
variant of beam sampling proposed for infinite HMMs (Van Gael et al., 2008). Basically, it
extends the well-known dynamic programming technique of the forward-backward algorithm in
a finite state HMM to an infinite state space case. It exploits the property that in an observation
sequence of finite length, the number of actually realized hidden states is finite at each iteration
step. Therefore, the number of states to be considered in forward-backward algorithm can be
adaptively changed over iterations.

Forward-backward algorithm for the proposed infinite HMM

We introduce auxiliary variables ut for t = 0, ..., T − 1 with the following distribution:

ui0 | Si0 = (k, j) ∼ Uniform(0, νjkηij)

uit | Sit = (k, j), Si,t−1 = (k′, j′) ∼ Uniform(0, qit) for t = 1, ..., T − 1

where

qit = e−G
r
t dte−g

r
jtdtδ(k = k′)δ(j = j′) +

e−G
r
t dt(1− e−grjtdt)δ(j = j′)πjk′k + (1− e−Grt dt)νjkηj

For notational convenience, we omit the notation i. Let the forward probabilities be

αt(k, j) = P (St = (k, j) | H0:t, u0:t)
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Then

α0(k, j) ∝ P (S0 = (k, j), H0, u0) ∝ P (S0 = (k, j))P (u0 | S0 = (k, j))P (H0 | C0 = k)

= δ(u0 < νjkηZ0)P (H0 | C0 = k)

αt(k, j) ∝
∑
k′,j′

P (St = (k, j), St−1 = (k′, j′), Ht, ut | H0:t−1, u0:t−1)

∝ P (Ht | Ct = k)
∑
k′,j′

P (ut | St = (k, j), St−1 = (k′, j′))×

P (St = (k, j) | St−1 = (k′, j′))αt−1(k′, j′)

∝ P (Ht | Ct = k)×
J−1∑
j′=0

∞∑
k′=0

δ(ut < P (St = (k, j) | St−1 = (k′, j′)))αt−1(k′, j′) (7.4)

Given u0, ..., uT−1, the number of states k such that αt(k, j) > 0 for t = 0, ..., T − 1 is finite: for
t = 0, the number of k such that νjk > u0 is finite for any j since

∑
k νjk = 1 with νjk ≥ 0, and

recursively, we can see the number of k with αt(k, j) > 0 is finite. Therefore, the infinite sum
over the previous states in the calculation of forward probability reduces to a finite sum.

CT−1 and ZT−1 can be sampled from αT−1(k, j). Then for t = T − 2, ..., 0, we sample Ct
and Zt using

P (Ct, Zt | H0:T−1, u0:T−1, Ct+1, Zt+1) ∝
P (Ct+1, Zt+1 | Ct, Zt)αt(Ct, Zt)P (ut+1 | St, St+1)

Since the entire inheritance process from founders to ancestral populations and then the ad-
mixed population is modeled in a single Bayesian framework, it allows the exact posterior in-
ference by putting the ancestral and admixed population data together in a single series of beam
sampling iterations described above. However, this is not optimal in terms of time complexity
as we often favor to run multiple test sets after we get reference information about the ancestral
populations. Therefore, we split the whole inference process into two phases: 1) training phase
where the model parameters about ancestral populations are learned, and 2) ancestry estimation
phase that actually recovers the ancestry of admixed individuals.

One caveat of this decomposition is that we may not fully take advantage of the flexibility
of the infinite model. This is because we need to constrain the hidden state space somehow as
a finite space when the output from the training phase is returned. As an n-th posterior sample
from Bayesian inference of the training phase, we get a finite numberK(n) of founder haplotypes
and the related HMM parameters of π(n) and ν(n) with gr(n)

j for each j. Averaging these results as
one training output is not straightforward as K(n) can be different across different n. A plausible
approach would be to keep multiple, say N posterior samples S = {A(n), π(n), ν(n)}n=1,...,N and
run the ancestry estimation routine N times using each of these parameters in S. Then the N
posterior distributions of the ancestry indicator variable Z can be easily averaged to form the
final posterior distribution since Z is defined over a fixed number of populations J unlike C or
other parameters that depend on K. Note that gr(n)

j does not depend on K, so we can use the
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posterior mean of gr(n)
j as the final estimate for it. Another practical approach would be to select

a single output from the training phase such as a MAP solution, and estimate the local ancestry
based on the single set of parameters. Empirically, we observe that the performance degradation
by this MAP solution with respect to the first approach is relatively small.

Training phase

For an individual in an ancestral population j, we can set the time since admixture G to be
zero and the population indicator variables Z to be observed as constant. Then the hidden state
variable Sit = (Cit, Zit) can be replaced with a Cit indicating the founder and Equation (7.3) is
reduced to the followings :

P (Ci0 = k) = νZi0k

P (Cit = k | Ci,t−1 = k′) = e−g
r
Zi0t

dtδ(k = k′) + (1− e−g
r
Zi0t

dt)πZi0k′k

We infer the variable C through the Beam sampling algorithm, and the other variables through
the standard Gibbs sampling. If we reduce the model to the training phase, we can treat the
variable Z as observed. Therefore, the forward probabilities are written as follows:

α0(k) ∝ P (C0 = k,H0, u0) ∝ P (C0 = k)P (u0 | C0 = k)P (H0 | C0 = k)

= δ(u0 < νZ0kηj)P (H0 | C0 = k)

αt(k) ∝
∑
k′

P (Ct = k, Ct−1 = k′, Ht, ut | H0:t−1, u0:t−1)

∝ P (Ht | Ct = k)
∑
k′

P (ut | Ct = k, Ct−1 = k′)P (Ct = k | Ct−1 = k′)αt−1(k′)

∝ P (Ht | Ct = k)
∞∑
k′=0

δ(ut < P (Ct = k | Ct−1 = k′))αt−1(k′) (7.5)

Note that the contribution of transition at each neighboring loci t − 1 and t to the pa-
rameter π and grjt is not all equal because of the self-transition probability forced by the re-
combination model in Equation (7.3). We handle this by sampling auxiliary binary variables
Mit ∼ Bernoulli(1− e−g

r
Zi0t

dt) to indicate whether the jump occurs in the transition or not. The
transition probability can be decomposed as follows:

P (Cit | Ci,t−1) = P (Mit = 0)δ(Cit = Ci,t−1) + P (Mit = 1)πjCi,t−1,Cit

Then we sample Mit given Cit and Ci,t−1 backward in forward-backward process from

P (Mit|Cit = (k, j), Ci,t−1) ∝ P (Mit)P (Cit = k | Ci,t−1 = k′,Mit)

Now, π can be sampled as in Van Gael et al. (2008), but conditional on M , which involves
the transitions with Mit = 1 only. grjt can also be sampled conditional on M using P (grjt |
{C:t, C:,t−1,M:t}) ∝ P (grjt)

∏
i∈Pop j P (Ci,t | Ci,t−1,Mit). The overall sampling procedure is

summarized in Algorithm 1.
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Algorithm 1 Procedure for training iHMMs in reference populations
Input: Haplotype data H for ancestral populations
Output: N posterior samples of founders and the related HMM parameters
{A(n), π(n), ν(n),gr(n)} for n = 1, . . . , N

1: repeat
2: for each individual chromosome i do
3: Sample the auxiliary variables uit for t = 0, ..., T − 1.
4: Sample Cit | u,H,A using the beam sampling algorithm
5: Sample Ak,t and θk
6: Sample parameters ν, π, β and gr.
7: end for
8: until convergence

Algorithm 2 Procedure for estimating local ancestry in an admixed individual
Input: Haplotype data H for an admixed population, estimated parameters
{A(n), π(n), ν(n),gr(n)}
Output: Posterior distribution of Z = (Zit) .

1: for n = 1, . . . , N do
2: repeat
3: for each individual chromosome i do
4: Sample Sit = (Cit, Zit) | H,A using the forward-backward algorithm
5: Sample θ, η, and Gr .
6: end for
7: until convergence
8: Keep S posterior samples of Z
9: end for

10: Average N · S posterior samples and return the final posterior distribution of Z

Ancestry estimation phase

As the variables A, gr, ν, π are returned in the training stage, the unknown variables now are the
admixture proportion η, the generations since admixture G, the mutation rate θ of founders, and
S = (C,Z) for the admixed individuals. We re-sample θ in the ancestry estimation phase instead
of getting it from the training step because θ can reflect additional information about the admixed
population by describing it in terms of the discrepancy between founders and the population.
As we now deal with a finite number of hidden states obtained from the training phase, it is
not necessary to incorporate the auxiliary variable u to sample S in the ancestry estimation
phase. The variables Sit thus are sampled through a standard forward-backward algorithm. As
in the training stage, the transition probability at each marker can be decomposed into two parts,
depending on whether the jump process for admixture occurs or not. We use the similar technique
to sample Gr by introducing an auxiliary variable Lit ∼ Bernoulli(1 − e−G

r
t dt). The overall

sampling scheme is summarized in Algorithm 2.
If the time since admixture G, population proportion η, and the recombination rate r is as-
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sumed to be known as is often the case in typical admixture analysis, we can omit the second step
of parameter sampling (line 5 in Algorithm 2) and re-use θ that can be returned from the training
stage. Then it is also possible to get an approximate solution by use of a posterior decoding from
forward-backward steps in a finite dimensional HMM.

7.3 Result

7.3.1 Simulation design
To validate the proposed method, we simulated admixed individuals using Human Genome Di-
versity Project (HGDP) data genotyped on Illumina Infinium HumanHap550 BeadChips (Jakob-
sson et al., 2008). Considering previous results that have revealed distinct genetic characteristics
across different continents, we selected reference populations that would serve as putative an-
cestral populations: YRI for African ancestry, CEU for European, JPT and CHB for East Asia,
and Maya for Native American ancestry. Each of the resulting ancestral populations contained
30, 30, 28, and 13 individuals, respectively. We first focus on chromosome 22 in the simulation
study.

To take into account the discrepancy between real ancestral populations and those used in
training, we generated admixed individuals using populations which are similar but not identical
to those used as ancestral populations. For example, individuals in Russian and BantuKenya
populations are mixed to simulate an admixed population and then the local ancestries of these
individuals are estimated with respect to CEU (European) and YRI (African) populations. For
each simulation scenario below, we generate 30 admixed individuals.

The performance is measured as the mean squared error rate of ancestry probabilities along
the loci. Specifically, let pijt denote the probability of ancestry j at a locus t in an individual
i. The average error rate of

∑J
j=1

∑T
t=1(ptrueijt − pestijt )2/T across all the individuals is reported.

We compare our results with the two state-of-the-art methods that stem from different population
representation methods : LAMP (Pasaniuc et al., 2009; Sankararaman et al., 2008b), the method
based on allele frequency profiles as reference information, and HAPMIX (Price et al., 2009)
that uses representative individual haplotypes in the ancestral populations, which appear to out-
perform other available methods such as HAPPA (Sundquist et al., 2008), SABER (Tang et al.,
2006) or ANCESTRYMAP (Patterson et al., 2004) from previous studies. Since these benchmark
algorithms require the parameters for recombination r, the admixture time G, and the population
proportion η to be specified as input, we provided the true values of these parameters to all the
algorithms in the simulation study. Additionally, each haplotype data for ancestral populations
were converted to allele frequency profiles and then LAMP was run with these frequency data as
input. For the analysis below, we used the MAP solution as our parameter estimation from the
training phase.

7.3.2 Performance on two-way admixture
The first simulation scenario considers two-way admixture of ancient European and African
populations. The proportion of each ancestral population was set to be equal (η = (0.5, 0.5)).
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Figure 7.2: True and estimated local ancestries of two sample individuals in an admixed population from African
and European populations. The x-axis corresponds to chromosomal position and the y-axis corresponds to the
ancestry probability (yellow: African, dark grean: European)

The local ancestries of the admixed individuals were estimated based on the trained model using
two ancestral populations of African (YRI) and European (CEU). In Figure 7.2, we first display
the true and the estimated local ancestry probabilities of two sample individuals in an admixed
population. The yellow color corresponds to African ancestry, and the dark green corresponds to
European ancestry. The length of the vertical color bar at each chromosomal location along the
x-axis is proportional to the corresponding ancestry probability. While all the algorithms produce
reasonable results in general, the proposed method denoted by FDhap (FounDer haplotype based
admixture model) is especially effective in picking out fine details of ancestry changes as can be
seen in the example.

The overall performance of each algorithm across all the generated samples are shown in
Figure 7.3. Roughly, we can see that FDhap and HAPMIX perform comparably to each other
and tend to outperform LAMP. Still, all the three algorithms perform reasonably well as can
be seen in the small overall error rates. For example, the average error rates for G = 10 were
0.0077, 0.0086, and 0.0116 in FDhap, LAMP, and HAPMIX, respectively.

7.3.3 Performance as a function of data size in training set
To further evaluate each method in terms of its performance with respect to the training data
size, we varied the number of available individual samples per ancestral population. Specifically,
we trained the model using 3, 5, 10, 20, 30 individuals, hence, 6, 10, 20 40, 60 haplotypes, per
ancestral population and estimated the ancestries based on each of the trained model. The same
two-way admixture scenario from African and European populations is considered of which the
result on the full dataset is shown in Figure 7.3. The performance of each algorithm is presented
as a function of training data size in Figure 7.4. It is clearly seen that the proposed method
substantially outperforms the other benchmark algorithms, especially when the data size is small.
Even when only a few ancestral haplotypes are available, it still gives very good estimates of the
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Figure 7.3: Boxplot for mean squared error rates of ancestry estimation for two-way admixture of African and
European populations since G generations ago with (a)G = 5, (b) G = 10, and (c) G = 20.
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Figure 7.4: Error rate as a function of the number of individuals per train population. Two-way admixture of African
and European popualtions since G generations ago with (a) G = 5, (b) G = 10, and (c) G = 20.

local ancestries compared to the others. Therefore, our method can be especially useful in the
analysis of admixture effect involving non-traditional populations where the amount of available
genotypes is still limited.

7.3.4 Performance on three-way admixture

We now consider the admixture that involves more than two ancestral populations. Analogous
to the formation of Puerto Rican population (Tang et al., 2007), we included CEU, YRI, and
Maya populations as ancestral populations for African, European, and Native American ances-
try, and generated an admixed population using Russian, BantuKenya, and Pima with admixing
proportion of 0.66, 0.18, and 0.16, respectively. Figure 7.5 shows the resulting error rates across
different values of G. Since HAPMIX cannot handle more than two ancestral populations di-
rectly, we ran it in three different modes such that each run tries to estimate the targeted ancestry
versus the other two ancestries as was done its original paper (Price et al., 2009). For this rea-
son, we compare the performance on each ancestry separately. Overall, our method performs
significantly better than the other two in most of the analyzed cases.

78



Afr

FDhaphapmix lamp0

0.05

0.1

er
r

FDhaphapmix lamp0

0.05

0.1

er
r

FDhaphapmix lamp0

0.05

0.1

er
r

Eur

FDhaphapmix lamp0

0.05

0.1

er
r

FDhaphapmix lamp0

0.05

0.1

er
r

FDhaphapmix lamp0

0.05

0.1

er
r

Nat

FDhaphapmix lamp0

0.05

0.1

er
r

FDhaphapmix lamp0

0.05

0.1

er
r

FDhaphapmix lamp0

0.05

0.1

er
r

G = 5 G = 10 G = 20

Figure 7.5: Boxplot for mean squared error rates of ancestry estimation. Three-way admixture of African, European,
and Native American populations sinceG generations ago. Since HAPMIX is applicable to only two-way admixture
case and was run to estimate each ancestry versus the other two, we report the error rate on each ancestry separately.
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Figure 7.6: Robustness under deviation from the modeling assumption. The x-axis represents the ratio G1/G2,
where G1 denotes the number of generations for which the first two populations had mixed and G2 means the
additional number of generations since the third population joined and have further mixed together.

7.3.5 Robustness under deviation from admixture assumption

We investigate the robustness under deviation from the modeling assumption that all the ancestral
populations participate in the admixing simultaneously. We generated admixed populations from
three ancestral populations that started to mix at two different time points. More specifically,
Russian and BantuKenya populations are mixed for G1 generations with 50%/50% proportion.
Then this admixed population is mixed with the third population of Pima for G2 generations
with 50%/50%, resulting in the overall proportion of 0.5, 0.25, 0.25. We fixed G2 to be 10 and
varied G1 to be 0, 2, 5, and 10 where G1 = 0 corresponds to the case in which the modeling
assumption holds. The result is summarized in Figure 7.6. In each plot for each algorithm, x-
axis corresponds to the values of G1/G2 and y-axis shows the error rates. The proposed method
resulted in not only the lowest error rates, but also the most stable performance across different
values ofG1/G2. For more quantitative comparison of robustness across different algorithms, we
calculated the linear regression coefficient of G1/G2 versus the error rates. The resulting slopes
were -0.0011, 0.0029, and 0.0074 for FDhap, HAPMIX, and LAMP, which again supports the
superior robustness of the proposed method.

7.3.6 Sensitivity analysis on model parameters

Since the parameters of η and G were assumed to be known in our simulation study in parallel
with other methods, we also examine how the performance of FDhap is affected by incorrectly
specifying these parameters. The performance is shown for the dataset simulated with G = 10
and η = (0.5, 0.5) in Figure 7.7. In each plot, x-axis shows the specified parameters where
the values are shown in log scale in case of G. We could see that there was almost no effect
when η was incorrectly set in the range from 0.2 to 0.8. When we examined the result on G, the
algorithm had the general tendency to favor a specified value G smaller than the true value. The
effect of mis-specified value of G was minimal when the discrepancy was within a factor of 2.
Even in the extreme case such as G varied by a factor of 5, the error still remained within the
twice of the error rates when the true value was given.
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Figure 7.7: Sensitivity analysis: boxplot for error rates as a function of specified parameter values (a) η1 and (b) G
when the true values are ηtrue = (0.5, 0.5), Gtrue = 10.

7.3.7 Empirical analysis of HGDP data

To illustrate our method on real data, we applied it to 22 autosomes of the HGDP dataset (Jakob-
sson et al., 2008). Four ancestral populations of YRI, CEU, JPT+CHB, and Maya were chosen
as in the simulation study to represent African, European, East Asian, and Native American an-
cestries. We then recovered the local ancestries in the remaining 28 populations. Since the time
since admixture is not available for real data, we let our program estimate the parameters by
posterior inference.

The mean ancestry proportion of each population estimated from our algorithm is summa-
rized in Table 7.1. Overall, the ancestry vector agrees very well with their geographical locations
or known history. For example, populations such as Yoruba, Mandenka, BiakaPygmy, or Bantu-
SouthAfrica recovered pure African ancestries, Druze, Basque, Russian and Adygei populations
had dominant European ancestries (≥ 0.978), and Pima or Colombian populations resulted in
almost pure Native American ancestries (≥ 0.983).

More interestingly, the result also identifies the populations that have strong evidence of
admixing effect among multiple ancestries. For instance, the proportion of European ancestry in
Uygur population was 0.35, that of East Asian ancestry was 0.41, and the remaining proportion
of 0.24 in Native American ancestry. Previous analysis in Xu et al. (2008) and Xu and Jin
(2008) claimed that Uygur had roughly 50–60% of European ancestry and 40–50% of East Asian
ancestry from the analysis based on two-way admixture. More recent study in Li et al. (2009)
showed evidences that the estimation of European ancestry in these studies appear to be biased
and suggested a newly estimated proportion of around 30%. Our result largely agrees with these
results in that the estimated East Asian ancestry (41%) is similar to that in Xu et al. (2008) and in
addition the estimation of European ancestry (35%) is closer to the more recent result in Li et al.
(2009) than Xu et al. (2008). Considering its geographical location and the resulting population
history, we suggest that Uygur population has about 35% of European ancestry, 41% of East
Asian ancestry, and the remaining proportions of ancestries in other contributing populations that
have greater similarity to the Native American population. Although only one or two populations
are selected to serve as each putative ancestral population in our study, these populations have
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Table 7.1: Estimated ancestry proportions of populations in HGDP dataset with respect to four ancestral populations
of African, European, East Asian, and Native American.

African European East Asian Native Amer
Yoruba 1.000 0.000 0.000 0.000
Mandenka 1.000 0.000 0.000 0.000
BiakaPygmy 1.000 0.000 0.000 0.000
BantuSouthAfrica 1.000 0.000 0.000 0.000
San 0.999 0.001 0.000 0.000
MbutiPygmy 0.999 0.000 0.000 0.001
BantuKenya 0.998 0.001 0.000 0.000
Mozabite 0.141 0.818 0.013 0.028
Bedouin 0.035 0.941 0.006 0.018
Palestinian 0.013 0.966 0.006 0.015
Basque 0.000 0.998 0.000 0.001
Russian 0.000 0.990 0.003 0.007
Druze 0.002 0.989 0.002 0.006
Adygei 0.000 0.978 0.008 0.014
Kalash 0.000 0.930 0.027 0.043
Balochi 0.015 0.888 0.031 0.066
Burusho 0.000 0.741 0.088 0.170
Uygur 0.000 0.348 0.414 0.239
Yakut 0.000 0.045 0.848 0.106
Mongola 0.000 0.006 0.960 0.034
Daur 0.000 0.004 0.972 0.024
Cambodian 0.000 0.004 0.977 0.019
Lahu 0.000 0.000 0.987 0.013
Yi 0.000 0.001 0.991 0.009
Melanesian 0.001 0.039 0.821 0.140
Papuan 0.002 0.081 0.733 0.185
Pima 0.001 0.012 0.004 0.983
Colombian 0.002 0.001 0.001 0.996
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shown to be close surrogates of the distinct ancestral components in a large number of studies
so far. Since our result is obtained by utilizing a denser set of markers as well, we believe our
estimates reveal more meaningful admixture proportions than the previous analyses.

To further analyze each population data, we examined the estimated parameters of Ĝr, the
admixture time scaled by the recombination rate, and the empirical mutation parameter θ̃ com-
puted as an average discrepancy between individuals and corresponding founders within each of
the populations. Note that we can think of Ĝr as showing the relative strength of admixing effect
in the population. Moreover, θ̃ can be interpreted as the relative age of the population because
it describes the gap between the common founders to the population. The result is displayed in
Figure 7.8. We colored the bars based on the geographic location of the corresponding popula-
tion. The result has nice correspondence with the known geographic labels as well. For example,
all the populations in African continent showed the smallest values of Ĝr, indicating the lowest
levels of admixing effect. The top three populations suggesting the strongest admixing effect
include Mozabite, Uygur, and Burusho. Most populations in the continents of East Asia and
America showed medium levels of admixing effect.

The empirical θ̂ estimated for the data reveals more striking pattern. We find that the ordering
of populations by their parameter values almost exactly agrees with the geographic locations out
of Africa. That is, all the populations in African continent had the largest values of θ̂ implying
their oldest ages, populations in Eurasia came next, and Oceanian populations were the third.
Populations in East Asian region formed the fourth cluster and then Pima and Colombian pop-
ulations showed the smallest values of θ̂ which implies later formation of the populations than
others. It is noteworthy that Yoruba, which appears to be the closest to the training population
of YRI, recovers a much larger value of mutation rate θ̂ than all the populations in geographic
locations other than African continent. This comes from the nice property of our model that we
do not directly use the training haplotype data as our reference, we rather infer the corresponding
common founders across all the population data together and then work in a framework dealing
with founders and admixed individuals. Otherwise, it would be impossible to obtain such a result
because the discrepancy of Yoruba and its reference data would be much smaller than most of
the other populations.

Based on the analysis above, we selected 11 populations that showed elevated signals of
admixture and show their local ancestry proportions in Figure 7.9 that can be used for further
downstream analysis.

7.4 Discussion
We have proposed a new haplotype-based framework for modeling the admixing events over an-
cestral populations and estimating the local ancestries of the individuals in the admixed popula-
tion. By modeling hypothetical founders and their inheritance processes, and by using population-
specific hidden Markov models to represent the ancestral populations with an unbounded number
of founders, our method can lead to accurate stratification of local ancestry of individual chro-
mosomes in an admixed population.

Previous admixture studies have suggested that the world populations are not independent
of each other, but rather are structured through population admixing history and the resulting
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Figure 7.8: Estimated parameters sorted in decreasing order. Top: estimated Gr, time since admixture scaled by
recombination rate. Bottom: empirical mutation rate θ computed as the average discrepancy between individuals
and their founders.
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Figure 7.9: Map of ancestry proportions along chromosome 22 on admixed populations from HGDP data. The x-
axis corresponds to chromosome positions and the y-axis denotes the ancestry proportion. We selected 11 admixed
populations based on the estimated ancestry proportions such that the largest ancestry proportion is less than 90%

85



gene flow. Most existing approaches for local ancestry estimation have ignored such relatedness
and treated the populations as unrelated. We explore this dependency among populations and
efficiently utilize it by building a unified model that covers all the ancestral populations and
the admixed population together. As shown in our Results, this modeling strategy is especially
helpful when only a limited amount of data is available to represent the ancestral populations.
Since genetic information in one population can be naturally shared by another population in such
a framework, it effectively enhances the robustness of the proposed model regarding the choice
of the ancestral population data. We expect that various types of practical analysis dealing with
non-typical study populations would benefit from the proposed method.

In our comparative study, HAPMIX appears to perform very well when enough data for an-
cestral populations are given and also for older admixture events. However, this method does
not allow one to analyze the admixing effect from more than two ancestral populations. Instead,
one ancestry versus all the other ancestries should be estimated. While this setting may be fine
for some applications, this constraint limits its applicability to complex admixture scenarios and
may compromise its ability to deal with older admixtures. LAMP has a slightly different focus:
while its performance was shown to be worse than the other two in general in our simulation
study, it can deal with multiple ancestral populations as our model. And computationally this
method was significantly faster than the other two haplotype-based methods. However, LAMP
seems to be more suited for very recent admixture case, and its performance tends to drop quite
sharply as we consider more ancient admixture events. On the other hand, in a very recent ad-
mixture case, LAMP tends to be less sensitive to the amount of training data than HAPMIX as
shown in Figure 7.4. Our approach is more general and of more practical utility in that it can in-
corporate an arbitrary number of ancestral populations with comparable or superior performance
than HAPMIX under various scenarios. In comparison of computation time with HAPMIX, our
method requires additional, but off-line computation time for model training, which is linear in
the number of individuals and the number of markers. For the ancestry estimation phase, we
would additionally need a series of MCMC iteration times if we want to estimate the parameters
of interest such as admixture time or mutation rates.

It is worth mentioning some of previous approaches for global ancestry analysis as well
to position our method in context. STRUCTURE (Pritchard et al., 2000) has been one of the
most widely used softwares for admixture analysis, and more recently, other softwares such as
EIGENSTRAT (Patterson et al., 2006) and ADMIXTURE (Alexander et al., 2009) have also gain
great popularity especially for their computational efficiency. In global ancestry estimation prob-
lems, typically no prior information is provided for the ancestral populations and the ancestries
of given individuals are recovered as mean proportions of each possible ancestry. Therefore, it
can be considered as an unsupervised problem. In contrast, local ancestries are mostly estimated
based on the given reference information such as allele frequencies or genotypes of putative an-
cestral populations. There has been more recent work that bridges the gap between these two
approaches. For example, LAMP can also run in an ‘unsupervised mode’ such that it recovers
the allele frequency profiles of ancestral populations as well as the local ancestries. Also, AD-
MIXTURE, which is for the global ancestry estimation, recently added a new feature that the
known ancestries of some reference individuals can be exploited (Alexander and Lange, 2011).
For haplotype-based approaches, this extension is not straightforward in general because one
needs to deal with a set of hidden haplotypes that results in a large number of parameters. Re-
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garding this aspect, our model for the local ancestry has the desirable property that it integrates
out the ancestral population data during the inference and works with the hypothetical founders
and the admixed population data. Therefore, we expect that the extension of the model to an
unsupervised case would also be a promising direction to pursue.

In this approach, we assumed that phased haplotype data are given. In practice, a number of
softwares are available for haplotype phasing (Browning and Browning, 2009; Li et al., 2010;
Scheet and Stephens, 2006), so the phase information can be readily available in processing
step. It would also be quite easy to extend the model to deal with unphased genotypes. For
example, we may assume that the haplotypes of ancestral populations are given, and then we
allow unphased genotypes for admixed individuals, as in the setting considered in Price et al.
(2009). Then the only additional computation would be one more step in our posterior sampling
to recover the phasing of genotypes as well as the hidden states in the ancestry estimation phase.

While our model is built on a non-parametric Bayesian framework involving an infinite
model, we approximated the resulting distribution by splitting the inference into training and
test phases for computational purpose. We used a MAP solution from the training phase which
appears to work reasonably well compared to the case using multiple trained samples. Roughly,
we observed that the performance gain by multiple trained samples tended to be more significant
when the training was less stable, for example, the case with small-sized training data or when
the convergence has not reached yet during the training phase. It would be worth investigating
the effect of different approximations to the exact distribution on the performance and further
improve the computational complexity.
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Chapter 8

Conclusion

In this thesis, we have presented non-parametric Bayesian models that allow efficient and ro-
bust inference of ancestral genetic processes from SNP data. Using a Dirichlet process based
haplotype inheritance model as a building block, we have extended the model to incorporate
various genetic processes and hence to uncover important genetic quantities from given data.
The non-parametric Bayesian models using a hierarchical Dirichlet process and infinite hidden
Markov models have been applied to the three specific problems of haplotype inference from
multi-population data, joint inference of population structure and the recombination events, and
local ancestry estimation in admixed populations.

As mentioned in Introduction of this thesis, the proposed models put a particular focus on
exploiting the shared structural information contained in the data from multiple groups. By use
of a hierarchical model that covers the grouped data systematically in a non-parametric Bayesian
framework, the models could utilize the latent and shared information underlying the data effec-
tively and have been shown to perform significantly better than previous methods under various
applications and scenarios. Furthermore, Dirichlet process based mixture models have allowed
us to model the inherent uncertainty about the genetic components such as the number of founder
haplotypes. The resulting models can also reveal interesting characteristics of the study popula-
tions such as the mutation rate that can be interpreted as the relative age of the population with
respect to the hypothetical founder pool, the recombination rate, the time since admixture, or
population sub-structure, through the model parameters that can be inferred jointly in the pro-
posed framework

Interesting future directions that connect the model developed under this thesis with the
downstream analysis includes the combination of admixture analysis and the disease associa-
tion study. The local ancestry information that is returned from the proposed model in Chapter 7
can play an important role in selecting out the SNPs that are associated with the phenotypic
traits of which distributions show significant differences in multiple contributing populations.
In Zhu et al. (2011), the admixture mapping followed by the association study have identified
a novel genetic locus affecting the blood pressure. We could propose a model-based approach
that combines the ancestry model in this thesis and the association model such that the ancestry
information plays as a prior for the association strength.

The computational complexity is another issue that commonly arises in nonparametric Bayesian
analysis. While the Beam sampling describes in Chapter 7 could improve the computation time
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significantly over the traditional MCMC sampling schemes, it is still slower than many other
parametric methods. We may further improve the computational complexity by exploiting the
redundant or parallel structure in the computation for posterior inference. Actually, the overall
algorithm allows a parallelization along various dimensions, especially for training phase, for
example, along different ancestral populations or along different individuals in each of the pop-
ulations. A parallel framework for machine learning such as GraphLab (Low et al., 2010) or
Bratieres et al. (2010) would serve as a viable option to start with.

The proposed framework can also be applied to the problem of detecting signatures of se-
lective sweeps on the chromosome. Conventional methods for selective sweeps have mostly
relied on different forms of summary statistics often defined heuristically (Teshima and Prze-
worski, 2006). However, it is not obvious how to evaluate the performance of different summary
statistics, and moreover, it is hard to capture the complex structural information contained in the
genome using such summary statistics. More recently, model-based approaches such as in Kim
and Stephan (2002) have employed a hidden Markov model to detect the selective sweeps based
on allele frequency spectrum as observations. The Bayesian inheritance framework we have de-
veloped can be adopted for this purpose, for example, we may assume the alleles are determined
by some hidden states (e.g. sweep and neutral) and then a different haplotype distribution can be
modeled to generate the individual allele at a specific site depending on the hidden state where
sweep sites follow a more skewed founder distribution.
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Appendix A

Supplementary materials

A.1 Details of the PL Procedure for haplotype inference

This section describes the detailed procedure of partition-ligation algorithm used in Haploi,
which can be divided into three steps: 1) atomic block typing; 2) bottom-level pairwise lig-
ation to generate overlapping blocks; and 3) hierarchical ligation of overlapping blocks until
only one block is left. In step 1, we partition given genotype sequences into L short blocks
of length T and phase each atomistic block using the proposed HDPM. From this step, we ob-
tain all the individual haplotypes and also the population haplotype pool for each block. Let
ATi ≡ {Ak, (i−1)T+1 : iT | k = 1, . . . , KT

i } denote the population haplotype pool for T SNPs in
the i-th block which ranges from locus (i− 1)T + 1 to iT .

In the next step, we ligate every pair of neighboring blocks: ATi &ATi+1 → A2T
i , i = 1, . . . , L−

1. Specifically, for each pair of neighboring blocks i and i + 1, given ATi and ATi+1, we can im-
pute at most four new stitched haplotypes from an individual since each individual has only two
possible haplotypes within each block. In practice, we often have fewer because an individual
can be homozygous or the stitched haplotype may already have been imputed from earlier indi-
viduals. We pool such stitched haplotypes from all the individuals to form A2T

i , which usually
leads to only a small subset of ATi × ATi+1. Then based on a finite dimensional Dirichlet prior
over A2T

i , we do Gibbs sampling as in Niu et al.’s PL scheme to obtain individual haplotypes
for each overlapping 2T region. To compensate possible ill-ligated blocks, we can redo the di-
rect haplotype inference based on HDPM on those merged blocks whose entropy of haplotype
distribution is above some threshold (Figure 5.2 step 2-1). This is computationally affordable
since the length of the ligated block at this stage is not yet too big and we can start with better
initialization than random assignment. The output from step 2 are L − 1 sets of length 2T pop-
ulation haplotypes, {A2T

i : i = 1 . . . L − 1}, overlapping on T loci for each adjacent pair; and
all individual haplotypes in these length 2T overlapping segments.

In step 3, we hierarchically ligate overlapping adjacent blocks from the previous iteration,
until the full sequence is covered (Figure 5.2, step 3). Specifically, as in step 2, we build the
candidate population haplotype pool by adding every unique stitched-haplotype resulted from
ligating the haplotypes of the two shorter blocks in every individual. When the overlapping
regions of a pair of atomistic haplotypes in an individual are consistent, ligation to a longer hap-
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lotype is trivially a merging of the two overlapping haplotypes, and this avoids generating all
combinations of the atomistic haplotypes from each block. Only when the overlapping regions
in an individual are inconsistent, we grow the haplotype space of the merged blocks by including
all possible ligations consistent with the atomistic haplotypes and the individual genotype. For
example, suppose a particular individual’s haplotypes were recovered as 000100/ 100010 at loci
1 to 6 for the first block, and 110000/ 000100 at loci 4 to 9 for the next block, and three SNPs are
overlapping in the two blocks. Then to accommodate the discrepancy on the 4th and 5th SNPs,
we have four possible haplotypes, 10, 01, 00, 11, for these two loci; for the remaining parts of the
region covered by these two blocks, i.e., loci 1-3 and loci 6-9, we have two haplotypes (which
are from the atomistic haplotypes determined in the previous iteration) for each of them. So a
combination of all these possibilities will add the following sixteen haplotypes to the population
haplotype space for the ligated segment:

000100000/010010100, 000110000/100000100, 000010000/100100100,
000000000/100110100, 000100100/100010000, 000110100/100000000,
000010100/100100000, 000000100/100110000.

Under the newly formed population haplotype space at each ligation iteration, we again apply
a Gibbs sampler as in step 2 to determine the individual haplotypes of all remaining unphased
individuals over the ligated block under a fixed-dimensional Dirichlet prior of the haplotype
frequencies in this trimmed haplotype space. We continue this process hierarchically until there
is only one block left. Since each time we only employ overlapping regions of size T , the number
of steps needed to complete the ligation of a whole sequence is comparable to Niu et al. (2002)’s
hierarchical PL scheme.

A.2 Sensitivity analysis under hierarchical Dirichlet process
mixture

Table A.1 summarizes the sensitivity analysis result on the hyper-parameters of HDP scale pa-
rameters for the diverse dataset (θ = 0.05) as in Table 5.1 which was on the conserved dataset.
While the number of ancestors within each ethnic group is recovered less stably compared to
the conserved dataset case, the total number of ancestors could be restored in much more stable
pattern. Also, we observe that K and θ compromises with each other: when K is larger com-
pared to the true value of 17, θ is recovered as a bigger value, while the resulting haplotyping
error remains quite similar except for a few extreme values of priors. This would imply that even
when we cannot recover the exact number of ancestors, our model still gives good estimates of
the inheritance process for haplotype phasing and related parameter recovery.

A.3 A summary of HapMap ENCODE regions
The description of 10 HapMap ENCODE regions used in Figure 5.7 is summarized in Table A.2.
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Table A.1: A sensitivity analysis to the hyper-parameters of HDP on diverse dataset

κ ι κ/ι K1 K2 K3 K4 K5 total K (17) θ (0.045) errs
0.1 0.1 1 7.8 5.3 5.6 6.7 6.7 17.1 0.035 0.1012

0.5 0.2 7.1 5.2 6.8 7.7 7.4 17.9 0.038 0.0952
1 0.1 7.1 5.2 7.4 6.0 6.3 17.1 0.036 0.0923

10 0.01 7.4 5.1 6.1 5.8 6.6 17.0 0.035 0.0744
100 0.001 5.0 5.0 6.0 5.0 5.1 15.3 0.049 0.1042

1000 0.0001 5.0 5.0 5.0 5.0 4.0 15.0 0.045 0.0714
0.5 0.1 5 8.6 5.3 7.3 5.8 7.6 18.2 0.035 0.0774

0.5 1 7.9 5.2 7.3 6.6 7.2 17.6 0.035 0.0923
1 0.5 8.5 5.1 6.1 6.7 7.0 17.7 0.036 0.0774

10 0.05 6.9 5.1 5.6 5.1 6.8 17.0 0.037 0.0595
100 0.005 5.4 5.0 5.0 5.1 5.4 16.0 0.041 0.0952

1000 0.0005 5.0 5.0 5.0 5.0 4.0 15.0 0.045 0.0952
1 0.1 10 7.1 5.2 7.0 5.6 7.3 16.5 0.045 0.0952

0.5 2 5.9 5.7 8.1 6.1 7.7 18.4 0.036 0.1131
1 1 7.5 5.1 6.2 7.3 6.2 17.1 0.032 0.0982

10 0.1 7.4 5.1 6.4 5.2 6.1 17.1 0.041 0.0833
100 0.01 5.8 5.0 5.9 5.0 5.6 16.0 0.041 0.0595

1000 0.001 5.0 5.0 5.0 5.0 5.0 15.0 0.044 0.0923
10 0.1 100 7.1 5.2 7.0 6.3 7.0 17.4 0.041 0.0833

0.5 20 7.1 5.5 9.7 7.5 7.0 17.4 0.035 0.1250
1 10 6.8 5.3 5.8 7.3 7.8 15.4 0.043 0.1071

10 1 7.5 5.0 6.6 6.0 6.5 17.1 0.032 0.0923
100 0.1 7.0 5.0 7.0 5.7 5.0 17.0 0.039 0.1012

1000 0.01 5.0 5.0 5.0 4.0 5.0 14.0 0.049 0.0863
100 0.1 1000 11.0 9.6 13.6 13.1 12.3 30.6 0.041 0.1696

0.5 200 9.0 6.4 10.1 8.9 8.7 20.2 0.044 0.1518
1 100 8.7 6.1 9.0 7.6 9.2 19.2 0.045 0.0893

10 10 7.9 5.4 9.2 7.1 7.8 19.2 0.036 0.0744
100 1 6.7 5.0 5.5 5.0 6.7 17.1 0.037 0.0804

1000 0.1 5.0 5.0 5.6 5.0 5.0 15.0 0.046 0.0923
1000 0.1 10000 16.8 13.7 19.6 19.4 15.8 63.4 0.016 0.1548

0.5 2000 14.2 11.3 18.5 16.2 15.8 49.5 0.035 0.1607
1 1000 12.7 11.6 16.9 15.1 14.1 43.6 0.030 0.1488

10 100 9.1 8.4 12.3 9.4 9.5 24.5 0.038 0.1042
100 10 8.2 6.3 8.5 7.3 9.3 19.7 0.034 0.0714

1000 1 7.1 5.1 5.1 6.1 7.0 16.0 0.039 0.1310
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Table A.2: A summary of the 10 HapMap ENCODE regions used in this study.

Region name #SNPs Chrs. start–end (Mb) length (Kb)
1 ENm010 254 7 26.7 – 27.2 497
2 ENr232 379 9 127.1 – 127.6 496
3 ENr123 391 12 38.6 – 39.1 499
4 ENr321 495 8 118.8 – 119.3 498
5 ENm013 548 7 89.4 – 89.9 494
6 ENr213 565 18 23.7 – 24.2 565
7 ENm014 694 7 126.1 – 126.6 497
8 ENr112 728 2 51.6 – 52.1 498
9 ENr131 857 2 234.8 – 235.3 499

10 ENr113 972 4 118.7 – 119.2 498
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