
Pocket ISR: Virtual Machines Anywhere

Benjamin Gilbert, Adam Goode, Mahadev Satyanarayanan
Carnegie Mellon University

March 2010
CMU-CS-10-112

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was supported by the National Science Foundation (NSF) under grant
number CNS-0509004 and by an IBM Open Collaborative Research grant. Any opinions,
findings, conclusions or recommendations expressed in this material are those of the au-
thors and do not necessarily represent the views of the NSF, IBM, or Carnegie Mellon
University. Internet Suspend/Resume and OpenISR are registered trademarks of Carnegie
Mellon University.



Keywords: Internet Suspend/Resume, OpenISR, USB key, Live CD,
Linux, Fedora, VirtualBox, virtual machines



Abstract

The Internet Suspend/ResumeR© system provides access to a user’s comput-
ing state anytime and anywhere — so long as there’s an ISR client handy.
We introduce Pocket ISR, a Linux distribution which can be installed on
a USB key and booted on any borrowed PC to quickly provide a complete
ISR client without modifying the borrowed machine. In order to ensure ad-
equate I/O performance, Pocket ISR noninvasively uses free disk space on
the host computer to store parcel data. Pocket ISR is easy to set up, can
automatically update itself to the newest version, and allows an ISR user
to achieve the promise of ISR: that personalized computing can be done at
any Internet-connected computer, anytime and anywhere.





1 Introduction
The Internet Suspend/Resume R© system [19] allows users to suspend their computing session at one com-
puter and seamlessly resume it at another. A user stores her computing state — applications, documents,
and settings — in a virtual machine called a parcel, which is stored on an Internet-connected server. To
use the parcel, she directs ISR client software to check out the parcel from the server and resume it. This
causes the suspended virtual machine to be downloaded from the server to the client computer and launched
within a virtual machine monitor, allowing the user to perform her everyday computing tasks. The parcel
executes on the client, not on the server; thus, ISR does not suffer from the poor interactive responsiveness
endemic to thin clients [22]. When the user is ready to suspend her parcel, she can direct the ISR client
to check in the parcel, which uploads it back to the server. When checking out a parcel, ISR only needs to
download its suspended memory image; the parcel’s virtual disk is divided into chunks which are fetched
on demand. When checking in, only modified data is uploaded to the server. Parcel data is compressed to
save bandwidth and encrypted for security.

Thus, the Internet Suspend/Resume system, via the OpenISR R© software suite, allows a user to obtain
access to her computing state from any Internet-connected computer. As a result, she no longer needs to
carry a laptop in order to perform day-to-day computing tasks. Any borrowed desktop or laptop computer
can run an OpenISR client and resume her parcel. But what if the borrowed computer does not have the
client installed? The user may not have the ability or authorization to install it. The client software currently
does not support Windows, so installing it on the borrowed computer may be impractical. And even if the
client is already installed, the user may not trust it: the borrowed computer may be infected with keylogging
or data-stealing malware, making it unsafe for the user to resume her parcel on the system.

One solution is to allow the user to carry the OpenISR client with her on a portable device. Rather than
using the computer’s pre-installed operating system and OpenISR client, the user could simply boot a so-
called “live” Linux system from a portable USB storage device (a “USB key”). In one step, the user would
thus gain access to a complete operating environment, the OpenISR client, and a suitable virtual machine
monitor. Provided that the computer had access to the Internet, the user would then have everything she
needed to resume her parcel. Since the operating system and applications already installed on the computer
would be ignored, the user need not fear any malware it may contain; in the absence of malicious hardware
such as a hardware keylogger, her data would be safe. Once the user had finished her session and checked in
her parcel, she could simply shut down the computer and unplug the USB key. The owner of the borrowed
computer would need to trust that the user, and the software installed on her USB key, were not malicious,
but need not fear accidental breakage, since the operating system and applications on the computer would
remain untouched.

This solution has one flaw: it leaves the OpenISR client no adequate place to store a parcel’s data while
it is running. As Table 1 shows, running a parcel requires significant amounts of temporary storage space

Component Approximate Size
Encrypted metadata 5.5 MB
Encrypted and compressed memory image 250 MB
Working copies of metadata 11 MB
Working copy of memory image 512 MB
Disk chunk download cache 2 GB
Disk chunk working cache 2 GB
Upload cache 500 MB
Total ∼ 5.3 GB

Table 1: Typical temporary storage requirements for resuming and checking in a parcel with a 512 MB
memory image and an 8 GB virtual disk.

1



on the client. This volume of data cannot be held in RAM, and storing it on the USB key is infeasible: the
poor write performance of consumer USB flash devices would render ISR too slow to be usable. The client
has one recourse: borrow unused disk space from the host computer’s internal hard drive.

This report presents Pocket ISR, an encapsulation of the OpenISR client into a Linux live image that
safely uses the hard disk of the host computer for temporary storage of parcel data. Pocket ISR allows the
user to turn any PC into an OpenISR client in as little as 60 seconds, without installing anything on the PC
and without leaving any trace afterward. It provides performance comparable to an OpenISR client installed
directly on the host system, regardless of the performance of the USB key it booted from. Pocket ISR can
easily be installed onto a USB key from either Linux or Windows, without disturbing data already stored on
the key. It can even be run from CD with no additional performance overhead after it has booted. And, if
installed on a USB key, Pocket ISR can automatically update itself to the latest version with only two clicks.
The Pocket ISR tools and compilation are released under version 2 of the GNU General Public License [5],
and Pocket ISR is available for download from the ISR website [8].

The remainder of this report is organized as follows. Section 2 describes the construction of the Pocket
ISR live image. Section 3 presents the means by which Pocket ISR obtains storage for parcel data. Section 4
explores future extensions to Pocket ISR. Section 5 discusses related work, and Section 6 concludes the
report.

2 Pocket ISR Boot Image
The Pocket ISR Linux image is derived from Fedora Linux [17] and uses the same tools used by the Fedora
Project to create live versions of Fedora. These tools allow the ISR project to generate and distribute a single
ISO9660-format image file which can be burned directly to a CD or written to a USB key with the help of
a straightforward conversion tool. Pocket ISR includes many customizations on top of the basic Fedora
Live CD infrastructure.

2.1 Fedora Live Infrastructure
Distributing a bootable operating system image that can be run from a USB key is challenging for several
reasons. The end user must be able to copy the image to the USB key using whatever tools she has; if she
runs Linux, then dd at least is available, but Windows comes with no such tool. In addition, the size of
her USB key is not known in advance, so the image’s partition table will certainly not match her storage
device. As a result, if the user wants to use any extra space on the USB key for other data — including ISR
parcel data — she must manually adjust the partition table and resize or create a partition. If this is done
incautiously, it may be necessary to rerun the boot loader setup tool to account for the partition changes.
The result: the user must navigate a long list of instructions in order to set up her USB key. The cost of a
mistake is high: she might repartition the wrong disk! This approach may work for highly-motivated users,
but it provides too high of a barrier for more casual users of ISR.

The Fedora Live infrastructure takes a different approach. The bootable root filesystem is stored as a
regular ext4 filesystem, but in an image file rather than a partition. To save space, that file is stored in
a SquashFS [11] compressed read-only filesystem, which itself is stored in an image file. The SquashFS
image, the kernel and initramfs images, and a boot loader are then placed in an ISO9660 live image
which can be burned directly to a CD. If the user wants a CD-based Pocket ISR solution, nothing further
is necessary: she can use standard CD-burning software to record the image to a CD which can boot any
x86-based PC.

However, a CD is less portable than a USB key and booting from CD is slower than booting from USB,
so most users will want to install Pocket ISR on a USB key. To do this, a user simply gives the ISO image
file to a tool which unpacks the kernel and filesystem image onto her existing USB key and configures the
boot loader (Figure 1). Because the boot loader supports the FAT filesystem, the USB key can remain in this

2



Figure 1: Installing Pocket ISR on a USB key. Figure 2: LiveUSB Creator.

standard format, allowing the user to store other data in the unused space. The USB key itself does not need
to be repartitioned or reformatted, so existing data on the USB key is preserved.

For a user, the process of creating a Pocket ISR USB key is therefore reduced to two steps: down-
loading an ISO image file and running a program to set up the USB device. On Linux, she can run the
livecd-iso-to-disk command-line tool, which is included in the ISO image in case she does not already
have a copy. On Windows, she can download the LiveUSB Creator tool, which provides a simple GUI to
perform the same task (Figure 2).

2.2 Customizations
Pocket ISR is implemented as a custom live image built using the Fedora livecd-creator tool and derived
from the official LXDE spin of Fedora Linux. The ISO image is generated by an automated tool driven by
a Fedora “kickstart” file, which lists the software packages that should be installed in the live image and the
customizations that should be applied. Naturally, these customizations include installation of an OpenISR
client and the Pocket ISR tools. In addition, several other modifications are applied:

Download size optimizations. In order to reduce the download size of the live image, Pocket ISR incor-
porates several modifications to the Fedora Live CD build. Pocket ISR ships the Lightweight X11
Desktop Environment [13] rather than the larger GNOME desktop. It includes only those desktop
applications which are necessary in order to run Pocket ISR, which in practice is little more than
a terminal program and a virtual machine monitor. (To allow Pocket ISR to be used on networks
with web-based captive portals, it also includes the minimal Midori web browser [4].) Unnecessary
configuration tools (e.g., for configuring printing or enabling a firewall) have been removed.

For additional space savings, several other optimizations are performed. Non-English fonts and locale
data are removed, as well as documentation from packages not specific to Pocket ISR. In addition,
development packages such as GCC and Make are removed. These are required early in the image
construction process to compile kernel modules for VirtualBox and for the OpenISR client, but are no
longer necessary afterward.

Addition of VirtualBox. Pocket ISR includes the VirtualBox virtual machine monitor [14]. VirtualBox is
available in two editions: the closed-source version packaged by Oracle and an open-source version,
known as VirtualBox OSE, which is released under the GNU General Public License [5]. Oracle does
not permit redistribution of the closed-source version, and the open-source version is not packaged in
Fedora due to its dependence on third-party kernel modules. Pocket ISR therefore includes a custom
build of VirtualBox OSE packaged specifically for the project. To save space, this build does not
include the VirtualBox Guest Additions, which are normally only required when first configuring a

3



Figure 3: Pocket ISR boot menu.

new parcel. Users setting up a newly-created parcel using Pocket ISR must therefore obtain the Guest
Additions from another source.

Every major release of VirtualBox includes incompatible changes to the XPCOM API upon which the
OpenISR client depends. As a result, the latest release of the OpenISR client often does not support
the most recent release of VirtualBox. Pocket ISR includes the most recent version of VirtualBox OSE
that is supported by ISR, not the most recent version released by Oracle.

Modification of boot menu. Pocket ISR includes several changes to the boot loader menu displayed at
startup (Figure 3). Fedora live images normally do not show the menu at all unless a key is pressed,
and will automatically boot the live image after 10 seconds. Pocket ISR, however, always shows the
menu and does not have a default: the user must explicitly choose to boot into Pocket ISR. Menu
items allowing the user to verify the checksum of the live image or to test system RAM are removed.
Most importantly, the Pocket ISR boot menu allows the system to boot in one of two different storage
modes: persistent mode, described in Section 3.1, or transient mode, described in Section 3.2.

Special support for OpenISR client configuration file. An ISR user typically stores user-specific settings,
such as her preferred ISR server and user ID, in an .openisrrc file in her home directory. Because
Pocket ISR does not use a consistent home directory from boot to boot, another mechanism must be
provided for configuring the OpenISR client. Therefore, during the boot process, Pocket ISR looks
for an .openisrrc file at the root of the CD or USB key that was used to boot the system. If this file
exists, it is copied into the user’s home directory. The user can therefore include an ISR configuration
file on her CD or USB key, and this configuration will be used on every boot.

Removal of Fedora branding. Because Pocket ISR includes software not part of Fedora Linux, the Fedora
trademark guidelines [18] require the removal of Fedora logos and other branding from the Pocket ISR
image. This is accomplished by removing the RPM packages containing Fedora branding and replac-
ing them with generic versions provided by the Fedora project. Unfortunately, the generic version of
the graphical boot progress bar prominently features a cartoon drawing of a hot dog (Figure 4), which
was not considered appropriate for Pocket ISR. Therefore, Pocket ISR disables graphical boot in favor
of the text-based progress bar shown in Figure 5.

2.3 Updating Pocket ISR
The Fedora live infrastructure, like most live Linux distributions, provides the appearance of read/write
access to the root filesystem. This is convenient because it allows the user to install and use software that
was not originally included with the live system. Since the root filesystem is actually a compressed, read-
only image, it cannot actually be modified; changes are directed to a transient overlay stored in RAM or a

4



Figure 4: Hot dog with arms, legs, and mustard. Figure 5: Boot progress bar.

persistent overlay stored on the boot disk. As a result, live versions of desktop Linux distributions generally
disable their software update tools, since updates cannot cleanly be merged with the original image. Live
distributions can therefore quickly become out-of-date with respect to security updates and new versions of
important software.

This is a concern for Pocket ISR because it indefinitely extends the period of time over which a particular
version of the OpenISR client must be supported. The OpenISR system is still evolving, and the ability to
eliminate server support for very old versions of the client remains important. When the OpenISR client is
installed on a desktop Linux system, it is automatically kept up-to-date by the Linux distribution’s update
tool, so the installed base of older OpenISR clients is limited. A user’s Pocket ISR installation, however,
may be used infrequently — perhaps only when the user is on travel — and is inherently more difficult to
update.

Pocket ISR therefore includes an automatic update tool similar to those shipped by desktop Linux distri-
butions. Unlike those tools, which update individual software packages, Pocket ISR Update downloads and
installs a completely new version of the live image. This approach is made possible by the unusual proper-
ties of Pocket ISR: it is typically booted from a writable disk, but has no dependencies on that disk once it
has booted (see Section 3.2.3), and large quantities of scratch space are available for temporary storage of
the downloaded image.

The user interface of Pocket ISR Update is shown in Figure 6. When Pocket ISR boots and obtains a
network connection, Pocket ISR Update checks the Pocket ISR website to determine whether a new version

(a) Update notification popup. (b) Downloading an update.

(c) Installing the update. (d) Update complete.

Figure 6: Updating Pocket ISR.

5



is available. If so, it displays a popup (a) and a notification icon which prompt the user to update. If the user
agrees, Pocket ISR Update downloads the update (b), writes it to the USB key (c), and prompts the user to
restart in order to use the updated version (d).

The implementation of Pocket ISR Update is straightforward: the entire ISO image of a new release is
downloaded into temporary storage, verified against its GnuPG [6] signature, and written to the USB key
with livecd-iso-to-disk. Because Pocket ISR in transient mode runs entirely from RAM, this operation
does not interfere with the running system.

A typical Pocket ISR image is 280 MB. In order to reduce the load on the project’s web server, Pocket
ISR Update uses the BitTorrent protocol [1] via the Rasterbar BitTorrent library [16] to download the ISO
image. The torrent uses web seeding [7] to ensure that download is still possible if the client is behind a
restrictive firewall or there are not enough peers.

Pocket ISR Update performs several safety checks before consenting to update the system. If Pocket ISR
was booted in persistent mode, the updater will refuse to perform the update, since the OS is still depending
on the USB key for its root filesystem. If the USB key has been unplugged, update is likewise impossible.
Finally, if Pocket ISR was booted from a CD, the updater will still notify the user of an available update but
will not offer to update the system, since this is clearly impossible.

3 Parcel Storage
The OpenISR client requires a significant amount of temporary storage space in order to run (see Table 1).
Before a parcel can be resumed, its compressed and encrypted memory image must be downloaded and
stored to disk, decoded and decompressed, and then stored to disk again. While the parcel is running, disk
chunks that are demand-fetched from the server must be stored twice: once into a content-addressable cache
to minimize network accesses, and once into a chunk store where it can be modified by subsequent write
operations. During checkin, the new memory image must be written out to disk, compressed, encoded,
and written out again, and modified disk chunks must be copied into a separate upload cache before being
transferred to the server. If the underlying disk does not provide good I/O performance for all of these
operations, the user experience afforded by the OpenISR client may be unacceptably poor.

However, most of the data written to disk during an ISR session does not need to persist indefinitely. All
of the modified data generated by a running parcel is returned to the server once the parcel is checked in.
The only data remaining on the client consists of caches of data also stored on the server; retaining it will
improve performance on the next resume but is not otherwise necessary.

Pocket ISR offers the user a choice of two mechanisms for storing parcel data: transient and persistent
parcel storage. When Pocket ISR first starts up, it asks the user which of these mechanisms she wishes to
use for the current session (Figure 3). Persistent mode is discussed in Section 3.1, while transient mode is
discussed in Section 3.2.

3.1 Persistent Parcel Storage
Persistent storage is the simpler of the two models. It takes advantage of the Fedora live system’s “persis-
tent home directory” feature: while initially configuring the USB key, livecd-iso-to-disk can create a
home.img file on the device. This image file contains an ext4 filesystem which is automatically mounted
at /home when Pocket ISR boots. This approach provides one obvious advantage: because parcel stor-
age is persistent, the user need not check in her parcel before shutting down Pocket ISR, and previously-
downloaded chunks are still cached when the system starts up again. However, persistent mode imposes
several restrictions which make it impractical for most users:

• Because parcel data is stored directly on the USB boot device, this device must provide sufficient I/O
performance for a good interactive experience. In practice, the random write performance of most

6



USB flash devices is too poor for real ISR usage. USB-connected hard disks and solid-state disks
provide sufficient performance, but in a form factor too large for most users to willingly carry.

• As Table 1 shows, resuming a moderately-sized parcel may require gigabytes of free space. However,
if the USB key is formatted with the FAT filesystem, the home.img file (and thus persistent storage
as a whole) is limited to 4 GB. Therefore, for persistent storage to be feasible, the USB device must
be formatted with an ext2, ext3, or ext4 filesystem. This requirement limits the user’s ability to store
non-ISR files on her USB key, since the key can only be read by Linux.

• Because the home.img file needs to contain an ext4 filesystem, the USB key can no longer be created
on a Windows system.

• This approach requires the boot medium to be writable, so it cannot be used when booting Pocket ISR
from CD.

As a result of these restrictions, persistent mode is expected to be useful to very few users and is not the
default.

3.2 Transient Parcel Storage
Transient mode, the default Pocket ISR mode, stores parcel data in free disk space on the host computer.
Since the computer’s primary purpose is almost certainly not to run Pocket ISR, it is important that its stored
data not be altered. Therefore, Pocket ISR cannot simply mount the host’s filesystems and store files in them:
that approach would expose the host’s data directly to the Pocket ISR user, increasing the risk of accidental
modifications or deletions. It also risks damaging the filesystems due to buggy filesystem drivers, causing
further damage to inconsistent or damaged filesystems, or inadvertently enabling backward-incompatible
filesystem features. Most importantly, this approach cannot be used if the host’s normal operating system is
hibernated, since the hibernated image contains cached filesystem state which would no longer be in sync
with the actual state of the host’s disk.

Pocket ISR therefore takes a lower-level approach. The metadata of each recognized filesystem is
scanned to locate unallocated filesystem blocks, which are then combined into a virtual disk. This ap-
proach allows Pocket ISR to aggregate free space from multiple host filesystems and safely use it without
modifying any host data or metadata.

3.2.1 Collecting Free Disk Space
The task of collecting available disk space into a scratch volume is performed by the gather free space
tool, which is implemented in about 550 lines of C. gather free space performs the following steps:

1. The blkid library from e2fsprogs [24] is used to gather a list of available disk volumes and the
types of the filesystems they hold. Because gather free space is run after the Fedora initramfs
scripts, Linux software RAID and Logical Volume Manager (LVM) [12] volumes have already been
assembled, so the list returned by blkid includes volumes managed by these subsystems. The list is
then filtered to remove volumes stored on the Pocket ISR USB key itself.

2. Each volume is examined via filesystem-specific libraries. If the volume contains an ext2, ext3, or ext4
filesystem, it is examined using the ext2fs library from e2fsprogs. If it contains an NTFS filesystem,
it is examined using libntfs from ntfsprogs [10]. If it contains a Linux swap partition, it is examined
directly by gather free space. Volumes containing other filesystem types are skipped.

For each recognized filesystem, gather free space first checks whether the filesystem appears to
be in a consistent state. If the filesystem’s metadata indicates that it was not closed cleanly or is

7



Figure 7: Assembling free disk space.

known to have errors, or if an NTFS or Linux swap partition contains hibernated memory state, the
entire volume is skipped. In addition, if any errors are encountered while reading the volume, it is
skipped. These tests attempt to ensure that gather free space will not cause further damage to a
host filesystem that it cannot properly handle.

For each volume that passes these tests, gather free space obtains a bitmap of allocated filesystem
blocks. The bitmap is scanned to generate a stream of extents, or runs of unallocated blocks. The
lengths and locations of the largest 100,000 extents yet encountered are recorded in a binary heap.
To improve performance, extents smaller than 4 MB are not recorded; such extents contribute only a
small amount of storage, but incur access latencies similar to those of larger extents. If these small
extents were included in the scratch volume, ordinary I/O operations could require large numbers of
disk seeks, dramatically reducing overall throughput.

3. The Linux device-mapper infrastructure is directed, via the libdevmapper library, to create a block
device (the scratch volume) from the extents recorded in the binary heap. Device-mapper [9] provides
a mechanism for creating virtual disks that redirect accesses to other disks in a configurable, table-
driven fashion; this is the mechanism that underlies the Logical Volume Manager. Before the list of
extents is presented to libdevmapper, it is sorted by originating volume and sector offset within that
volume. This reduces seeks during streaming accesses to the scratch volume, since its sectors are
more likely to be ordered with respect to sectors on the physical disks.

The device-mapper implements a logical volume as a table of extents. If the host’s filesystems were
highly fragmented and gather free space were to include every free extent, the table could grow
quite large. The Linux kernel places the table in the vmalloc allocation area, which is limited to
128 MB on x86 systems and cannot be swapped to disk. Limiting the table to the largest 100,000 ex-
tents ensures that gather free space creates the largest scratch volume possible without consuming
more than a few megabytes of kernel memory.

3.2.2 Using Free Disk Space
gather free space can create a virtual disk, but cannot make it usable by Pocket ISR. This task is per-
formed by the early-scratch-setup initialization script, which runs during boot just before the livesys
initscript. As shown in Figure 7, early-scratch-setup performs the following actions:

1. gather free space is run to create a scratch volume (a). By default, early-scratch-setup im-
poses a minimum volume size of 2176 MB (2 GB + 128 MB); if gather free space is unable to
create a scratch volume of at least this size, early-scratch-setup produces an error and terminates.

2. A dm-crypt volume (b) is created which is backed by the scratch volume and encrypted with AES,
using the XTS cipher mode and a randomly-generated 256-bit key. This step ensures that sensitive
data stored by the OpenISR client, such as parcel decryption keys, cannot be recovered from the disk
once Pocket ISR is shut down.

8



3. A Logical Volume Manager volume group (c) is created which is backed by the dm-crypt volume.

4. A swap partition (d) is created within the volume group. By default, this swap partition is 2 GB in
size. The swap partition is formatted and enabled for use.

5. A storage volume (e) is created from the remainder of the space in the volume group. The volume
is formatted with an ext4 filesystem and mounted on /home. To improve performance, mkfs.ext4
is run with the lazy itable init option, causing mkfs.ext4 to defer initialization of filesystem
block groups to a background task which runs when the volume is first mounted.

This entire process takes less than 15 seconds on a 500 GB disk.
early-scratch-setup only runs if the scratch volume parameter is specified on the kernel com-

mand line, allowing the boot loader to indicate whether the user selected transient or persistent mode at
boot time. If this option is specified, early-scratch-setup requires that two other kernel command-
line options are also provided; these are necessary to disable boot-time mechanisms that interfere with
early-scratch-setup. The nopersistenthome option tells the livesys initscript not to mount any ex-
isting home.img file onto /home; this is necessary to allow transient mode to work with USB keys that have
been configured to support persistent mode. The noswap option is necessary to prevent livesys from en-
abling any swap partitions it might find on the host’s disks; since these partitions have already been included
in the scratch volume, they cannot also be used as swap space.

3.2.3 Early Unplug
Transient mode makes it possible to avoid storing parcel data to the USB key, but so far we have assumed
that Pocket ISR depends on the USB key for operating system files. However, this dependence should not
be necessary: Pocket ISR could copy the entire operating system from the USB key into temporary storage,
allowing the user to unplug the USB key immediately after boot is complete. However, doing so poses a
problem. By the time the OS initialization scripts are run, the system has already committed to using the root
filesystem stored on the USB device, a decision which is very difficult to reverse. The only practical way
to select a different root filesystem is to modify the initramfs, a miniature filesystem loaded into memory
by the boot loader and tasked with obtaining access to a suitable root filesystem. The initramfs on Fedora
systems is created by the modular Dracut tool. In principle, a Dracut plugin could be constructed which ran
early-scratch-setup, copied the root filesystem into the resulting volume, and booted from it. However,
the initramfs is an unforgiving development and test environment, increasing the implementation cost of
such an approach.

Fortunately, there is a cleaner alternative. The Dracut module responsible for booting live systems
already supports a live ram kernel command-line parameter, which causes the entire SquashFS image to
be copied from the boot medium into RAM before the system is booted. (The option was originally provided
to improve performance when booting from CD.) Pocket ISR enables this option when booting in transient
mode; once boot is complete, the system no longer depends on the USB key, which can be unplugged.
Even though the entire operating system is loaded into RAM, memory pressure in the system is not greatly
increased: under low-memory conditions, the kernel can migrate unused parts of the operating system image
to the swap partition created by early-scratch-setup.

3.3 Notifying the User
The process of loading the operating system into RAM and building the transient storage volume, if appli-
cable, typically takes less than 30 seconds, and the entire boot process less than 60. As a result, Pocket ISR
does not need to display its own progress indicator while these tasks are running; they are all hidden under
the system’s boot progress bar (Figure 5). However, the user would be aided by feedback indicating whether
sufficient parcel storage was found, and thus whether it is safe to resume her parcel. Therefore, once the

9



(a) Transient storage in use. (b) Persistent storage in use.

(c) No parcel storage available.

Figure 8: Parcel storage notifications.

boot process completes and the desktop environment is running, the user is shown a popup message like
those in Figures 8(a) and (b). The message indicates what type of parcel storage is in use, gives the amount
of disk space available, and reminds the user of the consequences of her chosen storage mode. If transient
mode failed to locate sufficient storage, or if persistent mode failed to locate the home.img file, a warning
(c) is shown instead.

4 Future Work and Extensions
This section discusses several potential improvements to the Pocket ISR system.

4.1 Reducing Pocket ISR Download Size
The current version of the livecd-creator tool creates the SquashFS image using gzip compression.
Development is ongoing on a version of SquashFS which supports the LZMA compression algorithm,
which typically provides significantly better compression ratios. Once LZMA support is integrated into
the SquashFS tools and supported by livecd-creator, it will be used in Pocket ISR to reduce the size
of the Pocket ISR ISO image. Tests with the Pocket ISR 0.9.7-2 release show that switching to LZMA
compression could reduce the ISO image size by more than 40 MB.

4.2 Supporting Additional Virtual Machine Monitors
The current version of Pocket ISR supports only the VirtualBox virtual machine monitor. To improve
compatibility with existing parcels, Pocket ISR should strive to include all of the VMMs that are supported
by the OpenISR client and can legally be redistributed. At present, the only other VMM that meets these
criteria is KVM. As of Fedora 12, VirtualBox cannot run while the KVM kernel modules are loaded due to
conflicts over the virtualization hardware, preventing Pocket ISR from including both VMMs. This problem
is resolved starting with Linux kernel 2.6.33, which will be included in Fedora 13. The first version of
Pocket ISR to be derived from Fedora 13 will therefore include support for KVM.

4.3 Supporting Additional Host Filesystems
gather free space supports collecting free extents from all commonly-used filesystems except FAT and
HFS+. Unlike with the ext2 family and NTFS, no widely-used libraries exist for reading these filesystem
types. Several relatively-obscure libraries exist for reading the FAT filesystem, and one of these might be
used; however, the internal hard disks of modern computers are not commonly formatted with FAT. The
absence of HFS+ support, however, prevents transient mode from functioning on the vast majority of x86-
based Macintosh systems. The HFS+ format is documented by Apple and supported by the Linux kernel,
but no user-space libraries support it. Proper support of HFS+ in Pocket ISR would therefore likely require
gather free space to directly parse HFS+ data structures.

10



4.4 Improving User Feedback
Once Pocket ISR has finished booting in transient mode, it shows the user a notification giving the total
amount of free disk space that was located (Figure 8(a)). This display is sufficient for day-to-day use of
Pocket ISR, but is not sufficient to help the user debug problems. More detailed information is printed by
gather free space as it runs, but this output is normally hidden under the boot progress bar. The user can
press the Escape key during boot to see this information, but this is no longer possible once Pocket ISR has
finished booting. In addition, debugging information explaining why certain volumes were skipped entirely
(for example, they are damaged or contain a Windows hibernate file) is not printed by default.

It may be useful to log the output of gather free space to a location which could later be examined
by the user to diagnose problems. A graphical tool could read the logging output and visually display the
filesystems on the host, the quantity of free space obtained from each, and any errors that were encountered
while reading the filesystems.

4.5 Caching Parcel Data on the USB Key
An installation of Pocket ISR onto a portable USB storage device consumes less than 300 MB, but today’s
inexpensive USB keys are significantly larger. Pocket ISR should allow the user to use the remaining space
as a lookaside cache [23] for parcel data. This is already supported when Pocket ISR is booted in persistent
mode, but as explained in Section 3.1, persistent mode is not the normal usage model. Supporting lookaside
caching in transient mode would require several changes to Pocket ISR and the OpenISR client:

• Lookaside caching in transient mode would require the OpenISR client to support more than one
cache: one on the USB key and one in transient storage. The client would need to be extended to
support multiple caches and to automatically detect and use any cache present on the USB key.

• Any on-key cache supported in transient mode would need to be stored directly in the filesystem of
the USB key. Since the USB key is very likely formatted with the FAT filesystem, individual files in
the lookaside cache cannot be larger than 4 GB. Meeting this requirement would require changes to
the client’s existing lookaside cache, which stores all disk chunks in a single large file.

• Once the user has created a lookaside cache on her USB key, the same cache should be usable un-
der other circumstances. For example, if the key is booted in persistent mode, ISR should use the
same cache as in transient mode. In fact, any OpenISR client, including clients not running within
Pocket ISR, should be able to locate and use lookaside caches on portable USB devices. Therefore,
the lookaside cache format and implementation should not be specific to Pocket ISR, but should be a
generic mechanism supported by all OpenISR clients.

• Currently, once Pocket ISR has finished booting in transient mode, the user may unplug her USB
key at any time. Preserving this feature would require the OpenISR client to gracefully handle the
disappearance of a lookaside cache while it is in use; in this case, the client should simply continue to
the next available cache, or to the server, to obtain the necessary parcel data.

4.6 Integrating Features from Horatio
Pocket ISR could serve as a starting point for the integration of concepts from Horatio [20] into the OpenISR
system. Some parts of the Horatio design are already in place: Pocket ISR can be booted from a smart phone
that presents itself as a USB storage device, and checked-out parcels can already be stored on the boot device
if Pocket ISR is booted in persistent mode. However, the flash storage in current smart phones is unlikely to
provide sufficient performance for persistent mode. Opportunities for further integration of Horatio concepts
include:

11



• When Pocket ISR is booted from a mobile phone, it could use the mobile phone’s Internet access to
communicate with the OpenISR server.

• The OpenISR system could be extended to support copying of existing checkouts between devices,
such as between a desktop OpenISR client and Pocket ISR, or between Pocket ISR’s transient storage
and the USB key. This would allow the user to store modified parcel state back to Pocket ISR when
insufficient bandwidth is available to upload it directly to the server. As with the lookaside cache
changes proposed in Section 4.5, this change would require modifications to the client’s parcel storage
format to work around the 4 GB file size limit imposed by the FAT filesystem.

• Once Pocket ISR has been shut down, an application running on the smart phone could use the phone’s
Internet access to upload parcel state back to the OpenISR server. Likewise, the application could
refresh the phone’s lookaside cache in the background, ensuring that the complete contents of the
parcel are cached.

• Pocket ISR could continue to upload parcel data even after the data has been copied to the phone
and the phone’s USB connection has been unplugged. This would allow the user to depart while
Pocket ISR finishes checking in the parcel (and presumably shuts down afterward), since if Pocket ISR
is unable to complete the upload, the user would retain the copy of their parcel state on their mobile
phone. Additionally, Pocket ISR and the phone might cooperate to upload parcel state over their
respective Internet connections.

4.7 Improving Extent Selection
The extent-selection algorithm could be further improved to account for the user’s disk space requirements.
On disks with plenty of free space available, the seek overhead imposed by including smaller extents in the
device-mapper table might not be worth the small amount of additional free space gained, even though the
resulting table size would be sufficiently small. Furthermore, it may be preferable for gather free space
to collect extents only until the resulting volume reaches a certain size, in order to avoid the overhead of
scanning and creating filesystem metadata for storage the user will never actually need. On disks that are
nearly full, gather free space may need to include every available extent, even though the resulting seek
overhead might be extreme.

4.8 Incrementally Adding Free Disk Space
Currently, Pocket ISR discovers all available free space on the host system in a single operation. Under some
circumstances, the user might want to add an additional pool of free space after boot. For example, if the
user needs more disk space than expected, or if the host system does not have enough available free space,
she might plug in an external disk. The additional free space could be added to transient storage by creating
an additional scratch volume and associated dm-crypt volume, adding the latter to the LVM volume group,
resizing the LVM storage volume, and performing an online resize of the ext4 filesystem it contains.

4.9 Improving Extent Ordering in the Scratch Volume
Currently, extents in the device-mapper table are sorted by origin volume and offset within that volume.
However, gather free space does not have enough knowledge of the disk’s partition table to ensure that
volumes are listed in the order they occur on disk. As a result, large seeks might be required when stream-
ing data across extents spanning a volume boundary. In addition, extents originating from LVM or RAID
volumes might have a complex relationship to their underlying disk partitions. If gather free space
were able to parse the partition tables, device-mapper tables, and RAID metadata underlying the volumes it
scanned, it could more effectively sort extents to reduce unnecessary seeks.

12



4.10 Reducing the Bandwidth Requirements of Pocket ISR Update
At present, Pocket ISR Update downloads the entire ISO image of a new release before updating the USB
key. However, the difference between the current and new releases may be quite small. It should be possible
to download only the delta between the Pocket ISR image already stored on the USB key and the new
version, dramatically reducing download size.

Doing so is not straightforward, however, due to the process used to create a Pocket ISR image. As
explained in Section 2.1, the distributed ISO image is not itself written to the USB key. The majority of the
distributed data is contained in a SquashFS image file; since it is compressed, this file changes significantly
as a result of minor changes in the underlying filesystem data. For SquashFS filesystems containing many
individual files, this problem is not severe: SquashFS resets the compression stream when storing each new
file, so files unmodified between two images reduce to the same compressed data and need not be included
in a delta. However, the SquashFS image in Pocket ISR stores exactly one file: an ext4 filesystem image. As
a result, differencing file-transfer tools like rsync [3] and zsync [15] find only small amounts of similarity,
even between two builds of the same version of Pocket ISR.

There are several options for solving this problem:

• Disable generation of the SquashFS layer when the ISO image is built, resulting in a larger image
amenable to delta transmission. The transmission savings of the differencing transport might outweigh
the loss of file compression, particularly if transport compression was used. Two versions of the ISO
image could be offered for download, one compressed for new users (who would need to download the
whole image file) and one uncompressed for delta transmission. A client starting with the compressed
version of the image could simply extract the ext4 image from the SquashFS and use that as the basis
for the differencing transfer. The larger ISO image could then be given to livecd-iso-to-disk.

Unfortunately, file transfer size is not the only consideration. When booting an uncompressed image
in transient mode, Pocket ISR would have to load the entire uncompressed image into RAM. The
result would be increased Pocket ISR boot times and greater memory pressure on the booted system.

• Perform a differencing transfer of just the embedded ext4 image, but construct the SquashFS and
surrounding ISO image on the client. This approach trades CPU time for network bandwidth, but
would prevent Pocket ISR from having to load a larger filesystem image into RAM at boot. However,
it would also require interacting with livecd-creator at a lower level, since the command-line
utility does not allow the image build process to be altered in this way.

• Disable generation of the ext4 image and place operating system files directly in the SquashFS. This
approach would be ideal for Pocket ISR, since it compresses the data without precluding differencing
transfer. Further, the practice of embedding an ext4 filesystem inside a SquashFS filesystem exists to
support Linux installers running from the live image, a case unimportant to Pocket ISR. However, this
change could require extensive modifications to livecd-tools and to the Pocket ISR boot process,
including changes to the initramfs.

5 Related Work
TransPart [21] is a mechanism for borrowing free space from a host filesystem, for temporary use by a
virtual machine running from a USB-booted OS. It is similar in spirit to the gather free space component
of Pocket ISR, though Pocket ISR and gather free space were developed independently of TransPart.
TransPart is a prototype, rather than a production-ready system, and only supports collecting free space
from ext2 and ext3 filesystems. TransPart tracks free extents via a database in persistent storage, leading to
slower discovery of free extents; for example, TransPart takes 15 times as long as gather free space to
collect 200 GB of free space. This overhead forces TransPart to allocate only the minimum amount of space

13



required by the virtual machine; in contrast, Pocket ISR always allocates the maximum possible amount of
disk space.

The Transparent File System [2] is a modified ext2 filesystem that allows opportunistic applications such
as SETI@home to borrow unused disk space without interfering with the primary uses of the disk. Unlike
Pocket ISR, TFS is intended to allow such applications to run concurrently with normal use of the computer
and within the same instance of the operating system. Because this usage model is more challenging than
the one supported by Pocket ISR, the design of TFS is correspondingly more complex. In addition to the
usual filesystem objects, TFS supports a new type of file, the “transparent file,” for which it provides a
weaker persistence guarantee: transparent files may disappear at any time if overwritten by regular data, but
otherwise have roughly the semantics of a regular file. This guarantee is both too strong and too weak to be
useful for Pocket ISR’s transient mode. The OpenISR client cannot tolerate the spontaneous disappearance
of stored parcel data; conversely, if Pocket ISR stored parcel data in TFS and the computer were abruptly
powered off, the data would remain accessible in the host’s filesystem after boot. Since TFS does not provide
encryption, sensitive data would thus be exposed to the owner of the computer. Using TFS with Pocket ISR
would require mounting the host’s filesystem, exposing the host’s files within the live environment. Finally,
unlike gather free space, TFS is tied to a specific on-disk format which is incompatible with existing
production filesystems (including ext2), making it unsuitable for borrowing free space from an arbitrarily-
configured computer.

6 Conclusion
We presented Pocket ISR, a live Linux distribution that allows an ISR user to convert a borrowed PC into
an ISR client in less than a minute. Pocket ISR uses free disk space on the host computer to securely
store temporary parcel data, providing good performance without modifying any of the host’s data and
without interfering with a hibernated host. Alternatively, if the user has suitable hardware, Pocket ISR can
store parcel data directly on a USB storage device and ignore the host’s disks entirely. To ease upgrades,
Pocket ISR can automatically update itself to the newest release.

Pocket ISR has the potential to change the way people use the OpenISR system. At present, the absence
of a large installed base of OpenISR clients forces an ISR user to resume her parcels only on computers
she uses frequently, carrying her own laptop when these machines are not accessible. This need to carry a
dedicated computer negates much of the promise of ISR. Pocket ISR solves this problem by replacing the
dedicated laptop with just another key on the user’s keyring. With that key, and any borrowed hardware, an
ISR user can obtain easy and responsive access to her parcel anytime and anywhere.

Acknowledgments
The value of embedding a bootable ISR client in a portable USB storage device was first pointed out by
David O’Hallaron, who also proposed the name “Pocket ISR.”

References
[1] BITTORRENT, INC. BitTorrent. http://www.bittorrent.com/, 2010.

[2] CIPAR, J., CORNER, M. D., AND BERGER, E. D. Contributing Storage Using the Transparent File System.
ACM Transactions on Storage 3, 3 (2007).

[3] DAVISON, W. rsync. http://samba.anu.edu.au/rsync/, 2009.

[4] DYWAN, C. Midori. http://www.twotoasts.de/index.php?/pages/midori_summary.html, 2010.

[5] FREE SOFTWARE FOUNDATION, INC. GNU General Public License, version 2. http://www.gnu.org/
licenses/old-licenses/gpl-2.0.txt, 1991.

[6] FREE SOFTWARE FOUNDATION, INC. The GNU Privacy Guard. http://www.gnupg.org/, 2010.

14



[7] HEADLIGHT SOFTWARE, INC. HTTP/FTP WebSeeding Method for BitTorrent. http://www.getright.com/
seedtorrent.html, 2006.

[8] INTERNET SUSPEND/RESUME. Internet Suspend/Resume. http://isr.cmu.edu/, 2010.

[9] LINUX DEVICE-MAPPER. Device-Mapper Resource Page. http://sources.redhat.com/dm/, 2008.

[10] LINUX-NTFS PROJECT. Linux-NTFS. http://www.linux-ntfs.org/, 2007.

[11] LOUGHER, P. squashfs. http://squashfs.sourceforge.net/, 2008.

[12] LVM2. LVM2 Resource Page. http://sourceware.org/lvm2/, 2008.

[13] LXDE FOUNDATION E.V. LXDE. http://lxde.org/, 2010.

[14] ORACLE CORPORATION. VirtualBox. http://www.virtualbox.org/, 2010.

[15] PHIPPS, C. zsync. http://zsync.moria.org.uk/, 2005.

[16] RASTERBAR SOFTWARE. Rasterbar libtorrent. http://www.rasterbar.com/products/libtorrent/,
2010.

[17] RED HAT, INC. Fedora Project. http://fedoraproject.org/, 2010.

[18] RED HAT, INC. Fedora trademark guidelines. http://fedoraproject.org/wiki/Legal/
TrademarkGuidelines, 2010.

[19] SATYANARAYANAN, M., GILBERT, B., TOUPS, M., TOLIA, N., SURIE, A., O’HALLARON, D. R., WOL-
BACH, A., HARKES, J., PERRIG, A., FARBER, D. J., KOZUCH, M. A., HELFRICH, C. J., NATH, P., AND
LAGAR-CAVILLA, H. A. Pervasive Personal Computing in an Internet Suspend/Resume System. IEEE Internet
Computing 11, 2 (2007), 16–25.

[20] SMALDONE, S., GILBERT, B., BILA, N., IFTODE, L., DE LARA, E., AND SATYANARAYANAN, M. Leveraging
smart phones to reduce mobility footprints. In Mobisys ’09: Proceedings of the 7th international conference on
Mobile systems, applications, and services (New York, NY, USA, 2009), ACM, pp. 109–122.

[21] SMALDONE, S., HARKES, J., IFTODE, L., AND SATYANARAYANAN, M. Safe Transient Use of Local Stor-
age for VM-based Mobility. Tech. Rep. CMU-CS-10-110, Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA, March 2010.

[22] TOLIA, N., ANDERSEN, D., AND SATYANARAYANAN, M. Quantifying Interactive Experience on Thin Clients.
IEEE Computer 39, 3 (Mar. 2006).

[23] TOLIA, N., HARKES, J., KOZUCH, M., AND SATYANARAYANAN, M. Integrating Portable and Distributed
Storage. In FAST ’04: Proceedings of the 3rd USENIX Conference on File and Storage Technologies (San
Francisco, CA, March 2004).

[24] TS’O, T. E2fsprogs: Ext2/3/4 Filesystem Utilities. http://e2fsprogs.sourceforge.net/, 2010.

15


