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Abstract

A central question in designing server farms today is how to efficiently provision the number of servers
to handle unpredictable demand patterns, so as to extract the best performance while not wasting
energy. While one would like to turn servers off when they become idle to save energy, the large
setup cost (both, in terms of setup time and energy penalty) needed to switch the server back on can
adversely affect performance. The problem is made more complex by the fact that today’s servers
provide multiple sleep or standby states which trade off the setup cost with the power consumed
while the server is ‘sleeping’. With so many controls, finding the optimal server pool management
policy is an almost intractable problem – How many servers should be on at any given time, how
many should be off, and how many should be in some sleep state?
In this paper, we analyze server farm management policies, and prove that it suffices to consider a
small, natural class of policies to guarantee near-optimal behavior. We employ the popular metric
of Energy-Response time Product (ERP) to capture the energy-performance tradeoff, and present
the first theoretical results on the optimality of server farm policies under both stationary and time-
varying demand patterns. We find that there exists a very small set of natural policies that always
contains the optimal policy for a single server, and a near-optimal policy for multi-server systems,
for a stationary demand pattern. We also consider server farm management policies for time-varying
demand patterns and propose a robust, traffic-oblivious policy which is asymptotically optimal as
the load becomes large.





1 Introduction

Motivation

Server farm power consumption accounts for more than 1.5% of the total electricity usage in the
U.S., at a cost of nearly $4.5 billion [23]. The rising cost of energy and the tremendous growth of
data centers will result in even more spending on power consumption. Unfortunately, only 20-30%
of the total server capacity is used on average [8]. The main culprit of this wastage are idle servers
in over-provisioned server farms.

Idle servers consume about 60% of their peak power [8]. While a lot of energy can be saved by
turning idle servers off, turning on an off server incurs a significant cost. The setup cost takes the
form of both a time delay, which we refer to as the setup time, and an energy penalty. Thus it is not
obvious whether idle servers should be turned off. Another option is to put idle servers into some
sleep state. While a server in sleep mode consumes more power than an off server, the setup cost for
a sleeping server is lower than that for an off server. Today’s state-of-the-art servers come with an
array of sleep states, leaving it up to the server farm manager to determine which of these is best.

Goal and metric

There is a clear tradeoff between leaving idle servers on, and thus minimizing mean response time,
versus turning idle servers off (or putting them to sleep), which hurts response time but may save
power. Optimizing this tradeoff is a difficult problem, since there are an infinite number of possible
server farm management policies. Our goal in this paper is to find a simple class of server farm
management policies, which optimize (or nearly optimize) the above tradeoff. We also seek simple
rules of thumb that allow designers to choose from this class of near-optimal policies. In doing so,
we greatly simplify the job of the server farm manager by reducing the search space of policies that
he/she needs to choose from.

To capture the tradeoff involved in energy and performance, and to compare different policies, we
use the Energy-Response time Product (ERP) metric, also known as the Energy-Delay Product
(EDP) [18, 22, 11, 19, 17]. For a control policy π, the ERP is given by:

ERP π = E[P π] · E[T π]

where E[P π] is the long-run average power consumed under the control policy π, and E[T π] is mean
customer response time under policy π. Minimizing the quantity ERP can be seen as maximizing the
“performance-per-watt”, with performance being defined as the inverse of mean response time. While
ERP is widely accepted as a suitable metric to capture energy-performance tradeoffs, we believe we
are the first to analytically address optimizing the metric of ERP in server farms.
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Note that there are other performance metrics that also capture the tradeoff between response time
and energy, for example, a weighted sum of the mean response time and mean power (ERWS) [3, 4, 24].
However, the ERWS metric implies that a reduction in mean response time from 1001 sec to 1000
sec is of the same value as a reduction from 2 sec to 1 sec. By contrast, the ERP implies that a
reduction in mean response time from 2 sec to 1 sec is much better than a reduction from 1001 sec to
1000 sec, which is more realistic. One reason for the popularity of ERWS is that it is a nicer metric
to handle analytically, being a single expectation, and hence additive over time. Therefore, one can
optimize the ERWS metric via Markov Decision Processes, for example. From the point of view of
worst case sample path based analysis, this metric allows comparing arbitrary policies to the optimal
policy via potential function arguments [15]. However, ERP, being a product of two expectations,
does not allow a similar analysis. Other realistic metrics of interest include minimizing total energy
given bounds on, say, the 95%tile of response times.

Summary of Contributions

We consider a specific set of server farm management policies (defined in Table 1) and prove that it
contains the optimal policy for the case of a single server, and also contains a near-optimal policy
for the case of multi-server systems, assuming a stationary demand pattern. For the case of time-
varying demand patterns, we develop a traffic-oblivious policy that can auto-scale the server farm
capacity to adapt to the incoming load, and prove that this policy is optimal as the load approaches
infinity. Throughout this paper, for analytical tractability, we make the assumption of Exponentially
distributed job sizes and a Poisson arrival process. However, the setup time distribution is assumed
to be Deterministic. We formally define the traffic model and the model for servers’ sleep state
dynamics in Section 3.

• We begin in Section 4 by considering a single-server system. The arrival process is Poisson with
a known mean arrival rate. There is an infinite range of policies that one could consider for
managing a single server, for example, when the server goes idle, one could immediately turn
it off (INSTANTOFF), or alternatively, move the server to a specific sleep state (SLEEP).
One could also just leave the server idle when it has no work to do (NEVEROFF). Another
possibility is to turn an idle server off with some probability p, and leave it idle with probability
(1 − p). One could also delay turning on an off server until a certain number of jobs have
accumulated in the queue. Also, when turning on an off server, one could transition through
sleep states, with each successive transition moving the server closer to the on state. Within
this wide range of policies, we prove that one of the policies, NEVEROFF, INSTANTOFF
or SLEEP, is always optimal. Refer to Table 1 for the exact definitions of these policies.

• In Section 5, we consider the case of multi-server systems. The arrival process is Poisson
with a known mean arrival rate. We assume that there are enough servers so that we are not
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Policy Single-Server Multi-Server
NEVEROFF Whenever the server

goes idle, it remains
idle until a job arrives.

A fixed optimally chosen number n∗ (with respect to ERP) of
servers are maintained in the on or idle states. If an arrival
finds a server idle, it starts serving on the idle server. Arrivals
that find all n∗ servers on (busy) join a central queue from
which servers pick jobs when they become idle.

INSTANTOFF Whenever the server
goes idle, it turns off.
It remains off until
there is no work to
process, and begins to
turn on as soon as
work arrives.

Whenever a server goes idle, and there are no jobs in the
queue, the server turns off. Otherwise it picks a job from
the queue to serve. At any moment in time, there are some
number of servers that are on (busy), and some number of
servers that are in setup. Every arrival puts a server into
setup mode, unless the number of servers in setup already
exceeds the number of jobs in the queue. A job does not
necessarily wait for the full setup time since it can be run on
a different server that becomes free before the setup time is
complete, leaving its initially designated server in setup.

SLEEP(S) Whenever a server
goes idle, it goes into
the sleep state S. It
remains in sleep state
S until there is no
work to process, and
begins to wake up as
soon as work arrives.

A fixed optimally chosen number n∗ of servers are maintained
in the on, off or sleep states. Whenever a server goes idle,
and there are no jobs in the queue, it goes into the sleep state
S. Otherwise it picks a job from the queue to serve. Every
arrival wakes a sleeping server and puts it into setup, unless
the number of servers in setup already exceeds the number of
jobs in the queue.

Table 1: A summary of the different policies considered in this paper, and their description in the
single-server and multi-server cases.

constrained by the available capacity. In the multi-server setting, we have an even wider range
of policies to choose from. For example, some servers could be turned off when idle, some
could be moved to a specific sleep state, and the rest may be kept idle. Another possibility is to
turn idle servers off based on the state of the system, such as the total number of idle servers,
or the total number of off servers, etc. One could also delay turning on an off server until a
certain number of jobs have accumulated in the queue, or delay turning off an idle server until
some time has elapsed. Clearly, there is a huge set of admissible policies. Here again, we show
that one of NEVEROFF, INSTANTOFF or SLEEP (defined in Table 1 for a multi-server
system) is near-optimal.

• In Section 6 we consider a time-varying arrival pattern with the aim of finding policies which
can auto-scale the capacity while being oblivious to the traffic intensity. This situation is even
more complicated than in Section 5, since a server farm management policy might now also
take into account the history of arrivals or some predictions about the future arrivals. The
class of available policies is now even larger. For the time-varying case, we introduce a new
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policy DELAYEDOFF. Under the DELAYEDOFF policy, a server is only turned off if it
does not receive any jobs to serve in time twait. If an arrival finds more than one server idle on
arrival, it is routed to the server which was most recently busy (MRB). Otherwise, the arriving
job turns on an off server.
The MRB routing proposed above turns out to be crucial for the near-optimality of DELAYED-
OFF. Intuitively, MRB routing increases the variance of the idle periods of the servers when
compared to random or round-robin routing, and yields the property that the longer a server
has been idle, the longer it is likely to stay idle. We prove that DELAYEDOFF is asymp-
totically optimal as the load becomes large. Policies similar to DELAYEDOFF have been
proposed in the literature but applied to individual devices [15, 10, 21], whereas in our case
we propose to apply it to a pool of homogeneous interchangeable servers under MRB routing.
We provide both analytical and simulation evidence in favor of the auto-scaling capabilities
of DELAYEDOFF and show that it compares favorably to an offline, traffic-aware capacity
provisioning policy.

2 Prior work

Prior analytical work in server farm management to optimize energy-performance tradeoff can be
divided into stochastic analysis, which deals with minimizing average power/delay or the tail of
power/delay under some probabilistic assumptions on the arrival sequence, and worst-case analysis,
which deals with minimizing the cost of worst-case arrival sequences.

Stochastic Analysis

The problem of server farm management is very similar in flavor to two well studied problems in
the stochastic analysis community: operator staffing in call centers and inventory management. In
call center staffing, the servers are operators, who require a salary (power) when they are working.
Similarly to our problem, these operators require a setup cost to bring an employee into work,
however, importantly, all analysis in call center staffing has ignored this setup cost.

The operator staffing problem involves finding the number of operators (servers) which minimize
a weighted sum of delay costs experienced by users and the monetary cost of staffing operators.
While this problem has received significant attention under the assumption of stationary (non-time-
varying) demand (see [9] for recent results), there is significantly less work for the time-varying case,
one exception being [16]. In [16], the authors consider the problem of dynamic staffing based on
knowing the demand pattern so as to maintain a target probability of a user finding all servers busy
on arrival.

Within inventory management, the problem of capacity provisioning takes the form: how much in-
ventory should one maintain so as to minimize the total cost of unused inventory (holding cost, in our
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case idle power) and waiting cost experienced by orders when there is no inventory in stock (queue-
ing delay of users). Conceptually this problem is remarkably similar to the problem we consider,
and the two common solution strategies employed, known as Make to Order and Make to Stock,
are similar in flavor to what we call INSTANTOFF and NEVEROFF, respectively (see [2], for
example). However, in our case servers can be turned on in parallel, while in inventory management
it is assumed that inventory is produced sequentially (this is similar to allowing at most one server
to be in setup at any time).

Worst-case Analysis

The theoretical CS community has been interested in power management from the point of view of
minimizing worst case cost, for example ERWS (See [14] for a recent survey). Again, none of the
prior work encompasses a setup time and is more applicable to a single device than a server farm.
The performance metrics used are also very different from ERP.

The work can primarily be split in terms of results on speed scaling algorithms, and results on algo-
rithms for powering down devices. In the realm of speed scaling, the problem flavors considered have
been minimizing energy or maximum temperature while meeting job deadlines [25, 6, 7], minimizing
mean response time subject to a bound on total energy [20], and minimizing the ERWS [5, 24].
However, again all these papers assume that the speed level can be switched without any setup costs,
and hence are mainly applicable to single stand-alone devices, since in multi-server systems setup
costs are required to increase capacity.

The work on powering down devices is more relevant to the problem we consider, and due to sample
path guarantees, these results naturally lead to traffic-oblivious powering down schemes. In [15] the
authors consider the problem of minimizing total energy consumed under the constraint that a device
must instantly turn on when a job arrives. Further, [15] assumes that there is no setup time while
turning on a device, only an energy penalty.

3 Model

Figure 1 illustrates our server farm model. We assume n homogeneous servers, where each server can
process any job, and thus the servers are interchangeable. Jobs arrive from outside the system, to a
central queue, according to a Poisson process. In Sections 4 and 5, we consider a fixed arrival rate,
λ. However, in Section 6, we consider a time-varying arrival rate, λ(t). We assume the job sizes are
independent and identically distributed according to an Exponentially distributed random variable
S, with rate µ. The quantity ρ(t) = λ(t) · E[S] is used to denote the instantaneous load, or the rate
at which work is entering the system at time t. In Sections 4 and 5, where we assume λ(t) = λ, we
have ρ = λE[S]. In the case of a multi-server system with n servers, 0 ≤ ρ < n. Here ρ represents
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Figure 1: Illustration of our server farm model.

the minimum number of servers needed to maintain a stable system.

Each server can be in one of the following states: on (busy)1, idle, off, or any one of N − 1 sleep
states: S1, S2, . . ., SN−1. For convenience, we sometimes refer to the idle state as S0 and the off state
as SN . The associated power values are PON , PIDLE = PS0 , PS1 , . . ., PSN = POFF . We shall assume
the ordering PON > PIDLE > PS1 > . . . > PSN−1 > POFF = 0. The server can only serve jobs in the
on state 2. The time to transition from initial state, Si, to final state, Sf , is denoted by TSi→Sf and
is a constant (not a random variable). Rather obviously, we assume TON→IDLE = TIDLE→ON = 0.
Further, the average power consumed while transitioning from state Si to Sf is given by PSi→Sf .

Model Assumptions: For analytical tractability, we will relax the above model a little. We will
assume that the time to transition from a state to any state with lower power is zero. Therefore,
TON→OFF = TSi→OFF = 0, for all i. This assumption is justified because the time to transition
back to a higher power state is generally considerably larger than the time to transition to the lower
power state, and hence dominates the performance penalties. Further, we will assume that the time
to transition from a state Si to any higher power state is only dependent on the low power state,
and we will denote this simply as TSi . Therefore, TOFF→IDLE = TOFF→Si = TOFF , for all i. Note
that 0 = TIDLE < TS1 < . . . < TSN−1 < TOFF . This assumption is justified because in current
implementations there is no way to go between two sleep states without first transitioning through
the IDLE state. Regarding power usage, we assume that when transitioning from a lower power
state, Si, to a higher power state Sf , we consume power PSi→Sf = PON .

The results of this paper are derived under the Model Assumptions. We have validated these assump-
tions within an experimental data center in our lab.

1We use italicized on to denote the state when the server is busy, and without italics when we are colloquially
referring to either the busy or idle state.

2PON need not necessarily denote the peak power at which a job is served, but is used as a proxy for the average
power consumed during the service of a job. Indeed, while applying our model, we would first profile the workload to
measure the average power consumed during a job’s execution, and use it as PON .
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3.1 Simulation methodology

We use a discrete event simulator written in the C++ language to verify our theoretical results for
the various dynamic capacity provisioning policies used in the paper. Our simulator models a server
farm based on the above Model Assumptions.

Throughout the paper, we use simulation results based on the following server characteristics: TOFF =
200s, TSLEEP = 60s, POFF = 0W , PSLEEP = 10W , PIDLE = 150W and PON = 240W . These
parameter values are based on measurements for the Intel Xeon E5320 server, running the CPU-
bound LINPACK [13] workload.

4 Optimal Single Server policies

As the first step towards our goal of finding policies for efficiently managing server pools, we begin by
analyzing the case of a single server system. Recall that our aim is to find the policy that minimizes
ERP under a Poisson arrival process of known intensity. Theorem 1 below states that for a single
server, the optimal policy is included in the set {NEVEROFF, INSTANTOFF, SLEEP} (defined in
Section 1), and hence there is no need to consider any other capacity provisioning policy.

Theorem 1 For the single server model with a Poisson(λ) arrival process and i.i.d. Exponentially
distributed job sizes, the optimal policy for minimizing ERP is one of NEVEROFF, INSTANTOFF
or SLEEP(S), where S is the optimally chosen sleep state among the existing sleep states.

Before we prove Theorem 1, we would like to point out that this is quite a non-intuitive result, and
in general we do not expect it to hold for other metrics such as ERWS. The theorem rules out a
large class of policies, for example those which may randomize between transitioning to different sleep
states, or policies which move from one sleep state to another, or those which may wait for a few jobs
to accumulate before transitioning to the on state. While ERP , being a product of expectations, is a
difficult metric to address analytically, for the single-server case we are able to obtain tight optimality
results by deriving explicit expressions for ERP.

Proof of Theorem 1: We give a high-level sketch of the proof in terms of four lemmas, whose
proofs are deferred to Appendix A. These lemmas successively narrow down the class of optimal
policies, until we are left with only NEVEROFF, INSTANTOFF and SLEEP.

Definition 1 Let Πmixed denote the class of randomized policies whereby a server immediately tran-
sitions to power state Si (i ∈ {0, . . . , N}) with probability pi on becoming idle. Given that the server
went into power state Si, it stays in Si until Ni jobs accumulate in the queue, where Ni ≥ 1 is a ran-
dom variable with qij = Pr[Ni = j]. Once Ni jobs have accumulated, the server immediately begins
transitioning to the on state, and stays there until going idle.

Lemma 1 The optimal policy lies in the set Πmixed.
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Lemma 2 Consider a policy π ∈ Πmixed with parameters as in Definition 1. The mean response
time for policy π under a Poisson(λ) arrival process with i.i.d. Exp(µ) job sizes is given by:

E[T ] =
∑N
i=0 pi

∑∞
j=1 qijrij∑N

i=0 pi
∑∞
j=1 qij (j + λTSi)

(1)

where,

rij = j + λTSi
µ− λ

+
[
jTSi + j(j − 1)

2λ +
λT 2

Si

2

]
(2)

and the average power for policy π is given by:

E[P ] =
∑N
i=0 pi

∑∞
j=1 qij (j(ρPON + (1− ρ)PSi) + λTSiPON)∑N

i=0 pi
∑∞
j=1 qij (j + λTSi)

. (3)

Lemma 3 The optimal strategy for a single server must be pure. That is, pi = 1 for some i ∈
{0, . . . , N}, and Ni ≡ ni for some integer ni ≥ 1.

Lemma 4 The optimal pure strategy dictates that ni = 1, if the optimal sleep state is Si.

Lemma 1 is proved using a sample path argument and crucially depends on the Poisson arrival pro-
cess and the Model Assumptions for the sleep states of the server, and in fact holds for any metric
that is increasing in mean response time and mean power. Lemma 3 relies on the structure of ERP
metric. While Lemma 3 also holds for the ERWS metric (with a much simpler proof), it does not
necessarily hold for general metrics such as the product of the mean power and the square of the
mean response time. Lemma 4 also relies on the structure of the ERP metric and does not hold for
other metrics such as ERWS.

Lemma 5 Assuming a Poisson(λ) arrival process, and Exp(µ) job sizes, the mean response time
and mean power for NEVEROFF, INSTANTOFF and SLEEP are given by:

E[T ] = 1
µ− λ

+ TSi(1 + λTSi/2)
1 + λTSi

(4)

E[P ] = ρPON + (1− ρ)PSi + λTSiPON
1 + λTSi

(5)

where Si = IDLE for NEVEROFF, Si = OFF for INSTANTOFF, and Si is the sleep state that we
transition to in SLEEP.

Proof: Follows as a consequence of Lemma 2.
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Lemma 5 provides expressions for the mean response time and the mean power consumption under
the NEVEROFF, INSTANTOFF and SLEEP policies. These expressions allow us to determine
regimes of load and mean job sizes for which each policy is best, with respect to ERP. Although not
shown (for lack of space), we find that NEVEROFF is typically superior to the other policies, unless
the load is low and the mean job size is high, resulting in very long idle periods. In that latter case,
INSTANTOFF or one of the SLEEP policies is superior, where the choice between these depends
on the parameters of the sleep and off states. Eqs. (4) and (5) are also helpful for guiding a server
architect towards designing useful sleep states, because they enable the evaluation of ERP for each
candidate sleep state.

5 Near-Optimal Multi-server policies

In this section, we extend our results for single server systems to the multi-server systems with a fixed
known arrival rate, with the goal of minimizing ERP. Inspired by the results in Section 4, where we
found the best of NEVEROFF, INSTANTOFF and SLEEP to be the optimal policy, we intuit that
in the multi-server case, one of NEVEROFF, INSTANTOFF and SLEEP will be close to optimal as
well. We make this intuition precise in Section 5.1, and in Section 5.2, we provide simple guidelines
for choosing the right policy from among this set, depending on the system parameters.

5.1 Near-optimality results

Theorem 2 Let ΠOFF denote the class of policies which only involve the states on, idle and off. The
ERP of the best of NEVEROFF and INSTANTOFF is within 20% of the ERP of the optimal policy
in ΠOFF when ρ ≥ 10. When ρ ≥ 20, the performance gap is smaller than 12%.

Theorem 3 Let ΠSi denote the class of policies which only involve the states on, idle and the Si
sleep state. For arbitrary Si (that is PSi and TSi), the ERP of the best of NEVEROFF and SLEEP
with sleep state Si is within 30% of the ERP of the optimal policy in ΠSi when ρ ≥ 10. When ρ ≥ 20,
the performance gap is smaller than 23%.

We defer the proof of Theorem 2 to Appendix B. The proof of Theorem 3 is similar to the proof of
Theorem 2, and is also presented in Appendix C.

The main idea behind proving Theorems 2 and 3 is getting a reasonably good lower bound on the
ERP for the optimal policy. We believe that in reality, the simple NEVEROFF, INSTANTOFF, and
SLEEP policies are better than our Theorems suggest. To justify this conjecture we perform the
following simulation experiment. We focus on the case in Theorem 2 of policies involving on, idle
and off states. Note that as we mentioned earlier, due to the metric of ERP, we can not utilize the
framework of Markov Decision Processes/Stochastic Dynamic Programming to numerically obtain
the optimal policy. Instead we limit ourselves to the following class of threshold policies:
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THRESHOLD(n1, n2): At least n1 servers are always maintained in on or idle state. If an arrival
finds a server idle, it begins service. If the arrival finds all servers on (busy) or turning on, but this
number is less than n2 ≥ n1, then the arrival turns on an off server. Otherwise the arrival waits in a
queue. If a server becomes idle and the queue is empty, the server turns off if there are at least n1

other servers which are on.
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Figure 2: Comparison of the performance of THRESHOLD policy against the best of NEVEROFF and IN-
STANTOFF policies. The y-axis shows the percentage improvement in ERP afforded by the THRESHOLD
policy.

The THRESHOLD policy can be seen as a mixture of NEVEROFF with n1 servers, and IN-
STANTOFF with (n2 − n1) servers. Therefore, THRESHOLD represents a broad class of policies
(since n1 and n2 can be set arbitrarily), which includes NEVEROFF and INSTANTOFF. In Fig-
ure 2, we show the improvement in ERP afforded by the optimal THRESHOLD policy over the best
of NEVEROFF and INSTANTOFF for various values of ρ, TOFF and PIDLE

PON
. We see that if TOFF is

small (Figure 2 (a)), the ERP gain of the THRESHOLD policy over the best of NEVEROFF and
INSTANTOFF is marginal (< 7%). This is because in this case, INSTANTOFF is close to optimal.
At the other end, when TOFF is large (Figure 2 (c)), the ERP gain of the THRESHOLD policy over
the best of NEVEROFF and INSTANTOFF are again marginal (< 6%), because now NEVEROFF is
close to optimal. We expect the optimal THRESHOLD policy to outperform the best of NEVEROFF
and INSTANTOFF when TOFF is moderate (comparable to PIDLE ·E[S]

PON
). In Figure 2 (b), we see that

this is indeed the case. However, the gains are still moderate (an improvement of 10% when ρ ≥ 10
and at most 7% when ρ ≥ 20 when PIDLE is high).

5.2 Choosing the right policy

Based on the results of Section 5.1, to provision a multi-server system with a fixed known arrival rate,
it suffices to only consider the policies NEVEROFF, INSTANTOFF and SLEEP. Below we develop
a series of simple rules of thumb that help a practitioner choose between these policies.

We start by deriving the n∗ (optimal number of servers) for NEVEROFF and SLEEP. This is done
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in Rules of Thumb #1 and #2, respectively. Then, we use these n∗ values to derive a criterion that
a practitioner can use to choose between NEVEROFF, INSTANTOFF and SLEEP. This is done in
Rule of Thumb #3.

Define β∗(·) to be the following function:

β∗(x) = arg minβ>0

(
α(β)
β

+ β · x
)

(6)

where,

α(β) =
[
1 +
√

2πβΦ(β)e
β2
2

]−1
(7)

and Φ(·) is the c.d.f. of a standard Normal variate.

Rule of Thumb #1: Choosing n∗ for NEVEROFF
For the parameter regime where NEVEROFF is the chosen policy,

n∗ ≈ ρ+ β∗(PIDLE/PON)√ρ (8)

and β∗(·) is given by (6).

Rule of Thumb #2: Choosing n∗ for SLEEP
For the parameter regime where SLEEP with sleep state Si is the chosen policy,

n∗ ≈ ρ′ + β∗(PSi/PON)
√
ρ′ (9)

where ρ′ = ρ
(
1 + TSi

E[S]

)
and β∗(·) is given by (6).

We now justify Rule of Thumb #1, which is popular in the call center staffing literature as the
‘square-root staffing rule’. We begin with the following lemma from [12]:

Lemma 6 (Halfin and Whitt [12]) Consider a sequence of M/M/sn systems with load ρn in the
nth system. Let αn denote the probability that an average customer finds all servers busy in the nth
system. Then,

lim
ρn→∞

αn = α(β) if and only if lim
ρn→∞

sn − ρn√
ρn

= β. (10)

In this case, α(β) is given by Eq. (7), and the mean number of jobs in the nth system, E
[
NM/M/sn

]
,
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satisfies:

lim
ρn→∞

E
[
NM/M/sn

]
− ρn

√
ρn

= α(β)
β

. (11)

Lemma 7 For the NEVEROFF policy, square root staffing with n∗ = ρ + β∗(PIDLE/PON)√ρ is
asymptotically optimal for minimizing the metric of ERP.

Proof: Consider a sequence of M/M/sn systems with load ρn in the nth system. Let sn ∼ ρ +
g(ρn)+o(g(ρn)). From [12], we have that E

[
NM/M/sn

]
∼ ρn+ ρn

g(ρn)αn where αn denotes the stationary
probability that all sn servers are busy in the nth system. Also, E

[
PM/M/sn

]
∼ ρPON + g(ρn)PIDLE,

which gives

E
[
NM/M/sn

]
· E
[
PM/M/sn

]
∼ ρ2

nPON

(
1 + αn

g(ρn)
+ g(ρn)

ρn

PIDLE
PON

+ o() terms.
)

Since αn → 0 when g(ρn) = ω(√ρn), and αn → 1 when g(ρn) = o(√ρn), it is easy to see that the
optimal choice is g(ρn) = β

√
ρn for some constant β. This yields:

ERPNEV EROFF ∼ ρnE[S]PON

1 +
α(β)
β

+ β PIDLE
PON√

ρn

 (12)

Optimizing the above yields the expression for β∗.

The square-root staffing rule is also called the Quality and Efficiency Driven regime, because it
balances the sub-optimality in the performance (Quality) and resource utilization (Efficiency), both
being Θ

(
1√
ρ

)
, and hence optimizes the ERWS metric. Here we have shown that square-root staffing

also optimizes the ERP metric, albeit with a different β.

The justification for Rule of Thumb #2 is along the same lines. We expect the SLEEP(Si) policy to
outperform NEVEROFF when TSi is small enough so that almost all jobs turn on a sleeping server
and get served there. This is equivalent to an M/G/∞ system with G ∼ S + TSi . However, since
PSi > 0, we optimize the number of servers by following Rule of Thumb #1, but with mean job size
replaced by E[S] + TSi , or equivalently ρ′ ← ρ

(
1 + TSi

E[S]

)
, and PIDLE ← PSi . This gives us:

ERP SLEEP (Si) ∼ ρE[S]
(

1 + TSi
E[S]

)2

PON

1 +
α(β)
β

+ β
PSi
PON√

ρ
(
1 + TSi

E[S]

)
 (13)

We now provide a Rule of Thumb to choose between the NEVEROFF, INSTANTOFF and SLEEP
policies, by proposing approximations for their ERP. We expect the INSTANTOFF policy to outper-
form NEVEROFF and SLEEP when TOFF is small enough compared to E[S], so that the penalty to
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turn on an off server is negligible compared to the necessary cost of serving the job. In this regime,
we can approximate the ERP of INSTANTOFF by ERP INSTANTOFF ≈ λPON (E[S] + TOFF )2,
which is an upper bound obtained by forcing every job to run on the server that it chooses to turn on
on arrival. The ERP of NEVEROFF with optimal number of servers is approximated by Eq. (12),
with ρn = ρ and β = β∗(PIDLE/PON). For SLEEP, we again expect SLEEP(Si) policy to outperform
NEVEROFF when TSi is small enough so that almost all jobs turn on a sleeping server and get served
there. In this regime, we can approximate the ERP of SLEEP by Eq. (13), with β = β∗(PSi/PON).
Using the above approximations for ERP, we can choose between the INSTANTOFF, NEVEROFF
and SLEEP policies:

Rule of Thumb #3: Which policy to use?
We first associate each policy with an index. The index for INSTANTOFF is given by(
1 + TOFF

E[S]

)2
. The index for NEVEROFF is given by

(
1 + γ(PIDLE/PON )√

ρ

)
, and for SLEEP with state

Si by
(
1 + TSi

E[S]

)2

1 + γ(PSi/PON )√
ρ

(
1+

TSi
E[S]

)
. The function γ(·) is given by

γ(x) = min
β>0

(
α(β)
β

+ β · x
)

(14)

with α(β) given by (7). Finally, the policy with the smallest index is chosen.

If we compare INSTANTOFF and NEVEROFF, Rule of Thumb #3 says that if TOFF is sufficiently
small compared to E[S] and 1√

ρ
, then one should choose INSTANTOFF. Figure 3(a) verifies the

accuracy of the above rule of thumb. Observe that in the region where our rule of thumb mispredicts
the better policy, the gains of choosing either policy over the other are minimal. Similarly, the dashed
line in Figure 3(b) indicates that the theoretically predicted split between the NEVEROFF and
SLEEP policies is in excellent agreement with simulations.

6 A Traffic-oblivious dynamic capacity provisioning policy

Thus far we have considered a stationary demand pattern. Our goal in this section is to propose a
server farm management policy with near-optimal ERP when the demand pattern is time-varying
and unknown. Specifically we assume that the arrival process is Poisson, with unknown time-varying
arrival rate λ(t), with ρ(t) = λ(t)E[S].

The previous policies that we have considered, NEVEROFF, SLEEP and INSTANTOFF, do not
satisfy our goal. NEVEROFF and SLEEP are based on a fixed number of servers n∗, and thus do
not auto-scale to time-varying demand patterns. INSTANTOFF is actually able to scale capacity
in the time-varying case, since it can turn on servers when the load increases, and it can turn off
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Figure 3: Verifying the of accuracy Rule of Thumb #3. This figure shows the relative performance of
NEVEROFF, INSTANTOFF and SLEEP policies for a multi-server system, as a function of load, ρ, and
mean job size, E[S], based on simulations. Figure (a) shows NEVEROFF vs. INSTANTOFF. The crosses
indicate the region of superiority of INSTANTOFF over NEVEROFF. Figure (b) shows NEVEROFF
vs. SLEEP. The crosses indicate the region of superiority of SLEEP over NEVEROFF. The numbers
associated with each point denote the % improvement of the superior algorithm over the inferior. The dashed
line in Figures (a) and (b) indicate the theoretically predicted split between the policies based on Rule of
Thumb #3.

servers when there isn’t much work in the system. However, when TOFF is high, we will see that
INSTANTOFF performs poorly with respect to ERP.

We propose a new traffic-oblivious auto-scaling policy, DELAYEDOFF, which we will show achieves
near-optimal ERP.
DELAYEDOFF: DELAYEDOFF is a capacity provisioning policy similar to INSTANTOFF, but
with two major changes. First, under DELAYEDOFF, we wait for a server to idle for some prede-
termined amount of time, twait, before turning it off. If the server gets a job to service in this period,
its idle time is reset to 0. The parameter twait is a constant chosen independent of load, and thus
DELAYEDOFF is a truly traffic-oblivious policy. Second, if an arrival finds more than one servers
idle on arrival, instead of joining a random idle server, it joins the server that was most recently busy
(MRB). We will later see that MRB routing is crucial to the near-optimality of DELAYEDOFF.

We will demonstrate the superiority of DELAYEDOFF by comparing it against two other policies,
the first being INSTANTOFF, and the second being an offline, traffic-aware hypothetical policy,
LOOKAHEAD. LOOKAHEAD runs the NEVEROFF policy, with n∗ changing as a function of
time. LOOKAHEAD smartly calculates n∗(t) for each time t, given the ρ(t) forecast. To do this,
we use the idea proposed in [16]. The crux of the idea in [16] is to compute what we will call the
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“effective load” at time t, ρeff(t), as:

ρeff(t) =
∫ t

−∞
e−µ(t−u)λ(u)du.

The quantity ρeff(t) denotes the mean number of jobs in the system at time t under the assumption
that every job in the system can have its own server. The number of servers to have on at time t,
n∗(t), is then chosen to be n∗(t) = ρeff(t) + β∗

√
ρeff(t), where β∗ is given by (6).

Figure 4 illustrates the performance of INSTANTOFF, LOOKAHEAD and DELAYEDOFF in the
case of a time-varying arrival pattern that resembles a sine curve with a period of 6 hours. In all the
simulations, we set E[S] = 1sec, and TOFF = 200secs (hence TOFF is high). Figure 4(a) shows that
INSTANTOFF auto-scales poorly as compared to the other policies, in particularERP INSTANTOFF ≈
6.8 × 105Watts · sec, with E[T ] ≈ 13.17sec and E[P ] ≈ 5.19 × 104Watts. By contrast, LOOKA-
HEAD, shown in Figure 4(b), scales very well with the demand pattern. The ERP of LOOKAHEAD
is ERPLOOKAHEAD ≈ 1.64 × 104Watts · sec, with E[T ] ≈ 1.036sec and E[P ] ≈ 1.58 × 104Watts.
Unfortunately, as pointed out above, LOOKAHEAD requires knowledge of the future arrival pat-
tern to be able to have n∗(t) servers on at time t (in particular, it needs knowledge of the demand
curve TOFF units in advance). Thus, while LOOKAHEAD performs very well in a time-varying
situation, it is not an online strategy, and is thus, not practical. Figure 4(c) illustrates the excellent
auto-scaling capability of DELAYEDOFF for the sinusoidal arrival pattern. Here, twait = 320s is
chosen according to Rule of Thumb #4 presented later in this section. For the case in Figure 4(c),
ERPDELAY EDOFF ≈ 1.89× 104Watts · sec with E[T ] ≈ 1.002sec and E[P ] ≈ 1.89× 104Watts. The
ERP for DELAYEDOFF is only slightly higher than that of LOOKAHEAD, and far lower than that
of INSTANTOFF. DELAYEDOFF slightly overprovisions capacity compared to LOOKAHEAD due
to its traffic-oblivious nature. We verify this last observation analytically.
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0 4 8 12 16 20 24
0

50

100

150

200

Time (hrs) →

period=6hrs, ρ=60, E[S]=1s, t
wait

=320s

 

 

ρ(t)
n

busy+idle
(t)

N(t)

(c) DELAYEDOFF

Figure 4: Dynamic capacity provisioning capabilities of INSTANTOFF, LOOKAHEAD and DELAYED-
OFF. The dashed line denotes the load at time t, ρ(t), the crosses denotes the number of servers that are
busy or idle at time t, nbusy+idle(t), and the dots represent the number of jobs in the system at time t, N(t).

While analyzing DELAYEDOFF under time-varying traffic is a formidable challenge, we justify
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its excellent auto-capacity-scaling capabilities in Corollary 1, which shows that under a Poisson
arrival process with unknown intensity, DELAYEDOFF achieves near-optimal ERP. Thus, if the
rate of change of the arrival rate is less than TOFF (as was the case in Figure 4(c)), we expect
DELAYEDOFF to still achieve near-optimal ERP. This is because we are able to turn servers on
before the queue builds up.

Theorem 4 Consider a server farm with Poisson arrival process and Exponential job size distribu-
tion. Let ρ denote the average load. Under DELAYEDOFF with MRB routing and any constant
twait, with probability 1 − o(1), the number of servers on is given by ρ +

√
ρ log ρ + o(

√
ρ log ρ), as

ρ→∞.

Corollary 1 If TOFF = 0, then DELAYEDOFF achieves optimal ERP asymptotically as ρ → ∞.
Specifically, the ERPDELAY EDOFF → (ρ ∗ PON ∗ E[S])−1 as ρ→∞.

Proof of Corollary 1: From Theorem 4, we know that asymptotically with probability 1, we’ll
end up with ρ+

√
ρ log ρ+ o(

√
ρ log ρ) number of servers on. As mentioned in the proof of Lemma 7,

the mean response time for DELAYEDOFF will approach E[S] as ρ→∞, since it keeps ρ+ω(√ρ)
servers on. Further, the ratio of power consumed by DELAYEDOFF to the minimum power
needed to serve jobs (ρ ∗ PON), is 1 +

√
log ρ
ρ
, which approaches 1, as ρ → ∞. Thus, the ERP of

DELAYEDOFF, with any non-zero twait, approaches the theoretical lower bound of (ρ ∗ PON ∗
E[S])−1 as ρ→∞.

Proof of Theorem 4: We first provide an alternate way of viewing the MRB routing. Consider
a server farm with infinitely many servers, where we assign a unique rank to each server. Whenever
there are n jobs in the server farm, they instantaneously move to servers ranked 1 to n. We now
claim that there are m servers on at time t under MRB routing and DELAYEDOFF if and only if
there are m servers on at time t in the alternate model under DELAYEDOFF. To see this, let the
rank of servers at time t under MRB be defined by the last time they were idle (rank 1 server has
been idle the shortest and so on). Once a server goes idle and gets rank n (thus the number of jobs
in the system drops to n− 1), its rank remains n until the number of jobs in the system increases to
n.

Define the idle period for server n + 1, I(n), to be the time that elapses between the instant that
the number of jobs in the system transitions from n + 1 to n until it next reaches n + 1. It is easy
to see that the setup delay, TOFF does not affect the distribution of I(n). A rank n+ 1 server turns
off when I(n) > twait. The next lemma implies that for any constant ε > 0, the mean idle period of
ρ + (1 + ε)

√
ρ log ρ ranked server goes to ∞, and that of the ρ + (1 − ε)

√
ρ log ρ ranked server goes

to 0. Due to lack of space, we defer the proof of Lemma 8 to Appendix D.
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Lemma 8 Consider an M/M/∞ system with load ρ. Then, for any constant ε > 0:

lim
ρ→∞

E
[
I(ρ+ (1 + ε)

√
ρ log ρ))

]
=∞

lim
ρ→∞

E
[
I(ρ+ (1− ε)

√
ρ log ρ))

]
= 0

Further, for any constant β > 0: limρ→∞
√
ρE
[
I(ρ+ β

√
ρ))
]

=
√

2πeβ2Φ(B).

Therefore, clearly, for any ε > 0, the idle period of server ρ+(1− ε)
√
ρ log ρ converges in distribution

to 0, and this server is on with probability 1−o(1). It is also easy to show that the mean busy period
of server n = ρ+ δ

√
ρ log ρ for any δ > 0 is E[B(n)] = 1

λ
+ o

(
1
λ

)
→ 0. Thus the probability that for

any ε > 0, the server n = ρ+ (1 + ε)√ρ is on is upper bounded by twait+E[B(n)]
E[I(n)]+twait+E[B(n)] → 0.

A natural question that arises is how to choose the optimal value of twait, which we denote as t∗wait.
Rule of Thumb #4: Choosing t∗wait.
A good choice for the twait parameter for DELAYEDOFF is t∗wait ≈ TOFF · PONPIDLE

. The rule of thumb
is along similar lines as the power down strategy proposed in [15] and is based on an amortization
argument. Once the server has wasted PIDLE · t∗wait units of power in idle, it amortizes the cost of
turning the server on later and paying the penalty of PON · TOFF . 3
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Figure 5: (a) Verifying the accuracy of Rule of Thumb #4. The graph shows the effect of twait on ERP for the
DELAYEDOFF policy, in the case of a sinusoidal demand curve, with average ρ = 60 and E[S] = 0.1, 1, 10s.
Different values of twait result in different ERP values. However, t∗wait = TOFF · PON

PIDLE
= 320s does well for

all values of E[S]. (b) The graph shows the difference in ERP of the DELAYEDOFF and LOOKAHEAD
policies. The ERP values are normalized by the theoretical lower bound.

3While a reader familiar with work on powering down scheme might find our DELAYEDOFF policy not novel,
we would like to point out a conceptual difference between the use of DELAYEDOFF in our work and in the prior
literature. The prior literature uses DELAYEDOFF type schemes for stand-alone devices, obtaining constant factor
sub-optimality. However, we are applying DELAYEDOFF to each device in a server farm, and are artificially creating
an arrival process via MRB so as to make the idle periods of the servers highly variable. This allows DELAYEDOFF
to perform near-optimally as ρ increases, that is, the competitive ratio approaches 1. This is not necessarily true under
alternate routing schemes, such as probabilistic routing, which would yield a competitive ratio bounded away from 1.
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Figure 5(a) verifies Rule of Thumb #4, for different E[S] values. Figure 5(b) compares the ERP of
DELAYEDOFF against the ERP of LOOKAHEAD for different TOFF values. We normalize the
ERP values with the theoretical upper bound of ρPON ·E[S]. Throughout the range of TOFF values,
we see that DELAYEDOFF, with twait chosen based on Rule of Thumb #4, performs within 10%
of LOOKAHEAD, based on the ERP. The ERP of both, DELAYEDOFF and LOOKAHEAD are
within 70-80% of the ERP values of the theoretical lower bound.
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Figure 6: DELAYEDOFF simulation results based on a subset of arrival traces collected from the Internet
Traffic Archives, representing 15 hours of bursty traffic during the 1998 Soccer world cup finals. Observe
that DELAYEDOFF scales very well even in the case of bursty traffic.

Trace-based simulation results: Thus far we have only looked at simulation results for arrival
patterns that look like a sinusoidal curve. However, not all demand patterns are sinusoidal. We
now consider a real-life demand pattern based on traces from the 1998 World Cup Soccer website,
obtained from the Internet Traffic Archives [1]. The trace contains approximately 90 days worth of
arrival data, with more than 1.3 billion arrivals. The data contains very bursty arrivals, with the
arrival rate varying by almost a factor of 10, between periods of peak demand and low demand. In
particular, the rate of change of arrival rate is sometimes much higher than TOFF = 200s. We run
DELAYEDOFF on this trace, and compare our results against LOOKAHEAD. Throughout, we
assume Exponentially distributed job sizes, with mean 1 second.

Figure 6 shows our simulation results for a subset of the arrival traces, corresponding to the most
bursty traffic. We see that DELAYEDOFF (with optimally chosen twait = 320s) adapts extremely
well to the time-varying traffic. In fact, over the entire duration of 90 days, the ERP of DELAYED-
OFF was within 15% of the ERP of LOOKAHEAD. Thus, we conclude that DELAYEDOFF
performs very well even in the case of unpredictable and bursty traffic.
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7 Conclusions

This paper address the issue of energy-performance tradeoff in server farms. We utilize the metric
of Energy-Response Time Product (ERP) to capture the aforementioned tradeoff. Finding optimal
policies to minimize ERP in server farms is an almost intractable problem due to the high dimen-
sionality of the search space of policies, made worse by the numerous sleep states present in today’s
servers. Via the first analysis of the ERP metric, we prove that a very small natural class of server
farm management policies suffices to find the optimal or near-optimal policy. We furthermore de-
velop rules of thumb for choosing the best among these policies given the workload and server farm
specifications. The impact of our results is two-fold: (i) Our results eliminate the complexity of
finding an efficient server farm management policy, and (ii) Our analytical evaluation of the policies
advocated in this paper with respect to ERP can guide server designers towards developing a smaller
set of sleep states with the most impact.

We first prove that for a single server under a Poisson arrival process, the optimal policy with respect
to ERP is either to always keep the server on or idle (NEVEROFF), or to always turn a server off
when idle and to turn it back on when work arrives (INSTANTOFF), or to always put the server in
some sleep state when idle (SLEEP). Next we show that for a multi-server system under a Poisson
arrival process, the multi-server generalizations of NEVEROFF, INSTANTOFF and SLEEP suffice
to find a near-optimal policy. Finally we consider the case of a time-varying demand pattern and
propose a simple traffic oblivious policy, DELAYEDOFF, which turns servers on when jobs arrive,
but waits for a specific amount of time, twait, before turning them off. Through a clever routing
policy, DELAYEDOFF is shown to achieve asymptotic optimality as the load becomes large.

In order to prove the optimality results in this paper, we have made some assumptions: (i) The servers
are interchangeable (any job can serve on any server), (ii) The server farm is homogeneous, (iii)
The job-sizes are Exponentially distributed (although the asymptotic optimality of DELAYEDOFF
extends to general job size distributions). If some or all of these assumptions were to be relaxed,
then our optimality results might look different. For example, we might consider policies that treat
servers based on their specific characteristics, such as PON , PIDLE or TOFF . Proving optimality
results without the above assumptions is beyond the scope of this paper, and we hope to address
some of these issues in a future paper.
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A Proof of Theorem 1

Proof of Lemma 1: We first note that if the server is in the on state and there is work in the
system, then the optimal policy never transitions into a sleep state. Suppose, by contradiction, an
optimal policy π transitioned into a sleep state at time t0 with work in the queue and then later
transitioned through some sleep state until finally transitioning to the on state at time t1. We could
transform this into a policy π′ with equivalent power consumption, but lower mean response time by
deferring the powering down until all the work present in the system at t0 has finished (say at t2),
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and then transitioning through the same sleep states as π, finally transitioning to the on state at
time t2 + (t1 − t0).

Next, we note that the only instants at which an optimal policy takes actions will be job completions
and job arrivals. Here we assume that once a transition to a sleep or on state has been initiated, it
can’t be interrupted. The statement is true due to the assumption of a Poisson arrival process, and
the preceding claim that no transitions happen during a busy period.

Finally, we will show that once a policy goes into a sleep state when the server goes idle, the only
other state it will transition to next is on. To see this, suppose the server went into sleep state Si.
Now, the server will not go into sleep state Sj for j > i (and hence to a state with lower power) on
a job arrival, otherwise it would have been better to transition to Sj when the server first went idle.
If the server transitions to a sleep state Sk for k < i (thus a state with higher power) but not the on
state, and later transitions to the on state, it would instead have been better to transition directly
to the on (since the transition times are the same by the Model Assumptions), finish processing the
work and then transition to state Sk instantaneously.

Proof of Lemma 2: The proof proceeds via renewal reward theory. We define a renewal cycle for
the server as the time from when a server goes idle (has zero work), until it next goes idle again.
Now consider a specific case, where the server goes into sleep state Si on becoming idle, and starts
transitioning to the on state when ni jobs accumulate. While the server is turning on, there can
be more arrivals, and the distribution of number of arrivals is given by X which is distributed as a
Poisson random variable with mean λTSi . Thus, after the server turns on, it has ni +X jobs in the
queue, and thus the time until the server goes idle is distributed as a sum of ni + X busy periods
of an M/M/1 system. The mean number of jobs served in this renewal cycle is given by ni+E[X]

1−ρ .
The expectation of the sum of response times of the jobs that arrive during this renewal cycle can
be viewed as a sum of:
1. Sum of waiting times of all jobs before the server turns on (shown in (15) below).
2. Sum of the times from when the server turns on until the jobs complete (shown in (16) below).
This can be viewed as a sum of completion times of jobs in ni +X successive busy periods.

ni

(
ni − 1

2λ + TSi

)
+ E[X]TSi2 (15)

+ 1
1− ρ ·

ni + E[X]
µ− λ

+ E
[
(ni +X)(ni +X − 1)

2(µ− λ)

]
(16)

= 1
1− ρ

(
ni + E[X]
µ− λ

+
[
niTSi + ni(ni − 1)

2λ +
λT 2

Si

2

])

and the mean number of jobs served in this renewal cycle is ni+E[X]
1−ρ . Now using renewal reward
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theory, E[T ] = E[total response time per cycle]
E[number of jobs per cycle] , we have the expression for the mean response time.

The proof for E[P ] is analogous by noting E[P ] = E[total energy per cycle]
E[duration per cycle] . The duration of a cycle is

composed of three different times:
1. Time spent waiting for ni jobs to queue up. This is simply ni

λ
. The power consumed by the server

during this time is PSi .
2. Time to wake up the server. This is TSi . The power consumed by the server during this time is
PON .
3. (ni + X) busy periods. The time it takes for the server to go idle again is simply the duration
of ni + X busy periods. The mean of this duration is ni+λTSi

µ−λ . The power consumed by the server
during this time is PON .

Thus, we have:

E[P ] = E[total energy per cycle]
E[duration per cycle]

=
∑N
i=0 pi

∑∞
j=1 qij

[
j
λ
· PSi + TSi · PON + j+λTSi

µ−λ · PON
]

∑N
i=0 pi

∑∞
j=1 qij

[
j
λ

+ TSi + j+λTSi
µ−λ

]
=

∑N
i=0 pi

∑∞
j=1 qij (j(ρPON + (1− ρ)PSi) + λTSiPON)∑N

i=0 pi
∑∞
j=1 qij (j + λTSi)

.

Proof of Lemma 3: To prove that the optimal strategy is pure, we only need to note that the
expressions for both the mean response time and average power are of the form

E[T ] = q1t1 + . . .+ qntn
q1m1 + . . .+ qnmn

E[P ] = q1u1 + . . .+ qnun
q1m1 + . . .+ qnmn

,

where n is the number of pure strategies that the optimal strategy is randomizing over, for some
discrete probability distribution {q1. . . . , qn}. We will show that when n = 2, the optimal strategy
is pure, and the proof will follow by induction on n. For n = 2, we consider E[T ] and E[P ] as a
function of q1 over the extended domain q1 ∈ (−∞,+∞), and show that there is no local minima of
E[T ] · E[P ] in q1 ∈ (0, 1). Further, note that both E[T ] and E[P ] are of the form a+ b

c+dq1
for some

constants a, b, c, d.
Case 1: Both E[T ] and E[P ] (and hence their product) are increasing or decreasing in q1, except
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for a shared discontinuity at q1 = m2
m2−m1

. In this case, trivially, the minimum of E[T ] · E[P ] in the
interval q1 ∈ [0, 1] is either at q1 = 0 or at q1 = 1.
Case 2: One of E[T ] and E[P ] is an increasing function and the other is a decreasing function of q1

(except for the shared discontinuity at q1 = m2
m2−m1

). In this case, as q1 → m2
m2−m1

, E[T ] ·E[P ]→ −∞.
Second, due to the form of E[T ] and E[P ], it is easy to see that their product has at most one
local optimum. Finally, we can see that as q1 → ±∞, E[T ]E[P ] → (t1−t2)(m1−m2)

(u1−u2)2 , which is finite.
Combining the previous three observations, we conclude that there is no local minima in the interval
q1 ∈ (0, 1). In other words, in the interval q1 ∈ [0, 1], the minimum is achieved at either q1 = 0, or
q1 = 1. The inductive case for n follows by considering only two variables, qn and q′, where q′ is a
linear combination of q1, q2, . . . , qn−1, and applying the inductive assumption.

Proof of Lemma 4: We now know that the optimal power down strategy is of the following form:
the server goes into a fixed sleep state, Si, on becoming idle. It then waits for some deterministic
ni arrivals before transitioning into the on state. We will show that under optimality, ni = 1. The
basic idea is to minimize the product of (1) and (3). We first show that if m = λTSi > 1, then the
policy where the server goes to idle state (recall TIDLE = 0) has a lower ERP than going into sleep
state Si with any ni. Thus λTSi < 1 is a necessary condition for optimality of sleep state Si.
Lemma 9 When λTSi ≥ 1, NEVEROFF has a lower ERP than a policy involving sleep state Si with
any ni > 0.

Proof: We will prove the above fact by upper bounding PIDLE by PON , which only makes the ERP
of NEVEROFF worse. Under the above assumption, the ERP values for NEVEROFF and ni = n

are given by:

E[T ] · E[P ]|NEV EROFF = PON
µ− λ

E[T ] · E[P ]|ni=n =
 n+m
µ−λ + 1

λ

(
nm+ n2−n

2 + m2

2

)
(n+m)2

 · (ρn+m)PON , where m = λTSi

Cross-multiplying the terms, we can say that

E[T ] · E[P ]|NEV EROFF < E[T ] · E[P ]|ni=n

⇐⇒ ρ(n+m)2 −
[
ρ(n+m) + (1− ρ)

(
(m+ n)2

2 − n

2

)]
(ρn+m) < 0

⇐⇒ ρ2
[
−n(m+ n) + n

(
(m+ n)2

2 − n

2

)]
+ ρ

[
n(m+ n) + (m− n)

(
(m+ n)2

2 − n

2

)]

−m
[
(m+ n)2

2 − n

2

]
< 0 (17)

It is easy to check that the LHS of Eq. (17) is negative at ρ = 0, and is zero at ρ = 1. Since this
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expression is quadratic, it suffices to show that the derivative of the above at ρ = 1 is positive. This
would imply that the curve lies below X-axis in the interval ρ ∈ [0, 1) for m,n > 1. The derivative
at ρ = 1 is given by:

− n(m+ n) + (m+ n)
[
(m+ n)2

2 − n

2

]

= (m+ n)
[
(m+ n)2

2 − 3n
2

]

For m,n > 1, it is easy to see that (m + n)2 > 3n, and hence the derivative at ρ = 1 is indeed
positive.

Next, we show that when λTSi < 1, the optimal value of ni is in fact ni = 1. We already know that
λTSi is a necessary condition for the optimality of the pure policy involving Si, and we thus show that
in this case the optimal value of ni = 1. Thus, the optimal policy involving Si must be SLEEP(Si).

Lemma 10 When λTSi < 1, ni = 1 is the optimal policy involving sleep state Si.

Proof: Since we know from Lemma 3 that the optimal ni will be at positive integral values, we
can create an alternate function for E[P ] and E[T ] that agrees at these integral points and has
continuous derivatives. If this curve finds that the optimal value is indeed nON = 1 then we are done.
Let m = λTSi . Further, we assume PSi = 0 as a higher PSi only favors a lower ni. These functions
are given by:

E[T ] =
x+m
µ−λ + 1

λ

[
x ·m+ x2−x

2 + m2

2

]
x+m

= 1
µ− λ

+ x+m

2λ − x

2λ(x+m)

= 1
µ− λ

− 1
2λ + x+m

2λ + m

2λ(x+m)

E[P ] = ρ · PON + (1− ρ)λTSi · PON
x+ λTSi

= (ρx+m)PON
x+m

= ρ · PON + m(1− ρ)PON
x+m

The product E[T ] ·E[P ] can be written as ax+b+ c
x+m + d

(x+m)2 . Therefore, there are 3 local optimas,
and the second derivative changes sign only once. Further, the curve approaches −∞ when x→ −∞,
+∞ when x → +∞, and again +∞ when x → −m. Further, as x → −∞, the sign of the second
derivative is −sgn(c), and as x→ +∞, the sign of the derivative is sgn(c). In either case, since the
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curve is convex for some interval in (−∞, 0], +∞ at x = − 1
m
, and the second derivative changes sign

only once, proving that the derivative of E[T ] · E[P ] is positive at x = 1 suffices to show that there
is no local minima for x > 1. (This is because in [0,+∞), the curve is either convex decreasing at
x = 0 and then switches to concave, or is convex in the entire interval.)

Taking derivative of the log of the product we get:

∂

∂x
log (E[T ]E[P ]) =

1 + (1−ρ)
ρ

[
m+ 2x−1

2

]
x+m+ (1−ρ)

ρ

[
mx+ x2−x

2 + m2

2

] + ρ

ρx+m
− 2 1

x+m

=⇒ ∂

∂x
log (E[T ]E[P ])

∣∣∣∣∣
x=1

=
1 + (1−ρ)

ρ

[
m+ 1

2

]
1 +m+ (1−ρ)

ρ

[
m+ m2

2

] + ρ

ρ+m
− 2 1

1 +m

Now,

∂

∂x
log (E[T ]E[P ])

∣∣∣∣∣
x=1

> 0 ⇐⇒
[
ρ+ (1− ρ)(m+ 1

2)
]
· [(ρ+m)(1 +m)]−

[
ρ(1 +m) + (1− ρ)(m+ m2

m
)
]
· [ρ(1−m) + 2m] > 0

The last inequality involves a quadratic in ρ on LHS. It is easy to check that when ρ = 0 and m < 1,
the quadratic is positive. Further, when ρ = 1, the value of the quadratic polynomial is 0. Thus it
suffices to show that the slope of the above quadratic at ρ = 1 is negative (when m < 1). This would
imply that the above inequality is satisfied in the interval ρ ∈ [0, 1). Indeed, it can be checked that
the derivative at ρ = 1 is given by −m3

2 −
1
2 < 0. Thus, we have proven that ni > 1 is not optimal

for m < 1. Thus, ni = 1 is optimal.

B Proof of Theorem 2

The core problem in proving Theorem 2 is in coming up with a tight lower bound for E[T ]E[P ] for
the optimal policy. We have a trivial lower bound of E[T ] ≥ E[S], and E[P ] ≥ ρPON . However, this
is very loose when ρ is small and TOFF is large.

There are a few key ideas in the proof. The first is to give the optimal policy additional capability.
We do so by allowing the optimal policy to turn a server on from off instantaneously (zero setup
time). Consequently, each server is either busy, idle, or off. However there is still an energy penalty
of PONTOFF . Secondly, we use an accounting method where we charge the energy costs to the jobs,
rather than to the server. Thus, each job contributes towards the total response time cost and to
the total energy cost. Thirdly, we obtain a lower bound by allowing the optimal policy to choose
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the state it wants an arrival to see independently for each arrival. This allows us to decouple the
decisions taken by the optimal policy in different states. We make this last point clearer next.

An arrival that finds the n jobs in the system (excluding itself) could find the system in one of the
following states:

1. At least one server is idle: Here, the optimal policy would schedule the arrival on the idle server.
In this case, we charge the job E[S] units for mean response time. Further, the server would
have been idle for some period before the arrival, and we charge the energy spent during this
idle period, as well as the energy to serve the arrival, to the energy cost for the job. However,
if under the optimal policy, there is an idle server when the number of jobs increases from n

to n + 1, there must have been a server idle when the number of servers last went down from
n+ 1 to n. Furthermore, some server must have remained idle from then until the new arrival
which caused the number of jobs to go to n + 1 (and hence there were no jobs in the queue
during this period). Thus, this idle period is exactly the idle period of an M/M/n + 1 with
load ρ, denoted by I(n), where the idle period is defined as the time for the number of jobs to
increase from n to n+ 1.

2. No server is idle, arrival turns on an off server: Here, we charge the arrival E[S] units for mean
response time, and PONE[S] + TOFFPON for energy.

3. No server is idle, arrival waits for a server to become idle: This case is slightly non-trivial to
handle. However, we will lower bound the response time of the job by assuming that the arrival
found n servers busy with the n jobs. Further, until a departure, every arrival turns on a new
server and thus increases the capacity of the system. Thus, this lower bound on queueing time
can be expressed as the mean time until first departure in an M/M/∞ system starting with n
jobs. We denote this by D(n). The energy cost for the job will simply be PONE[S].

We will give the optimal strategy the capability to choose which of the above 3 scenarios it wants
for an arrival that occurs with n jobs in the system. Since the response time cost of scenario 1 and 2
are the same, only one of them is used, depending on whether PIDLEE[I(n)] > PONTOFF or not. Let
Pwaste(n) = min{PIDLEE[I(n)], PONTOFF}. Let qn denote the probability that the optimal policy
chooses the best of scenarios 1 and 2 for an arrival finding n jobs in the system, and with probability
1 − qn it chooses scenario 3. Since we are interested in obtaining a lower bound, we will further
assume that the probability of an arrival finding n jobs in the system, pn, is given by the pdf of a
Poisson random variable with mean ρ, which is indeed a stochastic lower bound on the stationary
number of jobs in the system. We thus obtain the following optimization problem:
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E
[
TOPT

]
E
[
POPT

]
≥ λmin

{qn}

(
E[S] +

∑
n

pn(1− qn)E[D(n)]
)(

PONE[S] +
∑
n

pnqnPwaste(n)
)

≥ λmin
{qn}

(∑
n

pn
√

(E[S] + (1− qn)E[D(n)])(PONE[S] + qnPwaste(n))
)2

(By Cauchy-Schwarz inequality)

= λ

(∑
n

pn
√

min {PONE[S] + Pwaste(n), PON(E[S] +D(n))}
)2

The last equality was obtained by observing that the minimum occurs at qn = 0 or qn = 1. The rest of
the proof is numerical. We have written a program that computes the above lower bound for a given ρ,
TOFF , PIDLE and PON values. We then compare it against the cost of the NEVEROFF with optimal
n∗, and against the following upper bound on the cost of INSTANTOFF: λPON (E[S] + TOFF )2.
This upper bound is obtained by forcing every job to run on the server that it chooses to setup on
arrival. For each value of ρ, we then search for the TOFF value that maximizes the ratio of the cost
of the best of NEVEROFF and INSTANTOFF to the above lower bound, and bound the relative
performance of the best of NEVEROFF and INSTANTOFF against the theoretical optimal as a
function of ρ and the ratio PIDLE

PON
. The above comparison shows that the best of NEVEROFF and

INSTANTOFF is within 12% of the optimal policy, when ρ ≥ 20.

C Proof of Theorem 3

The proof for Theorem 3 proceeds along the same lines as for Theorem 2. For Theorem 3, we have
PSi > 0, so the optimal policy does not have infinite servers to work with. Lets say the optimal
policy works with N servers. We first add a cost of NPSi

λ
to the energy cost of all jobs, and get back

a system with PON ← PON − PSi and PIDLE ← PIDLE − PSi . We now have the following 3 scenarios
that an arrival who sees n jobs in the system could encounter:

1. At least one server is idle: In this case we must have n < N , and the response time is E[S] and
the energy penalty is (PON − PSi)E[S] + (PIDLE − PSi)I(n).

2. Arrival finds no idle servers and there is a sleeping server: In this case we may turn on a
sleeping server and the energy penalty is (PON −PSi)E[S] +PONTSi . However, the new arrival
may be jumping ahead of jobs in the queue. There are at least (n− (N − 1))+ of them.

3. Arrival finds no idle server and the job waits: In this case the response time is given by
E[S] +D(n) where D(n) denotes the time until first departure in an M/M/N starting with n
jobs. The energy cost is just (PON − PSi)E[S].
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As before, only one of scenarios 1 or 2 is used, and we define Pwaste = min{PONTSi , (PIDLE −
PSi)I(n)1n<N}. Our optimization problem then is:

min
{pn},{qn}

{pn}≥stPoisson(ρ)

λ

(
E[S] +

∞∑
i=0

pi(1− qi)E[D(n)]
)
·
(
NPSi
λ

+ (PON − PSi)E[S] +
∞∑
i=0

piqiPwaste(i)
)

The problem with using the above approach is the following: consider a sleep state with PSi very
close to PIDLE and TSi � 1. In this case, the above problem is optimized for N = ρ + 1 (that
too because we have a lower bound on N) as follows: for every job, we assume there is a sleeping
server which we can wake up for negligible power penalty and negligible response time penalty. Thus
we have the following gap in the current accounting method: once there are at least N jobs in the
system, a new arrival is allowed to jump ahead of someone in the queue - so either we have jobs in
queue, or we have an idle server which we are not taking into account. We may try to get around
this by not charging jobs for response time when they queue up, but instead charge them for the
number of jobs they see. However, we need to argue that the job either pays the penalty of turning
on a server, or of waiting. However, we can’t charge the job for waiting if we are also charging jobs
for queue lengths they see.

To get around this problem, we will charge every job E[S] units for their service time, α < 1 times
the cost of the queue lengths they see, and 1− α times the cost of their waiting time. We can then
optimize over α to get a good lower bound. We now show the steps in detail:

1. At least one server is idle: In this case we must have n < N , and the response time is E[S] and
the energy penalty is (PON − PSi)E[S] + (PIDLE − PSi)I(n).

2. Arrival finds no idle servers and there is a sleeping server: In this case we may turn on a
sleeping server and the energy penalty is (PON−PSi)E[S]+PONTSi . The response time penalty
is E[S] + 1

λ
α(max{0, n−N + 1}).

3. Arrival finds no idle server and the job waits: In this case the response time is given by
E[S] + (1− α)D(n). The energy cost is just (PON − PSi)E[S].

Let qn,1 be the probability that scenario 1 is used when there are n jobs, and so on.

Our optimization problem then is:

max
α

min
{qn,1,qn,2,qn,3}|{pn}≥stPoisson(ρ)

λ

(
E[S] +

∞∑
i=0

pi(qi,2α
(i−N + 1)+

λ
+ qi,3(1− α)E[D(i)]

)

·
(
NPSi
λ

+ (PON − PSi)E[S] +
∞∑
i=0

pi(qi,1(PIDLE − PSi)E[I(i)] + qi,2PONTSi)
)
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We note that the optimal values for the qi,k ∈ {0, 1}. Applying Cauchy-Schwarz, we reduce this to a
term-by-term minimization, and then we maximize over α.

D Proof of Lemma 8

Without loss of generality, we assume E[S] = 1. Thus ρ = λ. We begin by writing the recurrences
for solving E[I(n)]:

E[I(0)] = 1
ρ

E[I(i)] = 1
ρ+ i

+ i

ρ+ i
(E[I(i− 1)] + E[I(i)])

or equivalently,

E[I(i)] = 1
ρ

+ i

ρ
· E[I(i− 1)] = 1

ρ
+ i

ρ2 + i(i− 1)
ρ3 + i(i− 1)(i− 2)

ρ4 + · · ·+ i!
ρi+1

= i!
ρi+1

(
1 + ρ

1 + ρ2

2! + · · ·+ ρi−2

(i− 2)! + ρi−1

(i− 1)! + ρi

i!

)

Now consider i = ρ+ β
√
ρ. We get:

E[I(i)] =
(ρ+ β

√
ρ)!eρ

ρi+1

ρ+β√ρ∑
k=0

e−ρ
ρk

k!

 ≈ (ρ+ β · √ρ)!eρ

ρi+1 Φ(β)

≈
√

2π
ρ

(
1 + β
√
ρ

)ρ+β√ρ

e−β
√
ρΦ(β) =

√
2π
ρ

(
1 + β
√
ρ

)β√ρ
e
ρ log

[
1+ β√

ρ

]
e−β

√
ρΦ(β)

≈
√

2π
ρ
eβ

2
e
ρ( β√

ρ
−β

2
2ρ+o(1/ρ))

e−β
√
ρΦ(β)

≈
√

2πeβ2Φ(B)
√
ρ

which proves the second part of the theorem.
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Now consider i = ρ+ η
√
ρ log ρ for some constant η > 0:

E[I(i)] ≈ (ρ+ η
√
ρ log ρ)!eρ

ρρ+η
√
ρ log ρ+1 ≈

√
2π
ρ

(
1 + η

√
ρ log ρ
ρ

)ρ+η
√
ρ log ρ

e−η
√
ρ log ρ

=
√

2π
ρ
e

(ρ+η
√
ρ log ρ) log

(
1+ η
√
ρ log ρ
ρ

)
e−η
√
ρ log ρ

≈
√

2π
ρ
e

(ρ+η
√
ρ log ρ)

(
η
√
ρ log ρ
ρ

− η
2ρ log ρ

2ρ2 +θ
(

(η
√
ρ log ρ)3

ρ3

))
−η
√
ρ log ρ

≈
√

2π
ρ
e
η2ρ log ρ

2ρ =
√

2πρ
η2−1

2

Thus for η2 > 1 E
[
I(ρ+ η

√
ρ log ρ)

]
→∞, and for η2 < 1 E

[
I(ρ+ η

√
ρ log ρ)

]
→ 0 as ρ→∞.
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