
Bayesian Statistical Model Checking
with Application to Stateflow/Simulink

Verification

Paolo Zuliani, Andr é Platzer, Edmund M. Clarke
January 13, 2010

CMU-CS-10-100

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was sponsored by the GSRC (University of California) under contract no. SA423679952, National
Science Foundation under contracts no. CCF0429120, no. CNS0926181, no. CCF0541245, and no. CNS0931985,
Semiconductor Research Corporation under contract no. 2005TJ1366, General Motors under contract no. GMCMU-
CRLNV301, Air Force (University of Vanderbilt) under contract no. 18727S3, International Collaboration for Ad-
vanced Security Technology of the National Science Council, Taiwan, under contract no. 1010717, and by the Office
of Naval Research under award no. N000141010188.

Keywords: Probabilistic model checking, hybrid systems, fault tolerant, stochastic systems,
Bayesian statistics, statistical model checking

Abstract

We address the problem of model checking stochastic systems, i.e. checking whether a stochas-
tic system satisfies a certain temporal property with a probability greater (or smaller) than a fixed
threshold. In particular, we present a novel Statistical Model Checking (SMC) approach based on
Bayesian statistics. We show that our approach is feasible for hybrid systems with stochastic transi-
tions, a generalization of Simulink/Stateflow models. Standard approaches to stochastic (discrete)
systems require numerical solutions for large optimization problems and quickly become infeasi-
ble with larger state spaces. Generalizations of these techniques to hybrid systems with stochastic
effects are even more challenging. The SMC approach was pioneered by Younes and Simmons
in the discrete and non-Bayesian case. It solves the verification problem by combining random-
ized sampling of system traces (which is very efficient for Simulink/Stateflow) with hypothesis
testing or estimation. We believe SMC is essential for scaling up to large Stateflow/Simulink mod-
els. While the answer to the verification problem is not guaranteed to be correct, we prove that
Bayesian SMC can make the probability of giving a wrong answer arbitrarily small. The advantage
is that answers can usually be obtained much faster than withstandard, exhaustive model check-
ing techniques. We apply our Bayesian SMC approach to a representative example of stochastic
discrete-time hybrid system models in Stateflow/Simulink:a fuel control system featuring hybrid
behavior and fault tolerance. We show that our technique enables faster verification than state-of-
the-art statistical techniques, while retaining the same error bounds. We emphasize that Bayesian
SMC is by no means restricted to Stateflow/Simulink models: we have in fact successfully applied
it to very large stochastic models from Systems Biology.

1 Introduction

Stochastic effects arise naturally in hybrid control systems, for example, because of uncertainties
present in the system environment (e.g., the reliability ofsensor readings and actuator effects in
control systems, the impact of timing inaccuracies, the reliability of communication links in a
wireless sensor network, or the rate of message arrivals on an aircraft’s communication bus). Un-
certainty can be modeled via a probability distribution, thereby resulting in a stochastic system,
i.e., a system which exhibits probabilistic behavior. Thisraises the question of how to verify that a
stochastic system satisfies a certain property. For example, we want to know whether the probabil-
ity of an engine controller failing to provide optimal fuel/air ratio is smaller than 0.001; or whether
the ignition succeeds within 1ms with probability at least 0.99. In fact, several temporal logics
have been developed in order to express these and other typesof probabilistic properties [3, 11, 1].
TheProbabilistic Model Checking(PMC) problem is to decide whether a stochastic model satis-
fies a temporal logic property with a probability greater than or equal to a certain threshold. More
formally, supposeM is a stochastic model over a set of statesS, s0 is a starting state,φ is a formula
in temporal logic, andθ ∈ (0,1) is a probability threshold. The PMC problem is: to decide algo-
rithmically whetherM ,s0 |= P≥θ(φ), i.e., to decide whether the modelM starting froms0 satisfies
the propertyφ with probability at leastθ. In this paper, propertyφ is expressed in Bounded Lin-
ear Temporal Logic (BLTL), a variant of LTL [21] in which the temporal operators are equipped
with time bounds. Alternatively, BLTL can be viewed as a sublogic of Koymans’ Metric Temporal
Logic [16, 20]. As system modelsM , we use a stochastic version of hybrid systems modeled in
Stateflow/Simulink.

Existing algorithms for solving the PMC problem fall into one of two categories. The first
category comprises numerical methods that can compute the probability that the property holds
with high precision (e.g. [2, 3, 5, 6, 13]). Numerical methods are generally only suitable for
finite-state systems of about 107−108 states [17]. In real control systems, the number of states
easily exceeds this limit or is infinite, which motivates theneed for algorithms for solving the PMC
problem in a probabilistic fashion, such as Statistical Model Checking (SMC). These techniques
heavily rely on simulation which, especially for large, complex systems, is generally easier and
faster than a full symbolic study of the system. This can be animportant factor for industrial sys-
tems designed using efficient simulation tools like Stateflow/Simulink. Since all we need for SMC
are simulations of the system, we neither have to translate system models into separate verification
tool languages, nor have to build symbolic models of the system (e.g., Markov chains) appropriate
for numerical methods. This simplifies and speeds up the overall verification process. The most
important question, however, is what information can be concluded from the simulations about the
overall probability thatφ holds forM . The key for this are statistical techniques based on fair (iid
= independent and identically distributed) sampling of system behavior.

Statistical Model Checking treats the PMC problem as a statistical inference problem, and
solves it by randomized sampling of thetraces(or simulations) from the model. We model check
each sample trace separately to determine whether the BLTL propertyφ holds, and the number
of satisfying traces is used to decide whetherM |= P≥θ(φ). This decision is made by means of
either estimation or hypothesis testing. In the first case one seeks toestimate probabilistically(i.e.,

1

compute with high probability a value close to) the probability that the property holds and then
compare that estimate toθ [12, 23] (in statistics such estimates are known asconfidence intervals).
In the second case, the PMC problem is directly treated as ahypothesis testingproblem (e.g.,
[27, 28]), i.e., deciding between the hypothesisH0 : M |= P≥θ(φ) that the property holds versus
the hypothesisH1 : M |= P<θ(φ) that it does not.

Hypothesis-testing based methods are more efficient than those based on estimation whenθ
(which is specified by the user) is significantly different from the true probability that the property
holds (which is determined byM ands0) [26]. In this paper we show that estimation can be much
faster for probabilities close to 1. Also note that Statistical Model Checking cannot guarantee a
correct answer to the PMC problem. The most crucial questionneeded to obtain meaningful results
is whether the probability that the algorithm gives a wrong answer can be bounded. We prove that
this error probability can indeed be bounded arbitrarily bythe user.

Our SMC approach encompasses both hypothesis testing and estimation, and it is based on
Bayes’ theorem and sequential sampling. Bayes’ theorem enables us to incorporate prior infor-
mation about the model being verified. Sequential sampling means that the number of sampled
traces is not fixed a priori, but our algorithms instead determine the sample size at “run-time”,
depending on the evidence gathered by the samples seen so far. Because conclusive information
from the samples can be used to stop our SMC algorithms as early as possible, this often leads to
significantly smaller number of sampled traces (simulations). While our sequential sampling has
many practical advantages compared to fixed-size sampling,its theoretical analysis is significantly
more challenging.

We apply our approach to a representative example of discrete-time stochastic hybrid system
models in Stateflow/Simulink: a fault-tolerant fuel control (hybrid) system. We show that our
approach enables faster verification than state-of-the-art techniques based on statistical methods.

The contributions of this paper are as follows:

• We show how Statistical Model Checking can be used for Stateflow/Simulink-style hybrid sys-
tems with probabilistic transitions.

• We give the first application of Bayesian sequential interval estimation to Statistical Model
Checking.

• We prove analytic error bounds for our Bayesian sequential hypothesis testing and estimation
algorithms.

• In a series of experiments with different parameterizations of a relevant Simulink/Stateflow
model, we empirically show that our sequential estimation method performs better than other
estimation-based Statistical Model Checking approaches.In some cases our algorithm is faster
by several orders of magnitudes.

While the theoretical analysis of Statistical Model Checking is very challenging, a beneficial prop-
erty of our algorithms is that they are easy to implement.

2

2 Background

Our algorithm can be applied to any stochastic modelM for which it is possible to define a prob-
ability space over its traces. Several stochastic models like discrete/continuous Markov chains
satisfy this property [28]. Here we use discrete-time hybrid systems a la Stateflow/Simulink with
probabilistic transitions.

Discrete Time Hybrid Systems with Probabilistic Transitions As a system model, we con-
sider discrete time hybrid systems with additional probabilistic transitions (our case study uses
Stateflow/Simulink). Such a modelM gives rise to a transition system that allows for discrete
transitions (e.g., from one Stateflow node to another), continuous transitions (when following dif-
ferential equations underlying Simulink models), and probabilistic transitions (following a known
probability distribution). For Stateflow/Simulink, astateassigns real values to all the state vari-
ables and identifies the current discrete state (or location) for Stateflow machines.

Formally, we start with a definition of a deterministic automaton. Then we augment it with
probabilistic transitions.

Definition 1. A discrete-time hybrid automaton(DTHA) consists of:

• a continuous state spaceRn;

• a directed graph with vertices Q (locations) and edges E (control switches);

• one initial state(q0,x0) ∈ Q×Rn;

• flows ϕq(t;x) ∈ Rn, representing the state reached after staying in location qfor time t≥ 0,
starting from x∈ Rn;

• jump functions jumpe : Rn →Rn for edges e∈ E. We assume jumpe to be measurable (preimages
of measurable sets under jumpe are measurable).

Definition 2. Thetransition relationfor a deterministicDTHA is defined over Q×Rn as

(q,x) →∆(q,x) (q̃, x̃)

where

• For t ∈ R≥0, we have(q,x) →t (q, x̃) iff x̃ = ϕq(t;x);

• For e∈ E, we have(q,x) →e (q̃, x̃) iff x̃ = jumpe(x) and e is an edge from q tõq;

• ∆ : Q×Rn → R≥0∪E is thesimulationfunction.

3

The simulation function∆ makes system runs deterministic by selecting which discrete or
continuous transition to execute from the respective state(q,x). For Stateflow/Simulink,∆ satisfies
several properties, including that the first edgee(in clockwise orientation in the graphical notation)
that is enabled (i.e., where a jump is possible) will be chosen. Furthermore, if an edge is enabled,
a discrete transition will be taken rather than a continuoustransition.

Each execution of a DTHA is obtained by following the transition relation repeatedly from
state to state. A sequenceσ = (s0, t0),(s1, t1), . . . of si ∈ Q×Rn andti ∈ R≥0 is calledtrace iff
s0 = (q0,x0) and for eachi ∈ N, si →∆(si) si+1 and:

1. ti = ∆(si) if ∆(si) ∈ R≥0 (continuous transition), or

2. ti = 0 if ∆(si) ∈ E (discrete transition).

Thus the system follows transitions fromsi to si+1. If this transition is a continuous transition, then
ti is its duration∆(si), otherwiseti = 0 for discrete transitions. In particular, the global time at state
si = (qi,xi) is ∑0≤l<i tl . We require that the sum∑∞

i ti must diverge, that is, the system cannot make
infinitely many state switches in finite time (non-zeno). We denote∑0≤l<i tl by τ(xi), because we
can assume there is one state variable tracking global time.

A probabilisticDTHA is obtained from a DTHA by means of a probabilistic simulation func-
tion instead of∆. Unlike ∆, it selects discrete and continuous transitions accordingto a probability
density. Thestateof a probabilistic DTHA is a probability density function onQ×Rn. We denote
the set of these functions byD(Q×Rn).

Definition 3. The transition functionfor a probabilisticDTHA, which we denote by→, maps a
(probabilistic) state p∈ D(Q×Rn) to p̃∈ D(Q×Rn) with p̃(q̃, x̃) defined as:

Z

R≥0∪E

Z

Q×Rn

p(q,x)Π(q,x)(α)I→α(q̃,x̃)(q,x) d(q,x)dα

where

• Π : Q×Rn → D(R≥0∪E) is the (measurable)probabilistic simulationfunction;

• I→α(q̃,x̃) is the indicator function of the preimage of→α at (q̃, x̃), i.e., I→α(q̃,x̃)(q,x) = 1 iff
(q,x) →α (q̃, x̃), and 0 otherwise;→α is as per Definition 2.

Well-definedness of the integral in Def. 3 follows directly from measurability ofΠ and the
jump functions, plus the fact that integration over time canbe restricted to a bounded interval from
0 to the current timeτ(x̃). Note that initial distributions on the initial state can beobtained easily
by prefixing the system with a probabilistic transition fromx0. Sample traces of a probabilistic
DTHA can be obtained by sampling from the traces generated byΠ.

4

Specifying Properties in Temporal Logic Our algorithm verifies properties ofM expressed as
formulas inProbabilistic Bounded Linear Temporal LogicPBLTL). We first define the syntax and
semantics ofBounded Linear Temporal Logic(BLTL), which we can check on a single trace, and
then extend that logic to PBLTL. Finkbeiner and Sipma [8] have defined a variant of LTL on finite
traces of discrete-event systems (where time is thus not considered).

For a stochastic modelM , let the set of state variablesSVbe a finite set of real-valued variables.
A Boolean predicate overSV is a constraint of the formy∼v, wherey∈ SV, ∼ ∈ {≥,≤,=}, and
v ∈ R. A BLTL property is built on a finite set of Boolean predicatesover SV using Boolean
connectives and temporal operators. The syntax of the logicis given by the following grammar:

φ ::= y∼v|(φ1∨φ2) |(φ1∧φ2) |¬φ1 |(φ1Utφ2),

where∼ ∈ {≥,≤,=}, y∈ SV, v∈ Q, andt ∈ Q≥0. As usual, we can define additional temporal
operators such asFtψ = TrueUt ψ, or Gtψ = ¬Ft¬ψ by bounded untilsUt.

We define the semantics of BLTL with respect to executions ofM . The fact that an execution
σ satisfies propertyφ is denoted byσ |= φ. We denote the trace suffix starting at stepi by σi (in
particular,σ0 denotes the original executionσ). We denote the value of the state variabley in σ at
stepi by V(σ, i,y).

Definition 4. Thesemanticsof BLTL for a traceσk starting at the kth state (k∈ N) is defined as
follows:

• σk |= y∼ v if and only if V(σ,k,y) ∼ v;
• σk |= φ1∨φ2 if and only ifσk |= φ1 or σk |= φ2;
• σk |= φ1∧φ2 if and only ifσk |= φ1 andσk |= φ2;
• σk |= ¬φ1 if and only ifσk |= φ1 does not hold (writtenσk 6|= φ1);
• σk |= φ1Utφ2 if and only if there exists i∈ N such that (a)∑0≤l<i tk+l ≤ t, (b) σk+i |= φ2 and (c)

for each0≤ j < i, σk+ j |= φ1.

Statistical Model Checking decides probabilistic Model Checking by repeatedly checking whether
σ |= φ holds on sample simulationsσ of the system. In practice, sample simulations only have a
finite duration. The question is how long these simulations have to be for the formulaφ to have
a well-defined semantics such thatσ |= φ can be checked. Ifσ is too short, say of duration 2, the
semantics ofφ1U5φ2 may be unclear. But at what duration of the simulation can we stop because
we know that the truth-value forσ |= φ will never change by continuing the simulation? Is the
number of required simulation steps expected to be finite at all?

For a class of finite length continuous-time boolean signals, well-definedness of checking
bounded MITL properties has been conjectured in [19]. Here we generalize to infinite, hybrid
traces with real-valued signals. We prove well-definednessand the fact that a finite prefix of the
discrete time hybrid signal is sufficient for BLTL model checking, which is crucial for termination.
It especially turns out that divergence of time ensures termination of SMC.

Lemma 1 (Bounded sampling). The problem “σ |= φ” is well-defined and can be checked for
BLTL formulasφ and tracesσ based on only afinite prefixof σ of bounded duration.

5

For proving Lemma 1 we need to derive bounds on when to stop simulation. Those bounds can
be read off easily from the BLTL formula:

Definition 5. We define thesampling bound #(φ) ∈ Q≥0 of a BLTL formulaφ inductively as the
maximum nested sum of time bounds:

#(y∼ v) := 0
#(¬φ1) := #(φ1)

#(φ1∨φ2) := max(#(φ1),#(φ2))
#(φ1∧φ2) := max(#(φ1),#(φ2))
#(φ1Utφ2) := t +max(#(φ1),#(φ2))

Unlike infinite traces, actual system simulations need to befinite in length. We prove that the
semantics of BLTL formulasφ is well-defined on finite prefixes of traces with a duration that is
bounded by #(φ).

Lemma 2 (BLTL on bounded simulation traces). Let φ be a BLTL formula, k∈ N. Then for any
two infinite tracesσ = (s0, t0),(s1, t1), . . . andσ̃ = (s̃0, t̃0),(s̃1, t̃1), . . . with

sk+I = s̃k+I and tk+I = t̃k+I ∀I ∈ N with ∑
0≤l<I

tk+l ≤ #(φ) (1)

we have that
σk |= φ iff σ̃k |= φ .

Proof. The proof is by induction on the structure of the BLTL formulaφ. IH is short for induction
hypothesis.

1. If φ is of the formy∼ v, thenσk |= y∼ v iff σ̃k |= y∼ v, becausesk = s̃k by using (1) fori = 0.

2. If φ is of the formφ1∨φ2, then

σk |= φ1∨φ2

iff σk |= φ1 or σk |= φ2

iff σ̃k |= φ1 or σ̃k |= φ2 by IH as #(φ1∨φ2) ≥ #(φ1)

and #(φ1∨φ2) ≥ #(φ2)

iff σ̃k |= φ1∨φ2

The proof is similar for¬φ1 andφ1∧φ2.

3. If φ is of the formφ1Utφ2, thenσk |= φ1Utφ2 iff conditions (a),(b),(c) of Definition 4 hold.
Those conditions are equivalent, respectively, to the following conditions (a′),(b′),(c′):

(a′) ∑0≤l<i t̃k+l ≤ t, because #(φ1Utφ2) ≥ t such that the durations of traceσ andσ̃ aretk+l = t̃k+l

for each indexl with 0≤ l < i by assumption (1).

6

(b′) σ̃k+i |= φ2 by induction hypothesis as follows: We know that the tracesσ andσ̃ match atk for
duration #(φ1Utφ2) and need to show that the semantics ofφ1Utφ2 matches atk. By IH we
know thatφ2 has the same semantics atk+ i (that isσ̃k+i |= φ2 iff σk+i |= φ2) provided that
we can show that the tracesσ andσ̃ match atk+ i for duration #(φ2). For this, consider any
I ∈ N with ∑0≤l<I tk+i+l ≤ #(φ2). Then

#(φ2) ≥ ∑
0≤l<I

tk+i+l = ∑
0≤l<i+I

tk+l − ∑
0≤l<i

tk+l

(a)
≥ ∑

0≤l<i+I

tk+l − t

Thus

∑
0≤l<i+I

tk+l ≤ t +#(φ2)

≤ t +max(#(φ1),#(φ2)) = #(φ1Utφ2)

As I ∈ N was arbitrary, we conclude from this with assumption (1) that, indeedsI = s̃I and
tI = t̃I for all I ∈ N with

∑
0≤l<I

tk+i+l ≤ #(φ2)

Thus the IH forφ2 yields the equivalence ofσk+i |= φ2 andσ̃k+i |= φ2 when using the equiv-
alence of (a) and (a′).

(c′) for each 0≤ j < i, σ̃k+ j |= φ1. The proof of equivalence to (c) is similar to that for (b′) using
j < i.

The existence of ani ∈ N for which these conditions hold is equivalent toσ̃k |= φ1Utφ2.

Now we prove that Lemma 1 holds using prefixes of traces according to the sampling bound #(φ),
which guarantees that finite simulations are sufficient for decidingφ.

Proof of Lemma 1.According to Lemma 2, the decision “σ |= φ” is uniquely determined (and
well-defined) by considering only a prefix ofσ of duration #(φ) ∈ Q≥0. By divergence of time,
σ reaches or exceeds this duration #(φ) in some finite number of stepsn. Let σ′ denote a finite
prefix of σ of lengthn such that∑0≤l<n tl ≥ #(φ). Again by Lemma 2, the semantics ofσ′ |= φ is
well-defined because any extensionσ′′ of σ′ satisfiesσ′′ |= φ if and only if σ′ |= φ. Consequently
the semantics ofσ′ |= φ coincides with the semantics ofσ |= φ. On the finite traceσ′, it is easy to
see that BLTL is decidable by evaluating the atomic formulasx∼ v at each statesi of the system
simulation.

We now define Probabilistic Bounded Linear Temporal Logic.

Definition 6. A Probabilistic Bounded LTL (PBLTL) formula is a formula of the form P≥θ(φ),
whereφ is a BLTL formula andθ ∈ (0,1) is a probability.

7

We say thatM satisfies PBLTL propertyP≥θ(φ), denoted byM |= P≥θ(φ), if and only if the prob-
ability that an execution trace ofM satisfies BLTL propertyφ is greater than or equal toθ. This
problem is well-defined, because, by Lemma 1, eachσ |= φ is decidable on a finite prefix ofσ, finite
iterations of the probabilistic transition function (Def.3) gives a well-defined probability measure,
and, thus, a corresponding probability measure can be associated to the set of all (non-zeno) exe-
cutions ofM that satisfy a BLTL formula [28]. Note that counterexamplesto the BLTL property
φ arenotcounterexamples to the PBLTL propertyP≥θ(φ), because the truth ofP≥θ(φ) depends on
the likelihood of all counterexamples toφ. This makes PMC more difficult than standard Model
Checking, because one counterexample toφ is not enough to decideP≥θ(φ).

3 Bayesian Interval Estimation

We present our new Bayesian statistical estimation algorithm. In this approach we are interested
in estimating p, the (unknown) probability that an execution trace ofM satisfies a given BLTL
property. The estimate will be in the form of a confidence interval, i.e., an interval which will
containp with arbitrarily high probability.

Recall that the PMC problem is to decide whetherM |= P≥θ(φ), whereθ ∈ (0,1) andφ is a
BLTL formula. Let p be the (unknown but fixed) probability of the model satisfying φ: thus, the
PMC problem can now be stated as deciding between two hypotheses:

H0 : p > θ H1 : p < θ. (2)

For any traceσi of the systemM , we can deterministically decide whetherσi satisfies BLTL
formula φ. Therefore, we can define a Bernoulli random variableXi denoting the outcome of
σi |= φ. The conditional probability mass function associated with Xi is thus:

∀u∈ [0,1] f (xi |u) = uxi(1−u)1−xi (3)

wherexi = 1 iff σi |= φ, otherwisexi = 0. Note that theXi are (conditionally) independent and
identically distributed (iid), as each trace is given by an independent execution of the model. Since
p is unknown, we may assume that it is given by a random variable, whose densityg(·) is called
the prior density. The prior is usually based on our previous experiences and beliefs about the
system. A lack of information about the probability of the system satisfying the formula is usu-
ally summarized by anon-informativeor objectiveprior (see [22, Section 3.5] for an in-depth
treatment).

Sincep lies in [0,1], we need prior densities defined over this interval. In this paper we focus
on Beta priors which are defined by the following probabilitydensity (for real parametersα,β > 0
that give various shapes):

∀u∈ [0,1] g(u,α,β) =̂
1

B(α,β)
uα−1(1−u)β−1 (4)

8

where the Beta functionB(α,β) is defined as:

B(α,β) =̂
Z 1

0
tα−1(1− t)β−1dt . (5)

By varying the parametersα andβ, one can approximate other smooth unimodal densities on(0,1)
by a Beta density (e.g., the uniform density over(0,1) is a Beta withα = β = 1). For allu∈ [0,1]
the Beta distribution functionF(α,β)(u) is defined:

F(α,β)(u) =̂

Z u

0
g(t,α,β) dt =

1
B(α,β)

Z u

0
tα−1(1− t)β−1 dt (6)

which is the usual distribution function for a Beta random variable of parametersα,β (i.e., the
probability that it takes values less than or equal tou).

In addition to their flexible shapes for various choices ofα,β, the advantage of using Beta
densities is that the Beta distribution is theconjugate priorto the Bernoulli distribution1. This
relationship enables us to avoid numerical integration in the implementation of both the Bayesian
estimation and hypothesis testing algorithms, as we next explain.

3.1 Bayesian Intervals

Bayes’ theorem states that if we sample from a densityf (·|u), whereu (the unknown probability)
is given by a random variableU over(0,1) whose density isg(·), then the posterior density ofU
given the datax1, . . . ,xn is:

f (u|x1, . . . ,xn) =
f (x1, . . . ,xn|u)g(u)

R 1
0 f (x1, . . . ,xn|v)g(v) dv

(7)

and in our casef (x1, . . . ,xn|u) factorizes as∏n
i=1 f (xi |u), wheref (xi |u) is the Bernoulli mass func-

tion (3) associated with thei-th sample (remember that we assume conditionally independent,
identically distributed - iid - samples). Since the posterior is an actual distribution (note the nor-
malization constant), we can estimatep by themeanof the posterior. In fact, the posterior mean
is aposterior Bayes estimatorof p, i.e., it minimizes the risk over the whole parameter space of p
(under a quadratic loss function, see [7, Chapter 8]).

For acoveragegoalc∈ (1
2,1), any interval(t0, t1) such that

Z t1

t0
f (u|x1, . . . ,xn) du= c (8)

is called a 100c percentBayesian interval estimateof p. Naturally, one would chooset0 andt1 that
minimizet1− t0 and satisfy (8), thus determining an optimal interval. Notethatt0 andt1 are in fact
functions of the samplex1, . . . ,xn.

1A distributionP(θ) is said to be a conjugate prior for a likelihood function,P(d|θ), if the posterior,P(θ|d) is in
the same family of distributions.

9

Optimal interval estimates can be found, for example, for the mean of a normal distribution
with normal prior, where the resulting posterior is normal.In general, however, it is difficult to
find optimal interval estimates. For unimodal posterior densities like, we can use the posterior’s
mean as the “center” of an interval estimate.

Here, we do not pursue the computation of an optimal interval, which may be numerically
infeasible. Instead, we fix a desired half-interval widthδ and then sample until the probability
mass of an interval estimate of width 2δ containing the posterior mean exceedsc. When sampling
from a Bernoulli distribution and with a Beta prior of parametersα,β, it is known that the mean ˆp
of the posterior is:

p̂ =
x+α

n+α+β
(9)

wherex = ∑n
i=1xi is the number of successes in the sampled datax1, . . . ,xn. The integral in (8) can

further be computed easily in terms of the Beta distributionfunction.

Proposition 1. Let(t0, t1) be an interval in[0,1]. The posterior probability of Bernoulli iid samples
(x1, . . . ,xn) and Beta prior of parametersα,β can be calculated as:

Z t1

t0
f (u|x1, . . . ,xn) du= F(x+α,n−x+β)(t1)−F(x+α,n−x+β)(t0) (10)

where x= ∑n
i=1xi is the number of successes in(x1, . . . ,xn) and F(·) is the Beta distribution func-

tion.

Proof. Direct from definition of Beta distribution function (6) andthe fact that the posterior density
is a Beta of parametersx+α andn−x+β.

The Beta distribution function can be computed with high accuracy by standard mathematical
libraries (e.g.the GNU Scientific Library) or software (e.g.Matlab). Hence, the Beta distribution
is the appropriate choice for summarizing the prior distribution in Statistical Model Checking.

3.2 Bayesian Estimation Algorithm

We want to compute an interval estimate ofp = Prob(M |= φ), whereφ is a BLTL formula and
M a stochastic hybrid system model - remember from our discussion in Section 2 thatp is well-
defined. Fix the half-sizeδ ∈ (0, 1

2) of the desired interval estimate forp, the coefficientc∈ (1
2,1)

to be used in (8), and the coefficientsα,β of the Beta prior.

Our algorithm iteratively draws iid sample tracesσ1,σ2, . . ., and checks whether they satisfyφ.
At stagen, the algorithm computes ˆp, the Bayes estimator forp (i.e., the posterior mean) according
to (9). Next, usingt0 = p̂−δ, t1 = p̂+δ it computes

γ =
Z t1

t0
f (u|x1, . . . ,xn) du .

If γ > c it stops and returnst0, t1 and p̂; otherwise it samples another trace and repeats. One should
pay attention at the extreme points of the(0,1) interval, but those are easily taken care of, as shown
in Algorithm 1.

10

Algorithm 1 Statistical Model Checking by Bayesian Interval Estimates

Require: BLTL Propertyφ, half-interval sizeδ ∈ (0, 1
2), interval coefficientc∈ (1

2,1), Prior Beta
distribution with parametersα,β

n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfyingφ so far}
repeat

σ := draw a sample trace of the system (iid)
n := n+1
if σ |= φ then

x := x+1
end if
p̂ := (x+α)/(n+α+β) {compute posterior mean}
(t0, t1) := (p̂−δ, p̂+δ) {compute interval estimate}
if t1 > 1 then

(t0, t1) := (1−2 ·δ,1)
else if t0 < 0 then

(t0, t1) := (0,2 ·δ)
end if
γ := PosteriorProb(t0, t1) {compute posterior probability of p∈(t0, t1), by (10)}

until (γ > c)
return (t0, t1), p̂

4 Bayesian Hypothesis Testing

In this section we briefly present our sequential Bayesian hypothesis test, which was introduced in
[15]. Let X1, . . . ,Xn be a sequence of Bernoulli random variables defined as for thePMC problem
in Sect. 3, and letd = (x1, . . . ,xn) denote a sample of those variables. LetH0 andH1 be mutually
exclusive hypotheses over the random variable’s parameterspace according to (2). Suppose the
prior probabilities P(H0) andP(H1) are strictly positive and satisfyP(H0)+ P(H1) = 1. Bayes’
theorem states that theposterior probabilitiesare

P(H0|d) =
P(d|H0)P(H0)

P(d)
P(H1|d) =

P(d|H1)P(H1)

P(d)
(11)

for everyd with P(d) = P(d|H0)P(H0)+P(d|H1)P(H1) > 0. In our caseP(d) is always non-zero
(there are no impossiblefinitesequences of outcomes).

11

4.1 Bayes Factor

By Bayes’ theorem, the posterior odds for hypothesisH0 is

P(H0|d)

P(H1|d)
=

P(d|H0)

P(d|H1)
·
P(H0)

P(H1)
. (12)

Definition 7. The Bayes factorB of sample d and hypotheses H0 and H1 is

B =
P(d|H0)

P(d|H1)
.

For fixed priors in a given example, the Bayes factor is directly proportional to the posterior
odds by (12). Thus, it may be used as a measure of relative confidence inH0 vs. H1, as proposed
by Jeffreys [14]. To testH0 vs. H1, we compute the Bayes factorB of the available datad and
then compare it against a fixed thresholdT > 1: we shall acceptH0 iff B > T. Jeffreys interprets
the value of the Bayes factor as a measure of the evidence in favor of H0 (dually, 1

B
is the evidence

in favor of H1). Classically, a fixed number of samples was suggested for deciding H0 vs. H1. We
develop an algorithm that chooses the number of samples adaptively.

We now show how to compute the Bayes factor. According to Definition 7, we have to calculate
the ratio of the probabilities of the observed sampled = (x1, . . . ,xn) givenH0 andH1. By (12), this
ratio is proportional to the ratio of the posterior probabilities, which can be computed from Bayes’
theorem (7) by integrating the joint densityf (x1|·) · · · f (xn|·) with respect to the priorg(·):

P(H0|x1, . . . ,xn)

P(H1|x1, . . . ,xn)
=

R 1
θ f (u|x1, . . . ,xn) du

R θ
0 f (u|x1, . . . ,xn) du

=

R 1
θ f (x1|u) · · · f (xn|u) ·g(u) du

R θ
0 f (x1|u) · · · f (xn|u) ·g(u) du

.

Thus, the Bayes factor is:

B =
π1

π0
·
P(H0|x1, . . . ,xn)

P(H1|x1, . . . ,xn)
=

π1

π0
·

R 1
θ f (x1|u) · · · f (xn|u) ·g(u) du

R θ
0 f (x1|u) · · · f (xn|u) ·g(u) du

(13)

whereπ0 = P(H0) =
R 1

θ g(u) du, andπ1 = P(H1) = 1− π0. We observe that the Bayes factor
depends on the datad and on the priorg, so it may be considered a measure of confidence inH0

vs. H1 provided by the datax1, . . . ,xn, and “weighted” by the priorg. When using Beta priors, the
calculation of the Bayes factor can be much simplified.

Proposition 2. The Bayes factor of H0 : p > θ vs. H1 : p < θ with Bernoulli samples(x1, . . . ,xn)
and Beta prior of parametersα,β is:

Bn =
π1

π0
·

(
1

F(x+α,n−x+β)(θ)
−1

)
.

where x= ∑n
i=1xi is the number of successes in(x1, . . . ,xn) and F(s,t)(·) is the Beta distribution

function of parameters s, t.

12

4.2 Bayesian Hypothesis Testing Algorithm

Our algorithm generalizes Jeffreys’ test to a sequential version. Remember we want to establish
whetherM |= P>θ(φ), whereθ ∈ (0,1) andφ is a BLTL formula. The algorithm iteratively draws
independent and identically distributed sample tracesσ1,σ2, ..., and checks whether they satisfyφ.
We can model this procedure as independent sampling from a Bernoulli distributionX of unknown
parameterp - the actual probability of the model satisfyingφ. At stagen the algorithm has drawn
samplesx1, . . . ,xn iid like X. It then computes the Bayes factorB according to Proposition 2, to
check if it has obtained conclusive evidence. The algorithmacceptsH0 iff B > T, and acceptsH1

iff B < 1
T . Otherwise(1

T 6 B 6 T) it continues drawing iid samples. This algorithm is shown in
Algorithm 2.

Algorithm 2 Statistical Model Checking by Bayesian Hypothesis Testing
Require: PBLTL PropertyP>θ(φ), ThresholdT > 1, Prior densityg for unknown parameterp

n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfyingφ so far}
loop

σ := draw a sample trace of the system (iid)
n := n+1
if σ |= φ then

x := x+1
end if
B := BayesFactor(n,x) {compute as in Proposition 2}
if (B > T) then

return H0 accepted
else if (B < 1

T) then
return H1 accepted

end if
end loop

5 Analysis

Statistical Model Checking algorithms are easy to implement and—because they are based on
selective system simulation—enjoy promising scalabilityproperties. Yet, for the same reason,
their output would be useless outside the sampled traces, unless the probability of making an error
during the PMC decision can be bounded.

As our main contribution, we prove error bounds for Statistical Model Checking by Bayesian
sequential hypothesis testing and by Bayesian interval estimation. In particular, we show that the
(Bayesian) Type I-II error probabilities for the algorithms in Sect. 3–4 can be bounded arbitrarily.

13

We recall that a Type I (II) error occurs when we reject (accept) the null hypothesis although it is
true (false).

Theorem 1(Error bound for hypothesis testing). For any discrete random variable and prior, the
probability of a Type I-II error for the Bayesian hypothesistesting algorithm 2 is bounded above
by 1

T , where T is the Bayes Factor threshold given as input.

Proof. We present the proof for Type I error only - for Type II it is very similar. A Type I error
occurs when the null hypothesisH0 is true, but we reject it. We then want to boundP(rejectH0 |
H0). If the Bayesian algorithm 2 stops at stepn, then it will acceptH0 if B(d) > T, and rejectH0

if B(d) < 1
T , whered = (x1, . . . ,xn) is the data sample, and the Bayes Factor is

B(d) =
P(d|H0)

P(d|H1)
.

The event{rejectH0} is formally defined as

{rejectH0} =
[

d∈Ω
{B(d) <

1
T

∧ D = d} (14)

whereD is the random variable denoting a sequence ofn discrete random variables, andΩ is the
sample space ofD - i.e., the (countable) set of all the possible realizationsof D (in our caseD is
clearly finite). We now reason:

P(rejectH0 | H0)

= (14)

P(
S

d∈Ω{B(d) < 1
T ∧ D = d} | H0)

= additivity

∑d∈Ω P({B(d) < 1
T ∧ D = d} | H0)

= independent events

∑d∈Ω P(B(d) < 1
T) ·P(D = d | H0)

¡ B(d) < 1
T iff P(D = d | H0) < 1

T P(D = d | H1)

∑d∈Ω
1
T ·P(D = d | H1)

= additivity and independence

1
T ·P(

S

d∈Ω D = d | H1)

= universal event

1
T ·P(Ω | H1) = 1

T

14

Note that the bound1T is independent from the prior used.

Next, we lift the error bounds found in Theorem 1 for Algorithm 2 to Algorithm 1 by repre-
senting the output of the Bayesian interval estimation algorithm 1 as a hypothesis testing problem.
We use the output interval(t0, t1) of the estimation algorithm 1 to define the (null) hypothesis
H0 : p∈ (t0, t1). Now H0 represents the hypothesis that the output of algorithm 1 is correct. Then,
we can testH0 and determine bounds on Type I and II errors by Theorem 1. We prove that these
errors can be bounded by the user.

Theorem 2 (Error bound for estimation). For any discrete random variable and prior, the Type
I and II errors for the output interval(t0, t1) of the Bayesian estimation algorithm 1 are bounded

above by(1−c)π0
c(1−π0)

, where c is the coverage coefficient given as input andπ0 is the prior probability

of the hypothesis H0 : p∈ (t0, t1).

Proof. Let (t0, t1) be the interval estimate when the estimation algorithm 1 terminates (with cover-
agec). From the hypothesis

H0 : p∈ (t0, t1) (15)

we compute the Bayes factor forH0 vs. the alternate hypothesisH1 : p /∈ (t0, t1). Then we use
Theorem 1 to derive the bounds on the Type I and II error. If theestimation algorithm 1 terminates
at stepn with outputt0, t1, we have that:

Z

H0

f (u|x1, . . . ,xn) du=
Z t1

t0
f (u|x1, . . . ,xn) du> c (16)

and therefore (since the posterior is a distribution):
Z

H1

f (u|x1, . . . ,xn) du6 1−c. (17)

The Bayes factor ofH0 vs H1 is, by (13):

(1−π0)

π0
·

R

H0
f (u|x1, . . . ,xn) du

R

H1
f (u|x1, . . . ,xn) du

> by (16) and (17)

(1−π0)

π0
·

c
1−c

Therefore, by Theorem 1 the error is bounded above by
(

c(1−π0)
(1−c)π0

)−1
=

(1−c)π0
c(1−π0)

.

15

6 Application

We study an example that is part of the Stateflow/Simulink package. The model2 describes a
fuel controller system for a gasoline engine. It detects sensor failures, and dynamically changes
the control law to provide seamless operation. A key quantity in the model is the ratio between
the air mass flow rate (from the intake manifold) and the fuel mass flow rate (as pumped by the
injectors). The system aims at keeping the air-fuel ratio close to thestoichiometricratio of 14.6,
which represents an acceptable compromise between performance and fuel consumption. The
system estimates the “correct” fuel rate giving the target stoichiometric ratio by taking into account
sensor readings for the amount of oxygen present in the exhaust gas - Exahust Gas Oxygen (EGO)
- for the engine speed, throttle command and manifold absolute pressure. In the event of a single
sensor fault, the system detects the situation and operatesthe engine with a higher fuel rate to
compensate. If two or more sensors fail, the engine is shut down, since the system cannot reliably
control the air-fuel ratio.

The Stateflow control logic of the system has a total of 24 locations, grouped in 6 parallel (i.e.,
simultaneously active) states. The Simulink part of the system is described by several nonlinear
equations and a linear differential equation with a switching condition. Overall, this model pro-
vides a representative summary of the important features ofhybrid systems. Our stochastic system
is obtained by introducing random faults in the EGO, speed and manifold pressure sensors. We
model the faults by three independent Poisson processes with different arrival rates. When a fault
happens, it is “repaired” with a fixed service time of one second (i.e. the sensor remains in fault
condition for one second, then it resumes normal operation). Note that the system has no free
inputs, since the throttle command provides a periodic triangular input, and the nominal speed is
never changed. This ensures that, once we set the three faultrates, for any given temporal logic
propertyφ the probability that the model satisfiesφ is well-defined. All our experiments have
been performed on a 2.4GHz Pentium 4, 1GB RAM desktop computer running Matlab R2008b on
Windows XP.

6.1 Experimental Results in Application

For our experiments we model check the following formula (null hypothesis)

H0 : M |= P≥θ(¬F100G1(FuelFlowRate= 0)) (18)

for different values of thresholdθ and sensors fault rates. We test whether with probability greater
thanθ it is not the case that within 100 seconds the fuel flow rate stays zero for one second. The
fault rates are expressed in seconds and represent the mean interarrival time between two faults
(in a given sensor). In experiment 1, we use uniform priors over (0,1), with null and alternate
hypotheses equally likely a priori. In experiment 2, we useinformativepriors highly concentrated
around the true probability of the model satisfying the BLTLformula. The Bayes Factor threshold
is T = 1000, so by Theorem 1 both Type I and II errors are bounded by .001.

2More information on the model is available athttp://mathworks.com/products/simulink/
demos.html?file=/products/demos/shipping/simulink/sldemo fuelsys.html .

16

Probability threshold θ
.5 .7 .8 .9 .99

Fault
(3 7 8) ✗ (58/124s) ✗ (17/40s) ✗ (10/25s) ✗ (8/21s) ✗ (2/5s)

rates
(10 8 9) ✓ (32/78s) ✓ (95/225s) ✓ (394/1013s) ✗ (710/1738s) ✗ (8/21s)

(20 10 20) ✓ (9/21s) ✓ (16/36s) ✓ (24/54s) ✓ (44/100s) ✗ (1626/3995s)
(30 30 30) ✓ (9/24s) ✓ (16/41s) ✓ (24/59s) ✓ (44/107s) ✓ (239/589s)

Table 1:Number of samples / verification time when testing (18) with uniform, equally likely priors and
T = 1000:✗ = ‘H0 rejected’,✓ = ‘H0 accepted’.

Probability threshold θ
.5 .7 .8 .9 .99

Fault
(3 7 8) ✗ (55/117s) ✗ (12/28s) ✗ (10/25s) ✗ (8/21s) ✗ (2/5s)

rates
(10 8 9) ✓ (28/69s) ✓ (64/150s) ✓ (347/876s) ✗ (255/632s) ✗ (8/21s)

(20 10 20) ✓ (8/18s) ✓ (13/30s) ✓ (20/45s) ✓ (39/88s) ✗ (1463/3613s)
(30 30 30) ✓ (7/18s) ✓ (13/34s) ✓ (18/45s) ✓ (33/80s) ✓ (201/502s)

Table 2:Number of samples / verification time when testing (18) with informative priors andT = 1000:✗
= ‘H0 rejected’,✓ = ‘H0 accepted’.

In Table 1 and Table 2 we report our results. Even the longest test (forθ = .99 and fault rates
(20 10 20) in Table 1) Bayesian SMC terminates after 3995s already. This is very good perfor-
mance for a test with such a small (.001) error probability run on a standard desktop computer. We
note the total time spent for this case on actually computingthe statistical test i.e., Bayes factor
computation, was just about 1s. Also, by comparing the numbers of Table 1 and 2 we note that
the use of an informative prior generally helps the algorithm - i.e., fewer samples are required to
decide.

Next, we estimate the probability thatM satisfies the following property, using our Bayesian
estimation algorithm:

M |= (¬F100G1(FuelFlowRate= 0)) . (19)

In particular, we ran two sets of tests, one with half-interval sizeδ = .05 and another withδ = .01.
In each set we used different values for the interval coefficientc and different sensor fault rates, as
before. Experimental results are in Table 3 and 4. We used uniform priors in both cases.

6.2 Discussion

A general trend shown by our experimental results and additional simulations is that our Bayesian
estimation model checking algorithm is generally faster atthe extremes, i.e., when the unknown
probability p is close to 0 or close to 1. Performance is worse whenp is closer to 0.5. In contrast,
the performance of our Bayesian hypothesis testing model checking algorithm is faster when the

17

Interval coveragec
.9 .95 .99 .999

Fault
(3 7 8) .4 / 258 .376 / 357 .3569 / 606 .3429 / 972

rates
(10 8 9) .8857 / 103 .8904 / 144 .8785 / 286 .8429 / 590

(20 10 20) .9565 / 21 .9667 / 28 .9561 / 112 .9625 / 158
(30 30 30) .9565 / 21 .9667 / 28 .9778 / 43 .9851 / 65

samples needed in [12] 4793 5902 8477 12161

Table 3: Posterior mean / number of samples for estimating probability of (19) with uniform prior and
δ = .05, and comparison with the samples needed by the Chernoff-Hoeffding bound.

Interval coveragec
.9 .95 .99 .999

Fault
(3 7 8) .3603/6234 .3559/8802 .3558/15205 .3563/24830

rates
(10 8 9) .8534/3381 .8518/4844 .8528/8331 .8534/13569

(20 10 20) .9764/592 .9784/786 .9840/1121 .9779/2583
(30 30 30) .9913/113 .9933/148 .9956/227 .9971/341

samples needed in [12] 119829 147555 211933 304036

Table 4:Posterior mean / number of samples when estimating probability of (19) with uniform prior and
δ = .01, and comparison with the samples needed by the Chernoff-Hoeffding bound.

unknown true probabilityp is far from the threshold probabilityθ.

We note the remarkable performance of our estimation approach compared to the technique
based on the Chernoff-Hoeffding bound [12]. From Table 3 and4 we see that when the unknown
probability is close to 1, our algorithm can be between two and three orders of magnitude faster.
(The same argument holds when the true probability is close to 0.) Chernoff-Hoeffding bounds
hold for any random variable with bounded variance. Our Bayesian approach, instead, explicitly
builds the posterior distribution on the basis of the Bernoulli sampling distribution and the prior.

6.3 Performance Evaluation

We have conducted a series of simulations to analyze the performance (measured as number of
samples) of our sequential Bayesian estimation algorithm with respect to the unknown probability
p. In particular, we have run simulations for values ofp ranging from.01 to.99, with coverage (c)
of .9999 and.99999, interval half-size (δ) of .001 and.005, and uniform prior. We present details
of our simulations in Figure 1.

Our Simulink experiments show that Bayesian estimation is very fast whenp is close to either
0 or 1, while the algorithm needs a larger number of samples when p is close to1

2. In a sense,
our algorithm can decide easier PMC instances faster: if theprobability p of a formula being true
is very small or very large, we need fewer samples. This is another advantage of our approach

18

0.2 0.4 0.6 0.80.01 0.3 0.5 0.7 0.9 0.990.1
10

3

10
4

10
5

10
6

10
7

Probability

N
u

m
b

er
 o

f
sa

m
p

le
s

half−width = 0.001; c = 0.99999
half−width = 0.001; c = 0.9999
half−width = 0.005; c = 0.99999
half−width = 0.005; c = 0.9999

Figure 1: Performance of Bayesian estimation: number of samples vs probability

that it is not currently matched by other SMC estimation techniques (e.g., [12]). Our findings are
consistent with those of Yuet al. for the VLSI testing domain [29].

Our simulations also indicate that the performance of the algorithm depends more strongly on
the half-sizeδ of the estimated interval than on the coveragec of the interval itself. It is much
faster to estimate an interval of half-sizeδ = .005 with coveragec = .99999 than it is to estimate
an interval ofδ = .001 withc = .9999. More theoretical work is needed, however, to understand
fully the behavior of the Bayesian sequential estimation algorithm. Our initial findings suggest that
the algorithm scales very well.

7 Related Work

Younes and Simmons introduced the first algorithm for Statistical Model Checking [27, 28]. Their
work uses the SPRT [25], which is designed forsimplehypothesis testing3. Specifically, the SPRT
decides between the simple null hypothesisH ′

0 : M |= P=θ0(φ) against the simple alternate hy-
pothesisH ′

1 : M |= P=θ1(φ), whereθ0 < θ1. The SPRT is optimal for simple hypothesis testing,

3A simple hypothesis completely specifies a distribution. For example, a Bernoulli distribution of parameterp is
fully specified by the hypothesisp= 0.3 (or some other numerical value). A composite hypothesis, instead, still leaves
the free parameterp in the distribution. This results, e.g., in a family of Bernoulli distributions with parameterp< 0.3.

19

since it minimizes the expected number of samples among all the tests satisfying the same Type
I and II errors, when eitherH ′

0 or H ′
1 is true [25]. The PMC problem is instead a choice between

two compositehypothesesH0 : M |= P≥θ(φ) versusH1 : M |= P< θ(φ). The SPRT is not defined
unlessθ0 6= θ1, so Younes and Simmons overcome this problem by separating the two hypotheses
by anindifference region(θ−δ,θ+δ), inside which any answer is tolerated. Here 0< δ < 1 is a
user-specified parameter. It can be shown that the SPRT with indifference region can be used for
testing composite hypotheses, while respecting the same Type I and II errors of a standard SPRT
[9, Section 3.4]. However, in this case the test is no longer optimal, and the maximum expected
sample size may be much bigger than the optimal fixed-size sample test - see [4] and [9, Section
3.6]. Our approach solves instead the composite hypothesistesting problem, with no indifference
region.

The method of [12] uses a fixed number of samples and estimatesthe probability that the
property holds as the number of satisfying traces divided bythe number of sampled traces. Their
algorithm guarantees the accuracy of the results using Chernoff-Hoeffding bounds. In particular,
their algorithm can guarantee that the difference in the estimated and the true probability is less
thanε, with probabilityρ, whereρ < 1 andε > 0 are user-specified parameters. Our experimental
results show a significant advantage of our Bayesian estimation algorithm in the sample size.

Grosu and Smolka use a standard acceptance sampling technique for verifying formulas in
LTL [10]. Their algorithm randomly samples lassos (i.e., random walks ending in a cycle) from a
Büchi automaton in an on-the-fly fashion. The algorithm terminates if it finds a counterexample.
Otherwise, the algorithm guarantees that the probability of finding a counterexample is less thanδ,
under the assumption that the true probability that the LTL formula is true is greater thanε (δ and
ε are user-specified parameters).

Senet al. [23] used thep-valuefor the null hypothesis as a statistic for hypothesis testing. The
p-value is defined as the probability of obtaining observations at least as extreme as the one that
was actually seen, given that the null hypothesis is true. Itis important to realize that ap-value
is not the probability that the null hypothesis is true. Senet al.’s method does not have a way to
control the Type I and II errors. Senet al. [24] have started investigating the extension of SMC
to unbounded (i.e., standard) LTL properties. Finally, Langmead [18] has applied Bayesian point
estimation and SMC for querying Dynamic Bayesian Networks.

8 Conclusions and Future Work

Extending our Statistical Model Checking (SMC) algorithm that uses Bayesian Sequential Hypoth-
esis Testing, we have introduced the first SMC algorithm based on Bayesian Interval Estimation.
For both algorithms, we have proven analytic bounds on the probability of returning an incorrect
answer, which are crucial for understanding the outcome of Statistical Model Checking. We have
used SMC for Stateflow/Simulink models of a fuel control system featuring fault-tolerance and
hybrid behavior. Because verification is fast in most cases,we expect SMC methods to enjoy good
scalability properties for larger Stateflow/Simulink models. Our Bayesian estimation is orders of

20

magnitudes faster than previous estimation-based model checking algorithms.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time systems.
In ICALP, volume 510 ofLNCS, pages 115–126, 1991.

[2] C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Z. Kwiatkowska, and M. Ryan. Sym-
bolic model checking for probabilistic processes. InICALP, volume 1256 ofLNCS, pages
430–440, 1997.

[3] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen.Model-checking algorithms for
continuous-time Markov chains.IEEE Trans. Software Eng., 29(6):524–541, 2003.

[4] R. Bechhofer. A note on the limiting relative efficiency of the Wald sequential probability
ratio test.J. Amer. Statist. Assoc., 55:660–663, 1960.

[5] F. Ciesinski and M. Größer. On probabilistic computation tree logic. InValidation of Stochas-
tic Systems, LNCS, 2925, pages 147–188. Springer, 2004.

[6] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.Journal of
the ACM, 42(4):857–907, 1995.

[7] M. H. DeGroot.Optimal Statistical Decisions. Wiley, 2004.

[8] B. Finkbeiner and H. Sipma. Checking finite traces using alternating automata. InRuntime
Verification (RV ’01), volume 55(2) ofENTCS, pages 44–60, 2001.

[9] B. Ghosh and P. Sen, editors.Handbook of sequential analysis. Dekker, 1991.

[10] R. Grosu and S. Smolka. Monte Carlo Model Checking. InTACAS, volume 3440 ofLNCS,
pages 271–286, 2005.

[11] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.Formal Asp.
Comput., 6(5):512–535, 1994.

[12] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate probabilistic model
checking. InVMCAI, volume 2937 ofLNCS, pages 73–84, 2004.

[13] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic veri-
fication of probabilistic systems. InTACAS, volume 3920 ofLNCS, pages 441–444, 2006.

[14] H. Jeffreys.Theory of Probability. Clarendon, 1961.

[15] S. K. Jha, E. M. Clarke, C. J. Langmead, A. Legay, A. Platzer, and P. Zuliani. A Bayesian
approach to Model Checking biological systems. InCMSB, volume 5688 ofLNCS, pages
218–234, 2009.

21

[16] R. Koymans. Specifying real-time properties with metric temporal logic.Real-time Systems,
2(4):255–299, 1990.

[17] M. Z. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for probabilistic model
checking. InCAV, volume 4144 ofLNCS, pages 234–248, 2006.

[18] C. J. Langmead. Generalized queries and Bayesian statistical model checking in dynamic
Bayesian networks: Application to personalized medicine.In Computational Systems Bioin-
formatics (CSB), pages 201–212, 2009.

[19] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. InFOR-
MATS, volume 3253 ofLNCS, pages 152–166, 2004.

[20] J. Ouaknine and J. Worrell. Some recent results in metric temporal logic. InProc. of FOR-
MATS, volume 5215 ofLNCS, pages 1–13, 2008.

[21] A. Pnueli. The temporal logic of programs. InFOCS, pages 46–57. IEEE, 1977.

[22] C. P. Robert.The Bayesian Choice. Springer, 2001.

[23] K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box probabilistic
systems. InCAV, volume 3114 ofLNCS, pages 202–215, 2004.

[24] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic systems.
In CAV, volume 3576 ofLNCS, pages 266–280, 2005.

[25] A. Wald. Sequential tests of statistical hypotheses.Ann. Math. Statist., 16(2):117–186, 1945.

[26] H. L. S. Younes, M. Z. Kwiatkowska, G. Norman, and D. Parker. Numerical vs. statistical
probabilistic model checking.STTT, 8(3):216–228, 2006.

[27] H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event systems using
acceptance sampling. InCAV, volume 2404 ofLNCS, pages 223–235, 2002.

[28] H. L. S. Younes and R. G. Simmons. Statistical probabilistic model checking with a focus on
time-bounded properties.Inf. Comput., 204(9):1368–1409, 2006.

[29] P. S. Yu, C. M. Krishna, and Y.-H. Lee. Optimal design andsequential analysis of VLSI
testing strategy.IEEE T. Comput., 37(3):339–347, 1988.

22

