
Searching Complex Data Without an Index

Mahadev Satyanarayanan†, Rahul Sukthankar‡, Adam Goode†,

Nilton Bila•, Lily Mummert‡, Jan Harkes†, Adam Wolbach†,

Larry Huston, Eyal de Lara•

†Carnegie Mellon Univ., ‡Intel Labs Pittsburgh, •Univ. of Toronto

December 2009

CMU-CS-09-178

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

This research was supported by the National Science Foundation (NSF) under grant
number CNS-0614679. Development of the MassFind and PathFind applications described
in Section 6.1 was supported by the Clinical and Translational Sciences Institute of the
University of Pittsburgh (CTSI), with funding from the National Center for Research
Resources (NCRR) under Grant No. 1 UL1 RR024153. The FatFind and StrangeFind
applications described in Sections 6.1 were developed in collaboration with Merck & Co.,
Inc. Any opinions, findings, conclusions or recommendations expressed in this material
are those of the authors and do not necessarily represent the views of the NSF, NCRR,
CTSI, Intel, Merck, University of Toronto, or Carnegie Mellon University. OpenDiamond
is a registered trademark of Carnegie Mellon University.

Keywords: data-intensive computing, non-text search technology, med-

ical image processing, interactive search, computer vision, pattern recogni-

tion, distributed systems, ImageJ, MATLAB, parallel processing, human-

in-the-loop, Diamond, OpenDiamond

Abstract

We show how query-specific content-based computation pipelined with human

cognition can be used for interactive search when a pre-computed index is

not available. More specifically, we use query-specific parallel computation

on large collections of complex data spread across multiple Internet servers

to shrink a search task down to human scale. The expertise, judgement,

and intuition of the user performing the search can then be brought to bear

on the specificity and selectivity of the current search. Rather than text

or numeric data, our focus is on complex data such as digital photographs

and medical images. We describe Diamond, a system that can perform such

interactive searches on stored data as well as live Web data. Diamond is able

to narrow the focus of a non-indexed search by using structured data sources

such as relational databases. It can also leverage domain-specific software

tools in search computations. We report on the design and implementation

of Diamond, and its use in the health sciences.

1 Introduction
Today, “search” and “indexing” are almost inseparable concepts. The phenomenal success of indexing in
Web search engines and relational databases has led to a mindset where search is impossible without an
index. Unfortunately, there are real-world situations such as those described in Section 2 where we don’t
know how to build an index. Live sources of rich data, such as a collection of webcams on the Internet, are
also not indexable. Yet, the need exists to search such data now, rather than waiting for indexing techniques
to catch up with data complexity.

In this paper, we show how query-specific content-based computation pipelined with human cognition
can be used for interactive search when a pre-computed index is not available. In this approach, we use
query-specific parallel computation on large collections of complex data spread across multiple Internet
servers to shrink a search task down to human scale. The expertise, judgement, and intuition of the user
performing the search can then be brought to bear on the specificity and selectivity of the current search.
Rather than text or numeric data, our focus is on complex data such as digital photographs, medical images,
surveillance images, speech clips, or music clips. This focus on interactive search, with a human expert
such as a doctor, medical researcher, law enforcement officer, or military analyst in the loop, means that
user attention is the most precious system resource. Making the most of available user attention is far more
important than optimizing for server CPU utilization, network bandwidth or other system metrics.

We have been exploring this approach since late 2002 in the Diamond project. An early description of
our ideas was published in 2004 [17]. In the five years since then, we have gained considerable experience
in applying the Diamond approach to real-world problems in the health sciences. The lessons and insights
from this experience have led to extensive evolution of Diamond, resulting in a current implementation
with much richer functionality that is also faster, more extensible, and better engineered. Today, we can
interactively search data stored on servers as well as live Web data. We can use structured data in sources
such as relational databases and patient record systems to narrow the focus of a non-indexed search. We can
leverage domain-specific software tools in our search mechanism.

Over time, we have learned how to cleanly separate the domain-specific and domain-independent as-
pects of Diamond, encapsulating the latter into Linux middleware that is based on standard Internet compo-
nent technologies. This open-source middleware is called the OpenDiamond R© platform for discard-based
search. For ease of exposition, we use the term “Diamond” loosely in this paper: as our project name, to
characterize our approach to search (“the Diamond approach”), to describe the class of applications that use
this approach (“Diamond applications”), and so on. However, the term “OpenDiamond platform” always
refers specifically to the open-source middleware.

We begin in Section 2 with two motivating examples drawn from our actual experience. The early Dia-
mond prototype is summarized in Section 3, and its transformation through our collaborations is presented
in Section 4. We describe the current design and implementation of Diamond in Section 5, then validate it in
two parts: versatility in Section 6.1, and interactive performance in Section 6.2. Section 7 discusses related
work, and Section 8 closes with a discussion of future work.

2 Motivating Examples
Faced with an ocean of data, how does an expert formulate a crisp hypothesis that is relevant to his task?
Consider Figure 1, showing two examples of lip prints from thousands collected worldwide by craniofacial
researchers investigating the genetic origins of cleft palate syndrome. From genetic and developmental
reasoning, they conjecture that even asymptomatic members of families with the genetic defect will exhibit
its influence in their finger prints and lip prints. Of the many visual differences between the left image
(control) and the right image (from a family with cleft palate members), which are predictive of the genetic
defect? What search tools can the systems community offer a medical researcher in exploring a large
collection of lip prints to answer this question?

1

Figure 1: Lip Prints in Craniofacial Research Figure 2: Neuronal Stem Cell Growth

Another example pertains to the pharmaceutical industry. Long-running automated experiments for
investigating drug toxicity produce upwards of a thousand high-resolution cell microscopy images per hour
for many days, possibly weeks. Monitoring this imaging output for anomalies, often different from previous
anomalies, is the task of human investigators. Figure 2 shows two examples of neuronal stem cell images
from such an experiment. The left image is expected under normal growth conditions. The right image is
an anomaly. After discovering this anomaly (itself a challenging task), an investigator has to decide whether
it is a genuine drug effect or if it arises from experimental error such as loss of reagent potency or imaging
error. For some errors, aborting the entire experiment immediately may be the right decision. What search
tools exist to help discover such anomalies in real time and to see if they have occurred before?

3 Preliminary Diamond Prototype
Our early thinking on this problem was strongly influenced by the possibility of using specialized hardware.
Without an index, brute-force search is the only way to separate relevant and irrelevant data. The efficiency
with which data objects can be examined and rejected then becomes the key figure of merit. Work published
in the late 1990s on active disks [1, 19, 22, 25] suggested that application-level processing embedded within
storage was feasible and offered significant performance benefits. Extending this approach to searching
complex non-indexed data appeared to be a promising path for Diamond.

As a first step, we built a software prototype to emulate active disks that were specialized to the task of
searching complex data. Our primary goal was to gain an understanding of the mechanisms that would be
needed for a hardware implementation. A secondary goal was to verify that interactive search applications
could indeed be built on an active disk interface. Early discard, or the application-specific rejection of
irrelevant data as early as possible in the pipeline from storage to user, emerged as the key mechanism
required. It improves scalability by eliminating a large fraction of the data from most of the pipeline. We
refer to the application-specific code to perform early discard as a searchlet, and this overall search approach
as discard-based search. The focus of our 2004 Diamond paper [17] was a detailed quantitative evaluation
of this prototype. Qualitatively, those results can be summarized as follows:
• Queue back-pressure can be effectively used for dynamic load balancing in searchlet execution be-

tween the back-end (storage) and front-end (user workstation). Such load balancing can partly com-
pensate for slower improvement in embedded hardware performance, relative to desktop hardware.

• Application-transparent runtime monitoring of the computational cost and selectivity of searchlet
components is feasible, and can be used for dynamic adaptation of searchlet execution. Such adapta-
tion can help achieve earliest discard of data objects at least cost, without requiring data-specific or
application-specific knowledge.

4 Experience-driven Evolution
In the years since our 2004 paper, we have gained considerable experience in applying the Diamond ap-
proach to real-world problems. The insights we acquired changed the strategic direction of the project and
led to the re-design and re-implementation of many aspects of Diamond. Foremost among these changes
was a re-thinking from first principles of the need for specialized hardware. Based on the positive outcome
of our preliminary prototype, the natural next step would have been for us to build active disk hardware.
However, actual usage experience with commodity server hardware gave pause to our original assumption

2

that user experience would be unacceptable.
In an example application to search digital photographs, we found user think time to be sufficiently high

that it typically allowed servers to build up an adequate queue of results waiting to be displayed to the user.
Think time often increased in the later stages of an iterative search process, as a user carefully considered
each result to distinguish true positives from false positives. Search tasks rarely required the corpus of data
to be searched to completion; rather, the user quit, once she found enough hits for her query. Only rarely
was a user annoyed because of slow rate of return of results.

Even with a compute-intensive searchlet, such as one incorporating image processing for face detection,
the presence of multiple servers working in parallel typically yielded a result rate that avoided user stalls after
a brief startup delay. Discard-based search is embarrassingly parallel because each data object is considered
independently of all others. It is therefore trivial to increase search throughput by adding more servers. This
affinity for CPU parallelism and storage parallelism aligns well with today’s industry trend towards higher
numbers of processing cores per chip and the improvements in capacity and price/performance of storage.

Based on these insights, we decided to defer building hardware. Instead, we continued with a software-
only strategy for Diamond and sought collaborations with domain experts to address real-world problems.
While collaborators from many domains expressed interest, the strongest responses came from the health
sciences. Extensive revision of many aspects of Diamond resulted from our multi-year collaborations. The
key considerations underlying this evolution were as follows:
• Exploit temporal locality in searchlets

We often observed a distinctive usage pattern that we call interactive data exploration. In a typi-
cal search session, a user’s formation and validation of hypotheses about the data is interleaved in
a tightly-coupled, iterative sequence. This leads to significant overlap in searchlet components as a
search progresses. Caching execution results at servers can exploit this temporal locality. To take
advantage of partial overlap of searchlets, the cache can be maintained at the granularity of searchlet
components. Over time, cache entries will be created for many objects on frequently-used combi-
nations of searchlet components and parameters, thus reducing the speed differential with respect to
indexed search. This can be viewed as a form of just-in-time indexing that is performed incrementally.

• Unify indexed and discard-based search
A recurring theme in our collaborations was the need to use information stored in a structured data
source (such as a relational database) to constrain the search of complex data objects. Consider, for
example, “From women aged 40-50 who are smokers, find mammograms that have a lesion similar
to this one.” Age and personal habits are typically found in a patient record database, while lesion
similarity requires discard-based search of mammograms.

• Enable use of domain-specific tools for searchlets
We observed several instances where a particular tool was so widely used that it was the basis of
discourse among domain experts. For example, ImageJ is an image processing tool from the National
Institutes of Health (NIH) that is widely used by cell biology researchers. Another example is the
use of MATLAB for computer vision algorithms in bioengineering. Enabling searchlets to be created
with such tools simplifies the use of Diamond by domain experts. It also leverages the power of those
domain-specific tools.

• Streamline result transmission
Initially, we did not pay attention to the efficiency of result transmission from server to client since
this took place over a LAN. Over time, our thinking broadened to include Internet-wide searches.
This required protocol changes for efficiency over WANs, as well changes in the handling of results.
Rather than always shipping results in full fidelity, we now ship results in low fidelity. The full-fidelity
version of an object is shipped only on demand. Since “fidelity” is an application-specific concept,
this required end-to-end changes in our system design.

3

Linux client

Application (proprietary or open)

Control & Blast Channels

Linux ServerClient runtime code
Server runtime code

Linux Server

Linux Server

I
n
t
e
r
n
e
tUser

Searchlet (proprietary or open)

Searchlet API

Filter API

Figure 3: Diamond Architecture

Content Server

Content Server

Content Server

to SQL servers,
patient record systems,

directory structures,
and other meta-data

Define scope

Scope cookie

Verify scope

cookie

co
ok

ie
-s

co
pe

d
se

ar
ch

es

Scope ServerScope Server
• user authentication
• access control
• audit trail
• revocation

Scope GUI

Figure 4: Scoping a Diamond Search

• Balance versatility and customization
Another recurring theme was the tension between quick incremental extension of existing applica-
tions, and the creation of new applications with more domain-specific support and a more natural
workflow for domain experts — attributes that proved to be important in successful collaborations.
We learned how to separate searchlet development (involving, for example, image processing) from
the user interaction and workflow aspects of an application. Prioritizing searchlet development often
exposed deep contextual issues and assumption mismatches early in the collaboration process. We
thus arrived at an approach in which a single generic application (described in Section 6.1.1) acts
as a kind of “Swiss army knife” for searchlet development. Only when searchlet development has
proceeded far enough to be confident of success, do we begin to design the rest of an application.

• Enable search of live data sources
Until recently, our focus was solely on searching stored data. The growing importance of live data
sources on the Web, such as traffic monitoring cameras, suggested that it might be valuable to extend
our system to search live data. While significant back-end extensions were necessary to enable this
functionality, we were gratified that no application-level changes were required. To a user, searching
a live stream of images from the Web appears just like searching images on server disks.

• Re-engineer the code base
As a proof-of-concept artifact, our initial prototype had numerous limitations. Over time, many as-
pects of Diamond required extensive re-writing in order to improve efficiency, robustness, portability
and maintainability. For example, we replaced the entire communication layer for these reasons.

5 Design and Implementation
As shown in Figure 3, the Diamond architecture cleanly separates a domain-independent runtime platform
from domain-specific application code. For each search, the user defines a searchlet from individual com-
ponents called filters. A filter consists of executable code plus parameters that tune the filter to a specific
target. For example, an image search for women in brown fur coats might use a searchlet with three filters: a
color histogram filter with its color parameter set to the RGB value of the desired shade of brown; a texture
filter with examples of fur patches as its texture parameter; and a face detection filter with no parameters.
The searchlet is submitted by the application via the Searchlet API, and is distributed by the runtime system
to all of the servers involved in the search task. Each server has a persistent cache of filter code.

Each server iterates through its local objects in a system-determined order and presents them to filters
for evaluation through the Filter API. Each filter can independently discard an object. The details of filter
evaluation are totally opaque. The scalar return value is thresholded to determine whether a given object

4

should be discarded or passed to the next filter. Only those objects that pass through all of the filters are
transmitted to the client.

Servers do not communicate directly with each other; they only communicate with clients. The primary
factor driving this design decision is the simplification it achieves in the logistics of access control in multi-
realm searches. If a user has privileges to search servers individually in different authentication realms, she
is immediately able to conduct searches that span those servers. A secondary factor is the simplification and
decomposability that it achieves in the server code structure. Our experience with the applications described
in Section 6.1 confirm that this architectural constraint is a good tradeoff. Only in one instance (the online
anomaly detection application in Section 6.1.5) have we found a need for even limited sharing of information
across servers during a search. Even in that case, the volume of sharing is small: typically, a few hundred
bytes to a few kilobytes every few seconds. This is easily achieved through the use of session variables in
the APIs described in Section 5.1.

5.1 The OpenDiamond Programming Interface
The OpenDiamond platform consists of domain-independent client and server runtime software, the APIs
to this runtime software, and a TCP-based network protocol. On a client machine, user interaction typically
occurs through a domain-specific GUI. The Searchlet API defines the programming interface for the appli-
cation code (typically GUI-based) that runs on the client. The Filter API defines the programming interface
for filter code that runs on a server. We provide details of each below.

5.1.1 Searchlet API
Table 1 lists the calls of the Searchlet API, grouped by logical function. For brevity, we omit the calls for
initialization and debugging. An application first defines filters and searchlets through the calls in Table 1(a).
These are transmitted to each server involved in the current search. Next, in response to user interaction, the
application initiates and controls searches using the calls in Table 1(b). The application first defines what it
means by a low-fidelity result by calling set push attrs(). Then, after issuing start search(), the
application calls next object() repeatedly as a result iterator. At any point, typically in response to a
user request, the full-fidelity version of a result can be obtained by calling reexecute filters(). When
the user aborts the current search and goes back to selecting a new filter or changing parameters, the calls
in Table 1(a) again apply. The calls in Table 1(c) allow the client to obtain a small amount of side effect
data from each server and to disseminate them to all servers. As mentioned in the previous section, this was
motivated by online anomaly detection but can be used in any application that requires a small amount of
periodic information sharing across servers during a search.

5.1.2 Filter API
Table 2 present the Filter API. Each filter provides the set of callback functions shown in Table 2(a), and the
OpenDiamond code on the server invokes these functions once for each object. Within filter eval(),
the filter code can use the calls in Table 2(b) to obtain the contents of the current object. It can use the
calls in Table 2(c) to get and set attributes associated with the object. Attributes are name-value pairs that
typically encode intermediate results: for example, an image codec will read compressed image data and
write out uncompressed data as an attribute; an edge detector will read the image data attribute and emit
a new attribute containing an edge map. As an object passes through the filters of a searchlet, each filter
can add new attributes to that object for the benefit of filters that are further downstream. Early discard
strives to eliminate an object from this pipeline after the smallest possible investment of total filter execution
time. The calls in Table 2(d) allow a filter to examine and update session variables on a server. The use of
these variables is application-specific, but the intent is to provide a low-bandwidth channel for annotational
information that is continuously updated during a search.

The OpenDiamond code on a server iterates through objects in an unspecified order. This any-order

5

set searchlet() Define current searchlet
by loading and parsing a
specification.

add filter file() Load a binary file corre-
sponding to a filter in the
current searchlet.

set blob() Set binary argument for a
filter.

(a) Defining a Searchlet

get dev session vars() Get names and values
of session variables on
a server.

set dev session vars() Set a server’s session
variables to particular
values given here.

(c) Session Variable Handling

set push attrs() Indicate which attributes
are to be included in
the low-fidelity results
returned on the blast
channel.

start search() Start a search.

next object() Get the next object from
the result queue.

num objects() Get the number of pending
objects in the current pro-
cessing queue.

reexecute filters() Return full-fidelity version
of specified object, after re-
executing all filters on it.

release object() Free a previously returned
object.

terminate search() Abort current search.

(b) Controlling a Search

Table 1: Searchlet API

semantics gives the storage subsystem on a Diamond server an important degree of freedom for future
performance optimizations. For example, it could perform hardware-level prefetching or caching of objects
and have high confidence that those optimizations will improve performance. In contrast, a classical I/O API
that gives control of object ordering to application code may or may not benefit from independent hardware
optimizations. This aspect of the Filter API design ensures that applications written today are ready to
benefit from future storage systems that exploit any-order semantics.

5.2 Result and Attribute Caching
Caching on Diamond servers takes two different forms: result caching and attribute caching. Both are
application-transparent, and invisible to clients except for improved performance. Both caches are persis-
tent across server reboots and are shared across all users. Thus, users can benefit from each others’ search
activities without any coordination or awareness of each other. The sharing of knowledge within an enter-
prise, such as one member of a project telling his colleagues what filter parameter values worked well on a
search task, can give rise to significant communal locality in filter executions. As mentioned earlier, result
caching can be viewed as a form of incremental indexing that occurs as a side-effect of normal use.

Result caching allows a server to remember the outcomes of object–filter–parameter combinations.
Since filters consist of arbitrary code and there can be many parameters of diverse types, we use a cryp-
tographic hash of the filter code and parameter values to generate a fixed-length cache tag. The cache
implementation uses the open-source SQLite embedded database [14] rather than custom server data struc-
tures. When a filter is evaluated on an object during a search, the result is entered with its cache tag in the
SQLite database on that server. When that object–filter–parameter combination is encountered again on a
subsequent search, the result is available without re-running the potentially expensive filter operation. Note
that cache entries are very small (few tens of bytes each) in comparison to typical object sizes.

Attribute caching is the other form of caching in Diamond. Hits in the attribute cache reduce server load
and improve performance. We use an adaptive approach for attribute caching because some intermediate
attributes can be costly to compute, while others are cheap. Some attributes can be very large, while others
are small. It is pointless to cache attributes that are large and cheap to compute, since this wastes disk

6

filter init() Called once at the start of a
search.

filter eval() Called once per object, with
its handle and any data cre-
ated in the init call.

filter fini() Called once at search
termination.

(a) Callback Functions

get session vars() Get the values of a sub-
set of session variables.

update session vars() Atomically update the
given session variables
using the updater func-
tions and values.

(d) Session Variable Handling

next block() Read data from the object.

skip block() Skip over some data in the
object.

(b) Object Access

read attr() Return value of specified
attribute.

ref attr() Return reference to specified
attribute.

write attr() Create a new attribute. At-
tributes cannot be modified or
deleted.

omit attr() Indicate that this attribute does
not need to be sent to client.

first attr() Get first attribute-value pair.

next attr() Iterator call for next attribute-
value pair.

(c) Attribute Handling

Table 2: Filter API

space and I/O bandwidth for little benefit. The most valuable attributes to cache are those that are small
but expensive to generate. To implement this policy, the server runtime system dynamically monitors filter
execution times and attribute sizes. Only attributes below a certain space-time threshold (currently one MB
of size per second of computation) are cached. As processor speeds increase, certain attributes that used to
be cached may no longer be worth caching.

5.3 Network Protocol
The client-server network protocol separates control from data. For each server involved in a search, there
is pair of TCP connections between that server and the client. This has been done with an eye to the future,
when different networking technologies may be used for the two channels in order to optimize for their very
different traffic characteristics. Responsiveness is the critical attribute on the control channel, while high
throughput is the critical attribute on the data channel, which we refer to as the blast channel. Since many
individual searches in a search session tend to be aborted long before completion, the ability to rapidly flush
now-useless results in the blast channel would be valuable. This will improve the crispness of response seen
by the user, especially on a blast channel with a large bandwidth-delay product.

The control channel uses an RPC library to provide the client synchronous control of various aspects of a
search. The library includes calls for starting, stopping, modifying a search, requesting a full-fidelity object,
and so on. The blast channel works asynchronously, since a single search can generate many results spread
over a long period of time. This TCP connection uses a simple whole-object streaming protocol rather than
RPC calls. Each object in the blast channel is tagged with a search id, to distinguish between current results
and obsolete results.

5.4 Self-Tuning
At runtime, the OpenDiamond platform dynamically adapts to changes in data content, client and server
hardware, network load, server load, etc. This relieves an application developer of having to deal with this
complexity of the environment.

7

Data content adaptation occurs by transparent filter reordering, with some hysteresis for stability. In
a typical searchlet, filters have partial dependencies on each other. For example, a texture filter and a
face detection filter can each be run only after an image decoding filter. However, the texture filter can
run before, after, or in parallel with the face detection filter. The filter ordering code attempts to order
filters so that the cheapest and most discriminating filters will run first. This is achieved in a completely
application-independent way by maintaining dynamic measurements of both execution times and discard
rates for each filter. This approach is robust with respect to upgrading hardware or installing hardware
performance accelerators (such as hardware for face detection or recognition) for specific filters.

As mentioned earlier, dynamic load balancing in Diamond is based on queue backpressure, and is thus
application-independent. There may be some situations in which it is advantageous to perform some or all of
the processing of objects on the client. For example, if a fast client is accessing an old, slow, heavily-loaded
server over an unloaded gigabit LAN, there may be merit in executing some filters on the client even though
it violates the principle of early discard.

5.5 External Scoping of Searches
Many use cases of Diamond involve rich metadata that annotates the raw data to be searched by content. In a
clinical setting, for example, patient record systems often store not only the raw data produced by laboratory
equipment but also the patient’s relevant personal information, the date and time, the name of the attending
physician, the primary and differential diagnoses, and many other fields. The use of prebuilt indexes on this
metadata enables efficient selection of a smaller and more relevant subset of raw data to search. We refer
to this selection process as scoping a discard-based search. Effective scoping can greatly improve search
experience and result relevance.

Our early research focused exclusively on discard-based search, and treated indexed search as a solved
problem. Hence, the original architecture shown in Figure 3 ignored external metadata sources. Figure 4
shows how that architecture has been modified for scoping. The lower part of this figure pertains to discard-
based search, and is unmodified from Figure 3. It can be loosely viewed as the “inner loop” of an overall
search process. No changes to application code, searchlets, or the server runtime system are needed in
moving from Figure 3 to Figure 4 — only a few small changes to the OpenDiamond platform.

The Diamond extensions for scoping recognize that many valuable searches may span administrative
boundaries. Each administrative unit (with full autonomy over access control, storage management, audit-
ing, and other system management policies) is represented as a realm in the Diamond architecture. Realms
can make external business and security arrangements to selectively trust other realms.

Each realm has a single logical scope server, that may be physically replicated for availability or load-
balancing using well-known techniques. A user must authenticate to the scope server in her realm at the
start of a search session. For each scope definition, a scope server issues an encrypted token called a scope
cookie that is essentially a capability for the subset of objects in this realm that are within scope. The
fully-qualified DNS hostnames of the content servers that store these objects is visible in the clear in an
unencrypted part of the scope cookie. This lets the client know which content servers to contact for a
discard-based search. However, the list of relevant objects on those content servers is not present in any part
of the scope cookie. That list (which may be quite large, if many objects are involved) is returned directly
to a content server when it presents the scope cookie for validation to the scope server. Figure 4 illustrates
this flow of information. Scope cookies are implemented as encrypted X.509 certificates with lifetimes
determined by the scope server. For a multi-realm search, there is a scope cookie issued by the scope server
of each realm that is involved. In other words, it is a federated search in which the issuing and interpretation
of each realm’s scope cookies occur solely within that realm. A client and its scope server are only conduits
for passing a foreign realm’s scope cookie between that realm’s scope server and its content servers. A user
always directs her scope queries to the scope server in her realm. If a query involves foreign realms, her

8

scope server contacts its peers in those realms on her behalf.
A user generates a metadata query via a Web interface, labeled “Scope GUI” in Figure 4. The syntax and

interpretation of this query may vary, depending on the specific metadata source that is involved. The scope
cookie that is returned is passed to the relevant domain-specific application on the client. That application
presents the cookie when it connects to a content server. The cookie applies to all start search() calls
on this connection. When a user changes scope, new connections are established to relevant content servers.
Thus, the “inner loop” of a discard-based search retains the simplicity of Figure 3, and only incurs the
additional complexity of Figure 4 when scope is changed.

When the full functionality of external metadata scoping is not required, Diamond can also be set up
to scope at the coarse granularity of object collections. A much-simplified scope server, implemented as a
PHP application, provides a Web interface for selecting collections.

5.6 Live Data Sources
Support for searching live data sources was a simple extension of the system for searching stored data. No
changes to applications or to the client runtime system were necessary. The only modification to the server
runtime system was a change to the mechanism for obtaining object identities. Rather than reading names
of objects from a file we now read them from a TCP socket.

Separate processes, called data retrievers, are responsible for acquiring objects from arbitrary sources,
saving the objects locally, and providing content servers with a live list of these objects. With this design, it
is easy to incorporate new sources of data. All that is required is the implementation of a data retriever for
that data source. We have implemented the following data retrievers, each requiring less than 250 lines of
Python code:
• File: This simple retriever takes a list of files and provides them to the search system without further

processing. It mimics the old behavior of the system, before support for live data was added.
• Web image crawl: This retriever crawls a set of URLs, extracting images as input to the search.
• Video stream: This retriever takes a set of live video stream URLs and saves periodic frame snapshots

of the video for searching. The original videos are also reencoded and saved locally so that searches
can refer back to the original video which may otherwise be unavailable.

• Webcam stream: This retriever is a simpler version of the video stream retriever. It is designed to
work with a URL that returns a new static video frame each time it is retrieved.

The processing flow of live data retrieval is simple. First, a master process with a list of initial data
sources is started. The master spawns and controls a set of data retriever processes as workers. Each worker
pulls one or more data sources off the work list, processes them, and generates one or more objects in
the local file system. The names of these new objects is added to the list awaiting discard-based search.
Optionally, a worker may add more work to the work list. For example, in the case of Web crawling, the
work list would contain a list of URLs; the worker would fetch each URL, save images pointed to by
and <A> tags, and add new URLs back to the work list. Workers continue until the work list is empty; in
some cases, as with a webcam, this may never happen.

6 Validation
Two broad questions are of interest to us:
• How versatile is Diamond?

Is it feasible to build a wide range of applications with it? How clean is the separation of domain-
specific and domain-independent aspects of Diamond? Does it effectively support the use of domain-
specific tools, interfaces and workflows?

• How good is interactive performance in Diamond applications?
Can users easily conduct interactive searches of non-indexed data? Are they often frustrated by the

9

performance of the system? Are they able to search data from a wide range of sources? Do they easily
benefit from the additional system resources such as servers?

6.1 Versatility
Over a multi-year period, we have gained confidence in the Diamond approach to searching complex data by
implementing diverse applications. The breadth and diversity of these applications speaks for the versatility
of this approach. As explained in Section 4, it was the process of working closely with domain experts
to create these applications that exposed limitations in Diamond and in our thinking about discard-based
search, and guided us through extensive evolution to the current system described in Section 5. We describe
five of these applications below. Except for the first, they are all from the health sciences. Our concentration
on this domain is purely due to historical circumstances. Researchers in the health sciences (both in industry
and academia) were the first to see how our work could benefit them, and helped us to acquire the funding
to create these applications. We are confident that our work can also benefit many other domains. For
example, we are in the early stages of collaboration with a major software vendor to apply Diamond to
interactive search of large collections of virtual machine images. To encourage such collaborations, we have
made the OpenDiamond platform and many example applications available open-source.

6.1.1 Unorganized Digital Photographs
SnapFind, which was the only application available at the time of our 2004 paper, enables users to in-
teractively search large collections of unlabeled photographs by quickly creating searchlets that roughly
correspond to semantic content. Users typically wish to locate photos by semantic content (for example,
“Show me the whale watching pictures from our Hawaii vacation”), but this level of semantic understanding
is beyond today’s automated image indexing techniques. As shown in Figure 5(a), SnapFind provides a GUI
for users to create searchlets by combining simple filters that scan images for patches containing particular
color distributions, shapes, or visual textures. The user can either select a pre-defined filter (for example,
“frontal human faces”) or create new filters by clicking on sample patches in other images (for example, a
“blue jeans” color filter). Details of this image processing have been reported elsewhere [16].

Since 2004, we have enhanced SnapFind in many ways. We support a wider range of filters, have im-
proved the GUI, and now streamline result shipping as described in Section 4. SnapFind now supports
filters created as ImageJ macros. As an NIH-supported image processing tool, ImageJ is widely used by
researchers in cell biology, pathology and other medical specialties. The ability to easily add Java-based
plugins and the ability to record macros of user interaction are two valuable features of the tool. An in-
vestigator can create an ImageJ macro on a small sample of images, and then use that macro as a filter
in SnapFind to search a large collection of images. A copy of ImageJ runs on each server to handle the
processing of these filters, and is invoked at appropriate points in searchlet execution by our server runtime
system. A similar approach has been used to integrate the widely-used MATLAB tool. This proprietary tool
is an interpreter for matrix manipulations that are expressed in a specialized programming language. It is
widely used by researchers in computer vision and machine learning. Based on our positive experience with
ImageJ and MATLAB, we plan to implement a general mechanism to allow VM-encapsulated code to serve
as a filter execution engine. This will increase the versatility of Diamond, but an efficient implementation is
likely to be challenging because of the overhead of VM boundary crossings.

Today, we use SnapFind in the early stages of any collaboration that involves some form of imaging.
Since the GUI is domain-independent, customized filters for the new domain can be written in ImageJ or
MATLAB, and rapidly tested without building a full-fledged application with customized GUI and work-
flow. Only after early searchlet testing indicates promise does that overhead have to be incurred.

6.1.2 Lesions in Mammograms
MassFind is an interactive tool for analyzing mammograms that combines a lightbox-style interface that is

10

(a) SnapFind (b) MassFind (c) PathFind

(d) FatFind (e) StrangeFind

Figure 5: Screenshots of Example Applications

familiar to radiologists with the power of interactive search. Radiologists can browse cases in the standard
four-image view, as shown in Figure 5(b). A magnifying tool is provided to assist in picking out small detail.
Also integrated is a semi-automated mass contour tool that will draw outlines around lesions on a mammo-
gram when given a center point to start from. Once a mass is identified, a search can be invoked to find
similar masses. We have explored the use of a variety of distance metrics, including some based on machine
learning [31, 30], to find close matches from a mass corpus. Attached metadata on each retrieved case gives
biopsy results and a similarity score. Radiologists can use MassFind to help categorize an unknown mass
based on similarity to images in an archive.

6.1.3 Digital Pathology
Based on analysis of expected workflow by a typical pathologist, a tool called PathFind has been developed.
As shown in Figure 5(c), PathFind incorporates a vendor-neutral whole-slide image viewer that allows a
pathologist to zoom and navigate a whole slide image just as he does with a microscope and glass slides
today [13]. The PathFind interface allows the pathologist to identify regions of interest on the slide at any
magnification and then search for similar regions across multiple slide formats. The search results can be
viewed and compared with the original image. The case data for each result can also be retrieved.

6.1.4 Adipocyte Quantitation
In the field of lipid research, the measurement of adipocyte size is an important but difficult problem. We
have built a Diamond tool called FatFind for an imaging-based solution that combines precise investigator
control with semi-automated quantitation. FatFind enables the use of unfixed live cells, thus avoiding many
complications that arise in trying to isolate individual adipocytes. The standard FatFind workflow consists
of calibration, search definition and investigation. Figure 5(d) shows the FatFind GUI in the calibrate step.
In this step, the researcher starts with images from a small local collection, and selects one of them to
define a baseline. FatFind runs an ellipse extraction algorithm [12, 20] to locate the adipocytes in the
image. The investigator chooses one of these as the reference image, and then defines a search in terms
of parameters relative to this adipocyte. Once a search has been defined, the researcher can interactively

11

search for matching adipocytes in the image repository. He can also make adjustments to manually override
imperfections in the image processing and obtain size distributions and other statistics of the returned results.

6.1.5 Online Anomaly Detection
StrangeFind is an application for online anomaly detection across different modalities and types of data.
It was developed for the scenario described as the second example of Section 2: assisting pharmaceuti-
cal researchers in automated cell microscopy, where very high volumes of cell imaging are typical. Fig-
ure 5(e) illustrates the user interface of this tool. Anomaly detection is separated into two phases: a domain-
specific image processing phase, and a domain-independent statistical phase. This split allows flexibility
in the choice of image processing and cell type, while preserving the high-level aspects of the applica-
tion. StrangeFind currently supports anomaly detection of adipocyte images (where the image processing
analyzes sizes, shapes, and counts of fat cells), brightfield neurite images (where the image processing an-
alyzes counts, lengths, and sizes of neurite cells), and XML files that contain image descriptors extracted
by proprietary image processing tools. Since StrangeFind is an online anomaly detector, it does not require
a preprocessing step or a predefined statistical model. Instead, it builds up the model as it examines the
data. While this can lead to a higher incidence of false positives early in the analysis, the benefits of online
detection outweigh the additional work of screening false positives. Further details on this application can
be found elsewhere [11].

6.1.6 Discussion
Through our extensive collaborations and from our first-hand experience in building the above applications,
we have acquired a deeper appreciation for the strengths of discard-based search relative to indexed search.
These strengths were not apparent to us initially, since the motivation for our work was simply coping with
the lack of an index for complex data.

Relative to indexed search, the weaknesses of discard-based search are obvious: speed and security. The
speed weakness arises because all data is preprocessed in indexed search. Hence, there are no compute-
intensive or storage-intensive algorithms at runtime. In practice, this speed advantage tends to be less dra-
matic because of result and attribute caching by Diamond servers, as discussed in Section 5.2. The security
weakness arises because the early-discard optimization requires searchlet code to be run close to servers.
Although a broad range of sandboxing techniques [28], language-based techniques [29], and verification
techniques [24] can be applied to reduce risk, the essential point remains that user-generated code may need
to run on trusted infrastructure during a discard-based search. This is not a concern with indexed search,
since preprocessing is done offline. Because of the higher degree of scrutiny and trust that tends to exist
within an enterprise, we expect that discard-based search is likely to be first embraced within the intranets
of enterprises rather than in mass-market use.

At the same time, discard-based search has certain unique strengths. These include: (a) flexibility in
tuning between false positives and false negatives, (b) ability to dynamically incorporate new knowledge,
and (c) better integration of user expertise.

Tunable precision and recall: The preprocessing for indexed search represents a specific point on a
precision-recall curve, and hence a specific choice in the tradeoff space between false positives and false
negatives. In contrast, this tradeoff can be dynamically changed during a discard-based search session. Us-
ing domain-specific knowledge, an expert user may tune searchlets toward false positives or false negatives
depending on factors such as the purpose of the search, its completeness relative to total data volume, and
the user’s judgement of results from earlier iterations in the search process.

It is also possible to return a clearly-labeled sampling of discarded objects to alert the user to what she
might be missing, and hence to the likelihood of false negatives. Interactive data exploration requires at
least a modest rate of return of results even if they are not of the highest quality. The user cannot progress
to the next iteration of a search session by re-parameterizing or redefining the current searchlet until she has

12

SnapFind Client

Diamond
Server

Images Netem Images Images ImagesNetem

Diamond
Server

Figure 6: Experimental Setup.
Figure 7: Picture Shown to Users

sufficient clues as to what might be wrong with it. Consideration of false negatives may also be important:
sometimes, the best way to improve a searchlet is by tuning it to reduce false negatives, typically at the cost
of increasing false positives. To aid in this, a planned extension of Diamond will a provide a separate result
stream that is a sparse sampling of discarded objects. Applications can present this stream in a domain-
specific manner to the user, and allow her to discover false negatives. It is an open question whether the
sampling of discarded objects should be uniform or biased towards the discard threshold (i.e., “near misses”).

New knowledge: The preprocessing for indexing can only be as good as the state of knowledge at the
time of indexing. New knowledge may render some of this preprocessing stale. In contrast, discard-based
search is based on the state of knowledge of the user at the moment of searchlet creation or parameterization.
This state of knowledge may improve even during the course of a search. For example, the index terms used
in labeling a corpus of medical data may later be discovered to be incomplete or inaccurate. Some cases of
a condition that used to be called “A” may now be understood to actually be a new condition “B.” Note that
this observation is true even if index terms were obtained by game-based human tagging approaches such as
ESP [27].

User expertise: Discard-based search better utilizes the user’s intuition, expertise and judgement. There
are many degrees of freedom in searchlet creation and parameterization through which these human qualities
can be expressed. In contrast, indexed search limits even experts to the quality of the preprocessing that
produced the index.

6.2 Interactive Performance
While answering questions about the versatility of Diamond is relatively straightforward, answering ques-
tions about its performance is much harder. The heart of the complexity lies in a confounding of system-
centric and domain-centric effects. Classical measures of system performance such as number of results per
second fail to recognize the quality of those results. A bad searchlet may return many false positives, and
overwhelm the user with junk; the worst case is a searchlet that discards nothing! The user impact of a bad
searchlet is accentuated by good system infrastructure, since many more results are returned per unit time.
Conversely, an excellent searchlet may return only a few results per unit of time because it produces very
few false positives. However each result may be of such high quality that the user is forced to think carefully
about it, before deciding whether it is a true positive or a false positive. The system is not impressive from
a results per second viewpoint, but the user is happy because this rate is enough to keep her cognitively en-
gaged almost continuously. Large think times are, of course, excellent from a systems perspective because
they give ample processing time for servers to produce results.

Clearly, from the viewpoint of the user, it is very difficult to tease apart system-centric and domain-
centric effects in Diamond. We therefore adopt a much less ambitious validation approach by fixing the
user trace of interactive data exploration. This corresponds to a fixed sequence of searchlet refinements,

13

User Trace sequence Images Elapsed
viewed time (s)

1 Browse to find photo containing green grass. Set a color filter and a texture filter matching the
grass to find photo of dog playing in yard. Finally, set color filters matching the dog’s brown and
white patches.

166 598

2 Browse to find image of grass and image of brick wall. Set grass color and brick wall color and
texture. Drop brick wall and go with grass color until image of dog is found. Set grass color and
dog’s colors filter. Finally, drop grass color and use only dog colors.

492 972

3 Browse to find image with grass. Used grass color filter to find image of brown deer. Used filters
based on grass colors and deer color to find white hat and added white color to search. Found dog.
Set color and texture filter based on dog. Found another image of the dog and created another
brown color filter. Used first dog’s white filter and new brown filter. Revert to dog’s white color,
fur texture and brown color filter. Finally revert to just dog white color and brown color filter.

289 1221

Table 3: User Trace Characteristics

Mean (s) Median (s) σ (s)
User 1 1.23 0.81 2.23
User 2 2.04 1.00 6.74
User 3 1.01 0.75 1.29

All Users 1.35 0.82 3.93

Table 4: User Think Times

each made after viewing the same number of results as in trace capture. Think time per result is also
distributed as in the original trace. For such a trace, we show that the distribution of user response time
(that is, unproductive user time awaiting the next result) is insensitive to network bandwidth and improves
significantly with increased parallelism. We also show that response times are comparable on LAN-based
server farms and live Web search. In other words, users can interactively search live Web data.

6.2.1 Experimental Setup
Figure 6 shows our experimental setup. All experiments involve a single client that replays a trace of search
requests. These traces are described in Section 6.2.2. The experiments described in Sections 6.2.3 and 6.2.4
involve one to eight Diamond servers that process data stored on their local disks. These experiments do not
involve the Web servers shown in Figure 6. To emulate live Web search, the experiments in Section 6.2.5 use
two Web servers. A Netem emulator varies network quality between client and Diamond servers. Another
Netem emulator varies network quality between search servers and Web servers. Except for the Netem
machines, all computers, were 3GHz Intel Core 2 Duo with 3 GB of RAM running Debian Linux 5.0. The
Web servers ran Apache HTTP Server 2.2.9. The Netem machines were 3.6GHz Pentium 4 with 4GB of
RAM.

6.2.2 User Traces
The traces used in our experiments were obtained from three members of our research team. Using the
SnapFind client described in Section 6.1.1, their task was to find five pictures of the dog shown in Fig-
ure 7. The corpus of images they searched contained about 109,000 images that were downloaded from the
Flickr [10] photo sharing Web site. We uniformly interspersed 67 images of the dog, taken over a year as it
grew from puppy to adult, to the set of downloaded images. To allow us to accurately measure think times,
we modified the SnapFind application to display one thumbnail at a time (rather than the usual six thumb-
nails). We obtained our traces at 100 Mbps, with four search servers. Table 3 summarizes the traces, while
Table 4 shows the mean and standard deviations of user think times. Our experiments replayed these traces
on a SnapFind emulator. We present our results in Figures 8 through 11 as cumulative distribution functions

14

 0

 20

 40

 60

 80

 100

 0.1 1 10 100

P
er

ce
nt

ag
e

of
 r

es
po

ns
es

Response time (s)

1mbps / 30ms
10mbps / 30ms

100 mbps

Figure 8: Impact of Network Quality

 0

 20

 40

 60

 80

 100

 0.1 1 10 100

P
er

ce
nt

ag
e

of
 r

es
po

ns
es

Response time (s)

1 server
2 servers
4 servers
8 servers

Figure 9: Impact of Parallel Computation

(CDFs) of measured response times over 3 runs of the User 1 trace. The User 2 and User 3 traces were only
used to obtain think times. Note that the X axis in all these graphs is in log scale, to better illustrate the areas
of most interest.

6.2.3 Impact of Network Quality
Figure 8 shows the CDFs of response times when we vary the network conditions between the client and
8 Diamond servers from a well connected LAN environment to typical WAN links. Under the network
conditions studied, the user experience provided by the system remains unaffected. Changes in bandwidth
have little to no effect on the user experience because the system transfers minimal data during a search.
The default behaviour of the system is to return low fidelity thumbnails of the image results instead of
returning the full images. The user requests the full fidelity version of only those images he finds of interest.
Robustness to network latency is achieved by buffering results as they arrive at the client. Often, requests
for results are serviced from the buffer.

6.2.4 Impact of Parallel Computation
Figure 9 shows the CDFs of response times as the number of Diamond servers varies between one and
eight. The results reported were obtained on a network consisting of the Diamond servers and a client
that connects to the servers through a simulated 1 Mbps WAN link with 30 ms RTT. Images are uniformly
distributed across the Diamond servers.

With a single Diamond server, fewer than half of the user requests were serviced within one second.
With four servers nearly 84% of the requests are serviced within one second. Eight servers increase the
portion of requests serviced within a second to 87%. Thus, we conclude that design of Diamond enables
users to easily exploit opportunities for parallel computation, and take advantage of additional processors
without any application-specific support for parallelism.

6.2.5 Searching the Live Web
We evaluated the performance delivered by the system when conducting searches on content downloaded
from the Web. For this experiment, the image collection is hosted on two remote Web servers accessible
through a simulated 10 Mbps WAN link with RTT of 30 ms. The client connects to the Diamond servers
through a 100 Mbps LAN with no added latency. We varied the number of Diamond servers from one
to eight. Each Diamond server ran five instances of the Web image retriever. We found that running five
instances of this process strikes a balance between fully utilizing the bandwidth available and sharing the
processor time with the search process.

15

 0

 20

 40

 60

 80

 100

 0.1 1 10 100

P
er

ce
nt

ag
e

of
 r

es
po

ns
es

Response time (s)

local
web

(a) 1 server

 0

 20

 40

 60

 80

 100

 0.1 1 10 100

P
er

ce
nt

ag
e

of
 r

es
po

ns
es

Response time (s)

local
web

(b) 2 servers

 0

 20

 40

 60

 80

 100

 0.1 1 10 100

P
er

ce
nt

ag
e

of
 r

es
po

ns
es

Response time (s)

local
web

(c) 4 servers

 0

 20

 40

 60

 80

 100

 0.1 1 10 100

P
er

ce
nt

ag
e

of
 r

es
po

ns
es

Response time (s)

local
web

(d) 8 servers

Figure 10: Web at 1 Mbps with 1 to 8 Diamond Servers

Figure 10 compares the performance of Web search with the performance of a local search, where the
data is stored on disks on the Diamond servers. The figure shows that for a small number of servers, the task
is CPU bound and the performance of searching web based images is comparable to that of a local search.
However, with four or more Diamond servers, the performance gap widens as the network link saturates.
To conduct the search over the Web, the system downloaded, on average, 3.86 GB of image data. The
magnitude of the download makes it impractical to perform such search interactively over the 1 Mbps link.
Conversely, Figure 11, shows that increasing the link capacity to the Web servers improves the performance
of Web search on large clusters to levels that are comparable to local search.

The bandwidth to the Web servers affects response times in the above experiments because data retriev-
ers download full resolution images rather than thumbnails. This is unavoidable, since Web servers do not
usually support negotiation of object fidelity. However, provided that there is sufficient Web bandwidth to
keep all Diamond servers busy, the performance of searching Web content is comparable to that of searching
local content. In practice, we expect deployments of Diamond servers to be well connected to the Internet
backbone. This allows the possibility of a substantial aggregate retrieval rate from a collection of widely-
dispersed Web servers, even if the individual end-to-end bandwidths to those Web servers is modest. The
any-order semantics of the Filter API, applied across Web servers, is helpful in this context.

16

 0

 20

 40

 60

 80

 100

 0.1 1 10 100

P
er

ce
nt

ag
e

of
 r

es
po

ns
es

Response time (s)

local
web

Figure 11: Web at 100 Mbps with 8 Diamond Servers

7 Related Work
Diamond is the first system to unify the distinct concerns of interactive search and complex, non-indexed
data. This unification allows human cognition to be pipelined with query-specific computation, and thus
enables user expertise, judgement, and intuition to be brought to directly and immediately bear on the
specificity and selectivity of the current search.

Data complexity motivates pipelined filter execution, early discard, self-tuning for filter execution order,
the ability to use external domain-specific tools such as ImageJ and MATLAB, and the ability to use external
meta-data to scope searches. Concern for crisp interaction motivates caching of results and attributes at
servers, streamlining of result transmission, self-tuning of filter execution site, separation of control and
blast channels in the network protocol, and any-order semantics in server storage accesses. Although no
other system addresses these dual concerns, some individual aspects of Diamond overlap previous work.

Diamond’s dissemination and parallel execution of searchlet code at multiple servers bears some re-
semblance to the execution model of MapReduce [6, 7]. Both models address roughly the same problem,
namely, going through a large corpus of data for identifying objects that match some search criteria. In both
models, execution happens as close to data as possible. Of course, there are considerable differences at the
next level of detail. MapReduce is a batch processing model, intended for index creation prior to search ex-
ecution. In contrast, searchlets are created and executed during the course of an interactive search. None of
the mechanisms for crisp user interaction that were mentioned in the previous paragraph have counterparts in
the MapReduce model. Fault tolerance is important in MapReduce because it is intended for long-running
batch executions; searchlet execution, in contrast, ignores failures since most executions are likely to be
aborted by the user in at most a few minutes.

Aspects of filter execution in Diamond bear resemblance to the work of Abacus [2], Coign [15], River [3]
and Eddies [4]. Those systems provide for dynamic adaptation of execution in heterogeneous systems.
Coign focuses on communication links between application components. Abacus automatically moves com-
putation between hosts or storage devices in a cluster based on performance and system load. River handles
adaptive dataflow control generically in the presence of failures and heterogeneous hardware resources. Ed-
dies adaptively reshapes dataflow graphs to maximize performance by monitoring the rates at which data
is produced and consumed at nodes. The importance of filter ordering has long been a topic of research in
database query optimization [26].

From a broader perspective, indexed search of complex data has long been the holy grail of the knowl-
edge retrieval community. Early efforts included systems such as QBIC [9]. More recently, low-level feature
detectors and descriptors such as SIFT [21] and PCA-SIFT [18] have led to efficient schemes for index-based

17

sub-image retrieval. However, all of these methods have succeeded only in narrow contexts. For the foresee-
able future, automated indexing of complex data will continue to be a challenge for several reasons. First,
automated methods for extracting semantic content from many data types are still rather primitive. This is
referred to as the “semantic gap” [23] in information retrieval. Second, the richness of the data often requires
a high-dimensional representation that is not amenable to efficient indexing. This is a consequence of the
curse of dimensionality [5, 8, 32]. Third, realistic user queries can be very sophisticated, requiring a great
deal of domain knowledge that is often not available to the system for optimization. Fourth, expressing a
user’s vaguely-specified query in a machine-interpretable form can be difficult. These deep problems will
long constrain the success of indexed search for complex data.

8 Conclusion
Our ability to record real-world data has exploded. Huge volumes of medical imagery, surveillance imagery,
sensor feeds for the earth sciences, anti-terrorism monitoring and many other sources of complex data are
now captured routinely. The capacity and cost of storage to archive this data have kept pace. Sorely lacking
are the tools to extract the full value of this captured data.

The goal of this work is to help domain experts creatively explore large bodies of complex non-indexed
data. We hope to do for complex data what spreadsheets did for numeric data in the early years of personal
computing: allow users to “play” with the data, easily answer “what if” questions, and thus gain deep,
domain-specific insights. This paper has described the architecture and evolution of a system with this
potential, Diamond, and has shown how it can be applied to the health sciences. We are expanding our
collaborations in the health sciences to areas such as craniofacial research (mentioned in the context of lip
prints in Section 1), and welcome collaborations in other domains.

The central premise of our work is that the sophistication of queries we are able to pose about complex
data will always exceed our ability to anticipate, and hence pre-compute indexes for, such queries. While
indexing techniques will continue to advance, so will our ability to pose ever more sophisticated queries —
our reach will always exceed our grasp. It is in that gap that the Diamond approach will have most value.

References
[1] ACHARYA, A., UYSAL, M., AND SALTZ, J. Active disks: Programming model, algorithms and evaluation. In

Proc. of ASPLOS (1998).

[2] AMIRI, K., PETROU, D., GANGER, G., AND GIBSON, G. Dynamic function placement for data-intensive
cluster computing. In Proceedings of USENIX (2000).

[3] ARPACI-DUSSEAU, R., ANDERSON, E., TREUHAFT, N., CULLER, D., HELLERSTEIN, J., PATTERSON, D.,
AND YELICK, K. Cluster I/O with River: Making the fast case common. In Proc. of Input/Output for Parallel
and Distributed Systems (1999).

[4] AVNUR, R., AND HELLERSTEIN, J. Eddies: Continuously adaptive query processing. In Proceedings of
SIGMOD (2000).

[5] BERCHTOLD, S., BOEHM, C., KEIM, D., KRIEGEL, H. A Cost Model for Nearest Neighbor Search in High-
Dimensional Data Space. In Proceedings of the Symposium on Principles of Database Systems (Tucson, AZ,
May 1997).

[6] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data Processing on Large Clusters. In Proc. of OSDI
(San Francisco, CA, 2004).

[7] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data Processing on Large Clusters. Comm. of the ACM
51, 1 (2008).

[8] DUDA, R., HART, P., STORK, D. Pattern Classification. Wiley, 2001.

18

[9] FLICKNER, M., SAWHNEY, H., NIBLACK, W., ASHLEY, J., HUANG, Q., DOM, B., GORKANI, M., HAFNER,
J., LEE, D., PETKOVIC, D., STEELE, D., YANKER, P. Query by Image and Video Content: The QBIC System.
IEEE Computer 28, 9 (1995).

[10] FLICKR. Flickr. http://www.flickr.com.

[11] GOODE, A., SUKTHANKAR, R., MUMMERT, L., CHEN, M., SALTZMAN, J., ROSS, D., SZYMANSKI, S.,
TARACHANDANI, A., AND SATYANARAYANAN, M. Distributed Online Anomaly Detection in High-Content
Screening. In Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging (Paris, France,
May 2008).

[12] GOODE, A., CHEN, M., TARACHANDANI, A., MUMMERT, L., SUKTHANKAR, R., HELFRICH, C., STE-
FANNI, A., FIX, L., SALTZMANN, J., SATYANARAYANAN, M. Interactive Search of Adipocytes in Large
Collections of Digital Cellular Images. In Proceedings of the 2007 IEEE International Conference on Multime-
dia and Expo (ICME07) (Beijing, China, July 2007).

[13] GOODE, A., SATYANARAYANAN, M. A Vendor-Neutral Library and Viewer for Whole-Slide Images. Tech.
Rep. CMU-CS-08-136, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, June 2008.

[14] HIPP, D. R., AND KENNEDY, D. SQLite. http://www.sqlite.org/.

[15] HUNT, G., AND SCOTT, M. The Coign automatic distributed partitioning system. In Proceedings of OSDI
(1999).

[16] HUSTON, L., SUKTHANKAR, R., HOIEM, D., AND ZHANG, J. SnapFind: Brute force interactive image
retrieval. In Proceedings of International Conference on Image Processing and Graphics (2004).

[17] HUSTON, L., SUKTHANKAR, R., WICKREMESINGHE, R., SATYANARAYANAN, M., GANGER, G.R.,
RIEDEL, E., AILAMAKI, A. Diamond: A Storage Architecture for Early Discard in Interactive Search. In
Proceedings of the 3rd USENIX Conference on File and Storage Technologies (San Francisco, CA, April 2004).

[18] KE, Y., SUKTHANKAR, R., AND HUSTON, L. Efficient near-duplicate and sub-image retrieval. In Proc. of
ACM Multimedia (2004).

[19] KEETON, K., PATTERSON, D., AND HELLERSTEIN, J. A Case for Intelligent Disks (IDISKs). SIGMOD Record
27, 3 (1998).

[20] KIM, E., HASEYAMA, M., AND KITAJIMA, H. Fast and Robust Ellipse Extraction from Complicated Images.
In Proceedings of IEEE Information Technology and Applications (2002).

[21] LOWE, D. Distinctive image features from scale-invariant keypoints. International Journal on Computer Vision
(2004).

[22] MEMIK, G., KANDEMIR, M., AND CHOUDHARY, A. Design and Evaluation of Smart Disk Architecture for
DSS Commercial Workloads. In Proc. of the International Conference on Parallel Processing (2000).

[23] MINKA, T., PICARD, R. Interactive Learning Using a Society of Models. Pattern Recognition 30 (1997).

[24] NECULA, G. C., AND LEE, P. Safe Kernel Extensions Without Run-Time Checking. In Proc. of the 2nd
Symposium on Operating Systems Design and Implementation (Seattle, WA, October 1996).

[25] RIEDEL, E., GIBSON, G., AND FALOUTSOS, C. Active Storage for Large-Scale Data Mining and Multimedia.
In Proceedings of VLDB (August 1998).

[26] SELINGER, P., ASTRAHAN, M., CHAMBERLIN, D., LORIE, R., AND PRICE, T. Access path selection in a
relational database management system. In Proceedings of SIGMOD (1979).

[27] VON AHN, L., AND DABBISH, L. Labeling images with a computer game. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (April 2004).

[28] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM, S. L. Efficient Software-based Fault Isolation. In
Proceedings of the 14th ACM Symposium on Operating Systems Principles (Asheville, NC, December 1993).

19

[29] WALLACH, D. S., BALFANZ, D., DEAN, D., AND FELTEN, E. W. Extensible Security Architectures for Java.
In Proceedings of the 16th ACM Symposium on Operating Systems and Principles (Saint-Malo, France, October
1997).

[30] YANG, L., JIN, R., MUMMERT, L., SUKTHANKAR, R., GOODE, A., ZHENG, B., HOI, S. C., AND SATYA-
NARAYANAN, M. A Boosting Framework for Visuality-Preserving Distance Metric Learning and Its Application
to Medical Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1 (January
2010).

[31] YANG, L., JIN, R., SUKTHANKAR, R., ZHENG, B., MUMMERT, L., SATYANARAYANAN, M., CHEN, M.,
AND JUKIC, D. Learning Distance Metrics for Interactive Search-Assisted Diagnosis of Mammograms. In
Proceedings of SPIE Medical Imaging (2007).

[32] YAO, A., YAO, F. A General Approach to D-Dimensional Geometric Queries. In Proceedings of the Annual
ACM Symposium on Theory of Computing (May 1985).

20

