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Abstract

Today’s smartphones operate independently of each other, using only lo-
cal computing, sensing, networking, and storage capabilities and functions
provided by remote Internet services. It is generally difficult or expensive for
one smartphone to share data and computing resources with another. Data is
shared through centralized services, requiring expensive uploads and down-
loads that strain wireless data networks. Collaborative computing is only
achieved using ad hoc approaches.

Coordinating smartphone data and computing would allow mobile appli-
cations to utilize the capabilities of an entire smartphone cloud while avoiding
global network bottlenecks. In many cases, processing mobile data in-place
and transferring it directly between smartphones would be more efficient and
less susceptible to network limitations than offloading data and processing to
remote servers.

We have developed Hyrax, a platform derived from Hadoop that supports
cloud computing on Android smartphones. Hyrax allows client applications
to conveniently utilize data and execute computing jobs on networks of smart-
phones and heterogeneous networks of phones and servers. By scaling with
the number of devices and tolerating node departure, Hyrax allows applica-
tions to use distributed resources abstractly, oblivious to the physical nature
of the cloud.

The design and implementation of Hyrax is described, including experi-
ences in porting Hadoop to the Android platform and the design of mobile-
specific customizations. The scalability of Hyrax is evaluated experimentally
and compared to that of Hadoop. Although the performance of Hyrax is poor
for CPU-bound tasks, it is shown to tolerate node-departure and offer reason-
able performance in data sharing. A distributed multimedia search and sharing
application is implemented to qualitatively evaluate Hyrax from an application
development perspective.
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Chapter 1

Introduction

Most of today’s smartphone applications are geared towards an individual user and only
use the resources of a single phone. There is an opportunity to harness the collective sens-
ing, storage, and computational capabilities of multiple networked phones to create a dis-
tributed infrastructure that can support a wealth of new applications. These computational
resources and data are largely underutilized in today’s mobile applications. Using these
resources, applications could conveniently use the combined data and computational abil-
ities of an entire network of smartphones to generate useful results for clients both outside
and within the mobile network. This interface and the underlying hardware would create a
mobile-cloud upon which compute jobs could be performed. We define mobile-cloud com-
puting to be an extension of cloud computing in which the foundational hardware consists
at least partially of mobile devices.

Some mobile applications already extract and aggregate information from multiple
phones. Tweetie Atebits for the iPhone uses locations from other phones running the
application to allow users to see recent Twitter posts by nearby users. Video and photo
publishing applications such as YouTube and Flickr allow users to upload multimedia data
to share online. The Ocarina application Smule for the iPhone allows users to listen to
songs played by other users of the application, displaying the location of each user on a
globe. Such smartphone applications are “push”-based and centralized, meaning that users
push their information to a remote server where it is processed and shared.

It is possible to use a networked collection of smartphones in a more opportunistic
way. Each smartphone has some amount of storage, some amount of compute power,
some sensing abilities, some multimedia data, and some amount of energy. Each of these
capabilities is currently only available to and utilized by the smartphone’s owner. What
if these capabilities were somehow offered to other users and applications? What if we
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could harness a collection of smartphones to support large-scale distributed applications,
using smartphones as the basis for a cloud computing infrastructure? Each smartphone
would be equipped to perform individual, local computations on its local data in support
of a larger, system-wide objective, and the outcomes of each smartphone’s local actions
would be aggregated to meet the needs of the overall application. Applications could use
these resources abstractly, oblivious to the underlying implementation on a smartphone
network.

Similar concepts have been studied in sensor networks and mobile grid computing,
Sorniotti et al. [2007], Akyildiz et al. [2006], Litke et al. [2004]. However, in contrast
to data-center “pay-as-you-use” cloud computing and sensor networks, in the proposed
mobile-cloud concept (1) each node is owned by a different user, (2) each node is likely
to be mobile, (3) the network topology is more dynamic, and (4) each mobile node is
battery-powered. In contrast to mobile grid computing, mobile-cloud computing focuses
on abstracting away from the implementation of resource sharing to provide a useful tool
for applications.

Using mobile hardware for cloud computing offers advantages over using traditional
hardware, such as computational access to multimedia and sensor data without large net-
work transfers, more efficient access to data stored on other mobile devices, and distributed
ownership and maintenance of hardware. Such a concept inevitably gives rise to many
concerns, including access-control, incentivisation of users, privacy, and mobile resource
conservation. At the same time, this concept may create many opportunities for interesting
new applications and for more resource-efficient versions of existing applications.

One application that illustrates the usefulness of a mobile-cloud computing platform
is distributed mobile multimedia sharing. Today, it is easy to upload mobile photos and
videos directly to remote services such as Flickr and YouTube, at least when a stable,
high-bandwidth network connection is available. However, sharing a file in this way is
expensive and sometimes wasteful. The file needs to be compressed, annotated, and then
sent over the network, draining the battery in the process. This upload is also a burden for
wireless network service providers who must handle these large uploads and for other mo-
bile users who experience the network performance degradation that results. Furthermore,
many videos and pictures uploaded to these websites are only accessed a few times if at
all.

Handling file uploads is a particularly big problem when a large number of people are
using mobile phones in one location. For example, many wireless data services failed
in Washington D.C. during the 2009 U.S. Presidential Inaugration Park [2009], an event
which millions of people attended. In fact, CTIA-The Wireless Association issued a press
release Joe Farren before the event imploring mobile users to “wait until leaving the In-
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augural events to send [photos and videos] to friends and family”. In such cases, mobile
users are unable to publish and consume multimedia at the time when it is most interesting
and relevant. Furthermore, wireless service providers cannot prepare for all events that in-
duce high network traffic in advance. For instance, the terrorist attacks of September 11th,
2001, induced similar network congestion in New York Beard [2005], making it difficult
to place wireless phone calls. If a similar incident happened today, it would be difficult to
share extremely important multimedia data collected on smartphones.

A more scalable way to support multimedia sharing from mobile devices is to host files
on phones and distribute queries and summarization tasks across many nodes, eliminating
the need for each user to upload large files to and retrieve files from remote services. In-
stead, large transfers could be performed directly within local networks. Search queries
could include times and locations of interest and incorporate local sensor readings such as
heading and movement to estimate video quality and relevance. Irrelevant and low-quality
videos would never need to leave the phone on which they were collected, saving battery
energy for both these users and users who would have downloaded these videos, and re-
ducing the load on the network as a whole. Data “hot-spots”, i.e. smartphones uniquely
hosting very popular data, could be avoided by replicating popular data to other smart-
phones, and in some cases servers on the local network. Using this system, smartphone
users could publish and retrieve photos and video from many vantage points without wait-
ing until after the event, and other entities such as broadcasters could find relevant videos
to share with the general public. This application would be useful at any event where a
large crowd is gathered, such as sporting events, concerts, plays, and movies.

1.1 Our contributions

The goal of our research is to develop a mobile-cloud infrastructure that will enable smart-
phone applications that are distributed both in terms of data and computation. In this
paper, we present our implementation and evaluation of a mobile-cloud computing infras-
tructure based on MapReduce.

We needed a starting point for our investigation of mobile-cloud computing. One pos-
sibility was to build a new infrastructure from scratch designed to run on mobile devices.
Instead, we decided to start with an existing cloud computing infrastructure and examine
its suitability by modifying it to run on mobile devices. We sought to understand and ar-
ticulate the obstacles, challenges, and solutions in supporting a mobile-cloud computing
platform.

We started with Hadoop Apache, an open-source implementation of MapReduce Dean
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and Ghemawat [2008]. MapReduce is a programming framework and implementation in-
troduced by Google for data-intensive cloud computing on commodity clusters. Hadoop is
used by companies such as Yahoo!, Facebook, and IBM Apache to process large amounts
of data distributed across a network of servers. It is commonly used on Amazon’s Elastic
Compute Cloud (EC2), a utility computing service.

Hadoop includes a large amount of the functionality required for a mobile-cloud com-
puting system. We target the Android platform since it incorporates the Dalvik Java VM,
which is capable of executing much of Hadoop’s Java codebase without modification. We
provide an overview of cloud computing, Hadoop, and Android in §2.

In this paper, we establish the motivation for this mobile-cloud computing platform,
which we call Hyrax 1, discuss how the challenges of mobile computing apply to this
platform, enumerate the requirements of the platform, and describe the choices we made
and the challenges we faced in porting Hadoop to run on Android. We develop and present
the results of several experiments that evaluate the scalability, flexibility, performance, and
battery usage of Hyrax. We also implement a distributed multimedia search and sharing
application to gain insight into the advantages of using Hyrax as an infrastructure for
applications that use mobile data.

Our experiments show that Hyrax easily scales to the 12 Android smartphones in our
testbed in terms of execution times and resource usage. Unfortunately, it also exerts a
huge base cost on Android, requiring a lot of time to process relatively small amounts of
data. Hyrax handles node-departure during MapReduce jobs when the number of nodes
in the cluster and the replication factor are sufficiently high. Hyrax also allows for data
sharing among smartphones in a WiFi network with similar but potentially more consistent
latencies compared to uploading files to and hosting files from a remote server. Hyrax has
not been optimized to be battery-efficient, but it uses significantly less power than video
recording and downloading even in the worst case.

This document is organized as follows: §2 provides the necessary background on cur-
rent smartphone technology, cloud computing, Hadoop, and Android. §3 gives the prob-
lem statement and establishes the motivation for a mobile-cloud computing platform. In
§4, we list our assumptions, develop requirements, and justify using Hadoop for mobile-
cloud computing. §5 describes the implementation of Hyrax, including our assumptions,
requirements, and choices in configuring and customizing Hadoop for mobile devices. §6
describes our experimental evaluation of Hyrax. §7 describes our distributed multimedia
search and sharing case study. §8 discusses the related work.

1The hyrax is a small herbivorous animal that lives in Africa and the Middle East. It is described as being
the closest living relative to the elephant.
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Chapter 2

Background

2.1 Smartphone technology

Advances in mobile hardware and software have allowed users to perform tasks that were
once only possible on personal computers and specialized devices like digital cameras and
GPS personal navigation systems. Using smartphones like the Apple iPhone, Android
phones, and the BlackBerry, mobile users can now make full use of the Internet, capture
and manage photos and videos, play music and movies, and play complex games. They
have nearly ubiquitous access to the Internet via 3G services, WiFi, and peer-to-peer net-
working and can switch between networks automatically.

Sensors enable many interesting applications on smartphones. They provide informa-
tion about the location, movement, and orientation of the phone and the environment’s
temperature and lighting. For example, the Google Android G1 contains an accelerome-
ter, a GPS device, and a digital compass. Applications use local sensor data to customize
and enhance the user’s experience in a context-aware manner. For example, map applica-
tions display the user’s current location on a map, rotate the map according to the user’s
heading, and provide customized directions. Games use motion data as input to create
an immersive experience. Music applications such as Ocarina use microphone signals to
simulate the effect of blowing into a musical instrument.

In addition to sensor data, smartphones are used to store, generate, and share multi-
media data. Using built-in cameras and microphones, these devices can record photos,
videos, and sound clips. Smartphones are also used to play movies and music downloaded
to the device by the user. Several gigabytes of multimedia data can be stored locally on
smartphones thanks to cost and size improvements in flash memory Matt.
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Smartphones are becoming extremely widespread. According to International Telecom-
munication Union [2009], there are currently over 4 billion mobile subscriptions in the
world. Among the devices used by these subscribers, smartphones are becoming increas-
ingly common, accounting for a larger percentage of the mobile phone market and replac-
ing less capable mobile phones. According to Hamblen, smartphones accounted for more
than 14% of all mobile device shipped in 2008 and will account for 17% of all mobile de-
vices in 2009. 116 million smartphones were shipped in 2007, 171 million were shipped
in 2008, and a projected 203 million will be shipped in 2009. As powerful smartphones
become more popular, it is increasingly feasible to run more complex software and more
computationally-expensive tasks on them.

2.2 Cloud computing

Cloud computing is a style of computing in which dynamically scalable resources are
provided as a virtualized service Knorr and Gruman. It allows service providers and other
users to adjust their computing capacity depending on how much is needed at a given time
or for a given task.

According to Myerson, cloud computing requires three components: thin clients, grid
computing, and utility computing. Thin clients are applications that make use of the vir-
tualized computing interface. Users are commonly exposed to cloud computing systems
through web interfaces to use services such as web-based email, search engines, and on-
line stores. Grid computing harnesses the resources of a network of machines so that they
can be used as one infrastructure. Utility computing provides computing resources on de-
mand, where users “pay as they use”. This is exemplified by Amazon EC2, which allows
users to allocate virtual servers on demand, paying an hourly fee for each allocated server.

In mobile-cloud computing, the same type of virtualized interface is provided to users,
but the system is ultimately supported by mobile devices or a combination of mobile and
static devices. The possibility of heterogeneous clusters of servers and mobile devices in
which the capabilities of each are used in conjunction is not excluded. The motivation for
mobile-cloud computing is developed in §3.3.

2.3 MapReduce and Hadoop

MapReduce Dean and Ghemawat [2008] is a programming model and implementation de-
veloped by Google that is used to process very large datasets distributed across a cluster of
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servers. It is highly scalable, fault-tolerant, and useful for many large-scale data processing
tasks. It is typically used in conjunction with the Google File System Howard et al. [2004],
a distributed filesystem designed for “large distributed data-intensive applications.”

To use MapReduce, users specify a “map” function that takes an input key/value pair
and outputs intermediate key/value pairs. For every key in the set of intermediate pairs,
a set of values is collected. The user specifies a “reduce” function that processes each
intermediate key/value set pair and generates an output. Input data is loaded from the
distributed filesystem and output data is written back to the filesystem.

The MapReduce runtime system handles splitting the input data, scheduling map and
reduce tasks, and transferring input and output data to the machines running the tasks. Jobs
are managed by a master that assigns tasks to slave machines and provides the locations
of intermediate values to reduce tasks. Computation on the machine where the input data
is already stored is preferred in order to minimize network transfers. Large data transfers
are performed directly between the machine where the data is stored and the machine that
needs the data. Data transfers between machines on the same rack are preferred to transfers
between machines that are more “distant” from each other in the network.

Hadoop Apache is an open source implementation of MapReduce used by many or-
ganizations for large-scale data processing. Hadoop is written in Java and operates on
data stored in a distributed filesystem, usually the Hadoop Distributed Filesystem (HDFS),
which is based on the Google File System. Hadoop instances consist of four types of pro-
cesses Borthakur [2007]: NameNode, JobTracker, DataNode, and TaskTracker. There is
one NameNode and one JobTracker in a Hadoop cluster. The NameNode maintains a
directory of data blocks that make up the files in HDFS. The JobTracker manages jobs
and coordinates sub-tasks among the TaskTrackers. Both a DataNode instance and a Task-
Tracker instance run on each worker machine. The DataNode stores and provides access to
data blocks, and the TaskTracker executes tasks assigned to it by the JobTracker. Clients
access files by first requesting block locations from the NameNode and then requesting
blocks directly from these locations. The layout of these processes in a typical Hadoop
cluster is summarized in Figure 2.1.

Hadoop is capable of tolerating faults by re-executing failed tasks (and tasks whose
results are no longer available because of later failures) and by maintaining block replicas
among several DataNodes. When speculative execution is enabled, the same task may
be executed on multiple nodes to increase the probability of successful and fast results.
Hadoop’s fault tolerance, along with its peer-to-peer bulk data transfers and largely inde-
pendent tasks, allow it to scale to thousands of machines.

Hadoop is a cloud computing infrastructure in that it provides a virtualized interface to
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Figure 2.1: Typical Hadoop cluster configuration.

an arbitrarily scaled computing cluster. Hadoop programmers only need to be concerned
with defining a high-level workflow for the system. The Hadoop runtime determines how
to divide jobs submitted by the user into sub-tasks, where to physically store data, how to
move computations and data, how to handle machine failures, and all of the other details
that are required for a distributed computing system to work.

2.4 Android

Android Open Handset Alliance is an open source mobile operating system developed by
Google and the Open Handset Alliance. It is built on top of the Linux kernel and provides
an SDK for application development in Java.

Android uses the Dalvik Virtual Machine to execute applications. Dalvik is optimized
to run on devices with constrained CPU, memory, and power resources. It implements a
subset of Java 2 Platform Standard Edition (J2SE) using libraries from the Apache Har-
mony Apache Java implementation, giving it an advantage over other mobile platforms
that only support Java 2 Platform Micro Edition (J2ME), which is limited by comparison.
Java class files must be compiled to Dalvik bytecode (.dex format) and packaged in a
.apk file in order to be used on Android.

Android provides an interface to system devices and services through a set of Java
packages, including android.os, android.hardware, android.location, and
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android.media. This makes it easy to access and operate on multimedia data, sensor
values, system resource usage data, and location information. Unlike some mobile oper-
ating systems, Android applications can use the filesystem directly, making it possible to
manage files as on a traditional Unix system. Android also provides a shell interface, but
it lacks many of the abilities of a typical Linux shell. Some of the missing utilities can be
added by installing BusyBox Denys Vlasenko.
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Chapter 3

Problem Statement and Motivation

3.1 Problem statement

We study the problem of how to create a mobile-cloud computing infrastructure that al-
lows applications to utilize the collective data and computational resources of networked
smartphones, particularly by modifying an existing non-mobile platform. The following
questions are addressed:

1. In what ways does an existing cloud computing platform succeed and fail to meet
the needs of a mobile deployment? Can it be modified to be adapted to be suitable,
and how? The effectiveness of Hadoop on the Android platform is evaluated, and
customizations of Hadoop for mobile hardware are implemented.

2. To what extent do mobile hardware and software reduce the effectiveness of an
existing cloud computing platform? The performance of Hadoop on the Android
platform is evaluated.

3. Does sharing processing and data among mobile phones in local networks reduce
strain on globally-limited networks and decrease distribution latency by avoiding
this bottleneck? The latency of resource usage is compared between sharing data
through a central service and sharing it through a distributed filesystem.

4. What are the challenges in porting an existing cloud computing platform to run on
smartphones? The obstacles that were faced in porting Hadoop to run on Android
are reported.
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5. How can a cloud interface to mobile resources be used effectively in practice? A
distributed multimedia search and sharing application is implemented, and the ad-
vantages of using Hyrax instead of an ad hoc approach are reported.

With respect to this problem, we make the following claim:

Thesis statement. It is feasible with today’s mobile hardware and network infrastruc-
ture to provide mobile cloud computing using local data and computational resources to
support larger system-wide goals.

The thesis statement is validated through the design and implementation of a mobile-
cloud computing system based on MapReduce, various performance experiments, and the
development of a case-study application.

3.2 Goals and non-goals

In order to address the problem statement, our goals are the following:

• Motivate mobile-cloud computing by discussing the advantages of using mobile de-
vices for cloud computing, proposing example applications, and showing that it is
feasible using today’s mobile technology.

• Implement Hyrax, a mobile-cloud computing platform, by porting Hadoop to run on
Android smartphones.

• Evaluate what effect the mobile hardware platform has on the performance of Hadoop
by developing a testbed and running a set of experiments on it.

• Determine whether Hyrax offers advantages in sharing data and processing com-
pared to current approaches.

• Implement an application on top of Hyrax and evaluate it.

We do not aim to do the following:

• Implement a mobile-cloud computing platform that is fully optimized and ready for
real-world deployment.

• Create a platform that is useful for generic distributed computation. We do not ex-
pect to compete with traditional server clusters for generic large-scale distributed
data processing, only to support applications that make use of mobile-specific capa-
bilities and data that is already on mobile phones.
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3.3 Motivation

Mobile-cloud computing is motivated by the unique advantages of mobile devices, the
wide range of applications that a mobile-cloud computing platform would facilitate, and
the feasibility of such a platform using today’s mobile technology.

3.3.1 Advantages of cloud computing on mobile devices

As defined in §1, mobile-cloud computing is cloud computing in which the foundational
hardware consists at least partially of mobile devices. Traditional cloud computing sys-
tems are built on clusters of servers. Massive amounts of data are placed on these clusters
through layers of virtualization, and then high-level jobs are executed to process this data
and return useful results. In mobile-cloud computing, data originates and is processed on
mobile devices.

Despite the obstacles that mobile computing systems inevitably face relative to station-
ary computing systems, including resource limitations, risk of loss and damage, variability
in connectivity, and finite energy Satyanarayanan [1996b], there are numerous advantages
of cloud computing on mobile hardware. These provide the core motivation for Hyrax:

• Mobile data such as sensor logs and multimedia data are immediately available and
can be processed in-place or another node that is nearby in the network. Processing
data in this way eliminates the need to expensively transfer data to remote, central-
ized services.

• Data can often be shared more quickly and/or less expensively among mobile de-
vices through local-area or peer-to-peer networks. Data sharing is inherently useful
in some applications, and it is needed for collaborative computing jobs. Distribut-
ing data using the local network avoids file uploads to and downloads from remote
Internet services, which induce and are susceptible to global network contention.

• Services such as websites that use mobile data can be created with little extra com-
puting infrastructure. Instead of hosting data and services on an expensive server
farm or utility computing service, work can be distributed among mobile devices.
With Hyrax, services would only need to act as a frontend to the mobile cloud.

• As stated in §2.1, billions of mobile devices are in use, and the proportion of these
devices with smartphone capabilities is increasing. A mobile-cloud computing in-
frastructure could potentially be scaled to many more machines than a traditional
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cloud computing infrastructure simply because of the number of these devices that
are in use.

• Ownership of the cluster hardware is distributed. By using mobile hardware owned
by many different people, risks that arise when proprietary cloud services are used,
such as data lock-out and dependence on external entities for data privacy, are
avoided. Furthermore, maintenance of mobile devices in the cluster is also dis-
tributed since owners of smartphones almost always need them to be turned on and
working properly. Note that distributed ownership also creates security and privacy
challenges.

3.3.2 Applications

We are interested in applications that use data distributed among multiple phones such as
multimedia files and sensor logs. Hyrax would support requests from these applications,
either for direct access to the data or the results of running some job using the data. A
highly appropriate application for Hyrax which incorporates both multimedia and sensor
data is described in §1. In this section, more applications that Hyrax would facilitate are
described.

Sensor data applications

Sensor data is composed of series of readings generated by a smartphone’s sensors, such
as the GPS device, accelerometer, light sensor, microphone, thermometer, clock, and com-
pass. Each reading is timestamped, allowing it to be linked with readings from other sen-
sors and multimedia files. Applications would use this sensor data by executing queries on
the data as in a sensor database system Bonnet et al. [2001]. The data would be accessible
via an interface similar to that of a relational database and large data transfers would be
avoided by doing computations in-place (where the data is located) whenever possible.
For example, a query might ask “what was the average temperature of nodes within five
miles of my home at noon?” or “what is the distribution of velocities of all nodes within
half a mile the next highway on my current route?”.

The following applications would use sensor data in this way:

• Traffic reporting. This application would use location and movement data collected
on mobile phones to infer traffic flow. The movement signal for a given time range
would be processed (smoothed, interpolated) on the phone on which it resides, and
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a smaller result would be returned to the client. As with any traffic monitoring sys-
tem, this application would be useful to drivers who need to navigate through traffic
and officials in charge of controlling traffic. However, using mobile devices would
allow for more precise monitoring than current systems provide. Traffic monitor-
ing systems using sensor networks were implemented in Hull et al. [2006] using
application-specific sensors and in Lo et al. [2008] using mobile device sensors.

• Sensor maps. This application would plot sensor levels such as temperature or
sound levels on a map. The number of phones sampled would depend on the zoom
level of the map. This could be used, for instance, to estimate levels of danger in a
crisis situation in terms of temperatures, light, and noise levels and how they have
been changing over time, or to visualize mobile usage distributions in a city as in
Reades et al. [2007].

• Network availability monitoring. This application would collect network connec-
tivity information on each phone by time and location. This could be used to de-
termine where local-area and wide-area wireless network connectivity is available
and how strong the signal of each is in a given location. This information would
be useful for both wireless users and wireless providers. For example, Hull et al.
[2006] analyzes WiFi availability using sensors attached to cars.

Multimedia applications

Multimedia data consists of files recorded on mobile devices, including videos, photos,
and sound clips. It also encompasses files stored on mobile devices for entertainment,
such as music and movies. Examples of applications that would use multimedia data are:

• Similar multimedia search. This application would find photos, videos, or music
files whose contents are similar to that of an input sample. Each phone would reduce
the dimensionality of its resident multimedia files locally using some given feature
extraction algorithm, for instance using methods surveyed in Faloutsos [1996], and
forward the result. Shazam Shazam Entertainment Ltd is a popular mobile applica-
tion that does something similar, searching for songs similar to an uploaded music
clip in a central database.

• Event summarization. This application would splice video clips from multiple
devices into a single video which captures the entire event. The final video can be
uploaded to the Internet or shared among mobile peers. For instance, this system
would have been useful the protests that resulted from Iran’s June 2009 presidential
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election, where video clips were scattered in time and difficult to share as a result of
the government’s efforts to crack down on protests and the spread of information.

• Social networking. Sharing pictures has become a cornerstone of social network-
ing websites such as Facebook Facebook. A mobile cloud could be integrated into
the infrastructure of a social network to provide automatic sharing and peer-to-peer
multimedia access while reducing the need for huge numbers of servers to store,
back-up, and serve all of this data.

3.3.3 Feasibility

Mobile-cloud computing is enabled by recent advances in mobile hardware and software.
CPU speed and RAM capacity have been approaching those of the desktop machines of
less than a decade ago. For instance, the HTC Magic, a recently released Android phone,
features a 528 MHz processor and 288 MB of RAM HTC [b]. Networking capabilities
are also advancing. Many mobile devices can now connect to WiFi networks, which are
widely available in homes and public areas. 3G networks provide widespread access to the
Internet with speeds approaching that of WiFi. WiFi and 3G technologies are compared
in depth in Lehr and McKnight [2003]. In addition to WiFi and 3G, Bluetooth allows
low-power data transfer between devices with bandwidth that will soon approach those
of WiFi networks, allowing fast, power-efficient bulk transfers between devices Bluetooth
SIG [2009]. Smartphones will soon be able to create peer-to-peer networks using ad hoc
WiFi and Bluetooth connections.

Thanks to increasingly powerful mobile hardware, mobile devices are now capable of
running full-fledged operating systems such as Linux and Mac OS X. Mobile versions of
these operating systems provide SDKs for writing complex applications using extensive
libraries. The iPhone SDK supports development in Objective-C and C, allowing appli-
cations to make use of almost any existing code in these languages. Similarly, Android’s
Dalvik VM implements many J2SE classes, allowing existing Java libraries to be used in
mobile applications with slight modifications. As a result, it is increasingly feasible to port
desktop and server applications directly to mobile devices.

Unfortunately, energy density in batteries has not improved at nearly the same rate as
computational capabilities in mobile devices Lehr and McKnight [2003]. This presents
a serious obstacle for running services like a distributed computing platform on smart-
phones. As a result, power constraints are an extremely important consideration in design-
ing a realistic mobile distributed computing platform.
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Chapter 4

Approach

In this section, we explicitly state our assumptions, enumerate the requirements for a
mobile-cloud computing platform, and explain why we chose to use Hadoop as a basis
for Hyrax.

4.1 Assumptions

Our work depends on the following assumptions about the targeted hardware and how the
system will be used. We briefly explain why we made each assumption. Future work may
allow these assumptions to be relaxed.

• The system will be used primarily for computations that involve data on mobile
devices, not for generic distributed computation. We do not expect to replace or
effectively collaborate with traditional servers for generic large-scale computation.
This is a reasonable assumption given that the fixed cost of computing resources is
now very low using systems like Amazon EC2, which provide access to machines
that are far more capable than smartphones.

• The smartphones under consideration have sufficient space to store multimedia data
and sensor logs, on the order of several gigabytes. This is not an unreasonable
assumption given the availability of cheap flash memory Matt. In our testbed, for
instance, an 8 GB microSD card costing about $15 is installed in each phone.

• A central machine that can connect to each phone exists. This is required to use
Hadoop without extensive modification since Hadoop’s NameNode and JobTracker
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processes must each run on some machine. This assumption is not unrealistic given
how widespread Internet connections on smartphones are. Note that these do not
have to be high-bandwidth connections since the NameNode and JobTracker are
only used for coordinating data and jobs.

• Files shared on the mobile network will not be modified often if at all. Our system is
targeted at multimedia and sensor data, which can be considered historical records
that do not need to be changed.

• Each smartphone is reachable from each other device in the network via IP. This is
an unrealistic assumption given the complexities imposed by firewalls and network
address translation (NAT). For instance, when a mobile device is behind a wireless
router, it is only possible for other devices to connect to it (using plain TCP or UDP
sockets) if the correct ports on the router are forwarded to the device. However, sev-
eral peer-to-peer NAT- and firewall-traversing protocols exist, including the Session
Initiation Protocol (SIP) Rosenberg et al. [2001], JXTA Sun Microsystems [a], and
SmartSockets Palmer et al. [2009]. These protocols use mutually-accessible proxies
to coordinate transfers on nodes behind firewall and NAT layers. This problem is not
addressed in our implementation, but it would not be difficult to incorporate an ex-
isting peer-to-peer protocol into Hadoop, especially one such as JXTA that provides
a Java SocketFactory implementation.

Note that the following are not assumed:

• Static network topology. It is not assumed that devices in the network, other than
the central server, will be present throughout a job.

• Homogeneous hardware. Heterogeneous clusters of devices, including both mobile
devices and traditional servers, are allowed.

4.2 Requirements

A mobile-cloud computing platform must satisfy the needs of the applications written for it
while using resources efficiently. The essential functionality of a mobile-cloud computing
system is:

• Global data access. Applications should be able to access any data that the user
of the application has permission to access regardless of the physical nature of the
data, for instance where it is stored and how it is replicated.
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• Distributed data processing. Given a program that takes data on the filesystem as
an input, the platform should be able to compute the result of executing this function
on the appropriate data and make the results available to the requester.

In order for the system to usefully provide global data access and distributed data pro-
cessing in a real-world mobile distributed system, it must also have the following features:

• Fault-tolerance. It is important for the system to tolerate mobile devices leaving
and entering the network. Individual devices are susceptible to network signal loss,
running out of battery power, being too far away from other phones for peer-to-peer
networking, and hardware failure.

• Scalability. The system must scale with an increasing number of devices and an
increasing amount of data. The latency of an operation invoked on the system should
increase at most linearly with respect to the amount of the data being processed or
accessed. Increasing the number of phones should have a positive to neutral effect
on job latencies.

• Privacy. File owners should be able to control other users’ access to their data. For
instance, users should be able to specify which other users have access to individual
pictures taken on their phones.

• Hardware interoperability. Machines that the software components of the system
runs on should be able to interoperate with other machines regardless of hardware
specifics. Different types of mobile devices and servers should be able to work
together as long as they run compatible versions of the software.

The implementation of this system should use mobile resources wisely, including:

• Battery life. Energy is a finite resource on any mobile device. A service that runs
for a long period of time on a mobile device must be especially conscious of energy
usage. Energy density in batteries has been increasing much more slowly than the
capacities of other mobile computing resources, so preserving energy will likely be
the chief priority for mobile software systems for a long time Estrin et al. [2002].

• Network bandwidth. Wireless network connections on mobile phones are rela-
tively slow and intermittent, and they account for a significant percentage of power
consumption. In fact, network transmission is orders of magnitude more energy-
costly than CPU cycles Palmer et al. [2009]. Therefore it is often more efficient to
process data on the phone where it resides and return a smaller result.
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Furthermore, on mobile data networks, bandwidth is a globally limited resource.
The more data that devices send, the slower and less available the service becomes
for everyone. As stated in §1, this can make it difficult to transmit data when an
extremely large number of mobile devices are being used in the same location.

• CPU cycles and memory. Using the processor on a mobile device requires en-
ergy from the battery and may interfere with the performance of other applications.
Along the same lines as processor usage, excessive memory usage may interfere
with the performance of other applications. Memory allocation tends to be more
tightly constrained on mobile operating systems than it is on traditional operating
system configurations. For instance, Android limits the heap size of each applica-
tion to 16 MB.

In the case of Java-based mobile application frameworks such as the Android SDK,
it is especially important to avoid CPU-intensive operations. The virtual machine
(the Dalvik VM in the case of Android) adds an extra layer of abstraction which
greatly impedes the performance of a program that is CPU- and/or memory-bound
compared to the equivalent program running directly on the hardware.

• Time. Time-efficiency is always important to users. The platform should be able
to compute results in a reasonable amount of time. This is particularly important in
mobile applications because many mobile operating systems only allow the user to
focus on one application at a time.

• Storage. The size and cost of flash storage is improving, but the amount of per-
manent storage available on mobile devices is still limited compared to the amount
of storage on traditional machines. Furthermore, “erase” and “write” operations on
flash memory cause memory wear Corsair, reducing data integrity over time. There-
fore permanent storage should be used conservatively.

Above basic resource considerations, there are several constraints inherent in mobile
computing that need to be considered, especially when transforming a distributed system
to one that is both distributed and mobile, as we do with Hadoop. These challenges,
originally outlined in Satyanarayanan [1996b], are:

1. Mobile elements are resource-poor relative to static elements. The additional weight,
power, and size restrictions compared to static counterparts will always have a neg-
ative effect on performance and capacity.

2. Mobility is inherently hazardous. Mobile devices are more susceptible to loss and
damage.
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3. Mobile connectivity is highly variable in performance and reliability. Wireless net-
works vary in speed and reliability, and mobile users constantly move between net-
works. There is often no network available.

4. Mobile elements rely on a finite energy source. Battery power consumption must be
considered at all levels for conservation to be effective.

We must demonstrate how Hyrax satisfies or fails to satisfy (in its current state) each
of these requirements.

4.3 Using Hadoop for mobile-cloud computing

In order to satisfy the requirements that have been outlined, a new infrastructure had to
be built from scratch, or an existing one had to be modified. Recognizing that Hadoop
implements the core required functionality, we decided to use it as a starting point. Hadoop
has several advantages and disadvantages with respect to the requirements of mobile-cloud
computing.

4.3.1 Advantages

Hadoop implements much of the core required functionality outlined in §4.2, including
global data access, distributed data processing, scalability, fault-tolerance, and data-local
computation (and thus efficient use of network resources).

HDFS, as a distributed filesystem, provides global data access to all devices in the
network. Furthermore, data blocks are transferred point-to-point, not through an interme-
diary. As a result, the speed of data transfer is limited primarily by the network bandwidth
between the two devices involved.

Distributed data processing is provided via Hadoop’s MapReduce implementation,
which divides jobs submitted by the user into independent “tasks” and distributes these
tasks to slave nodes, taking the physical location of input data into consideration. These
slave nodes execute map tasks on data stored on HDFS. As the outputs of map tasks be-
come available, reduce tasks process this intermediate data and write results back to HDFS.
When possible, data that is physically located on a given node is processed on that node,
avoiding data transfers.

Hadoop was designed to scale to thousands of machines, and has been shown to do
so by Yahoo! Yahoo!. It is also designed to tolerate faults; any sufficiently large system
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faces hardware failures with some expected frequency. HDFS implements file permis-
sions, which can be used to protect user data from unauthorized access. Therefore Hadoop
covers our requirements for scalability, fault-tolerance, and, to some extent, privacy. Fur-
thermore, the hardware fault-tolerance of Hadoop covers the mobile challenge, “mobility
is inherently hazardous”.

Since Hadoop uses abstract IPC interfaces for communication between processes and
between physical nodes, it is trivial for different types of machines running Hadoop pro-
cesses to work together. Therefore Hadoop also satisfies the “hardware interoperability”
requirement.

Although Hadoop does not currently take energy efficiency into account, there are
signs that this will change. Many companies are interested in data center efficiency
Google, Intel for reducing costs and the environmental impact of their operations. There-
fore energy usage improvements in Hadoop may be implemented in the future. In fact,
researchers have begun to investigate and suggest improvements for energy efficiency in
Hadoop. Chen et al. [2009] offers some suggestions for increasing the energy efficiency
of Hadoop, such as increasing the replication factor, avoiding excessive fan out and fan in,
and making sure that the intermediate pairs processed by reduce workers fit in memory.
Given Hadoop’s popularity among major companies which are constantly optimizing their
processes and the research that is being done to improve Hadoop’s power efficiency, it is
likely that Hadoop will become more power-aware and power-efficient in the future. Fur-
thermore, investigating the battery consumption of Hadoop on mobile devices may yield
insights useful to improving the energy efficiency of Hadoop in a traditional setting.

4.3.2 Disadvantages

Despite numerous advantages, Hadoop is less than ideal for some of the mobile aspects
of mobile-cloud computing. It implements much of the functionality that our platform
requires, but it does not cover all of the requirements. This is mostly because Hadoop was
designed and implemented with commodity server hardware in mind rather than resource-
constrained hardware.

One problem is that Hadoop is not conservative in CPU and memory usage. Hadoop
was designed for I/O bound jobs, i.e. those in which reading, writing, and transferring data
are the most time-consuming operations. Hadoop’s liberal use of CPU and memory is ex-
emplified by several aspects of its codebase. For example, Hadoop makes heavy use of
interfaces and inheritance, which impose computational overhead because of the lookups
that are required to determine which function to execute. Android provides several guide-
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lines for writing efficient code, such as avoiding object instantiation, avoiding internal get-
ters and setters, and preferring “virtual” over “interface” Android [a]. Of course, Hadoop
was not written with these guidelines in mind since it was developed for normal JVMs
running on traditional hardware. By default, Hadoop assumes that memory buffers on the
order of 100MB can be allocated, such as in map output buffering. This is clearly not the
case on mobile devices.

In the interest of avoiding “reinventing the wheel”, Hadoop also uses technologies that
are not well-suited for mobile devices. For instance, it uses XML extensively, which is
notoriously expensive to parse. It also uses servlets to serve intermediate results, even
though a light-weight custom HTTP server would require less overhead. JSPs, which
require dynamic compilation, are used to provide a monitoring interface to DataNodes
and TaskTrackers. This inefficiency is magnified on a mobile device.

Hadoop is also lacking in its ability to cope with varying and slow network conditions.
Hadoop is typically run on servers Apache connected via 1 Gbit/s to 10 Gbit/s Ethernet
networks, which are about 8 and 80 times faster than 802.11g WiFi respectively IEEE
[2003] and much more stable. A network-bound MapReduce job may take approximately
this many times longer to complete using WiFi connections and perform even worse when
signal is poor for some of the nodes. This network bottleneck would occur during the
shuffle phase of MapReduce, where intermediate key-value pairs are distributed among
the nodes. As a result, for a typical MapReduce job, with all other things equal, a wire-
less mobile cluster would be expected to perform much worse than a traditional cluster.
MapReduce jobs that run on mobile device networks would have to be tailored to low-
bandwidth conditions, e.g. by making sure that intermediate keys and values are small.

The design of HDFS precludes disconnected operation, a major feature in other mo-
bile distributed filesystems Kistler and Satyanarayanan [1992]. DataNodes store blocks
without any knowledge of the file paths that they correspond to. Therefore it is impossible
for mobile devices to access data on HDFS, even if it is stored locally, if no connection to
the NameNode exists. Mobile applications would have to use a separate filesystem, most
likely the local native filesystem, as a backup when the NameNode is not reachable. Sim-
ilarly, mobile applications cannot execute compute jobs through the MapReduce interface
when disconnected from the JobTracker. A side-effect of this limitation is that Hyrax does
not face consistency problems such as how to resolve changes made to the same file during
disconnected operation.
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4.4 Hadoop’s assumptions in relation to mobile comput-
ing

It is important to consider the assumptions of the Hadoop and HDFS architecture Borthakur
[2007] in relation to mobile devices and the requirements of our platform. These assump-
tions should be reasonably compatible with the particulars of smartphones. They are:

• Hardware failure is common. In a mobile device network, failure is equivalent to
a device being disconnected from the network for an extended period of time, which
is a common occurrence. For instance, mobile devices sometimes disconnect from
WiFi when they are in an idle state in order to save power Android [b]. Mobile
devices also become disconnected when they enter places with poor wireless signal
coverage, such as basements, rural areas, and airplanes.

• Applications use large datasets. By default, HDFS uses 64 MB blocks to store
files. This is much larger than most multimedia files collected on phones with the
exception of large video files. For example, a photo taken using the Android G1
phone uses about 1 MB, and a typical MP3 music file uses about 3 MB. Since at
least one block must be allocated per file, storing individual photos and songs as
files on HDFS may waste a lot of space and lead to excessive block lookup requests
to the NameNode. This overhead can be reduced by combining multiple multimedia
files into larger files to be stored on HDFS.

• Applications do not require low-latency access to results. HDFS is designed to
support batch-processing rather than interactive use. This assumption might seem
difficult to reconcile with the demands of mobile applications, where applications
might execute custom queries and expect a result within a short time. However,
there are many cases where mobile applications could, instead of executing Hadoop
jobs directly, send queries to an intermediary which periodically runs a small set of
common queries and caches the results.

• Files are not modified after they are created. This fits well with multimedia files
and sensor logs, which are generally not modified once they have been captured.
They are essentially historical records.

• Moving computation is easier than moving data. This assumption fits extremely
well in a mobile environment. As noted in §4.2, bandwidth is a precious resource on
mobile devices, and code generally takes up less space than the data that it is used
to process. Therefore it often makes sense to distribute instructions for each phone
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to execute on the data that it already contains instead of having each phone offload
all of its data to remote machines.

In summary, the assumptions of hardware failure, file non-modification, and relative ef-
ficiency of moving code instead of data fit very well with a mobile environment. Hadoop’s
job latency assumptions require applications to be developed such that MapReduce jobs
are executed periodically instead of on-demand, which should be acceptible in most cases.
Hadoop’s dataset size assumptions do not fit very well and thus need to be accounted for.

4.5 Using Android for Hadoop

Google’s Android operating system was the most natural choice of a mobile platform
to run Hadoop on. Android’s Dalvik VM implements a subset of the Apache Harmony
Java implementation, which includes most of the Java classes used by Hadoop. Hadoop,
an Apache project itself, depends on several Apache libraries, such as Apache log4j,
Apache XML, and Apache Commons. Because of this compatibility, it was possible to
port Hadoop without rewriting a huge amount of code.

Note that most mobile devices that run Java only implement J2ME, which is not suffi-
cient for running an application like Hadoop without extensive modification. J2ME does
not include many of the high-level networking, process management, and file I/O fea-
tures that Hadoop depends on. Using Android made it possible to port Hadoop without
completely overhauling its source code.

Another appealing aspect of Android is its open nature relative to other mobile plat-
forms such as the iPhone, which is the most popular mobile application platform. Android
allows arbitrary applications to be installed on any number devices without any external
permission. In contrast, the iPhone SDK requires an expensive developer account in or-
der to install an application on an actual iPhone. Android’s debugging tool, ADB, can be
used to execute shell commands, install applications, display phone logs, and push and
pull files. Because it is a shell utility, it can be used in scripts. The iPhone provides ap-
plication installation and log viewing within the XCode IDE, and it does not support the
execution of arbitary shell commands or the creation of files. Overall, Android’s relative
open-ness makes it an acceptible platform for distributed mobile applications, whereas
closed platforms such as the iPhone make the development of such systems more difficult.
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4.6 Evolution of our approach

In the early stages of this project, we attempted to port Hadoop to SunSPOTs Sun Mi-
crosystems [b], which implements a J2ME API. We found this platform to be too limiting
for a direct port of Hadoop; it is missing many of the basic J2SE-style Java classes that
Hadoop depends on. For instance, the SunSPOT API does not even include the List in-
terface. It would probably be easier to write a simple MapReduce platform specifically for
J2ME devices from scratch than to port Hadoop. We chose not to implement a MapReduce
system from scratch because we wanted to study a full-featured, real-world MapReduce
implementation.

We found it much easier to make progress in porting Hadoop when we tried to do so
using the Android SDK and Android devices. We were not certain that it would be possible
to port every detail of Hadoop. In fact, we failed to port dynamic class loading and JSP
serving. However, we were able to get the core functionality of Hadoop to work through a
lot of painstaking debugging.
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Chapter 5

Implementation

In this section, we discuss how Hadoop was ported and configured for Android smart-
phones and describe the obstacles that were faced. In general, we found that the challenges
induced by Android resulted from a lack of openness and deviation from a the typical Unix
interface whereas those induced by Hadoop resulted from assumptions about system per-
formance. We found that there were many mobile-specific customizations that were made
trivial by features of Hadoop.

5.1 Porting Hadoop

The first step towards porting Hadoop to run on Android was to compile Hadoop’s source
code into an Android application. We wanted to create an Android application that would
act as a slave in a Hadoop network, running DataNode and TaskTracker instances. Instan-
tiating the DataNode and TaskTracker was just a matter of including Hadoop’s source in
the Java build path in an Android project. We started with Hadoop 0.19.0. Of course, the
system did not simply work immediately. Fixing the incompatibilities between Hadoop
and Android was a very difficult debugging task because of several obstacles imposed by
both Android and by Hadoop. These obstacles are described in §5.1.2 and §5.1.1. Having
fixed most of these incompatibilities, the source was later patched from Hadoop version
0.19.0 to version 0.19.1. This did not break any of our modifications.

Note that the NameNode and JobTracker processes were not ported to run on Android.
In Hyrax, these must be run on a traditional machine. However, it would not be any more
difficult to port these than it was to port the DataNode and TaskTracker.
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5.1.1 Android obstacles

Porting Hadoop to run on Android was a very difficult debugging challenge. Android
imposes several additional constraints on its applications that are not present in a typi-
cal Linux system. Furthermore, since it uses a custom Java implementation that is not
fully compatible with Sun’s JVM implementation, legitimate error-free Java class files are
sometimes rejected at runtime. As a result, Hadoop’s source and that of many of its li-
braries needed to be changed, either by removing or rewriting offending code, for it to run
as an Android application.

At runtime, Dalvik performs an additional consistency check that causes it to reject
some opcode sequences even though they were accepted by the Dalvik bytecode compiler.
This caused many classes packaged in libraries that Hadoop depends on to be rejected. To
get around this, the source code for the incompatible libraries had to be downloaded, parts
of the code that caused classes to be rejected had to be tracked down and removed without
modifying important behavior, and the libraries needed to be recompiled.

The usual java executable is not available on Android. In Android, Java classes can-
not be installed and executed directly from the command line. An application must always
exist as an .apk file. Hadoop’s launch script runs, on each worker node, DataNode and
TaskTracker instances as separate processes. This was replaced with code that instanti-
ates DataNode and TaskTracker objects within different service processes under a single
Android application.

A related issue is that it is not possible to execute new JVM instances within an An-
droid application using the shell. Hadoop does this to launch child worker processes. In
Hadoop, the call to java on the shell was replaced with a call to the child process class’s
main method, passing in the appropriate arguments. Some of the code that manages the
JVM instances spawned by Hadoop was also removed.

Android uses incompatible versions of the UNIX shell utilities needed by Hadoop.
Hadoop makes calls to df, du, and chmod in managing files and reporting the amount of
space available in a DataNode. In some cases, Android’s versions of these utilities accept
different input flags and produce outputs in a format that is different from the one expected
by Hadoop. To work around this, calls to shell utilities were removed and replaced with
calls to equivalent Java methods exposed by the Android SDK.

In order to execute arbitrary jobs on TaskTrackers, Hadoop must package and send Java
classes to the TaskTrackers at runtime. When a TaskTracker executes a map or reduce job,
it makes a call to java, adding to the classpath the path of the job’s unpackaged classes.
Since classes need to be converted to .dex format before they can be used in an Android
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application, classes cannot be easily loaded at runtime in this way. At this point, all of the
the job class files are simply packaged into the Hyrax worker application. Dynamic class
loading in Android may be implemented in the future, but it is not essential to addressing
our research questions.

Finally, Android’s debugging system caused Hadoop to run extremely slowly. In most
cases, it was not fast enough to be useful since it would take too long to get to the point
in the program execution where the bug occurred. This made debugging very slow and
difficult in many cases.

It is important to note that not all of these issues arose on the Android emulators;
some only occurred on actual phones. There are several important differences between
actual Android devices and Android emulators. One is that the Android emulator gives
root privileges to the user, whereas a typical (non-development) Android phone does not.
Another is that the timing of various system operations is very different. Developing and
running Hyrax on actual hardware exposed more problems than if Hyrax had only been
tested on Android emulators.

5.1.2 Hadoop obstacles

There were also several assumptions made by Hadoop that caused faults and performance
problems when it was run on Android.

Hadoop allocates memory buffers that are on the order of 10 to 100 MB. This is too
much for an Android application, whose heap can grow to a maximum of 16MB. To fix
this, these buffer sizes were reduced to about 1 MB. This caused excessive swapping
to occur. This swapping was reduced by adjusting the io.sort.record.percent
parameter (described in §5.4).

The default values for some timeouts in Hadoop are not long enough for a mobile de-
vice network. For instance, the value of the dfs.socket.timeout had to be increased
to compensate for connection issues.

Hadoop uses XML for its configuration files even though the same key-value con-
figuration could be stored in a simpler format, such as a properties file. XML parsing
is generally expensive; this is even more apparant on a CPU- and memory-constrained
smartphone. In fact, parsing the XML configuration files was the bottleneck in initializ-
ing the DataNode and TaskTracker instances. XML configuration files were replaced with
properties files to speed up Hyrax.
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5.2 Hadoop on a mobile cluster

Having ported the DataNode and TaskTracker processes to work on Android, a Hadoop
cluster was configured to run on Android phones. Running Hadoop on a cluster of phones
is analogous to running Hadoop on a cluster of servers. In both cases, there is one in-
stance of the NameNode and one instance of the JobTracker. These often run on the same
machine. The slave machines in the cluster each run DataNode and TaskTracker instances.

In Hyrax, the DataNode and the TaskTracker are run on each phone in separate An-
droid “service” processes within the same application. Android applications may consist
of multiple processes, some of which run as background services. Since the DataNode
and TaskTracker are run as Android services, they can run in the background of other
applications. The configuration of Hyrax is illustrated in Figure 5.1.

Figure 5.1: Hyrax hardware and software layers.

5.3 Mobile-specific components

In addition to the DataNode and TaskTracker services, threads that put each phone’s mul-
timedia data on HDFS and store sensor logs as files are spawned. In future work, Hive
Apache [b] will be used to store sensor data in a more structured way, but coding obstacles
have prevented Hive from being used at this point. As discussed in §3.3, it would be useful
to be able to process sensor data as if it exists in a relational database. Hive provides a
data warehouse infrastructure on top of Hadoop, providing a SQL-like query interface to
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the data and using MapReduce jobs to execute queries. This will be useful for storing and
accessing sensor data.

For the purposes of our experiments, a thread which records (to the local filesystem)
system load data, including power level and CPU, memory, network, and disk I/O statis-
tics, is also spawned. Within the application, a server is run allowing external scripts to
control data uploading, kill the program, and check the program status. Figure 5.2 illus-
trates the data interaction among all of the software components that run on each phone.

Figure 5.2: Hyrax worker application component interaction diagram.

5.4 Adjusting Hadoop’s configuration parameters

Many of Hadoop’s parameters were adjusted to suit a smartphone cluster. Through expe-
rience, these settings have been found to be appropriate for our mobile devices. In future
work, experiments may be performed in which important parameters are varied indepen-
dently to find the optimal setting for each one.

The amount of memory available for sorting map output key/value pairs (io.sort.mb)

31



is greatly reduced because Android limits the memory available to a given application to
just 16 MB. With everything else running in this application, it was not possible to allocate
more than 1 MB for the map output buffer, which is much smaller than Hadoop’s default
of 100 MB. In the MapOutputBuffer class, which is used to collect map outputs, when
this memory buffer is exceeded by the map outputs (which happens almost immediately
when the buffer is small, at least for jobs that have many intermediate pairs), key/value
pairs are swapped out to files on disk. On a server, this swapping is still relatively in-
expensive because of the hard disk cache, which is 16 MB in each disk on our servers.
However, on a mobile device using flash memory, there is no such cache. Reads and
writes are placed in a small buffer and then flushed to the flash memory. Therefore swap-
ping map outputs to disk is extremely expensive in Hyrax. In our experience, it causes
jobs to execute about 100 times slower. Through benchmarks and profiling, it was deter-
mined that setting another parameter, io.sort.record.percent, which determines
the percentage of storage used for records instead of key/value pairs, to 0.5 instead of the
default of 0.05 reduced spilling significantly.

DFS block size (dfs.block.size) is decreased from 64 MB to 8 MB. The default
of 64 MB is derived from the design of GFS Howard et al. [2004]. GFS uses such a large
“chunk size” in order to minimize interaction between the client and the metadata server
and allow for more total data to be addressed – the larger the chunksize, the fewer requests
the client needs to make to the directory to find all the chunks for a given file, and the less
metadata is needed per byte. Using a large chunk size also decreases network and metadata
overhead. A drawback of a using large chunk size is that “hot-spots” may develop for the
chunks of files requested by many clients.

Because of the networking and processing limitations of mobile devices, the DFS block
size is reduced. It takes significantly longer to transfer a 64 MB block on a wireless
network than on the wired networks typically used by Hadoop. Furthermore, the data files
that are used on smartphones are generally much smaller than 64 MB, in which case the
extra block space is unnecessary.

DFS DataNode socket write timeout (dfs.datanode.socket.write.timeout),
DFS socket timeout (dfs.socket.timeout), and MapReduce task timeout
(mapred.task.timeout) are increased to very large values in order to compensate
for the additional time required for slower network transfers and CPU speeds.
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5.5 Replication strategy

The replication factor r controls a tradeoff between battery consumption and data avail-
ability. The higher the value of r, the more network transfers need to occur to create r− 1
replicas on other devices in addition to a local replica. However, replication improves
block access times during concurrent requests while spreading the load among many de-
vices. Whether r saves or wastes battery and time is determined by how often individual
files are accessed.

For every file f , a file-specific replication factor rf is assigned. For each multimedia
file f , rf = 1 is used, meaning that the blocks of the file will only be stored on the original
device, unless there is no space left on the device. A higher r would entail uploading
the entire file to another device by default, which is expensive. For each sensor log f ,
rf = 1 for the same reason. Sensor logs can grow to be larger than multimedia files over
time, so sending them over the network should be avoided. Of course, the default r can be
increased if saving power is less important than data reliability for some application.

On the other hand, using a low r puts a high load on devices that store popular blocks
and puts these blocks at the risk of being lost if the device hosting them leaves the network.
To avoid this, applications that use HDFS should adjust rf depending on the popularity pf

of f . When pf is low, rf should remain low to avoid unnecessarily transferring the blocks
of f . If pf is high, then it makes sense to increase rf to spread the load of serving f among
more devices, increasing throughput and decreasing the average energy consumed on each
device that hosts the blocks of f . Increasing rf also decreases the probability that f will
be lost, which should be avoided if pf is high.

Individual users might want to specify rf in order to, on one hand, preserve battery
energy or, on the other, to make sure that some essential piece of data becomes widely
available. For instance, in a crisis, combat, or protest situation, a single video or photo
might be extremely important and at immediate risk of loss. The HDFS interface makes it
easy to set rf , and this setting could be exposed to mobile application users.

5.6 File organization

Files originating on mobile devices are organized in a straightforward way. Videos are
placed under a “videos” directory, photos are placed under a “photos” directory, and each
sensor log type is placed under its own directory.

Additional files containing information about each multimedia file, including the de-
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vice that it originated from, its start and end time, and its type, are placed on HDFS.
Start time, end time, and device information can be used to associate the file with sensor
readings. In the future, this information will be stored using a Hadoop database system
such as Hive Apache [b] or HBase Apache [a]. Using a database will facilitate efficient
sensor value aggregation queries over time ranges. This would be useful, for instance, in
determining properties like noise and velocity over the course of a video.

5.7 Heterogeneous networks

Because of the limited resource capacities and speeds of phones, it can be beneficial to
add servers to augment the performance and reliability of the mobile cloud. Servers can
be used to store replicas of mobile data, expedite MapReduce jobs, and serve data more
quickly and without wasting battery energy. Because Hyrax exposes the same interfaces
as a Hadoop DataNode and TaskTracker pair, it can inter-operate with servers in addition
to other mobile devices. Therefore it is trivial to run hybrid clusters consisting of both
mobile devices and servers.

We envision location- and event- specific applications in which wireless networks with
locally connected servers are set-up to support mobile-cloud compute jobs and file shar-
ing. For instance, at a sporting event, the stadium could provide a wireless network with
attached servers, allowing broadcasters and to efficiently access and search through fans’
videos and photos taken during the game. This would create a more interactive experience
for fans. A network with the hardware that would be required for this has been deployed
for Media [2009] in Pittsburgh’s Mellon Arena to serve video playbacks to mobile devices
during hockey games.

5.7.1 Server-augmented Block Replication and Serving

Since mobile devices and their network connections are slower and less stable than tradi-
tional servers and their network connections, it makes sense to replicate data to and serve
data from servers when they are available to save time and resources. If a phone in the
mobile cloud dies, its important files should remain available in the cloud. Furthermore,
access to this data should be optimized for speed and mobile resource efficiency.

Using Hadoop’s rack-awareness feature, it is easy to make sure that data is replicated
to and served from servers whenever possible. In order to make sure that all data is repli-
cated to servers, phone hostnames are mapped to “/phone-rack” and server hostnames
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(all non-phone hostnames) are mapped to to “/server-rack”. By default, Hadoop’s
replication strategy when r = 3 is to store one replica on a node in the local cluster, one
on a different node on the local cluster, and one on a node in a random remote cluster
Borthakur [2007]. In the case of a hybrid phone-server cluster with 2 racks, this implies
that the blocks making up any f for which rf ≥ 3 will be replicated to a server. By con-
sidering all clients to be on the server rack, blocks available on servers will be served to
clients from servers instead of other phones (except when a block is already located on
the client phone). Figure 5.3 illustrates a possible distribution of block replicas using this
configuration.

Figure 5.3: Example of block replica distribution in Hyrax with replication factor 3 for
each file using /phone-rack and /server-rack.

Note that when servers are available in the cluster, there is no reason to replicate blocks
to other phones in the cluster. This would happen under the default replication strategy us-
ing the /phone-rack / /server-rack configuration, which simply takes advantage
of the default strategy. Instead, it would be better to put each phone on a separate rack
(since transfers between phones are actually more expensive than transfers from phones
to servers, shown in §6.3) and use a replication strategy that always places replicas on
/server-rack, only placing replicas on other phones in this case.

In clusters consisting of phones distributed among multiple local networks, phones
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should be mapped to different racks depending on their network distance from other
phones and servers. In this case, the directory structure of racks can be applied. For
each local network of phones L, a rack /rack L can be created. Each phone p connected
to L would be assigned to rack /rack L/phone p, and each server s connected to L
would be assigned to rack /rack L/servers. This would encourage transfers between
phones on the local network when transfers to servers on the local network are not possi-
ble. This scheme may be implemented in future work (see §9.1.5).

36



Chapter 6

Evaluation

In this chapter, Hyrax is evaluated in terms of how effectively it meets the requirements
that were established in §4.2. The experiments are used to evaluate specific, quantifiable
aspects of Hyrax, such as how it uses resources, tolerates faults, and scales. Hyrax is
evaluated more qualitatively in §7.

Five experiments were performed. The first experiment compares the baseline per-
formance of the smartphones and servers in our testbed. The second experiment com-
pares the performance of Hyrax on smartphones and Hadoop on servers for MapReduce
benchmarks. The third experiment determines the extend to which Hyrax tolerates devices
leaving the network. The fourth experiment compares the performance of file sharing us-
ing Hadoop to file sharing through a remote service. The final experiment compares the
battery usage of Hyrax to that of other applications.

6.1 Experimental infrastructure

6.1.1 Testbed

The testbed for conducting our experiments is a cluster that consists of 10 Android G1
(HTC Dream) phones and 5 HTC Magic phones, each running the Android 1.5 “Cupcake”
platform. Three of the HTC Magic phones were faulty and were thus excluded from exper-
iments. The Android G1 is equipped with a 528 MHz Qualcomm MSM7201A processor,
192 MB of RAM, a 1150 mAh lithium-ion battery, IEEE 802.11b/g connectivity, GPS,
an accelerometer, and a digital compass HTC [a]. The hardware capabilities of the HTC
Magic are similar to those of the G1. It includes a 528 MHz Qualcomm MSM7200A
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processor, 288 MB of RAM, a 1340mAh battery, and the same sensors and wireless ca-
pabilities as the G1 HTC [b]. An 8 GB microSD card is installed in each phone to store
HDFS data, multimedia data, sensor data, system resource usage logs, and Hadoop logs.
Since Android does not support peer-to-peer networking yet, the phones communicate
with each other on an isolated 802.11g network via a Linksys WRT54G wireless router
with no firmware modifications. The NameNode and JobTracker processes run on a desk-
top machine that is connected behind this router via Ethernet. The phones are connected
via USB to a controller machine which executes experiment scripts. These scripts are used
to install Hyrax, initialize the cluster, run benchmarks, and collect and post-process data.

Figure 6.1: Hyrax workers running on our Android smartphone cluster.

The performance of these phones is compared to the performance of a cluster of 10
AMD Opteron 1220 machines, each with 4 GB RAM, two Seagate Barracuda 7200.10
320 GB disks, and a Broadcom NetXtreme BCM5721 Gigabit Ethernet controller. Each
node runs Debian GNU/Linux 4.0 (etch) with Linux kernel 2.6.18. In comparing the
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Benchmark Input type(s) Phone base input Server base input
Pi Estimator Maps per host 3 27

Random Writer Bytes per map, Maps per node 1 MB, 2 2500 MB, 2
Sort Bytes per map, Maps per node 256 KB, 1 625 MB, 1
Grep File size, Files per node 64 KB, 1 625 MB, 1

Word Count Files per node, Files per node 32 KB, 1 141 MB, 1

Table 6.1: Benchmark input types and sizes per node.

performance of the phones and the servers, the relative performance capacity of each is
taken into consideration.

6.1.2 Benchmarks

In our experiments, benchmarks that execute MapReduce jobs are run on Hyrax (in the
case of phones) and Hadoop (in the case of servers). These benchmarks are Sort, Random
Writer, Pi Estimator, Grep, and Word Count, all of which are derived from the Hadoop
examples. The input size is scaled to be proportional to the size of the cluster and a
number of maps is specified such that each node will be assigned some work.

Larger input sizes are used when running benchmarks on servers in order to compen-
sate for the differences in CPU speed and bandwidth between servers and phones (deter-
mined in §6.2). For each benchmark on each hardware platform, a base input size that
makes the benchmark last for around one minute is chosen. These input sizes and their
types are summarized in Table 6.1. Note that these sizes per-node; the base input size is
multiplied by the number of nodes to determine the total input size.

In the Random Writer benchmark, data is generated on each phone. In the Sort bench-
mark, sortable data is generated on each phone using Random Writer, and then this data is
sorted using Hadoop’s Sort example. Sort has a trivial map phase which just relays inputs
to the reduce phase, taking advantage of the fact that Hadoop sorts the intermediate keys
generated by map tasks. In the Pi Estimator benchmark, Hadoop’s Pi Estimator example,
which uses a Monte Carlo method to estimate the value of π, is executed, with a number of
maps proportional to the number of nodes. The Grep benchmark places a set of large text
files on HDFS and then searches for a word within them using Hadoop’s Grep example.
The Word Count benchmark places the same text data on HDFS and computes the number
of occurrences of each word.

A control benchmark that runs Hyrax for 60 seconds without executing any jobs is
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Benchmark Initialization phase Execution phase
Random Writer None Random Writer job

Sort Generate files using Random Writer Sort job on generated files
Grep Generate text files, push to HDFS Grep job on these files

Word Count Generate text files, push to HDFS Word count job on these files
Pi Estimator None Pi estimator job

Control None Sleep for 60 seconds

Table 6.2: Benchmark initialization and execution phases.

also run. The data collected in this benchmark can be used to account for the effects
of Android’s background processes and the overhead of the DataNode, TaskTracker, and
sensor data manager that run within Hyrax.

Each benchmark consists of an initialization phase and an execution phase. Only the
beginning and end of the execution phase are recorded, and the resource usage outside of
this range is ignored. The initialization and execution phases of each benchmark are given
in Table 6.2.

6.1.3 Analysis tools

In addition to simply recording benchmark completion times, two tools are used to analyze
the performance of Hyrax in depth: system resource usage logs and Hadoop log analysis.

System resource usage logs

In order to study the system resource usage of Hyrax, relevant information from /proc,
including CPU usage, memory usage, disk I/O, and network I/O, is logged. These val-
ues are logged about twice per second. Figure 6.2 shows an example of system metrics
collected on phones during a run of the Sort benchmark.

Log analysis for Hadoop performance visualization

Hadoop log parsing techniques from Tan et al. [2009], Tan et al. [2008] are used to extract
detailed information about task execution in our benchmarks, including the timing and
duration of each task or task component. These techniques use logs generated by Hadoop
to infer the state of each node in the cluster.
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Figure 6.2: Example of system resource usage data. Network, CPU, disk, and memory
usage metrics for Sort benchmark on 3 of 10 phones.
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This information can be used to generate useful visualizations. For instance, “Swim-
lanes” plots show task progress as it unfolds in time. They also show how tasks running on
different nodes progress in time. Hence, the swimlanes plots show MapReduce behavior
in time and space. The x-axis denotes wall-clock time elapsed since the beginning of the
job, and each horizontal line corresponds to the execution of a state (e.g., Map, Reduce)
running in the marked time interval.

Figure 6.3 shows swimlanes plots for the Sort benchmark on 5 phones and on 5 servers.
From this, we can immediately see the difference in individual task completion times
between phones and servers. We also see which tasks were executed in parallel. To gain
more insight, swimlanes and system metrics can be plotted on the same time axis to show
how tasks affect system resource usage.

The log parsing system determines the amount of time spent in each Hadoop phase
(map, reduce, shuffle, and sort). This information can be used to compare the relative
amount of time spent in each phase between servers and phones. For example, Figure 6.4
shows the amount of time spent in each task or phase type for each node and for the cluster
as a whole. This plot shows that the absolute time taken for the job on servers is much less.
It also shows that the proportion of time spent on maps on the phone is larger than on the
servers. Since Pi Estimator is a CPU-bound job, the graph implies that CPU performance
on phones is worse in relation to its other resources than it is on servers.

6.2 Baseline performance of mobile devices vs. traditional
servers

The inherent performance differences between the phones and servers in our testbed were
investigated by comparing the speeds of four micro-benchmarks, each of which is bound
by CPU, memory, disk, or network resources. The results are summarized in Table 6.3.

In the CPU benchmark, an empty loop is executed for some number of iterations. In
the memory benchmark, a buffer is sequentially written to for some number of iterations
and then sequentially read from. The times for these benchmarks were not significantly
affected by the memory reads and writes, indicating that the memory benchmark was still
CPU-bound on both the server and the phone. We concluded that the server is about 370
to 430 times faster than the phone for CPU-bound operations.

In the disk benchmark, data is sequentially written to the server’s hard disk and to the
phone’s flash card. Of all the system capabilities that were tested, the server and the phone
are closest in disk access speeds. The server is 7.6 times faster for writes and 30 times
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Figure 6.3: Swimlanes visualization for Sort benchmark on 5 phones and on 5 servers
sorted by task start time.
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Figure 6.4: Total phase time bar graphs for 5 smartphones and for 5 servers running Pi
Estimator.
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Benchmark G1 throughput (MB/s) Server throughput (MB/s) Server advantage
Memory write 12 4600 390x
Memory read 11 4500 430x

Disk write 8.7 66 7.6x
Disk read 15 460 30x

Network write 0.92 87 95x
Network read 0.64 86 140x

CPU N/A N/A 370x

Table 6.3: Android G1 and server performance results.

faster for reads.

In the network benchmark, socket servers running on the same hardware as on the
device being tested are written to and read from. In the phone case, the benchmark program
is run on one phone and socket servers are run on another phone connected to the same
WiFi router. In the server case, the benchmark program is run on one machine and the
socket servers are run on another machine on the same rack. The server outperformed
the phone by a factor of 95 in write speeds and 140 in read speeds. We suspect that the
asymmetry in read and write speeds between phones (0.92 MB/s for writes, 0.64 MB/s for
reads) is an artifact of the Android libraries.

These performance differences inform how the results of Hadoop benchmarks, which
make use different system resources to different extents, should be evaluated. In particular,
we would expect the huge difference in CPU speeds (and therefore memory access speeds)
between servers and phones to cause significant performance problems for Hyrax. Hadoop
was written with the assumption of being disk or network-bound in most cases, and thus
is not conservative in CPU usage.

Note that this poor CPU performance is a property of Android, not of mobile platforms
in general. For instance, the iPhone has been shown to be about 100 times faster than the
Android G1 in effective CPU cycles per second Occipital.

6.3 Network link properties

Another question relevant to the higher-level experiments, particularly the file sharing ex-
periment, is how each link in the network contributes to data transfer times. In this exper-
iment, the amount of time required to transfer varying amounts of data between elements
of our testbed is studied.
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6.3.1 Question

What are the relative speeds of data transfer between components of our testbed network?

6.3.2 Approach

The amount of time required to transfer data from a phone and another phone PP , from
the server to a phone SP , and from a phone to a server PS are measured, varying the
amount of data transferred. 7 iterations are performed for each link with each amount of
data.

Using these results, the contribution (in seconds-per-byte) of the phone-router link PR,
the router-phone link RP , the server-router link SR, and the router-server link RS to data
transfer times can be estimated using the simplifying assumption that PP = PR + RP ,
SP = SR + RP , and PS = PR + RS. Note that it is not assumed that SP = PS.
However, since only one server is present in testbed and there are not enough equations to
solve for RS, SR, PR, and RP , it is also assumed that SR = RS.

This model does not account for the contributions of data transfer times within the
devices, but it is precise enough for the purposes of our experiments.

6.3.3 Hypothesis

We expect that SR will be much smaller than RP and PR. In wireless networks, the
“air time”, i.e. the time taken to send data wirelessly, tends to be the bottleneck in data
transfers.

We expect smaller transfers to be more costly in terms of bytes / second, particularly
for the wireless link, because of the additional effects of overhead of establishing the
connection.

6.3.4 Results

Figure 6.5 shows transfer time with respect to amount of data transferred for server to
phone, phone to phone, and phone to server transfers. Figure 6.6 shows transfer time with
respect to amount of data transferred for small transfers (up to 128 KB).

The inverse bandwidth of each link in Figure 6.5 for sufficiently large amounts of data
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Figure 6.5: Network transfer time vs. size for each network path in testbed for large
transfers.

Figure 6.6: Network transfer time vs. size for each network path in testbed for small
transfers.
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is estimated by the slope of a linear fit to its curve. This yields:

PP = 1.47 s/MB

PS = 1.06 s/MB

SP = 0.97 s/MB

Solving the system of equations in the model yields:

PR = 0.78 s/MB

RP = 0.69 s/MB

SR = RS = 0.28 s/MB

6.3.5 Conclusions

According to Figure 6.5 and the estimated values of PS and SP , the server-phone link
has a slight advantage over the phone-server link. This is most likely related to the per-
formance difference between the server and the phones. The server-phone link and the
phone-server link are significantly faster than the phone-phone link. According to the es-
timated values of PS, PP , and SP , the phone-phone link is about 50% slower than either
of the phone-server or server-phone links.

The estimated values of PR, RP , and SR = RS support our hypothesis that the
wireless links contribute the most time to transfers. For phone-server and server-phone
transfers, wireless links contribute about 70 to 75% of the total transfer times.

Figure 6.6 supports our hypothesis that for small transfers (up to about 128 KB), over-
head contributes more to transfer time than the marginal cost of additional bytes.

6.4 Performance of Hadoop on mobile devices and tradi-
tional servers

According to Satyanarayanan [1996b], mobile elements are inherently poor relative to
static elements because the additional weight, power, and size restrictions compared to
static counterparts will always have a negative effect on performance and capacity. In this
experiment, the effect of mobile resource constraints on Hadoop is quantified.
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6.4.1 Question

The following questions are addressed in this experiment:

1. What effects do mobile resource constraints have on the performance of Hadoop?

2. In terms of input size and numbers of nodes, how does Hadoop scale on mobile
devices compared to how it scales on servers?

3. What resources are bottlenecks for Hadoop on mobile hardware?

Approach

In order to answer these questions, MapReduce benchmarks were run on both Hyrax and
Hadoop, varying the number of nodes and the size of the input data.

Each benchmark listed in §6.1.2 (Sort, Random Writer, Pi Estimator, Grep, Word
Count, and control) was run on phones and servers varying the number of nodes in the
cluster from 1 to 9 and using multiples of the base input data size of 0, 0.5, 1, 1.5, and 2.
At least five iterations of each hardware, benchmark, nodes, and input data size configura-
tion were performed. The replication factor was set to 2 in all cases. The Hadoop/Hyrax
cluster was shut-down and reinitialized before each experiment.

For each hardware, number of nodes, and data size, the mean execution time, mean
total component task times, and average total resource usage are computed. For each mean,
a confidence interval is computed by multiplying the standard error by the t-distribution
value (for α = 0.025) corresponding to the number of samples. This is displayed as an
error bar around each point. For a given set of N samples x0 . . . xN−1, the standard error
of the mean is computed as

SEx̄ =
s√
N

where s is the sample standard deviation:

s =

√√√√ 1

N − 1

N−1∑
i=0

(xi − x̄)2

and x̄ is the arithmetic mean of x0 . . . xN−1. Note that some confidence intervals are very
small because of low variance and thus their corresponding error bars are not clearly visible
in the plots.
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Because such vastly different input sizes are used between servers and phones (see
Table 6.1), the execution times cannot be directly compared between the two hardware
platforms. Since the input sizes for the phone benchmarks are so much smaller, the over-
head of setting up tasks and transferring data have a much more significant effect than they
do on servers. At best, the way in which these times vary with parameters such as number
of nodes and input size can be compared.

6.4.2 Hypothesis

Considering the observations made in §6.2, we expect MapReduce jobs to be much slower
on mobile phones compared to on servers. We expect phones to be bottlenecked on CPU
(and thus memory operations) most of the time because of the inherent deficiency of these
resources on the phones in our testbed. This would cause jobs to spend more time in CPU-
intensive tasks (maps, reduces) relative to other the task types. It would also be manifested
in the CPU usage system metric.

Since there are no fundamental differences in the architecture of Hadoop and Hyrax,
Hyrax should be able to scale linearly, at worst, with input data size and number of nodes.
We do not expect any superlinear increases in resource usage or job/task completion times
with increasing numbers of nodes and input sizes.

According to Amdahl’s law Amdahl [1967], the change in execution and task times of
a benchmark with the number of nodes should depend on what portion of the benchmark
can be executed in parallel. Amdahl’s law states that the maximum speed-up Sn by using
n nodes is

Sn =
1

(1− P ) + P
n

where P is the portion of the task that can be executed in parallel.

We can apply this to model the effect of the number of nodes on execution time and
task times. Assuming a fixed input size,

En ≥ ((1− P ) +
P

n
)E1

where En is the execution time when the number of nodes is n. Recall that in our experi-
ments the input size In is always proportional to n:

In = nI1
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Therefore it makes sense to work with En/In, the execution time per unit of input:

En

In
≥ ((1− P ) +

P

n
)
E1

I1

Hence:

En ≥ (1− P )E1n+ PE1

Therefore we expect the execution time to increase approximately linearly with a slope
of (1 − P )E1 where P depends on how much of the task is executed (independently)
in parallel. Figure 6.7 shows the expected En vs. n curve with varying values of P .
Differences in the slope of the execution time and task times vs. number of nodes plots
would indicate different levels of parallelism between phones and servers.

Figure 6.7: Simulated relative benchmark execution time vs. number of nodes for varying
levels of parallelization.

51



6.4.3 Results

Execution time

The execution time En of a benchmark is the total time spent in the benchmark’s execu-
tion phase on a cluster of n nodes. This gives a very course-grained view of benchmark
performance.

In general, En increases with n as predicted by our model. There is usually a relatively
large jump between n = 1 and n = 2. The rate of increase of En is very similar between
phones and servers in all cases, indicating that the hardware does not have much effect on
the parallelism of a given benchmark.

The effect of the input size is reflected to a much larger extent in servers than in phones.
For instance, in the Sort benchmark (Figure 6.8), execution time more than doubles from
1.0x to 2.0x on servers, whereas it remains nearly the same for phones. This is probably
because the input sizes in the phone benchmarks are so small by comparison, so overhead
has a much larger effect. A similar effect is observed in Random Writer (Figure 6.9) and
Word Count (Figure 6.10).

Task times

Task information was extracted from Hadoop logs using the log analysis system described
in 6.1.3. For each benchmark run, the total time for each task type (Tmap,n, Tshuffle,n, Tsort,n,
Treduce,n, where n is the number of nodes) is computed. Note that the total of the task times
T∗,n does not correspond to execution time since time is over-counted for parallel tasks,
and parts of the execution may not involve any of these tasks.

Figure 6.11 shows normalized task time breakdowns for phones and servers vs. number
of nodes n and input size s. For phones, Tmap,n accounts for less of T∗,n as n increases,
while Tshuffle,n accounts for less of T∗,n. However, the rate at which this portion increases
decreases with n. Figure 6.12 shows that both Tmap,n and Tshuffle,n increase with n for
phones.

Tmap,n and Tshuffle,n account for larger portions of T∗,n in phones than in servers, while
Treduce,n accounts for a larger portion of T∗,n in servers than in phones. This indicates that
phones are taking much longer to complete map tasks, which is probably related to the
limited amount of memory available for buffering the output of map tasks or simply the
relatively poor CPU performance of the G1. Recall that the Sort benchmark uses a trivial
map function that simply forwards the input.
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Figure 6.8: Execution time vs. number of nodes (top) and input size (bottom) for phones
(left) and servers (right), Sort benchmark
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Figure 6.9: Execution time vs. number of nodes (top) and input size (bottom) for phones
(left) and servers (right), Random Writer benchmark
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Figure 6.10: Execution time vs. number of nodes (top) and input size (bottom) for phones
(left) and servers (right), Word Count benchmark
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Figure 6.13 shows absolute task times vs. input size. For phones, T∗,n does not vary
much with the input size, whereas input size does have a large effect on T∗,n for servers.
This is probably related to the absolute differences in input sizes used between servers and
phones.

Figure 6.14 shows normalized task time breakdowns for the Word Count benchmark.
In Word Count, in contrast to Sort, for both servers and phones, Tmap,n’s portion of T∗,n
increases with n. The only difference between servers and phones in this case is that
in phones Treduce,n and Tsort,n account for a significant portion of T∗,n, whereas they are
practically insignificant for servers.

Resource usage

Using resource usage logs, we computed, for each experiment, total bytes sent, total bytes
received, total disk io, total disk writes, total disk reads, and average CPU utilization.

Total bytes sent and received is very consistent on both phones and servers. Figure 6.15
shows the total bytes sent and received for the Sort benchmark. These metrics increase
linearly for both phones and servers.

Figure 6.16 shows average CPU utilization across all nodes vs. number of nodes for
Sort and Pi Estimator. For a given input size, average CPU is always lower on servers than
on phones. For both servers and phones, average CPU usage decreases with the number
of nodes.

Figure 6.17 shows disk reads, disk writes, and disk I/O time for the Word Count bench-
mark. Total disk reads and total disk I/O are highly variable and don’t exhibit clear trends.
Total disk writes is less variable and tends to increase with input size and number of nodes
for both phones and servers.

6.4.4 Conclusions

These results show several differences and similarities between phones and servers.

There is a huge difference in the amount of data that phones and servers can process
in a given amount of time. Servers were able to process 1000x to 5000x more data than
phones in the same amount of time. Hadoop appears to have a huge base cost when run on
Android, making it very slow and costly to process even small amounts of data. Reducing
this base cost is perhaps the most important challenge in that must be addressed Hyrax
before it can be used for real-world applications. Based on this performance difference,
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Figure 6.11: Normalized task time breakdown for servers and phones vs. number of nodes
(top, 1.0x input size) and input size (bottom, 5 nodes) for Sort benchmark.
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Figure 6.12: Absolute task time breakdown for servers (top) and phones (bottom) vs.
number of nodes for Sort benchmark, 1.5x base input size.
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Figure 6.13: Absolute task time breakdown for servers (top) and phones (bottom) vs. input
size for Sort, 5 nodes.
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Figure 6.14: Normalized task time breakdown for servers and phones vs. number of nodes
(1.0x input size) for Word Count.
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Figure 6.15: Total bytes received (top) and sent (bottom) vs. number of nodes for servers
and phones, Sort benchmark. The server plot for input size 0 is nearly zero for all numbers
of nodes.
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Figure 6.16: Average CPU usage vs. number of nodes for servers and phones, Sort (top)
and Pi Estimtor (bottom) benchmarks.
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Figure 6.17: Word Count benchmark disk reads (top), disk writes (middle), and disk I/O
time (bottom) vs. number of nodes for phones (left) and servers (right).
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in the current state of Hyrax, it would take upwards of 1000 Android G1s to achieve the
performance of a single server, assuming a network powerful enough to handle all of these
wireless connections and a perfectly parallel workload.

Note that this performance problem is imposed at least partially by the artificial mem-
ory limitation that Android imposes on its applications. If even a few more MB of memory
were available to the Hyrax worker, much more data could be processed without swapping
to files, which is a huge performance burden on mobile devices.

The execution time required to complete a job increased at similar rates with n on both
phones and servers. This shows that Hadoop and Hyrax scale similarly for 1 ≤ n ≤ 10 in
terms of job completion. There was no clear difference in the variance of execution times
between phones and servers, suggesting that the amount of time required to complete a job
is similarly predictable on both.

Overhead costs had a much larger effect onEn on phones than on servers. This is either
because the input sizes tested on phones were not signficantly different from each other,
because the overhead of setting up and shuffling data among tasks is higher on phones,
or a combination of these factors. It is difficult to tell whether Hyrax and Hadoop scale
similarly in terms of data because the effects of overhead were so high on phones.

Mapping and shuffling account for a larger portion of task times on phones than on
servers. In the case of maps, this is most likely related to the CPU and memory limitations
of the phones. In the case of shuffles, this is probably caused by the difference in network
speed between wireless and wired connections (shown to be about 100-150x in 6.2).

Changes in resource usage with n are similar on phones and servers. Network sends,
network receives, and disk writes increase linearly with n. There are no significant patterns
in disk reads and disk I/O times. Average CPU utilization is higher on phones, and CPU
utilization decreases with n. Overall, Hyrax scales similarly to Hadoop with the number
of nodes.

Considering the differences in CPU utilization and the amount of time spent on map
tasks, it appears that CPU and memory are the biggest resource bottlenecks for Hyrax
on the Android platform. The memory limitation is artificial and could be alleviated by
modifying a constant in the Android source code. The CPU limitation is a more funda-
mental problem, probably related to using a non-optimizing VM instead of directly using
hardware to execute code.
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6.5 Handling network changes

Satyanarayanan [1996b] also notes that mobile devices are more susceptible to loss and
damage, and mobile connectivity is highly variable in performance and reliability, and
there is often no network available. As a result of variations in network connectivity and in
some cases loss or damage, phones are expected to intermittently drop out of the network.
A mobile-cloud computing system should handle devices departing from the network.

In Hyrax, when a node departs the network, its data blocks and intermediate MapRe-
duce results go with it. Given how frequently node departure occurs in a mobile device
network, it is important to determine the extent to which Hyrax can recover from it.

6.5.1 Question

In this experiment addresses the question: to what extent does Hyrax tolerate node depar-
ture? In other words, under what conditions does Hyrax succeed or fail to complete tasks
when nodes leave the network?

6.5.2 Approach

These questions are addressed by running the benchmarks in §6.1.2 and killing the DataN-
ode and TaskTracker instances on k random nodes 30 seconds after the beginning of job
execution. For each benchmark, the number of nodes n is varied from 1 to 7, k is varied
from 0 to 3, and the replication factor r is varied from 1 to 3. k = n is not tested because
killing all n nodes would definitely cause the job to fail. A success is defined to be a case
where the benchmark completes, and a failure is defined to be a case where the benchmark
fails. Each configuration is tested 5 times. The success rate of a given (n, k, r) is the
number of successes over the total number of attempts.

6.5.3 Hypothesis

Hadoop is designed to tolerate node failures. Block replication decreases the likelihood
of total block loss when a node leaves the network. In an HDFS cluster with replication
factor r, in order for a block of data to be lost completely, all r nodes hosting its replicas
must leave the network within a small amount of time. This amount of time is related to
how often the NameNode expects pulse messages from the DataNodes and how long it
takes to transfer a block of data between two nodes.
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Nodes / Kills 0 1 2 3
1 1.0,1.0,1.0 N/A N/A N/A
2 1.0,1.0,1.0 1.0, 0.0, 0.0 N/A N/A
3 1.0,1.0,1.0 0.8, 0.8, 0.0 0.8, 0.0, 0.0 N/A
4 1.0,1.0,1.0 1.0, 0.8, 1.0 0.8, 0.8, 0.0 0.8, 0.0, 0.0
5 1.0,1.0,1.0 1.0, 1.0, 1.0 0.2, 0.6, 0.6 0.6, 0.8, 0.0
6 1.0,1.0,1.0 1.0, 0.8, 1.0 1.0, 1.0, 0.8 0.8, 0.8, 0.0
7 1.0,1.0,1.0 0.8, 1.0, 0.8 1.0, 1.0, 0.8 0.6, 0.8, 0.4

Table 6.4: Node departure success rates for Random Writer benchmark. Each cell contains
the success rates for r = 1, r = 2, and r = 3 in that order. Success rates where k ≥ r
show shown in red.

When k < r, assuming no other problems in the system, it is impossible for data blocks
to be lost completely. The NameNode is expected to recognize when a block is missing
and replicate it accordingly. The JobTracker should identify and re-execute tasks that have
taken too long or for which fetching the intermediate results has failed. Therefore we
expect jobs to succeed when k < r. However, they may take significantly longer than jobs
for which tasks don’t fail because of the time required to identify and re-execute failed
tasks and re-replicate blocks.

When k ≥ r, it is more likely for a job to fail since the data that it is supposed to
process may be completely lost. There is no way to re-generate the intermediate outputs
of map tasks for which the input blocks are lost. Furthermore, since each block tends to
be processed on the node where it is stored, it is likely that intermediate results will be
lost if a node where the block is stored is lost. Therefore we expect jobs to fail often when
k ≥ r, especially when n is not much larger than k.

6.5.4 Results

The results are summarized in Tables 6.4, 6.7, 6.6, and 6.5. In these tables, each cell
contains the success rates (successful attempts / total attempts) for r = 1, r = 2, r = 3 (in
that order). Entries that were expected to have a low success rate (when k ≥ r) are marked
in red. Low “red” values are expected, but higher “red” values are good. “Black” values
that are less than 1.0 probably indicate flaws in Hadoop.
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Nodes / Kills 0 1 2 3
1 1.0,1.0,1.0 N/A N/A N/A
2 1.0,1.0,1.0 0.4, 0.0, 0.0 N/A N/A
3 1.0,1.0,1.0 0.0, 0.6, 0.0 0.0, 0.0, 0.0 N/A
4 1.0,1.0,1.0 0.2, 0.2, 0.2 0.0, 0.0, 0.0 0.2, 0.0, 0.0
5 1.0,1.0,1.0 0.2, 1.0, 0.4 0.0, 0.0, 0.0 0.0, 0.0, 0.0
6 1.0,1.0,1.0 0.2, 1.0, 0.6 0.0, 0.6, 0.6 0.0, 0.0, 0.0
7 1.0,1.0,1.0 0.2, 1.0, 1.0 0.0, 0.8, 0.8 0.0, 0.2, 0.0

Table 6.5: Node departure success rates for Grep benchmark. Each cell contains the suc-
cess rates for r = 1, r = 2, and r = 3 in that order. Success rates where k ≥ r show
shown in red.

Nodes / Kills 0 1 2 3
1 1.0,1.0,1.0 N/A N/A N/A
2 1.0,1.0,1.0 0.0, 0.2, 0.0 N/A N/A
3 1.0,1.0,1.0 0.4, 1.0, 0.0 0.0, 0.0, 0.0 N/A
4 1.0,1.0,1.0 0.2, 1.0, 1.0 0.0, 0.4, 0.0 0.0, 0.0, 0.0
5 1.0,1.0,1.0 0.4, 1.0, 1.0 0.0, 0.8, 1.0 0.0, 0.2, 0.0
6 1.0,1.0,1.0 0.2, 1.0, 1.0 0.2, 0.6, 1.0 0.0, 0.2, 0.6
7 1.0,1.0,1.0 0.2, 1.0, 0.8 0.0, 0.6, 1.0 0.0, 0.2, 0.8

Table 6.6: Node departure success rates for Word Count benchmark. Each cell contains
the success rates for r = 1, r = 2, and r = 3 in that order. Success rates where k ≥ r
show shown in red.

Nodes / Kills 0 1 2 3
1 1.0,1.0,1.0 N/A N/A N/A
2 1.0,1.0,1.0 0.0, 0.2, 0.6 N/A N/A
3 1.0,1.0,1.0 0.0, 1.0, 0.6 0.0, 0.0, 0.0 N/A
4 1.0,1.0,1.0 0.0, 1.0, 1.0 0.0, 0.4, 0.8 0.0, 0.0, 0.0
5 1.0,1.0,1.0 0.0, 1.0, 1.0 0.0, 0.8, 1.0 0.0, 0.0, 0.0
6 1.0,1.0,1.0 0.0, 1.0, 1.0 0.0, 0.6, 0.8 0.0, 0.4, 0.4
7 1.0,1.0,1.0 0.0, 1.0, 1.0 0.0, 0.8, 1.0 0.0, 0.2, 0.0

Table 6.7: Node departure success rates for Sort benchmark. Each cell contains the success
rates for r = 1, r = 2, and r = 3 in that order. Success rates where k ≥ r show shown in
red.
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6.5.5 Conclusions

As expected, there was a tendency for success rates to increase with n and decrease with
k. However, there were many cases where benchmarks failed even when k < r. This may
have to do with Hadoop failing to detect missing nodes, reassigning tasks to the same node
even after the first failure. On the other hand, in the Word Count benchmark, there were
many cases where the job succeeded even when k ≥ r.

There are several cases in which success rates for a given k and r did not increase
monotonically with n or r. These artifacts may indicate problems in Hadoop’s replication
or task-reassignment algorithms.

Overall, Hyrax recovers rather effectively from faults in Sort and Word Count, but
not quite as well from faults in Grep and Random Writer. However, even in Grep and
Random Writer, success rates increase with n, suggesting that better fault-tolerance would
be possible with more nodes.

6.6 File sharing

One of the motivations for Hyrax is to avoid using remote services to share data when the
data is available on devices in the local network to begin with. This experiment evaluates
the performance of file sharing using HDFS vs. offloading data to a remote server.

6.6.1 Question

In this experiment, we ask: how does the performance of file sharing among mobile de-
vices using Hyrax compare to file sharing using a remote server?

6.6.2 Approach

We publish a file from one node in the network, and then concurrently retrieve this file
on all other nodes. In one case, which we label U , publishing is performed by uploading
to a server outside of the local network, and retrieval is performed by downloading from
this server. In the other case, publishing is performed by putting the file on HDFS, and
retrieval is performed by pulling the file from HDFS (see Figure 6.18). We vary the number
of nodes n, the size f of the file, and the replication factor r of HDFS. This case is labeled
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H(r). In both U and H(r), the latency of the publishing phase, the latency of the retrieval
phase, total bytes sent, and total bytes received are considered.

Figure 6.18: File sharing experiment diagram for the HDFS case.

6.6.3 Hypothesis

In U , we expect the latency of the publishing phase to depend only on f . We expect
the latency of the downloading phase for U to increase with n because of contention for
bandwidth from the server.

We expect the latency of the publishing phase to increase with r because of the ad-
ditional copying that must be performed to replicate the new data blocks. For example,
for r = 1, the publishing phase should be very fast and not use the network since the
block will be stored on the local device. We expect the latency of the retrieval phase to
decrease as r increases because of additional parallelism in block serving and availability
of replicas locally on r − 1 of the downloaders.

The latency of a file transfer is closely related to the number of bytes sent through the
network, especially across wireless links (as demonstrated in §6.3). Furthermore, sending
and receiving bytes consumes battery. Therefore it is important to consider the total bytes
sent and received in the publishing and retrieval phases of this experiment. Note that since
a router is used in our testbed, a “receive” is equivalent to a send from the router to the
receiver, and a “send” is a send from the sending device to the router.

In the case of H(r), the total bytes sent by phones during the publishing phase PSH(r)

should be
PSH(r) = (min(r, n)− 1)f

The total number of bytes received during the publishing phase PRH(r) should be equal to
PSH(r) since all sent data is received by devices in the network. When we upload the file
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to a remote server, we should have PSU = f and PRU = 0. The remote server’s send and
receive amounts are are not included in these totals.

Using H(r), the total bytes retrieved during the retrieval phase DRH(r) should be

DRH(r) = max(n− r, 0)f

Again, the total bytes sent DSH(r) should be equal to DRH(r) since no data leaves the
network.

Using U , the total bytes retrieved during the retrieval phase DRU should be DRU =
(n− 1)f , and DSU = 0.

When HDFS is used with a replication factor of r, the total bytes sent and received
should not depend on r. It should only depend on f and n. If this is not the case, then the
implementation is not distributing the data optimally. Note that

PSH(r) +DSH(r) = (min(r, n)− 1)f + (max(n− r, 0))f

= (min(r, n)− 1 + max(n− r, 0))f

When n > r,

(min(r, n)− 1 + max(n− r, 0))f = n− r + r − 1 = (n− 1)f

When n ≤ r,
f(min(r, n)− 1 + max(n− r, 0)) = (n− 1)f

Therefore PSH(r) +DSH(r) = (n− 1)f , which does not depend on r.

For U , PSU +DRU = f + f(n− 1) = fn.

Adding up all bytes sent and received (all wirelessly) by devices in the network during
a given experiment, we get

PSU + PRU +DSU +DRU = nf

and

PSH(r) +DSH(r) + PRH(r) +DRH(r) = 2PSH(r) + 2DRH(r) = 2(n− 1)f

This suggests that the total latency of U will be slightly more than half that of H(r)
for n > 1, assuming that a very fast connection exists between the router and the server
and that the latency is determined primarily by the number of wireless transfers.
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6.6.4 Results

Figure 6.19 shows the publishing time vs. f . Publishing time increases with f and with r
since more time is required to send larger blocks and create additional replicas.

Figure 6.19: Publishing time vs. input size for 5 nodes.

Figure 6.20 shows the distribution of retrieval times vs. n, and Figure 6.21 shows the
mean retrieval time for the same distribution. When U is used, retrieval time increases
approximately linearly with n because of contention on the connection to the server. Re-
trieval time also increases approximately linearly when H(1) is used since the retrieved
blocks must be copied from one node to all n− 1. Retrieval time for H(1) increases about
twice as fast as retrieval time for U with n, supporting our hypothesis. The range of re-
trieval times for H(2) and H(3) is significantly larger than that of H(1) because of the
r − 1 nodes that can access local replicas quickly (r − 1 = 0 when r = 1). For a given n,
the mean and median retrieval time decrease with r. This agrees with our hypothesis.

Retrieval times are low and have little variance when r = n. In this case, all blocks are
retrieved from the local disk. Retrieval time for H(r) remains lower than retrieval time for
U for higher values of r as n increases.

We are ultimately interested in the total time required to transfer data from one node
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Figure 6.20: Retrieval time distribution vs. number of nodes for a 10 MB file. Points
in box-and-whisker plot correspond to (from bottom to top) minimum, lower quartile,
median, upper quartile, and maximum. Box-and-whisker plots are shifted slightly on the
x-axis for visual clarity, but correspond to the nearest n to the left.
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Figure 6.21: Mean retrieval time vs. number of nodes for a 10 MB file.

to n− 1 other nodes, i.e. the total of the publishing and retrieval times. Figure 6.22 shows
this total vs. n for cases U , H(1), H(2), and H(3). U outperforms H(r) significantly in
all cases except when n = 1. This is expected because every byte is sent wirelessly twice
in the case of H(r), and only once in the case of U .

Figure 6.23 shows the total bytes sent or received by nodes in the cluster vs. n. Note
that we count both the send and and the receive for a given transferred byte. This plot is
exactly what our model predicts, i.e. PSU + DSU + PRU + DRU = nf and PSH(r) +
DSH(r) + PRH(r) +DRH(r) = 2(n− 1)f , where f = 20MB in this case.

Note that data collection on 8 and 9 node clusters failed because of hardware problems
in the testbed. Some data was collected for these cases, but various failures contributed
significantly to publishing and retrieval durations and thus we do not consider the results
to be statistically valid.
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Figure 6.22: Total upload and mean download time vs. number of nodes for 10 MB file.

6.6.5 Conclusions

Although H(r) allows for more parallelism in block serving for r = 2 and r = 3, the extra
wireless transfers required to send data between two devices in the network compared
to sending data to or receiving data from a server through the router (requiring only one
wireless transfer in each case) prevent data from being published and served faster than
in U . However, given that block serving times decreased with r, using H(r) might yield
better performance than U for sufficiently high n and r. Tests with higher n and r are
warranted.

Note that a fast connection to this server was used in this experiment. In reality, the
quality of connections to remote servers can vary, whereas local networks ensure high
connection quality among nodes connected on the local network. Therefore Hyrax may
still be preferable for data sharing in cases where a stable, high-bandwidth connection to
a remote server is not guaranteed.
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Figure 6.23: Total bytes sent or received vs. number of nodes for 20 MB file.

6.7 Battery consumption

Battery consumption is an important consideration in any mobile system. In this experi-
ment, the rate at which battery is consumed by Hyrax is compared to that of other common
tasks performed on mobile devices.

6.7.1 Question

In this experiment, we ask: how does the power consumption of Hyrax compare to that of
other tasks?

6.7.2 Approach

We run several tasks on the phones and record battery levels over time. These tasks are:

1. Video streaming from phone. Qik Qik, Inc. is an Android application that streams
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live video from the camera to the Internet. In this task, video is streamed to the
Internet using Qik.

2. Downloading. Data is continuously downloaded from a server in the local network
to the phone.

3. Video recording. Video is recorded using the Android video recording application.

4. Hyrax Sort. The Hyrax Sort benchmark is run repeatedly on a cluster of 3, 5 and 7
phones.

5. Idle. Other than the Android system services, no tasks are run on the phone.

Battery consumption rate R of a given run is estimated by using linear regression to fit
a line to the the points of the battery level vs. time plots. The slope R̄ and the correlation
coeffecient of fitted line are reported for each task. Each workload is run on three different
phones.

System resource usage logs are collected for each workload. The average network,
disk, and CPU load (normalized by time, when applicable) is given for each workload in
order to give more context to the battery life results. For the Hyrax workloads, Hadoop
logs are also collected. Task times are extracted from these logs in order to correlate tasks
with battery consumption. As in the performance experiment, the input size of the Sort
workload is scaled with the number of nodes.

6.7.3 Hypothesis

Network transfers accounts for a large part of energy usage on smartphones. By design,
Hadoop uses network bandwidth sparingly. Therefore we expect Hyrax to use less power
than a network-bound application, but more power than a multimedia recording applica-
tion which does not use the network.

We expect the video streaming workload to use networking, CPU, and disk heavily.
We expect the video recording workload to use CPU and disk heavily. We expect the
downloading workload to use networking heavily. We don’t expect Hyrax to use any
resource particularly heavily.

We expect reduce jobs to consume more battery both in total and per second than
map jobs because they tend to take longer, and they use the network more. The “sort”
and “shuffle” operations are considered parts of the reduce tasks. Furthermore, we expect
battery consumption to increase with the number of nodes because, as we observed in the
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Task R̄ (% / s) r2 LR̄

Video streaming 0.0151 0.981 1.8 hours
Video recording 0.0122 0.822 2.3 hours

Downloading 0.0102 0.939 2.7 hours
Hyrax Sort (3 nodes) 0.00479 0.992 5.8 hours
Hyrax Sort (5 nodes) 0.00537 0.935 5.2 hours
Hyrax Sort (7 nodes) 0.00580 0.969 4.8 hours

Idle 0.00008770 0.6453801 13.2 days

Table 6.8: Battery experiment results.

performance experiments, network sends and receives increase with the number of nodes
(when the input is scaled with the number of nodes), and CPU utilization does not decrease
significantly with the number of nodes for the Sort benchmark.

6.7.4 Results

Table 6.8 shows, for each task, the estimated battery consumption rate R̄, the correlation
coefficient for R̄, and the total battery life of the G1 battery at the consumption rate of R̄.
We compute R in terms of battery % per second, but it can also be expressed in units of
A or C/s. Recall from §6.1.1 that the capacity B of the G1 battery is 1150 mAh. For a
battery with a capacity of B mAh, the conversion is:

R%/s = R
BmAh/100

s

3600s

h
= 36RBmA

Given that the consumption rate is R̄%/s, the expected battery life LR̄ is

LR̄ =
100

R̄
s

Battery life results are summarized in Figure 6.24. Figures 6.25 and 6.26 show battery
level vs. time for video streaming and Hyrax Sort respectively.

Table 6.9 shows the resource usage of each workload. CPU utilization is reported as
the mean over all readings. All other resources are reported in terms of mean count per
second. The battery consumption of other hardware such as the camera and the screen is
not accounted for by these statistics.

Table 6.10 and Figure 6.28 show the battery consumption of different task types in
terms of battery % per second of task type and battery % per task. Figure 6.27 shows the
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Figure 6.24: Battery life by task.

Resource Video Streaming Video Recording Downloading Hyrax Sort (5 nodes)
CPU 93.6 % 51.8 % 74.6 % 43.6 %

Disk reads 0.0119 reads/s 0.0288 reads/s 0.000 reads/s 0.0363 reads/s
Disk writes 0.589 write/s 0.473 writes/s 0.101 writes/s 0.802 write/s

Network send 34.7 KB/s 0.00196 KB/s 7.31 KB/s 2.00 KB/s
Network receive 0.811 KB/s 0.00163 KB/s 315 KB/s 1.84 KB/s

Table 6.9: Mean resource usage for each battery workload. Computed over entire duration
of each workload and averaged over all phones.
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Figure 6.25: Battery consumption fit for video streaming battery level data.

Figure 6.26: Battery consumption fit for Hyrax-active battery level data.
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Task type Battery % / second Battery % / task
Map (successful) 0.00620 0.228

Map (failed) 0.00466 0.208
Reduce (successful) 0.00668 1.07

Reduce (failed) 0.00585 3.21

Table 6.10: Battery consumption by task type in Hyrax Sort (7 nodes).

breakdown of battery consumption of each task compared to the breakdown of total time
spent in each task.

Figure 6.27: Battery consumption rates by task type for Hyrax Sort with 7 nodes.

6.7.5 Conclusions

Figure 6.24 shows that Hyrax, when running an intensive workload, consumes battery life
at about half the rate of continuous downloading or video recording and slightly more
than a third of the rate of video streaming. Unexpectedly, the video recording workload
used much more battery than Hyrax, probably because of the power used by the camera
and the screen. Given that this worst case power consumption rate for Hyrax is so much
less than that of downloading, video recording, and video streaming, it seems reasonable.
Furthermore, the implementation Hyrax has not been optimized for power at all, so there
is probably a significant opportunity to improve its battery consumption.
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Figure 6.28: Normalized battery consumption and total time by task type for Hyrax Sort
with 7 nodes.
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Figure 6.24 also shows that battery consumption increases from 3 to 7 nodes. This is
probably because of the additional network transfers that the reduce task must perform to
collect the intermediate values for larger numbers of nodes.

Figure 6.27 suggests that battery consumption depends primarily on the amount of time
spent in the task, not the task type. Differences in the power consumption of each task per
second, shown in Figure 6.28, are not significant enough to identify parts of Hadoop that
should be targeted to improve energy efficiency. More specific characterization of the
MapReduce job would be required to make a specific battery consumption diagnosis.
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Chapter 7

Case Study: Distributed Video Search
and Sharing

To determine the advantages and drawbacks of Hyrax, an application was developed on it.
A simplified version of the distributed mobile multimedia search and sharing application
outlined in §1 was implemented and evaluated. This application would be useful at events
where many mobile users want to record and share multimedia files.

The Hyrax multimedia search and sharing application, HyraxTube, allows users to
browse through videos and images stored on a network of phones and search by time,
location, and quality. Quality ratings based on sensor data are generated by periodically
executing a MapReduce job. Requests are serviced by reading results generated by this
MapReduce job from HDFS. The client interface is implemented as a web application so
that it can be used on both mobile devices and desktop machines.

7.1 Requirements

The following requirements were established for HyraxTube:

1. Provide an interface for browsing files and searching by time, quality, and location.

2. Provide low-latency access to information about the files through a web interface.

3. Allow users to download any video or photo from the smartphones.
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In addition to these application-level requirements, HyraxTube should scale with the
number of devices and the number of users. It must also store data reliably. These proper-
ties are provided by Hyrax.

7.2 Design

In order to allow users to browse files, a list command on HDFS can be exected. This is a
fast, cheap operation since it only involves communicating with the NameNode.

Search by time, quality, and location involves retrieving all files that match the input
time range, quality range, or radius of the given location. At first, we considered executing
a MapReduce search job for every request, comparing the metadata for every multimedia
file against a filter corresponding to the user input. We quickly realized that this would
cause unacceptable request latencies and not scale with the number of users. Instead, we
decided to run a daemon which periodically executes a MapReduce job which summarizes
the metadata into a form that can be efficiently accessed and searched in the front-end
web server. The summarization task generates a quality rating based on accelerometer
readings corresponding to the device on which and the time range during which the video
was recording. The summarized results are stored on HDFS.

File transfers are handled differently depending on whether the client is inside the
mobile network (and thus can establish direct communication with each node) or outside
of it. If the client is outside of the network, then the server opens an input stream from the
file through the HDFS interface and streams the data to the requesting client, acting as a
passthrough. If the client is within the network, then the data is transferred directly from
the DataNodes hosting the blocks of the file to the client.

To improve the performance of block serving and MapReduce jobs and to decrease the
likelihood of data loss on HDFS, a DataNode and a TaskTracker are run along with the web
server. The technique outlined in §5.7.1 is applied, assigning phones to /phone-rack
and the server to /server-rack. Since there are only two racks, any file published from
a phone whose replication factor is set to 3 will be replicated to the server. This makes
it much less likely for the data to be lost when the original phone leaves the network and
makes serving files to clients outside of the network much faster and taxing of mobile
resources.
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7.3 Implementation

HyraxType was fairly easy to implement and would have been much more difficult without
using the cloud interface provided by Hadoop. The application has no knowledge of the
physical details of the service that it requests files and executes compute jobs on.

The server application was implemented using the Ruby WEBrick library, JRuby, and
the Hadoop libraries. WEBrick was used to serve web pages and handle user input. Using
JRuby made it possible to use Hadoop’s Java libraries.

The server runs independently of the Hyrax cluster and only interacts with it through
Hadoop’s HDFS and MapReduce interfaces. In other words, the application’s frontend
is totally decoupled from the distributed nature of its backend. This makes it easier to
develop and maintain the application.

We faced two limitations of Hyrax. One is that accessing sensor readings in the time
range of a video is very slow. In a map task, it is necessary to scan through the file until
the target start time. Another obstacle was the memory limitations of Android. We were
unable to implement a thumbnailing MapReduce job because it required too much memory
to load an image.

7.4 Field testing at Mellon Arena

7.4.1 Background and Motivation

Sports teams have been making efforts to promote game attendance among young fans
Viera [2008]. One approach has been to provide an interactive experience via mobile
technology such as YinzCam Media [2009]. YinzCam allows game attendants to view
replays from various angles and explore other relevant information using their mobile
phones.

Another way to engage fans is to allow them to participate in game coverage using the
cameras on their phones. These videos could be displayed occasionally on large displays
in the area, incorporated into the television broadcast, and shared with other mobile users
during the game. In order to sort through this data effectively, broadcasters and other
mobile users would need to be able to search by recording time and location in the arena.
An automatically generated quality rating would also be useful.

The trivial approach to implementing this is to distribute a mobile application similar
to Qik that streams video to servers in the arena and provide another interface for down-
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loading videos from other users, along with any other relevant information such as location
and time of recording. There are several drawbacks to this approach. One is that this type
of video streaming quickly drains battery, which was showed in §6.7. Another drawback is
that this would require a substantial in-house hardware infrastructure. In order to guaran-
tee reasonable performance at all times, enough servers and wireless networking resources
would need to be provisioned to handle the maximum possible load from users uploading
and downloading files. This would in many cases be prohibitively expensive.

Instead, Hyrax and (a more developed variant of) HyraxTube could be deployed and
supported by a drastically smaller in-house hardware infrastructure. Using Hyrax, only
videos of interest would ever be transferred over the network. Popular videos could be
replicated to and served from an arbitrary fraction of phones in the arena. Node departure
would be infrequent because spectators do not move around very much and don’t leave
the arena until towards the end of the game, allowing for a low default replication factor
to be used. With today’s mobile technology, a capable wireless network infrastructure
would be required; however, within a few years, wireless ad hoc and mesh networking
among phones will obviate such an infrastructure. A server would be needed to run a
NameNode and a JobTracker for the Hyrax cluster, and any additional servers could be
put to use for hosting block replicas and executing MapReduce tasks faster and without
draining batteries of phones in the network, as described in §5.7.1.

7.4.2 Experiences at Mellon Arena

Hyrax was tested at Mellon Arena, the home arena of the Pittsburgh Penguins, using
the wireless network infrastructure originally installed for YinzCam Media [2009]. This
wireless network is implemented using Xirrus WiFi arrays Xirrus connected to several
switches. Servers are connected behind these switches to allow fans to access game
footage.

The first obstacle that we encountered was that the network had been configured to dis-
able peer-to-peer networking. This setting was enabled for YinzCam to improve network
performance. With this setting disabled, devices on the network were able to determine
each other’s MAC address, but not connect via TCP.

This experience showed that it may be non-trivial to integrate a peer-to-peer system
into an existing wireless network that has been configured for access to remote services
only. In the near future, we plan to investigate the issues that prevented peer-to-peer con-
nections in Mellon Arena.
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Chapter 8

Related Work

Our work on mobile-cloud computing is primarily related to previous work in mobile
grid computing and mobile distributed filesystems. Hyrax is distinguished from all of
the projects in these two fields because it combines distributed storage and distributed
computation and provides a cloud interface to these capabilities that abstracts away from
dealing with individual devices.

8.1 Mobile Grid Computing

Work has been done on systems that share resources and collaborate on computational
tasks in mobile device networks. This has mostly been in the form of grid computing,
which is an important part of cloud computing Myerson.

Litke et al. [2004] defines the “Grid” as “a distributed, high performance computing
and data handling infrastructure that incorporates geographically and organizationally dis-
persed, heterogeneous resources (computing systems, storage systems, instruments and
other real-time data sources, human collaborators, communication systems) and provides
common interfaces for all these resources, using standard, open, general-purpose proto-
cols and interfaces”. Furthermore, the “Mobile Grid” is “full inheritor of the Grid with
the additional feature of supporting mobile users and resources in a seamless, transparent,
secure and efficient way.” This fits well with our purpose in creating Hyrax: to provide
a convenient abstraction and runtime system for utilizing the resources of a network of
smartphones.
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McKnight et al. [2004] gives an overview of the field of wireless grid computing.
It discusses the additional capabilities offered by wireless grids and the new challenges
faced by wireless grids compared to traditional grids. It also gives five requirements for
wireless grid middleware: resource description, resource discovery, coordination, trust es-
tablishment, and clearing. In Hyrax, resources are described and provided via the HDFS
interface. Coordination of data is performed by the NameNode, and coordination of com-
putation is done by the JobTracker. Hyrax currently assumes trust, but this assumption
may be removed by adding security and storage fault-tolerance in the future.

Ahuja and Myers [2006] provides a survey of wireless grid computing, following a
structure similar to McKnight et al. [2004]. It points out the problem of frequent node
connects and disconnects in mobile grids. Hyrax addresses this problem to some extent by
relying on Hadoop’s mechanisms for handling faulty nodes.

Mobile OSGI.NET Chu and Humphrey [2004] extends OSGI.NET, a grid computing
implementation, to mobile devices. The goals of Mobile OSGI.NET are to provide bet-
ter potential for collaboration among mobile devices, support collaboration among mobile
devices with traditional, non-mobile computers, operate on many device platforms, and
address the particular characteristics of mobile devices, including intermittent network
connectivity and resource constraints. Mobile OSGI.NET and OSGI.NET on desktop ma-
chines are compared in terms of latency for basic operations and jobs, varying the number
of devices and the workload size. Battery usage with varying workload sizes and number
of devices is also presented. Hyrax is analogous to Mobile OSGI.NET in that it extends
Hadoop to mobile devices while preserving interoperability with Hadoop on static ma-
chines, and we perform a quantitative comparison of Hyrax and Hadoop. However, our
experiments go into significantly more depth than those of Mobile OSGI.NET, featuring
more benchmarks, more devices, more resource usage statistics, more samples, and more
investigation of the distributions of latencies. Unlike Mobile OSGI.NET, a demonstration
application is developed on Hyrax.

Ibis for mobility Palmer et al. [2009] applies grid computing techniques to distributed
computing on mobile devices, which includes integrating mobile phones into the grid.
This included porting the Ibis grid computing platform to run on Android. Ibis also dis-
cusses the challenges of mobile distributed computing and presents a strong argument for
distributed computing on mobile devices based on the growth in the Smartphone market
and the pitfalls of cloud computing using proprietary services. Our work is structured in
a similar way to Ibis for Mobility in that it involves porting an existing distributed sys-
tem to run on a mobile platform, relying on the existing system’s solutions to analogous
problems between static and mobile grids. One drawback of Ibis is that Android emula-
tors were used instead of physical Android devices, and no experimental evaluation was
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conducted. In contrast, Hyrax has been implemented, demonstrated, and experimentally
evaluated on real Android phones.

WIPdroid Chou and Li [2008] is another distributed computing platform for Android.
It is based on the Web Services Session Initiation Protocol (WIP), which allows “real-time
service-oriented communication over IP”. Using WIP, WIPdroid can provide a two-way
web service interface similar to that of an online service supported by a “cloud” backend
of mobile devices. Like Ibis, WIPdroid is developed and tested on Android emulators.

GridGain Systems has succeeded in running the GridGain cloud computing platform
on Android phones Kharif [2008], but this is still in early stages of development. The
GridGain architecture is probably the closest to Hadoop’s of all of the grid systems that
are being targeted at mobiles. GridGain directly supports deployment on a cloud, and
MapReduce is an important feature of the system. Future work on Mobile GridGain could
be directly compared to our work on Hyrax.

xSchapome of our motivational applications are inspired by mobile grid applications,
which use the sensors and multimedia capture devices of a collection of mobile devices.
Reades et al. [2007] monitors the locations of mobile users in an urban environment and
studies the dynamics of mobile usage and crowd movement over time. Hull et al. [2006]
uses mobile sensors for traffic analysis, and Lo et al. [2008] uses mobile device sensors for
a similar task. McKnight et al. [2004] describes a distributed audio recording application
using microphones from a mobile phone grid.

8.2 Sensor In-network Processing

Another approach to implementing cloud computing on mobile devices is to start with a
wireless sensor network API and implementation. These systems are generally targeted at
resource-limited embedded devices, and are therefore very good at preserving resources
and handling faults that arise in wireless networks. These systems use in-network process-
ing, i.e. summarization/computing on local nodes, to minimize data transfers Intanagonwi-
wat et al. [2003]. They provide high-level database interfaces for executing queries on
distributed data Yao and Gehrke [2002], Bonnet et al. [2001], Madden et al. [2005], Desh-
pande et al. [2003]. Security support for wireless sensor network in-network processing
has been studied Deng et al. [2003]. Efficient information sharing in wireless sensor net-
works has been studied in great depth Intanagonwiwat et al. [2003], W. R. Heinzelman
and Balakrishnan [1999]. Sensor network architectures have also been developed for more
powerful, resource-unconstrained multimedia sensors Campbell et al. [2005] and for net-
works with nodes of heterogeneous performance capabilities Tsiatsis et al. [2005]. Some
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of the applications of mobile-cloud computing, such as distributed image search, have
been studied in a sensor network context Yan et al. [2008]. Considering all of these com-
patibilities, it would be worthwhile to investigate the usage of sensor network software for
mobile-cloud computing in future work.

Nevertheless, sensor network software platforms have several limitations relative to a
server-targeted distributed system such as Hadoop with respect to mobile-cloud comput-
ing. They are designed for collecting data and servicing queries from entities outside the
network, typically through a special “gateway” node Suba et al. [2008]. In a mobile-cloud
computing setting, clients would often run on nodes within the device cluster. Using a
sensor network framework would require (without non-trivial modification) heavy data
transfers through the gateway from “sensor” devices to “client” devices, whereas a dis-
tributed filesystem such as HDFS allows for peer-to-peer bulk transfers and direct access
to local replicas when they are available.

The computations performed within sensor networks are targeted at efficient data col-
lection and querying, not generic compute jobs. Although Hyrax is not intended to be used
for generic distributed computing, it does provide much more flexibility in specifying com-
putations. By distributing executable code, MapReduce jobs on Hyrax can process sensor,
multimedia, text, and other data in arbitrary ways. The sensor network database concept
is well-suited for applications such as sensor maps and traffic monitoring (described in
§3.3.2), but it would not work well for non-sensor applications such as multimedia search,
multimedia sharing, and social networking, where MapReduce jobs would be used to pro-
cess text and multimedia data.

In sensor networks, raw data is processed purely locally, not on other nodes. This is
ideal for preserving power by avoiding network transfers, but it limits the dynamic adapt-
ablity of job execution. Although MapReduce prefers to process data locally, it is capable
of offloading computation to other nodes when necessary. The filesystem interface enables
transparent access to data on other nodes, allowing for both in-network data offloading and
applications built around data-sharing.

Using a server-targeted platform such as MapReduce offers trivial compatibility and
cooperation between devices running the ported application and servers running the ap-
plication. Hyrax could easily plug into an existing Hadoop cluster without modifying the
Hadoop cluster code or configuration. Starting with a sensor network platform would re-
quire porting to both mobile devices and servers, which would be much less convenient
and probably lead to more divergence in compatibility.

In some sense, Hyrax links sensor network systems with large-scale data-intensive
computing platforms for servers by showing how and to what extent solutions for fault-
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tolerance on server networks (replication, re-execution, speculative execution, etc.) can be
applied to fault-tolerance mobile device networks. Running Hadoop on a mobile platform
and (hypothetically) running a sensor network platform on servers illustrate what design
aspects can be shared between the two environments and which aspects require different
solutions.

8.3 Mobile Data Sharing Systems

One major aspect of Hyrax that distinguishes it from mobile grid computing platforms is
its use of a distributed filesystem, HDFS, for sharing data. Separate work has been done on
distributed filesystems, peer-to-peer file-sharing, and other forms of data sharing on mobile
devices. In contrast to most of the mobile-targeted distributed filesystems discussed in this
section, HDFS is designed to handle large, unchanging files. This limitation is acceptable
for the type of data that it is useful to store and share among mobile devices.

Coda Kistler and Satyanarayanan [1992], Satyanarayanan et al. [1993], Satyanarayanan
[1996a], Mummert et al. [1995] was the first distributed filesystem to be investigated on
a mobile platform. Coda inherits much of the design and functionality of AFS Howard
et al. [1988]. It is used by clients as a location-transparent global UNIX filesystem. The
file namespace is mapped to individual file servers. Coda supports disconnected operation,
allowing clients to access and modify files even when disconnected from the network. Dis-
connected operation can also be used to save power by avoiding network transfers. Coda
is used in conjunction with Venus, a client-side cache that is responsible for hoarding data,
emulating operations on this data, and resolving changes in the data upon reconnecting to
the network. Optimizations for operation in the presence of weak connectivity have also
been integrated into Coda.

In Hyrax, files are accessed through a similar global interface which maps file paths
to data stored on nodes in the cluster. Hyrax does not allow for disconnected operation
because of its dependence on the NameNode for mapping file paths to data blocks. Fur-
thermore, Hyrax discourages file modification once a file has been created. Without dis-
connected operation and file modification, the challenge of resolving file change conflicts
is moot. Unlike Coda, Hyrax does not depend on a central set of servers to host data.
Instead, it uses mobile devices themselves as block servers with the option of adding static
servers to improve reliability and performance.

Several other filesystems optimized for mobile constraints have been studied. LBFS
Muthitacharoen et al. [2001] is a network filesystem for low-bandwidth networks such as
wireless networks. It exploits commonalities of a file before and after changes to avoid
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sending the entire file when a small change is made. Boukerche and Al-Shaikh [2007]
implements another DFS client that prevents conflicts. Virtual Memory based Mobile
Distributed File System Bagchi [2007] implements another thin-client mobile DFS that
ensures consistency. Like Coda, all of these mobile filesystems use the mobile device only
as a client, not as a host. Thus, while they face similar constraints as Hyrax, they do not
solve the same problems.

M-DFS Michalakis [2004] implements “ephemeral filesharing” among mobile devices
using the NFS protocol. M-DFS establishes a temporary distributed filesystem that al-
lows mobile devices to access files stored on other devices in the network. M-DFS is more
closely related to Hyrax than the thin-client mobile network filesystems because it involves
sharing directly between devices, using mobile devices as both clients and servers. How-
ever, Hyrax is not really intended to be used in such a transient way. Through replication,
a Hyrax network can promote long term data availability.

Kelényi et al. [2007] explores peer-to-peer file sharing on mobile devices, including
a discussion on implementations of Gnutella Clip2 and BitTorrent Cohen, Bram for the
Symbian mobile platform. Various aspects of peer-to-peer file sharing on mobile networks
are studied in Ding and Bhargava [2004], Marossy et al. [2004], Zhiyuan et al. [2007],
Lindemann and Waldhorst [2002], Data et al. [2001], Hofeld et al. [2005], Kurt [extern]
The architectures of peer-to-peer file sharing systems are similar to that of HDFS in that file
transfers are executed directly between peers, data is only stored on client nodes, replicas
of data exist on multiple nodes, and there are high-level interfaces for retrieving files.
However, Hyrax provides a filesystem abstraction on top of its peer-to-peer nature, making
it more suitable for developing large-scale applications that are oblivious to the underlying
implementation of the storage system.

Mobile data sharing systems have also been used to reduce traffic on cellular data
networks. The Cellular-based Ad hoc Peer Data Sharing system (CAPS) Lee et al. [2005]
uses devices on the mobile network as caches for data from remote sources. A subset
of the devices are used as directory services for cache lookups. Hyrax also supports the
goal of reducing load in data networks by processing data in-place and allowing files to be
served directly from devices in the local network.
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Chapter 9

Conclusions

Cloud computing using mobile devices has many advantages over traditional cloud com-
puting for applications that use mobile data. Hyrax provides an infrastructure for mobile-
cloud computing, providing an abstract interface for using data and executing computing
jobs on a mobile device cloud.

Hadoop provides most of the essential features for a mobile-cloud computing infras-
tructure, making it suitable to use as a basis for Hyrax. Futhermore, there are several
solutions provided by Hadoop that can be directly applied to challenges in a mobile com-
puting environment, such as using fault-tolerance for tolerating node departure.

Unfortunately, Hadoop is fairly heavy-weight for current smartphone platforms. This
is demonstrated by the high overhead costs of running MapReduce jobs on phones in our
performance experiments. This overhead cost is exacerbated by by artificial limitations
created by Android, such as the 16 MB application memory limit. Nevertheless, Hyrax
easily scales to all of the nodes in our testbed, and would likely scale to many more nodes.
It also works reasonably well for local peer-to-peer data sharing and is generally successful
in tolerating node-departure.

Our experiences in implementing the distributed multimedia search and sharing appli-
cation suggest that Hyrax provides a convenient, sufficiently abstract interface for devel-
oping applications that use mobile data.
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9.1 Future work

Initial work on Hyrax creates many opportunities for enhancing the system and bringing
it closer to real-world deployment.

9.1.1 NAT and firewall traversal

As noted in §4.1, Hyrax currently only works for sets of smartphones that can connect
to each other via plain TCP/IP sockets. Because of this limitation, Hyrax cannot be used
in a realistic setting where smartphones don’t all have global, unrestricted IP addresses
or aren’t connected to the same local network. Real-world peer-to-peer applications use
overlay protocols such as SIP Rosenberg et al. [2001] and JXTA Sun Microsystems [a]
to get around NAT and firewall issues. SmartSockets were used in the Ibis mobile grid-
computing project Palmer et al. [2009] to address this problem.

In a large, evolving codebase such as Hadoop’s, it is wise to avoid changing code when-
ever possible. Instead, it is better to replace the underlying implementations of high-level
interfaces. In the case of sockets, Hadoop creates sockets using the abstract SocketFactory
class, whose implementation can be specified in Hadoop’s configuration.

JXTA includes a peer-to-peer SocketFactory implementation. Incompatibilities be-
tween the Dalvik VM and the JXTA library have prevented us from using JXTA sockets
within Hadoop, but getting this to work is just a matter of investing the time to find and
work around this incompatibility.

9.1.2 Battery consumption analysis and improvement

The battery results presented in this paper only scratch the surface of understanding the
power consumption of Hyrax and thus Hadoop. As noted in §4.3.1, there is interest among
power-users of Hadoop in improving its energy efficiency in order to reduce environmental
impact and energy costs. Insights into how Hadoop consumes battery on a mobile platform
may be applicable to improving Hadoop’s power consumption in a server cluster.

In particular, more experiments should be performed to determine the contributions of
different tasks of different jobs to battery consumption for varying numbers of nodes and
input sizes. Such experiments were performed for MapReduce in a server setting in Chen
et al. [2009]. Battery data could not be collected during our performance experiments
because of limitations in our testbed (namely, phones needed to be plugged in in order to
be controlled via ADB, and there is no option to disable charging). Correlating battery
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consumption with task execution details may yield insights into what parts of Hadoop
should be targeted for increasing energy efficiency.

9.1.3 Handling network changes

One important challenge that remains to be addressed is coping with network connection
changes. In a situation where the central Hadoop services are running on a globally-
accessible machine (as opposed to a machine inside a local network), a smartphone should
be able to connect to the central machine as it changes networks. The central services
would need to be able to identify the node regardless of its IP. Hadoop currently identifies
nodes by their hostname. This issue could be addressed in Hyrax by using unique IDs
separate from hostnames to identify DataNode and TaskTracker instances. Hyrax would
also have to re-assign the “rack” of the device depending on which network it is on and
attempt to rebalance block replicas according to the new topology.

9.1.4 Cluster selection

Another useful Hyrax feature would be plugging into different Hadoop clusters. At the
application or configuration level, the user would be presented with a choice among several
reachable clusters. Clusters might be set up for specific events or locations to support
multimedia and sensor data gathering and processing. To implement this, a function for
switching NameNodes would would need to be added to the DataNode. The DataNode
would need to use a different metadata directory for each cluster that it connects to.

9.1.5 Mobile rack-awareness

“Rack by network distance”, i.e. assigning a “rack” to each node based on its distance from
other nodes in the network, has not been implemented yet. Hadoop uses rack information
to select pairs of nodes for block transfers and determine where to place block replicas. It
assumes that nodes on the same rack can communicate more quickly and cheaply.

In the case of smartphones, racks are analogous to sets of devices on local networks.
These local networks may be implemented, for instance, by a WiFi router, an ad hoc WiFi
configuration, or a peer-to-peer mesh network. Local networks such as these tend to have
lower latencies and higher bandwidth and require less power to transmit data compared
to connections to mobile data networks. Therefore it makes sense for Hadoop to treat
locally-networked mobile devices into “racks”. Implementing rack assignment for mobile
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devices could be implemented by matching up nodes based on their global IP addresses or
by empirically determining the latencies between them by executing small transfers.

9.1.6 Sensor databases

Sensor logs in Hyrax are currently stored per-phone in flat text files. This makes it difficult
to use the sensor data usefully. With a querying interface like SQL and a database infras-
tructure to support it, it would be easier and more efficient to perform operations such as
range queries and joins to associate different sensor readings among different devices with
each other. Existing database systems based on Hadoop such as HBase or Hive could be
used to implement this.

9.1.7 Adaptive replication

It is very important to control the replication factors r in Hyrax. As pointed out in §5.5, the
replication factor must be set to balance battery usage and data availability. A simplistic
way of doing this is to adjust rf depending on how many times f is requested. However,
there may be more effective ways to adapt rf to suit the access patterns of a particular
cluster. rf should be increased when f is popular to increase parallelism in block serving,
but it should decrease when the f is not as popular to save disk space. A technique for
adapting rf to balance availability, battery usage, and disk usage should be developed

9.1.8 Security

Hyrax stores data on many devices, each with a different owner. There is nothing pre-
venting owners of devices on which blocks are stored from reading the contents of data
blocks. In order to prevent device owners from reading the contents of files that they don’t
have permission to read, data blocks can be encrypted such that only those users who have
permission to the corresponding files can read their contents.

This can be implemented using a public key encryption scheme. Creators of the file
would encrypt each file using a randomly generated key. This key would then be en-
crypted using the public key of each user who has access to the file. A central table of
(user, filename, encrypted key) triples would be stored and accessed using some secure
authentication system. After retrieving their encrypted key for a given file, a user would
decrypt the key using their (locally stored) private key, and then use the resulting key to
decode the blocks of the file. Using this encryption scheme, MapReduce would have to be
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modified to run tasks for data from a given input file only on nodes that can decrypt the
file.

A scheme for encryption in network-attached storage systems (which are similar to
HDFS) is developed in Miller et al. [2002].

9.1.9 Storage fault-tolerance

Device owners must be assumed have unlimited control over their systems, including the
data that is stored on them. Thus it cannot be assumed that the output of any node, includ-
ing block data and intermediate values in MapReduce computations, is valid.

The problem of fault-tolerance in HDFS is reducible to the Byzantine Generals Prob-
lem Lamport et al. [1982]. Techniques for low-overhead Byzantine fault-tolerance in dis-
tributed storage systems were developed in Hendricks et al. [2007]. These techniques
could be applied directly to implement fault-tolerant storage in HDFS. Fault tolerance for
MapReduce tasks could potentially be implemented by enabling speculative execution and
voting on intermediate values.

9.1.10 Optimization or re-implementation of MapReduce

In Hyrax, MapReduce jobs are much slower for a given input size than they are on
server clusters. This is partially caused by resource limitations, such as the extremely
small amount of memory available for buffering intermediate values, and partially by the
MapReduce implementation. It may be possible to optimize MapReduce to use resources
more efficiently or to reimplement MapReduce in a simpler, more mobile-friendly way.

9.1.11 Large-scale testing

So far, Hyrax has only been proven to scale to the 12 phones in our testbed. It should not
be assumed that this trend will apply to 100, 1000, 10000, or more phones. Testing on
larger numbers of phones should be performed.

9.1.12 Offloaded vs. local computation

In this paper, the tradeoffs between local and offloaded computation have not been quanti-
fied. It would be useful to develop a model for determining when it is preferable to offload
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some job to remote servers and when to perform the job locally considering input size,
network speeds, expected battery consumption, and system resource availability.
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