
Log-based Approaches to Characterizing and
Diagnosing MapReduce Systems

Jiaqi Tan

CMU-CS-09-143

July 2009

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Priya Narasimhan, Chair

Gregory R. Ganger

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright c© 2009 Jiaqi Tan

This research was partly funded by the Defence Science & Technology Agency Singapore via the DSTA
Overseas Undergraduate Scholarship, and sponsored in part by the National Science Foundation, via CA-
REER grant CCR-0238381 and grant CNS-0326453.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of the Singapore Government, or the U.S.
Government.

Keywords: MapReduce, Hadoop, Failure Diagnosis, Log analysis

Our deepest fear is not that we are inadequate. Our deepest fear is that we are powerful
beyond measure. It is our light, not our darkness that most frightens us.

iv

Abstract

MapReduce programs and systems are large-scale, highly distributed and
parallel, consisting of many interdependent Map and Reduce tasks executing
simultaneously on potentially large numbers of cluster nodes. They typically
process large datasets and run for long durations. Thus, diagnosing failures
in MapReduce programs is challenging due to their scale. This renders tradi-
tional time-based Service-Level Objectives ineffective. Hence, even detecting
whether a MapReduce program is suffering from a performance problem is
difficult. Tools for debugging and profiling traditional programs are not suit-
able for MapReduce programs, as they generate too much information at the
scale of MapReduce programs, do not fully expose the distributed interdepen-
dencies, and do not expose information at the MapReduce level of abstraction.
Hadoop, the open-source implementation of MapReduce, natively generates
logs that record the system’s execution, with low overheads. From these logs,
we can extract state-machine views of Hadoop’s execution, and we can syn-
thesize these views to create a single unified, causal, distributed control-flow
and data-flow view of MapReduce program behavior. This state-machine view
enables us to diagnose problems in MapReduce systems. We can also gener-
ate visualizations of MapReduce programs in combinations of the time, space,
and volume dimensions of their behavior that can aid users in reasoning about
and debugging performance problems. We evaluate our diagnosis algorithm
based on these state-machine views on synthetically injected faults on Hadoop
clusters on Amazon’s EC2 infrastructure. Several examples illustrate how our
visualization tools were used to optimize application performance on the pro-
duction M45 Hadoop cluster.

vi

Acknowledgments

I would like to acknowledge and thank the many people whom, without their support, this
work would not have been possible.

First, I would like to thank my advisor, Prof. Priya Narasimhan, for her unwavering
support, trust, and belief in me and my work, and for her advice, guidance, infectious en-
thusiasm and unbounded energy, even when the road ahead seemed long and uncertain;
and Prof. Gregory R. Ganger, for his belief in my work, and for taking the time to serve
on my Thesis Committee. I would also like to thank Dr. Rajeev Gandhi, for his sup-
port, guidance, and advice on all our algorithmic, Mathematical, and Machine Learning
questions, and Soila Kavulya, for sharing with us her experience and for her careful, me-
thodical, and very hard work putting together all our surveys, experimental apparatus and
data collection.

I would like to mention Eugene Marinelli, Michael Kasick, and Keith Bare, collab-
orators at Carnegie Mellon with whom I worked on the ASDF (Automated System for
Diagnosing Failures) project, that was the precursor to this work, and thank Michael for
his patience and support in helping out with technical issues, and Eugene for being a
bouncing wall for ideas. I would also like to mention colleagues and friends at Carnegie
Mellon whom I’ve worked with, Wesley Jin, Tudor Dumitras and Geeta Shroff.

I would like to acknowledge U Kang and Prof. Christos Faloutsos, for their many dis-
cussions with us and for running experiments, sharing with us their log data, and guiding
us through their workloads on many occasions on the M45 cluster. Thanks also goes to
Dr. Julio Lopez, for evangelizing our work, and taking the time to share his ideas with us.
I would also like to mention Wittawat Tantisiriroj, Prof. Jamie Callan, and Mark Hoy, for
discussions on their Hadoop workloads, and for sharing their log data and use-cases with
us.

I would also like to acknowledge my manager, Mac Yang, and co-workers, especially
Eric Yang, at my internship at Yahoo! in Summer 2009, for their guidance in implementing
this work as part of the Hadoop Chukwa project.

vii

I would also like to thank my scholarship mentors at DSO National Laboratories Sin-
gapore, Thiam Poh Ng and Dr. Yang Meng Tan, for their guidance and advice over the
course of my study at Carnegie Mellon.

I would also like to thank Jennifer Engleson, for all her help processing our travel and
other needs efficiently, Joan Digney and Karen Lindenfelser for always being so helpful
and accommodating with our questions, posters, and for making my time in the Parallel
Data Laboratory a very enjoyable one, and Deborah Cavlovich, for all her assistance dur-
ing the MS program. I would also like to thank all my fellow student members and the
faculty of the Parallel Data Laboratory for all the invaluable feedback on my work, and for
the exciting research community to work in.

Special mention also goes to Xinghao Pan, collaborator and trusted friend, for over a
decade of friendship, and for always being the devil’s advocate and one of the harshest
critics of my work.

Finally, I would like to thank my family, my father, Yew Koon Tan, my mother, Sau
Wan Leong, sister Zhilin Tan, and brother-in-law Aik Kwan Liang, for their unwavering
support through these years of being away from home, and for always believing in me and
being proud of me.

viii

Contents

1 Introduction 1

1.1 MapReduce and its Applications . 1

1.2 Performance Debugging of MapReduce Programs 2

1.3 Diagnosing MapReduce Systems . 3

1.4 Logs as an Information Source . 4

1.5 Understanding and Diagnosing MapReduce Systems from Logs 4

1.6 Key Contributions . 5

2 Motivation and Problem Statement 7

2.1 Motivation . 7

2.1.1 Existing Debugging Tools for MapReduce Systems and Hadoop . 7

2.1.2 Hadoop Mailing List Survey . 11

2.1.3 Hadoop Bug Survey . 11

2.2 Thesis Statement . 13

2.2.1 Hypothesis . 13

2.2.2 Goals . 13

2.2.3 Non-Goals . 14

2.2.4 Assumptions . 14

3 Background 17

3.1 MapReduce and Hadoop Architecture 17

ix

3.1.1 MapReduce and Hadoop . 17

3.1.2 Logging in Hadoop . 18

3.2 Chukwa Log Aggregation and Analysis Framework 19

3.2.1 Monitoring, Log Collection, and Log Aggregation 20

3.2.2 Log Processing and Analysis . 21

4 Approach 23

4.1 Abstract State-Machine Views . 24

4.1.1 SALSA: Node-Local State-Machine Views 24

4.1.2 Job-Centric Data-Flows: Global System View 28

4.1.3 Realized Execution Paths: Causal Flows 29

4.2 Diagnosis . 30

4.2.1 Intuition and Diagnostic Hypothesis 30

4.2.2 Synopsis of Algorithm . 31

4.3 Visualization of MapReduce Behavior 31

4.3.1 Aspects of Behavior . 31

4.3.2 Aggregations . 32

5 Methodology 35

5.1 Abstracting MapReduce Behavior . 35

5.1.1 SALSA: Hadoop’s Node-Local State-Machines 35

5.1.2 Job-Centric Data-Flows . 37

5.1.3 Realized Execution Paths . 39

5.2 Diagnosis . 40

5.3 Visualization . 42

5.3.1 “Swimlanes”: Task progress in time and space. 42

5.3.2 “MIROS” plots: Data-flows in space. 46

5.3.3 REP: Volume-duration correlations. 47

6 Implementation 49

x

6.1 Extracting Abstract Views of MapReduce Behavior 49

6.1.1 Intermediate Representation of MapReduce Behavior 50

6.1.2 Extracting Intermediate Representations 51

6.2 White-Box Diagnosis . 54

6.3 Visualization . 55

6.3.1 Offline Operation . 56

6.3.2 Online Console – Chukwa HICC 56

7 Evaluation 59

7.1 Diagnosis of Synthetic Faults . 59

7.1.1 Testbed and Workload . 59

7.1.2 Injected Faults . 60

7.1.3 Results . 60

7.2 Performance Debugging in the Wild . 64

7.2.1 Testbed and Workloads . 64

7.2.2 Understanding Hadoop Job Structure 64

7.2.3 Performance Optimization . 65

7.2.4 Hadoop Misconfiguration . 66

8 Discussion 69

8.1 Implementation Notes . 69

8.1.1 MapReduce Implementation of Job-Centric Data-Flow Extraction 69

8.2 Lessons for Logging . 70

8.2.1 Log Statement Evolution and System Diagnosability 70

8.2.2 SALSA for Log Compression 71

8.2.3 Formal Software Verification and State-Machines 72

9 Related Work 75

9.1 Log Analysis . 75

9.1.1 Event-based Analysis . 75

xi

9.1.2 Request Tracing . 76

9.1.3 Log-Analysis Tools . 76

9.1.4 State-Machine Extraction from Logs 76

9.2 Distributed Tracing and Failure Diagnosis 77

9.3 Diagnosis for MapReduce . 79

9.4 Visualization Tools . 79

10 Conclusion and Future Work 83
10.1 Conclusion . 83

10.2 Future Work . 84

10.2.1 Causal Backtrace . 84

10.2.2 Alternative REP Representations 84

10.2.3 Anomaly Detection for REP . 85

A Appendix 87
A.1 Diagnosis Algorithm . 87

Bibliography 89

xii

List of Figures

2.1 Screenshot of Hadoop’s web console. Vertical axes show the percentage
completion of each Map (top graph) or Reduce (bottom graph), and the
progress of each Map or Reduce is plotted using a vertical bar. In this
screenshot, the job had a single node experiencing a 50% packet-loss,
which caused all reducers across the system to stall. 9

2.2 Manifestation of 415 Hadoop bugs in survey. 11

3.1 Architecture of Hadoop, showing the locations of the system logs of inter-
est to us. 18

3.2 log4j-generated TaskTracker log entries. Dependencies on task execu-
tion on local and remote hosts are captured by the TaskTracker log. 19

3.3 log4j-generated DataNode log. Local and remote data dependencies are
captured. 20

4.1 Overall approach to MapReduce program performance debugging and fail-
ure diagnosing using Hadoop’s logs. 23

4.2 Illustration of (i) abstract state-machine on left, and two realized instantia-
tions of the abstract state-machine; (ii) concurrent threads of execution in
log (above) shown as two disambiguated state-machines on right. 26

4.3 Visual illustration of the intuition behind comparing probability distribu-
tions of durations of the WriteBlock state across DataNodes on the
slave nodes. 30

5.1 States in the state-machine view of Hadoop’s control-flow 36

5.2 Control-items (ellipses in red) and data-items (boxes in green) of states in
the state-machine view of Hadoop’s execution 37

xiii

5.3 Job-Centric Data-Flow formed by “stitching” together control-items (el-
lipses in red) and data-items (boxes in green) of Hadoop’s execution states.
The directed edges show the direction of the full causality of execution in
a MapReduce program. 38

5.4 Illustration of a Realized Execution Path. The multiple copies of a partic-
ular directed edge and of a particular vertex show the vertices with states
with in-degree or out-degree greater than 1, and each Realized Execution
Path is formed by picking one of the multiple edges in each group of edges. 40

5.5 Swimlanes plot for the Sort workload. Top plot shows tasks grouped by
host, bottom plot shows tasks grouped by start time. 42

5.6 Swimlanes: detailed states: Sort workload 44

5.7 Swimlanes plot for 49-node job for the Matrix-Vector Multiplication; top
plot: tasks sorted by node; bottom plot: tasks sorted by time. 45

5.8 MIROS: Sort workload; (volumes in bytes) 46

5.9 REP plot for Sort workload . 47

6.1 Visualization of time-series of diagnosis outcomes from the white-box
diagnosis algorithm; the x-axis shows time in seconds, while the y-axis
shows the diagnosis outcome for each node for each point in time; cool
colors indicate high peer similarity with all other nodes; warm colors in-
dicate low peer similarity with all other nodes and indicates the presence
of a fault on the given node. 55

6.2 Screenshot of Swimlanes interactive visualization widget for Chukwa HICC.
Screenshot on right shows mouseover details for state. 57

7.1 True-positive and False-positive ratios of diagnosis of white-box diagnosis
algorithm using Map durations. 62

7.2 True-positive and False-positive ratios of diagnosis of white-box diagnosis
algorithm using Reduce durations. 63

7.3 Summarized Swimlanes plot for RandomWriter (top) and Sort (bottom) . 65

7.4 Matrix-vector Multiplication before optimization (above), and after opti-
mization (below) . 66

7.5 REP plot for Matrix-Vector Multiplication 67

7.6 SleepJob with delayed socket creation (above), and without (below) . . . 68

xiv

9.1 Comparison of the “Area Chart” (left) and Swimlanes chart of the same job. 81

xv

xvi

List of Tables

2.1 Common queries on users’ mailing list 10

5.1 Edge weights in REPs for Hadoop MapReduce programs extracted from
the JCDF for each causal flow. 41

7.1 Injected faults, and the reported failures that they simulate. HADOOP-
xxxx represents a Hadoop bug database entry. 60

8.1 Space savings from parsed log views . 72

xvii

xviii

Chapter 1

Introduction

1.1 MapReduce and its Applications

MapReduce [DG04] is a programming paradigm and framework for easily executing large-
scale parallel distributed computation on large datasets in a cluster environment on large
numbers of cluster nodes. Programmers specify programs as a Map function and a Reduce
function, and specify an input dataset, typically stored on a distributed filesystem such as
the Google Filesystem [GGL03]. The framework then automatically executes multiple
copies of the Map and Reduce functions on different nodes, each processing a segment of
the large dataset. This enables the processing of large-scale datasets for applications such
as building inverted indexes of the World Wide Web and mining extremely large datasets
that would not fit in the main memory of a single host.

While MapReduce and Cloud Computing are orthogonal, MapReduce has become a
popular application that is run on Cloud Computing infrastructures. This is because Cloud
Computing users can quickly scale up their MapReduce installations by renting more pro-
cessing nodes from service providers. Cloud Computing [Bro09] is an amalgamation of
several methods of providing IT services, such as Infrastructure-as-a-Service (IaaS), and
Software-as-a-Service (SaaS), as realized by providers such as Amazon’s Amazon Web
Service (AWS), and their flagship product, the Amazon EC2 (Elastic Compute Cloud)
[Ama09]. Instead of the traditional model of companies purchasing IT hardware and soft-
ware, these large providers “rent” compute-time to companies. This provides companies
the advantage of flexibility, allowing users to rapidly scale up the amount of computational
resources they need during periods of peak processing demands, e.g. annual processing
of customer records, without needing to purchase expensive hardware and software. Also,

1

users need not incur the infrastructure cost of maintaining hardware and software in peri-
ods they do not require as much compute power.

MapReduce enables programmers to easily process large datasets without the accom-
panying complexity of typical parallel distributed programs, such as in traditional su-
percomputing programming frameworks such as the Message-Passing Interface (MPI)
[GLS99] and the Parallel Virtual Machine (PVM) [GBD+94]. Scaling MapReduce pro-
grams to large numbers of cluster nodes is relatively seamless as compared to in MPI or
PVM, as the framework manages the scheduling of jobs across cluster nodes transparently
from the application programmer. Hence, processing time of large datasets can typically
be linearly reduced simply by scaling up the number of nodes used to process the dataset.

As a result, MapReduce has gained enormous popularity in recent years, and its open-
source implementation, Hadoop [Apa07b], is currently used at many large companies such
as Yahoo!, Facebook, Amazon, Last.fm, New York Times, and is used to process terabytes
to petabytes of data daily. Applications include log processing, web-crawling and inverted-
index construction, business analytics, data mining for computational biology to machine
learning.

1.2 Performance Debugging of MapReduce Programs

However, it is also notoriously difficult to debug and diagnose performance problems in
MapReduce programs. While programmers can quickly write MapReduce programs that
run, it is often not obvious how to make these programs run faster and more efficiently.

Current tools for debugging programs are not suitable for MapReduce programs. The
tools currently recommended for debugging and tuning Hadoop MapReduce programs
are specific to the underlying programming language used to implement the MapReduce
framework and MapReduce programs, such as jstack and jprof [Mur08] for Java.
However, these tools are designed for single monolithic Java programs, and produce large
amounts of data when used at scale with large MapReduce programs, rendering it difficult
to process and understand the deluge of trace information. While Hadoop provides an op-
tion to sample Maps and Reduces and run these tools on only a select number of Maps and
Reduces, this limits the scope of the information collected and does not yield a complete
picture of program execution.

In addition, these tools do not expose program behavior in terms of the specific prim-
itive abstractions that MapReduce provides, i.e. in terms of Maps, Reduces, and all of
the accompanying behaviors of the MapReduce framework. Tools such as jstack and

2

jprof provide fine-grained trace data, such as the amount of time spent in given Java
statements and the stack usage and contents at particular points of execution at the Java
statement level of granularity. This information cannot be easily assimilated with the
MapReduce level of abstraction to relate it back to Maps and Reduces. Also, these tools
trace single executions within single Java Virtual Machines (JVMs), but do not correlate
the execution across multiple Maps and Reduces, so that the trace information will not
provide a complete picture of the entire distributed execution. In addition, these tools
only trace the behavior of user-written code, i.e. Maps and Reduces, but the behavior of
a MapReduce program is also highly dependent on the actions of the MapReduce frame-
work such as task scheduling and data movement, which are not reflected in user-written
code, and hence will not even be visible to these traditional debugging tools.

Our survey of posts on the Hadoop users’ mailing list over a six-month period from
October 2008 to April 2009 (see §2.1.2) also revealed that the most common performance-
related questions users had concerned information about their programs at the MapReduce
level of abstraction, in terms of Maps and Reduces, rather than at the finer level of granu-
larity of a single line of code.

1.3 Diagnosing MapReduce Systems

Diagnosing performance problems and failures in a MapReduce cluster is difficult be-
cause of the scale of MapReduce clusters and the highly distributed nature of MapReduce
programs. Currently, the only tool available for diagnosis on MapReduce clusters is the
web-console provided by the framework’s Master node. However, the console provides
only static views of MapReduce jobs at particular instances in time, with little additional
information for diagnosis. Also, the web console is cumbersome to use for large clusters
with many nodes (see §2.1.1 for a detailed discussion).

In addition, Hadoop clusters are growing in size. For instance, the Yahoo! Search
Webmap is a large production Hadoop application which runs on a cluster with more
than 10,000 cores (approximately 1000s of nodes) and more than 5 petabytes of raw disk
capacity [Net08], while Facebook has deployed multiple Hadoop clusters, with the largest
consisting of over 250 nodes with over a petabyte of raw disk capacity [Fac08]. With
the growing sizes of Hadoop clusters, it becomes necessary to automatically identify the
sources of problems (e.g. faulty nodes) in MapReduce systems.

Previous techniques for diagnosing failures in distributed systems have largely exam-
ined multi-tier Internet services which process large numbers of low-latency requests, giv-
ing rise to a natural Service Level Objective (SLO) [KF05, CKF+02, AMW+03, CZG+05].

3

These techniques then identify the root-causes of failures given SLO violations. However,
it is difficult to define SLOs for MapReduce programs because they are batched jobs that
operate on large datasets, and are designed to run for long periods of time, as we further
explain in §2.1.3. Hence, it is necessary to solve the more fundamental problem of iden-
tifying whether a fault is present in a MapReduce system, in addition to identifying the
node(s) that contributed to the fault.

1.4 Logs as an Information Source

Hadoop natively generates logs of its execution by default, and these logs record anoma-
lous system events such as error messages and exceptions, as well as regular system oper-
ation, such as what tasks are being executed (§3.1.2). These logs are generated with rela-
tively low overhead, and are available in any default Hadoop installation. Hence, this rep-
resents a cheap, easily and widely available source of information for debugging Hadoop
and its MapReduce programs. However, this information can be onerous as every Hadoop
node generates its own logs.

For instance, a fairly simple benchmark Sort workload running for 850 seconds on
a 5-node Hadoop cluster generates about 6.9MB of logs on each node, with each log
containing over 42,000 lines of logged statements. Furthermore, to reason about system-
wide, cross-node problems, the logs from each node must be collectively analyzed.

1.5 Understanding and Diagnosing MapReduce Systems
from Logs

Hence, the main focus of our work is to develop techniques for understanding the behav-
ior of Hadoop MapReduce programs by leveraging the information available in Hadoop’s
logs, with the goal of enabling performance debugging and failure diagnosis of MapRe-
duce programs and Hadoop clusters.

First, we tackle the problem of turning the glut of information available in Hadoop’s
logs into a meaningful form for understanding Hadoop and MapReduce program behavior
for diagnosis and performance debugging. We develop a novel technique for log-analysis
known as SALSA (SALSA: Analyzing Logs as State Machines, [TPK+08]), which when
applied to Hadoop, allows us to abstract Hadoop’s execution on each of its nodes as state-
machines and to extract these state-machine views of its behavior from the logs of each

4

Hadoop node.

The MapReduce framework affects program performance at the macro-scale through
task scheduling and data distribution. This macro behavior is hard to infer from low-level
language views because of the glut of detail and because this behavior results from the
framework outside of user code. For effective debugging, tools must expose MapReduce-
specific abstractions. This motivated us to capture Hadoop distributed data- and execution-
related behavior that impacts MapReduce performance.

We develop a technique called Mochi [TPK+09], which exposes these MapReduce
abstractions by extracting Hadoop’s behavior in terms of MapReduce abstractions. We
correlate the state-machine views of Hadoop’s execution across (i) multiple nodes, and (ii)
between the execution and filesystem layers, to build an abstraction of Hadoop’s system-
wide behavior. Doing so enables us to extract full-causal paths through Hadoop’s execu-
tion.

Finally, given the scale (number of nodes, tasks, interactions, durations) of Hadoop’s
programs, there is also a need to visualize a program’s distributed execution to support
debugging and to make it easier for users to detect any deviations from expected program
behavior/performance, and to automatically identify nodes contributing to a failure.

Thus, we use the SALSA-extracted state-machine views of Hadoop for automatically
diagnosing failures in Hadoop (§4.2), and we also build visualizations of MapReduce pro-
gram behavior (§5.3) to aid programmers in performance debugging of MapReduce pro-
grams.

1.6 Key Contributions

Our contributions are:

1. A technique for log analysis that extracts state-machine views of a system’s behavior
(§4.1.1)

2. A technique for correlating state-machine views across multiple nodes and between
data and execution elements in a system to build a conjoined distributed data-flow
and distributed control-flow model of its execution (Job-Centric Data-Flow, §4.1.2)

3. An algorithm for extracting these conjoined distributed data-flow and control-flow
views for MapReduce systems (§5.1.2, 5.1.3)

5

4. An algorithm for diagnosing failures in a MapReduce system given its state-machine
view (§4.2)

5. Visualizations of the behavior of a MapReduce program (§5.3)

6

Chapter 2

Motivation and Problem Statement

2.1 Motivation

To motivate the need for improved tools for performance debugging of MapReduce pro-
grams, we examine the existing tools available to Hadoop users. We show that these tools
are inadequate as they do not expose MapReduce-specific program behavior, and we de-
scribe where they can be improved to address the needs of users. We also survey posts
by users to the Hadoop users’ mailing list to motivate the need for better debugging tools
which present MapReduce-specific information. In addition, we survey the bugs reported
in Hadoop to motivate the need to automatically diagnose failures, in particular perfor-
mance faults, in Hadoop.

2.1.1 Existing Debugging Tools for MapReduce Systems and Hadoop

The main tools currently available to Hadoop users for debugging MapReduce programs
are traditional language-based debuggers for the underlying programming language for
writing MapReduce programs, such as Java in the case of Hadoop, the web console of
the Hadoop Master node JobTracker daemon, and the logs natively generated by each of
Hadoop’s nodes which record system activity. We describe each of these and show where
they fall short of the debugging needs of MapReduce programmers today.

7

Traditional Language-based Debuggers

The main tools used for performance debugging of MapReduce programs on Hadoop are
traditional language-based debuggers such as jstack and hprof which ship with the
Java SDK [Mur08].

jstack allows the inspection of the stack of Hadoop programs written in Java, while
jprof is a profiler that enables the collection of various program metrics such as thread
metrics, cycle counts, instructions counts, and heap usage. However, these profilers trace
single executions in great detail, and MapReduce programs consist of many Maps and
Reduces running in parallel. Thus, tracing every Map and Reduce in the program would
generate onerous amounts of information; although Hadoop allows the selective enabling
of profilers for a given number of Maps or Reduces, sampling reduces the coverage of data
collected.

Such generic language-based profiling tools do not provide direct insight into MapReduce-
specific parameters that affect performance, so that users would need to make their own
inference to relate the profiling data with MapReduce parameters–this would require sig-
nificant user experience with MapReduce. While new users may have trouble doing such
correlation, even experienced users would find the exercise onerous due to the overwhelm-
ing amount of information generated from programs running at large scales, e.g. with
many Maps and Reduces running on many cluster nodes. In addition, a significant factor
which affects MapReduce program behavior is the behavior of the MapReduce frame-
work itself, such as task scheduling and data placement. However, traditional language
debuggers allow the observation of only user-written Map and Reduce code, whereas the
framework behavior occurs in system-level Hadoop code rather than in user-written Map
or Reduce code, so that traditional debuggers would not be able to capture this behavior.

In addition, traditional profiling tools focus on latencies in program components, but
the performance of MapReduce programs is sensitive to the distribution of the amounts
of data processed as well–given identical Map and Reduce operations, differences in run-
times could arise from either data-skews (some Maps or Reduces having more data to
process than others) or underlying hardware failures. Also, such profiling tools trace only
single execution flows but do not correlate them; although recent tools [TSS+06, FPK+07]
perform causal tracing of execution across distributed systems, these tools produce fine-
grained views of the execution that may overwhelm users with information.

As a result, users can directly observe MapReduce programs only at the lower-level
of the specific language used (i.e. Java for Hadoop), but not at the higher level of the
MapReduce-specific abstractions such as Maps and Reduces that the MapReduce frame-
work imposes on the programs. It is difficult to infer the higher-level view from the lower-

8

level view due to the glut of detail from low-level profiling. This presents a major obsta-
cle to optimizing MapReduce programs, because program parameters change high-level
MapReduce-characteristics of the programs, and the distribution of data to Maps and Re-
duces is performed by the framework outside the scope of user code.

Hadoop Web Console

Reduce completion graph

Map completion graph

copy

sort

reduce

100
90
80
70
60
50
40
30
20
10

0

100
90
80
70
60
50
40
30
20
10

0

0 3 6 9 12 15 18 21 24 27

0 1 2 3 4 5

Maps completed
successfully

Reduces blocking on
map output from slow node

Figure 2.1: Screenshot of Hadoop’s web console. Vertical axes show the percentage com-
pletion of each Map (top graph) or Reduce (bottom graph), and the progress of each Map
or Reduce is plotted using a vertical bar. In this screenshot, the job had a single node
experiencing a 50% packet-loss, which caused all reducers across the system to stall.

Currently, the only built-in Hadoop user tool for monitoring the performance of a
Hadoop job is the web interface exposed by the JobTracker; while Hadoop also exposes
interfaces such as for collecting metrics using the Java Management Extensions (JMX),
these are programmatic interfaces not designed for general users and require administrator
access.

This web console reports, for a given MapReduce job, the duration of each Map and
Reduce task, the number of Maps and Reduces completed so far, and the cluster nodes
being used for the execution of the job. The web console is relatively simple, providing
only static instantaneous information about the completion times of tasks. Figure 2.1
shows a screenshot of the web console’s display of the task completion status at a particular

9

instant in time. The web console also provides links to a status page for each node, from
which users can follow links to the directory containing the Hadoop’s activity logs for that
node.

The web console is insufficient for debugging MapReduce programs for various rea-
sons. First, it presents only a static, instantaneous snapshot of the behavior of a MapRe-
duce program; users must continuously monitor the web console to study the dynamic
behavior of the program as it executes. Second, the web console does not perform any ag-
gregation of raw data or provide alternative views which may present additional insights
to users (see §4.3.2 for examples types of aggregation of Hadoop’s behavior along vari-
ous dimensions). Third, the web console presents only raw data without suggesting nor
highlighting where a problem may be present. Thus, users need to manually investigate
any problem by manually inspecting the data at individual nodes, which is not scalable for
large clusters.

Hadoop Logs

In its default configuration, each Hadoop node natively generates its own local logs which
record activities occurring on that node, such as tasks executed and errors and Exceptions
generated. These logs are described in more detail in §3.1.2. These are readily accessi-
ble to Hadoop users, and users frequently search through logs for Exceptions and error
messages to aid debugging. However, these logs are large, scaling linearly in size with
the number of nodes in the cluster, and can quickly become unwieldy (see sizes of logs
generated in §8.2.2). Hence, manually inspecting logs quickly becomes overwhelming,
and more scalable representations of the rich information captured in the logs is necessary.

Category Question Fraction
Configuration How many Maps/Reduces are efficient? Did I set a wrong

number of Reduces?
50%

Data behavior My Maps have lots of output, are they beating up nodes in
the shuffle?

30%

Runtime
behavior

Must all mapper s complete before reducers can run? What is
the performance impact of setting X? What are the execution
times of program parts?

50%

Table 2.1: Common queries on users’ mailing list

10

2.1.2 Hadoop Mailing List Survey

We studied messages posted on the Hadoop users’ mailing list [Apa08] from October
2008 to April 2009, and focused on questions from users about optimizing the behavior
of MapReduce programs (the other common kinds of questions were pertaining to “How
do I get my cluster running”, and “How do I write a first MapReduce program”, which
we excluded). Out of the 3400 posts, we found approximately 30 relevant posts. We list
common types of questions in Table 2.1, a simple categorization of the queries, and the
fraction of these posts they made up (some posts had multiple categories). All the user
questions focused on MapReduce-specific aspects of program behavior, and we found
that generally the answers tended to be from experienced users based on heuristically-
selected “magic-numbers” that might not work in different environments. Also, many
questions were on dynamic MapReduce-specific behavior, such as the relationships in
time (e.g. orders of execution), space (which tasks ran on which nodes), and amounts of
data in various program stages, showing a need for tools to extract such information. We
found a user query about tools for profiling the performance of MapReduce programs, and
the main answer was to use tools for profiling Java, but this runs into the problems we
described in §2.1.1.

2.1.3 Hadoop Bug Survey

Abort with exception

(27%)

Data loss/

corruption (7%)

Performance

problems (34%)

Resource leaks

(6%)

Value faults

(26%)

Figure 2.2: Manifestation of 415 Hadoop bugs in survey.

We conducted a survey of bugs in Hadoop reported via its Issue Tracker [Apa06] over

11

a two-year period from February 2007 to February 2009. The survey covered 415 closed
(resolved or otherwise declared not-resolvable) bugs in Hadoop’s MapReduce and HDFS
(Hadoop Distributed FileSystem) components. We classified these bugs by their manifes-
tation, as shown in Figure 2.2. Given our goal of remaining transparent to Hadoop and
amenable to production environments (§2.2.2), we have chosen to focus on faults with
manifestations that can be observed without code-level instrumentation. Of these bugs,
34% were performance problems, in which Hadoop ran slower than expected, 6% were
resource leaks, such as unusually high CPU or memory usage, and 27% were aborts with
exceptions. We omit value faults (26%) and data corruption/loss (7%) as these require se-
mantic knowledge from the application programmer and hence cannot be detected without
invasive instrumentation and programmer input.

Of these faults, performance problems and resource leaks can lead to degraded perfor-
mance in which programs run slower than they otherwise would without the presence of
these faults; it is important to diagnose these faults to improve the performance of MapRe-
duce programs and reduce their runtimes to improve their efficiency. Diagnosing degraded
performance in systems with long-running, batched jobs such as MapReduce is difficult
because it is difficult to impose, a priori, an expectation of the runtime of the job, as
opposed to systems which require and are designed around a specific latency target, e.g.
multi-tier web-request processing systems such as J2EE-based web services servicing web
clients, so that there are no easy Service Level Objectives (SLOs) that can be imposed to
identify when the system is failing. This renders it difficult to apply existing failure diag-
nosis techniques, which assume that an SLO has been violated, and seek the root-cause of
that violation (§9.2).

While aborts of individual map or reduce tasks in MapReduce programs can be tol-
erated by Hadoop’s fault-tolerance mechanism of re-executing failed tasks, being able to
diagnose these faults provides a window of opportunity for terminating these tasks earlier
if they have been diagnosed to be faulty but have not yet been aborted, reducing the time
taken for the job to complete overall. In addition, these faults that we target comprise a
significant 67% of reported bugs in Hadoop.

SALSA’s state-machine views of Hadoop’s behavior can be used to diagnose these
categories of faults based on our diagnostic hypothesis (§4.2.1), borne out by observation
(§7.1), that Hadoop’s slave nodes tend to behave similarly from the perspective of the run-
time of each of the states in their state-machine view. This hypothesis enables us to detect
nodes with states whose durations differ significantly from other nodes, and diagnose them
as being faulty.

12

2.2 Thesis Statement

State-machine views of MapReduce logs enable the extraction of distributed, causal,
control- and data-flow that facilitate problem diagnosis and visualization.

Our main approach is to build a novel abstraction of MapReduce behavior by utilizing
information found in Hadoop’s natively generated system activity logs. The key building
blocks of this abstraction are distributed control-flows, distributed data-flows, and con-
joined distributed data- and control-flows, which we term Job-Centric Data-Flows (JCDF)
(§4.1.2). We then present applications of these abstractions in automatically diagnosing
failures in Hadoop, and in visualizing Hadoop’s behavior to aid users in debugging perfor-
mance problems.

2.2.1 Hypothesis

We hypothesize that the coarse-grained control- and data-flow views of the execution of a
MapReduce system, as provided by our proposed novel abstraction of MapReduce behav-
ior, enables the diagnosis of performance problems in MapReduce systems.

We validate this hypothesis in §7.1 for the automated diagnosis of synthetically-injected
performance problems, and we validate the hypothesis for the detecting of problems using
visualizations of these coarse-grained views in real-world environments in §7.2.

2.2.2 Goals

The goals of this work are:

1. To expose MapReduce-specific behavior that results from the MapReduce frame-
work’s automatic execution and affects Hadoop’s program performance, such as
Maps and Reduces are executed and on which nodes, and where data inputs and
outputs flow from/to, and from/to which Maps and Reduces.

2. To construct an abstraction of MapReduce behavior that accounts for both the coarse-
grained behavior of user Map and Reduce code, as well as the automatic behaviors
of the MapReduce framework outside of the control of user code. The abstraction
must take into account both aspects of behavior inside and outside of the influence
of user code to allow the two to be reasoned about in unison.

13

3. To expose aggregate and dynamic behavior that can provide different insights. For
instance, in the time dimension, system views can be instantaneous or aggregated
across an entire job; in the space dimension, views can be of individual Maps and
Reduces or aggregated at each node.

4. To automatically diagnose performance problems with low false-positives. Our au-
tomated diagnosis algorithm based on SALSA’s state-machine views (§4.2) must
have a low false-positive rate, and a low false-negative rate (defined in §7.1.3), in-
dicting nodes if and only if they are truly the source of the fault, in order for the
diagnosis to be useful to end-users.

5. To remain transparent to Hadoop, without requiring additional instrumentation of
Hadoop, by either administrators to the framework, or by users in their own MapRe-
duce code. This greatly eases the use of our techniques for diagnosing problems and
visualizing the behavior of Hadoop MapReduce programs running on commodity,
default installations of Hadoop.

2.2.3 Non-Goals

The focus of our abstractions and visualizations are on exposing MapReduce-specific as-
pects of user program behavior, rather than behavior within individual Maps and Reduces.
Thus, the execution specifics and correctness of code within a user’s Map or Reduce is
outside of our scope, as these require finer-grained information which can be generated
using the language-specific tools described in §2.1.1.

Our diagnosis algorithm (§4.2) uses coarse-grained per-task information, and together
with our goal of remaining transparent to Hadoop and not requiring additional inserted
instrumentation, this limits the granularity to which we can perform diagnosis, so that fine-
grained diagnosis at the level of the line of code which is the root-cause of the problem is
outside of our scope.

Similarly, our visualizations of MapReduce behavior does not discover the root-cause
of performance problems, but aids in the process by enables users to gain useful insights
that they can exploit to discover the root-cause of problems.

2.2.4 Assumptions

We assume that the logs generated by each Hadoop node contain correct information about
the execution activity on that node. In particular Hadoop versions (prior to 0.21), we also

14

assume that timestamps across cluster nodes are synchronized, however, in newer versions
with new logging statements, this assumption is no longer required, as discussed in §8.2.1.
In addition, we also assume that a priori knowledge about the system’s execution (Hadoop
in the case of our work) is available for the SALSA extraction of state-machine views of
the system’s execution (see §4.1.1), and that this knowledge is correct.

15

16

Chapter 3

Background

3.1 MapReduce and Hadoop Architecture

3.1.1 MapReduce and Hadoop

MapReduce [DG04] is a framework that enables distributed, data-intensive, parallel appli-
cations by enabling a job described as a Map and a Reduce be decomposed into multiple
copies of Map and Reduce tasks and a massive data-set into smaller partitions, such that
each task processes a different partition in parallel. The framework also manages the
inputs and outputs of Maps and Reduces, and transparently performs the Shuffle stage,
which moves the outputs of Maps to Reduces. Hadoop is an open-source, Java implemen-
tation of MapReduce, and MapReduce programs consist of Map and Reduce tasks written
as Java classes.

Hadoop uses the Hadoop Distributed File System (HDFS), an implementation of the
Google Filesystem (GFS) [GGL03], to share data amongst the distributed tasks in the
system. HDFS splits and stores files as fixed-size blocks (except for the last block of each
file). One key difference between HDFS is that GFS supports file appends and multiple
concurrent appenders per file, while HDFS currently does not support file appends at the
time of this dissertation’s writing.

Hadoop uses a master-slave architecture, as shown in Figure 3.1, with a unique mas-
ter host and multiple slave hosts. The master host typically runs two daemons: (1) the
JobTracker that schedules and manages all of the tasks belonging to a running job, and
provides fault-tolerance by detecting node availability using periodic heartbeats and by
re-executing failed tasks and tasks on failed nodes; and (2) the NameNode that manages

17

Figure 3.1: Architecture of Hadoop, showing the locations of the system logs of interest
to us.

the HDFS namespace by providing a filename-to-block mapping, and regulates access to
files by clients (i.e., the executing tasks). Each slave host runs two daemons: (1) the Task-
Tracker that launches tasks on its host, as directed by the JobTracker; the TaskTracker also
tracks the progress of each task on its host; and (2) the DataNode that serves data blocks
from its local disk to HDFS clients.

Each daemon on each Hadoop node (both master and slave nodes) natively generates
logs which record its execution activities, as well as error messages and Java Exceptions.
The logging architecture in Hadoop is described in detail next.

3.1.2 Logging in Hadoop

Hadoop uses the Java-based log4j logging utility to capture logs of Hadoop’s execution
on every host. log4j provides an interface to a configurable, standardized logging facil-
ity across various components of a large application. This enable programmers to easily
standardize the formats of their log messages, and configure the format of log messages
without modifying their source code or recompiling their application. log4j also en-
ables the configuration of log sinks and provides convenient utilities such as the periodic
rolling of logs, and also allows programmers to specify the severity of log messages so that
application users can approximately specify the desired level of log message verbosity.

By default, Hadoop’s log4j configuration generates a separate log for each of the
daemons– the JobTracker, NameNode, TaskTracker and DataNode; these logs are stored

18

Hadoop source-code
LOG. i n f o (” LaunchTaskAct ion : ” + t . g e t T a s k I d ()) ;
LOG. i n f o (r e d u c e I d + ” Copying ” + l o c . getMapTaskId ()

+ ” o u t p u t from ” + l o c . g e t H o s t () + ” . ”) ;

⇓ TaskTracker log
2008−08−23 1 7 : 1 2 : 3 2 , 4 6 6 INFO

org . apache . hadoop . mapred . T a s k T r a c k e r :
LaunchTaskAct ion : t a s k 0 0 0 1 m 0 0 0 0 0 3 0

2008−08−23 1 7 : 1 3 : 2 2 , 4 5 0 INFO
org . apache . hadoop . mapred . TaskRunner :
t a s k 0 0 0 1 r 0 0 0 0 0 2 0 Copying
t a s k 0 0 0 1 m 0 0 0 0 0 1 0 o u t p u t from fp30 . p d l . cmu . l o c a l

Figure 3.2: log4j-generated TaskTracker log entries. Dependencies on task execution
on local and remote hosts are captured by the TaskTracker log.

on the local filesystem of the executing daemon. In addition, Hadoop’s use of log4j
inserts the class name of the reporting class that generated the log message.

Typically, system logs (such as syslogs) record events in the system, as well as error
messages and exceptions. However, Hadoop’s log messages provide more information
than typical system logs. They record the execution activities on each daemon, such as
block reads and writes on DataNodes, and the beginning and end of Map and Reduce
task executions on TaskTrackers. Hadoop’s default log4j configuration generates time-
stamped log entries with a specific format. Figure 3.2 shows a snippet of a TaskTracker
log, and Figure 3.3 a snippet of a DataNode log.

3.2 Chukwa Log Aggregation and Analysis Framework

Next, we describe the Chukwa [BKQ+08] log aggregation framework. We implement our
SALSA state-machine extraction and Mochi JCDF construction, and the accompanying
visualization widgets and tools as extensions to Chukwa, which we describe in §6.1.2.

Chukwa is a framework for large-scale monitoring, log collection and aggregation for
collecting logs and monitored data from large clusters, and to store them in a scalable fash-
ion, providing automated aggregation to downsample metrics and log data collected from
earlier intervals. A typical deployment of Chukwa would involve Adaptors and Agent
daemons (§3.2.1) running on each monitored node, and a dedicated monitoring and col-
lection cluster which runs Collector daemons and a Hadoop cluster, whose HDFS instance

19

Hadoop source-code
LOG. debug (” Number o f a c t i v e c o n n e c t i o n s i s : ”+ x c e i v e r C o u n t) ;
LOG. i n f o (” Rece ived b l o c k ” + b + ” from ” +

s . g e t I n e t A d d r e s s () + ” and m i r r o r e d t o ”
+ m i r r o r T a r g e t) ;

LOG. i n f o (” Served b l o c k ” + b + ” t o ” + s . g e t I n e t A d d r e s s ()) ;

⇓ DataNode log
2008−08−25 1 6 : 2 4 : 1 2 , 6 0 3 INFO

org . apache . hadoop . d f s . DataNode :
Number o f a c t i v e c o n n e c t i o n s i s : 1

2008−08−25 1 6 : 2 4 : 1 2 , 6 1 1 INFO
org . apache . hadoop . d f s . DataNode :
Rece ived b l o c k blk 8410448073201003521 from
/ 1 7 2 . 1 9 . 1 4 5 . 1 3 1 and m i r r o r e d t o
/ 1 7 2 . 1 9 . 1 4 5 . 1 3 9 : 5 0 0 1 0

2008−08−25 1 6 : 2 4 : 1 3 , 8 5 5 INFO
org . apache . hadoop . d f s . DataNode :
Served b l o c k blk 2709732651136341108 t o
/ 1 7 2 . 1 9 . 1 4 5 . 1 3 1

Figure 3.3: log4j-generated DataNode log. Local and remote data dependencies are
captured.

provides the storage back-end for Chukwa-collected logs. Log aggregation and analysis
tasks are then executed as MapReduce jobs on this Hadoop cluster. We distinguish the
clusters involved as the Chukwa Hadoop cluster, which stores monitored data and runs log
aggregation jobs, and the monitored Hadoop cluster, which Chukwa monitors, but does
not run on. The same Hadoop cluster that is being monitored can also be used to moni-
tor itself. However, this requires the Hadoop JobTracker to support multiple job queues
to avoid having the Demux (§3.2.2) MapReduce job hog the job queue with Demux jobs
submitted faster than they can be completed.

3.2.1 Monitoring, Log Collection, and Log Aggregation

The Chukwa monitoring and log collection architecture consists of three components: the
Adaptor, the Agent, and the Collector. The Adaptor is a per-source driver which inter-
faces with the actual data source on the monitored node; for instance, Chukwa ships with
Adaptors which perform a periodic tail on plain text files to collect new log lines, and
Adaptors which query the proc interface of Linux hosts for OS metrics. The Agent is a
per-host daemon process which manages Adaptors by sending new metrics and log data
to the Collectors using HTTP Post. The Collector is a daemon which writes received met-

20

ric data to the HDFS instance on the Chukwa Hadoop cluster, and the Collector manages
HDFS’s inefficiency with small files by collating log and metrics data in open files un-
til they are sufficiently large before the files are closed. These Collector-written files are
known as data sink files, and they contain raw log data, with each record corresponding to
a single item of sampling data (i.e. single log message, or single sample of numerical met-
rics), and tagged with a record type to select the appropriate post-processor for that record.
Agents send data to Collectors periodically in the time-scale of seconds, while Collectors
close their data sink files, making them available for post-processing, in the time-scale of
minutes.

3.2.2 Log Processing and Analysis

The main log data post-processing phase currently available in Chukwa is the Demux
(short for Demultiplexer), which is a MapReduce job for Hadoop written in Java. The
Demux demultiplexes the different types of log and metric data in the data sink files, and
for each record, invokes the appropriate Mapper and Reducer classes based on the record
type tagged with the record by the source Adaptor. Chukwa ships with a collection of
commonly used post-processors for data such as OS metrics from proc and Hadoop’s
logs to split log messages into timestamps, logging severity level, and log message1. This
semi-structured data is then currently loaded into a MySQL database for visualization.

Chukwa currently does not provide any additional log-processing and analysis tools in
addition to the simple loading of metrics into structured storage.

In the context of Chukwa-collected log data, SALSA and Mochi abstractions (state-
machine views, Job-Centric Data-Flows) can be generated by processing the output of the
Demux phase. SALSA and Mochi inject semantic knowledge of Hadoop to build rich
views of Hadoop’s behavior based on the data collected by Chukwa. In §6.1.2 we imple-
ment SALSA and Mochi view construction as MapReduce jobs which directly leverage
data collected by Chukwa, and can be run on the Chukwa Hadoop cluster to process the
Chukwa-collected data to generate the SALSA and Mochi views.

1SALSA (§4.1.1) can leverage this semi-structured data to generate state-machine views, although this
semi-structured representation merely tokenizes the log messages, and falls far short of SALSA’s richer
view.

21

22

Chapter 4

Approach

We describe our overall approach to characterizing the behavior of Hadoop MapReduce
programs for performance debugging and failure diagnosis by: (i) constructing abstract
views of MapReduce behavior from Hadoop’s logs, (ii) diagnosing failures from these
abstract views, and (iii) visualizing the behavior of MapReduce programs from our abstract
views.

This overall approach is as summarized in Figure 4.1.

Distributed FileSystem (HDFS)
statemachine view (pernode)

Execution (MapReduce) layer
statemachine view (pernode)

Conjoined Controlflow + Dataflow:
Job-Centric Data-Flow (JCDF) (across

all nodes)

Causal flows of data and processing:
Realized Execution Paths (REP)

S
A

LS
A

In
te

rm
e
d

ia
te

A
b

st
ra

ct
io

n
s

V
is

u
a
liz

a
ti

o
n

Space-tim
e View

Tim
e-volume View

Tim
e-volume,

Space-volume View

Whitebox
Diagnosis
Algorithm

Figure 4.1: Overall approach to MapReduce program performance debugging and failure
diagnosing using Hadoop’s logs.

23

4.1 Abstract State-Machine Views

4.1.1 SALSA: Node-Local State-Machine Views

SALSA is a general technique for analyzing logs which describe system execution in terms
of control-flows and data-flows in the system, and for extracting these potentially dis-
tributed1 control-flows and data-flows from the system’s logs, given a priori knowledge
about the structure of the system’s execution. Such a priori knowledge comprises the pos-
sible states of execution in the system, the orders in which they execute, and the tokens
in log statements corresponding to the execution of these states. SALSA does not infer
the correct state-machine model of a system’s execution (see §8.2.3 for a discussion on
how our work differs from formal verification using state-machine models). Rather, given
the state-machine model of a system’s execution, SALSA extracts the runtime properties
(duration of state execution, data-flows between states) of the state-machine as the system
executes to describe the system’s control-flows and data-flows. Concretely, control-flows
refer to the orders in which execution activities occur, and the times at which they begin
and end (and consequently the duration for which the system was executing the particu-
lar activity); data-flows can be considered to be implicit control-flows, and they refer to
explicit data-items being transmitted from one execution activity to another.

Illustrative Example

To describe SALSA’s high-level operation, consider a distributed system with many pro-
ducers, P1, P2, ..., and many consumers, C1, C2, Many producers and consumers can
be running on any host at any point in time. Consider one execution trace of two tasks, P1
and C1 on a host X (and task P2 on host Y) as captured by a sequence of time-stamped
log entries at host X:
[t 1] Begin Task P1
[t 2] Begin Task C1
[t 3] Task P1 does some work
[t 4] Task C1 w a i t s f o r d a t a from P1 and P2
[t 5] Task P1 p r o d u c e s d a t a
[t 6] Task C1 consumes d a t a from P1 on h o s t X
[t 7] Task P1 ends
[t 8] Task C1 consumes d a t a from P2 on h o s t Y
[t 9] Task C1 ends

:

1If the control-flows and data-flows are distributed in nature and pass from one node to another in a dis-
tributed system, the unified control- and data-flow can be reconstructed as a Job-Centric Data-Flow (§4.1.2)

24

From the log, it is clear that the executions (control-flows) of P1 and C1 interleave on
host X . It is also clear that the log captures a data-flow for C1 with P1 and P2.

SALSA interprets this log of events/activities as a sequence of states. For example,
SALSA considers the period [t1, t6] to represent the duration of state P1 (where a state
has well-defined entry and exit points corresponding to the start and the end, respectively,
of task P1). Other states that can be derived from this log include the state C1, the data-
consume state for C1 (the period during which C1 is consuming data from its producers,
P1 and P2), etc. Based on these derived state-machines (in this case, one for P1 and
another for C1), SALSA can derive interesting statistics, such as the durations of states.
SALSA can then compare these statistics and the sequences of states across hosts in the
system, specifically to construct Job-Centric Data-Flows (§4.1.2).

In addition, SALSA can extract data-flow models, e.g., the fact that P1 depends on
data from its local host, X , as well as a remote host, Y . The data-flow model can be useful
to visualize and examine any data-flow bottlenecks or dependencies that can cause failures
to escalate across hosts.

Control-flow

Generalizing from the above example, considering each processing activity of interest in
the target system as a state, SALSA is able to infer the execution of the state if two (times-
tamped) log messages appear for the state –one indicating the beginning the state’s execu-
tion, and one indicating the end of its execution. To build a state-machine view, SALSA
requires prior knowledge (expert input by a knowledgeable user) about the possible states
of execution and the orders of execution of the different types of states (i.e. which states
of execution are possible, and what is the normal sequence of their execution).

Also, if multiple concurrent threads of execution in the system are possible, and each
thread executes its own independent state machine, then each state also requires a unique
identifier of its thread of execution. Hence, SALSA needs a thread identifier (for concur-
rent systems), and two distinct types of log messages, one indicating the beginning and one
indicating the end, to identify the execution of each type of state in the state-machine view.
When control passes from one state to another along the same causal flow, this thread iden-
tifier can also take the form of a unique identifier shared by the preceding and subsequent
state in the sequence, e.g. if control always flows from state SA to state SB, then as long as
SA and SB both emit log messages with the same identifier along the same thread, and this
identifier is unique among all pairs of SA → SB transitions, then the state-machine can be
reconstructed. This is illustrated in Figure 4.2, where there are two concurrent threads of
execution, each with its unique thread identifier emitted in the log message, and these two

25

concurrent threads of execution logged in the same same log can be disambiguated given
the thread identifiers.

[T= 0] (Thread 1) State A (ID 1) Begin
[T= 0] (Thread 2) State A (ID 2) Begin
[T=10] (Thread 2) State A (ID 2) End
[T=10] (Thread 2) State B (ID 1) Begin
[T=12] (Thread 1) State A (ID 1) End
[T=12] (Thread 1) State B (ID 2) Begin
[T=15] (Thread 2) State B (ID 1) End
[T=16] (Thread 1) State B (ID 2) End

State A

State B

State A (ID Thread1_A1)

State B (ID Thread1_B2)

 12 seconds

 4 seconds

State A (ID Thread2_A2)

State B (ID Thread2_B1)

 10 seconds

 5 seconds

Figure 4.2: Illustration of (i) abstract state-machine on left, and two realized instantiations
of the abstract state-machine; (ii) concurrent threads of execution in log (above) shown as
two disambiguated state-machines on right.

In effect, SALSA’s value lies in extracting all actual realized executions, or instantia-
tions, of an abstract, “template” state-machine representation of its behavior, and filling in
actual latencies along edges in the state-machine. This is as illustrated in Figure 4.2. While
this precludes SALSA from detecting wrong or invalid sequences of execution, such tech-
niques belong in the realm of formal software verification, while our target failures (§2.1.3)
are performance faults rather than semantically wrong executions. We discuss this issue
further in §8.2.3.

26

Data-flow

For each explicit data-flow, i.e. transfer of an explicit data item from one processing
activity to another, SALSA requires knowledge about the source and destination hosts,
source and destination processing activities, the volume of data transmitted, and the du-
ration taken for the transfer of that data item, to fully define the distributed data-flow that
occurred.

This information can either be in the form of prior expert knowledge, explicitly en-
coded in log messages, or inferred via external mechanisms. For instance, if the hostnames
of source and destination hosts are unavailable, but information about the source and des-
tination processing activities, as well as the hosts they executed on, are available, then the
source and destination hostnames can be inferred.

Also, the information can be logged on different nodes, as long as they can be causally
correlated. For instance, all of the information can be recorded on only the log of the
source host of the transaction. However, if information is logged across multiple hosts
(i.e. partially logged on source and partially logged on destination hosts), then it must
be possible for the information to be correlated in an unambiguous way. We describe the
limitations if this requirement is not met, and how we worked around this limitation in
particular Hadoop versions, in §5.1.2.

Node-local State-Machine Views

In [TPK+08], SALSA extracted node-local views of the state- machine views of the ex-
ecution on each node in a distributed system (as was demonstrated with Hadoop). Each
node’s log was independently analyzed to extract the states that executed on that particular
node’s control-flow, and distributed control-flows, where control passed from one node
to another, were captured on the particular node that they were logged, e.g. only on the
source where control originated from if the distributed flow was logged on the source node.
Similarly, each node’s log was analyzed to extract distributed data-flows, as viewed from
the node on which they were logged.

Hence, SALSA’s log analysis extracts node-local state-machine views of a distributed
control- and data-flow, and extracts the control-flows and data-flows separately, and on a
per-node basis. While these views show the activity on each node, they do not, on their
own, reflect the full causality of processing in the system. Instead, they form the building
blocks for the full distributed unified control-flow and data-flow, which we describe next
in §4.1.2.

27

4.1.2 Job-Centric Data-Flows: Global System View

Next, we describe the full causality of processing in a MapReduce system, i.e. all of
the data and processing pathways that a MapReduce program goes through. We call this
abstraction a Job-Centric Data-Flow, and each JCDF is an abstraction of the execution of
a single program.

The abstraction of these processing pathways is built on SALSA’s node-local state-
machine views. We call this view of all the data and processing pathways a Job-Centric
Data-Flow, because we consider both the processing that makes up the job, and the data-
flows necessary for the input of data to and output of data from the job, in the context of
the actual job processing.

Intuition

In a data-intensive programming model such as MapReduce, both processing activities,
such as Maps and Reduces in MapReduce, and the explicit movement of data items, such
as the reading of inputs from and writing of outputs to the distributed filesystem (HDFS
in the case of Hadoop) constitute significant consumption of system resources in terms of
both time taken for data processing and data movement, and storage in terms of volatile
storage (i.e main memory) on processing nodes and persistent storage (i.e. disk drives) on
storage nodes.

In addition, when such programming models are realized in a distributed fashion across
multiple nodes, the spatial characteristics of the processing also become important, be-
cause imbalances in data volumes or processing loads on nodes can lead to inefficient
program execution. For instance, in the case of nodes with homogeneous processing ca-
pabilities, if a particular node needs to process more data than another, then the overall job
completion time can be reduced by redistributing the load more evenly.

Hence, the abstraction of a Job-Centric Data-Flow aims to capture the overall execu-
tion of a data-intensive application such as a MapReduce application by representing the
program in terms of the times taken to process data, the volumes of data processed, and
the spatial characteristics of where data is processed, and how much.

JCDF: Processing Graph

First, we introduce the JCDF concretely as a directed graph, with processing items form-
ing its vertices. These processing items can be data items (i.e. explicit data items such

28

as a block in HDFS in Hadoop) or control items (i.e. processing states as in SALSA’s
state-machine views). This reflects the property of data-intensive applications that both
data and control items lie on the critical path [HPG02] of processing. These vertices re-
flect only logical divisions into data items or control items, and do not reflect physical
host boundaries on which the items were stored (data items) or executed (control items).
Nonetheless, this information is available and we store this information with the meta-data
associated with each vertex, and we leave abstractions that explicitly account for these host
boundaries to future work.

Next, the directed edges in the JCDF represent causality from one processing item to
the next. For instance, in MapReduce (see §5.1.2 for the complete example), when a Map
reads a block from HDFS as its input, in the JCDF, we represent this relationship with
a vertex representing the Map as it is a control item, a vertex representing the input data
block as it is a data item, and we add a directed edge from the input data block to the Map
as the Map depends on data from the input block.

Then, we annotate each edge with two values: the first is the volume of data processed
along that edge, i.e. the size of the input block read by the Map in our example above, and
the second is the time taken along that edge, i.e. the time taken for the Map to read the
input block. Alternatively, the JCDF can also be thought of as two directed graphs, with
the first having all edges with weights representing the volumes of data processed, and the
second having all edges representing the times taken for the processing.

Hence, in a system with a large number of interdependencies between processing
stages, the JCDF for that program would be a complex, dense, directed graph. We de-
scribe the specific JCDF for Hadoop MapReduce applications in §5.1.2.

4.1.3 Realized Execution Paths: Causal Flows

Finally, each path beginning from a vertex with zero in-degree and ending at a vertex with
zero out-degree in the Job-Centric Data-Flow directed graph represents a single thread of
causality in the system. Hence, these are end-to-end paths in the JCDF graph, and we call
these single threads of executions Realized Execution Paths (REP), because they represent
a single persistent flow through the system. Note that each REP can begin its execution
at different points in time. The REP in the directed graph with edge weights denoting
processing times, that has the longest path length, is then the critical path [HPG02] of
processing in the system. By definition, the REPs in a given JCDF are simply all possible
paths in the JCDF, and these can be extracted using any standard graph algorithm such as
Depth-First Search.

29

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

state duration (ms)

pr
ob

ab
ili

ty
 d

en
si

ty

distribution
at faulty node

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

state duration (ms)

pr
ob

ab
ili

ty
 d

en
si

ty

distribution at
fault−free node

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

state duration (ms)

pr
ob

ab
ili

ty
 d

en
si

ty

distribution at
fault−free node

Figure 4.3: Visual illustration of the intuition behind comparing probability distributions
of durations of the WriteBlock state across DataNodes on the slave nodes.

4.2 Diagnosis

Next, we provide an overview of our approach to automatically diagnosing the faulty node
responsible for causing a performance fault, in which the execution of the MapReduce
system is slower and completes in more time than it would otherwise without the presence
of the fault.

Our main data-source for diagnosing faults consists of the durations of the node-local
views of the states on each node extracted using SALSA as described in §4.1.1. Given the
durations of all instances of a particular state, the algorithm then returns the node(s) that
are responsible for a performance fault in the system; if this set of nodes returned is empty,
this indicates that no performance fault is diagnosed in the system.

4.2.1 Intuition and Diagnostic Hypothesis

For all occurrences of a particular state (e.g. all Maps) in the execution of the system, we
can compute a histogram of the durations of that state that executed on each node, for each
node in the system. We observed that the histograms of durations of a given state tend to
be similar across different nodes in the system in the absence of faulty conditions. When a
fault is introduced or is present on a small subset of nodes, then the histogram of durations
on these faulty nodes tend to differ from those of other nodes with no faults present, as we
show in Figure 4.3.

Thus, we hypothesize that failures can be diagnosed by comparing the probability
distributions of the durations (as estimated from their histograms) for a given state across
hosts, assuming that a failure affects fewer than n

2
hosts in a cluster of n slave hosts.

30

4.2.2 Synopsis of Algorithm

The diagnosis algorithm can be implemented as an incremental one–this is done by consid-
ering durations of states within particular windows of time, and comparing the durations
of only states that occur in the same window. The algorithm can thus also be implemented
as an offline one by setting the window size to be as large as the duration of the entire
experiment.

The algorithm consists of two stages. The first stage involves constructing a histogram
of durations of a given state on each node; one challenge of this stage of the algorithm
is to deal with potentially sparse data when there are few occurrences of the state in the
window. The second stage involves comparing histograms across nodes. This involves
computing a distance measure for each node’s histogram, to the histograms of every other
node in the system. The distance measure is then thresholded, and a node is indicted as
faulty if its distance measure to more than n−1

2
of the other nodes in the system is greater

than the threshold. 2

4.3 Visualization of MapReduce Behavior

Next, we describe the high-level ideas behind our visualization of MapReduce program
behavior based on our abstract state-machine views described in §4.1.

4.3.1 Aspects of Behavior

Our visualizations expose subsets of aspects of MapReduce behavior that affect program
performance (in terms of job completion times). These aspects of behavior are exactly
those described in the intuition of the Job-Centric Data-Flow (JCDF) abstraction (§4.1.2),
and they are the times taken for each processing item (time), the sizes of data processed,
i.e. either input sizes to control-items or data-sizes of data-items (volume), and the lo-
cation, i.e. the particular node in a large cluster, where the processing occurred (space).
Hence, our visualizations expose MapReduce behavior along combinations of the dimen-
sions of time, space, and volume of the processing items, as well as the causality of the

2Alternatively, a global histogram of all state occurrences on every node can be computed, and nodes
with distance measures to the global histogram exceeding a particular threshold can be indicted; this yields a
comparison cost of O(n) for an n-node cluster, although the global histogram construction would cost O(n)
as well.

31

processing items. In each visualization, we picked some dimensions along which to ag-
gregate program behavior, and some dimensions along which to expose program behavior,
to present different views which can give rise to different insights about program behavior.

4.3.2 Aggregations

Next, we describe the dimensions along which we chose to show MapReduce behavior,
and dimensions along which we chose to aggregate behavior, and we describe the insights
about behavior that the choices of dimensions to aggregate along and dimensions to show
can yield. We describe the intuitions behind each of our visualizations, and describe them
concretely in §5.3

These choices of dimensions for aggregating and showing behavior resulted in the
three visualizations described in §5.3, namely the “Swimlanes”, “MIROS” (Map Inputs,
Reduce Outputs, and Shuffles), and REP plots.

First, in the “Swimlanes” visualization, we choose to show behavior along the dimen-
sions of time and space, i.e. when in (wall-clock) time states were being executed, and
on which nodes they were being executed. We choose to omit showing behavior along
the volume dimension in our first visualization to keep the visualizations simple. Also,
showing behavior only along the dimensions of time and space allows users to think about
program execution in traditional imperative programming models, which focus on how
long programs take to execute each segment of code. Hence, this view of MapReduce
program behavior most closely resembles that of traditional profilers, albeit at a coarser
granularity of Maps and Reduces rather than individual function calls, to allow users to
think in terms of MapReduce abstractions.

Second, in the “MIROS” visualization, we choose to show behavior aggregated across
time for the duration of an entire job, and we show the volumes of data when plotted
against the host on which states (Maps, Reduces, Shuffles) ran, aggregating on a per-host
basis. Aggregating in time provides a useful summary to users as it allows them to consider
the overall equality of data volumes processed across hosts. Aggregating in space on a per-
host basis is useful because the network bandwidth between hosts is significantly smaller
than the bandwidth within a host (i.e. the system and memory buses) so that data volumes
moved across hosts would cost significantly more in terms of latency than data volumes
moved within hosts.

Finally, in the REP visualization, we show behaviors on a per-flow basis for each
causal flow, as corresponding to each end-to-end REP path. We aggregate across flows by
clustering similar flows before showing their behavior to enable scalable visualization. For

32

each cluster of similar flows, we show volumes of each stage of execution, and the times
taken for each stage of execution. We omit the spatial information in this visualization as
the main focus is on the data volumes processed and times taken along each causal flow,
and each flow can span multiple hosts.

33

34

Chapter 5

Methodology

5.1 Abstracting MapReduce Behavior

Next, we describe the specific instantiations of the SALSA state-machine view of node-
local execution, the Job-Centric Data-Flow (JCDF) directed graph view of global execu-
tion, and the Realized Execution Path (REP) causal flows, for data-intensive applications,
when applied to MapReduce systems, and specifically to Hadoop and its Hadoop Dis-
tributed Filesystem (HDFS).

5.1.1 SALSA: Hadoop’s Node-Local State-Machines

We describe Hadoop’s state-machines of execution when SALSA is applied to abstract
Hadoop’s execution. These state-machine views are of local executions on each node,
and we derive one state-machine for the execution of the TaskTracker daemons, and one
for the execution of the DataNode daemons. The state-machine view of the TaskTracker
daemon encodes both the control-flow of Map and Reduce executions, and the data-flow
from Maps to Reduces, while the state-machine view of the DataNode daemon encodes
the data-flow between DataNodes and HDFS clients, which can either be other DataNodes
(e.g. replication), Maps or Reduces running on TaskTrackers, or command-line clients
(which we exclude from consideration in this work). We describe these state-machines in
detail next.

35

Control-Flows

The main states of execution of control items in a Hadoop MapReduce program are Maps
and Reduces. In addition, control passes from Maps to Reduces via the Shuffle (also
known as ReduceCopy, named for Reduces copying the outputs of Maps) stage, which
is transparent to user programs and is executed by the framework to copy the outputs of
Maps to the relevant Reduces where they are needed. However, control can pass from a
single Map to multiple Reduces when a Map’s output is needed by multiple Reduces, and
can pass from multiple Maps to a single Reduce, when the Reduce depends on the outputs
of multiple Maps for its input.

In addition, the Reduce state of execution can be further broken down into two finer-
grained states: the first, which we call ShuffleWait (or ReduceCopyReceive), is the time
the Reduce spends waiting for the outputs of all the Maps it depends on to be copied. Each
Reduce needs to wait for all Maps to be completed before it can begin execution, because
any Map could potentially generate an output key that the particular Reduce is responsi-
ble for processing. Hence, the ShuffleWait state represents a synchronization point in the
control-flow during which it waits for all Maps to complete. The ShuffleWait state within
the Reduce state is managed by the framework and transparent to user code, while the sec-
ond state is the user-written Reduce code, which we call the Reducer (to be distinguished
from the broader, coarser-grained Reduce state).

Map Shuffle ShuffleWait Reducer

Figure 5.1: States in the state-machine view of Hadoop’s control-flow

Hence, the control-flow in Hadoop’s MapReduce programs extracted by SALSA con-
sists of, in order of their occurrence in time, the Map, Shuffle, ShuffleWait, and Reducer
states, along each independent thread of execution. In addition, the causality along each
thread of execution (i.e. which Maps pass control to which Reduces) is preserved by means
of unique identifiers of Maps and Reduces emitted in log messages indicating the begin-
ning and end of each state, together with the data-flows (described next) described in the
Shuffle log messages, which indicate the source Maps and destination Reduces by their
unique identifiers. These states form the state-machine view of Hadoop’s control-flow.
This is as illustrated in Figure 5.1.

36

Data-Flows

There are two types of data-flows in Hadoop MapReduce programs: the first being the
movement of data blocks written to and read from HDFS to and from DataNodes, and the
second being the movement of Map outputs to Reduces to be input to Reduces.

In the HDFS data-flows, the two main states of execution of the DataNodes are block
reads (ReadBlock) and block writes (WriteBlock) between DataNodes, and HDFS clients,
which can be Maps and Reduces, or other Datanodes. We further distinguish between
local and remote block reads (i.e. whether the HDFS client is on the same host as the
DataNode), and replicated block writes (due to HDFS triplication of stored blocks). These
states exactly encode the data-flows at the HDFS layer. These data-flows are captured by
means of the source and destination hosts taking part in the transaction, as recorded in
Hadoop’s log messages for each block read and write.

The data-flows between Maps and Reduces in TaskTrackers occurs at the Shuffle stage.
These data-flows are captured in the source Map ID and destination Reduce ID recorded
along with each log message for each Shuffle.

5.1.2 Job-Centric Data-Flows

Next, we describe concretely the Job-Centric Data-Flow for Hadoop MapReduce pro-
grams, and briefly describe how it is constructed from the SALSA- extracted control-flows
and data-flows of MapReduce execution as described in §5.1.1.

HDFS data
block

HDFS data
block

Map output
split

Reduce
Input

Map Shuffle ReduceShuffle
Wait

Figure 5.2: Control-items (ellipses in red) and data-items (boxes in green) of states in the
state-machine view of Hadoop’s execution

37

First, the control-items in Hadoop’s MapReduce JCDF are the Map, Shuffle, Shuffle-
Wait, and Reducer states, and the data-items in the JCDF are the ReadBlock and Write-
Block states, and the Map-Output items which are the inputs to the Shuffle state, and the
Reduce-Input items, which are the outputs from the Shuffle state. These are as shown in
Figure 5.2.

Second, the JCDF is formed by effectively “stitching” together control- and data-items,
by identifying the input and output data-items of each control-item. Concretely: (i) the
ReadBlock data-item states are the inputs to the Map control-item; (ii) the Map-Output
data-items are the outputs of the Map control-item; (iii) the Map-Output data-items are
also the inputs to the Shuffle control-item; (iv) the Shuffle control-item passes control
directly to the ShuffleWait state to block while waiting for all Shuffles to be received; (v)
the Reduce-Input data-items are the outputs from the ShuffleWait control-item; (vi) the
Reduce-Input data-items are the inputs to the Reducer control-item; (vii) the WriteBlock
data-items are the outputs from the Reducer control-item. This is as illustrated in Figure
5.3.

HDFS data
block

HDFS data
block

Map output
split

Reduce
Input

Map Shuffle ReduceShuffle
Wait

Figure 5.3: Job-Centric Data-Flow formed by “stitching” together control-items (ellipses
in red) and data-items (boxes in green) of Hadoop’s execution states. The directed edges
show the direction of the full causality of execution in a MapReduce program.

Vertices are created for each control- and data-item, and edges are added between
control- and data-items as corresponding to which specific data-items are inputs to and
outputs from which control-items, as described. The determination of which data-items
are inputs to/outputs from each control- item is as follows. These are clearly marked as
the source Map/destination Reduce for Shuffles and their Map-Output and Reduce-Input
data-items. In the case of Maps and their input ReadBlock data-item states, at present, we
correlate in time the destination host of a ReadBlock state with the Maps that are executing
on that same host; hence, if a ReadBlock occurs with block bi being read to host A, and
Map mj is executing on host A at the same time, then we say that the ReadBlock state

38

of bi is an input to the control-item Map mj . Note that multiple Maps can be executing
on a given host at the same time; in this case, we attribute the ReadBlock of block bi
to every Map executing on host A at the same time; this captures a superset of the true
causal paths1. Similarly, we correlate in time the source host of a WriteBlock state with
the Reduces that are executing on the same host. This does not result in any spurious
causal paths being generated. However, the current Hadoop DataNode logging has been
augmented in version 0.21 to include the client ID of the HDFS client in WriteBlock and
ReadBlock states, which includes the Map ID or Reduce ID of the writer or reader of the
block, which would completely eliminate this issue of spurious causal edges generated.

Hence, this forms the directed JCDF graph of full control- and data-flows in a MapRe-
duce program in Hadoop, with the vertices representing the ShuffleWait state potentially
having out-degree > 1 when the output of a Map is read by multiple Reduces, and the
vertices representing the Reducer state potentially having out-degree > 1 when a Reducer
writes to multiple data-blocks in HDFS. The vertices representing Map states typically
have in-degree 1 because Hadoop creates one Map for each input data-block (if no spuri-
ous edges are generated); they also have out-degree 1 because each Map logically creates
one output item. Each Shuffle state corresponds to exactly one Map, as it serves the output
of exactly that Map, so that vertices representing Shuffle states always have in-degree of
1. Also, each Reducer has exactly one ShuffleWait state, so that the ShuffleWait vertex
always has an out-degree of 1.

5.1.3 Realized Execution Paths

Finally, the Realized Execution Paths (REP) are simply paths that begin from vertices with
in-degree 0 in the JCDF, and that end on vertices with out-degree 0. Hence, in the case of
Hadoop MapReduce programs, REPs begin on ReadBlock states, and end on WriteBlock
states, traversing the following states in each path: ReadBlock, Map, Map-Output, Shuffle,
Reduce-Input, ShuffleWait, Reducer, WriteBlock. Then, the edges are each weighted with
either the duration taken for that transition, or with the volume of data processed or moved
for that transition. These edge values are summarized in Table 5.1.

Each REP represents a single causal flow through the system, and these can be recov-
ered from the JCDF by performing a Depth-First Search on the JCDF. Paths comprising the
volume-weighted edges represent the total processing load along that causal flow, while

1While we capture a superset of the true causal paths, and as a result also capture spurious paths, we
never miss any causal path that is present; we believe that the value of capturing causal paths in a large
distributed system such as MapReduce, in the applications it has (§10.2.1) far outweigh the spurious causal
paths generated

39

HDFS data
block

HDFS data
block

HDFS data
block

Map output
split

Reduce
Input

Map Shuffle ReduceShuffle
WaitShuffleShuffle

HDFS data
block

Figure 5.4: Illustration of a Realized Execution Path. The multiple copies of a particular
directed edge and of a particular vertex show the vertices with states with in-degree or
out-degree greater than 1, and each Realized Execution Path is formed by picking one of
the multiple edges in each group of edges.

paths comprising the time-weighted edges show the time taken by that causal flow. How-
ever, the total weight along paths with time-weighted edges do not represent wall-clock
time elapsed during the execution of that causal flow, because the edges from the Shuffle
states to the ShuffleWait states represent a synchronization point, so that the time on that
edge subsumes some of the processing times of Maps completed earlier. We discuss pos-
sible alternative abstractions for the REP in §10.2.2 that take the synchronization points
into account.

5.2 Diagnosis

First, for a given state on each node, probability density functions (PDFs) of the distribu-
tions, distribi’s, of durations at each node i are estimated from their histograms using a
kernel density estimation with a Gaussian kernel [Was04] to smooth the discrete bound-
aries in histograms.

In order to keep the distributions relevant to the most recent states observed, we im-
posed an exponential decay to the empirical distributions distribi’s. Each new sample s
with duration d would then be added to the distribution with a weight of 1. We noticed
that there were lull periods during which particular types of states would not be observed.
A naive exponential decay of e−λ∆t would result in excessive decay of the distributions
during the lull periods. States that are observed immediately after the lull periods would
thus have large weights relative to the total weight of the distributions, and thus effectively
result in the distributions collapsing about the newly observed states. To prevent this

40

Source Ver-
tex

Destination
Vertex

Duration Edge Volume Edge

ReadBlock Map Time to read block Size of block read
Map Map-

Output
Time to run Map Size of total Map input pro-

cessed
Map-
Output

Shuffle Time to transfer data to Re-
duce

Size of data shuffled

Shuffle ShuffleWait Time to transfer data to Re-
duce

Size of data shuffled

ShuffleWait Reduce-
Input

Time spent waiting for all
Shuffles

Size of all Map outputs col-
lected

Reduce-
Input

Reducer Time spent performing Re-
ducer

Size of input processed by Re-
ducer

Reducer WriteBlock Time to write block Size of block written

Table 5.1: Edge weights in REPs for Hadoop MapReduce programs extracted from the
JCDF for each causal flow.

unwanted scenario, we instead used an exponential decay of e
−λ lastUpdatei−t

α(lastUpdatei−t)+1 , where
lastUpdate is the time of the last observed state, and t is the time of the most recent ob-
servation. Thus, the rate of decay slows down during lull periods, and in the limit where
lastUpdate− t→ 0, the rate of decay approaches the naive exponential decay rate.

The difference between these distributions from each pair of nodes is then computed
as the pair-wise distance between their estimated PDFs. The distance used was the square
root of the Jensen-Shannon divergence, a symmetric version of the Kullback-Leibler diver-
gence [ES03], a commonly-used distance metric in information theory to compare PDFs.

Then, we constructed the matrix distMatrix, where distMatrix(i, j) is the distance
between the estimated distributions on nodes i and j. The entries in distMatrix are
compared to a thresholdp. Each distMatrix(i, j) > thresholdp indicates a potential
problem at nodes i, j, and a node is indicted if at least half of its entries distMatrix(i, j)
exceed thresholdp. The pseudocode is presented as Algorithms 1, 2 in Appendix A.1.

41

5.3 Visualization

We describe our three visualizations of MapReduce behavior based on the SALSA ex-
tracted state-machine view and the Job-Centric Data-Flows, without discussing actual ex-
perimental data or drawing any conclusions from the visualizations (although the visual-
izations are based on real experimental data). We describe the actual workloads and case
studies in §7.2.

5.3.1 “Swimlanes”: Task progress in time and space.

In the “Swimlanes” visualization, we show task progress as it unfolds in time, and we also
show how tasks running on different nodes progress in time. Hence, the swimlanes plots
show MapReduce behavior in time and space, and omit the volume dimension of behavior.

0 200 400 600 800

0
5

0
1

0
0

1
5

0

Time/s

P
e

r-
ta

sk

Swimlanes: Sort Workload (4 nodes)

JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce

0 200 400 600 800

0
5

0
1

0
0

1
5

0

Time/s

P
e

r-
ta

sk

Swimlanes: Sort Workload (4 nodes): 4 hosts

JT_Map
JT_Reduce

Figure 5.5: Swimlanes plot for the Sort workload. Top plot shows tasks grouped by host,
bottom plot shows tasks grouped by start time.

42

Consider Figure 5.5 for an illustration of the basic properties of the Swimlanes visual-
ization. In this plot, the x-axis denotes wall-clock time elapsed since the beginning of the
job, and each horizontal line corresponds to the execution of a state (e.g., Map, Reduce)
running in the marked time interval (hence the number of horizontal lines corresponds ex-
actly to the total number of tasks in the job as represented in the plot). For instance, for
a horizontal line corresponding to a Reduce task (green line, with a ‘+’ markers) marked
from time 0 to approximately 650, this illustrates a Reduce task running from t = 0 to
t = 650 during the job. The top and bottom plots are of the same run of a MapReduce job,
and illustrate two different ways of visualizing the same job. The top plot groups tasks
according to the host/node on which they ran, and sorts tasks within each group by the
time at which they started. The bottom plot merely sorts tasks by the time at which they
started. Each plot can show one or more jobs, and one job can be distinguished from the
next by identifying Map tasks that begin execution after any Reduce task has completed,
such as in Figure 5.7, which plots the execution of two jobs, one from t = 0 to t = 90, and
one from t = 90 to t = 160.

Figures 5.6, 7.3, 7.4 and 5.7 are all variants on the basic swimlanes plot, and provide
different levels of detail and different levels of aggregation. Figure 5.6 shows a detailed
view with all states across all nodes–this is useful for showing the detailed behavior of
Hadoop, but the large number of states shown can result in an overwhelming amount
of information. Figures 7.3, 7.4 and 5.7 show only Maps and Reduces, as MapReduce
programs spend most of their processing time in these states. This allows users to focus
their attention on these key components of the behavior of MapReduce programs. Figure
7.4 groups states (Maps and Reduces) by nodes, aggregating these states together on a
per-node basis so that nodes with persistently long tasks, or that are not running tasks,
can be identified. Figure 5.7 shows the Swimlanes plot for a job executing on a 49-slave-
node cluster, and demonstrates the scalability of the Swimlanes visualization and that it
can effectively present information even about large clusters. In general, Swimlanes are
useful for capturing dynamic Hadoop execution, showing where the job and nodes spend
their time.

43

0 100 200 300 400 500 600 700

0
2
0

4
0

6
0

8
0

1
0
0

Time/s

P
e
r-
ta
s
k

Detailed Swimlanes: Sort Workload (4 nodes)

MapTask
ReduceCopyReceive
ReduceMergeCopy
ReduceTask

MapTask
ReduceCopyReceive
ReduceMergeCopy
ReduceTask

MapTask
ReduceCopyReceive
ReduceMergeCopy
ReduceTask

MapTask
ReduceCopyReceive
ReduceMergeCopy
ReduceTask

Figure 5.6: Swimlanes: detailed states: Sort workload

44

0 50 100 150

0
5

0
1

0
0

1
5

0
2

0
0

Time/s

P
e

r-
ta

sk

Swimlanes: Matrix-Vector Multiplication Workload (49 nodes)

JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce

0 50 100 150

0
5

0
1

0
0

1
5

0
2

0
0

Time/s

P
e

r-
ta

sk

Swimlanes: Matrix-Vector Multiplication Workload (49 nodes): 49 hosts

JT_Map
JT_Reduce

Figure 5.7: Swimlanes plot for 49-node job for the Matrix-Vector Multiplication; top plot:
tasks sorted by node; bottom plot: tasks sorted by time.

45

5.3.2 “MIROS” plots: Data-flows in space.

5.0e+09
6.0e+09
7.0e+09
8.0e+09
9.0e+09
1.0e+10
1.1e+10

Map inputs, outputs

node4 node3 node1 node2

M
a
p

O
u
tp

u
t

M
a
p

In
p
u
t

Src Host (From Mappers)

D
e
st

 H
o
st

(T
o
w

a
rd

s
R

e
d
u
ce

rs
)

9.0e+08
1.0e+09
1.1e+09
1.2e+09
1.3e+09
1.4e+09

Shuffles

node4 node3 node1 node2

node1

node2

node4

node3

9.00e+09
9.50e+09
1.00e+10
1.05e+10
1.10e+10
1.15e+10

Reduce inputs, outputs

node1 node2 node4 node3

R
e
d
u
ce

O
u
tp

u
t

R
e
d
u
ce

In
p
u
t

Figure 5.8: MIROS: Sort workload; (volumes in bytes)

MIROS (Map Inputs, Reduce Outputs, Shuffles, Figure 5.8) visualizations show input
data volumes into all Maps and output data volumes out of all Reduces on each node, and
between Maps and Reduces on nodes. Each visualization consists of three heatmap plots,
with each heatmap being a matrix of values, and the value represented by the intensity of
the colour in the cell. These three heatmap plots illustrate the following values: the first
shows input and output data volumes of Maps, the second shows input and output data
volumes out of Shuffles that move Map outputs from each pair of source/destination host
pair, and the third shows input and output data volumes out of Reduces. These volumes
are aggregated over the a single MapReduce program, and over nodes. MIROS is useful in
highlighting skewed data flows that can result in bottlenecks when a particular node needs
to process more data than other nodes.

46

5.3.3 REP: Volume-duration correlations.

0 200 400 600 800 1000 1200

Duration/seconds

C
lu

st
e

rs

63936 paths

12532 paths

5102 paths

62116 paths

16853 paths

0 100 200 300 400 500 600 700 800 900 1000 1100

1
2

3
4

5

0.000000 MB 2433.000000 MB 4866.000000 MB 7299.000000 MB

MapReadBlockVol
MapVol
ShuffleVol
ReduceInputVol
ReduceOutputVol
ReduceWriteBlockVol
MapReadTime
MapTime
ShuffleTime
ReduceCopyReceiveTime
ReduceTime
ReduceWriteTime

Sort (4 nodes)

Figure 5.9: REP plot for Sort workload

For each flow of causality in a given Realized Execution Path (REP), we show the time
taken for a causal flow, and the volume of inputs and outputs, along that flow (Figure 5.9).
Each REP is broken down into time spent and volume processed in each state. We group
similar paths for scalable visualization using the K-Means clustering algorithm. For each
group, the top bar shows volumes processed in each processing (control- or data-item),
and the bottom bar shows durations taken for that processing item. This visualization is
useful in (i) checking that states that process larger volumes should take longer, and (ii) in
tracing problems back to any previous stage or data that might have affected it.

47

48

Chapter 6

Implementation

Next, we describe key architectural features and design choices of our implementation of
the log-based extraction of MapReduce behavior, our diagnosis algorithm, and our visual-
izations of MapReduce behavior.

Our work is implemented as a tool-chain which takes Hadoop’s natively generated logs
(from the TaskTracker and DataNode daemons) as its input, and generates a diagnosis out-
come (whether a fault is present, and if so, which node(s) are responsible), and visualiza-
tions of behavior of the MapReduce program. The tool-chain first processes Hadoop’s logs
to produce intermediate abstract representations (as described in §5.1) of MapReduce be-
havior, and we describe the implementation of these intermediate representations as well.
Our diagnosis algorithm and visualizations then take these intermediate representations
as inputs to produce their final output. The overall structure of the components of our
tool-chain loosely mirrors our approach, as illustrated in Figure 4.1.

6.1 Extracting Abstract Views of MapReduce Behavior

First, we describe how we build abstract views of MapReduce behavior from Hadoop’s
natively-generated TaskTracker and DataNode logs, and we describe the intermediate rep-
resentations generated of these abstract views.

49

6.1.1 Intermediate Representation of MapReduce Behavior

Node-Local State-Machine View

For each node, we represent a state of execution as a tuple of fields which describe the state.
Every state is described by its state name (e.g. Map, Reducer, WriteBlock, ReadBlock),
a unique identifier for the state (e.g. Map identifier, Reduce identifier), the start and end
times of the state, and the host the state was executed on. In addition, tuples of certain
state types are augmented with additional information, such as the source/ destination host
other than the state itself (e.g. destination host in ReadBlock).

The execution of the TaskTracker is fully described by the Map, Shuffle, ShuffleWait,
and Reducer states. The execution of the DataNode is fully described by the ReadBlock,
and WriteBlock states (which additional can be local or remote variants depending on the
source/destination addresses).

The unique identifier of the Map and Reducer states are naturally their Hadoop internal
Map and Reduce identifiers since these are unique, and the unique identifier of the Shuffle
state is the concatenation of the identifier of the source Map and the identifier of the des-
tination Reduce, since this pair is unique. The unique identifier of the ShuffleWait state
is the same as that of the Reduce state, since each Reducer has exactly one ShuffleWait
state1.

The unique identifier of the ReadBlock state is the concatenation of the internal Hadoop
unique block identifier and the hostname of the receiving host, while the unique identifier
of the WriteBlock state is the concatenation of the internal Hadoop unique block identifier
and the hostname of the writing host.

Hence, the state-machine view of each node can be compactly represented in a simple
relational database or as line records in a delimited text file.

Job-Centric Data-Flow

The Job-Centric Data-Flow is a directed graph; in our implementation, the graph is stored
as an edge list and a list of vertices with additional attributes, as the graph can be poten-
tially too large for storing an adjacency matrix to be infeasible, and has significantly fewer
edges than vertices. The list of vertices is simply the list of states from the node-local
state-machine view, and the key additional information in the JCDF representation is the

1Effectively, then, a unique identifier for each state can be obtained by concatenating the state name with
its unique identifier.

50

edge-list which correlates execution explicitly across the control-items and data-items in
the node-local states.

Realized Execution Paths

The Realized Execution Paths are simply stored as a list of paths through the Job-Centric
Data-Flow directed graph, and each path is stored as a list of vertices along the path, with
the time-weights and volume-weights for easy computation of clusters of REPs.

6.1.2 Extracting Intermediate Representations

Next, we describe the implementation of the state-extraction from Hadoop’s logs to build
the intermediate representations of MapReduce behavior.

The first stage involves parsing the TaskTracker and DataNode logs of each host to
extract the states executed on each node in both the TaskTracker and DataNode on each
host. This involves identifying log tokens associated with the beginning and end of each
state, and extracting parts of log messages that map to the fields in the tuple identifying
each state.

Each state requires two log messages to fully define it, one to indicate the beginning
and one to indicate the end of that state’s execution. Hence, the log parsing involves
maintaining a list of previously-seen log messages identifying the beginning of a state,
and matching log messages identifying the end of those states to create the tuple for that
state. The unique identifiers for each state are used to ensure that the beginning and end of
the execution of each instance of a particular type of state can be unambiguously identified.

The second stage involves constructing the Job-Centric Data-Flow directed graph from
the individual state tuples extracted in the log parsing stage. The states created in the
log parsing stage correspond exactly to the vertices in the JCDF graph, and this graph
construction stage involves adding edges between the vertices by matching identifiers.
Particular identifiers are matched between every type of state-pairs, such as between the
ReadBlock and Map states, as described in detail in §5.1.2. This is essentially a search
problem, in which the source vertex of an edge is first selected, and then we search for
the destination vertex based on the identifier information encoded in both the source and
destination vertices; for instance, in connecting Maps to Shuffles to ShuffleWaits, the Map
identifier is matched with the Map-source part of the identifier in the Shuffle identifier,
and the Reduce-destination identifier part in the Shuffle identifier is matched with the
ShuffleWait identifier, and the internal representation’s vertices are then listed as pairs to

51

create edges in the edge list.

The third stage involves extracting all REPs from the JCDF directed graph and simply
involves a simple depth-first search traversal beginning from every vertex with zero in-
degree, and the volume-weights and time-weights are recorded along with the list of paths
generated to enable easy clustering based on the times and volumes along stages in the
REP.

Stand-alone Operation

In our first prototype of the log-parsing, JCDF construction, and REP extraction, we im-
plemented all three components in C++. The log-parsing was implemented in 14 KLOC
of C++, while the JCDF construction and REP extraction were implemented in 3.4 KLOC
of C++.

The log-parsing module was separated into two main components. The first provided
an interface to raw log files by maintaining a file descriptor to maintain a file pointer in
the log; this allows for incremental processing of logs for online, on-demand extraction of
states for online operation (described later); this interface manages basic splitting of log
messages into timestamps, logging class, severity level, and the actual log message, and
allows time-based sampling of log messages–given a time interval, this module returns the
relevant log messages within the time interval. The second component is log-type specific,
and provides the main SALSA parsing logic for converting tokens to states, remembering
previously-seen tokens corresponding to the beginning of states, and for mapping tokens
in log messages to state tuple values. Finally, the TimeSeries class provides the ex-
ternal interface to the log- parser, and allows the returning of various types of aggregated,
summarized, or detailed views of the extracted state-machine.

We chose C++ for our implementation due to the large memory requirements of gen-
erating large JCDF graphs, and to obtain the fastest possible speed due to the high compu-
tational complexity of extracting all REPs from the potentially large JCDF.

In addition, we chose to implement our log-parsing in C++ so that our log-parsing
functionality would also be available as a C++ library for inclusion in the ASDF [BKK+08]
Automated System for Diagnosing Failures for real-time extraction and parsing of log-
data. C++ was the language of choice for the low latency design requirement of ASDF.

However, this implementation of our MapReduce behavior abstraction executes only
on a single host and does not scale well with large numbers of nodes.

52

MapReduce Implementation

We also implemented our log-parsing and state-machine construction as Java Hadoop
MapReduce programs for execution as part of the log analysis pipeline in the Chukwa
[BKQ+08] log collection and aggregation framework. A second motivation of imple-
menting our log analysis tools and state-machine construction as MapReduce programs
was to improve the scalability of our tool-chain.

We describe our choices of key and value types for the Mappers and Reducers of our
MapReduce implementations of each stage of the abstract MapReduce view construction,
as this constitutes the key design point of MapReduce programs. In MapReduce programs,
Maps specify an input key type and an input record type, and generate output keys of an
intermediate output key type, and output records of an intermediate output value type.
Reduces then read input keys of the intermediate key/value type, and generate output of a
possibly different output key type and output value type. Each intermediate value with the
same intermediate key will be sent to the same Reduce, and the Reduce receives, for each
intermediate key, a list of values associated with that key.

Our MapReduce tool-chain consists of: (i) a MapReduce program for constructing
state-machine views for each node for all nodes, (ii) a series of MapReduce programs for
constructing the JCDF, and REPs jointly. Our tool-chain takes as its input the output from
the Demux phase of Chukwa’s log post-processing, in which each log message is stored as
a ChukwaRecord, which consists of a series of key/value pairs, with string values, and a
series of meta-data key/value pairs. Chukwa performs rudimentary log-parsing by splitting
the log message into timestamp, logging component, severity level, and log message.

SALSA

As described, the first part of our tool-chain consists of a single MapReduce program
which reads raw logs as generated by Chukwa in the form of SequenceFiles2 of
ChukwaRecords, with each record containing a Chukwa-processed log message, and
produces a SequenceFile of ChukwaRecords, with each ChukwaRecord contain-
ing a single tuple defining a single state.

Instead of parsing TaskTracker and DataNode logs, our MapReduce state- machine
construction uses the more compact data sources of Hadoop’s JobTracker job history logs,
which record Maps and Reduces and their completion times and input and output data vol-
umes, and ClientTrace log messages in the DataNode and TaskTracker logs which specif-

2org.apache.hadoop.io.SequenceFile, a Hadoop MapReduce library class

53

ically track inter-node communication, as introduced in Hadoop 0.19.

This SALSA state-machine builder 3 contains a collection of Mapper classes, each
of which processes records from a particular log type (e.g. job history logs, DataNode
ClientTrace logs) to produce a common intermediate state-machine state entry, which can
describe either the start or end of a state, and which stores the fields for the state tuple.
To ensure that the same Reducer processes both the start and end entries of a given state
instance, both the state entries are given the same intermediate key, and the key is also
chosen such that it is unique to the start and end entries of the particular state instance. The
Reducer then generates a common state-machine view by writing out standardized tuples
of states regardless of whether the states are of data-items of the DataNode’s processing
or of control-items of the TaskTracker’s processing.

Job-Centric Data-Flows and Realized Execution Paths

We relegate discussion of a possible implementation strategy for the extraction of Job-
Centric Data-Flows and Realized Execution Paths to §8.1 as the JCDF extraction has not
been fully implemented as a MapReduce program at the time of writing.

6.2 White-Box Diagnosis

A prototype of our white-box diagnosis algorithm has been implemented in MATLAB,
and currently performs offline white-box diagnosis by taking as its input the tuples of
states generated by our log-parsing phase, and generating a diagnosis outcome (a vector
of binary values, indicating whether a fault is present) for each node of whether a fault is
present at that node. If no nodes are indicated as having a fault present, that can be taken
to indicate there is no fault present in the system.

Although our current implementation of the diagnosis algorithm is offline, it can pro-
duce incremental output. It accepts as a configuration parameter a window size, in which
case it performs diagnosis incrementally for each window of time, and returns a set of
diagnostic outcomes for each window.

In addition, we have also implemented visualizations of the diagnosis outcomes of the
incremental diagnosis as a heatmap, with ‘cool’ colors such as blue indicating high peer
similarity and ‘hot’ colors such as red indicating high peer dissimilarity, indicating the
presence of a fault. An example of such a visualization is in Figure 6.1, in which a CPU

3org.apache.hadoop.chukwa.analysis.fsm.FSMBuilder

54

CPU Hog on node 1 
visible on Map‐task dura9ons 

Figure 6.1: Visualization of time-series of diagnosis outcomes from the white-box diag-
nosis algorithm; the x-axis shows time in seconds, while the y-axis shows the diagnosis
outcome for each node for each point in time; cool colors indicate high peer similarity
with all other nodes; warm colors indicate low peer similarity with all other nodes and
indicates the presence of a fault on the given node.

Hog (see §7.1.2 for description of fault injection) was injected in Node 1, resulting in high
peer dissimilarity of Node 1 relative to the other nodes in the cluster. We defer a full
evaluation of the diagnosis algorithm to §7.1.

An earlier version of the white-box diagnosis algorithm has also been previously im-
plemented in C++ as an analysis module for the ASDF [BKK+08] Automated System
for Diagnosing Failures which took as its inputs the state-machine states extracted online
using the log-parsing library.

6.3 Visualization

We implemented both offline and online visualizations of our Hadoop and MapReduce be-
havior visualizations, with the offline version being both a prototype, as well as to support
batched operation to process large amounts of post-mortem log data, and with the online
version being targeted as system administrators and Hadoop users for online diagnosis
during the execution of a job itself.

55

6.3.1 Offline Operation

The offline visualizations were implemented as scripts for the GNU R [R D08] statistical
and graphing package, and these scripts took as their inputs comma-separated value (CSV)
files containing the state tuples of the state-machine view, and generated graphs as image
files.

The Swimlanes charts were plotted on Cartesian coordinates by specifying task lines as
X-coordinate extents and assigning tasks unique Y-coordinates. The MIROS charts were
plotted using the standard heatmap command in GNU R, while the REP volume-duration
correlation charts were plotted as standard bar charts, while normalizing the scales of total
causal flow durations to total causal flow volumes to enable comparison of the two (i.e.
the Y-axis scaled the maximum-duration flow to be represented using the same length as
the maximum-volume flow).

In addition, the plotting of the Swimlanes chart has also been implemented using a
simple Python parser for job history logs generated by the JobTracker (one log file per
job containing all counters and task start and end times), which generates a gnuplot-
compatible data file, and the chart is plotted using our custom gnuplot command file.

6.3.2 Online Console – Chukwa HICC

Finally, we have also implemented our visualizations as widgets for the Chukwa Hadoop
Infrastructure Care Center (HICC) online monitoring web application, as shown in Figure
6.2. Chukwa provides a Metrics Data Loader (MDL) component which loads Chukwa-
generated data from HDFS into a relational database (Chukwa HICC uses MySQL at
time of writing) so that web-based rendering of collected metrics does not need to incur
the performance overhead of reading through large, sequential-access files from HDFS.
The MDL also provides additional features which improve the scalability of data storage
for online rendering and visualization, while preserving the low latency of the rendering.
These include the automated downsampling of historical data and maintaining time-based
pointers to data (i.e. tables are named according to the time period they store data for to
improve speed of retrieving data given the time period of the data).

First, we wrote data dictionary entries for loading the state-machine tuples from the
SequenceFiles of ChukwaRecords into the relational database automatically using
the MDL. Then, we explored two methods of implementing the visualization widgets.

In the first, JavaScript-based visualizations, we implemented our visualizations using
JavaScript libraries. Finally, the data plotted by the JavaScript libraries was supplied by

56

Figure 6.2: Screenshot of Swimlanes interactive visualization widget for Chukwa HICC.
Screenshot on right shows mouseover details for state.

accessing the relational database using Java Server Pages (JSP) and transforming the data
into JavaScript data structures that were fed to the JavaScript visualization libraries.

At the time of writing, the Swimlanes visualization has been fully implemented for the
Chukwa HICC, using the Flot [Lau09] JavaScript plotting library, and using JSP to retrieve
the state tuples from MySQL and formatting the plotting coordinates as dynamically-
generated JavaScript data structures that are then passed to Flot.

The key advantage of the JavaScript visualization is that it allows a high degree of
interactivity, as users can select regions of the Swimlanes plot to zoom in on and out of, and
obtain task identifiers and details via mouse-overs. However, the key disadvantage is that
this technique does not scale well to large jobs with complex Swimlanes, e.g. tasks with
more than 1000 states, as the web browser becomes unresponsive and the user experience
is greatly deteriorated. This prompted us to explore the option of rendering the Swimlanes
offline and returning the user a statically-generated image.

In the second visualization, we used the Prefuse [HCL05] Java visualization toolkit
to generate the Swimlanes chart offline, and we returned an image to the front-end to be

57

displayed to the user. This greatly improved user-responsiveness of the web browser, al-
though the user still suffers from some latency in waiting for the image to be generated
offline. In this implementation, both the data retrieval and image generation were com-
pletely implemented in Java, while the web interface merely acts as a skeleton to call the
Java class for generating the image.

58

Chapter 7

Evaluation

7.1 Diagnosis of Synthetic Faults

First, we evaluate the ability of our white-box diagnosis algorithm to diagnose perfor-
mance faults using state-machine statistics, specifically, the durations of different types of
states in each job. Our evaluation consisted of injecting a performance fault and evaluating
if our algorithm was able to correctly indict the node we injected the fault on.

7.1.1 Testbed and Workload

We analyzed Hadoop’s DataNode and TaskTracker logs from Hadoop 0.18.3 running on
10- and 50-node (where cluster size indicates number of Slave nodes, with an additional
Master node not in the count) clusters on Large instances on Amazon’s EC2. Each node
had the equivalent of 7.5 GB of RAM and two dual-core CPUs, running amd64 De-
bian/GNU Linux 4.0. Each experiment consisted of one run of the GridMix benchmark.
GridMix is a multi-workload benchmark that models the mixture of job types (namely
generating data, sorting data, scanning data for retrieval, and generating inverted indices)
used at industrial Hadoop installations such as Yahoo!, and simulates the use of a shared
Hadoop cluster by multiple users by staggering MapReduce job submissions in a manner
that mimics observed data-access patterns in actual user jobs in enterprise deployments.
The GridMix benchmark has been used in the real-world to validate performance across
different clusters and Hadoop versions. We scaled down the size of the dataset to 2MB
of compressed data for our 10-node clusters and 200MB for our 50-nod clusters to ensure
timely completion of experiments.

59

[Source] Reported Failure [Fault Name] Fault Injected
[Hadoop users’ mailing list, Sep 13 2007] CPU
bottleneck resulted from running master and slave
daemons on same machine

[CPUHog] Emulate a CPU-intensive task that con-
sumes 70% CPU utilization

[Hadoop users’ mailing list, Sep 26 2007] Exces-
sive messages logged to file during startup

[DiskHog] Sequential disk workload wrote 20GB
of data to filesystem

[HADOOP-2956] Degraded network connectivity
between DataNodes results in long block transfer
times

[PacketLoss5/50] 5%, 50% packet losses by drop-
ping all incoming/outcoming packets with proba-
bilities of 0.01, 0.05, 0.5

[HADOOP-1036] Hang at TaskTracker due to an
unhandled exception from a task terminating unex-
pectedly. The offending TaskTracker sends heart-
beats although the task has terminated.

[HANG-1036] Revert to older version and trigger
bug by throwing NullPointerException

[HADOOP-1152] Reduces at TaskTrackers hang
due to a race condition when a file is deleted be-
tween a rename and an attempt to call getLength()
on it.

[HANG-1152] Simulated the race by flagging a re-
named file as being flushed to disk and throwing
exceptions in the filesystem code

[HADOOP-2080] Reduces at TaskTrackers hang
due to a miscalculated checksum.

[HANG-2080] Simulated by miscomputing check-
sum to trigger a hang at reducer

Table 7.1: Injected faults, and the reported failures that they simulate. HADOOP-xxxx
represents a Hadoop bug database entry.

7.1.2 Injected Faults

We injected one fault on one Slave node in each cluster to validate the ability of our
algorithms at diagnosing each fault. The faults cover various classes of representative real-
world Hadoop problems as reported by Hadoop users and developers in: (i) the Hadoop
issue tracker [Apa06] from October 1, 2006 to December 1, 2007, and (ii) 40 postings
from the Hadoop users’ mailing list from September to November 2007. We describe our
results for the injection of the seven specific faults listed in Table 7.1.

7.1.3 Results

We evaluate the ability of our white-box diagnosis algorithm to effectively diagnose the
injected fault by using the true-positive and false-positive rates [Faw06] of the diagnosis
outcome across all runs of the experiment for each injected fault, for each cluster-size.
For each injected fault, we separately evaluated the ability of our algorithm to diagnose
the fault using the durations of Map states, and using the durations of Reduce states. A
true-positive is a node with a fault injected which was (correctly) indicted as faulty, while

60

a false-positive is a node with no fault injected but which was (wrongly) indicted as faulty.
Hence, the true-positive ratio (TP) and false-positive ratio (FP) can be computed as fol-
lows:

TP =
faulty nodes correctly indicted

nodes with injected faults

FP =
nodes without faults incorrectly indicted

nodes without injected faults

We report results across 20 runs for each of the injected faults on 10-node cluster
experiments, and 6 runs for each of the injected faults on 50-node cluster experiments,
with half the experiment runs having Speculative Execution enabled, and half without.
The diagnosis results were similar across both types of experiments with and without
Speculative Execution enabled. Figures 7.1, 7.2 show the TP and FP rates of the white-box
algorithm for each injected fault, for 10-node and 50-node clusters, using Map durations,
and Reduce durations, respectively. The bars above the zero line represent the TP rates,
and the bars below the zero line respresent the FP rates for each fault. We report the results
for the diagnosis algorithm when used with durations of Map states, and when used with
durations of Reduce states, separately, and we describe the efficacy of diagnosis for each
injected fault.

Map Durations

The white-box diagnosis algorithm, using comparisons of the durations of Map states,
was able to diagnose the CPU and Disk resource hog faults successfully, with TP ratios
of 1.0, detecting all instances of nodes with the injected fault, and low FP ratios, misdi-
agnosing non-faulty nodes less than 15% of the time. It was also able to diagnose the
HANG-1036 fault successfully, as this was a hang in the Map state. However, HANG-
1152 and HANG-2080 were not diagnosed successfully, with low TP rates, as these were
hangs in the Reduce state and generally did not affect Map state durations significantly;
however, HANG-1152 and HANG-2080 were generally detected with higher TP rates on
50-node clusters than on 10-node clusters, and we speculate that this is due to the larger
number of Maps in the jobs running on the larger 50-node cluster, resulting in improved
diagnosis. The PacketLoss-50 fault was not successfully diagnosed on 10-node clusters,
but was diagnosed (high TP ratio of ≈ 1.0), albeit not successfully localized (relatively
high FP ratio of nearly 0.2), because the high rate of packet loss resulted in correlated fault
manifestations, causing both the node with the injected packet loss and the other nodes

61

C
P

U
 H

o
g
 (

1
0
 n

o
d
e
)

C
P

U
 H

o
g
 (

5
0
 n

o
d
e
)

D
is

k
 H

o
g
 (

1
0
 n

o
d
e
)

D
is

k
 H

o
g
 (

5
0
 n

o
d
e
)

H
A

N
G

-1
0
3
6
 (

1
0
 n

o
d
e
)

H
A

N
G

-1
0
3
6
 (

5
0
 n

o
d
e
)

H
A

N
G

-1
1
5
2
 (

1
0
 n

o
d
e
)

H
A

N
G

-1
1
5
2
 (

5
0
 n

o
d
e
)

H
A

N
G

-2
0
8
0
 (

1
0
 n

o
d
e
)

H
A

N
G

-2
0
8
0
 (

5
0
 n

o
d
e
)

P
K

T
L
O

S
S

-5
0
 (

1
0
 n

o
d
e
)

P
K

T
L
O

S
S

-5
0
 (

5
0
 n

o
d
e
)

P
K

T
L
O

S
S

-5
 (

1
0
 n

o
d
e
)

P
K

T
L
O

S
S

-5
 (

5
0
 n

o
d
e
)

0
.4

0
0
.2

0
.6

1

TP ratio
FP ratio

GridMix, Map Durations, all cluster sizes

Figure 7.1: True-positive and False-positive ratios of diagnosis of white-box diagnosis
algorithm using Map durations.

communicating with it to exhibit symptoms of the fault. The PacketLoss-5 fault was not
successfully diagnosed, with low TP ratios, and we believe this is because TCP, which
is used in Hadoop’s network communications, are able to tolerate this rate of packet loss
using its reliability mechanisms such as retransmissions. a 5% rate of packet loss

Reduce Durations

The white-box diagnosis algorithm, using comparisons of the durations of Reduce states,
was not successful at diagnosing the CPU and Disk resource hog faults, with low TP ratios.
This was because most of the time spent in the Reduce state was dominated by the time
spent waiting for Maps to complete, in the ShuffleWait sub-state (see §7.2.2 for discussion
of the ShuffleWait), so that the increased duration of the Reduce state computation that was
affected by the resource hogs was insignificant as compared to the overall Reduce duration.
The HANG-1036 fault was also not diagnosed successfully using Reduce durations, as
HANG-1036 is a hang of the processing in the Map state. HANG-1152 and HANG-2080

62

C
P

U
 H

o
g
 (

1
0
 n

o
d
e
)

C
P

U
 H

o
g
 (

5
0
 n

o
d
e
)

D
is

k
 H

o
g
 (

1
0
 n

o
d
e
)

D
is

k
 H

o
g
 (

5
0
 n

o
d
e
)

H
A

N
G

-1
0
3
6
 (

1
0
 n

o
d
e
)

H
A

N
G

-1
0
3
6
 (

5
0
 n

o
d
e
)

H
A

N
G

-1
1
5
2
 (

1
0
 n

o
d
e
)

H
A

N
G

-1
1
5
2
 (

5
0
 n

o
d
e
)

H
A

N
G

-2
0
8
0
 (

1
0
 n

o
d
e
)

H
A

N
G

-2
0
8
0
 (

5
0
 n

o
d
e
)

P
K

T
L
O

S
S

-5
0
 (

1
0
 n

o
d
e
)

P
K

T
L
O

S
S

-5
0
 (

5
0
 n

o
d
e
)

P
K

T
L
O

S
S

-5
 (

1
0
 n

o
d
e
)

P
K

T
L
O

S
S

-5
 (

5
0
 n

o
d
e
)

0
.4

0
0
.2

0
.6

1

TP ratio
FP ratio

GridMix, Reduce Durations, all cluster sizes

Figure 7.2: True-positive and False-positive ratios of diagnosis of white-box diagnosis
algorithm using Reduce durations.

were successfully diagnosed, with TP ratios of > 0.8 and low FP ratios of < 0.1, as these
were hangs in the Reduce state, and hence were naturally detected using durations of the
Reduce state. PacketLoss-50 was again diagnosed but not localized, with high TP ratios
of > 0.5 but high FP ratios of > 0.2 as well. Similarly with Map durations, PacketLoss-5
was not diagnosed, with low TP ratios, and again, we believe this is due to Hadoop’s use of
TCP, and TCP’s ability to tolerate a 5% packet loss using its retransmissions and reliable
delivery mechanisms.

Summarizing the results, the use of the white-box diagnosis algorithm in comparing
Map durations was effective for diagnosing resource faults (CPU hog, Disk hog), and
hangs in the Map state, while the use of the algorithm in comparing Reduce durations
was effective for diagnosing hangs in the Reduce state but not resource faults nor hangs
in the Map state; packet losses were generally difficult to diagnose because of the corre-
lated nature of its fault manifestations. Thus, diagnosis using the white-box algorithm can
potentially isolate the root-cause of a fault to the state of processing (Map or Reduce), in
addition to isolating the faulty node.

63

7.2 Performance Debugging in the Wild

Next, we demonstrate the applications of our visualizations for performance debugging on
production environment clusters, using case studies of various user workloads from actual
users, as well as from synthetic traces consisting of benchmark workloads.

7.2.1 Testbed and Workloads

All traces used in our evaluation were collected from the Yahoo! M45 [Yah07] production
cluster, which researchers from Carnegie Mellon have had access to for running research
workloads such as large-scale machine learning algorithms, large-scale graph mining, text
and web mining, natural language processing, machine translation, and data-intensive file-
system applications. The M45 cluster has over 400 nodes, with approximately 4000 pro-
cessors, 3 TB of memory, and 1.5 PB of disk capacity. The cluster runs Hadoop 0.18.3
at time of writing, and uses Hadoop on Demand (HOD) to provision virtual Hadoop Job-
Tracker/TaskTracker clusters over the large physical cluster, and over the single monolithic
HDFS instance.

The examples in § 7.2.2, § 7.2.3 involve 5-node clusters (4-slave, 1-master), and the
example in § 7.2.4 is from a 25-node cluster. We omit case-studies involving more slave
nodes as it would be difficult to present these visualizations in print without the benefit of
dynamic rescaling and zooming of large, high-resolution images on-screen.

7.2.2 Understanding Hadoop Job Structure

Figure 7.3 shows the Swimlanes plots from the Sort and RandomWriter benchmark work-
loads (part of the Hadoop distribution), respectively. RandomWriter writes random key/-
value pairs to HDFS and has only Maps, while Sort reads key/value pairs in Maps, and
aggregates, sorts, and outputs them in Reduces. From these visualizations, we see that
RandomWriter has only Maps, while the Reduces in Sort take significantly longer than
the Maps, showing most of the work occurs in the Reduces. In addition, we can observe a
common behavior in MapReduce programs, where tasks execute in “waves” as the num-
ber of tasks awaiting execution is larger than the number of available execution “slots” on
slave nodes-here, the Reduces execute in roughly two waves. The REP plot in Figure 5.9
shows that a significant fraction (≈ 2

3
) of the time along the critical paths (Cluster 5) is

spent waiting for Map outputs to be shuffled to the Reduces, suggesting this is a bottleneck.

64

0 100 200 300 400

0
1

0
2

0
3

0
4

0

Time/s

P
e

r-
ta

sk

RandomWriter Workload (4 nodes)

JT_Map

0 200 400 600 800

0
5

0
1

0
0

1
5

0

Time/s

P
e

r-
ta

sk

Sort Workload (4 nodes)

JT_Map
JT_Reduce

Figure 7.3: Summarized Swimlanes plot for RandomWriter (top) and Sort (bottom)

7.2.3 Performance Optimization

Figure 7.4 shows the Swimlanes from the Matrix-Vector Multiplication job of the HADI
[KTA+08] graph-mining application for Hadoop. These experiments were run by CMU
users, whose log data we performed post-mortem analysis on. This workload contains
two MapReduce programs, as seen from the two batches of Maps and Reduces. Before
optimization, the second node and first node do not run any Reduce in the first and second
jobs respectively. The number of Reduces was then increased to twice the number of slave
nodes, after which every node ran two Reduces (the maximum concurrent permitted), and
the job completed 13.5% faster.

This insight was very quickly gleaned from the Swimlanes plots alone, and it was easy
to verify that the program was more efficient from the subsequent plot after the change in
configuration.

65

0 200 400 600 800

0
1

0
2

0
3

0
4

0
5

0
6

0

Time/s

P
e

r-
ta

sk

Swimlanes: Matrix-Vector Multiplication Workload (4 nodes)

JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce

0 200 400 600 800

0
2

0
4

0
6

0

Time/s

P
e

r-
ta

sk

Swimlanes: Matrix-Vector Multiplication Workload (4 nodes)

JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce
JT_Map
JT_Reduce

Figure 7.4: Matrix-vector Multiplication before optimization (above), and after optimiza-
tion (below)

In addition, we studied the time spent in the ReceiveCopyWait stage where the Reduce
waits while receiving Map outputs, and Figure 7.5 shows the target program also suffers
from significant overhead in this stage, and our next optimization aim is to reduce this
overhead.

7.2.4 Hadoop Misconfiguration

We ran a no-op (“Sleep”) Hadoop job, with 2400 idle Maps and Reduces which sleep
for 100ms, to characterize idle Hadoop behavior, and found tasks with unusually long
durations. On inspection of the Swimlanes, we found delayed tasks ran for 3 minutes
(Figure 7.6). We traced this problem to a delayed socket call in Hadoop, and found a fix

66

0 200 400 600 800 1000

Duration/seconds

C
lu

st
e

rs

228 paths

845 paths

1327 paths

2389 paths

1880 paths

0 100 200 300 400 500 600 700 800 900 1000

1
2

3
4

5

0.000000 MB 1035.000000 MB 2070.000000 MB 3105.000000 MB

MapReadBlockVol
MapVol
ShuffleVol
ReduceInputVol
ReduceOutputVol
ReduceWriteBlockVol
MapReadTime
MapTime
ShuffleTime
ReduceCopyReceiveTime
ReduceTime
ReduceWriteTime

Matrix-Vector Multiplication

Figure 7.5: REP plot for Matrix-Vector Multiplication

described at [soc04]. We resolved this issue by forcing Java to use IPv4 through a JVM
option, and Sleep ran in 270, instead of 520, seconds.

67

0 100 200 300 400 500

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

Time/s

P
e

r-
ta

sk

Swimlanes: SleepJob Workload, with socket error (24 nodes)

JT_Map
JT_Reduce

0 100 200 300 400 500

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

Time/s

P
e

r-
ta

sk

Swimlanes: SleepJob Workload, without socket error (24 nodes)

JT_Map
JT_Reduce

Figure 7.6: SleepJob with delayed socket creation (above), and without (below)

68

Chapter 8

Discussion

8.1 Implementation Notes

8.1.1 MapReduce Implementation of Job-Centric Data-Flow Extrac-
tion

We describe a proposed design for implementing the Job-Centric Data-Flow construction
and corresponding Realized Execution Path extraction as MapReduce programs as part of
our MapReduce implementation of our tool-chain, part of which is described in §6.1.2.

The Job-Centric Data-Flows can be constructed by performing the equivalent of a re-
lational join1 on the states generated by the state-machine builder. This directly generates
the Realized Execution Paths by generating the cross-product of all control-items with all
data-items, subject to actual causality within the system. These joins exactly relate the
data-items with the relevant control-items as described in §5.1.2 as “stitching” the items.

The basic component of the JCDF construction is a MapReduce program which takes
as its input a source tuple state type and a destination tuple state type, and joins states of
the source type with states of the destination type based on a “join” identifier in a similar
fashion to relational joins, where the source type is the state whose vertices in the JCDF
are the source nodes of the edges in the graph, and the destination type is the state whose
vertices are the destination nodes of the edges in the graph. Concretely, the MapReduce

1Arguably this can be implemented using tools which provide relational operators on top of HDFS-stored
data such as HBase, Hive, or Pig, but a key design principle was for our tool-chain to work with only a plain
Hadoop installation and Chukwa, and at the time of implementation, Chukwa support for running Pig jobs
on ChukwaRecords was not available.

69

program takes as its inputs source and destination state names, fields in the tuple to use as
the primary key for each of the source state and destination state, and a field in the tuple
to use as the key to join on.

The basic component is then run once for each pair of state types to join on; since there
are seven pairs of state types to join, the JCDF consists of a pipeline of seven MapReduce
jobs, each of which feeds its output to the input of the next job in the pipeline.

The intermediate Map output consists of keys with the value of the field to join on
for tuples of the source state, and keys with the value of the field primary key of the
destination state, since the joins will be of the source state on the destination state. The
output values then consist of the results of the join, i.e., the cross-product of the source
states with the destination states, and the output keys are a concatenation of the source key
and the destination key to product a unique key for the output record. Hence, the REPs are
incrementally constructed and each output record at the end of the pipeline of MapReduce
jobs is an REP causality flow.

8.2 Lessons for Logging

8.2.1 Log Statement Evolution and System Diagnosability

We began this work in June 2007, with Hadoop 0.4.0, as distributed with Nutch 0.8
[Apa07d]. Our log parsing and analysis tools have been modified over the course of
Hadoop’s development, and have been tested and used successfully with Hadoop 0.4.0,
0.12.x, 0.14.x, 0.15.x, 0.17.x, 0.18.x, 0.19.x, and 0.20.x. However, this has required mod-
ifications to our parsing tools and analysis logic at various stages to evolve our analysis
with the changes in log statements, which are typically not maintained as public and/or
stable interfaces, especially in open-source software. However, there is currently a drive
by the Hadoop project community to define the public and stable interfaces of Hadoop
formally [RCL+09].

Some of these modifications have been minor, e.g. typographical errors in log mes-
sages, while some have required significant changes in the logic of our analysis. While
some changes have hindered our analysis and rendered less information available to us,
or required us to obtain the same information using alternate means, the general trend has
been for logging to be more helpful to diagnosis.

In particular, as described in §5.1.2, the introduction of new ClientTrace log mes-
sages in the DataNode and TaskTracker logs which exactly log the data-flows as we de-

70

scribe, along with data volumes, durations, and communication endpoints [Xu09, TD09],
which will be introduced in Hadoop 0.21.x, enables us to exactly extract complete causal
paths.

In addition, the JobTracker-generated Job History logs for each job provide the infor-
mation necessary for listing all the states in the control-flow of the execution of a MapRe-
duce program, although this information is insufficient for construction the state-machine
as information about Shuffles is not present in the Job History logs.

Hence, logging in a system, especially a distributed one, should be co-designed with
the system itself to enhance the diagnosability of the system [TPK+08], and our work
presents an example of log-enabled diagnosis and the potential of this approach to a
semantically-rich, yet lightweight approach to diagnosis and performance characteriza-
tion. Our use of log information provides a guide as to the types of information that would
be useful to log, especially in a large-scale, distributed system, as well as the levels of
abstraction at which information about the system would be useful.

8.2.2 SALSA for Log Compression

Next, we evaluate the size of our post-processed views to show the scalability of our ap-
proach based on our evaluation in §7.2. Table 8.1 lists the sizes of the raw logs generated
by Hadoop in each of our experiments, and the sizes of the state-machine views generated
by SALSA. Then, these views are correlated to form the JCDF and REP distributed views,
and these sizes are listed next. The DataNode log sizes are the same regardless of workload
because M45 uses a static shared HDFS instance with private TaskTracker clusters using
Hadoop- on-Demand, so every user accesses the same HDFS instance. DataNode log sizes
are dependent on the cluster workload on any given day, hence the sizes are reported as a
range over the days our experiments were performed.

To summarize, we achieve significant size reduction in TaskTracker execution logs
and minor reduction in DataNode logs, while the JCDF and REP sizes are dependent
on job complexity. Sort is a deceptively simple workload-it involves a dense M × R
exchange of data between M Maps and R Reduces, creating an extremely dense graph,
and represents the worst-case complexity. That the 50-node Matrix-Vector Multiplication
has four times fewer REP paths than the 5-node Sort workload suggests that real-world
MapReduce programs are not likely to approach the worst-case complexity. The possibly
large number of REP paths suggests that the Depth-first Search component of our path
extraction has greatest room for optimization.

71

Random
Writer

Sort Matrix-Vector Multiply

Cluster size 5 5 5 50
TaskTracker

Log File Size 428 KB 6.9 MB 4.9 MB 46 MB
Log Lines 2108 42,487 31,726 314,767
Parsed File Size 6 KB 567 KB 116 KB 3.5 MB
Parsed Lines 44 2634 556 15,582

DataNode
Log File Size 204± 52 MB
Log Lines 1, 374, 382± 296, 660
Parsed File Size 155± 34 MB
Parsed Lines 1, 252, 264± 180, 546

JCDF, REP
JCDF Vertices N/A 3129 279 5624
JCDF Edges N/A 5853 470 10670
REP Paths N/A 160,540 6670 41,801

Table 8.1: Space savings from parsed log views

8.2.3 Formal Software Verification and State-Machines

Finite-State Automata have been used largely for formal verification of software systems
using Model Checking techniques as pioneered by [CES86], with the correct behavior of
software systems being defined as finite-state machines and model checking used to create
a logic of actual program executions as possible in executable code, and to verify program
executions against a definition of correct behavior. These model checking techniques ren-
dered the use of formal logics to represent programs scalable, and the applications of
formal software verification have ranged from verifying mission-critical applications to
security systems. These applications use finite state-machines as a definition of correct
behavior, and build state-machines of the execution of program code, and verify the two
against each other.

Our use of the finite state-machine abstraction differs from that of formal software ver-
ification; while both formal software verification as well as our work uses a state-machine
as a definition of correct program behavior, we do not attempt to verify the correctness
of the implementation of the specified behavior. Rather, we assume the correct imple-
mentation of the behavior according to the state-machine (modulo interrupted executions,
e.g. a crash in the Map state resulting in the rest of the state-machine not being executed),

72

and capture the performance properties of the system using the state-machine model as
an abstraction, and augmenting the state-machine abstraction to have edges encode the
execution times and volumes of data processed of each state (§4.1.2).

While it may be worthwhile to formally verify the correctness of the implementation of
Hadoop and MapReduce programs, we believe that Hadoop is sufficiently mature that such
verification is unnecessary, and that greater value lies in characterizing and evaluating the
performance of MapReduce programs, and we have used finite state-machines as they are
a convenient abstraction for informally reasoning about the performance characteristics of
MapReduce programs, rather than in a formal sense, as in the domain of software model
checking.

73

74

Chapter 9

Related Work

9.1 Log Analysis

9.1.1 Event-based Analysis

Many studies of system logs treat them as sources of failure events. Log analysis of system
errors typically involves classifying log messages based on the preset severity level of
the reported error, and on tokens and their positions in the text of the message [OS07]
[LZS+06]. More sophisticated analysis has included the study of the statistical properties
of reported failure events to localize and predict faults [OS08] [LZS+06] [HCSA07] and
mining patterns from multiple log events [HMP02].

Our treatment of system logs differs from such techniques that treat logs as purely a
source of events: we impose additional semantics on the log events of interest, to identify
durations in which the system is performing a specific activity. This provides context of
the temporal state of the system that a purely event-based treatment of logs would miss,
and this context alludes to the operational context suggested in [OS07], albeit at the level
of the control-flow context of the application rather than a managerial one. Also, since our
approach takes log semantics into consideration, we can produce views of the data that
can be intuitively understood. However, we note that our analysis is amenable only to logs
that capture both normal system activity events and errors.

75

9.1.2 Request Tracing

Our view of system logs as providing a control-flow perspective of system execution,
when coupled with log messages which have unique identifiers for the relevant request
or processing task, allows us to extract request-flow views of the system. Much work
has been done to extract request-flow views of systems, and these request flow views
have then been used to diagnose and debug performance problems in distributed systems
[BDIM04] [AMW+03]. However, [BDIM04] used instrumentation in the application and
middleware to track requests and explicitly monitor the states that the system goes through,
while [AMW+03] extracted causal flows from messages in a distributed system using
J2EE instrumentation developed by [CKF+02]. Our work differs from these request-flow
tracing techniques in that we can causally extract request flows of the system without
added instrumentation given system logs, as described in § 4.1.1.

9.1.3 Log-Analysis Tools

Splunk [Spl05] treats logs as searchable text indexes, and generates visualizations of the
log; Splunk treats logs similarly to other log-analysis techniques, considering each log en-
try as an event. There exist commercial open-source [Apa07a] tools for visualizing the data
in logs based on standardized logging mechanisms, such as log4j [Apa07c]. To the best
of our knowledge, none of these tools derive the control-flow, data-flow and state-machine
views that SALSA does. SALSA represents a particular approach to processing logs spe-
cific to Hadoop and MapReduce-style processing systems, and can be implemented as
post-processing modules for these logs types in these log-management systems.

9.1.4 State-Machine Extraction from Logs

[JCUY05] automatically inferred state-machine views of execution from textual logs emit-
ted by a multi-tier J2EE web-transaction processing system, by identifying co-occurring
log statements, similar to our principle of identifying for each state a start and end log
token to identify the start and end respectively of the execution of a given state. However,
[JCUY05] required significant amounts of training data from known-good fault-free runs
to characterize normal traces in order to detect failed runs. Also, the use of [JCUY05] is to
detect runs with state-machines with different shapes from normal runs, and thus targets
incorrect execution, which is different from our use of the state-machine abstraction to
encode performance characteristics. Also, the execution of a MapReduce program tends
to be more complex and to generate much denser execution graphs than in the systems

76

examined in [JCUY05].

[LMP06] constructed fine-grained finite-state automata which modeled the execution
of programs at the granularity of individual program statements, and introduced a tech-
nique for modeling the interaction between variables and method invocations. These state-
machine models used are at a much finer granularity than our use of the state-machine
abstraction at the coarser granularity of high-level logical blocks of execution (i.e. Maps
and Reduces rather than individual program statements). Hence, such techniques, when
used with MapReduce programs, would quickly run into scalability issues as discussed in
§2.1.1. Also, [LMP06] is an extension of existing formal state-machine models, whereas
we use state-machines as an informal abstraction, and we explicitly encode time and data
volumes in our informal model.

[MP08] examines textual logs of multi-tier J2EE web- transaction processing systems
as well, and also automatically extracts legal behaviors and encodes interactions between
program components using state-machine models. Similarly to [JCUY05], [MP08] uses
a supervised learning approach, and requires input data from known-good runs in order
to identify state-machine executions that are faulty. Also, [MP08] detects state-machines
with shapes that are different from known-good runs.

Hence, the current tools that diagnose failures based on state-machine models extracted
from logs differ from our work in that they detect state-machines that vary in shape and
identify correctness failures, and the state-machine abstractions used are formal ones that
do not encode any additional information other than the state-transition itself in their edges,
whereas our work uses the state-machine abstraction informally, and encodes volume and
time data on edges in order to enable the debugging of performance problems, which
cannot be directly detected by these techniques.

9.2 Distributed Tracing and Failure Diagnosis

Recent tools developed to trace distributed program execution have focused on building
instrumentation that can trace causal paths [BDIM04], assert causal relationships across
disparate components [KJ08] and networks [FPK+07]. They produce fine-grained views
at the language rather than MapReduce level of abstraction. Our work correlates system
views from an existing instrumentation point (Hadoop system logs) to build views at a
higher level of abstraction for MapReduce. Other techniques which use distributed ex-
ecution traces [AMW+03, CKF+02, KF05] for diagnosis and debugging operate at the
language level, as they worked with systems without a limited programming model unlike
MapReduce, whereas we generate views at the higher-level MapReduce abstraction.

77

Previous techniques for diagnosing failures in distributed systems have largely exam-
ined multi-tier Internet services which process large numbers of requests, and which are
designed to complete requests within a specified (typically low) latency, giving rise to a
natural Service Level Objective (SLO) such that if the SLO is violated, a fault is present by
definition. These techniques hence assume SLO violations are readily available, and given
them, identify the root-causes of failures. [KF05, CKF+02, AMW+03, CZG+05] all as-
sume the availability of SLO violations. However, as we explain in §2.1.3, such SLOs are
not readily available in MapReduce systems because MapReduce programs are designed
to be large batch jobs with potentially long runtimes.

[CKF+02] then goes on to identify the components responsible for causing a failure
in a request where multiple processing components in the request generated error mes-
sages, and [KF05] also analyzes shapes of request paths in terms of components traversed
in processing the request to identify anomalous paths; SALSA considers only “normal”
path shapes in MapReduce processing and does not consider degenerate paths since the
processing paths in MapReduce are determined by the framework rather than user pro-
grams, as compared to J2EE applications in which programmers can create arbitrary flows
between J2EE components; also, SALSA focuses on latencies and volumes transmitted
between processing (control-items and data-items) path elements whereas [KF05] consid-
ers path shapes.

[AMW+03] infers causal paths at the application layer from messages in the under-
lying messaging layer e.g. Remote Procedural Call (RPC) messages by interpositioning
between the messaging layer and the application and capturing messages; our work differs
in that we do not require interpositioning and are completely transparent to the system and
we can perform post-mortem analysis even on uninstrumented Hadoop systems because
we leverage Hadoop’s natively generated logs. This suggests that logging that generates
messages of a particular type can be a cheap and effective means of enhancing the diag-
nosability of a system. Also, [AMW+03] considers only latencies along path components,
whereas we introduce the notion of considering data volumes along path components as
well, a critical feature for data-intensive computing applications/systems such as MapRe-
duce. However, our approach is designed specifically for MapReduce systems, and while
it is likely to apply to other data-intensive systems, [AMW+03] is more general and would
likely apply to a larger variety of systems.

In the Abacus project, [APGG00] performs dynamic placement of functions of an
data-intensive application which manipulates large datasets that are stored on a cluster.
They abstracted resource usage in the cluster using a data-flow graph, and this graph is
then populated at runtime by monitoring the amount of bytes moved between application-
level objects. Thus, like our work, [APGG00] also considers the volume dimension of

78

program behavior, although we unify all three dimensions of space, time, and volume, of
program behavior in our Realized Execution Paths, while [APGG00] only considers the
space-volume dimension.

9.3 Diagnosis for MapReduce

[KZKS08] collected trace events in Hadoop’s execution generated by custom instrumentation-
- these are akin to language-level views; while they provide summarized statistics of these
events, their abstractions do not account for the volume dimension which we provide
(§4.1.2), and they do not provide correlation with the MapReduce level of abstraction.
[XHF+08] only showed how outlier events can be identified in DataNode logs; we utilize
information from the TaskTracker logs as well, and we build a complete abstraction of all
execution events.

[PTK+09] used black-box operating-system-level performance counters for diagnosis,
as compared to the white-box application specific metrics we used for diagnosis; however,
the peer-similarity hypothesis and approach is fundamentally similar to our diagnostic
approach. [Pan09] used a combination of white-box and black-box metrics for diagnosis,
putting together multiple algorithms, each using a different source of metrics for diagnosis,
and imposed a supervised learning process over these algorithms to achieve finer-grained
root-cause diagnosis of previously-known faults; the white-box diagnosis algorithm we
present here is a component algorithm in the BliMeE framework in [Pan09].

In previous work, we also explored correlating white-box Hadoop log events with
statistical changepoints in black-box operating system metrics in the BlackSheep approach
[TN08], and we explored the hypothesis of correlation between activity in the privileged
operating system-mode and unprivileged user-mode in fault-free conditions in the RAMS
approach [TN08].

9.4 Visualization Tools

Artemis [CBG08] provides a pluggable framework for distributed log collection, data anal-
ysis, and visualization. We have presented specific MapReduce abstractions and ways to
build them, and our techniques can be implemented as Artemis plugins. The “machine us-
age data” plots in [CBG08] resemble Swimlanes; REP shows both data and computational
dependencies, while the critical path analysis in [CBG08] considers only computation.

79

[BFB+05], visualized web server access patterns and the output of anomaly detection al-
gorithms, while we showed system execution patterns.

Other frameworks have also been built for managing the visualization and summa-
rizing of the large amounts of data from large clusters [MMKN08, LBST08]. However,
these frameworks collect general system metrics such as operating system counters, and
deal with the problem of scalable visualization and presentation of general system data in
a way that enhances operator understanding. This differs from our work in that we have
focused on building abstractions of program behavior specific to MapReduce rather than
for general systems, and we use visualizations as a tool to express our abstractions, and
we do not tackle the problem of visualization of general systems. Our tools can instead be
used as specific plugins for these general frameworks.

In addition, a number of tools [TSS96, CTF+97, TSS98, WBS+00] were previously
built for inserting instrumentation in, collecting trace data from, and visualizing metrics in
distributed supercomputing applications built using Application Programming Interfaces
(APIs) such as the Message Passing Interface (MPI) [GLS99] and the Parallel Virtual
Machine (PVM) [GBD+94]. MPI and PVM provided much more low-level interfaces
than MapReduce to programmers, and consequently allowed significantly more general
programs, but these programs were also consequently harder to write because the MapRe-
duce abstraction simplified programming by hiding the low-level communications. MPI
and PVM enabled much finer grained control over the parallelization of the program, al-
lowing programmers to program at the level of threads. As a result, these visualization
frameworks exposed much lower-level details than our tools expose for MapReduce; this
is simply an artefact of the differences between MapReduce and PVM and MPI. Also,
such tools are not suitable for MapReduce programs since they present fine-grained de-
tails about program behavior that MapReduce programmers would not have control over
as they have been abstracted away by the MapReduce model where they had been exposed
in the MPI/PVM model.

“Area Charts”–Aggregate task count time-series

The authors of Hadoop have also released a simple parser for Hadoop’s job history logs
which produces a time-series of aggregate task counts per unit time, i.e. the number of
Maps, Reduces, Shuffles (which we termed ShuffleWait) and Merges (a sub-state in the
Reduce which pre-sorts data before the Reduce), and they have demonstrated what we call
“Area Charts” [MO09] (to distinguish them from our Swimlanes charts in §5.3.1). A key
benefit of our Swimlanes over the Area Charts are that we expose the exact scheduling
behavior on tasks, and for a given Map, Reduce, or any other state, we can tell the exact

80

Figure 9.1: Comparison of the “Area Chart” (left) and Swimlanes chart of the same job.

start and end times immediately, whereas in the Area Charts, only counts are shown, as
we demonstrate using an Area Chart and a Swimlanes chart for the same job in Figure 9.1,
where the Map with long duration is shown more clearly in the Swimlanes chart, and the
exact start-time of this Map with a relatively long duration is also shown clearly.

81

82

Chapter 10

Conclusion and Future Work

10.1 Conclusion

In conclusion, we have presented a log-based approach to characterizing and understand-
ing the behavior of MapReduce programs and the Hadoop open-source implementation
of Hadoop, for diagnosing failures and debugging performance problems in MapReduce
programs. We have presented a novel abstraction of MapReduce program behavior based
on Hadoop’s logs, that takes into account both control-flows and data-flows in the program
in a unified view called a Job-Centric Data-Flow, which is a directed graph of control- and
data-items in Hadoop’s execution, based on state-machine views of each Hadoop node’s
execution. We were then able to extract Realized Execution Paths from the Job-Centric
Data-Flow, which are flows of causality annotated with the volumes of data processed and
execution times of various data and control items along the path. We also presented a di-
agnosis algorithm based on the state-machine views of Hadoop’s execution on each node,
and using the durations of Maps and Reduces in programs, we were able to successfully
diagnose resource hogs and hangs in Maps using the former, and hangs in Reduces using
the latter. We also presented three visualizations of Hadoop’s MapReduce program be-
havior in combinations of the dimensions of space, time, and volume, called Swimlanes,
MIROS, and REP Volume-Duration correlation plots, as well as real-world use-cases of
these visualizations in the production Yahoo! M45 cluster where we were able to optimize
user MapReduce programs in a non-intrusive fashion.

83

10.2 Future Work

10.2.1 Causal Backtrace

We intend to augment the Realized Execution Paths to enable full causal backtracing of
Maps and Reduces to the input data blocks and offsets in the input files. With the current
REPs, for a given Reduce, it is possible to idenfity all Maps whose output it depends
on, and to identify all data blocks that each Map read as an input. However, these data
blocks are exposed in REPs by their block identifiers, but the reverse mapping from block
identifier to file name and file offset in HDFS is currently not accessible to users and is only
accessible as a data structure in the NameNode. We intend to explore ways of achieving
this reverse mapping so that for a given Map or Reduce, it is possible to identify the data
that the Map or Reduce depends on. Then, for instance, in the case of a crashed or hung
Map or Reduce, it is possible for programmers to isolate the testing of the program to its
behavior on the data contained in the specific data contained in the input file offset.

Also, this would enable us to analyze the performance of the Partition, which in
MapReduce identifies which intermediate Map output keys are assigned to which Re-
duces, which is commonly identified as a common cause of data-skew and its resulting
performance degradation in MapReduce programs. This would allow users to quanti-
tatively observe the equity of key distribution of their Partition function to aid them in
design better Partition functions.

10.2.2 Alternative REP Representations

We intend to explore other models and abstractions to represent the Realized Execution
Paths which take into account the fact that the ShuffleWait state represents a synchroniza-
tion barrier in the system. We hope to find models in which time can be encoded in terms
of wall-clock time rather than durations that are not conforming to wall-clock time in our
current representation (see discussion in §5.1.3). Possible alternative representations in-
clude tools from the project management domain, such as Gantt charts, which take into
account scheduling artifacts and allow encoding of earliest/latest start/end times of tasks,
as has already been used for MPI systems [WB02].

84

10.2.3 Anomaly Detection for REP

We intend to explore the detection of anomalous REP flows, to identify outlier flows that
might not be visible due to the clustering performed on the REP flows prior to visualizing
them. These outliers could correspond to flows which are causing performance problems,
and together with the causal backtrace described in §10.2.1, would enable fine-grained
debugging.

85

86

Appendix A

Appendix

A.1 Diagnosis Algorithm

87

Algorithm 1 Algorithm for exponentially-decayed histogram construction of state dura-
tions.

1: procedure SALSA-FINGERPOINT(prior, thresholdp, thresholdh)
2: for all i, initialize distribi ← prior
3: for all i, initialize lastUpdatei ← 0
4: initialize t← 0
5: while job in progress do
6: for all node i do
7: while have new sample s with duration d do
8: if 1− CDF (distribi, d) > 1− thresholdh then
9: indict s

10: end if
11: distribi ← distribi × e

−λ lastUpdatei−t
α(lastUpdatei−t)+1

12: add d to distribi with weight 1
13: lastUpdate← t
14: end while
15: end for
16: COMPARE −HISTO(distrib, thresholdp)
17: t← t + 1
18: end while
19: end procedure

Algorithm 2 Algorithm for comparing histograms of state durations between states. Note:
JSD(distribi, distribj) is the Jensen-Shannon divergence between the distributions of the
states’ durations at nodes i and j.

1: procedure COMPARE-HISTO(distrib, thresholdp)
2: for all node pair i,j do
3: distMatrix(i, j)←

√
JSD(distribi, distribj)

4: end for
5: for all node i do
6: if countj(distMatrix(i, j) > thresholdp) > 1

2
×#nodes then

7: raise alarm at node i
8: if 20 consecutive alarms raised then
9: indict node i

10: end if
11: end if
12: end for
13: end procedure

88

Bibliography

[Ama09] Amazon Web Services LLC. Amazon Elastic Compute Cloud, 2009. http:
//aws.amazon.com/ec2/. 1.1

[AMW+03] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen. Performance debugging for distributed system of black boxes.
In ACM Symposium on Operating Systems Principles, pages 74–89, Bolton
Landing, NY, Oct 2003. 1.3, 9.1.2, 9.2

[Apa06] Apache Software Foundation. Apache’s JIRA issue tracker, 2006. https:
//issues.apache.org/jira. 2.1.3, 7.1.2

[Apa07a] Apache Software Foundation. Chainsaw, 2007. http://logging.
apache.org/chainsaw. 9.1.3

[Apa07b] Apache Software Foundation. Hadoop, 2007. http://hadoop.
apache.org/core. 1.1

[Apa07c] Apache Software Foundation. Log4j, 2007. http://logging.
apache.org/log4j. 9.1.3

[Apa07d] Apache Software Foundation. Nutch, 2007. http://lucene.apache.
org/nutch. 8.2.1

[Apa08] Apache Software Foundation. Hadoop Users’ Mailing List, 2008. http://
mail-archives.apache.org/mod_mbox/hadoop-core-user.
2.1.2

[APGG00] K. Amiri, D. Petrou, G. Ganger, and G. Gibson. Dynamic function placement
for data-intensive cluster computing. In USENIX Annual Technical Confer-
ence, San Diego, CA, Jun 2000. 9.2

89

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
https://issues.apache.org/jira
https://issues.apache.org/jira
http://logging.apache.org/chainsaw
http://logging.apache.org/chainsaw
http://hadoop.apache.org/core
http://hadoop.apache.org/core
http://logging.apache.org/log4j
http://logging.apache.org/log4j
http://lucene.apache.org/nutch
http://lucene.apache.org/nutch
http://mail-archives.apache.org/mod_mbox/hadoop-core-user
http://mail-archives.apache.org/mod_mbox/hadoop-core-user

[BDIM04] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for request
extraction and workload modelling. In USENIX Symposium on Operating
Systems Design and Implementation, San Francisco, CA, Dec 2004. 9.1.2,
9.2

[BFB+05] P. Bodik, G. Friedman, L. Biewald, H. Levine, G. Candea, K. Patel, G. Tolle,
J. Hui, A. Fox, M. Jordan, and D. Patterson. Combining visualization and
statistical analysis to improve operator confidence and efficiency for failure
detection and localization. In ICAC, 2005. 9.4

[BKK+08] K. Bare, M. Kasick, S. Kavulya, E. Marinelli, X. Pan, J. Tan, R. Gandhi,
and P. Narasimhan. ASDF: Automated online fingerpointing for Hadoop.
Technical Report CMU-PDL-08-104, Carnegie Mellon University PDL, May
2008. 6.1.2, 6.2

[BKQ+08] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and M. Yang. Chukwa:
A Large-scale Monitoring System. In Cloud Computing and Its Applications,
Chicago, IL, Oct 2008. 3.2, 6.1.2

[Bro09] J. Brodkin. Cloud Computing, Demystified (NetworkWorld), May 2009.
http://bit.ly/17p4Kd. 1.1

[CBG08] G. Cretu-Ciocarlie, M. Budiu, and M. Goldszmidt. Hunting for problems
with artemis. In USENIX Workshop on Analysis of System Logs, 2008. 9.4

[CES86] E. Clarke, E. Emerson, and P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, 1986. 8.2.3

[CKF+02] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Prob-
lem determination in large, dynamic internet services. In IEEE Conference
on Dependable Systems and Networks, Bethesda, MD, Jun 2002. 1.3, 9.1.2,
9.2

[CTF+97] C. Carothers, B. Topol, R. Fujimoto, J. Stasko, and V. Sunderam. Visualizing
parallel simulations in network computing environments: a case study. In
WSC ’97: Proceedings of the 29th conference on Winter simulation, pages
110–117, Atlanta, GA, 1997. 9.4

[CZG+05] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox. Captur-
ing, indexing, clustering, and retrieving system history. In ACM Symposium

90

http://bit.ly/17p4Kd

on Operating Systems Principles, pages 105–118, Brighton, United King-
dom, Oct 2005. 1.3, 9.2

[DG04] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. In USENIX Symposium on Operating Systems Design and Imple-
mentation, pages 137–150, San Francisco, CA, Dec 2004. 1.1, 3.1.1

[ES03] D. M. Endres and J. E. Schindelin. A new metric for probability distributions.
Information Theory, IEEE Transactions on, 49(7):1858–1860, 2003. 5.2

[Fac08] Facebook. Engineering @ facebook’s notes: Hadoop, Jun 2008. http:
//www.facebook.com/note.php?note_id=16121578919. 1.3

[Faw06] T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,
27:861–874, 2006. 7.1.3

[FPK+07] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica. X-Trace: A per-
vasive network tracing framework. In USENIX Symposium on Networked
Systems Design and Implementation, Cambridge, MA, Apr 2007. 2.1.1, 9.2

[GBD+94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1st edition, Nov 1994. 1.1, 9.4

[GGL03] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. In ACM
Symposium on Operating Systems Principles, pages 29 – 43, Lake George,
NY, Oct 2003. 1.1, 3.1.1

[GLS99] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Pro-
gramming with the Message-Passing Interface. MIT Press, 1999. 1.1, 9.4

[HCL05] J. Heer, S. Card, and J. Landay. prefuse: A Toolkit for Interactive Informa-
tion Visualization. In SIGCHI Conference on Human Factors in Computing
Systems (CHI), Florence, Italy, Apr 2005. 6.3.2

[HCSA07] Chengdu Huang, Ira Cohen, Julie Symons, and Tarek Abdelzaher. Achieving
scalable automated diagnosis of distributed systems performance problems,
2007. 9.1.1

[HMP02] Joseph L. Hellerstein, Sheng Ma, and Chang-Shing Perng. Discovering ac-
tionable patterns in event data. IBM Systems Journal, 41(3):475–493, 2002.
9.1.1

91

http://www.facebook.com/note.php?note_id=16121578919
http://www.facebook.com/note.php?note_id=16121578919

[HPG02] J. Hennessy, D. Patterson, and D. Goldberg. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, 3rd edition, May 2002. 4.1.2, 4.1.3

[JCUY05] G. Jiang, H. Chen, U. Ungureanu, and K. Yoshihira. Multi-resolution Ab-
normal Trace Detection Using Varied-length N-grams and Automata. In In-
ternational Conference on Autonomic Computing (ICAC), Seattle, WA, Jun
2005. 9.1.4

[KF05] E. Kiciman and A. Fox. Detecting application-level failures in component-
based internet services. IEEE Trans. on Neural Networks: Special Issue on
Adaptive Learning Systems in Communication Networks, 16(5):1027– 1041,
Sep 2005. 1.3, 9.2

[KJ08] Eric Koskinen and John Jannotti. Borderpatrol: isolating events for black-
box tracing. In Eurosys ’08: Proceedings of the 3rd ACM SIGOPS/Eu-
roSys European Conference on Computer Systems 2008, pages 191–203,
New York, NY, USA, 2008. ACM. 9.2

[KTA+08] U. Kang, C. Tsourakakis, A.P. Appel, C. Faloutsos, and J. Leskovec. Hadi:
Fast diameter estimation and mining in massive graphs with hadoop. CMU
ML Tech Report CMU-ML-08-117, 2008. 7.2.3

[KZKS08] A. Konwinski, M. Zaharia, R. Katz, and I. Stoica. X-tracing Hadoop. Hadoop
Summit, Mar 2008. 9.3

[Lau09] O. Laursen. flot, 2009. http://code.google.com/p/flot/. 6.3.2

[LBST08] Q. Liao, A. Blaich, A. Striegel, and D. Thain. ENaVis: Enterprise Network
Activities Visualization. In Large Installation System Administration Con-
ference (LISA), San Diego, CA, Nov 2008. 9.4

[LMP06] D. Lorenzoli, L. Mariani, and M. Pezze. Inferring State-based Behavior
Models. In Workshop on Dynamic Analysis (WODA), Shanghai, China, May
2006. 9.1.4

[LZS+06] Yinglung Liang, Yanyong Zhang, Anand Sivasubramaniam, Morris Jette, and
Ramendra K. Sahoo. BlueGene/L failure analysis and prediction models.
In IEEE Conference on Dependable Systems and Networks, pages 425–434,
Philadelphia, PA, 2006. 9.1.1

92

http://code.google.com/p/flot/

[MMKN08] P. MaLachlan, T. Munzner, E. Koutsofios, and S. North. LiveRAC - In-
teractive Visual Exploration of System Management Time-Series Data. In
SIGCHI Conference on Human Factors in Computing Systems (CHI’08),
Florence, Italy, Apr 2008. 9.4

[MO09] A. Murthy and O. O’Malley. (Untitled parse script), 2009. http://bit.
ly/1KNFs. 9.4

[MP08] L. Mariani and F. Pastore. Automated Identification of Failure Causes in Sys-
tem Logs. In International Symposium on Software Reliability Engineering
(ISSRE), Seattle, WA, Nov 2008. 9.1.4

[Mur08] Arun Murthy. Hadoop MapReduce - Tuning and Debugging, 2008. http:
//tinyurl.com/c9eau2. 1.2, 2.1.1

[Net08] Yahoo! Developer Network. Yahoo! launches world’s largest hadoop
production application (hadoop and distributed computing at yahoo!), Feb
2008. http://developer.yahoo.net/blogs/hadoop/2008/
02/yahoo-worlds-largest-production-hadoop.html. 1.3

[OS07] A. Oliner and J. Stearley. What supercomputers say: A study of five system
logs. In IEEE Conference on Dependable Systems and Networks, pages 575–
584, Edinburgh, UK, June 2007. 9.1.1

[OS08] A. Oliner and J. Stearley. Bad words: Finding faults in Spirit’s syslogs. In 8th
IEEE International Symposium on Cluster Computing and the Grid (CCGrid
2008), pages 765–770, Lyon, France, May 2008. 9.1.1

[Pan09] X. Pan. The Blind Men and the Elephant: Piecing Together Hadoop for
Diagnosis. Technical Report CMU-CS-09-135, Carnegie Mellon University
Master’s Thesis, May 2009. 9.3

[PTK+09] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan. Ganesha: Black-
Box Diagnosis of MapReduce Systems. In Workshop on Hot Topics in Mea-
surement & Modeling of Computer Systems (HotMetrics), Seattle, WA, Jun
2009. 9.3

[R D08] R Development Core Team. R: A language and environment for statistical
computing, 2008. http://www.R-project.org. 6.3.1

93

http://bit.ly/1KNFs
http://bit.ly/1KNFs
http://tinyurl.com/c9eau2
http://tinyurl.com/c9eau2
http://developer.yahoo.net/blogs/hadoop/2008/02/yahoo-worlds-largest-production-hadoop.html
http://developer.yahoo.net/blogs/hadoop/2008/02/yahoo-worlds-largest-production-hadoop.html
http://www.R-project.org

[RCL+09] S. Radia, D. Cutting, S. Loughran, J. Homan, and J. Tan. Hadoop 1.0 In-
terface Classification, 2009. http://issues.apache.org/jira/
browse/HADOOP-5073. 8.2.1

[soc04] Creating socket in java takes 3 minutes, 2004. http://tinyurl.com/
d5p3qr. 7.2.4

[Spl05] Splunk Inc. Splunk: The it search company, 2005. http://www.
splunk.com. 9.1.3

[TD09] J. Tan and C. Douglas. Add ReduceID to Shuffle ClientTrace, 2009. http:
//issues.apache.org/jira/browse/MAPREDUCE-479. 8.2.1

[TN08] J. Tan and P. Narasimhan. RAMS and BlackSheep: Inferring white-box
application behavior using black-box techniques. Technical Report CMU-
PDL-08-103, Carnegie Mellon University PDL, May 2008. 9.3

[TPK+08] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan. SALSA: Ana-
lyzing Logs as State Machines. In USENIX Workshop on Analysis of System
Logs (WASL), San Diego, CA, Dec 2008. 1.5, 4.1.1, 8.2.1

[TPK+09] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan. Mochi: Visual
Log-Analysis Based Tools for Debugging Hadoop. In USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud), San Diego, CA, May 2009. 1.5

[TSS96] Brad Topol, John T. Stasko, and Vaidy Sunderam. Monitoring and visual-
ization in cluster environments. Technical Report GIT-CC-96-10, Georgia
Institute of Technology, 1996. 9.4

[TSS98] B. Topol, J. Stasko, and S. Sunderam. PVaniM: A Tool for Visualizatoin in
Network Computing Environments. Concurrency: Practice and Experience,
10(14):1197–1222, 1998. 9.4

[TSS+06] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-Malek, J. Lopez,
and G. Ganger. Stardust: tracking activity in a distributed storage system.
SIGMETRICS Perform. Eval. Rev., 34(1):3–14, 2006. 2.1.1

[Was04] L. Wasserman. All of Statistics: A Concise Course in Statistical Inference.
Springer, 1st edition, Sep 2004. 5.2

[WB02] C. Wu and A. Bolmarcich. Gantt Chart visualization for MPI and Apache
multi-dimensional trace files. In International Conference on Parallel and
Distributed Systems (ICPADS), Chungli, Taiwan, Dec 2002. 10.2.2

94

http://issues.apache.org/jira/browse/HADOOP-5073
http://issues.apache.org/jira/browse/HADOOP-5073
http://tinyurl.com/d5p3qr
http://tinyurl.com/d5p3qr
http://www.splunk.com
http://www.splunk.com
http://issues.apache.org/jira/browse/MAPREDUCE-479
http://issues.apache.org/jira/browse/MAPREDUCE-479

[WBS+00] C. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A. Chan, E. Lusk, and
W. Gropp. From trace generation to visualization: A performance framework
for distributed parallel systems. In ACM/IEEE Conference on Supercomput-
ing, Dallas, TX, Nov 2000. 9.4

[XHF+08] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. Mining console logs
for large-scale system problem detection. In Workshop on Tackling Systems
Problems using Machine Learning, Dec 2008. 9.3

[Xu09] L. Xu. Add I/O Duration Time in ClientTrace, 2009. http://issues.
apache.org/jira/browse/HADOOP-5625. 8.2.1

[Yah07] Yahoo! Inc. Yahoo! reaches for the stars with M45 supercomputing project,
2007. http://research.yahoo.com/node/1884. 7.2.1

95

http://issues.apache.org/jira/browse/HADOOP-5625
http://issues.apache.org/jira/browse/HADOOP-5625
http://research.yahoo.com/node/1884

	1 Introduction
	1.1 MapReduce and its Applications
	1.2 Performance Debugging of MapReduce Programs
	1.3 Diagnosing MapReduce Systems
	1.4 Logs as an Information Source
	1.5 Understanding and Diagnosing MapReduce Systems from Logs
	1.6 Key Contributions

	2 Motivation and Problem Statement
	2.1 Motivation
	2.1.1 Existing Debugging Tools for MapReduce Systems and Hadoop
	2.1.2 Hadoop Mailing List Survey
	2.1.3 Hadoop Bug Survey

	2.2 Thesis Statement
	2.2.1 Hypothesis
	2.2.2 Goals
	2.2.3 Non-Goals
	2.2.4 Assumptions

	3 Background
	3.1 MapReduce and Hadoop Architecture
	3.1.1 MapReduce and Hadoop
	3.1.2 Logging in Hadoop

	3.2 Chukwa Log Aggregation and Analysis Framework
	3.2.1 Monitoring, Log Collection, and Log Aggregation
	3.2.2 Log Processing and Analysis

	4 Approach
	4.1 Abstract State-Machine Views
	4.1.1 SALSA: Node-Local State-Machine Views
	4.1.2 Job-Centric Data-Flows: Global System View
	4.1.3 Realized Execution Paths: Causal Flows

	4.2 Diagnosis
	4.2.1 Intuition and Diagnostic Hypothesis
	4.2.2 Synopsis of Algorithm

	4.3 Visualization of MapReduce Behavior
	4.3.1 Aspects of Behavior
	4.3.2 Aggregations

	5 Methodology
	5.1 Abstracting MapReduce Behavior
	5.1.1 SALSA: Hadoop's Node-Local State-Machines
	5.1.2 Job-Centric Data-Flows
	5.1.3 Realized Execution Paths

	5.2 Diagnosis
	5.3 Visualization
	5.3.1 ``Swimlanes'': Task progress in time and space.
	5.3.2 ``MIROS'' plots: Data-flows in space.
	5.3.3 REP: Volume-duration correlations.

	6 Implementation
	6.1 Extracting Abstract Views of MapReduce Behavior
	6.1.1 Intermediate Representation of MapReduce Behavior
	6.1.2 Extracting Intermediate Representations

	6.2 White-Box Diagnosis
	6.3 Visualization
	6.3.1 Offline Operation
	6.3.2 Online Console -- Chukwa HICC

	7 Evaluation
	7.1 Diagnosis of Synthetic Faults
	7.1.1 Testbed and Workload
	7.1.2 Injected Faults
	7.1.3 Results

	7.2 Performance Debugging in the Wild
	7.2.1 Testbed and Workloads
	7.2.2 Understanding Hadoop Job Structure
	7.2.3 Performance Optimization
	7.2.4 Hadoop Misconfiguration

	8 Discussion
	8.1 Implementation Notes
	8.1.1 MapReduce Implementation of Job-Centric Data-Flow Extraction

	8.2 Lessons for Logging
	8.2.1 Log Statement Evolution and System Diagnosability
	8.2.2 SALSA for Log Compression
	8.2.3 Formal Software Verification and State-Machines

	9 Related Work
	9.1 Log Analysis
	9.1.1 Event-based Analysis
	9.1.2 Request Tracing
	9.1.3 Log-Analysis Tools
	9.1.4 State-Machine Extraction from Logs

	9.2 Distributed Tracing and Failure Diagnosis
	9.3 Diagnosis for MapReduce
	9.4 Visualization Tools

	10 Conclusion and Future Work
	10.1 Conclusion
	10.2 Future Work
	10.2.1 Causal Backtrace
	10.2.2 Alternative REP Representations
	10.2.3 Anomaly Detection for REP

	A Appendix
	A.1 Diagnosis Algorithm

	Bibliography

