
Confidence-Based Robot Policy

Learning from Demonstration

Sonia Chernova

CMU-CS-09-105

March 5, 2009

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:
Manuela Veloso, Chair
Christopher Atkeson

Avrim Blum
Cynthia Breazeal (MIT Media Lab)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2009 Sonia Chernova

This research was sponsored by DARPA - BBNT Solutions under grant number 9500007812 and 9500008572,
Department of the Interior under grant number NBCH1040007, L3 Communication Integrated Systems, L.D.,
under grant number 4500244745, SRI International under grant number 03-000211, and Lockheed Martin
Corporation under grant number 8100001629. The views and conclusions contained in this document are
those of the author and should not be interpreted as representing the official policies, either expressed or
implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: learning from demonstration, multi-robot learning, human-robot interaction,
robotics

Abstract

The problem of learning a policy, a task representation mapping from world states to actions,
lies at the heart of many robotic applications. One approach to acquiring a task policy is
learning from demonstration, an interactive technique in which a robot learns a policy based
on example state to action mappings provided by a human teacher.

This thesis introduces Confidence-Based Autonomy, a mixed-initiative single robot demon-
stration learning algorithm that enables the robot and teacher to jointly control the learning
process and selection of demonstration training data. The robot to identifies the need for and
requests demonstrations for specific parts of the state space based on confidence thresholds
characterizing the uncertainty of the learned policy. The robot’s demonstration requests are
complemented by the teacher’s ability to provide supplementary corrective demonstrations in
error cases. An additional algorithmic component enables choices between multiple equally
applicable actions to be represented explicitly within the robot’s policy through the creation
of option classes.

Based on the single-robot Confidence-Based Autonomy algorithm, this thesis introduces a
task and platform independent multi-robot demonstration learning framework for teaching
multiple robots. Building upon this framework, we formalize three approaches to teaching
emergent collaborative behavior based on different information sharing strategies. We pro-
vide detailed evaluations of all algorithms in multiple simulated and robotic domains, and
present a case study analysis of the scalability of the presented techniques using up to seven
robots.

i

ii

Acknowledgements

It is a pleasure to thank the many people who helped me along the way to completing this
thesis.

I would like to thank my advisor, Manuela Veloso, who, starting from the time I was an
undergraduate, has provided much help, encouragement and guidance. Without her support
and the many opportunities she provided, I would not be where I am today. I am also
thankful to my entire thesis committee, Chris Atkeson, Avrim Blum and Cynthia Breazeal,
for all of their valuable advice and feedback.

I would like to thank Bernardine Dias, who as my Big Sister in Women@SCS many many
years ago originally helped me get started in robotics. And a huge thanks to Matt Mason
for introducing me to robotics research.

Thank you to Sony for providing the QRIO robots that were used in my thesis research.
Special thanks to all the members of the Sony Intelligence Dynamics Lab, and to Ronald
Arkin, for making my stay in Japan exciting, fun and very rewarding.

Many thanks to all of my labmates and friends at Carnegie Mellon, especially Colin McMillen,
Doug Vail, Liz Crawford, Scott Lenser, Jim Bruce, Brenna Argall, Kristen Stubbs, Katrina
Ligett and Dan Licata, for their ideas, advice, time spent listening to practice talks, and
many fun dinners. An enormous thanks to Alice Brumley for always being there when I
needed any kind of help. Many things would not have been possible without you!

Last but not least, I would like to thank my family. Thank you to my parents for their
unwavering support and encouragement, and for being great role models. And innumerable
thanks to my husband James, and our son Alex, who both changed my life in wonderful
ways.

iii

iv

Table of Contents

1 Introduction 1

1.1 Approach . 2

1.1.1 Single-Robot Learning . 3

1.1.2 Multi-Robot Learning . 5

1.1.3 Evaluation . 6

1.2 Contributions . 7

1.3 Document Outline . 8

2 Confidence-Based Autonomy 11

2.1 Definitions . 11

2.2 Confidence-Based Autonomy . 12

2.3 Human-Robot Interaction . 14

2.4 Overview of Teaching Process . 16

2.5 Chapter Summary . 17

v

3 Confident Execution 19

3.1 Algorithm Description . 20

3.2 Distance Threshold . 22

3.3 Confidence Threshold . 23

3.3.1 Single Fixed Threshold . 23

3.3.2 Multiple Adjustable Thresholds . 27

3.4 Experimental Evaluation in Driving Domain 30

3.4.1 Domain Description . 30

3.4.2 Evaluation Results . 32

3.5 Chapter Summary . 34

4 Corrective Demonstration 37

4.1 Algorithm Description . 37

4.2 Experimental Evaluation in Driving Domain 39

4.3 Chapter Summary . 43

5 Learning Equivalent Action Choices from Demonstration 45

5.1 Problem Definition . 47

5.2 Option Classes . 48

5.3 Experimental Evaluation . 51

5.3.1 Obstacle Avoidance Domain . 51

vi

5.3.2 Evaluation Results . 52

5.4 Chapter Summary . 54

6 Multi-Robot Learning and Collaboration 55

6.1 Teaching Multi-Robot Collaboration . 56

6.1.1 Implicit Coordination without Communication 57

6.1.2 Coordination through Active Communication 58

6.1.3 Coordination through Shared State 58

6.1.4 Discussion . 59

6.2 Ball Sorting Domain . 59

6.3 Ball Sorting Example . 61

6.4 Evaluation Results . 63

6.4.1 Implicit Coordination without Communication 63

6.4.2 Coordination through Active Communication 64

6.4.3 Coordination through Shared State 66

6.4.4 Combined Approach and Comparison 68

6.5 Heterogeneous Robot Teams . 72

6.5.1 Playground Domain . 73

6.6 Chapter Summary . 74

7 Scalability Analysis 77

vii

7.1 Beacon Homing Domain . 78

7.2 Evaluation . 80

7.2.1 Synchronous Learning Start Times 80

7.2.2 Offset Learning Start Times . 86

7.2.3 Common Policy Learning . 87

7.3 Chapter Summary . 89

8 Related Work 91

8.1 Characterization of Demonstration Learning

Approaches . 91

8.1.1 Data Gathering . 92

8.1.2 Policy Learning . 95

8.2 Multi-Robot Learning . 98

8.3 Multi-Robot Control . 99

9 Conclusion and Future Work 101

9.1 Contributions . 101

9.2 Future Directions . 103

A Confidence-Based Autonomy Software System 107

A.1 Graphical User Interface . 109

A.2 LCI Execution Modes . 110

viii

B RoboCup Standard Platform League Robot Soccer 113

ix

x

List of Figures

1.1 The Sony AIBO ERS-7 and QRIO robots. 6

1.2 Diagram of thesis organization. 10

2.1 Confidence-Based Autonomy: overview of the Confident Execution and Cor-

rective Demonstration learning components. 13

2.2 Screenshot of the LCI graphical user interface. 15

2.3 Level of robot autonomy over the course of training, averaged over multiple

trials. 16

3.1 Examples of state regions targeted by demonstration requests. 20

3.2 The corridor navigation domain. 24

3.3 Corridor navigation domain training data. 25

3.4 Examples of fixed threshold failure cases . 26

3.5 Autonomy threshold calculation . 28

3.6 Multiple adjustable thresholds applied to the failure cases shown in Figure 3.4. 28

xi

3.7 Classification of dataset into high and low confidence regions using different

classification methods. Table below the figures presents the accuracy and

threshold values for each learning method. 29

3.8 Highway driving domain. 31

3.9 Evaluation and comparison of policy learning using Teacher Guided and Con-

fident Execution learning methods. 33

4.1 Evaluation and comparison of policy learning using Corrective Demonstration

and Confidence-Based Autonomy learning methods. 40

4.2 Confidence-Based Autonomy demonstrations over time. 41

5.1 Examples of complete and incomplete policies. 46

5.2 Option class policy obtained from the inconsistent demonstration distribution

in Figure 5.1(b). 49

5.3 Obstacle avoidance domain and data library. 52

5.4 Three example option class policies for the obstacle avoidance domain. . . . 53

6.1 Ball sorting domain. 60

6.2 Collaborative ball sorting example. 62

6.3 Example Task 2 learning sequence using coordination through active commu-

nication. 65

6.4 Example Task 2 learning sequence using coordination through shared state. . 67

6.5 Playground domain. 72

7.1 Beacon homing domain . 79

xii

7.2 Average level of autonomy of a single robot over the course of training. . . . 81

7.3 Average number of demonstrations performed by the teacher for each robot

and in each experiment. 81

7.4 Total training time with respect to number of robots. 82

7.5 Attention demand on the teacher. 83

7.6 Distribution of the number of simultaneous requests for each experiment. . . 84

7.7 Average demonstration delay. 85

7.8 Comparison of the synchronous and offset learning start time approaches. . . 87

7.9 Comparison of the single common policy and multiple individual policy flexMLfD

learning approaches. 88

A.1 Confidence-Based Autonomy demonstration learning software system. 108

A.2 Screenshot of the LCI graphical user interface. 109

A.3 Interaction between the LCI and system components in each execution mode. 111

B.1 Standard Platform League robots. 114

B.2 The field for the 2007 AIBO standard platform league competition. 115

B.3 Example AIBO vision data. 115

B.4 Images of robot soccer. 116

xiii

xiv

List of Tables

5.1 Comparison of CBA learning performance with and without option classes. . 53

6.1 Representation of Task 3 using active communication, shared state and a

combined approach. 70

6.2 Summary of Task 3 evaluation of active communication, shared state and a

combined approach. 71

xv

xvi

Chapter 1

Introduction

The problem of learning a policy, a task representation mapping from world states to actions,
lies at the heart of many robotic applications. One approach to acquiring a task policy
is learning from demonstration, an interactive learning approach based on human-robot
interaction that provides an intuitive interface for robot programming. In this approach,
a teacher performs demonstrations of the desired behavior to the robot. The robot records
the demonstrations, typically as state to action mappings, and learns a policy imitating the
teacher’s behavior by generalizing from this data.

Learning from demonstration is an incremental online learning process in which the robot
begins with no knowledge about the task, and acquires training data until a fully autonomous
policy representing the complete task is learned. In most real-world domains, the number of
possible world states is very large, making demonstration of the correct robot action from
every possible state impractical. Instead, demonstrations are used to sample the state space,
and a policy is learned by generalizing from this data. This thesis contributes an interactive
mixed-initiative approach to demonstration learning that enables the robot and teacher
to jointly control the learning process and selection of demonstration training data. This
algorithm enables the robot to identify the need for and request demonstrations for specific
parts of the state space based on confidence thresholds characterizing the uncertainty of the
learned policy. The robot’s demonstration requests are complemented by the teacher’s ability
to provide supplementary corrective demonstrations in error cases. In our evaluation, we
show that this mixed-initiative approach significantly reduces the number of demonstrations
and improves the performance of the learned policy.

Most demonstration learning algorithms rely on demonstration data to represent a consistent
mapping from states to actions. In reality, demonstrations are frequently inconsistent due

1

to many factors, such as human error, noise and the existence of multiple equally applicable
actions. This thesis contributes an algorithm that enables inconsistent demonstrations to be
modelled explicitly within the robot’s policy as choices between multiple actions.

Additionally, this thesis introduces the problem of multi-robot learning from demonstration,
which enables a single person to teach multiple robots at the same time. The greatest
advantage of multi-robot systems is that by combining their unique abilities, or by simply
extending their coverage, multiple robots are able to perform more complex tasks than a
single robot alone. In the context of demonstration learning, multi-robot domains present
many challenges. Interaction between the robots and the teacher must allow the teacher to
perform demonstrations to each individual robot, while also maintaining awareness of the
group as a whole. When working with multiple robots, the teacher is not able to pay full
attention to all robots at the same time. Each robot must therefore be tolerant of periods of
neglect from the teacher. Finally, most collaborative tasks require robots to coordinate their
actions through the exchange of information. The demonstration learning algorithm must
support inter-robot communication and provide a means of teaching collaborative elements
of multi-robot tasks.

This thesis introduces a task and platform independent multi-robot demonstration learning
framework that enables a single person to teach multiple robots to perform collaborative
tasks. Our approach takes advantage of the adjustable robot autonomy provided by our
single-robot algorithm to enable each robot to learn a unique task policy. Building upon
this framework, we formalize three approaches to teaching emergent collaborative behavior
based on different information sharing strategies. We provide detailed evaluations of all
algorithms in multiple simulated and robotic domains, and present a case study analysis of
the scalability of the presented techniques using up to seven robots.

1.1 Approach

This thesis seeks to answer the following questions:

• How can a single robot be taught tasks through human demonstration by
enabling both the robot and the teacher to select demonstration examples?

• How can the above approach be applied to teaching collaborative multi-
robot tasks from demonstration?

2

We present our approach to the thesis questions by breaking them further into several sub-
questions.

1.1.1 Single-Robot Learning

How can the teacher convey task information through demonstration?

An essential part of any demonstration-based learning system is the ability for the
teacher to convey task knowledge to the robot. Many different methods for performing
demonstrations have been proposed, with most approaches falling into one of two
categories:

• learning from observation – demonstration examples are obtained by passively
observing the actions of the teacher. This approach requires the robot to identify
the actions of an external teacher and to map them to its own actions with a
corresponding effect.

• learning from experience – demonstrations are performed by letting the robot
experience the desired actions using its own body, either through manipulation of
robot parts or by instructing the robot which of its actions to perform.

Both of the above approaches, which are discussed in detail in Chapter 8, result in a
dataset of demonstration examples that enables the robot to learn an action policy.
In this thesis, we utilize the learning from experience approach, which has the advan-
tage that the demonstrations are inherently restricted to the robot’s physical abilities
and a mapping from the teacher’s actions to those of the robot is not required. The
teacher does not perform demonstrations with her body. Instead, we introduce a task-
independent and robot-independent demonstration interface which allows the teacher
to select among the robot’s available actions. We assume the robot has a discrete num-
ber of of high-level actions, or action primitives, which are the basic building blocks
required to perform the task. This ensures that the teacher’s demonstrations always
fall within the robot’s abilities.

The robot’s perception of the world differs from that of a human. As a result, the
teacher’s view of the world can differ significantly from that of the robot, either missing
some information (communicated data) or perceiving more than the robot can (using
information not observable by the robot’s sensors). To enable the teacher to perform
correct demonstrations, the robot’s state information is made available through the
control interface display.

3

When should demonstrations occur?

In addition to selecting a method of demonstration, it is important to determine when
demonstrations are to be performed. One common assumption held by many demon-
stration learning approaches is that the teacher, as an expert at the task, always knows
when and which demonstrations are required to improve robot performance based on
observations of the robot’s behavior. However, the robot and teacher represent knowl-
edge in different ways. As a result, the teacher does not always know what additional
information the robot requires. In fact, evaluation performed as part of this thesis
shows that the teacher is likely to perform redundant demonstrations that provide
little information for improving the policy.

In this thesis, we introduce a mixed-initiative learning algorithm, Confidence-Based
Autonomy (CBA), that enables both the robot and the teacher to select demonstra-
tions. The Confidence-Based Autonomy algorithm consists of two components. The
Confident Execution component enables the robot to select demonstrations in real time
as it interacts with the environment, using confidence and distance thresholds to target
states that are unfamiliar or in which the current policy action is uncertain. To enable
the robot to request a demonstration at any time, we assume that the robot can pause
between executions of consecutive actions. The Corrective Demonstration component
allows the teacher to additionally perform corrective demonstrations when an incorrect
action is selected by the robot. The teacher retroactively provides demonstrations for
specific error cases instead of attempting to anticipate errors ahead of time. Combined,
these techniques provide a fast and intuitive approach for policy learning, incorporating
shared decision making between the learner and the teacher.

How can a single robot use the demonstrations to learn a task policy?

Demonstrations provide the robot with a dataset consisting of state-action pairs repre-
senting examples of the desired behavior. The robot’s goal is to use this information to
learn a policy, which enables the robot to select an action based upon its current world
state. In selecting a policy learning algorithm we consider a number of requirements:

• Our policy should map from the robot’s state, as represented by a set of noisy
discrete and continuous sensor values, to a discrete set of action primitives.

• In many domains, it is impossible for the teacher to demonstrate the correct action
for every possible state. The policy learning algorithm must therefore generalize
over similar but undemonstrated states.

• Due to the interactive nature of learning from demonstration, policy learning must
occur in real time.

Based on these requirements, we represent the robot’s policy by a classifier mapping

4

from the robot’s state to its actions. All algorithms presented in this thesis are classifier-
independent, allowing any classifier with a measure of classification confidence to be
used.

Additionally, in this thesis we highlight the challenge presented by equivalent action
choices – situations in which multiple actions are equivalently applicable. Human
demonstrators faced with a choice of equivalent actions typically do not perform demon-
strations consistently, instead selecting among the applicable actions arbitrarily each
time the choice is encountered. As a result, training data obtained by the robot lacks
consistency, such that identical, or nearly identical, states are associated with differ-
ent actions. The resulting inconsistently labeled training data poses a problem for
classification-based demonstration learning algorithms by violating the common as-
sumption that for any world state there exists a single best action. An additional
contribution of this thesis, is an algorithm that identifies regions of the state space
with conflicting demonstrations and enables the choice between multiple actions to be
represented explicitly within the robot’s policy.

1.1.2 Multi-Robot Learning

How can the teacher perform demonstrations for multiple robots?

One of the problems a teacher faces when working with multiple robots, is the problem
of limited human attention – the fact that the teacher is not able to pay attention to,
and interact with, all robots at the same time. Our approach takes advantage of the
adjustable autonomy provided by the single-robot algorithm to enable a single teacher
to work with multiple robots at the same time. Controlled by its independent instance
of the algorithm, each robot will act autonomously only when highly confident in its
actions, and pause to wait for a demonstration in low confidence states. Each robot
acquires its own set of demonstrations and learns its individual, possibly unique, task
policy.

How can multiple robots be taught to collaborate and work together?

Multiple robots often need to work together to perform complex tasks. In this thesis,
we explore techniques for teaching distributed autonomous robots to coordinate their
actions, with and without communication. Our approach to teaching collaborative
behavior through demonstration relies on emergent multi-robot coordination [64], in
which the solution to the shared multi-robot task emerges from the complementary
actions performed by robots based on their independent policies. We formalize three
approaches to teaching collaborative behavior based on different information sharing
strategies.

5

1.1.3 Evaluation

We use several simulated and real-world experimental domains to evaluate the algorithms
presented in this thesis. A complete description of each domain is included with each eval-
uation.

Two robotic platforms are used across the evaluations, the Sony quadruped AIBO and
humanoid QRIO robots, shown in Figure 1.1. The AIBO robot was commercially avail-
able from Sony for approximately four years, and has been extensively used in robotics
research (e.g. [18, 29, 39, 49, 55, 69, 79]) and robotics education (e.g. [23, 72, 88]). The AIBO
ERS-7 is a fully autonomous robot, able to perceive the world with its sensors, perform com-
putation using its 576 MHz onboard processor, and to select and execute actions. The robot
has a total of 20 degrees of freedom (DOF), three DOF in each leg and neck, and a total
of five additional DOF in the tail, ears and mouth. The camera mounted in the head, with
a 208x160 pixel resolution, serves as the robot’s main sensor. Secondary sensors include IR
sensors in the head, and touch sensors in the feet, head and back, as well as wireless commu-
nication capabilities. I began my work with the AIBOs in 2002 through the RoboCup robot
soccer competitions [50] and my undergraduate senior thesis in 2003. The robot’s autonomy
and physical dexterity, combined with its expressive physical design, make it highly suitable
for demonstration learning applications. In this thesis, during interaction with the human
teacher, the AIBO uses LEDs on its head and back to signal for demonstration requests in
addition to communicating information wirelessly to the teacher’s computer.

The QRIO humanoid robot is a prototype research platform developed by Sony. The QRIO
was never commercially available, and was obtained by our research group for several years
through an extended equipment loan agreement.1 The QRIO is a fully autonomous hu-

1We thank Sony for generously providing the fully programmable QRIO robot and its low-level control
software system.

Figure 1.1: The Sony AIBO ERS-7 and QRIO robots.

6

manoid robot with three 576 MHz onboard processors, wireless communication, 38 degrees
of freedom, stereo vision and speech capabilities [44]. The robot’s anthropomorphic design
and ability to express emotions through human-like motion and speech make it highly suit-
able for interactive tasks. My work with the QRIO began during an internship at the Sony
Intelligence Dynamics Laboratory while working on techniques for providing engaging long-
term human-robot interaction [17]. We have also used the QRIOs to develop a collaborative
commentating behavior for robot soccer games [87]. Within our learning from demonstration
work, the QRIO attempts to audibly attract the teacher’s attention by speaking the phrase
“What should I do now?”. Visually, the robot indicates uncertainty by an open arm gesture
and the lighting of LEDs on the head.

1.2 Contributions

The contributions of this thesis are as follows:

• Confidence-Based Autonomy, a mixed-initiative single robot demonstration learning
algorithm consisting of two components, Confident Execution and Corrective Demon-
stration. The Confident Execution algorithm enables the robot to learn a behavior
policy using a classifier, and to regulate the robot’s autonomy based on confidence and
distance analysis of the learned classification and the underlying dataset. The Correc-
tive Demonstration algorithm enables the teacher to provide supplementary corrective
demonstrations to the robot.

• A method for identifying, representing and enacting equivalent action choices in classifier-
based demonstration learning approaches that explicitly models the choice between
multiple actions by mapping single label training data to multi-label data classes.

• A task-independent and robot-independent interface for demonstration learning that
provides state information to the teacher and enables the selection of demonstration
actions.

• Founded on the single-robot demonstration learning approach, a multi-robot learning
framework that enables multiple robots to learn independent policies at the same time
from a single teacher.

• Three techniques for representing and teaching collaborative multi-robot behavior us-
ing demonstration based on different information sharing strategies: implicit coordi-
nation, coordination through active communication, and coordination through shared
state.

7

• Evaluation of the scalability of the above multi-robot demonstration learning approach
using up to seven quadruped AIBO robots.

• An extensive evaluation of all presented approaches in multiple simulated and real-
world domains utilizing multiple robotic platforms.

1.3 Document Outline

The outline below presents a summary of the chapters that follow. Figure 1.2 presents an
overview of thesis chapter organization.

Chapter 2 – Confidence-Based Autonomy. We present an overview of our single-robot
demonstration learning algorithm, Confidence-Based Autonomy.

Chapter 3 – Confident Execution. We present details of the Confident Execution com-
ponent of the Confidence-Based Autonomy algorithm, which enables the robot to select
demonstrations based on action selection confidence. We evaluate the performance of
this algorithm in corridor navigation and highway driving domains.

Chapter 4 – Corrective Demonstration. We present details of the Corrective Demon-
stration component of the Confidence-Based Autonomy algorithm, which enables the
teacher to correct mistakes made by the robot through additional demonstrations.
We evaluate the performance of this component, and the complete Confidence-Based
Autonomy algorithm, in the highway driving domain.

Chapter 5 – Learning Equivalent Action Choices from Demonstration. We intro-
duce the choice of equivalent actions problem in demonstration learning and present
option classes, a method for modeling equivalent action choices explicitly within a dis-
crete classifier-based policy representation. We demonstrate the effectiveness of the
option classes approach in an obstacle avoidance domain using a Sony QRIO robot.

Chapter 6 – Multi-Robot Learning and Collaboration. We introduce the problem of
multi-robot learning from demonstration and present FlexMLfD, a task-independent
and robot-independent multi-robot learning framework. Based on this framework, we
present three approaches to teaching collaborative multi-robot behavior using different
information sharing strategies. We evaluate multi-robot learning and coordination in
two domains using Sony AIBO and QRIO robots.

8

Chapter 7 – Scalability Analysis. We evaluate the scalability of the FlexMLfD multi-
robot demonstration learning framework in a beacon homing domain using up to seven
Sony AIBO robots.

Chapter 8 – Related Work. We discuss the relation of this thesis to previous work in
the areas of learning from demonstration and multi-robot learning.

Chapter 9 – Conclusion and Future Work We conclude the dissertation with a sum-
mary of its contributions along with a discussion of promising directions for future
work based on the presented learning methods.

9

Figure 1.2: Diagram of thesis organization.

10

Chapter 2

Confidence-Based Autonomy

This chapter presents the Confidence-Based Autonomy algorithm [22] and an overview of the
demonstration learning process. We begin with definitions of the notation used throughout
this document.

2.1 Definitions

Learning from demonstration approaches rely on training data acquired from demonstrations
by a human teacher to learn a task policy imitating the teacher’s behavior. Each demonstra-
tion is a state-action pair which we assume to represent the correct action to be performed
in the given state.

The robot’s state, s = Rn, is represented by an n-dimensional feature vector that can be
composed of continuous or discrete values. We assume s to be the robot’s observable state
composed of raw or processed sensor data available to the robot; the robot’s complete state
in the world is usually unknown to it due to sensory limitations.

The robot’s actions, a, are bound to a finite set A of action primitives, which are the basic
actions that can be combined to perform the overall task. Given a sequence of demonstrations
(si, ai), with state si and teacher-selected action ai ∈ A, the goal is for the robot to learn to
imitate the teacher’s behavior by generalizing from the demonstrations and learning a policy
mapping from all possible states to actions in A.

We assume the underlying model of the robot’s task to be an MDP. The robot’s policy

11

is represented and learned using supervised learning based on training data acquired from
the demonstrations. Confidence-Based Autonomy can be combined with any supervised
learning algorithm that provides a measure of confidence in its classification. The policy
is represented by classifier C : s → (a, c, db), trained using state vectors si as inputs, and
actions ai as labels. For each classification query, the model returns the highest confidence
action a ∈ A, action selection confidence c, and the decision boundary db with the highest
confidence for the query (e.g. Gaussian component for Gaussian Mixture Models (GMMs)).
Policy learning for algorithms throughout this thesis is performed using Gaussian Mixture
Models or one-against-one multiclass Support Vector Machines (SVM) with a radial basis
function kernel [14] and Platt scaling [66], as noted.

2.2 Confidence-Based Autonomy

The Confence-Based Autonomy algorithm enables a human user to train a task policy
through demonstration. The algorithm consists of two components:

• Confident Execution (CE): an algorithm that enables the robot to learn a policy based
on demonstrations obtained by regulating its autonomy and requesting help from the
teacher. Demonstrations are selected based on automatically calculated classification
confidence thresholds.

• Corrective Demonstration (CD): an algorithm that enables the teacher to provide
supplementary demonstrations and improve the learned policy by correcting mistakes
made by the robot during autonomous execution.

Figure 2.1 shows the interaction between the two algorithmic components. Using the Con-
fident Execution algorithm, the robot selects states for demonstration in real time as it
interacts with the environment, targeting states that are unfamiliar or in which the current
policy action is uncertain. At each timestep, the algorithm evaluates the robot’s current
state and actively decides between autonomously executing the action selected by its policy
and requesting an additional demonstration from the human teacher.

To effectively select demonstrations, the learner must be able to autonomously identify
situations in which a demonstration will provide useful information and improve the policy.
Confident Execution selects between robot autonomy and a request for demonstration based
on the measure of action-selection confidence c returned by the classifier. Given the current
state of the learner, the algorithm queries the policy to obtain its confidence in selecting

12

Figure 2.1: Confidence-Based Autonomy: overview of the Confident Execution and Correc-
tive Demonstration learning components.

an action for that state, and regulates its autonomy based on this confidence. The learner
executes the returned action ap if confidence c is above a threshold τ , which is determined
by the decision boundary of the classifier, db. Confidence below this threshold indicates
that the robot is uncertain about which action to take, so it seeks help from the teacher
and requests a demonstration. As the robot waits for the teacher’s response, it continues to
evaluate its current world state and query the policy. This mechanism allows the robot to
react to changes in the environment, and possibly regain autonomy if the state changes to
one with high action confidence. After receiving demonstration ad, the algorithm updates
the robot’s policy using the new training point. As more training data becomes available,
the quality of the policy improves and the autonomy of the robot increases until the entire
task can be performed without help from the teacher. In Chapter 3 we compare two different
methods of using classification confidence to select states for demonstration.

Using the Confident Execution algorithm, the robot incrementally acquires demonstrations
as it explores its environment. As it practices its task, the robot uses the policy it learned up
to that point to make decisions between demonstration and autonomous execution. However,

13

by relying on the policy before learning is complete, the algorithm is likely to make mistakes
due to factors such as overgeneralization of the classifier or incomplete data in some area
of the state space. To address this problem we introduce a second algorithmic component,
Corrective Demonstration, which allows the teacher to provide corrections for the robot’s
mistakes. Using this method, when an incorrect action is selected by the algorithm for
autonomous execution, the teacher can provide a corrective demonstration indicating which
action should have been executed in its place. In addition to indicating that the wrong action
was selected, this method also provides the algorithm with the correct action to perform in
its place, ac. This type of correction is more informative than negative reinforcement or
punishment techniques common in other algorithms, leading the robot to learn quickly from
its mistakes. Additionally, the correction can be used to interrupt the execution of the
unwanted action in domains for which an interruption will not leave the robot in an unstable
state.

Together, Confident Execution and Corrective Demonstration form an interactive learning
algorithm in which the robot and human teacher play complementary roles. Using the
Confident Execution algorithm, the robot is able to identify states in which demonstration is
required; in fact, our results show that the algorithm is able to do this better than the human
teacher due to differences in perception and representation abilities. The teacher possesses
expert knowledge of the overall task, which is applied to performing demonstrations and
correcting execution mistakes using the Corrective Demonstration algorithm. Corrections are
associated directly with the state in which the incorrect action decision was made, resulting
a fast and effective means of tuning policy performance even for rarely encountered states.
Complete details of the Confident Execution and Corrective Demonstration algorithms, and
their evaluation, are presented in Chapters 3 and 4, respectively.

2.3 Human-Robot Interaction

To enable interaction between the robot and teacher, a graphical user interface (GUI) is used
to display the robot’s state information, and to provide the teacher with the choice of actions
for demonstration. A screenshot of the GUI is shown in Figure 2.2 with labels highlighting
different regions of the display. The interface displays system information, such as the
identification number or name of the associated robot, and the robot’s current state. State
features are organized by their source, separated into information observed locally through
the robot’s sensors and information received through communication from remote sources,
such as teammates or external sensors. Communicated data can be especially difficult for
the teacher to monitor without the GUI interface. The robot state display therefore provides
vital information necessary to ensure that the teacher’s view of the world matches that of

14

Figure 2.2: Screenshot of the LCI graphical user interface.

the robot.

Using the GUI, the teacher is able to perform demonstrations by selecting among a set of
possible actions for the robot to execute. The GUI also allows the teacher to undo incorrect
demonstrations in the case that the wrong action was accidentally selected. The undo
operation erases the last demonstration performed from the policy database. However, it
does not undo the effects of the incorrect action that was executed by the robot as a result
of the mistaken demonstration. An action information display, located in the lower right
corner of the GUI, shows the current action being performed by the robot. When the robot
is idle and a demonstration request is pending, the display shows the highest confidence
policy action as a recommendation to the teacher.

A color bar at the top of the GUI screen changes color depending upon the current status
of the robot: not connected (black), connected and executing an action (gray), or waiting
for a demonstration (red). This enables the teacher to identify at a glance when the robot
requests a demonstration, or if connectivity to the robot is broken. Finally, a set of buttons
at the top of the display control the execution mode of the robot. Complete details of the
demonstration learning software and interface are presented in Appendix A.

15

2.4 Overview of Teaching Process

The following set of steps outline the typical demonstration learning process:

1. Configuration – The teacher configures the CBA learning system by creating an XML
configuration file specifying robot identification and connectivity information, as well as
selecting the set of state features and actions relevant for the task at hand. Once a connection
to the robot is established, task and robot information is displayed in the LCI GUI. Learning
is initiated by activating the “CBA” learning mode.

2. Demonstration Learning – The robot begins with no prior knowledge about the task
and must request many demonstrations early in the training process. As training data is
gathered over time, the quality of the robot’s policy improves and its autonomy increases.
By practicing the task, the robot refines its policy upon encountering rare or complex states.
Learning is complete once the correct action is selected for all states with high confidence
and the entire task is performed correctly without help from the teacher.

3. Autonomous Task Execution – Once learning is complete, the robot can use the
learned policy to execute the task autonomously.

Figure 2.3 shows how the level of robot autonomy, measured as the percentage of autonomous
actions versus demonstrations, changes for over the course of training1. The data curve shows

1Data in this graph was recorded in the beacon homing domain, see Section 7.1.

Figure 2.3: Level of robot autonomy over the course of training, averaged over multiple
trials.

16

that following an initial burst of demonstrations, the robot quickly achieves an average
autonomy rate of 80–90%. The robot then continues to refine the policy until full autonomy
is reached. The shape of the curve in Figure 2.3 is typical of most CBA learning domains
in which initial demonstrations provide the robot with the experience for handling most
commonly encountered domain states.

2.5 Chapter Summary

This chapter presented an overview of the Confidence-Based Autonomy algorithm and demon-
stration learning process. In the next chapter, we present a detailed description of the Confi-
dent Execution component and compare its performance to manual demonstration selection
by a human teacher. Chapter 4 presents details and evaluation of Corrective Demonstration
and the complete Confidence-Based Autonomy algorithm.

17

18

Chapter 3

Confident Execution

The Confident Execution algorithm enables a robot to select demonstration states, regulate
its autonomy, and learn an action policy based on demonstrations acquired from a human
teacher [20, 21]. At each timestep, the algorithm uses thresholds to determine whether a
demonstration of the correct action in the robot’s current state will provide useful information
and improve the robot’s policy. If demonstration is required, the robot requests help from
the teacher, and updates its policy based on the resulting action label. Otherwise the robot
continues to perform its task autonomously based on its policy.

Learning from demonstration is an incremental process in which the robot interleaves learning
and execution. In regulating the robot’s autonomy, our goal is to prevent autonomous action
execution in regions of uncertainty. Specifically, there are two distinct situations in which the
robot requires help from the teacher: unfamiliar states and ambiguous states. An unfamiliar
state occurs when the robot encounters a situation that is significantly different from any
previously demonstrated state, as represented by the outlying points in Figure 3.1. While we
do not want to demonstrate every possible state, and therefore need our model to generalize,
we would like to prevent over-generalization to truly different states.

Ambiguous states occur when the robot is unable to select between multiple actions with
certainty. This situation can result when demonstrations of different actions from similar
states, due to sensor noise and other factors, make accurate classification impossible. This is
exemplified by the region of overlapping data classes in Figure 3.1. In these cases, we would
like the robot to request additional demonstrations to help disambiguate the situation.

The goal of the Confident Execution algorithm is to divide the state space into regions of high
confidence (autonomous execution) and low confidence (demonstration) such that unfamiliar

19

Figure 3.1: Examples of state regions targeted by demonstration requests. Outlying points
and regions of overlapping data classes represent unfamiliar and ambiguous state regions,
respectively.

and ambiguous regions fall into the low confidence areas. Given a world state, the algorithm
uses the following two evaluation criteria to select between demonstration and autonomy:

• Nearest Neighbor distance: Given d = NearestNeighbor(s), the distance from the
current state to the nearest (most similar) training datapoint, the robot may act au-
tonomously if d is below the distance threshold τdist.

• Classification confidence: Given c, the classification confidence of the current state, the
robot may act autonomously if the value of c is above the confidence threshold τconf .

In the following section, we present the details of the Confident Execution algorithm under
the assumption that the values for τdist and τconf are known. We then present methods for
calculating these thresholds in Sections 3.2 and 3.3.

3.1 Algorithm Description

Algorithm 1 presents a pseudocode description of the Confident Execution algorithm. We
assume no preexisting knowledge about the task, and initialize the algorithm with an empty
set of training points T . Since a classifier is not initially available, threshold τconf is initialized

20

Algorithm 1 Confident Execution Algorithm

1: T ← {}
2: τconf ← inf
3: τdist ← 0
4: while true do
5: if actionComplete then
6: s ← GetSensorData()
7: d = NearestNeighbor(s)
8: (ap, c, db) ← C(s)
9: if c > τconf and d < τdist then

10: ExecuteAction(ap)
11: else
12: RequestDemonstration()
13: ad ← GetTeacherAction()
14: if ad 6= NULL then
15: T ← T ∪ {(s, ad)}
16: C ← UpdateClassifier(T)
17: (τconf , τdist) ← UpdateThresholds()
18: ExecuteAction(ad)
19: else
20: //wait for action to complete

to infinity to ensure that the robot is controlled through demonstration during the initial
learning stage. Distance threshold τdist is initialized to 0.

The main learning algorithm consists of a loop (lines 4-20), each iteration of which repre-
sents a single timestep. The behavior of the algorithm is determined by whether the robot
is currently executing an action. If an action is in progress, the algorithm performs no addi-
tional computation during this timestep (line 20). Once an action is complete, the algorithm
evaluates its state to determine the next action to perform (lines 6-18).

Evaluation begins by obtaining the robot’s current state in the environment (line 6). This
information is then used to calculate the nearest neighbor distance and to query the learned
classifier C to obtain policy action ap and confidence c. These values are then compared to
the confidence and distance thresholds to decide between demonstration and autonomy (line
9). If similar states have previously been observed, and the learned model is confident in its
selection, the algorithm finishes the timestep by initiating the autonomous execution of the
policy selected action ap (line 10). Otherwise it initiates a request for teacher demonstration
(lines 12-18).

21

The robot requests a demonstration by pausing and indicating to the teacher that a demon-
stration is required. Note that we assume the domain allows the robot to pause execution.
Following a demonstration request, the algorithm checks whether a demonstration has been
performed (lines 13-14). If the teacher’s response is available, a new training datapoint
consisting of the current state and the corresponding demonstrated action ad is added to
the training set (line 15). The model classifier is then retrained, and the threshold values
updated, before executing the teacher selected action (lines 16-18).

If the teacher’s response is not immediately available, the timestep terminates and the whole
process is repeated at the next iteration. The robot again senses its state, performs the
threshold comparison and checks for a demonstration. This non-blocking mechanism enables
the robot to wait for a demonstration from the teacher without losing awareness of its
surroundings. In cases where the robot’s environment is dynamic, maintaining up to date
information is important as the state may change in the time between the initial request and
the demonstration. Associating the action label with the robot’s most recent state, the one
the teacher is most likely responding to, is therefore critical to learning an accurate model.
Additionally, changes in the environment can result in the robot attaining a high confidence
state without any actions of its own. In these cases, autonomous execution of the task
is automatically resumed. In summary, once a demonstration request is made, no further
actions are taken by the robot until either a demonstration is received from the teacher, or
changes in the environment result in a high confidence state.

Using this approach, Confident Execution enables the robot to incrementally acquire demon-
strations representing the desired behavior. As more datapoints are acquired, fewer states
distant from the training data are encountered, the performance and classification confidence
improve, and the autonomy of the robot increases. Task learning is complete once the robot
is able to repeatedly perform the desired behavior without requesting demonstrations. In
the following sections we present the methods for calculating the distance and confidence
thresholds.

3.2 Distance Threshold

The purpose of the distance threshold is to evaluate the similarity between the robot’s
current state and previous demonstrations. Our evaluation metric uses the nearest neighbor
distance, defined as a the Euclidian distance between a query and the closest point in the
dataset. For each robot state query, we obtain its nearest neighbor distance representing the
most similar previously demonstrated state. This value is then compared to the distance
threshold τdist.

22

The value of the distance threshold τdist is calculated as a function of the average nearest
neighbor distance across the dataset of demonstrations. Evaluating the average similarity
between states provides the algorithm with a domain-independent method for detecting
outliers, points unusually far from previously encountered states. For trials in this article,
the value of τdist was set to three times the average nearest neighbor distance across the
dataset.

An alternate method for detecting outliers would be to use classification confidence and
request demonstrations in low confidence states. However, situations can arise in which
confidence is not directly correlated with state similarity. For example, for many classifiers a
set of datapoints encircling an empty region, similar to the shape of a donut, would result in
the highest classification confidence being associated with the empty center region far from
previous demonstrations. Distance provides a reliable prediction of similarity, even in these
cases.

3.3 Confidence Threshold

The purpose of the confidence threshold is to select regions of uncertainty in which points
from multiple classes overlap. From the robot’s perspective, points in these regions repre-
sent demonstrations of two distinct actions from states that appear similar, and are difficult
to distinguish based on the sensor data. This problem frequently arises in demonstration
learning for a number of reasons, such as the teacher’s inability to demonstrate the task con-
sistently, noise in the sensor readings, or an inconsistency between the robot’s and teacher’s
sensing abilities. We would like to set the confidence threshold to a value that prevents
either model from classifying the overlapping region with high confidence.

In the following sections, we first present a solution that uses a single fixed confidence
threshold value, followed by an algorithm for automatically calculating multiple adjustable
thresholds. We then discuss potential drawbacks of the single threshold approach in Section
3.3.1.

3.3.1 Single Fixed Threshold

A single, fixed confidence threshold value provides a direct and simple mechanism to approx-
imate the high confidence regions of the state space. Previous algorithms utilizing classifi-
cation confidence for behavior arbitration have all used a manually-selected single threshold

23

value, such as 0.5 [52] or 0.25 [35].

In the following section, we present an evaluation of the Confident Execution algorithm
utilizing a fixed threshold value in a corridor navigation domain. We compare the learning
performance in this task to reinforcement learning. We then discuss drawbacks of the single
threshold approach.

Experimental Evaluation and Comparison to Reinforcement Learning

The corridor navigation domain, shown in Figure 3.2, consists of a maze. A Sony AIBO robot
must navigate the maze in the circular pattern shown in the figure. The robot observes the
environment using the IR sensor built into the head. By turning its head, the robot calculates
distance to the nearest obstacle in three directions – left, right and front – resulting in a 3-
dimensional continuous feature vector. Due to the noise of the IR sensor, the robot processes
all sensor readings when it is stationary and averages the values over 15 consecutive readings.

The robot has four available actions: forward, turn left, turn right and u-turn. The forward
action moves the robot approximately 20 cm in the direction it is facing. turn left and turn
right rotate the robot while slowly advancing it forward, and the u-turn action rotates the
robot 180◦. The teacher demonstrates each action to the robot by making the appropriate
selection in the graphical user interface. After completing each action, the robot stops to
take the next sensor reading; it requires a minimum of 26 actions to complete one circuit
of the domain. The goal of the learning is to classify each observation into one of the four
action classes. To perform the task correctly, the robot must learn to distinguish between

Figure 3.2: The corridor navigation domain. The robot’s target path is marked by a black
line.

24

open space, nearby and far away walls.

Using the corridor navigation domain, we compare two policy learning methods, Confident
Execution and Prioritized Sweeping [57], a variant of Reinforcement Learning. In the Confi-
dent Execution algorithm, the policy was represented by a Gaussian Mixture Model (GMM),
and the classification confidence threshold was fixed at two standard deviations for the most
likely Gaussian component. Using the Confident Execution algorithm, the robot learned the
policy for successfully navigating the corridor domain based on 53 demonstrations performed
over the course of five traversals of the domain. After the fifth traversal the robot no longer
requested demonstrations, and learning was completed after the robot navigated through
the maze autonomously and correctly 10 additional times. Figure 3.3 shows data from the
four Gaussian mixture models representing the final learned policy.

Using the Prioritized Sweeping algorithm, the robot learned the task based on reward feed-
back acquired by exploring the environment. To avoid complex parameters that can affect
RL performance in continuous domains, we simplify the domain by discretizing the real-
values sensor data into binary wall/no-wall features typical of most grid-world experiments.
Our results show that even with this advantageous simplification, RL takes significantly
longer to learn the policy than our demonstration-based method while achieving the same
performance. Specifically, using a reward function that returns greater reward values for less
recently visited states (thereby encouraging circular movement through the domain), the
Prioritized Sweeping algorithm took an average of 275 steps, or over 10 complete traversals
of the domain, to learn the optimal policy, compared to the 53 demonstrations required by
Confident Execution.

(a) (b)

Figure 3.3: (a) Corridor navigation domain training data representing all action classes. (b)
Gaussian mixtures fitted to corridor navigation domain training data.

25

Drawbacks of Using a Single Fixed Threshold

A single fixed threshold value provides a simple control mechanism that is effective for simple
domains. However, choosing an appropriate threshold value can be difficult for a constantly
changing dataset and model. Figure 3.4 presents examples of three frequently encountered
problems.

Figure 3.4(a) presents a case in which two action classes are distinct and fully separable. A
model trained on this dataset is able to classify the points with complete accuracy, without
misclassifications. However, the current threshold value classifies only 72% of the points
with high confidence, marking the remaining 28% of the points as uncertain. In this case,
a lower threshold value would be preferred that would allow the model to generalize more
freely. The resulting larger high confidence region would reduce the number of redundant
demonstrations without increasing the classification error rate of either data class.

Figure 3.4(b) presents an example of the opposite case, in which a stricter threshold value
would be preferred. In this example the data classes overlap, resulting in a middle region
in which points cannot be classified with high accuracy. A higher threshold value would
prevent the classification of points in this region into either data class, initiating instead a
request for demonstration that would allow the teacher to disambiguate the situation.

Figure 3.4(c) presents a case in which the datapoints of the two data classes have very
different distributions. While the fixed threshold value is appropriate for the left class, 42%
of the points in the right class are labeled as low confidence.

Classification of complex multi-class data depends upon multiple decision boundaries. Using

(a) (b) (c)

Figure 3.4: Examples of fixed threshold failure cases: (a) Fully separable data classes with
an overly conservative threshold value (b) Overlapping data classes with an overly general
threshold value (c) Data classes with different distributions and common threshold value.

26

the same value for all decision boundaries can exacerbate the problems highlighted above,
as a single value often cannot be found that constrains model classification in some areas
while allowing generalization in others. The resulting effect is that the robot requests too
many demonstrations about things it already knows, and too few demonstrations about
unlearned behavior. To address this problem, we present an algorithm for calculating a
unique threshold value for each decision boundary.

3.3.2 Multiple Adjustable Thresholds

In this section, we contribute an algorithm for calculating a confidence threshold for each
decision boundary, customized to its unique distribution of points. In our analysis, we
assume that we are able to query the classifier and obtain a confidence score representing
the likelihood that a particular input belongs within a specified decision boundary.

The algorithm begins by dividing the dataset into a training and test set and training the
classifier C. The resulting learned model is used to classify the withheld test set, for which
the correct action labels are known. The algorithm then calculates a unique confidence
threshold for each decision boundary based on the confidence scores of misclassified points.
Given the confidence scores of a set of points mistakenly classified by a decision boundary,
we assume that future classifications with confidences at or below these values are likely to
be misclassifications as well. The threshold is therefore calculated as a function of these
confidence scores.

Specifically, we define a classified point as the tuple (o, a, am, c), where o is the original
observation, a is the demonstrated action label, am is the model-selected action, and c is the
model action confidence. Let Mi = {(o, ai, am, c)|am 6= ai} be the set of all points mistakenly
classified by decision boundary i. The confidence threshold value is set to the average

classification confidence of the misclassified points: τconf i
=

PMi c
|Mi| . We take the average to

avoid overfitting to noisy data. Other values, based on the maximum or standard deviation,
can be used if a more conservative estimate is required. A threshold value of 0 indicates that
no misclassifications occurred and the model is able to generalize freely.

Figure 3.5 presents an example of the threshold calculation process. Figure 3.5(a) presents
a small sample dataset, the rectangular box in the figure highlights a region of the state
space in which points from both classes overlap. Figure 3.5(b) shows the learned decision
boundary (in this case a SVM) separating our two data classes. Six misclassified points are
marked with the (mis-)classification confidences returned by the model. Misclassified points
on each side of the decision boundary will be used to calculate the respective confidence

27

(a) (b) (c)

Figure 3.5: Autonomy threshold calculation: (a) Example dataset, with highlighted over-
lapping region (b) Learned decision boundary, misclassified points marked with confidence
values (c) Learned threshold values for each data class, a low confidence region containing
most of the overlapping points remains in the center.

thresholds. Figure 3.5(c) shows the confidence threshold lines and values based on the above
calculations. The resulting low confidence region in the middle of the image captures most
of the noisy datapoints.

Given this multi-threshold approach, classification of new points is performed by first select-
ing the action class with the highest confidence for the query. The comparison on line 9 of
Algorithm 2 is then performed using the threshold of the decision boundary with the highest
confidence for the query. Using this method, the threshold value of the most likely decision
boundary to represent the point is used to decide between demonstration and autonomy.

Figure 3.6 shows how the example failure cases discussed in Section 3.3.1 are addressed
by the multi-thresholded approach. Customizing the threshold value to each unique data
distribution enables the algorithm to correctly classify 100% of the points in Figures 3.6(a)

(a) (b) (c)

Figure 3.6: Multiple adjustable thresholds applied to the failure cases shown in Figure 3.4.

28

and (c). Since there are no misclassifications, the model generalizes freely in these examples.
For the dataset in Figure 3.6(b), in which perfect classification is not possible, the confidence
thresholds are set such that the overlapping region falls into a low confidence area. This
example uses a Gaussian mixture model, in which the elliptical confidence gradient around
the mean results in a large low confidence area even far from the overlapping region. Other
classification methods, such as Support Vector Machines, do not have this drawback.

(a) Gaussian mixture model (b) Random Forest

(c) SVM (quadratic) (d) SVM (RBF)

Algorithm Correct-Misclas.-Unclass. Thresholds

GMM 98.6% – 0.4% – 1.0% (0, 0, 0.012)
RF 99.1% – 0.1% – 0.8% (0.14, -0.355)
SVM quad. 98.5% – 0.1% – 1.4% (335.33, -68.77)
SVM RBF 98.9% – 0.1% – 1.0% (0.825, -0.268)

Figure 3.7: Classification of dataset into high and low confidence regions using different
classification methods. Table below the figures presents the accuracy and threshold values
for each learning method.

29

The presented multi-threshold approach is algorithm independent, and Figure 3.7 presents
classification results of four different classification methods: Gaussian mixture models, ran-
dom forests (RF), Support Vector Machine with a quadratic kernel, and SVM with a radial
basis function (RBF) kernel. The table below summarizes the classification performance of
each algorithm and lists the threshold values for each of the models.

3.4 Experimental Evaluation in Driving Domain

In this section we present an evaluation and comparison of Confident Execution in simulated
highway driving domain [1], shown in Figure 3.8.

3.4.1 Domain Description

In the driving domain, the robot represents a car driving on a busy highway. The learner’s car
travels at a fixed speed of 60 mph, while all other cars move in their lanes at predetermined
speeds between 20 and 40 mph. The road has three normal lanes and a shoulder lane on
both sides; the robot is allowed to drive on the shoulder to pass other cars, but cannot go
further off-road. Since the learner cannot change its speed, it must navigate between other
cars and use the shoulder lanes to avoid collision. The robot is limited to three actions:
remaining in the current lane, or shifting one lane to the left or right of the current position
(A = {forward,left,right}). The teacher demonstrates the task through a keyboard interface.
The simulator has a framerate of 5 fps and is paused during demonstration requests.

The robot’s state is represented by: s = {l, dl, dc, dr}. State feature l is a discrete value
symbolizing the robot’s current lane number. The remaining three features, denoted by the
letter d, represent the distance to the nearest car in each of the three driving lanes (left,
center and right). The distance features are continuously valued in the [-25,25] range; note
that the nearest car in a lane can be behind the robot. Distance measurements are corrupted
by noise to create a more complex testing environment. The robot’s policy is relearned each
time 10 new demonstrations are acquired.

The driving domain presents a varied and challenging environment; if car distances were to be
discretized by rounding to the nearest integer value, the domain would contain over 600,000
possible states. Due to the complexity of the domain, the robot requires a large number of
demonstrations to initialize the classifier, resulting in nearly constant demonstration requests
early in the training process. To simplify the task of the teacher, we add a short 300

30

Figure 3.8: Screenshot of the driving simulator. The robot, the black car currently in the
center lane, drives at a fixed speed and must navigate around other cars to avoid collisions.
The road consists of five lanes: three traffic lanes and two shoulder lanes.

datapoint, or approximately 60 second, non-interactive driving demonstration session to
initialize the learning process. While this learning stage is not required, it simplifies the
task of the teacher for whom continuous demonstration is preferred over frequent pauses for
demonstration requests.

The performance of each learning algorithm was evaluated each time 100 new demonstrations
were acquired. For each evaluation, the robot drove for 1000 timesteps over a road segment
with a fixed and consistent traffic pattern. This road segment was not used for training,
instead each algorithm was trained using a randomly generated car traffic pattern.

Since the algorithm aims to imitate the behavior of the expert, no ‘true’ reward function
exists to evaluate the performance of a given policy. We present two domain-specific evalu-
ation metrics that capture the key characteristics of the driving task. Our first evaluation
metric is the robot’s lane preference, or the proportion of the time the robot spends in each
lane over the course of a trial. This metric provides an estimate of the similarity in driving
styles. Since the demonstrated behavior attempts to navigate the domain without collisions,
our second evaluation metric is the number of collisions caused by the robot. Collisions are
measured as the percentage of the total timesteps that the robot spends in contact with
another car. Always driving straight and colliding with every car in the middle lane results
in a 30% collision rate.

31

3.4.2 Evaluation Results

Using the driving domain, we present the performance evaluation and comparison of the
following demonstration selection techniques:

• TG – Teacher-guided, all demonstrations selected by the teacher without any confi-
dence feedback from the algorithm

• CES – Confident Execution, all demonstrations selected by the robot using a single
fixed confidence threshold

• CEM – Confident Execution, all demonstrations selected by the robot using multiple
adjustable confidence thresholds

For each demonstration selection method, the underlying policy of the robot was learned
using multiple Gaussian mixture models, one for each action class.

Figure 3.9 presents performance results of the five algorithms with respect to the above
defined lane preference and collision metrics. For each evaluation, the figure presents a
bar representing a composite graph showing the percentage of time spent by the robot in
each lane. The value above the bar indicates the number of demonstrations upon which
the evaluated policy is based. The value below the bar indicates the percentage of incurred
collisions during the evaluation.

The bar on the right of the figure shows the performance of the teacher over the evaluation
road segment. This evaluation indicates that the teacher prefers to drive in the center and
left lanes, followed in preference by the left shoulder, right shoulder and right lane. The
teacher also successfully avoids all collisions, resulting in a collision rate of 0%. The goal of
the learning algorithm is to achieve a driving lane pattern similar to that of the teacher and
also without collisions. Note that, as described in the previous section, policy learning was
initialized with the same 300-demonstration dataset for all algorithms. This initialization
results in identical performance across all algorithms for this initial learning segment.

The top row in Figure 3.9 summarizes the performance of the teacher-guided demonstra-
tion selection approach. In this approach, the teacher performed training by alternating
between observing the performance of the robot and selecting demonstrations that, in her
opinion, would improve driving performance. The teacher selected all training examples
without receiving feedback about action selection confidence, and without the ability to
provide corrective demonstrations for incorrect actions that were already executed by the

32

Figure 3.9: Evaluation of the robot’s driving performance at 100-demonstration intervals for
each of the five demonstration selection methods. The bar graphs indicate the percentage
of time the robot spent in each road lane. Values under each bar indicate the percentage
of collision timesteps accrued over the evaluation trial. The teacher performance bar on the
right of the figure shows the teacher’s driving lane preference and collision rate over the
evaluation road segment. The goal is for each algorithm to achieve performance similar to
that of the teacher.

robot. Instead, the teacher was required to anticipate what data would improve the policy.
The training process was terminated once the teacher saw no further improvement in robot
performance.

Figure 3.9 shows the results of the robot’s performance evaluations at 100-demonstration
intervals throughout the learning process. The similarity in the driving lane preference
of the robot improves slowly over the course of the learning, with significant fluctuations.
For example, after 500 demonstrations, the robot’s preference is to drive on the empty left
shoulder, thereby incurring few collisions. One hundred demonstrations later, the policy
has shifted to prefer the center lane. However, the robot has not yet learned to avoid
other cars, resulting in a 38.8% collision rate. The policy stabilizes after approximately
1100 demonstrations, representing a driving style similar to that of the teacher, with a

33

small number of collisions. Without confidence feedback from the robot, it is difficult for
the teacher to select an exact termination point for the learning. Training continued until,
after 1300 demonstrations, the learner’s policy showed little improvement. The final policy
resulted in a lane preference very similar to that of the expert, but with a 2.7% collision
rate.

The second row in Figure 3.9 presents the results of the Confident Execution algorithm
with a single autonomy threshold. In this demonstration selection approach, all demonstra-
tions were selected by the robot and learning terminated once the robot stopped requesting
demonstrations and performed all actions autonomously. The autonomy threshold value
was selected by hand and evaluated in multiple performance trials. Results of the best fixed
threshold are presented. Compared to the teacher-guided approach, the policy learned using
the CES algorithm stabilizes quickly, achieving performance similar to the teacher’s after
only 700 demonstrations. The number of collisions is again low but persistent, even as the
robot gains full confidence and stops requesting demonstrations after 1008 demonstrations.
The final lane preference was again similar to that of the expert, with a collision rate of
3.8%.

The third row in Figure 3.9 presents the results of the Confident Execution algorithm with
multiple autonomy thresholds, which were calculated using the algorithm presented in Sec-
tion 3.3.2. Of all the demonstration selection methods, CEM required the fewest number of
demonstrations to learn the task, completing learning after only 504 demonstrations. This
result indicates that the use of multiple adjustable thresholds successfully focuses demon-
stration selection on informative areas of the state space while greatly reducing the number
of redundant demonstrations. Throughout the learning process, the number of Gaussian
components within the model varied between 9 and 41. This large variation highlights the
importance of automating the threshold calculation process, since hand-selecting individual
thresholds for each component would be impractical. The lane preference of the final policy
was again similar to that of the expert. However, the robot still maintained a small collision
rate of 1.9%.

3.5 Chapter Summary

This chapter presented the Confident Execution component of Confidence-Based Autonomy,
which enables the robot to select demonstrations in real time as it interacts with the envi-
ronment using confidence and distance thresholds to target states that are unfamiliar or in
which the current policy action is uncertain. Experimentally, we used a complex simulated
driving domain to compare three methods of selecting demonstration training data: man-

34

ual data selection by the teacher, confidence-based selection using a single fixed threshold,
and confidence-based selection using multiple automatically calculated thresholds. Based on
our evaluation, we conclude that both confidence-based methods were able to select more
informative demonstrations than the human teacher. Of the single and multiple threshold
approaches, the multiple adjustable threshold technique required significantly fewer demon-
strations by focusing onto regions of uncertainty and reducing the number of redundant
datapoints.

The evaluation of these three algorithms highlights the difficulty of the driving problem. Each
of the approaches was able to select demonstrations that resulted in a policy that mimics the
overall driving style of the teacher. However, all of the policies resulted in a small number of
collisions, which typically occurred when the robot merged too close to another vehicle and
touched its bumper. Such mistakes are difficult to correct using the techniques evaluated so
far. Even within the teacher guided demonstration selection method, in which the human
teacher has full control of the demonstration training data, by the time the collision has been
observed the incorrect decision had already been made by the algorithm. Instead, retroactive
demonstration is required to correct already made mistakes. In the following chapter, we
present the Corrective Demonstration algorithm which enables the teacher to perform such
corrections.

35

36

Chapter 4

Corrective Demonstration

Many traditional approaches to learning from demonstration rely on an iterative demonstrate-
observe strategy in which the teacher alternates between two learning phases, observing robot
behavior and providing demonstrations aimed at correcting any observed mistakes [35, 52].
The drawback of these techniques is that not only does the teacher have to guess what
demonstrations are required to improve task performance, but she must also recreate the
problem case in order to demonstrate the correct behavior. Recreating a rarely encountered
state can be challenging in real robotic systems with sensor noise and dynamic environments.
This can lead to long training times and many demonstrations, as shown by our evaluation
of the teacher-guided demonstration learning method in the previous chapter.

The Confident Execution algorithm, presented in the previous chapter, enables the robot
to identify unfamiliar and ambiguous states and prevents autonomous execution in these
situations. However, states in which an incorrect action is selected with high confidence for
autonomous execution still occur, typically due to over-generalization of the classifier. In
this chapter, we introduce the Corrective Demonstration component of the CBA algorithm,
which enables the teacher to provide supplementary demonstrations to correct mistakes made
by the robot.

4.1 Algorithm Description

The Corrective Demonstration algorithm enables the teacher to observe the autonomous
execution of the robot and to correct any incorrect actions as they occur, associating the
correction immediately with the problem state. Unlike the Confident Execution approach,

37

in which the robot was given the next action to perform, the correction is performed with
relation to the past state at which the mistake was made. For example, when observing a
driving robot approaching too close behind another car, the teacher is able to indicate that
instead of continuing to drive forward, the robot should have been merging into the passing
lane. In this way, in addition to indicating that the wrong action was performed, Corrective
Demonstration also provides the algorithm with the action that should have been performed
in its place. This technique is more effective than negative reinforcement, or punishment,
techniques common in other algorithms, leading the robot to learn quickly from its mistakes.

Algorithm 2 combines Corrective Demonstration (lines denoted by ?) with Confident Exe-
cution and presents the complete Confidence-Based Autonomy algorithm.

Algorithm 2 Confidence-Based Autonomy algorithm, combining Confident Execution and
Corrective Demonstration
1: T ← {}
2: τconf ← inf
3: τdist ← 0
4: while true do
5: s ← GetSensorData()
6: if actionComplete then
7: (ap, c, db) ← C(s)
8: d = NearestNeighbor(s)
9: if c > τconf and d < τdist then

10: ExecuteAction(ap)
11: sc ← s ?
12: else
13: RequestDemonstration()
14: ad ← GetTeacherAction()
15: if ad 6= NULL then
16: T ← T ∪ {(s, ad)}
17: C ← UpdateClassifier(T)
18: (τconf , τdist) ← UpdateThresholds()
19: ExecuteAction(ad)
20: else
21: if autonomousAction then ?
22: ac ← GetTeacherAction() ?
23: if ac 6= NULL then ?
24: T ← T ∪ {(sc, ac)} ?
25: C ← UpdateClassifier(T) ?
26: (τconf , τdist) ← UpdateThresholds() ?

38

The Corrective Demonstration technique comes into play each time the robot executes an
autonomous action. As an action is selected for autonomous execution, the algorithm records
the robot’s state that led to this decision and saves this value within the variable sc (line 11).
During the execution of an autonomously selected action, the algorithm checks for a teacher
demonstration at every timestep (lines 22-23). If a corrective demonstration is made, a new
training datapoint consisting of the recorded demonstration state sc and the corrective action
ac is added to the training set (line 24). The classifier and thresholds are then retrained using
the new information. Note that once initiated, the incorrect action is allowed to complete
without interruption; interrupting an action may cause the robot to enter an unstable or
unsafe state.

4.2 Experimental Evaluation in Driving Domain

In this section, we present the performance evaluation and comparison of the following
demonstration selection techniques in the driving domain1:

• CD – Corrective Demonstration, all demonstrations selected by the teacher and per-
formed as corrections in response to mistakes made by the robot

• CBA – The complete Confidence-Based Autonomy algorithm combining Confident Ex-
ecution using multiple adjustable confidence thresholds with Corrective Demonstration

Figure 4.1 presents the results of this evaluation, as well as the results of the Teacher Guided
and Confident Execution demonstration selection methods, which were evaluated in the
previous chapter, for comparison.

In the fourth row of Figure 4.1 we present our evaluation of demonstration selection using
only the Corrective Demonstration algorithm. In this approach, all demonstrations were
selected by the teacher as corrections in response to mistakes made by the robot. Behavior
corrected by the teacher included collisions, as well as incorrect lane preference (e.g. al-
ways driving on the shoulder) and rapid oscillations between lanes. To enable the teacher
to accurately perform corrections, the simulation was slowed from 5 to 2 frames per sec-
ond. Learning was terminated once the robot required no further corrections. As shown in
Figure 4.1, the complete training process using Corrective Demonstration took 547 demon-
strations, achieving a final policy that correctly imitates the teacher’s driving style with a
0% collision rate.

1See Section 3.4 for a complete description of the domain and experimental evaluation criteria.

39

Figure 4.1: Evaluation of the robot’s driving performance at 100-demonstration intervals for
each of the five demonstration selection methods. The bar graphs indicate the percentage
of time the robot spent in each road lane. Values under each bar indicate the percentage
of collision timesteps accrued over the evaluation trial. The teacher performance bar on the
right of the figure shows the teacher’s driving lane preference and collision rate over the
evaluation road segment. The goal is for each algorithm to achieve performance similar to
that of the teacher.

40

The final row in Figure 4.1 presents the evaluation of the complete Confidence-Based Auton-
omy algorithm, which combines CEM with CD. Using this approach, learning is complete
once the robot no longer requests demonstrations and is able to perform the driving task
without collisions. Using CBA the robot required a total of 703 demonstrations to learn the
task, successfully learning to navigate the highway without collisions.

We analyze the impact of the two CBA learning components by comparing the number
and distribution of demonstrations acquired by each algorithm during the learning process.
In this section we refer to the learning components of CBA as CBA-CE and CBA-CD to
differentiate from the algorithm evaluations presented in previous sections. Note that the
behavior of the Confident Execution component is dependent upon the method used to set
the autonomy thresholds. In this evaluation we use multiple adjustable thresholds calculated
as the average value of misclassified points.

In Figure 4.2(a), each datapoint along the x-axis represents the number of demonstrations
requested using CBA-CE (top) and initiated by the teacher using CBA-CD (bottom) during
a 100-timestep interval, or approximately 40 seconds of simulator runtime (excluding pauses
for demonstration requests). Since the first three 100-demonstration timesteps consist en-
tirely of non-interactive demonstration, the values for these timesteps are 100 and, due to
scaling, exceed the bounds of the graph. Figure 4.2(b) shows how the cumulative number of
demonstrations for each component, and in total, grows with respect to training time. The

(a) (b)

Figure 4.2: (a) Timeline showing how the number of demonstrations initiated by the robot
through Confident Execution (top) and initiated by the teacher through Corrective Demon-
strations (bottom) changes over the course of the training. (b) The cumulative number of
demonstrations acquired by each component, and in total, over time.

41

complete training process lasts approximately an hour and a half.

Analysis of these graphs shows that most demonstrations occur early in the training process.
Importantly, Confident Execution accounts for 83% of the total number of demonstrations,
indicating that the robot guides most of the learning. Most of these demonstration requests
occur during the first few minutes of training when the robot encounters many novel states
and the classification confidence remains low. The robot requires few corrections during
this stage because many mistakes are prevented by requesting a demonstration instead of
performing a low confidence action. Corrective Demonstration plays its greatest role towards
the end of training process, where it accounts for 73% of the final 100 demonstrations. At
this stage in the learning the robot’s action selection confidence is high enough that it
rarely asks for demonstrations. Its policy already closely imitates the teacher’s driving style
but a small number of collisions remain. Corrective Demonstration enables the teacher
to fine-tune the policy and eliminate all collisions. This result highlights the importance of
Corrective Demonstration, whether alone or in conjunction with another selection technique,
for optimizing policy performance.

While CBA achieves similar final performance compared to the CD algorithm evaluated in
the previous section, it requires approximately 150 additional demonstrations to learn this
policy. The additional demonstrations can be attributed to Confident Execution demon-
stration requests that served to increase the classification confidence but did not change the
outcome of the robot’s action. Viewed another way, these datapoints correspond to states
in which the robot would have performed the correct action even if it had not asked for a
demonstration. From this result it appears that allowing the robot to make mistakes and
correcting them after the fact, as done in the CD evaluation, results in the best demon-
stration selection approach with respect to the performance metrics defined above and the
overall number of demonstrations.

However, taking away the robot’s ability to request demonstrations and utilizing only retroac-
tive correction has several drawbacks, namely requiring constant and full attention from the
teacher, and, most importantly, requiring the robot to make many mistakes before it learns
the correct policy. By comparison, the CBA algorithm enables the robot to request demon-
strations in low confidence states, thereby avoiding many incorrect actions. Our original
lane preference and collision metrics do not take this difference into account as they focus
only on the final policy performance of the robot.

To evaluate the difference between these algorithms, we additionally examine the number of
collisions each robot incurs over the course of the learning. This evaluation shows that using
the CD algorithm, the robot incurs 48% more collisions (278 vs. 188) during training than by
using CBA. As a result, by allowing the robot to request demonstrations in low-confidence

42

states, the CBA algorithm incurs a small increase in the number of demonstrations while
greatly reducing the number of incorrect actions performed during learning. The reduction
in the number of action errors is significant due to its importance for many learning domains,
especially robotic applications in which such errors may pose dangers to the system.

In summary, our evaluation has shown that the ability to retroactively correct mistakes
is crucial to optimizing the policy and eliminating all collisions. The best performance
was achieved by the Corrective Demonstration and Confidence-Based Autonomy methods,
with CD requiring fewer demonstrations but incurring a greater number of collisions during
training. The choice between CD and CBA can therefore be viewed as a tradeoff between
the number of demonstrations and the frequency of undesired actions during training. In
fact, CD is a special case of CBA in which the autonomy threshold is set to classify all
points with high confidence. Adjusting the selectiveness of the CBA autonomy thresholds
could, therefore, provide the user with a sliding control mechanism that effects the robot’s
tendency to perform autonomous actions versus demonstration requests. Importantly, we
note that the overall number of demonstrations required by either approach is less than the
teacher-guided method and only a tiny fraction of the overall state space.

4.3 Chapter Summary

This chapter presented the Corrective Demonstration component of the Confidence-Based
Autonomy algorithm, which enables the teacher to additionally perform corrective demon-
strations when an incorrect action is selected by the robot. Using this approach, the teacher
retroactively provides demonstrations for specific error cases instead of attempting to an-
ticipate errors ahead of time. Experimentally, we evaluated the performance of Corrective
Demonstration and the complete Confidence-Based Autonomy algorithm in the highway
driving domain, and compared this performance to the Teacher Guided and Confident Ex-
ecution methods presented in the previous chapter. Of the presented approaches, the best
policy performance was achieved by the Corrective Demonstration and complete Confidence-
Based Autonomy algorithms, both of which achieved a lane preference similar to that of
the teacher without any collisions. While Corrective Demonstration required slightly fewer
demonstrations to learn the final policy, compared to CBA it resulted in a significant increase
in the number of errors made by the robot over the course of the learning process. The CBA
algorithm, therefore, provides the best demonstration selection method for domains in which
incorrect actions are not desirable during the training process.

43

44

Chapter 5

Learning Equivalent Action Choices
from Demonstration

In the previous chapters, we introduced the Confidence-Based Autonomy algorithm and
its components, and demonstrated its effectiveness in improving policy performance and
reducing the number of demonstration in comparison to manual demonstration selection by
a human teacher. The Confidence-Based Autonomy algorithm makes two assumptions about
the task policy and demonstration training data: 1) that for each state there exists a single
best action, and 2) that the teacher is able to demonstrate this state-action combination
consistently. The CBA algorithm relies on these assumptions to learn a complete policy
given enough demonstration data, where we define a complete policy to be one that classifies
the entire state space with high confidence and results in full robot autonomy.

For robots operating in real-world environments, the assumptions of consistent demonstra-
tions and one-to-one state to action mappings can fail, resulting in regions of inconsistent
demonstrations in which similar states lead to different actions. One reason for inconsistent
demonstrations is that robots often encounter equivalent action choices, situations in which
multiple actions are equivalently applicable. For example, a moving robot that encounters
an obstacle directly in its path has the option of moving left or right to avoid it. If the space
is empty, both directions are equally valid for performing the desired task. Furthermore,
consider the case in which in addition to deciding the direction of motion, the teacher must
also specify the distance at which to begin to avoid the obstacle. Should avoidance actions
be initiated at a distance of 1.0 meters, 0.5 meters, or somewhere in between? In reality,
a whole range of distances are likely to provide the desired behavior, and over this range
multiple actions are equally valid (move forward a little more, move left or move right). Sim-

45

ilar choices can arise in many other situations. Human demonstrators faced with a choice
of equivalent actions typically do not perform demonstrations consistently, instead selecting
among the applicable actions arbitrarily each time the choice is encountered. The result is
that the teacher’s demonstrations are likely to be inconsistent.

Another common reason for inconsistent demonstration is sensor noise. Consider, for exam-
ple, the same obstacle domain in which the teacher must decide the direction of motion based
on the position of the robot. Even if the teacher selects actions with perfect consistency,
these demonstrations may still appear inconsistent to the robot due to noisy readings from
the robot’s sensors. Finally, human error can be a further source of such data.

Despite the teacher’s best intentions, inconsistent demonstrations are very likely to occur.
Critically, all inconsistent demonstrations appear the same from the robot’s perspective,
whether they are the result of a choice of multiple equivalent actions, sensor noise or some
other causes. In all cases, these regions are characterized by training data in which identical,
or nearly identical, states have different action labels.

Figure 5.1 presents an example of the effect of inconsistent demonstration on Confidence-
Based Autonomy policy learning. The images in this figure show two example distributions
obtained from demonstration learning in the obstacle avoidance domain (Section 5.3.1). Each
point in the figure represents a demonstration performed when the robot was at that (x,y)
position. Background shading represents the most likely action class, with white representing

(a) Consistent demonstrations lead to a com-
plete policy.

(b) Inconsistent demonstrations result in non-
separable data classes and an incomplete pol-
icy with low confidence regions (white).

Figure 5.1: Examples of complete and incomplete policies.

46

low-confidence (demonstration) regions.

In Figure 5.1(a), consistent demonstrations result in a complete, fully autonomous policy
with no low-confidence regions. In Figure 5.1(b), inconsistent demonstrations result in an
incomplete policy in the middle region of the graph, where data points from multiple classes
overlap. As the robot repeats the task, all states that fall within the low confidence, white,
region trigger additional demonstrations. However, unlike the consistent demonstration case,
acquiring additional data points will not help the classifier. Instead, an infinite number of
overlapping demonstration points would be collected by the algorithm.

Our demonstration learning algorithm aims to learn a policy imitating the behavior of the
teacher. If the teacher’s demonstrations are consistent, mapping all similar states to a single
action, then our goal is for the robot to deterministically execute this action from all such
states. If, however, the teacher’s demonstrations are inconsistent, leading the robot to ob-
serve demonstrations of multiple possible actions from similar states, then our goal is for the
robot to select its action probabilistically from among the presented examples. To this end,
when the robot obtains demonstrations of different actions from similar states, we assume
that all these actions are valid and the robot’s behavior can be selected at random from
among the presented choices. In the following section we formally define this classification
problem. We then present an algorithm for identifying regions of the state space in which
data from multiple classes overlaps as a result of inconsistent demonstrations, and for mod-
eling the choice between multiple actions explicitly within the robot’s action policy as option
classes. Our automated approach does not require the teacher to predefine or demonstrate
special choice actions, extending instead from the person’s natural demonstration technique.

5.1 Problem Definition

Traditional classification methods are single-label algorithms that map each input to a single
class label. We define state s = Rn to be the input and A be the finite set of action
labels. Formally, the classification problem can be stated as follows: given training data
(s1, a1), ..., (sk, ak), where ai ∈ A, produce a classifier h : S → A which maps an input s to
label a ∈ A.

Although they map each state to only one action, single-label classification methods can be
used to represent equivalent action choices if this choice itself is modeled as its own label.
For example, the action Random can be used to represent the random selection among all
available actions. However, the appropriate use of Random must then be demonstrated by
the teacher in order to be incorporated into the robot’s policy. While this approach could

47

be used to achieve the desired randomized behavior, it would require the teacher to create
a new action. Furthermore, the use of this new action would then have to be demonstrated
consistently. If the action is demonstrated inconsistently, or if sensor noise is present, the
problem of overlapping demonstrations remains.

Another subset of classification approaches, multi-label classifiers, are used to learn mappings
between a single input and a set of labels [83]. Originally motivated by research in document
categorization, multi-label classification can be formalized as follows: given training data
(s1, A1), ..., (sk, Ak), where Ai = 2|A| is a vector of binary values indicating which labels are
associated with input si, produce a classifier h : S → 2|A| which associates a given input s
with a set of labels.

Multi-label classification can also be used to capture equivalent action choices. However, this
approach would require the teacher to provide a list of all valid actions at each demonstration,
instead of selecting a single action. The resulting interaction would require greater effort
from the teacher, and sensor noise and overlapping demonstrations due to sensor noise would
remain.

Our goal is to take advantage of the teacher’s natural demonstration style, in which a single
action is selected for each demonstration, while enabling the robot to model overlapping
demonstrations explicitly as action choices. We define our problem as: given training data
(s1, a1), ..., (sk, ak), produce a classifier h : S → 2|A| which maps a given input s to a binary
vector indicating which labels are associated with input s.

5.2 Option Classes

To address the problem of inconsistent demonstrations stemming from the existence of mul-
tiple equivalent actions or sensor noise, we introduce option classes, which we define as data
classes that represent the choice between two or more actions. In this section we present
an algorithm for extracting option classes from the underlying data distribution, enabling
action choices to be modeled explicitly by the robot’s classification-based policy.

Option classes represent the choice between any number of available actions. For our ob-
stacle avoidance domain example, option classes include choices between two actions, such
as Option-Forward-Left (O-FL) and Option-Left-Right (O-LR), or three actions, Option-
Forward-Left-Right (O-FLR). Figure 5.2 presents an example of the option class algorithm
applied to the distribution from Figure 5.1(b). Note that the middle region of overlapping
points now forms the option class O-RL, representing the choice between two valid actions,

48

Figure 5.2: Option class policy obtained from the inconsistent demonstration distribution in
Figure 5.1(b).

Right and Left. The inclusion of this data class results in a complete policy for the entire
state space.

The option class algorithm identifies regions of the state space in which data from multiple
classes overlaps. It then relables all datapoints within the identified region using a new
option class label and retrains the classifier on the resulting dataset.

Algorithm 3 presents the option class algorithm, which is executed each time the classifier
is retrained. Given the complete set of demonstrations D, the algorithm identifies the set
of datapoints M that fall below the confidence threshold and can not be classified with
high confidence (line 3). Additionally, the algorithm calculates the average nearest-neighbor
distance over the complete demonstration dataset (line 4). Nearest neighbor distance is
defined as the Euclidean distance from the query point to the closest point in the data set.
The average nearest neighbor distance over the complete dataset provides the algorithm with
a domain-independent method for evaluating point proximity and identifying points that are
located close together.

Dataset M and distance d are used to identify clusters of closely located low-confidence
points. Searching over set M , the algorithm identifies points that form connected components
with a maximum distance d between points (line 5). The resulting set C contains clusters of
points that form the candidate option classes. For each connected component, the algorithm
calculates the set of actions A represented by the datapoints (line 7).

If the connected component contains more than n points, and consists of two or more action
labels, points from the connected component are used to form a new option class representing

49

Algorithm 3 Option Class Algorithm

1: given demonstration dataset D
2: UpdateClassifier(D)
3: M ← PointsInLowConfidenceRegion(D)
4: d ← MeanNearestNeighborDist(D)
5: C ← ConnectedComponents(M ,d)
6: for c ∈ C do
7: A ← Labels(c)
8: if Size(c) > n and Size(A) > 1 then
9: CreateLabel(D, c, Option-A)

10: UpdateClassifier(D)
11: ResetLabels(D)

the choice between the actions in A (line 9). Action labels for these points are temporarily
changed from their original demonstrated action to Option-A. Once all connected compo-
nents are analyzed, the classifier representing the policy is relearned with the new option
class labels. The resulting policy is then saved and used to control robot behavior. To con-
trol the robot, all state queries mapped by the policy to an option class are then assigned
a single action, which is selected based on the distribution of actions A in the connected
component from which the option class was derived.

Once a policy representing the new option classes has been obtained, action labels for all
datapoints in dataset D are reset to their original demonstrated action (line 11). The
option class acts only as a temporary label and must be re-acquired at the next policy
update. We use this mechanism to ensure that any extraneous option classes that form
early in the learning process due to insufficient demonstrations are dissolved once additional
demonstrations are obtained.

Option classes are an abstract internal representation that enables the robot’s policy to
explicitly model equivalent action choices. We do not make option classes, such as Option-
Foreward-Left or Option-Left-Right, available to the teacher for demonstration. As a result,
the algorithm never acquires training points with option class labels, but must learn them
based on the underlying distribution of other action classes.

Additionally, we define special rules for option classes with regards to classification. Based
on the assumption that option classes represent a choice between several valid actions, we
specify that a datapoint with label x can not be misclassified by an option class representing
the choice between actions in A if x ∈ A. For example, points that belong to class F or L
and fall into class O-FL under the new policy are not considered to be misclassified. The

50

opposite case also holds, such that points in O-FL are not misclassified if they fall into F or
L. This rule eliminates low confidence regions that may be caused by such misclassifications.

The contributed option class algorithm is classifier independent and contains two parameters,
n and d, which are used to control the size and generalization of option classes. The value of
n controls the minimum number of points required to create an option class. Smaller values
enable the robot to learn action choices from fewer demonstrations, and in our implemen-
tation the value of parameter n was set to 3. The variable d represents the average nearest
neighbor distance between points, a domain-independent value calculated based on the data
distribution of the particular domain. We are able to control the behavior of the algorithm
by scaling the value of d. Smaller values require large numbers of demonstrations to form
dense clusters of points to create option classes. Larger values lead to greater generalization.
Through experimental evaluation we have found that scaling the mean nearest neighbor
distance value by 1.5 provides a good balance between generalization and the number of
demonstrations.

5.3 Experimental Evaluation

In this section, we compare the performance of the Confidence-Based Autonomy algorithm
with and without option classes in an obstacle avoidance domain.

5.3.1 Obstacle Avoidance Domain

The obstacle avoidance domain, shown in Figure 5.3(a), requires a Sony QRIO humanoid
robot to navigate around a colored post located in its path. The robot has a choice of three
actions, A = {Forward(F), Left(L), Right(R)}, each of which moves the robot approxi-
mately 10cm in the designated direction. The robot’s state, (x, y), represents its position
relative to the post in two-dimensional space as reported by the noisy onboard vision sys-
tem. We chose a two-dimensional representation for these experiments to enable an intuitive
graphical representation of the algorithm’s behavior.

Lines in Figure 5.3(a) represent example robot trajectories, with each dash approximately
equal to the length of a single robot step. Note that when the robot is positioned directly
in front of the post, both avoidance directions, left and right, are equivalently applicable.
Once the robot has committed to a direction and has shifted its position, however, it must
commit to this course to avoid oscillation. When faced with a choice of directions during

51

(a) (b)

Figure 5.3: (a) Obstacle avoidance domain with Sony QRIO robot. (b) Traces of 50 demon-
stration trials used for algorithm evaluation and comparison. Circles highlight areas of
inconsistent demonstration.

demonstration, the teacher selects among the valid actions at random.

5.3.2 Evaluation Results

For the evaluation, we recorded 50 complete demonstration trials of the obstacle avoidance
task. We used data from the trials, shown in Figure 5.3(b), to provide a consistent library of
training points for algorithm comparison. For each algorithm, we performed 20 evaluations
by presenting the algorithm with demonstration trials from the library in random order.

We compared the performance of each algorithm with respect to the number of demonstra-
tions and the percentage of complete policies at the end of the training sequence. A count
of the number of demonstrations requested by the robot through Confident Execution (CE)
and selected by the teacher through Corrective Demonstrations (CD) was also maintained,
along with the number of demonstrations falling within the circled option regions (OR) high-
lighted in Figure 5.3(b). Since multiple valid actions exist for all option regions, classification
accuracy is not an informative metric for this experiment.

Table 5.1 presents the results of the experiment, which show a significant improvement
in learning performance due to option classes. Given the same library of training points,
the original Confidence-Based Autonomy algorithm resulted in a complete action policy in
only 20% of trials, compared to 90% using the option class method. The standard CBA
approach also required a greater number of demonstrations, which can be attributed to

52

Complete Demonstrations
Policies Total CE CD OR

CBA 20% 100±41 96±42 4±3 43±19
CBA-Opt 90% 67±12 56±10.6 11±5 15±6

Table 5.1: Comparison of CBA learning performance with and without option classes.

the incomplete policies in which many demonstrations continued to be requested in the
persistant low confidence regions. Note that the difference in the number of demonstrations
performed within the option regions accounts for most of the difference in the total number
of demonstrations between the algorithms.

Figure 5.4 presents three example policies resulting from the experiments. Each policy shows
a different, but equally valid combination of option classes. Figure 5.4(a) presents a policy
consisting of four option classes. A small region centered near (520,0) represents the option
class O-FRL, in which any of the three robot actions are valid. As the robot nears the
obstacle, the option class becomes O-RL, indicating that the Forward action is no longer a
valid option. Option classes O-FR and O-FL represent the other option regions. In Figure
5.4(b) only three option classes form, with a large O-RL as the robot approaches the obstacle.
In Figure 5.4(c), points within the middle option region are fully separable, resulting in a
policy with a slight bias towards passing on the right and only a single option class, O-FL.
Each of these policies was successfully applied to performing the obstacle avoidance task
using the real QRIO robot.

(a) (b) (c)

Figure 5.4: Three example option class policies for the obstacle avoidance domain.

53

5.4 Chapter Summary

Regions of inconsistent demonstrations are frequently encountered in learning from demon-
stration due to the existence of multiple applicable actions or sensor noise. In this chapter,
we presented a classifier-independent algorithm based on Confidence-Based Autonomy that
enables choices between multiple actions to be represented explicitly within the robot’s pol-
icy through the creation of option classes. Evaluation and comparison of demonstration
learning with and without option classes was performed in a real-world, noisy robot domain.
Option classes were shown to significantly improve learning performance, enabling the al-
gorithm to converge to a complete policy with far greater frequency and requiring fewer
demonstrations.

54

Chapter 6

Multi-Robot Learning and
Collaboration

The previous chapters have considered how a single robot can select and learn from demon-
strations. In this chapter, we examine the problem of multi-robot learning from demonstra-
tion (MLfD), in which a single person teaches multiple robots at the same time.

The problem of multi-robot learning from demonstration has not previously been addressed
in robotics research. All demonstration learning approaches developed to date have been
designed for single-robot applications, and have relied on close one-to-one interaction between
the robot and the teacher. As a result, these techniques do not scale to multi-robot domains
due to the problem of limited human attention – the fact that the teacher is not able to pay
attention to, and interact with, all robots at the same time. While multi-robot behavior may
be achieved by these methods through the use of multiple teachers, one for each robot, this
approach would be impractical for most real-world applications. To enable a single teacher
to work with multiple robots at the same time, a solution is required that endows each robot
with a degree of self-regulation and autonomy.

In this thesis, we contribute flexMLfD, the first multi-robot demonstration learning frame-
work. Our approach is based on the Confidence-Based Autonomy algorithm presented in
the previous chapters. Confidence-Based Autonomy establishes a general state and action
representation and provides a means for single-robot policy learning through adjustable
autonomy. Using an independent instance of the CBA algorithm, each robot acquires its
own set of demonstrations and learns an individual task policy. Specifically, given a group of
robots R, each robot rj ∈ R uses Confidence-Based Autonomy to learn a policy Πj : Sj → Aj

mapping from the robot’s states to its actions. Each robot may have a unique state and

55

action set, allowing distinct policies to be learned by possibly heterogeneous robots. The
general representation and modularity provided by the CBA learning approach and interface
result in a flexible task-independent and robot-independent learning framework.

The unique feature of the CBA algorithm that enables it to be applied to multi-robot learn-
ing is the Confident Execution component, which enables each robot to regulate its own
autonomy, and to pause execution when faced with an uncertain situation. The adjustable
autonomy of each robot enables the teacher to switch attention between robots on an as-
needed basis.

Algorithm 4 outlines the general procedure followed by the teacher in performing multi-robot
demonstrations. The teacher alternates between responding to demonstration requests when
they are present, and correcting any mistakes in the autonomous behavior of the robots. The
teacher interacts with only a single robot at any one time, while also monitoring the other
robots in the background. The function f(D), represents a demonstration request selection
policy, such as first-in-first-out or round-robin ordering. In the experiments presented in this
thesis, f(D) represents random selection.

Algorithm 4 Multi-robot demonstration

Let D be set of current demonstration requests
while the robots request demonstrations or incorrect behavior is observed do

if D 6= ∅ then
- Select robot demonstration request rj according to function f(D)
- Perform demonstration for robot rj

else
- Observe autonomous execution of the robots
if correction is required for robot rj then

- Perform correction for robot rj

6.1 Teaching Multi-Robot Collaboration

In addition to teaching multiple robots at the same time, we are interested in teaching them
to work together. Solutions to many complex tasks require the collaboration of multiple
robots. In this thesis, we study multi-robot learning from demonstration in the context
of loosely-coordinated tasks, which we define as tasks that contain elements that can be
independently performed by individual robots, but that require a degree of coordination to
couple their execution.

56

Our approach to teaching collaborative behavior through demonstration relies on emergent
multi-robot coordination [64], in which the solution to the shared multi-robot task emerges
from the complementary actions performed by robots based on their independent policies.
To achieve this coordination, each robot’s action abilities may include communication. We
define each robot’s action set by A = Ap ∪ Ac, where Ap is the set of physical robot actions
and Ac is the set of communication actions. All actions within set A are available to the
teacher for demonstration.

Multi-robot coordination requires a rich state representation consisting of both local and
communicated information. To this end, we categorize the robot’s state features based on
their source and purpose; for example, information locally observed by the robot’s sensors
may be private to the robot (e.g. current wheel angle), shared with its teammates at all
times (e.g. robot position), or shared only under particular conditions (e.g. robot position,
but only when it is known with high confidence). Specifically, we define the robot’s state as
S = {Fo ∪ Fs ∪ Fc ∪ Fi ∪ Ft} where

• Fo = private, locally observed state features

• Fs = locally observed state features that are automatically communicated to team-
mates each time their value changes

• Fc = locally observed features communicated using communication actions Ac as de-
fined by policy Π

• Fi = internal state features dependent upon other features or robot actions

• Ft = state features containing data either directly contained in, or calculated based
on, information communicated from teammates

In this representation, local and communicated data is combined within the robot’s state.
Coordination between robots occurs when complementary actions are selected by the pol-
icy based on this input. Using this representation, we present three methods for teaching
emergent multi-robot coordination using demonstration.

6.1.1 Implicit Coordination without Communication

The most basic level of multi-robot coordination is implicit coordination, in which physical
actions and observed state allow complementary behaviors to occur without communication
or shared intent [47]. Using implicit coordination, robots make decisions based only on

57

locally observed information and are often not conscious of the coordination or even of each
other’s presence. Teaching implicit coordination through demonstration can therefore be
reduced to the problem of teaching multiple robots to perform independent tasks at the
same time. Within our framework, implicit coordination is represented by the policy

Π : {Fo, ∅, ∅, ∅, ∅} → {Ap, ∅}

which maps the robot’s locally observed state directly to the physical actions. Coordination
occurs through the environmental changes resulting from the executed actions.

6.1.2 Coordination through Active Communication

Domains in which information required for coordination can not be obtained through the
robot’s own sensors require explicit communication, such as wireless messages. Coordina-
tion through active communication enables the teacher to use demonstration to ex-
plicitly teach when communication is required. Based on demonstrations of communication
actions Ac obtained from the teacher, communication is incorporated directly into a robot’s
policy along with the physical actions Ap. This technique enables the teacher to specify the
conditions under which communication should take place. The resulting policy is defined
by:

Π : {Fo, ∅, Fc, Fi, Ft} → {Ap, Ac}

While most physical actions have an observable effect that changes the robot’s state (i.e. mov-
ing an object changes its location), the immediate effect of communication actions is not ob-
servable. To prevent the robot from remaining in the same state following a communication
action, we utilize internal state features Fi to represent the last communicated value of each
element of Fc (∀f ∈ Fc → f ∈ Fi). A mismatch between the value of a particular feature in
Fi and Fc indicates that the local state no longer matches the teammates’ knowledge. All
state information received from other robots through communication is stored within the set
Ft.

6.1.3 Coordination through Shared State

Robot coordination frequently relies on shared state information that must be maintained
up to date at all times, not just under specific conditions. For example, a robot performing
a navigation task with its teammates may always need to know their locations. Coordina-
tion through shared state automates the communication process for this common case,

58

enabling robot coordination based on automatically updated state features. Specifically, we
define Fs as the set of local features that are automatically communicated to teammates
each time their value changes. Coordination through shared state is therefore defined by the
policy:

Π : {Fo, Fs, ∅, ∅, Ft} → {Ap, ∅}
Since communication occurs automatically, this approach does not require communication
actions to be demonstrated or incorporated into the robot policy. Using this technique, the
teacher is able to focus on demonstrating only the physical actions to be performed based
on state information shared between robots. Note that this approach assumes that shared
features do not change very rapidly; attempting to share a sensor value which changes at a
high frequency would quickly cause network congestion.

6.1.4 Discussion

Implicit coordination allows collaborative behaviors to be performed without communication,
while active communication and shared state rely on communication to coordinate the robots’
actions. The difference between the two communication-based approaches is most significant
in domains in which communicated state features take on a range of values, and in which
such features have importance only over a narrow segment of that range. Such features are
commonly encountered in robotic problems. Consider, for example, a robot that only needs
to know the location of its teammate if the teammate has located an object of interest.
Under all other conditions, the teammate’s position, if known, would be ignored. In this
scenario, the teammate can choose between two communication strategies: 1) to update its
location only when it finds an interesting object, or 2) to communicate its location at all
times and rely on its teammate to ignore this information when it is not relevant. Both
of the approaches is valid, and preference between them depends on the relative costs of
sending communication messages and learning to ignore irrelevant information. This is the
tradeoff that is captured by the active communication and shared state techniques.

6.2 Ball Sorting Domain

Evaluation of multi-robot learning and coordination was performed in the ball sorting domain
using two Sony QRIO humanoid robots. Figure 6.1 shows the robots operating in the domain,
which consists of two sorting stations connected by ramps. Each station has an individual
queue of colored balls (red, yellow or blue) that arrive via a sloped ramp for sorting. The
robots’ task is to sort the balls by color into four bins.

59

Figure 6.1: QRIO robots performing ball sorting task.

The following set of physical actions is available to each robot: Ap = {SortLeft, SortRight,
PassRamp, Wait, Leave}. Actions SortLeft and SortRight enable the robot to pick up a ball
and place it into a bin on either side. The PassRamp action causes the ball to be placed
into the teammate’s ramp, where it rolls down and takes position at the tail end of the other
robot’s queue. The Wait and Leave actions enable the robot to wait for a short duration
or walk away from the table, respectively. The color and location of the balls is determined
by each robot using its onboard vision system. Using these abilities, the robot are taught to
perform the following three tasks:

Task 1: Each robot begins with multiple balls of various colors in its queue. QRIO A sorts
red and yellow balls into the left and right bins, respectively, and passes blue balls to QRIO
B. QRIO B sorts blue and yellow balls into the left and right bins, respectively, and passes
red balls to QRIO A. If a robot’s queue is empty, it should wait until additional balls arrive.

Task 2: Extend Task 1 such that each robot communicates to its teammate the status of
its queue, empty or full. When its teammate’s queue is empty, a robot in possession of a ball
should pass the ball to the teammate’s queue. However, only balls that can be sorted by the
other robot should be passed. For example, QRIO A should pass only the blue and yellow
balls, and QRIO B should pass only the red and yellow balls. If both queues are empty, the
robots should wait.

Task 3: Each robot begins with multiple balls of various colors in its queue. QRIO A
first sorts all of the red balls on the table into its left bin, while QRIO B passes balls of all
colors, thereby helping to rotate the queue. Once all the red balls are sorted, QRIO B sorts
all the blue balls into its left bin while QRIO A passes. Once all the blue balls are sorted,

60

both robots sort the remaining yellow balls into their right bins. Whenever both queues are
empty, the task is complete and the robots leave the table.

Each of the above tasks is designed to test different aspects of multi-robot teaching and
coordination. In the first task, coordination between robots emerges naturally based solely
on the physical actions of the robots and communication is not required. Task 2 requires
coordination through communication to ensure that the sorted balls are distributed more
evenly between the robots, while Task 3 adds ordering constraints and additional coordina-
tion requirements.

6.3 Ball Sorting Example

Our evaluation of the learning algorithm and teaching approaches utilizes continuous and
noisy features. Before presenting this evaluation, we provide a walk-though of a simplified
example of Task 1 with a noiseless, boolean state representation. Only a single demonstration
of each state is required in this representation, helping to illustrate elements of the learning
process. To achieve this representation, we calibrate the robot’s onboard vision system to
classify each ball into one of the discrete color classes, such that Fo = {red, yellow, blue}.

Figure 6.2 presents an interactive learning sequence between the teacher (T) and the robots (R).
The robots begin in the top configuration, with no initial knowledge about the task. Both
robots request a demonstration upon encountering the first state, and are instructed by the
teacher to place their respective balls, red and blue, into the left bin. Upon receiving their
individual instructions, each robot executes the specified action.

The second diagram in the figure shows the task state after both robots have completed
their first action. One ball has been sorted on each side, and the next ball in the queue is
now available to each robot. QRIO B receives a second blue ball, and therefore executes the
previously demonstrated action autonomously. QRIO A requests a demonstration request
for the new ball color, yellow.

At each following timestep, the robots observe their state, compare it to previously encoun-
tered examples, and select between autonomous execution and demonstration. At steps 3
and 5 the robots are taught to pass balls to their teammate, causing these balls to appear
at the end of the other robot’s queue. The learned policy also allows the robots to wait
while no balls are present, and respond once a ball has been received (QRIO A, steps 4-6).
Although the figure presents the learning process as a sequence of synchronized steps, no
synchronization occurs in real-life learning. The entire task requires 8 demonstrations, 4 per
robot, to learn.

61

Figure 6.2: Collaborative ball sorting example.

62

6.4 Evaluation Results

In this section, we present an evaluation of our three approaches to teaching multi-robot
coordination. We begin by evaluating each coordination approach independently by applying
it to one of the ball sorting tasks. We then evaluate the performance of the communication-
based coordination approaches in greater detail using Task 3.

For all evaluations, the robots observe ball color as the average RGB values of the pixels
in the detected ball region. Results are reported as the total number of demonstrations
required to learn the task, averaged over ten trials. Note that in this discussion we do not
distinguishing between demonstrations obtained from Confident Execution and Corrective
Demonstration methods. While most demonstrations are initiated by the robot through
Confident Execution, the Corrective Demonstration algorithm does play a significant role
in aiding policy learning of each individual robot. Consider, for example, a robot that first
observes demonstrations of passing both a blue and a yellow ball to a teammate. Upon
encountering a red ball, the robot may assume, due to generalization of the classifier, that
the same action should also be performed for this new color. Corrective Demonstration
enables the teacher to correct this assumption if necessary.

6.4.1 Implicit Coordination without Communication

We evaluate implicit coordination learning by training Task 1, in which the teacher’s demon-
strations are limited to the robot’s physical actions Ap (note that the Leave action is not used
for tasks 1 and 2). The following state representation, consisting only of locally observed
information, is used:

• Fo = {R,G,B}

• Fs = Fc = Fi = Ft = ∅

Using this representation, both robots successfully learned their individual policies, which
enabled them to collaboratively sort the balls by coordinating through their actions. Training
the entire task required an average of 20 demonstrations (10 per robot), with a standard
deviation of 1.1.

Note that during the execution of the task, the robots encounter both noisy and noiseless
states. The number of demonstrations required to learn each state-action mapping is pro-
portional to the level of noise in the sensor readings. For example, an empty queue contains

63

no ball color information and consistently results in the state vector S ={0,0,0}. Since this
value is not affected by noise, only a single demonstration is required to teach each robot
to Wait when the queue is empty. Ball color readings, on the other hand, vary due to both
sensor noise and slight variations in the robot’s view angle and ball distance between actions.
An average of 3.1 demonstrations are therefore required for the model to learn to generalize
over each ball color class.

6.4.2 Coordination through Active Communication

Coordination through active communication enables communication to be represented di-
rectly within each robot’s policy. In this section, we evaluate this approach using Task 2
and the following state representation:

• Fo = {R,G,B}

• Fs = ∅

• Fc = Fi = Ft = {Empty}

We define a new boolean feature, Fc ={Empty}, to represent the status of the robot’s ball
queue, empty or full. This feature is locally observed and communicated to each robot’s
teammate using communication action Ac = {SendEmpty}. For each robot, feature sets Fi

and Ft contain the robot’s own last communicated value of Empty and the most recent value
of Empty received from its teammate, respectively.

The complete state vector consists of six features. Note that all of the information available
to a robot, whether continuous or discrete, locally observed or communicated, is combined to
form the robot’s state vector, allowing the algorithm to generalize over all of these variations.
Each feature value is typically normalized by the classifier prior to analysis to give each
feature equal weight.

Using the above setup, the teacher required an average of 35 demonstrations to teach Task 2.
While each ball color still required multiple demonstrations, the algorithm was able to rapidly
generalize over the boolean Empty features. For example, learning that communication
updates must be performed each time the value of the feature Empty in Fc and Fi does not
match, regardless of the ball color being observed, required only two demonstrations.

Figure 6.3 presents a sequence of images showing how the teacher uses demonstration to teach
the ball sorting task using active communication. The teacher uses the laptop computer

64

(a) {SortLeft, SortRight} (b) {DemReq, SortLeft}

(c) {DemReq, SortLeft} (d) {Wait, DemReq}

(e) {Wait, Pass} (f) {DemReq, SortRight}

(g) {SortRight, SortRight}

Figure 6.3: Example Task 2 learning sequence using coordination through active communi-
cation.

65

shown at the bottom of the image to perform demonstrations independently for each robot
using its own instance of the CBA GUI interface. Each figure is annotated with the robot’s
current state, shown at the top of the image.

In Figure 6.3(a), the QRIO on the left sorts a red ball into its left bin, while the QRIO on
the right sorts its yellow ball into its right bin. After completing its action, the left QRIO
observes that its ramp is empty and stops to request a demonstration from the teacher.
During this time, the right QRIO continues to perform its task, sorting the next ball in its
queue, which is blue, into its left bin. Note that since communication between robots has not
yet occurred, the state of the right QRIO does not accurately reflect its teammate’s status
because the teammate’s empty (TE) state feature value is 0.

In response to the demonstration request, the teacher instructs the left QRIO to commu-
nicate its queue status using the SendEmpty action. In Figure 6.3(c) we observe that
communication has occurred and the right robot is now aware that its teammate’s queue is
empty. The left QRIO requests a demonstration for its new state, and the teacher instructs
it to Wait. In Figure 6.3(d) the right QRIO requests a demonstration for what to do given
that it has a yellow ball and its teammate’s queue is empty. The teacher instructs the robot
to pass this ball to its teammate; the robot is shown performing this action in Figure 6.3(e).
Once the left QRIO observes that a yellow ball has arrived, it requests a demonstration and
the teacher instructs the robot to communicate its updated ramp status to its teammate
to indicate that the queue is no longer empty. Once this information is updated, the left
QRIO continues by sorting the yellow ball into its right bin. During this time the right
QRIO autonomously continues with the ball sorting task, sorting its next yellow ball into
the right bin. Once the left robot’s queue becomes empty again, it will autonomously com-
municate the status of its queue to the other robot, and the ball sharing process will repeat
autonomously.

6.4.3 Coordination through Shared State

Coordination through shared state automates the communication process, leaving the teacher
to demonstrate the robot’s physical behavior based on shared information. In the place of
explicit communication actions, this technique utilizes a set of shared state features. Any of
the robot’s locally observed state features may be selected by the teacher to be shared with
a teammate. The status of each shared feature is then tracked by the system, and updates
are communicated to the teammate each time the value changes.

Coordination through shared state was similarly evaluated using Task 2. For this task,
state information shared between robots consists of the state feature Empty. The complete

66

(a) {SortLeft, SortRight} (b) {DemReq, SortLeft}

(c) {Wait, DemReq} (d) {Wait, Pass}

(e) {SortRight, Pass}

Figure 6.4: Example Task 2 learning sequence using coordination through shared state.

67

complete state is represented by:

• Fo = {R,G,B}

• Fs = Ft = {Empty}

• Fc = Fi = ∅

where Fs ={Empty} represents a robot’s local shared ramp status, and Ft ={Empty} rep-
resents the ramp status of its teammate. The complete state contains five features, and the
entire task required an average of 27 demonstrations to learn.

Figure 6.4 presents a sequence of images that shows the robots learning to perform Task 2
using collaboration through shared state. Figure 6.4(a) begins with both robots performing
autonomous sorting, with the left robot sorting its last ball into its left bin. Figure 6.4(b)
shows what happens once the left QRIO observes that its queue is now empty. Unlike the
active communication approach described in the previous section, the value of the robot’s
Empty feature is automatically communicated to its teammate, such that the teammate’s
empty (TE) state feature for the right QRIO is set to 1. The left QRIO requests a demon-
stration, asking for instructions about what to do when its queue is empty. The teacher
instructs the robot to Wait. In Figure 6.4(c), in response to a demonstration request the
teacher instructs the right QRIO to pass its yellow ball to its teammate, as shown in Figure
6.4(d). Once the ball arrives at the bottom of the ramp, the left QRIO automatically com-
municates its updated ramp status to its teammate and autonomously resumes the sorting
process, Figure 6.4(e).

6.4.4 Combined Approach and Comparison

In the above evaluation, we showed that each of the presented coordination approaches can
be successfully used to learn a variation of the ball sorting task. In this section, we further
compare and evaluate our two communication-based methods – coordination through shared
state and coordination through active communication – as well as a combined approach
utilizing a combination of these techniques.

While our evaluation of Task 2 shows the feasibility of both active communication and shared
state, it provides little information about the tradeoffs between the two approaches. The
communication requirements of Task 2 are very limited, with only a single communicated
boolean feature that had to be updated each time its value changed. A more informative

68

analysis can be obtained by examining a domain with communicated state features that take
on a range of values, and in which such features have importance only over a narrow segment
of that range.

In this section, we use Task 3 to compare the performance of the three communication-
based coordination approaches with respect to the number of demonstrations and number
of communication messages. Task 3 is a variation of the ball sorting task, in which the
robots must sort balls in the order of their color class, such that all red balls are sorted
into their bin first, then blue, and finally yellow. Once sorting is complete, the robots turn
around and walk away from their sorting stations. To represent this domain, we add two new
types of state features. The feature SortColor is used to represent the current color being
sorted (red, blue or yellow), and the feature PassCount is used to represent the number
of consecutive PassRamp actions that have been executed by a particular robot. Since
the robots do not have a global view of the world, the PassCount feature is required to
determine when all balls of a particular color have been removed. For example, when sorting
red balls, both robots pass any blue or yellow balls they encounter into their teammate’s
ramp. The resulting effect is that the entire queue of balls rotates, enabling the robots to
examine all balls one at a time. Once the value of the PassCount feature for both robots
passes some threshold, in our case 10, this indicates that the entire queue has been examined
and no additional balls of the current SortColor remain on the table.

In total, three pieces of information are communicated between robots: 1) the current color
being sorted (SortColor), 2) the number of consecutive passes each robot has performed
(PassCount), and 3) the status of each robot’s ball queue (Empty). Actions available to
the robots for performing this task include the previously defined physical actions Ap, and
the communication actions SendEmpty, SendPassCount, and IncrementSortColor.

Before discussing each coordination approach, we define the SortColor state feature in detail.
Unlike previously encountered communicated features, the sorting color is a value that is
common to both robots; to achieve accurate performance, the robots must maintain the same
value for this feature at all times. As a result, instead of representing this value both as a local
and teammate copy of the information, we use a single value for each robot. The value of this
feature can be updated both locally and through communication from the teammate using
the IncrementSortColor action. Specifically, the execution of IncrementSortColor by a
robot first increments its local copy of the variable, and then communicates the new value
to its teammate where it immediately updates the other robot’s state. Additionally, this
action resets the value of the PassCount feature to 0. In summary, this approach achieves
state synchrony between robots through the use of a single feature and a multi-function
communication action.

69

Active Shared Combined
Communication State

Fo {R,G,B} {R,G,B} {R,G,B}
Fs ∅ {PassCount, {Empty}

Empty}
Fc {PassCount, ∅ {PassCount}

Empty}
Fi {PassCount, ∅ {PassCount}

Empty}
{PassCount, {PassCount, {PassCount,

Ft Empty, Empty, Empty,
SortColor} SortColor} SortColor}

{IncSortColor {IncSortColor} {IncSortColor,
Ac SendPassCount, SendPassCount}

SendEmpty}

Table 6.1: Representation of Task 3 using active communication, shared state and a combined
approach.

The above representation for the SortColor feature is used for each coordination approach
applied to Task 3. Table 6.1 presents a summary of the complete state representations
used by each learning method for this task. Note that for each approach, the information
locally observed by each robot (Fo) and received from its teammate (Ft) remains the same.
The differences consist in the local representation of the state features to be communicated.
Below we summarize the distinguishing features of each approach.

Active Communication – In the active communication approach, both the PassCount
and Empty features are communicated explicitly using communication actions. The teacher
selects the PassCount feature to be communicated each time its value reaches 10. This
representation requires a total of 10 state features and 8 action classes.

Shared State – In the shared state approach, the values of all communicated features are
shared each time their value changes. The main difference between this approach and the
active communication method is that each robot always knows the exact number of passes
that its teammate has performed. This approach utilizes a more compact representation,
requiring 8 state features and 6 action classes.

Combined Approach – In the combined approach, active communication is used for some
state features, and shared state for others. Specifically, shared state is used for the Empty

70

feature, the value of which must be communicated each time it changes. Active commu-
nication is used for the PassCount feature, the value of which is communicated only once
it passes a set threshold1. This representation uses a total of 9 state features and 7 action
classes.

Table 6.2 presents the results of this experiment in terms of the number of demonstrations
required to learn the task policy, and the average number of communication messages sent
by each robot during the execution of this policy. We find that the shared state approach
requires significantly fewer demonstrations than both active communication and the com-
bined approach. Even in the presence of variables spanning a range of values that contain
no useful information, the shared state approach requires less training data. This suggests
that learning a threshold for a particular input feature (in our case PassCount) is easier
for the underlying classifier than dealing with an additional state feature (Fi = PassCount)
and class label (SendPassCount).

The number of communication messages required to perform the task is dependent upon
the number, order and color of balls to be sorted. Table 6.2 presents the average number of
communication messages required to sort 10 balls of random color and sequence. Analysis of
the average number of communication messages reveals the tradeoff between the coordination
approaches. The active communication approach utilizes significantly fewer communication
messages than shared state since it does not communicate the value of PassCount each time
it changes.

Additionally, this evaluation highlights the benefit of using a combined approach that takes
advantage of both training methods. The combined approach provides the communication
benefits of active communication by communicating PassCount only when necessary, while

1Alternatively, PassCount could also be defined as a boolean feature representing whether enough passes
have occurred or not. We do not use this representation here for evaluation purposes.

Number of Number of
Demonstrations Communication Messages

Active Communication 135.0 ± 5.9 5.8 ± 1.1
Shared State 52.6 ± 6.6 37.7 ± 2.6
Combined 92.2 ± 4.8 5.8 ± 1.1

Table 6.2: Task 3 evaluation result summary. Comparison of the average number of demon-
strations required per robot to learn the task policy, and the average number of communi-
cation messages sent by each robot while applying the final policy to sorting 10 randomly
colored balls.

71

also reducing the number of demonstrations by using state sharing for features that must
be communicated each time they change. The result is a low communication rate and
demonstration requirements in between those of either method alone.

In summary, we find that complex domains are likely to benefit from a combination of active
communication and shared state techniques if a cost is associated with communication. If
communication is free, the shared state approach should be used since it results in the fewest
number of demonstrations.

6.5 Heterogeneous Robot Teams

The previous sections presented evaluation of multi-robot learning and coordination using
two identical humanoid robots. However, many robotic tasks benefit from combining het-
erogeneous robots with different abilities. In this section, we highlight the generality of our
system and present the playground domain, which showcases collaborative behavior between
two QRIOs and four AIBOs.

Figure 6.5: Playground domain.

72

6.5.1 Playground Domain

The playground domain, shown in Figure 6.5, consists of an open space simulating a school
playground. Two humanoid QRIO robots represent “teachers”, and four AIBO robots repre-
sent “students”; each QRIO is assigned two AIBO students as its “class”. The task simulates
a playground scenario in in which the teachers collect their students at the end of recess and
take them back to lessons. The task begins with recess, during which the QRIO robots talk
to each other while the AIBOs play. Once the bell sounds, the QRIOs stop their conversa-
tion and walk to open spaces on opposite sides of the playground. Each QRIO then calls its
respective class and waits for it to arrive. The AIBOs play in the open space until they are
called. Once called, each robot navigates to its QRIO teacher. Once a QRIO has all of its
students around it, it leaves the playground with the AIBOs following.

In order to enable the AIBOs to visually distinguish the QRIO robots, we marked each
humanoid with a two-colored marker on its chest and back. The orientation and size of
the marker enabled the AIBOs to identify each robot and determine its relative distance.
Blue and red stickers on the AIBOs enable the teacher to distinguish robots in each class.
However, the body color of each AIBO was not encoded into the domain representation and
was not known to the robots.

We use the following state and action representation for the AIBO robots:

• A = {Forward, Left, Right, Stop, Search, P lay}

• Fo = {Q1a, Q1d, Q2a, Q2d}

• Fs = {Q1near, Q2near}

• Ft = {TeacherCall}

• Fc = Fi = ∅

The action set of each robot consists of low-level navigation commands, as well as the ability
to search for the teacher and to “play” – a behavior that consists of the robots in a relaxed
position on the ground as shown in Figure 6.5. State information consists of the robot’s
relative distance (Qd) and angle (Qa) to each QRIO. An additional boolean feature, Qnear,
indicates that the AIBO is located in close proximity to its teacher. The value of this feature
is shared between the AIBOs and QRIOs, enabling the teacher to know when its students
are ready to leave the area. When the position of a QRIO is unknown, we set Qnear to 0 and
the distance and angle to the default values of 4000 mm and 1.8 rad, respectively, to indicate

73

that the robot is far away. Finally, the AIBOs in each class also receive their teacher’s call
over the wireless network.

We use the following state and action representation for the QRIO robots:

• A = {Talk,WalkToOpenSpace, CallAIBOs, Wait, LeadAIBOs}

• Fo = {Bell, InOpenSpace, CalledAIBOs}

• Ft = NumStudents

• Fc = Fi = Fs = ∅

The action set consists of high-level behaviors, such as navigation to areas of the state space,
and the action Talk, which causes the QRIO to use conversational pose and gestures to
simulate speaking. The observed features of each robot consist of a mixture of sensory
information (audible bell sound and location in space), and a history of its past activities
(whether the AIBOs have been called). The QRIOs do not share their own state information
with each other or the AIBOs. They do, however, listen to AIBO messages indicating their
proximity, enabling each robot to know how many students have reached it (NumStudents).

In summary, coordination between robots is achieved using a combination of active commu-
nication and shared state techniques. Active communication is used by the QRIOs to call
the AIBOs, while the AIBOs use shared state to notify the QRIOs when they are near their
respective teacher and ready to leave. Additionally, we note that the goal behavior for both
AIBOs in each class is the same – both robots have to stop playing at the same time, and
then locate, reach and follow the same teacher. As a result, we used common policy learning
(see Section 7.2.3) to learn a single policy for these robots using shared demonstrations.

Using these teaching techniques, training the complete task required 6 demonstrations for
each QRIO, and an average of 16 demonstrations for each AIBO. A greater number of demon-
strations were required for the AIBOs due to their noisy, real-valued state representation.

6.6 Chapter Summary

This chapter introduced flexMLfD, a robot-independent and task-independent multi-robot
demonstration learning framework based on the Confidence-Based Autonomy algorithm.
Using this framework, we contributed three approaches for teaching collaborative multi-
robot behavior based on different information sharing strategies. Evaluation of collaborative

74

task learning was performed in two multi-robot domains – ball sorting and playground.
Differences between these domains showcase the flexibility of the proposed system, including
the following features:

• Multiple robotic platforms, the Sony QRIO and AIBO.

• Variable number of robots, from 2 to 6.

• Heterogeneous and homogeneous groups of robots.

• Flexible action representation supports wide range of actions, including low-level naviga-
tion commands and high-level behaviors.

• Flexible state representation includes boolean, discrete and real-valued features and both
locally observed and communicated information.

• A combination of active communication and shared state techniques is used to control the
frequency with which robots share information.

• Policy learning supports variable degrees of collaboration and interaction between robots,
ranging from physically separate but collaborating QRIO robots in the ball sorting task,
to physically interacting but independent AIBO robots in the playground domain.

All of the above variations are fully supported by the flexMLfD learning system and no special
adaptations to the underlying architecture are required for each task. Instead all task-specific
elements are specified within the system XML configuration file prior to training.

75

76

Chapter 7

Scalability Analysis

In the previous chapter, we introduced multi-robot learning from demonstration and pre-
sented three ways in which a human teacher can teach robots to coordinate their actions.
Controlling and teaching multiple robots at the same time is a challenging problem. In
this chapter, we present a case study analysis the scalability of the flexMLfD framework.
Our analysis uses a multi-robot domain in which communication and coordination between
robots is achieved through shared state. Through experimental evaluation, we examine how
the number of robots being taught by the teacher affects the number of demonstrations re-
quired to learn the task, the time and attention demands on the teacher, and the delay each
robot experiences in obtaining a demonstration.

Using up to seven Sony AIBO robots, we evaluate three approaches to teaching multiple
robots at the same time:

• Synchronous Learning Start Times – Each robot learns an individual task policy.
All robots begin learning at the same time.

• Offset Learning Start Times – Each robot learns an individual task policy. Learning
begins with a single robot. All remaining robots are introduced incrementally, one at
a time, once all previous robots have gained partial autonomy at the task.

• Common Policy Learning – All robots begin learning at the same time and learn
a single common policy by consolidating their knowledge and sharing demonstration
data.

In each approach, robots begin with no knowledge about the task, and learning is complete

77

once all robots are able to perform the task correctly. The synchronous and offset learning
approaches examine the most general learning scenario, one in which each robot learns
an individual policy, allowing different tasks or roles to be taught at the same time. In
the synchronous learning approach, all robots begin at the same time. As we show in our
evaluation, this approach places great demand on the teacher for demonstrations early in the
training process. The offset learning approach presents an alternate method in which robots
are introduced one at a time, after all active learners have already gained partial autonomy
at the task, thereby helping to disperse the demand for demonstrations over a longer time
period. Common policy learning examines a special case of demonstration learning in which
robots consolidate all their demonstration knowledge to learn a single common policy. We
evaluate the scalability of our multi-robot learning framework in a beacon homing domain
using Sony AIBO robots.

7.1 Beacon Homing Domain

Figure 7.1 shows three examples of AIBO robots operating in the beacon homing domain,
which consists of an open area with three uniquely-colored beacons (B = {B1, B2, B3})
located around the perimeter. Each robot is able to observe the relative position of a
beacon using its onboard camera, and to communicate information via the wireless network.
The set of action available to each robot is limited to basic movement commands, A =
{Forward, Left, Right, Search, Stop}, used by each robot to navigate in the environment.

Using the representation defined in Section 6.1, we define the robot’s state as s = {Fo ∪Fs ∪
Fc ∪ Fi ∪ Ft}, where:

• Fo = {d1, d2, d3, a1, a2, a3}

• Fs = {myBeacon}

• Ft = {n1, n2, n3}

• Fc = Fi = ∅

The set of observed features, Fo, contains information about the robot’s relative distance (di)
and angle (ai) to each beacon i ∈ B. For any beacon not currently in view, the distance and
angle are set to the default values 4000 mm and 1.8 rad, respectively, to indicate that this
beacon is far away. The set of shared state features, Fs, contains a single value, myBeacon,
which is set to a beacon’s ID number if the robot is within a set distance x of a beacon,

78

(a) (b) (c)

Figure 7.1: Beacon homing domain: (a) Example starting configuration, 3 robots. (b) Ex-
ample intermediate stage, 5 robots. (c) Example final configuration, 7 robots.

and −1 if the robot is not located near a beacon. Each robot communicates the value of this
feature to its teammates. In turn, all robots use this shared information to determine the
values of state features Ft = {n1, n2, n3}, which maintain the count of the current number
of robots occupying each beacon.

In summary, using the above representation, each robot knows its position relative to beacons
that it observes, and the number of other robots already located at each of the beacons. Using
this information, the teacher can teach each robot to navigate from a random initial location
in the center of the open region to one of the colored beacons. Specifically, the selection
of a beacon is governed by the following rules: Given a maximum limit m for the number
of robots that can occupy a marker, search until beacon i is found for which the number of
robots, ni, is less than m. Navigate to that beacon and occupy it by stopping within a set
distance x. If at any point the number of robots at the selected beacon exceeds m, search for
another beacon.

These explicit rules of the task are known only to the teacher. During the learning process,
each robot in the experiment learns an independent policy representing this behavior from
demonstrations. All robots were taught the same task to ensure a fair comparison between
robots for the scalability evaluation. We set the maximum number of robots allowed per
beacon for each experiment to m = d #Robots

#Beacons
e, such that at least one beacon must contain

the maximum number of robots. Each experiment began with all robots located in the
center of the open region (Figure 7.1(a)) and ended once all robots had reached a beacon
(Figure 7.1(c)). Training continued until all robots executed the desired behavior efficiently
and correctly without requesting demonstrations.

79

7.2 Evaluation

The scalability of the flexMLfD approach was evaluated in the beacon homing domain using
1, 3, 5, and 7 robots. In this section, we discuss how the number of robots taught by the
teacher at the same time affects the number of demonstrations required to learn the task,
the demands for time and attention placed on the teacher, and the delay that each robot
experiences in obtaining a demonstration.

All evaluations were performed with a single teacher. As with all human user trials, we must
account for the fact that the human teacher also learns and adapts over the course of the
evaluation. To counter this effect, the teacher performed a practice run of each experiment,
which we then discarded from the evaluation. An alternate evaluation method would be to
eliminate the human factor by using a standard controller to respond to all demonstration
requests in a consistent manner. This approach, however, would prevent us from evaluating
the demands multiple robots place on a human teacher.

7.2.1 Synchronous Learning Start Times

First, we present a detailed evaluation of the scalability of the synchronous learning start
times approach in which all robots begin learning at the same time. In Sections 7.2.2 and
7.2.3, we compare the performance of the other two techniques – offset learning start times
and common policy learning – in the 7-robot beacon homing domain.

Robot Autonomy

Figure 7.2 shows how the level of autonomy, measured as the percentage of autonomous ac-
tions versus demonstrations, changes for an individual robot over the course of training. The
data presents the average autonomy of robots in the 5-robot beacon homing experiment. The
shape of the curve is typical of CBA learning, in which robots begin with no initial knowl-
edge about the task and request many demonstrations early in the training process. These
initial demonstrations provide the robot with the experience for handling most commonly
encountered domain states. As a result, following the initial burst of demonstration requests,
the robot quickly achieves 80–95% autonomous execution. The remainder of the training
process then focuses on refining the policy and addressing previously unencountered states.
The duration of this learning time is dependent upon the frequency with which novel and
unusual states are encountered.

80

Figure 7.2: Average level of autonomy of a single robot over the course of training.

Number of Demonstrations

Figure 7.3 shows how the number of demonstrations performed by the teacher on average for
each robot, and in total for each experiment, changes with respect to the number of robots.
As the number of robots grows, we observe a slight increase in the number of demonstrations
required per robot. This possibly surprising increase is due to the fact that, although the
number of state features in the representation of our domain does not change, the range of
possible feature values does.

Specifically, in an N -robot experiment, the value of features representing the number of

Figure 7.3: Average number of demonstrations performed by the teacher for each robot and
in each experiment.

81

robots located at a beacon, ni, has the range [0,N]. As a result, extra demonstrations are
required in the presence of a greater number of robots to provide guidance in the additional
states. While similar effects are present in many domain representations, state features can
often be designed or modified in such a way that their range is independent of factors such
as the number of robots. For example, in the beacon homing domain this could be achieved
by converting ni to a boolean feature that indicates whether the beacon’s capacity has been
reached or not.

The total number of demonstrations required for each experiment grows at a nearly linear
rate with respect to the number of robots. The overall number of demonstrations that the
teacher must performed has a significant effect on the overall training time, as discussed in
the next section. Seven robots require a total of approximately 300 demonstrations to learn
the task.

Training Time

Figure 7.4 presents the change in the overall experiment training time with respect to the
number of robots. Importantly for the scalability of flexMLfD, the data shows a strongly
linear trend, with seven robots requiring just over 1.5 hours to train. This result is significant
as it suggests that this approach will continue to scale linearly to even larger tasks. In the
following sections, we examine the factors that contribute to the training time, such as the
number of demonstrations and demonstration delay.

Figure 7.4: Total training time with respect to number of robots.

82

Attention Demand on the Teacher

In addition to the overall training time and number of demonstrations, it is important to
understand the demands that multiple robots place on the teacher. The teacher experiences
the greatest number of demonstration requests during the earliest stages of learning, possibly
from multiple robots at the same time. To evaluate the demand on the teacher’s attention
during this most laborious training segment, we calculate the longest continuous period of
time during which the teacher has at least one demonstration request pending. This value
provides insight into the degree of effort that is required from the teacher.

Figure 7.5 plots the duration of the longest continuous period of demonstration requests
for each experiment. The data shows that the length of this time period grows quickly,
possibly exponentially, with the number of robots. In experiments with only a single robot,
demonstration requests last only a few seconds at a time; as soon as the teacher responds
to the request, the robot switches to performing the demonstrated action. As the number
of robots increases, however, so does the number of simultaneous requests from multiple
robots. In the 7-robot experiment, this results in a 3.5 minute uninterrupted segment of
demonstration requests for the teacher. In Section 7.2.2, we examine an alternate approach
to teaching multiple robots in which novice learners are added incrementally, reducing the
demand for demonstrations early in the training process.

Figure 7.5: Attention demand on the teacher.

Additionally, we examine the total time per experiment that multiple demonstration requests

83

are pending. Figure 7.6 presents a set of bar graphs showing the distribution of the number
of simultaneous requests for each experiment. This data indicates that for all experiments,
the teacher spends the greatest percentage of time with only a single demonstration request.
However, the teacher spends over 3 minutes in the 5-robot experiment, and over 13 minutes in
the 7-robot experiment, faced with multiple queries. This growing number of simultaneous
queries has a significant impact on demonstration delay, the amount of time that passes
between the robot’s initial request and the teacher’s response.

Figure 7.6: Histograms showing the distribution of the number of simultaneous requests for
each experiment.

Demonstration Delay

As discussed in the previous section, simultaneous demonstration requests from multiple
robots become common as the number of robots increases. As a result, robots often must
wait while the teacher responds to other robots. Figure 7.7(a) shows that the average time
a robot spends waiting for a demonstration grows with the number of learners from only
2 seconds for a single robot to 12 seconds for seven robots. Figure 7.7(b) plots the percentage
of time a robot spends waiting on average for a demonstration over the course of training.
Not surprisingly, we observe that the demonstration delay is greatest early in the training
process when the teacher is most busy with initial demonstration requests. Staggering the

84

(a) (b)

Figure 7.7: (a) Average amount of time a robot spends waiting for a demonstration response
from the teacher. (b) Average percentage of time a robot spends waiting for a demonstration
over the course of training.

times at which novice robots are introduced to the task may help to alleviate this problem
by reducing the demand of the initial training phase on the teacher.

Evaluation Summary

In summary, our case study demonstrates the feasibility of a single person training up to
seven robots using the flexMLfD learning framework. We believe this is the first experiment
examining demonstration learning at this scale. Additionally, we find promising trends
for even larger experiments. Particularly significant is that the total training time grows
linearly with the number of robots. Somewhat unsurprisingly, we also found that increasing
the number of robots also significantly increases the workload of the teacher, as measured
by the number of pending demonstration requests. In our evaluation, we show that this in
turn impacts demonstration delay and robots must spend more time waiting for the teacher’s
response. While this has no negative impact on learning in the presented domain, delay may
impact performance in other tasks.

Based on the presented case study, we find that no absolute upper bound exists on the
number of robots that can be taught at the same time. The maximum number of robots
used in the experiments, seven, represents our own limitation in terms of time and the number

85

of available robots, not a limitation of the algorithm. Furthermore, insights gained in this
evaluation provide guidelines for the development of future applications for CBA learning.
For example, our knowledge of the trend in overall training time requirements can be used
to limit the number of robots in other applications for which the availability of an expert
teacher is limited to some fixed time. Similarly, the number of robots in other domains
may be affected by the amount of time a robot is allowed to remain idle while waiting for a
demonstration.

7.2.2 Offset Learning Start Times

Analysis of the synchronous start times approach presented in the previous section shows that
when multiple robots begin learning a new task at the same time, they place great demand
on the teacher for demonstrations early in the training process. This, in turn, leads to longer
demonstration delays for each robot. In this section, we examine an alternate approach in
which novice robots are introduced incrementally. Each new robot is added once all previous
learners have gained proficiency at the task and are able to act autonomously approximately
80% of the time. We refer to this learning process as offset start time learning.

We compare the performance of offset start time learning to the synchronous start time
approach in the 7-robot beacon homing domain. Note that as we add each additional robot
learner, the range of domain states experienced by previously active robots expands. For
example, a single robot alone can be taught to navigate to various beacons, but without the
presence of other robots it will never learn the collaborative aspects of the task. As each
additional robot is introduced to the domain, the robot will learn how to act in the presence
of others.

Figure 7.8 shows the effect of offset start time learning on total training time and attention
demand on the teacher. Figure 7.8(a) shows that by offsetting the learning start time
of the robots, the total learning time of the experiment increases by approximately 12%.
This increase is due to the fact that robots experience novel states over a longer period of
time. Since the task itself remains unchanged, the total number of demonstrations required
to teach all seven robots their individual policies remains approximately the same (284
demonstrations using offset start times compared to 298 using the synchronous start times
approach). However, since the demonstrations are disbursed over a longer period of time,
the attention demand on the teacher is significantly reduced, as shown in Figure 7.8(b).
The longest period of continuous demonstration requests falls to approximately 1 minute,
compared to 3.5 minutes in the synchronous learning start case, and the average time a robot
waits to receive a demonstration falls from 12 seconds to 4.5 seconds.

86

(a) (b)

Figure 7.8: Comparison of the synchronous and offset learning start time approaches. (a) To-
tal training time. (b) Attention demand on the teacher.

In summary, by offsetting the learning start times of the robots we are able to distribute
demonstration requests over a longer time period. This leads to a slight increase in the
overall learning time, but reduces the number of simultaneous demonstration requests the
teacher receives, which in turn leads to faster response times, reducing the demonstration
delay.

7.2.3 Common Policy Learning

In the standard formulation of the flexMLfD learning approach, the teacher provides each
robot with an individual set of demonstrations from which a unique policy is derived. This
generalized approach is highly suitable for domains in which robots perform different roles
and functions. However, in some domains, as in our experiments, the same behavior may
be desirable for each robot. In such cases, teaching the same policy to multiple robots
results in a large number of redundant demonstrations. To address this case, we propose
that all robots learning the same task learn a single, common, policy by consolidating all
demonstration data. The sharing of information can occur by collecting all data within a
single dataset, or by freely exchanging each demonstration among all robots so as to maintain
a distributed set of identical policies. In this section, we evaluate the performance of the
common policy approach using the 7-robot beacon homing domain.

Note that common policy learning in domains independent robots, results in the same final

87

policy as if each of those robots was taught alone. Using multiple robots in this case may
speed up learning since uncommon states are more likely to be encountered with many learn-
ers. Common policy learning in domains with non-independent robots, as in our example of
the beacon homing domain, differs from training and replicating a single robot policy as it
additionally allows the robots to experience the collaborative aspects of the task.

Using this technique, the teacher was required to perform a total of only 44 demonstrations,
compared to nearly 300 total demonstrations previously required for this task. Figure 7.9(a)
shows that the overall training time of the experiment is similarly reduced to only 23 minutes,
compared to the 95 minutes for the standard approach. In fact, while seven robots learning
a common policy require more of the teacher’s time than a single learner, they require less
time than three robots learning individual policies.

Figure 7.9(b) shows that a common policy similarly reduces the attention demand that
seven robots require of the teacher. This effect can be attributed to the fact that frequently
a demonstration performed for one robot addresses the queries of other currently waiting
robots. An additional effect of this occurrence is that the average waiting time of the common
policy approach is reduced from 12 seconds to 1.2 seconds.

(a) (b)

Figure 7.9: Comparison of the single common policy and multiple individual policy flexMLfD
learning approaches. (a) Total training time. (b) Attention demand on the teacher.

88

7.3 Chapter Summary

This chapter presented a case study analysis of the scalability of the flexMLfD learning
framework in a beacon homing domain using up to seven AIBO robots. We compared three
approaches to teaching multiple robots at the same time: synchronous learning start times,
offset learning start times, and common policy learning. Learning performance was evaluated
with regard to the number of demonstrations required to learn the task, the demands for time
and attention placed on the teacher, and the delay that each robot experiences in obtaining
a demonstration.

Our results show that in the synchronous learning start approach, demands on the teacher
and robots grow at a roughly linear rate with respect to the number of robots. By offsetting
the learning start times of the robots, demonstration requests can be distributed over a longer
time period, reducing the attention demand on the teacher and demonstration delay. In the
shared learning scenario, the training time and number of demonstrations can be significantly
reduced by learning a single common policy. Most importantly, our analysis indicates that
no strict upper bound exists on the number of robots due to the algorithm’s limitations.
Instead, the number of robots is likely to be limited by real-world factors particular to each
learning domain, such as the amount of time the teacher is able to invest in training.

89

90

Chapter 8

Related Work

Demonstration-based learning techniques are described by a variety of terms within the pub-
lished literature, including learning by demonstration (LbD), learning from demonstration
(LfD), programming by demonstration (PbD), learning by showing, learning by watching,
learning from observation, behavioural cloning, imitation and mimicry. While the definition
for some of these terms, such as imitation, have been loosely borrowed from other sciences,
the overall use of these terms is often inconsistent or contradictory across articles.

Within this thesis, we refer to the general category of algorithms in which a policy is derived
based on demonstrated data as learning from demonstration. In a recent survey [5], we
identify the defining features of these techniques and present a detailed characterization of
existing learning from demonstration approaches. In this chapter, we present a subset of the
survey’s organizational structure and discuss where our work fits with relation to existing
approaches.

8.1 Characterization of Demonstration Learning

Approaches

There are two aspects of learning from demonstration which are common among all appli-
cations to date. One is the fact that a teacher demonstrates execution of a desired behavior.
The other is that the learner is provided with a set of these demonstrations, and from them
derives a policy able to reproduce the task. What distinguishes approaches is the man-
ner in which each of these problems is structured and solved. In this section, we segment

91

the demonstration learning problem into these two fundamental phases, data gathering and
policy learning, and survey different solutions to each.

8.1.1 Data Gathering

In this section, we discuss various techniques for obtaining demonstrations. A demonstration
dataset is composed of state-action pairs recorded during teacher executions of the desired
behavior. Exactly how demonstrations are recorded, and who performs the demonstrations,
varies greatly across approaches.

Learning from Observation

In the learning from observation data gathering approach, demonstration examples are ob-
tained by the robot by passively observing the actions of the teacher. As a training method,
learning from observation is based on the assumption that the task being learned is best
demonstrated by the teacher through independent and uninhibited execution using her own
body. This approach is commonly used to demonstrate low-level control functions for high
degree of freedom robots, such as humanoids, for which teleoperation of the robot would
be difficult. Common applications include object manipulation [51, 67, 89] and interactive
games [8, 43].

In this data gathering approach, the burden of interpreting and extracting useful information
from the observed demonstration is placed on the robot. This gives rise to the correspondence
problem [24], the challenge of identifying the state and action of the demonstrator and
mapping them to the robot’s own abilities with the corresponding effect. Accurate and
efficient methods for solving this problem have been the focus of extensive research [3, 24,
40,45,46,89].

Most observation-based methods rely on advanced computer vision systems to record the
demonstration and recognize the actions performed by the demonstrator [9, 45, 89]. Ex-
tracting meaningful information from image sequences is a very challenging problem, and
marker-based vision systems have been developed that provide additional information about
the demonstrator’s movements. Additional data sources have included tactile [27, 89], posi-
tion [16,40], and magnetic sensors [27], as well as speech recognition [27,52,73].

92

Learning from Experience

In the learning from experience data gathering approach, demonstrations are performed by
letting the robot experience the desired actions using its own body, either through manipu-
lation of robot parts or by instructing the robot which of its actions to perform. The robot
actively participates in the demonstration, executing the actions selected by the teacher
while sensing the environment with its own sensors. This approach allows the robot to di-
rectly associate gathered sensory information with one of its own actions, eliminating the
correspondence problem faced by observation-based methods.

To perform the demonstration, the expert must have a way to direct the robot’s actions.
One of the most commonly used methods is teleoperation, which allows the expert to control
the robot’s actions directly via a joystick, or similar interface, while monitoring the robot’s
progress [12,13,42,48,74,85]. Most teleoperation approaches to date have made use of human
teachers [12,15,61], although several techniques have also examined the use of hand-written
control policies [4, 35, 76]. Teleoperation requires that operating the robot be manageable,
and as a result not all systems are suitable for this technique.

Another method for performing the demonstration is teacher following, in which the robot
follows a human or robot teacher through the execution of the task [37,60,62]. Targeted at
navigation tasks, this approach combines elements of observed and experienced demonstra-
tion as the robot must observe and imitate the behavior of the teacher. However, since the
robot observes the environment with its own sensors and executes its own actions, finding
the correspondence between the teacher’s behavior and the robot’s is not required.

In this thesis, we utilize a learning from experience approach for performing demonstrations.
During demonstration, the robot’s behavior is controlled through a graphical user interface
that enables the teacher to select from among the robot’s available actions.

Demonstration Selection

The approaches described above characterize demonstrations by how they are performed. It
is also important to consider how demonstrations are selected. Most demonstration learning
approaches rely on the teacher to select all demonstrations [9,74,76]. By placing the robot in
a particular environment, providing execution examples, and turning demonstration learning
on and off the teacher controls the flow of information.

An alternate approach to demonstration selection is interactive demonstration, in which
data is acquired through an active dialog between robot and teacher. In this approach

93

the robot is no longer a passive receiver of demonstrated examples, but a collaborator that
provides feedback to the teacher about the learning process, indicating uncertainty or even
asking questions about the task. This approach forms a natural extension of demonstration
learning as it builds upon an existing interaction framework, while allowing the robot to help
guide the learning process. Note that interactive demonstration is not mutually exclusive
from the previous two data gathering techniques. Interactive demonstration describes the
method by which demonstrations are selected, and not the way they are performed.

A number of algorithms have been developed that enable a robot to learn through inter-
action with other autonomous robots and human teachers. In the context of reinforcement
learning, Clouse presents the ‘Ask For Help’ framework [25]. This approach enables a robot
to request advice from other robots when it is “confused” about what action to take, an
event characterized by relatively equal quality estimates for all possible actions in a given
state.

Nicolescu and Mataric [62] present a learning framework based on demonstration, general-
ization and teacher feedback, in which training is performed by having the robot follow a
human and observe its actions. A high-level task representation is then constructed by an-
alyzing the experience with respect to the robot’s underlying capabilities. The authors also
describe a generalization of the framework that allows the robot to interactively request help
from a human in order to resolve problems and unexpected situations. This interaction is
implicit as the robot has no direct method of communication; instead, it attempts to convey
its intentions by communicating though its actions.

Lockerd and Breazeal [11,52] demonstrate a robotic system where high-level tasks are taught
through social interaction. In this framework, the teacher interacts with the robot through
speech and visual inputs, and the learning robot expresses its internal state through emotive
cues such as facial and body expressions to help guide the teaching process. The outcome
of the learning is a goal-oriented hierarchical task model. In later work [82], the authors
examine ways in which people give feedback when engaged in an interactive teaching task.
Although the study’s focus is to examine the use of a human-controlled reward signal in
reinforcement learning, the authors also find that users express a desire to guide or control
the robot while teaching. This result supports our belief that, for many robotic domains,
teleoperation provides an easy and intuitive human-robot communication method.

Grollman and Jenkins present the Dogged Learning algorithm [35], a confidence-based learn-
ing approach for teaching low-level robotic skills. In this algorithm, the robot indicates to
the teacher its certainty in performing various elements of the task. The teacher may then
choose to provide additional demonstrations based on this feedback. While similarly mo-
tivated, our work differs from the Dogged Learning algorithm in a number of ways, most

94

important of which are our use of classification instead of regression in policy learning, and
our algorithm’s ability to adjust the confidence threshold to the data instead of using a fixed
value. Inamura et al. [42] present a similarly motivated method based on Bayesian Networks
that is limited to a discretely-valued feature set.

In addition to learning from demonstration, several other areas of research have also explored
algorithms for demonstration selection. Within machine learning research, active learning
[10,26] enables a learner to query an expert and obtain labels for unlabeled training examples.
Aimed at domains in which a large quantity of data is available but labeling is expensive,
active learning directs the expert to label the more informative examples with the goal of
minimizing the number of queries.

In this thesis, we contribute an interactive, mixed-initiative approach to learning from demon-
stration that enables both the robot and the teacher to select demonstration examples.

8.1.2 Policy Learning

Once the demonstration data has been obtained, the robot must learn a policy that enables
it to reproduce the desired behavior. Learning from demonstration research has seen the
development of three core approaches to deriving policies from demonstration data. Learn-
ing a policy can involve learning an approximation of the state to action mapping (mapping
function), or learning the model of the world dynamics and deriving a policy from this in-
formation (system model). Alternately, a sequence of actions can be produced by a planner
after learning a model of action pre- and post-conditions (plans). Across all of these learn-
ing techniques, minimal parameter tuning and fast learning times requiring few training
examples are desirable.

Mapping Function

The mapping function approach to policy learning calculates a function that approximates
the state to action mapping for the demonstrated behavior. The goal of this type of algorithm
is to reproduce the underlying teacher policy, which is unknown, and to generalize over the
set of available training examples such that valid solutions are also acquired for similar states
that may not have been encountered during demonstration.

The details of function approximation are influenced by many factors. These include whether
the state input and action output are continuous or discrete; whether the generalization

95

technique uses the data directly at execution time or uses the data to approximate a function
prior to execution time; whether it is feasible or desirable to keep the entire demonstration
dataset around throughout learning; and whether the algorithm updates online.

In general, mapping approximation techniques fall into two categories depending on whether
the prediction output of the algorithm is discrete or continuous. Classification techniques
are used to produce discrete output. Example classification methods applied to learning
from demonstration have included k-Nearest Neighbors [74], Bayesian Networks [11] and
Hidden Markov Models [28]. Regression techniques produce continuous output. Regression
algorithms applied to demonstration learning for robotic systems include Locally Weighted
Regression [12, 59, 78], Gaussian Mixture Regression [13], and On-Line Gaussian Processes
[36]. Classification and regression algorithms typically learn aggressively and are able to
generalize from a small number of examples. A common assumption held by these approaches
is that for any world state their exists a single best action.

In this thesis, robot policies are represented and learned using classification. Additionally,
we contribute a classifier-independent algorithm that enables states to be mapped to a choice
of multiple actions.

System Model

The system model approach to policy learning determines a state transition model for the
world from which it then derives a policy. This approach is typically formulated within the
structure of reinforcement learning (RL) [80]. The standard reinforcement learning system
assumes that the world can be described by a finite set of states, and that the robot is limited
to taking one of a finite set of actions at each discrete timestep. At each learning timestep,
the robot observes its state in the world and chooses an action to execute. After completing
the action, the robot receives a reinforcement signal, or reward, that reflects the goodness
of the action or the resulting state. The robot’s goal is to learn a mapping from states to
actions that maximizes the robot’s reward over time. Among the many extensions to the
standard reinforcement learning algorithm, a wide range of approaches have been developed
for applying RL to continuous state and action domains [56,58,77,80,84].

Within the context of reinforcement learning, demonstration can be seen as a source of
reliable information, or advice, that can be used to accelerate the learning process [54,63,71].
A number of approaches for taking advantage of this information have been developed, such
as deriving or modifying the reward function based on the demonstration [1,7,25,65,82], and
using the demonstration experiences to prime the robot’s value function or model [68,75,81].
[77] propose an alternate approach for accelerating learning in domains with sparse rewards.

96

Instead of attempting to model expert behavior by rewarding similar actions, they allow the
expert to demonstrate the execution of the task and expose the robot to areas of the state
space where the reward is non-zero. Bootstrapped with this information, the robot is then
able to quickly learn the task under autonomous execution.

Combining demonstration with an exploration-based learning method allows the robot to
improve upon the demonstrated behavior and surpass the expert in performance. The benefit
of this approach is that the robot is not bound by the abilities of the teacher, and the teacher
is not required to make a perfect demonstration. Exploration, however, can be expensive in
terms of time or hardware costs for many robotic tasks.

Plans

Within the planning framework, a policy is represented as a sequence of actions that lead from
the initial state to the final goal state. Actions are often defined in terms of pre-conditions,
the state that must be established before the action can be performed, and post-conditions,
the state resulting from the action’s execution. Unlike other learning from demonstration
approaches, planning techniques frequently rely not only on state-action demonstrations,
but also on additional information in the form of annotations or intentions from the teacher
[31, 32, 85]. Demonstration-based algorithms differ in how the rules associating pre- and
post-conditions with actions are learned, and whether additional information is provided by
the teacher.

Nicolescu and Mataric [62] introduce a plan-based framework in which training is performed
by having the robot follow a human and observe its actions. A high level task representation
is constructed by the algorithm by analyzing this experience with respect to the robot’s
abilities. Veeraraghavan and Veloso [86] present an algorithm for learning generalized plans
that represent sequential tasks with repetitions. In this framework, a humanoid robot is
taught the repetitive task of collecting colored balls into a box based on two demonstrations.
Rybski et al. [73] present a system in which demonstration of the desired task is performed
through speech dialog. The teacher presents the robot with a series of conditional statements
which are processed into a plan. The robot is additionally able to verify any unspecified parts
of the plan through dialog.

97

8.2 Multi-Robot Learning

Learning from demonstration approaches have almost exclusively focused on the problem
of a single robot being taught by a single teacher. A handful of projects, however, have
examined the application of demonstration learning in the context of multi-agent software
systems. Oliveira and Nunes [63] and Clouse [25] present algorithms that allow agents to
request advice from other similar agents within a reinforcement learning framework. Upon
request, each agent provides advice to teammates based on its experiences and learned
model. Price and Boutilier [68] present a multiagent system in which novice agents learned
from passively observing expert agents in the environment. Each learning agent is limited
to observing the actions of others, and no explicit teaching occurs. By observing a mentor,
the reinforcement learning agent is able to extract information about its own capabilities
in, and the relative value of, unvisited parts of the state space. However, the task of an
observed agent may be so different that the observations provide little useful information for
the learner, in which case direct imitation of this expert must be avoided by the algorithm.

Alissandrakis et al. [2,3] present a general framework that enables a robotic agent to imitate
another, possibly differently embodied, agent through observation. Using this framework,
the authors demonstrate the transmission of skills between individuals in a heterogeneous
community of software agents. Their results indicate that transmission of a behavior pattern
through a chain of agents can be achieved despite differences in the embodiment of some
agents in the chain. Additional results indicate that groups of mutually imitating agents
converge to a common and shared behavior.

The above methods study imitation from the perspective of a community of agents, where
a single agent seeks advice from other members of its group. A different approach is taken
in the study of coaching [70], in which an external coach agent provides advice to a team of
agents in order to improve their performance at a task. The coach has an external, often
broader, view of the world and is able to provide advice to the agents, but not control them.
The agents must decide how to incorporate the coach’s advice into their execution; they can
not request help from the coach.

Work presented in this thesis differs from existing multi-robot techniques in that it enables a
single human to simultaneously train multiple robots. Additionally, we place no restrictions
on the robots in terms of embodiment or behavior, allowing each robot to learn its individual
policy or task.

98

8.3 Multi-Robot Control

Interfaces for the interaction and control of multiple robots have been studied in the human-
robot interaction (HRI) community for many robotics applications.

Humphrey et al. [41] present a relational display designed for the control of a variable number
of robots, which was successfully used to teleoperate up to nine simulated robots in a bomb
defusing task. Fong et al. [30] present HRI/OS, a software framework for establishing inter-
action and dialog in human-robot teams. Targeted at execution of operational tasks, such
as resource collection, this system supports a variety of user interfaces and robot platforms
through an extensible API, making it applicable to a wide range of applications.

Wang and Lewis [90] present a study evaluating how the degree of operator control affects
task performance in multi-robot tasks. The authors conclude that mixed initiative teams
of robots performed more successfully at a simulated urban search and rescue task than
either fully autonomous or manually controlled teams. Similar results are supported by
other studies in adjustable autonomy research, motivating the use of partial autonomy in
our multi-robot demonstration learning framework.

Other research has examined the human side of the interaction, examining the effects of
various design elements on user performance [34, 38]. For example, closely related to our
problem of multi-robot demonstration learning is an interface proposed by Glas et al. [33]
for the control of multiple social robots.

In learning from demonstration, the role of the teacher is generally similar to that of the
operator in the systems described above. The teacher oversees the robots, provides robot
commands in the form of actions, and identifies errors that the robot can not detect on its
own. However, the above systems provide interfaces only for robot control and navigation,
and do not include a learning component. In particular, we are not aware of any sys-
tem designed to address multi-robot interaction and control in the context of learning from
demonstration. The interaction and control interface presented in this thesis combines policy
learning, demonstration requests, adjustable autonomy, and correction capabilities within a
single software system.

99

100

Chapter 9

Conclusion and Future Work

This chapter reviews the dissertation’s scientific contributions and presents several promising
future research directions that build on this thesis.

9.1 Contributions

This thesis makes the following scientific contributions:

• Confidence-Based Autonomy single-robot demonstration learning algorithm

The Confidence-Based Autonomy algorithm enables a human user to train a task policy
through demonstration. The algorithm consists of two components. The Confident
Execution component enables the robot to select demonstrations in real time as it
interacts with the environment, using confidence and distance thresholds to target
states that are unfamiliar or in which the current policy action is uncertain. To enable
the robot to request a demonstration at any time, we assume that the robot can pause
between executions of consecutive actions. The Corrective Demonstration component
allows the teacher to additionally perform corrective demonstrations when an incorrect
action is selected by the robot. The teacher retroactively provides demonstrations for
specific error cases instead of attempting to anticipate errors ahead of time. Combined,
these techniques provide a fast and intuitive approach for policy learning, incorporating
shared decision making between the learner and the teacher.

101

• Algorithm for identifying, representing and enacting equivalent action choices

Regions of inconsistent demonstrations are frequently encountered in learning from
demonstration due to the existence of multiple applicable actions or sensor noise. This
thesis introduces a classifier-independent algorithm based on Confidence-Based Auton-
omy that enables choices between multiple actions to be represented explicitly within
the robot’s policy through the creation of option classes.

• A task-independent and robot-independent interface for demonstration learn-
ing

This thesis contributes a detailed description of the fully implemented, robot-independent
and task-independent demonstration learning software system used for the evaluation of
all presented algorithms. A detailed description of the software system in Appendix A
should enable future researchers to build upon this work and develop similar systems.

• flexMLfD, a robot-independent and task-independent multi-robot demon-
stration learning framework

This thesis contributes flexMLfD, the first multi-robot demonstration learning frame-
work. Our approach is based on the Confidence-Based Autonomy algorithm, which
establishes a general state and action representation and provides a means for single-
robot policy learning through adjustable autonomy. Using an independent instance
of the CBA algorithm, each robot acquires its own set of demonstrations and learns
an individual task policy. The unique feature of the CBA algorithm that enables it
to be applied to multi-robot learning is the Confident Execution component, which
enables each robot to regulate its own autonomy, and to pause execution when faced
with uncertain situations.

• Three approaches to teaching collaborative multi-robot tasks

Solutions to many complex tasks require the collaboration of multiple robots. Based
on the flexMLfD multi-robot demonstration learning framework, this thesis examines
methods for teaching emergent multi-robot coordination, in which the solution to the
shared multi-robot task emerges from the complementary actions performed by robots
based on their independent policies. We contribute three approaches to teaching col-
laborative behavior based on different information sharing strategies: implicit coordi-
nation, coordination through active communication, and coordination through shared
state.

• Case study analysis of the scalability of flexMLfD

Controlling and teaching multiple robots at the same time is a challenging task. This
thesis contributes a case study analysis of the scalability of the flexMLfD learning

102

framework in a beacon homing domain using up to seven AIBO robots. We compare
three approaches to teaching multiple robots at the same time: synchronous learning
start times, offset learning start times, and common policy learning. Learning perfor-
mance was evaluated with regard to the number of demonstrations required to learn
the task, the demands for time and attention placed on the teacher, and the delay that
each robot experiences in obtaining a demonstration.

• Extensive evaluation of all learning methods

This thesis presents detailed evaluations of all presented algorithms in multiple sim-
ulated and real-world domains. Evaluations span multiple robotics platforms (Sony
QRIO and AIBO), incorporate different number of robots (from 1 to 7), and utilize a
wide variety of state and action representations.

9.2 Future Directions

Over the course of my PhD, I have been involved with a number of robotics research
projects outside of learning from demonstration, including robot soccer (Appendix B), inter-
active human-robot teams [53], and evolving long-term human-robot interaction [17]. These
projects utilized traditional robot development approaches, in which groups of researchers
coded all robot capabilities by hand without the use of learning from demonstration. While I
believe that certain components of these projects required manual coding (e.g. development
of novel learning algorithms or software infrastructures), much work was also devoted to ap-
plications that are highly suitable for demonstration learning. This included the development
of a wide range of robot actions and behaviors, such as navigation, object manipulation, per-
son following, obstacle avoidance and multi-robot coordination. In this section, we present
some of the lessons learned from the development and evaluation of the confidence-based
demonstration learning methods introduced in this thesis, and discuss key directions for fu-
ture research that can enable learning from demonstration to be applied to the broad range
of applications mentioned above.

The policy learning algorithms presented in this thesis target a specific class of domains –
those consisting of high level tasks with a discrete action space and the ability for the robot
to pause to request a demonstration. Within this broad class of domains, we have shown
our algorithms to be robust and able to learn a wide range of different tasks. Our long-
term goal is to extend confidence-based learning to an even wider range of applications by
building upon the presented algorithms, relaxing existing assumptions, and incorporating
new features. One possible future application is robot soccer, a complex multi-robot domain
that combines low level continuous control and navigation, high level decision making, and

103

real-time multi-robot coordination. Further research is several key directions is required to
enable a task of this complexity to be learned from demonstration.

• Enhanced demonstration interface As part of this thesis, we contribute a graphical
user interface for information exchange and interaction between the robot and teacher.
The interface displays the robot’s state, composed of locally observed and communi-
cated information, and enables the teacher to select actions during demonstration. One
of the lessons learned during this research, is that communicated information shared
wirelessly between robots can be difficult for the teacher to track. Since communi-
cation is imperceptible and instantaneous, the teacher must rely heavily on the GUI
to monitor the values of communicated data. If a large amount of data is communi-
cated between robots, and if data values change frequently, maintaining an accurate
mental model of the robot’s state becomes difficult for the teacher. An important
direction for future work is the further development and evaluation of interfaces for
interactive demonstration learning, including user studies and exploration of methods
for visualizing communicated data.

• Pause-less demonstration In many applications it is not possible or practical to
perform demonstrations while the robot is stopped or paused. This may be because
the robot is unable to stop safely, or because stopping changes the robot’s state (e.g.
velocity). In highly dynamic environments, pausing may simply be impractical if the
environment changes quickly, leaving too little time for the teacher to perform a demon-
stration for the relevant state. For example, robot soccer games are typically so fast-
paced that the game state can change significantly after just a three second delay. To
enable learning is these kinds of domains, a demonstration method is required that
does not rely on pausing. One possible solution would be to teach the robots entirely
through correction; in the resulting approach, demonstration data would be provided
in real time during execution, but the robots are likely to make many mistakes while
learning. Another possible approach is to enable demonstrations and corrections to
be performed retroactively based on records of past actions, similar to the critiquing
technique presented by Argall et al. in [4].

• Learning of continuous actions Algorithms presented in this thesis are designed
for learning high level task policies with discrete action spaces. In many domains,
the discrete actions encode low level behaviors such as navigation (e.g. turn left) or
manipulation (e.g. pass ramp). Within this thesis, all low level actions were hand-
coded by specifying the exact sequence of movements required to achieve the desired
effect (e.g. number of degrees to turn, or arm joint angles necessary to pick up and drop
a ball). A number of algorithms have been proposed to enable these kinds of low-level
actions to also be learned from demonstration [4,35]. An interesting direction for future

104

work is to eliminate the need for hand-coded actions entirely within the demonstration
learning system, either by combining our work with other proposed approaches, or by
extending confidence-based interactive learning to continuous domains.

• High-dimensional state and action spaces Algorithms presented in this thesis, as
most policy learning algorithms, are provided with exactly the data needed to learn the
task, nothing more and nothing less. Complex robotic systems, however, may have hun-
dreds of possible state features (ranging from raw sensor readings to many calculated
features such as person recognition data) and dozens of actions. The Confidence-Based
Autonomy algorithm relies on classification for underlying policy learning, enabling it
therefore to learn to generalize over irrelevant features. However, learning this gen-
eralization may require a large number of demonstrations. Methods for reducing the
size of the state and action space, either through configuration files, interaction with
the user, or through automated means such as feature selection and dimensionality
reduction, are required to enable demonstration learning algorithms to be applied in a
general setting and to more complex domains.

• Multi-robot demonstration sharing In multi-robot domains, many behavioral el-
ements of the task may be common across multiple robots. For example, in the QRIO
ball sorting domain, each robot performed a different sorting behavior (differentiated
by ball color), but the behavior to be performed when the ball queue was empty was
common to both robots. We frequently encounter common task elements such as this
in multi-robot domains. In such cases, learning efficiency can often be significantly im-
proved by enabling robots to share this type of common information among themselves
by teaching each other. Automated approaches for identifying common information to
be shared remains a challenging research problem.

• Improvement beyond teacher performance The policy learning algorithms pre-
sented in this thesis are based on the assumption that the teacher is an expert at
the task being taught. Policy learning relies entirely on training data obtained from
the teacher and aims to reproduce the teacher’s behavior as closely as possible. As
a result, performance is inherently limited by the quality of the information provided
in the demonstration dataset, and any errors made by the teacher are replicated by
the robot. An important direction for future work is to extend learning to enable the
robot’s performance to surpass that of the teacher. Possible approaches include incor-
porating a high-level feedback [4] or a reward signal [82] from the teacher, as well as
filtering noisy or inaccurate demonstrations.

105

106

Appendix A

Confidence-Based Autonomy Software
System

The Confidence-Based Autonomy algorithm establishes a general state and action represen-
tation and provides a means for single-robot policy learning through adjustable autonomy.
In this section, we describe the software system and interface designed around CBA to enable
interaction between the robot and teacher. Figure A.1 presents an overview of the demon-
stration learning software system, which consists of three software modules: the Learning
Control Interface (LCI), the policy learner, and the robot’s onboard software controller.

The LCI is a task-independent and robot-independent software component that provides a
central control point for learning. It contains the CBA algorithm and manages the interaction
between all system components. Additionally, the LCI provides a graphical user interface
(GUI) for interaction between the learning software and the teacher.

The policy learning component can be viewed as a black box containing the classifier of
the teacher’s choosing, for which the LCI provides a generic interface. Communication
between the LCI and policy learner consists of three types of information. The LCI provides
demonstration training data to the learner, as well as classification queries using the robot’s
current state. For each query, the policy returns its highest confidence action, the action
selection confidence and decision boundary information that is used by the CBA algorithm.

Our system makes no assumptions about the physical embodiment and onboard software
architecture of the robot beyond the following requirements: 1) the robot’s onboard controller
is able to establish a TCP connection with the LCI for data transfer; 2) the robot’s onboard
controller is able to perform a set of predetermined actions the execution of which can

107

Figure A.1: Confidence-Based Autonomy demonstration learning software system.

be triggered by the LCI. Any robotic, or even software, system that meets these general
requirements can be used for demonstration learning. Communication between the LCI and
the robot consists of the exchange of state and action information.

All communication between software components occurs over Transmission Control Protocol
(TCP) sockets. The modular structure of the presented learning system allows individual
components to be switched in and out freely, which not only enables the user to apply the
base system to a variety of robotic platforms and tasks, but also allows for independent
development and testing of each system element.

For each task, we assume the existence of basic robot abilities that are required for the
task, specifically sensor data required for observation of the robot’s state, and basic action
primitives that can be combined to perform the overall task. To enable interaction between
the robot and teacher, a graphical user interface is used to display the robot’s state informa-
tion, and to provide the teacher with the choice of actions for demonstration. The teacher
performs demonstrations by selecting among the available actions in the GUI.

At the beginning of the learning process for each new task, the teacher configures the LCI
through an XML configuration file. Information provided in each configuration includes
robot information (name, IP, and port), choice of policy learning algorithm (e.g. SVM), and
the name of the log file in which a record of demonstrations is maintained. Additionally,
the teacher may select from among the robot’s abilities the set of state features and actions

108

Figure A.2: Screenshot of the LCI graphical user interface.

that are relevant to the task being learned. This selection process speeds up learning by
reducing the state representation only to relevant features, and simplifies the user interface
for demonstration.

A.1 Graphical User Interface

The graphical user interface of the LCI serves as a two-way communication device between
the robot and the teacher. A screenshot of the GUI is shown in Figure A.2 with labels
highlighting different regions of the display. The interface displays system information,
such as the identification number or name of the associated robot, and the robot’s current
state. State features are organized by their source, separated into information observed
locally through the robot’s sensors and information received through communication from
remote sources, such as teammates or external sensors. Communicated data can be especially
difficult for the teacher to monitor without the GUI interface. The robot state display
therefore provides vital information necessary to ensure that the teacher’s view of the world
matches that of the robot.

Using the GUI, the teacher is able to perform demonstrations by selecting among a set of

109

possible actions for the robot to execute. The GUI also allows the teacher to undo incorrect
demonstrations in the case that the wrong action was accidentally selected. The undo
operation erases the last demonstration performed from the policy database. However, it
does not undo the effects of the incorrect action that was executed by the robot as a result
of the mistaken demonstration. An action information display, located in the lower right
corner of the GUI, shows the current action being performed by the robot. When the robot
is idle and a demonstration request is pending, the display shows the highest confidence
policy action as a recommendation to the teacher.

A color bar at the top of the GUI screen changes color depending upon the current status of
the robot: not connected (black), connected and executing an action (gray), or waiting for a
demonstration (red). This enables the teacher to identify at a glance when the robot requests
a demonstration, or if connectivity to the robot is broken. Finally, a set of buttons at the top
of the display control the execution mode of the robot, as described in the following section.

A.2 LCI Execution Modes

The LCI operates in one of five execution modes, which provide varying degrees of control
and interaction with the robot. We present a description of each execution mode below.
Figure A.3 presents a summary of the interaction between system components for each
execution mode.

Off – In this mode the LCI is inactive and no communication occurs between components.
This is the starting mode of the system.

Manual – This mode provides the teacher with manual control of the robot’s actions, similar
to a joystick. The LCI displays the robot’s current state and allows the teacher to select
actions for execution. The robot executes the specified actions, but no learning takes place.
This mode is useful for basic interaction with the robot, such as for testing action performance
or for teleoperation.

Non-Interactive – This mode enables the teacher to perform demonstrations without receiv-
ing feedback from the LCI regarding when and what demonstrations should be performed.
Instead, the LCI requests a demonstration at every learning timestep, regardless of action
selection confidence. For each demonstrated action, the LCI communicates the action to the
robot for execution, and additionally communicates the state and action pair to the policy
learning component as a new training point. This mode enables the teacher to perform long
batch demonstration sequences. This can be useful for bootstrapping the learning process,

110

Figure A.3: Interaction between the LCI and system components in each execution mode.

such as by demonstrating the complete task once from beginning to end at the start of the
learning process.

CBA – In this mode, the LCI uses the CBA algorithm to control robot autonomy and select
demonstration. Additionally, it enables the teacher to initiate corrective demonstrations by
selecting the correction action in the GUI when an incorrect action executed by the robot is
observed. When a correction occurs, the LCI records the new demonstration, communicating
it to the policy learner. Note that once initiated, the incorrect action is allowed to complete
without interruption; interrupting an action may cause the robot to enter an unstable or
unsafe state.

Autonomous – In this mode, robot’s actions are controlled by the current learned policy. The
robot is fully autonomous, not relying on the teacher for any demonstrations. Each time the
robot completes an action, it updates the LCI with its new state information. In turn, the
LCI queries the policy to obtain an action and action selection confidence. In this mode, the
action selection confidence is ignored, and the policy-selected action is always executed.

111

112

Appendix B

RoboCup Standard Platform League
Robot Soccer

RoboCup is an international initiative that aims to promote AI and robotics research through
organized competitions and conference [6, 50]. Each year, thousands of researchers come
together to present the latest research and compete in a number of competitions. The
majority of the competitions are organized around the game of robot soccer, in which teams
of autonomous robots play against each other. The long-term goal of the RoboCup robot
soccer effort is: “By the year 2050, develop a team of fully autonomous humanoid robots that
can play and win against the human world champion soccer team.”

The robot soccer competitions are organized into multiple leagues, each of which aims to
address different technical challenges of the long-term goal. The rules and regulations of
each league are designed to drive research in a particular direction, and rules are revised
each year in response to research progress.

The Standard Platform League1 focuses on software and algorithm development. All league
participants are restricted to using the same robot platform, and the competition focuses
on the development of the software system for these robots, including components ranging
from motion generation to sensor processing and behavior execution.

Prior to 2007, the league used the Sony AIBO quadruped robots, Figure B.1(a). Designed
to look like a small dog, each robot includes an onboard processor, wireless communication,
camera and distance sensors allowing for full autonomy and inter-robot communication with-

1Known as the Four-Legged League prior to 2007.

113

(a) (b)

Figure B.1: Standard Platform League robots: (a) Sony AIBO (b) Aldebaran Nao.

out any input from humans. Beginning in 2007, the league adopted a new robot platform,
the Aldebaran Nao humanoid robot, shown in Figure B.1(b). The Nao shares many features
with the AIBO, including onboard processing, sensing and communication capabilities, and
full autonomy. Its humanoid biped design moves the league closer toward the long-term goal
of advanced humanoid robot soccer in 2050.

Soccer in the Standard Platform League is played on a large open field, shown in Figure B.2.
All game-related objects in the environment are color coded, including the green field, bi-
colored localization beacons, blue and yellow goals, and robot uniform colors. The robots use
their onboard camera to identify the color coded objects. Figure B.3(a) shows an example
image from an AIBO camera. Before performing object detection, the raw camera image
is segmented into color classes, a process during which each image pixel is assigned one of
a small set of color class labels. Figure B.3(b) shows the resulting color segmented image,
which results in an encoding that requires less memory and processing time to perform
further analysis.

The soccer domain presents many real world complexities through a competitive game envi-
ronment, covering a broad range of AI and robotics research areas, including real time sensor
fusion, planning, localization, vision, motion, behavior control and multirobot coordination.
During my six years as a developer on the CMU team, including two years as team leader, my
work has touched upon all of these areas through a number of projects, including autonomous
soccer, autonomous four-legged gait learning [18] and action modeling [19]. Additionally, we
have also developed a team of semi-autonomous humanoid game commentators for AIBO
soccer games using the QRIO humanoid robots [87]. Figure B.4 presents images of AIBO
and Nao soccer games, as well as the humanoid game commentators.

114

Figure B.2: The field for the 2007 AIBO standard platform league competition.

(a) (b)

Figure B.3: Example vision data from the AIBO camera. (a) The original image. (b) The
color segmented image.

115

(a) (b)

(c) (d)

Figure B.4: Images of robot soccer. (a),(b) AIBO robots playing soccer. (b) Nao robots
playing soccer. (c) QRIO robots commentating an AIBO game.

116

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement
learning. In International Conference on Machine Learning, New York, NY, USA, 2004.
ACM Press.

[2] Aris Alissandrakis, Chrystopher L. Nehaniv, and Kerstin Dautenhahn. Synchrony and
perception in robotic imitation across embodiments. In IEEE International Symposium
on Computatonal Intelligence in Robotics and Automation, Kobe, Japan, 2003.

[3] Aris Alissandrakis, Chrystopher L. Nehaniv, and Kerstin Dautenhahn. Towards robot
cultures? Interaction Studies: Social Behaviour and Communication in Biological and
Artificial Systems, 5(1):3–44, 2004.

[4] Brenna Argall, Brett Browning, and Manuela Veloso. Learning from demonstration
with the critique of a human teacher. In Second Annual Conference on Human-Robot
Interactions (HRI’07), Arlington, Virginia, March 2007.

[5] Brenna Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009.

[6] Minoru Asada, Oliver Obst, Daniel Polani, Brett Browning, Andrea Bonarini, Masahiro
Fujit, Thomas Christaller, Tomoichi Takahashi, Satoshi Tadokoro, Elizabeth Sklar, and
Gal A. Kaminka. An overview of robocup-2002 fukuoka/busan. AI Mag., 24(2):21–40,
2003.

[7] Christopher G. Atkeson and Stefan Schaal. Robot learning from demonstration. In
International Conference on Machine Learning, pages 12–20, San Francisco, CA, USA,
1997. Morgan Kaufmann Publishers Inc.

[8] Darrin C. Bentivegna, Christopher G. Atkeson, and Gordon Cheng. Learning from
observation and practice using primitives. AAAI Fall Symposium Series, ‘Symposium
on Real-life Reinforcement Learning’, 2004.

117

[9] Aude Billard, Yann Epars, Sylvain Calinon, Gordon Cheng, and Stefan Schaal. Dis-
covering Optimal Imitation Strategies. Robotics & Autonomous Systems, Special Issue:
Robot Learning from Demonstration, 47(2-3):69–77, 2004.

[10] Avrim Blum and Pat Langley. Selection of relevant features and examples in machine
learning. Artificial Intelligence, 97(1-2):245–271, 1997.

[11] Cynthia Breazeal, Guy Hoffman, and Andrea Lockerd. Teaching and working with
robots as a collaboration. In AAMAS ’04: Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 1030–1037, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[12] Brett Browning, Ling Xu, and Manuela Veloso. Skill acquisition and use for a
dynamically-balancing soccer robot. In Proceedings of Nineteenth National Conference
on Artificial Intelligence (AAAI’04), 2004.

[13] Sylvain Calinon and Aude Billard. Incremental learning of gestures by imitation in a
humanoid robot. In Second Annual Conference on Human-Robot Interactions (HRI’07),
Arlington, Virginia, March 2007.

[14] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines,
2007. Software available at http://www.csie.ntu.edu.tw/∼ cjlin/libsvm.

[15] Jason Chen and Alex Zelinsky. Programing by demonstration: Coping with suboptimal
teaching actions. The International Journal of Robotics Research, 22(5):299–319, 2003.

[16] Jin Chen, Eric Chung, Ross Edwards, Nathan Wong, Eileen Mak, Raymond Sheh,
Min Sub Kim, Alex Tang, Nicodemus Sutanto, Bernhard Hengst, Claude Sammut, and
William Uther. A description of the rUNSWift 2003 legged robot soccer team. Technical
report, University Of New South Wales, 2003.

[17] Sonia Chernova and Ronald C. Arkin. From deliberative to routine behaviors: a
cognitively-inspired action selection mechanism for routine behavior capture. Adaptive
Behavior Journal, 15(2):199–216, 2007.

[18] Sonia Chernova and Manuela Veloso. An evolutionary approach to gait learning for
four-legged robots. In In Proceedings of IROS’04, September 2004.

[19] Sonia Chernova and Manuela Veloso. Learning and using models of kicking motions for
legged robots. In Proceedings of International Conference on Robotics and Automation
(ICRA’04), May 2004.

118

[20] Sonia Chernova and Manuela Veloso. Confidence-based policy learning from demon-
stration using gaussian mixture models. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS’07), May 2007.

[21] Sonia Chernova and Manuela Veloso. Multi-thresholded approach to demonstration
selection for interactive robot learning. In Proceedings of 3rd ACM/IEEE International
Conference on Human-Robot Interaction (HRI’08), March 2008.

[22] Sonia Chernova and Manuela Veloso. Interactive policy learning through confidence-
based autonomy. Journal of Artificial Intelligence Research, 34:1–25, 2009.

[23] John Chilton and Maria Gini. Using the aibos in a cs1 course. In AAAI Spring Sym-
posium –Robots and Robot Venues: resources for AI education, Palo Alto, CA, 2007.

[24] Kerstin Dautenhahn Chrystopher Nehaniv. Mapping between dissimilar bodies: Affor-
dances and the algebraic foundations of imitation. In Second Conference on Autonomous
Agents: Workshop on Agents in Interaction - Acquiring Competence through Imitation.,
1998.

[25] Jeffery Allen Clouse. On integrating apprentice learning and reinforcement learn-
ing. PhD thesis, University of Massachisetts, Department of Computer Science, 1996.
Director-Paul E. Utgoff.

[26] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active
learning. Mach. Learn., 15(2):201–221, 1994.

[27] Rüdiger Dillmann. Teaching and learning of robot tasks via observation of human
performance. Robotics and Autonomous Systems, 47(2-3):109–116, 2004.

[28] Kevin R. Dixon and Pradeep K. Khosla. Learning by observation with mobile robots:
A computational approach. In in Proceedings of the IEEE International Conference on
Robotics and Automation, 2004.

[29] Iulia Dobai, Leon Rothkrantz, and Charles van der Mast. Personality model for a
companion aibo. In ACE ’05: Proceedings of the 2005 ACM SIGCHI International
Conference on Advances in computer entertainment technology, pages 438–441, New
York, NY, USA, 2005. ACM.

[30] Terrence Fong, Clayton Kunz, Laura M. Hiatt, and Magda Bugajska. The human-
robot interaction operating system. In HRI ’06: Proceedings of the 1st ACM
SIGCHI/SIGART conference on Human-robot interaction, pages 41–48, New York, NY,
USA, 2006.

119

[31] Holger Friedrich and Rudiger Dillmann. Robot programming based on a single demon-
startion and user intensions. In 3rd European Workshop on Learning Robots at
ECML’95, 1995.

[32] Andrew Garland and Neal Lesh. Learning Hierarchical Task Models by Demonstration.
Technical Report TR2003-01, Mitsubishi Electric Research Laboratories, 2003.

[33] Dylan F. Glas, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro Hagita. Simultaneous
teleoperation of multiple social robots. In HRI ’08: Proceedings of the 3rd ACM/IEEE
international conference on Human robot interaction, pages 311–318, New York, NY,
USA, 2008.

[34] Michael A. Goodrich, Timothy W. McLain, Jeffrey D. Anderson, Jisang Sun, and Ja-
cob W. Crandall. Managing autonomy in robot teams: observations from four ex-
periments. In HRI ’07: Proceedings of the ACM/IEEE international conference on
Human-robot interaction, pages 25–32, New York, NY, USA, 2007.

[35] Daniel H Grollman and Odest Chadwicke Jenkins. Dogged learning for robots. In IEEE
International Conference on Robotics and Automation, pages 2483–2488, 2007.

[36] Daniel H Grollman and Odest Chadwicke Jenkins. Sparse incremental learning for in-
teractive robot control policy estimation. In IEEE International Conference on Robotics
and Automation, Pasadena, CA, USA, May 2008.

[37] Gillian Hayes and John Demiris. A robot controller using learning by imitation. In 2nd
International Symposium on Intelligent Robotic Systems, 1994.

[38] Susan G. Hill and Barry Bodt. A field experiment of autonomous mobility: operator
workload for one and two robots. In HRI ’07: Proceedings of the ACM/IEEE inter-
national conference on Human-robot interaction, pages 169–176, New York, NY, USA,
2007.

[39] Gregory Hornby, Seiichi Takamura, Jun Yokono, Osamu Hanagata, Takashi Yamamoto,
and Masahiro Fujita. Evolving robust gaits with aibo. In Proceedings of the 2000 IEEE
International Conference on Robotics and Automation, pages 3040–3045, 2000.

[40] Geir Hovland, Pavan Sikka, and Brenan J. McCarragher. Skill acquisition from human
demonstration using a hidden markov model. In IEEE International Conference on
Robotics and Automation, pages 2706–2711, 1996.

[41] Curtis M. Humphrey, Christopher Henk, George Sewell, Brian W. Williams, and Julie A.
Adams. Assessing the scalability of a multiple robot interface. In HRI ’07: Proceedings
of the ACM/IEEE international conference on Human-robot interaction, pages 239–246,
New York, NY, USA, 2007.

120

[42] Tetsunari Inamura, Masayuki Inaba, and Hirochika Inoue. Acquisition of probabilistic
behavior decision model based on the interactive teaching method. In Ninth Interna-
tional Conference on Advanced Robotics (ICAR), pages 523–528, 1999.

[43] Ignazio Infantino, Antonio Chella, Haris Dzindo, and Irene Macaluso. A posture se-
quence learning system for an anthropomorphic robotic hand. Robotics and Autonomous
Systems, 42:143–152, 2004.

[44] Toru Ishida. Development of a small biped entertainment robot QRIO. In Micro-
Nanomechatronics and Human Science, 2004, pages 23–28, 2004.

[45] Odest Chadwicke Jenkins and Maja J. Matarić. Performance-derived behavior vocabu-
laries: Data-driven acqusition of skills from motion. International Journal of Humanoid
Robotics, 1(2):237–288, Jun 2004.

[46] Matthew Johnson and Yiannis Demiris. Perceptual perspective taking and action recog-
nition. International Journal of Advanced Robotic Systems, 2(4):301–308, 2005.

[47] Chris Jones, Dylan Shell, Maja Matarić, and B. Gerkey. Principled approaches to
the design of multi-robot systems. In IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems, Workshop on Networked Robotics, 2004.

[48] Daisuke Katagami and Seiji Yamada. Real robot learning with human teaching. In The
4-th Japan-Australia Joint Workshop on Intelligent and Evolutionary Systems, pages
263–270, 2001.

[49] A. Kerepesi, E. Kubinyi, G.K. Jonsson, M.S. Magnusson, and . Miklsi. Behavioural
comparison of human-animal (dog) and human-robot (aibo) interactions. Behavioural
Processes, 73(1):92 – 99, 2006.

[50] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawai, and Hi-
toshi Matsubara. Robocup: A challenge problem for ai and robotics. pages 1–19. 1998.

[51] Yasuo Kuniyoshi, Masayuki Inaba, and Hirochika Inoue. Learning by watching: Ex-
tracting reusable task knowledge from visual observation of human performance. In
IEEE Transactions on Robotics and Automation, volume 10, pages 799–822, 1994.

[52] Andrea Lockerd and Cynthia Breazeal. Tutelage and socially guided robot learning. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004.

[53] Matthew Loper, Odest Chadwicke Jenkins, Nathan Koenig, Sonia Chernova, and Chris
Jones. Mobile human-robot teaming with environmental tolerance. In 4th ACM/IEEE
International Conference on Human-Robot Interaction, 2009.

121

[54] Richard Maclin and Jude W. Shavlik. Creating advice-taking reinforcement learners.
Mach. Learn., 22(1-3):251–281, 1996.

[55] Gail F. Melson, Peter H. Kahn, Jr., Alan M. Beck, Batya Friedman, Trace Roberts, and
Erik Garrett. Robots as dogs?: children’s interactions with the robotic dog aibo and a
live australian shepherd. In CHI ’05: CHI ’05 extended abstracts on Human factors in
computing systems, pages 1649–1652, New York, NY, USA, 2005. ACM.

[56] Andrew W. Moore. Variable resolution dynamic programming: Efefficientlyearning
action maps in multivariate real-valued state-spaces. In Eighth International Workshop
on Machine Learning, pages 333–337, 1991.

[57] Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less time. Machine Learning, 13(1):103–130, 1993.

[58] Remi Munos and Andrew W. Moore. Variable resolution discretization in optimal
control. Machine Learning, 49:291 – 323, 2002.

[59] Jun Nakanishi, Jun Morimoto, Gen Endo, Gordon Cheng, Stefan Schaal, and Mitsuo
Kawato. Learning from demonstration and adaptation of biped locomotion. Robotics
and Autonomous Systems, 47:79–91, 2004.

[60] Ulrich Nehmzow, Otar Akanyeti, Cristoph Weinrich, Theocharis Kyriacou, and Steve A.
Billings. Robot programming by demonstration through system identification. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007),
2007.

[61] Andrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben Tse,
Eric Berger, and Eric Liang. Inverted autonomous helicopter flight via reinforcement
learning. In International Symposium on Experimental Robotics, 2004.

[62] Monica Nicolette Nicolescu. A framework for learning from demonstration, generaliza-
tion and practice in human-robot domains. PhD thesis, University of Southern Califor-
nia, 2003. Adviser-Maja J. Mataric.

[63] Eugnio Oliveira and Luis Nunes. Learning by exchanging Advice. Springer, 2004.

[64] Sascha Ossowski and Ronaldo Menezes. On coordination and its significance to dis-
tributed and multi-agent systems: Research articles. Concurr. Comput. : Pract. Exper.,
18(4):359–370, 2006.

[65] Vinay Papudesi. Integrating advice with reinforcement learning. Master’s thesis, Uni-
versity of Texas at Arlington, 2002.

122

[66] John Platt. Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods. MIT Press, 1999.

[67] Nancy Pollard and Jessica K Hodgins. Generalizing demonstrated manipulation tasks.
In Workshop on the Algorithmic Foundations of Robotics, December 2002.

[68] Bob Price and Craig Boutilier. Accelerating reinforcement learning through implicit
imitation. J. Artif. Intell. Res. (JAIR), 19:569–629, 2003.

[69] Michael J. Quinlan, Stephan K. Chalup, and Richard H. Middleton. Techniques for
improving vision and locomotion on the sony aibo robot. In In Proceedings of the 2003
Australasian Conference on Robotics and Automation, 2003.

[70] Patrick Riley. Coaching: Learning and Using Environment and Agent Models for Advice.
PhD thesis, Computer Science Dept., Carnegie Mellon University, 2005. CMU-CS-05-
100.

[71] Michael T. Rosenstein and Andrew G. Barto. Supervised actor-critic reinforcement
learning. John Wiley & Sons, Inc., New York, NY, USA, 2004.

[72] Paul E. Rybski and Manuela M. Veloso. From cmdash’05 to cmrobobits : Transition-
ing multi-agent research with aibos to the classroom. In Procedings of the AAAI’05
Mobile Robot Competition and Exhibition Workshop, National Conference on Artificial
Intelligence, Pittsburgh, PA, July 2005.

[73] Paul E. Rybski, Kevin Yoon, Jeremy Stolarz, and Manuela M Veloso. Interactive
robot task training through dialog and demonstration. In HRI’07: Proceedings of the
ACM/IEEE international conference on Human-robot interaction, pages 49–56, New
York, NY, USA, 2007. ACM.

[74] Joe Saunders, Chrystopher L. Nehaniv, and Kerstin Dautenhahn. Teaching robots by
moulding behavior and scaffolding the environment. In HRI ’06: Proceeding of the 1st
ACM SIGCHI/SIGART conference on Human-robot interaction, pages 118–125, New
York, NY, USA, 2006. ACM Press.

[75] Stefan Schaal. learning from demonstration. In Advances in neural information pro-
cessing systems, pages 1040–1046. MIT press, 1997.

[76] William D. Smart. Making Reinforcement Learning Work on Real Robots. PhD thesis,
Department of Computer Science, Brown University, Providence, RI, 2002.

[77] William D. Smart and Leslie P. Kaelbling. Effective reinforcement learning for mobile
robots. In IEEE International Conference on Robotics and Automation, 2002.

123

[78] William D. Smart and Leslie Pack Kaelbling. Practical reinforcement learning in contin-
uous spaces. In ICML ’00: Proceedings of the Seventeenth International Conference on
Machine Learning, pages 903–910, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc.

[79] Elisabeth Crawford Sonia Chernova and Manuela Veloso. Acquiring observation models
through reverse plan monitoring. In 12th Portuguese Conference on Artificial Intelli-
gence, December 2005.

[80] Richard S. Sutton and Andew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

[81] Yasutake Takahashi, Koichi Hikita, and Minoru Asada. A hierarchical multi-module
learning system based on self-interpretation of instructions by coach. In RoboCup 2003:
Robot Soccer World Cup VII, pages 576– 583, 2004.

[82] Andrea L. Thomaz and Cynthia Breazeal. Reinforcement learning with human teach-
ers: Evidence of feedback and guidance with implications for learning performance. In
Twenty-First Conference on Artificial Intelligence (AAAI’06, 2006.

[83] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview.
International Journal of Data Warehousing and Mining, 3(3):1–13, 2007.

[84] William T. B. Uther and Manuela M. Veloso. Tree based discretization for continuous
state space reinforcement learning. In Artificial Intelligence/Innovative Applications of
Artificial Intelligence, pages 769–774, 1998.

[85] Michael van Lent and John E. Laird. Learning procedural knowledge through obser-
vation. In K-CAP ’01: Proceedings of the 1st international conference on Knowledge
capture, pages 179–186, New York, NY, USA, 2001. ACM Press.

[86] Harini Veeraraghavan and Manuela Veloso. Teaching sequential tasks with repetition
through demonstration (short paper). In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AMMAS’08), May 2008.

[87] Manuela Veloso, Nicholas Armstrong-Crews, Sonia Chernova, Elisabeth Crawford, Colin
McMillen, Maayan Roth, Douglas Vail, and Stefan Zickler. A team of humanoid game
commentators. International Journal of Humanoid Robotics, 2008.

[88] Manuela Veloso, Scott Lenser, Doug Vail, Paul Rybski, Nick Aiwazian, and Sonia Cher-
nova. Cmrobobits: Creating an intelligent aibo robot. In AAAI Spring Symposium on
Accessible, Hands-on AI and Robotics Education, Palo Alto, CA, 2004.

124

[89] Richard Voyles and Pradeep Khosla. A multi-agent system for programming robotic
agents by human demonstration. In Proceedings of AI and Manufacturing Research
Planning Workshop, August 1998.

[90] Jijun Wang and Michael Lewis. Human control for cooperating robot teams. In HRI ’07:
Proceedings of the ACM/IEEE international conference on Human-robot interaction,
pages 9–16, New York, NY, USA, 2007.

125

