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Abstract

A recurring problem in network traffic analysis is to automatically distinguish legit-
imate traffic from malicious or spurious traffic. This problem arises in several guises
in network security (e.g., spam mitigation, worm detection), and is, at core, a machine
learning or data mining problem. However, traffic analysis for network security has
many fundamental challenges that are not present in typicalmachine learning or data
mining problems, and a blackbox application of classical algorithms may not address
these challenges adequately. For example, many standard machine learning algorithms
may not scale to the volume and diversity of network traffic, or perform well in the
presence of a malicious adversary who aims to evade detection. It is, therefore, nec-
essary to design algorithms that meet these challenges, andprovide formal guarantees
on how well they have been met by the algorithms and the extentto which they can be
met by any algorithm.

In this thesis, we consider four problems in network security with these challenges,
and we use tools from computational learning theory and streaming algorithm design
to address them. In each of these four problems, the difference between the malicious
traffic and normal traffic is characterized by a specific structure of the traffic distri-
butions: temporal structure, structure in content, structure in communication patterns
of hosts and network structure given by host IP addresses. Wepresent both efficient
algorithms as well as fundamental lower bounds for these problems:

• In the stepping-stones problem, we use the temporal structure of the traffic – in
particular, the inter-packet timing delays – to identify pairs of streams that are
likely to be stepping-stones. We provide algorithms with strong upper bounds
on the number of packets they need to observe, to detect attacks with given false
positive and false negative rates. We also present lower bounds showing how
an adversary, with sufficient chaff, could evade any detection mechanism that is
based only on the timing delays between packets.

• When generating signatures for exploits with pattern-extraction techniques, the
content structure of network traffic is used to identify packets that are likely to
be worms. A sequence of prior work has alternately developedpattern-extraction
algorithms for signature-generation, and attacks on thesepattern-extraction algo-
rithms. We present lower bounds showing howanypattern-extraction algorithm
could be misled, in the presence of an adversary with sufficient control over the
malicious data.



• We present efficient streaming algorithms to identifysuperspreaders, which are
sources that contact many distinct destinations in a short time period. The com-
munication structure of most hosts on Internet makes findingsuperspreaders of
interest to security applications, as they are likely indicators of worms, scanning,
or other malicious activity. Our experimental results on real network traces show
that our algorithms are substantially more efficient than earlier approaches.

• Finally, we study the problem of tracking regions of the IP address space that
send malicious traffic. In the first part of our work, we focus on spam traffic, and
explore whether the history and structure of IP addresses could be used to distin-
guish spammers from senders of legitimate mail. In the second part, we design
online algorithms that, with low space requirements, can dynamically track IP
prefixes that originate the malicious traffic, and provide a near-optimal prediction
of IP addresses that send malicious traffic and normal traffic. Our experimental
results demonstrate that our algorithm finds prefixes that are orders of magnitude
more accurate than fixed commonly-used IP prefixes.
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Chapter 1

Introduction

Network traffic analysis is an important part of computer security, yet it grows more challenging
each day: network traffic grows in volume and complexity, hosts on the Internet grow in number
and diversity, and attacks grow in variety and sophistication. Identifying patterns of normal and
anomalous traffic automatically, and using these patterns to monitor unseen traffic is, therefore, of
prime importance.

A major line of research has focused on using machine learning and data mining algorithms
to automatically distinguish normal traffic from attacks and anomalies. Machine learning and data
mining algorithms are attractive in this area as they can automatically extract the distinctive fea-
tures of anomalies and attacks out of vast quantities of data, and therefore, they have the potential
to produce highly accurate detection over the data with little manual effort. A second advantage
these algorithms offer is speed of detection and mitigation– when they can quickly detect dras-
tic changes in traffic patterns and allow the associated traffic to be filtered out, they can enable
attacks and anomalies to be mitigated much faster, with little human intervention. Many systems
have demonstrated the feasibility of using machine learning techniques in a variety of security
applications, e.g., anomaly and intrusion detection [14, 74, 110, 75, 101, 54, 53, 76], traffic pro-
filing [87, 126, 130], worm detection [70, 103, 71, 91, 77], spam filtering [102, 86, 8, 83]. Most
of this research has, however, focused on applying machine learning and data mining algorithms
as blackboxes to network traffic analysis. Because of this, many challenges fundamental to net-
work security problems may go unresolved, as they do not occur in the typical machine learning
problems.

In security problems, one important challenge comes from the presence of an intelligent adver-
sary who aims to evade detection. Unlike the typical machinelearning problem, an adversary is
in control of one type of data (malicious data), and can oftenmanipulate features of the malicious
data over time to evade detection. The algorithm might also be forced to mislearn – i.e., to learn a
function that labels normal traffic incorrectly – and cause so many false positives that it becomes
completely unusable. The history of spam-filtering [83, 39]is a compelling example of how this
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kind of adversarial reaction could affect performance – even as spam filters get more and more so-
phisticated, spammers get more and more adept at desiging spam to evade the existing spam-filters.
Thus, an algorithm’s performance on the evaluated data may not necessarily reflect its future perfor-
mance: the algorithms may learn irrelevant artefacts (or artefacts maliciously added just to mislead
it) as the distinctive features of malicious data, and so maynot detect future attacks. As a result, it
is important to provide algorithms with mathematical guarantees on their performance in adversar-
ial environments. The challenge is to design detection algorithms that are resilient to adversaries,
quantifying the resilience as a function of the adversary’spower, and to develop well-specificed
guarantees on detection that go beyond the standard training and test error analysis.

Further, for sufficiently powerful adversaries, there are fundamental limits to the kind of detec-
tion that might be possible using machine learning approaches. With enough control over the data,
he might not need to know the specific parameters, or the exactalgorithm used, in order to evade
detection or force mislearning: merely the structure of thesolution used – i.e., knowledge of the
features used and the distribution of normal traffic – might be sufficient. In many problems, the ad-
versary does have a significant amount of such power. For example, he can choose how to craft the
content of the malicious packets, and affect all algorithmsthat use content. By choosing when to
attack different hosts, he can make attacks appear dissimilar, and he can evade detection algorithms
that use timing-related features across different hosts. With botnets that are widespread, attackers
can also control where to launch attacks, and affect detection algorithms that use IP addresses of
hosts. To understand the kinds of fundamental limits that are applicable, we aim to quantify them
with lower bounds on the performance of different classes ofalgorithms, and in terms of the kind
of power the adversary has.

The volume and diversity of network traffic poses another challenge – the algorithms in use
need to be extremely scalable, and utilize available resources very efficiently. ISPs routinely collect
tens or hundreds of gigabytes of data everyday, and many standard machine learning algorithms
would not scale, even if learning or analysis can be performed offline. With this kind of data, if an
algorithm’s running time or memory requirements is quadratic in the size of the data, it is almost
certainly impossible to run it over hundreds of millions of packet flows on a daily basis. For this
reason, it is important to quantify the kind of performance guarantees that can be obtained for
offline analysis, when only a small set of features or small subset of the data can be used. It is also
important to design more efficient approximations of these algorithms, that can scale over the data,
perhaps by taking into consideration the particular structure of network traffic in that problem.

Algorithms that need to be operated online, or perhaps deployed at high-speed monitoring
points, pose even more challenges. These algorithms may have to operate at links that see on
order of millions of packets a minute, in order to perform effective real-time attack detection and
mitigation. These algorithms cannot even afford to operateeven in space linear in the data set; they
have to be sub-linear in the size of the data set. The algorithm may observe each packet only once,
and will also need to make very few computational operationsper packet. These constraints imply
that one-pass streaming algorithms are required to addressthese problems, and in addition to their
usual challenges in the streaming model, the algorithms areallowed only a very small amount of
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per-packet processing.

Our work: The approach we take in this area, instead of blackbox application of standard algo-
rithms, is to pose a problem with a set of formal objectives that need to be achieved, and then design
algorithms and analyze how well these objectives have been met by the algorithms. The formal
guarantees are needed to ensure that the challenges of the specific problem have been adequately
met, because, as discussed earlier, it is not sufficient to take learning algorithms’ performance on
an existing data set as an indicator of future performance. In addition, it also allows us to analyze
when fundamental guarantees are achievable for a particular security problem, as a function of the
adversary’s power and the amount of data seen. To develop algorithms in this manner, the concepts
and analytical techniques developed to address different issues (e.g, in machine learning, sample
complexity, representation of hypothesis, tail inequalities) turn out to be more important than the
original algorithms. While the resulting algorithms may not be as general as those in a standard
machine learning or data mining formulation, they may be able to take advantage of the particular
structure of the problem in question, and may therefore allow better scalability and more resilence
to adversaries.

In this thesis, we take this approach to address four problems in network security, and we use
tools from computational learning theory and streaming algorithm design to solve them. In each
of these problems, the difference between the malicious andnormal traffic is characterized by a
specific kind of structure in network traffic: temporal structure, structure in content, structure in
communication patterns of hosts and network structure given by host IP addresses. In each case,
the malicious traffic is generated by an adversary, and the adversary may be able to manipulate the
structure of the malicious traffic to evade detection. However, the adversary may or may not have
any power to manipulate normal traffic. In these problems, weexplore both the algorithmic aspects
as well as the fundamental limits of security analysis. In what follows, we first briefly outline each
of the problems below, and then elaborate our results on eachproblem in the rest of the section.

• The first problem we consider is the detection ofstepping-stoneattacks, i.e. , attacks launched
through a chain of hosts on the Internet used as relay machines. Here, we use the tempo-
ral structure of the traffic – in particular, the inter-packet timing delays – to identify pairs
of streams that are likely to be stepping-stones. We providealgorithms with strong upper
bounds on the number of packets they need to observe, to detect attacks with given false
positive and false negative rates. We also present lower bounds showing how an adversary,
with sufficient chaff, could evade any detection mechanism that is based only on the timing
delays between packets [17].

• In the second problem, we explore how an adversary could evade a class of signature-
generation mechanisms that defend against fast-spreadingworms, specifically, pattern-extraction
techniques for signature-generation. These techniques use structure in the content of network
traffic to identify packets that are likely to be worms, and a sequence of prior work [70, 104,
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71, 91, 77, 97, 92, 61] has alternately developed pattern-extraction algorithms for signature-
generation, and attacks on these pattern-extraction algorithms. We present lower bounds
showing howanypattern-extraction algorithm could be misled, in the presence of an adver-
sary with sufficient control over the malicious data [114].

• In the third problem, we present efficient streaming algorithms to identifysuperspreaders,
which are sources that contact many distinct destinations.Identifying superspreaders is of
great interest to security applications, as they are likelyindicators of worms, scanning activ-
ity and malicious (or perhaps unwanted) activity, because most hosts contact only a small
number of destinations in a short time period. We extend the algorithms to allow for dis-
tributed monitoring, streams with deletion, and to operateunder sliding windows, and our
experimental results on real network traces show that our algorithms are substantially more
efficient than earlier approaches [116].

• In the fourth problem, we explore how to track regions of the IP space that send malicious
traffic. In the first part of our work, we focus on spam mitigation as a concrete case study, and
explore whether the history and structure of IP addresses can be used to distinguish spammers
from senders of legitimate mail [115]. In the second part, wedesign online algorithms that,
with low space requirements, can dynamically track IP prefixes that originate the malicious
traffic, and provide a near-optimal prediction of IP addresses that send malicious traffic and
normal traffic, over adversarially-generated data.

1.1 Stepping-Stone Detection

Intruders on the Internet often prefer to launch network intrusions indirectly, i.e., through a chain of
hosts on the Internet as relay machines using protocols suchas Telnet or SSH. The attacker types
commands on his local machine and then the commands are relayed via the chain of “stepping
stones” until they finally reach the victim. This type of attack is called astepping-stoneattack.
Because the victim sees traffic only from the last hop of the chain, it is difficult for the victim to
identify the attacker, and the volume of the traffic on the Internet makes such attacks extremely
difficult to record or trace back.

We propose and analyze algorithms for stepping-stone detection using ideas from computa-
tional learning theory and the analysis of random walks. Like earlier work, we assume that detec-
tion is done at a monitoring point – we examine the traffic thatgoes in and out of routers, and try
to detect which streams, if any, are part of a stepping-stoneattack. Also like earlier work, we use
timing delays between packets on streams, rather than content or the sizes of the packets, since
the packets may be encrypted. Our results are the first to achieve provable (polynomial) upper
bounds on the number of packets needed to confidently detect and identify encrypted stepping-
stone streams with proven guarantees on the probability of falsely accusing non-attacking pairs. In
addition, our methods and analysis rely on mild assumptions, especially in comparison to previous
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work.

Furthermore, we examine the consequences when the attackerinserts chaff – unnecessary
dummy packets – into the stepping-stone traffic, in order to make the streams look uncorrelated.
We show how our algorithm can still detect stepping-stone attacks with a limited amount of chaff.
We then give lower bounds on the amount of chaff that an attacker would have to send to evade
detection byanyalgorithm that uses only packet timing information.

Our results on the stepping-stone problem are based on a new approach with connections to
sample-complexity bounds in learning theory, and allow us to detect correlation of streams at a
fine-grained level. Our results may also apply to more generalized traffic analysis domains, such
as anonymous communication. This is joint work with Avrim Blum and Dawn Song.

1.2 Limits of Signature-Generation using Pattern-Extraction Tech-
niques

A signatureof an exploit is a function that distinguishes malicious byte strings from non-malicious
ones. Automatic signature generation is necessary becausethere may often be little time between
the discovery of a vulnerability, and exploits developed totarget the vulnerability. One major line
of research effort on automatic signature generation has focused on pattern-extraction techniques
to find signatures for exploits,i.e., by extracting byte patterns that uniquely distinguish exploits
using network traffic statistics [70, 103, 71, 91, 77]. Pattern-extraction techniques are attractive
for signature-generation because signatures can be generated and matched efficiently, and several
systems have demonstrated the existence of the necessary distinguishing byte patterns (invariants)
in the exploit. This research has then led to interest in how pattern-extraction algorithms may be
evaded [97, 92, 61].

We show fundamental limits on the accuracy of pattern-extraction algorithms for signature-
generation in an adversarial setting. We formulate a natural framework that allows a unified analy-
sis of these algorithms, and prove lower bounds on the numberof mistakes any pattern-extraction
learning algorithm must make for an arbitrary exploit, under common assumptions. While previ-
ous work has targeted specific algorithms and systems, our work generalizes these attacks through
theoretical analysis to any algorithm with similar assumptions, not just the techniques developed
so far.

We also analyze when pattern-extraction algorithms may work, by showing conditions under
which these lower bounds are weakened. Our results show thatthere may be many classes of
exploits for which these algorithms do work well, e.g., for exploits where there is a significant gap
between the byte patterns seen in the normal traffic and the invariants of the exploit. Our results also
illustrate the extent to which the difficulty of evasion depends on the complexity of the signature
function learned. Our results are applicable to other kindsof signature-generation algorithms as
well (e.g., COVERS [78]), those that use properties of the exploit that can be manipulated. This is
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joint work with Avrim Blum and Dawn Song.

1.3 Streaming Algorithms for Fast Detection of Superspreaders

We consider the problem of detectingsuperspreaders, which are sources that connect to a large
number ofdistinct destinations. Superspreaders could be responsible for fast worm propagation
– the Slammer worm, for instance, caused some infected hoststo send up to26, 000 scans a sec-
ond [88] – and thus it is important to detect them quickly. Monitoring on high-speed links, for
example, on a large enterprise network or an ISP network, is desirable for real-time attack detection
and mitigation; however, such high-speed network monitoring requires fast streaming algorithms
that use very little memory space.

We propose new streaming algorithms for detecting superspreaders and prove guarantees on
their accuracy and memory requirements. We also show experimental results on real network
traces. Our algorithms are substantially more efficient (both theoretically and experimentally) than
previous approaches. We extend our algorithms to identify superspreaders in a distributed setting,
with sliding windows, and when deletions are allowed in the stream (which lets us identify sources
that make a large number of failed connections to distinct destinations). In addition, one of our
algorithms is also based on a novel two-level sampling scheme which may be of independent
interest.

More generally, our algorithms are applicable to any problem that can be formulated as follows:
given a stream of(x, y) pairs, find all thex’s that are paired with a large number of distincty’s.
We call this theheavy distinct-hittersproblem. There are many network security applications
of this general problem: detecting ports which have high ICMP traffic without storing per-port
information, detecting spammers who send the same emails tomany distinct destinations within a
short period, identifying sources in peer-to-peer networks that communicate with many different
hosts. Our algorithms apply to all of these problems; however, in our experiments, we focus on the
superspreader problem. This is joint work with Dawn Song, Phillip B. Gibbons, and Avrim Blum.

1.4 Tracking Malicious Regions of the IP Space

It is well-known that tracking individual IP addresses, hasa limited scope in reducing malicious
traffic (e.g. blacklisted spamming bots [66, 99, 115]). Withthe growing trend of attackers to use
botnets for their attacks, these results are unsurprising,as individual bots are expendable and the
attacker’s anonymity is preserved. Instead, there has beenrecent interest in correlatingregions of
the IP spacethat originate the malicious traffic. Several studies have demonstrated that significant
amount of spam originates from a relatively small number of/16 or /24 IP prefixes [125, 99, 29].

In the first part of our work, we explore whether the history and structure of IP addresses can
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be used to distinguish spammers from senders of legitimate mail [115], focusing on the IP structure
afforded by using network-aware clusters. In the second part of our work, we study the problem of
finding the clusters that best partition the IP space, in order to allow us to predict the IP addresses
that send malicious traffic and normal traffic.

1.4.1 Exploiting IP-based Network Structure for Spam Mitigation

From the perspective of spam mitigation, the IP address of the sender’s mail server is an at-
tractive discriminatory feature of spammers and legitimate senders: IP address information is
computationally-efficient to extract and store, and cannotbe camouflaged as easily as the email
content. Our work analyzes the extent to which IP address information could be used to enhance
spam mitigation, through measurement analysis and simulations. Our work shows the importance
of using the history of both the legitimate senders and spammers in IP addresses. Our work also
demonstrates that network-aware clusters may be a good way to aggregate the history of spamming
IP addresses.

Through measurement analysis over a 6 month-long corpus of 28 million email messages, we
analyzed how the history and structure of IP addresses couldbe useful for spam mitigation. Our
results showed significant differences in the behaviour of legitimate senders and spamming IPs.
We found that the bulk of the legitimate mail was sent by a small number of IPs that appeared
frequently and sent little spam. However, IPs sending mostly spam did not last long, e.g., spammers
responsible for over 80% of the total spam appeared no more than on 5 distinct days. When
examining network-aware clusters, though, we observed that IP addresses appeared from thesame
spamming clusters over and over again: the cluster sending alot of spam “lives” for a very long
time, even if the spamming IP address was ephemeral.

To see if these differences could be used for prediction, we examined the mail-server overload
problem – when the mail server receives much more mail than itcan process, is there a way for the
mail server to increase the legitimate mail accepted over the default selection? This problem has
been routinely observed at the mail servers of many ISPs, because it is in the interest of the spam-
mer to overload the mail server, if the mail server selects the mail to accept at random. Through
simulation over email logs, we demonstrated that the historical behaviour of IP addresses and clus-
ters can be utilized to increase the legitimate mail accepted by a factor of 3. Thus, even this fixed
set of clusters affords significant discriminatory power, and suggests the importance of finding the
optimal clusters. This is joint work with Subhabrata Sen, Oliver Spatscheck, Patrick Haffner and
Dawn Song.

1.4.2 Dynamically Tracking IP Prefixes Originating Malicious Traffic

Our earlier research (Section 1.4.1) and related concurrent work [125, 99, 29, 85] indicate that
many kinds of malicious traffic, (e.g,. spam, scans) are indeed correlated with relatively small
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regions of the IP space. The kind of correlation observed is unsurprising, as bots originate much
of this malicious traffic, and networks that are easily compromised contain more bots than others.
Prior work has, so far, focused on finding correlations with afixedset of IP clusters: the analysis
typically takes as input a set of IP clusters, and finds clusters among those that originate the most
of the malicious traffic. Instead, we focus on automaticallytracking the best IP clusters that isolate
the malicious traffic.

We design online algorithms to identify the origin of malicious traffic with the best possible IP
clusters, using only limited space. The question that we address is: can we partition the IP space
into clusters that predict the IP addresses that are likely to send malicious traffic? Such clusters may
have many applications: they may help identify future spammers or predict future botnet addresses;
they may be useful for network management in discovering compromised subnets. In addition, the
regions that originate malicious traffic may change over time for many reasons: attackers may
be able to compromise more hosts, some networks or hosts may get patched and no longer send
malicious traffic. Our algorithm also adapts when the clusters originating malicious traffic (and
likewise, benign traffic) change over time.

We evaluate our algorithm on empirically real data of spam and legitimate mail from an enter-
prise network of a large corporation. Our algorithm is highly efficient, and produces predictions
that are orders of magnitude better than fixed sets of IP clusters, such as network-aware clusters
and /24 IP blocks.

This is joint work with Avrim Blum, Subhabrata Sen, Oliver Spatscheck and Dawn Song.

1.5 Structure of this Thesis

The rest of this thesis is organized as follows. In Chapter 2,we present algorithms and lower
bounds for stepping-stones problem. In Chapter 3, we present fundamental limits of analysis in
pattern-extraction algorithms for signature generation.Chapter 4 presents our work on designing
streaming algorithms to find superspreaders. Chapter 5 presents the results of our analysis on using
the history and structure of IP addresses for spam mitigation. In Chapter 6, we present algorithms
that can track dynamically malicious regions of the IP address space. Chapter 7 summarizes and
concludes the thesis.
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Chapter 2

Detection of Stepping-Stone Attacks

2.1 Introduction

Intruders on the Internet often launch network intrusions indirectly, in order to decrease their
chances of being discovered. One of the most common methods used to evade surveillance is
the construction ofstepping stones. In a stepping-stone attack, an attacker uses a sequence of hosts
on the Internet as relay machines and constructs a chain of interactive connections using protocols
such as Telnet or SSH. The attacker types commands on his local machine and then the commands
are relayed via the chain of “stepping stones” until they finally reach the victim. Because the final
victim only sees traffic from the last hop of the chain of the stepping stones, it is difficult for the
victim to learn any information about the true origin of the attack. The chaotic nature and sheer
volume of the traffic on the Internet makes such attacks extremely difficult to record or trace back.

To combat stepping-stone attacks, the approach taken by previous research (e.g., [106, 128, 127,
43]), and the one that we adopt, is to instead ask the question“What can we detect if we monitor
traffic at the routers or gateways?” That is, we examine the traffic that goes in and out of routers, and
try to detect which streams, if any, are part of a stepping-stone attack. This problem is referred to
as thestepping-stone detection problem. A stepping-stone monitoranalyzes correlations between
flows of incoming and outgoing traffic which may suggest the existence of a stepping stone. Like
previous approaches, we consider the detection ofinteractiveattacks: those in which the attacker
sends commands through the chain of hosts to the target, waits for responses, sends new commands,
and so on in an interactive session. Such traffic is characterized by streams of packets, in which
packets sent on the first link appear on the next a short time later, within somemaximum tolerable
delaybound∆. The detection of non-interactive connections (i.e., those without a maximum delay
bound∆) is much harder, as there is no bounded time frame within which packets on different
streams need to compared. Like previous approaches, we assume traffic is encrypted, and thus
the detection mechanisms cannot rely on analyzing the content of the streams. We will call a pair
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of streams anattacking pair if it is a stepping-stone pair, and we will call a pair of streams a
non-attacking pairif it is not a stepping-stone pair.

Researchers have proposed many approaches for detecting stepping stones in encrypted traffic.
(e.g., [106, 128, 127]. See more detailed related work in Section 2.2.) However, most previous
approaches in this area are based on ad-hoc heuristics and donot give any rigorous analysis that
would provide provable guarantees of the false positive rate or the false negative rate [128, 127].
Donoho et al. [43] proposed a method based on wavelet transforms to detect correlations of streams,
and it was the first work that performed rigorous analysis of their method. However, they do not
give a bound on the number of packets that need to be observed in order to detect attacks with a
given level of confidence. Moreover, their analysis requires the assumption that the packets on the
attacker’s stream arrive according to a Poisson or a Pareto distribution — in reality, the attacker’s
stream may be arbitrary. Wang and Reeves [121] proposed a watermark-based scheme which can
detect correlation between streams of encrypted packets. However, they assume that the attacker’s
timing perturbation of packets is independent and identically distributed (iid), and their method
breaks when the attacker perturbs traffic in other ways.

Thus, despite the volume of previous work, an important question still remains open: how can
we design an efficient algorithm to detect stepping-stone attacks with (a) provable bounds on the
number of packets that need to be monitored, (b) a provable guarantee on the false positive and
false negative rate, and (c) few assumptions on the distributions of attacker and normal traffic?

Our work sets off to answer this question. In particular, in this thesis, we use ideas from
Computational Learning Theory to produce a strong set of guarantees for this problem:

Objectives: We explicitly set our objective to be to distinguish attacking pairs from non-attacking
pairs, given our fairly mild assumptions about each. In contrast, the work of Donoho et
al. [43] detects only if a pair of streams is correlated. Thisis equivalent to our goal if one
assumes non-attacking pairs are perfectly uncorrelated, but that is not necessarily realistic
and our assumptions about non-attacking pairs will allow for substantial coarse-grained cor-
relation among them. For example, if co-workers work and take breaks together, their typing
behavior may be correlated at a coarse-grained level even though they are not part of any
attack. Our models allow for this type of behavior on the partof “normal” streams, and yet
we will still be able to distinguish them from true stepping-stone attacks.

Fewer assumptions:We make very mild assumptions, especially in comparison with previous
work. For example, unlike the work by Donoho et al., our algorithm and analysis do not rely
on the Poisson or Pareto distribution assumption on the behavior of the attackingstreams.
By modeling a non-attack stream as a sequence of Poisson processes with varying rates and
over varying time periods, our analysis results can apply toalmost any distribution or pattern
of usage of non-attack and attack streams. This model allowsfor substantial high-level
correlation among non-attackers.

Provable bounds: We give the first algorithm for detecting stepping-stone attacks that provides (a)
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provable bounds on the number of packets needed to confidently detect and identify stepping-
stone streams, and (b) provable guarantees on false positive rates. Our bounds on the number
of packets needed for confident detection are only quadraticin terms of certain natural pa-
rameters of the problem, which indicates the efficiency of our algorithm.

Stronger results with chaff: We also propose detection algorithms and give a hardness result
when the attacker inserts “chaff” traffic in the stepping-stone streams. Our analysis shows
that our detection algorithm is effective when the attackerinserts chaff that is less than a cer-
tain threshold fraction. Our hardness results indicate that when the attacker can insert chaff
that is more than a certain threshold fraction, the attackercan make the attacking streams
mimic two independent random processes, and thus completely evade any detection algo-
rithm. Note that our hardness analysis will apply even when the monitor can actively ma-
nipulate the timing delay. Our results on the chaff case are also a significant advance from
previous work. The work of Donoho et al. [43] assumes that thechaff traffic inserted by the
attacker is a Poisson process independent from the non-chaff traffic in the attacking stream,
while our results make no assumption on the distribution of the chaff traffic.

The type of guarantee we will be able to achieve is that given aconfidence parameterδ, our
procedure will certify a pair as attacking or non-attackingwith error probability at mostδ, after
observing a number of packets that is only quadratic in certain natural parameters of the problem
and logarithmic in1/δ. Our approach is based on a connection to sample-complexitybounds in
Computational Learning Theory. In that setting, one has a set or sequence of hypothesesh1, h2, . . .,
and the goal is to identify which if any of them has a low true error rate from observing performance
on random examples [68, 113, 18]. The type of question addressed in that literature is how much
data does one need to observe in order to ensure at most some given δ probability of failure. In
our setting, to some extent packets play the role of examplesand pairs of streams play the role of
hypotheses, though the analogy is not perfect because it is the relationshipbetweenpackets that
provides the information we use for stepping-stone detection.

The high-level idea of our approach is that if we consider twopacket streams and look at the
differencebetween the number of packets sent on them, then this quantity is performing some type
of random walk on the one-dimensional line. If these streamsare part of a stepping-stone attack,
then by the maximum-tolerable delay assumption, this quantity will never deviate too far from the
origin. However, if the two streams arenotpart of an attack, then even if the streams are somewhat
correlated, say because they are Poisson with rates that vary in tandem, this walkwill begin to
experience substantial deviation from the origin. There are several subtle issues: for example, our
algorithm may not know in advance what an attacker’s tolerable delay is. In addition, new streams
may be arriving over time, so if we want to be careful not to have false-positives, we need to adjust
our confidence threshold as new streams enter the system.

Outline. In the rest of the chapter, we first discuss related work in Section 2.2, then give the
problem definition in Section 2.3. We then describe the stepping-stone detection algorithm and

11



confidence bounds analysis in Section 2.4. We consider the consequences of adding chaff in Sec-
tion 2.5. We finally conclude in Section 2.6.

2.2 Related Work

The initial line of work in identifying interactive stepping stones focused oncontent-based tech-
niques. The interactive stepping stone problem was first formulated and studied by Staniford and
Heberlein [106]. They proposed a content-based algorithm that created thumbprints of streams and
compared them, looking for extremely good matches. Anothercontent-based approach, Sleepy
Watermark Tracing, was proposed by Wang et al. [123]. These content-based approaches require
that the content of the streams under consideration do not change significantly between the streams.
Thus, for example, they do not apply to encrypted traffic suchas SSH sessions.

Another line of work studies correlation of streams based onconnection timings. Zhang and
Paxson [128] proposed an algorithm for encrypted connection chains based on periods of activity of
the connections. They observed that in stepping stones, theON-periods and OFF-periods will coin-
cide. They use this observation to detect stepping stones, by examining the number of consecutive
OFF-periods and the distance of the OFF-periods. Yoda and Etoh [127] proposed a deviation-based
algorithm to trace the connection chains of intruders. Theycomputed deviations between a known
intruder stream and all other concurrent streams on the Internet, compared the packets of streams
which have small deviations from the intruder’s stream, andutilize these analyses to identify a
set of streams that match the intruder stream. Wang et al. [122] proposed another timing-based
approach that uses the arrival and departure times of packets to correlate connections in real-time.
They showed that the inter-packet timing characteristics are preserved across many router hops,
and often uniquely identify the correlations between connections. These algorithms based on con-
nection timings, however, are all vulnerable to active timing pertubation by the attacker – they will
not be able to detect stepping stones when the attacker actively perturbs the timings of the packets
on the stepping-stone streams.

We are aware of only two papers [43, 121] that study the problem of detecting stepping-stone
attacks on encrypted streams with the assumption of a bound on the maximum delay tolerated by
the attacker. In Section 2.1, we discuss the work of Donoho etal. [43] in relation to our work. We
note that their work does not give any bounds on the number of packets needed to detect correlation
between streams, or a discussion of the false positives thatmay be identified by their method.
Wang and Reeves [121] proposed a watermark-based scheme, which can detect correlation between
streams of encrypted packets. However, they assume that theattacker’s timing perturbation of
packets is independent and identically distributed (iid). Our algorithms do not require such an
assumption. Further, they need to actively manipulate the inter-packet delays in order to embed
and detect their watermarks. In contrast, our algorithms require only passive monitoring of the
arrival times of the packets.
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Wang [120] examined the problem of determining the serial order of correlated connections in
order to determine the intrusion path, when given the complete set of correlated connections.

2.3 Problem Definition

Our problem definition essentially mirrors that of Donoho etal. [43]. A streamis a sequence of
packets that belong to the same connection. We assume that the attacker has a maximum delay
tolerance∆, which we may or may not know. That is, for every packet sent inthe first stream,
there must be a corresponding packet in the second stream between 0 and∆ time steps later. The
notion of maximum delay bound was first proposed by Donoho et al. [43]. We also assume that
there is a maximum number of packets that the attacker can send in a particular time intervalt,
which we callpt. We note thatp∆ is unlikely to be very large, since we are considering interactive
stepping-stone attacks. As in prior work, we assume that a packet on either stream maps to only
one packet on the other stream (i.e., packets are not combined or broken down in any manner).

Similar to previous work, we do not pay attention to the content or the sizes of the packets,
since the packets may be encrypted. We assume that the real-time traffic delay between packets
is very small compared to∆, and ignore it everywhere. We have a stepping-stone monitorthat
observes the streams going through the monitor, and keeps track of the total number of packets on
each stream at each time of observation. We denote the total number of packets in streami by time
t asNi(t), or simplyNi if t is the current time step.

By our assumptions, for a pair of stepping-stone streamsS1, S2, the following two conditions
hold for the true packets of the streams, i.e., not includingchaff packets:

1. N1(t) ≥ N2(t).
Every packet in stream 2 comes from stream 1.

2. N1(t) ≤ N2(t + ∆).
All packets in stream 1 must go into stream 2 — i.e., no packetson stream 1 are lost enroute
to stream 2, and all the packets on stream 1 arrive on stream 2 within time∆.

If the attacker sends no chaff on his streams, then all the packets on a stepping stone pair will obey
the above two conditions.

We will find it useful to think about the number of packets in a stream in terms of the total
number of the packets observed in the union of two streams: inother words, viewing each arrival
of a packet in the union of the two streams as a “time step”. We will useN i(w) for the number of
packets in streami, when there are a total ofw packets in the union of the two streams.

In Section 2.4.1, we assume that a normal streami is generated by a Poisson process with a
constant rateλi. In Section 2.4.2, we generalize this, allowing for substantial high-level correlation
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Table 2.1: Summary of notation
∆ maximum tolerable delay bound
p∆ maximum number of packets that may be sent in time interval∆.
δ false positive probability
Si streami
M number of packets that we need to observe on the union of the two streams

in the detection algorithms
Ni(t) number of packets sent on streami in time intervalt.
N i(w) number of packets sent on streami when a total ofw packets is present on

the union of the pair of stream under consideration.

between non-attacking streams. Specifically, we model a non-attacking stream as a “Poisson pro-
cess with a knob”, where the knob controls the rate of the process and can be adjusted arbitrarily by
the user with time. That is, the stream is really generated bya sequence of Poisson processes with
varying rates for varying lengths of time. Even if two non-attacking streams correlate by adjusting
their knobs together — e.g., both having a high rate at certain times and low rates at others — our
procedure will nonetheless (with high probability) not be fooled into falsely tagging them as an
attacking pair.

The guarantees produced by our algorithm will be described by two quantities:

• a monitoring timeM measured in terms of total number of packets that need to be observed
on both streams, before deciding whether the pair of streamsis an attack pair, and

• a false-positive probabilityδ, given as input to the algorithm (also called the confidence
level), that describes our willingness to falsely accuse a non-attacking pair.

The guarantees we will achieve are that (a) any stepping-stone pair will be discovered afterM
packets, and (b) any normal pair has at most aδ chance of being falsely accused. Our algorithm will
never fail to flag a true attacking pair, so long as at leastM packets are observed. For instance, our
first result, Theorem 2.1, is that if non-attacking streams are Poisson, thenM = 2(p∆ + 1)2 log 1

δ
packets are sufficient to detect a stepping-stone attack with false-positive probabilityδ. One can
also adjust the confidence level with the number of pairs of streams being monitored, to ensure at
most aδ chance ofeverfalsely accusing a normal pair.

All logarithms in this chapter are base 2. Table 2.1 summarizes the notation we use in this
chapter.
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2.4 Main Results: Detection Algorithms and Confidence Bounds

In this section, we give an algorithm that will detect stepping stones with a low probability of false
positives. We only consider streams that have no chaff, which means that every packet on the
second stream comes from the first stream, and packets can only be delayed, not dropped. We will
discuss the consequences of adding chaff in Section 2.5.

Our guarantees give a bound on the number of packets that needto be observed to confidently
identify an attacker. These bounds have a quadratic dependence on the maximum tolerable delay
∆ (or more precisely, on the number of packetsp∆ an attacker can send in that time frame), and
a logarithmic dependence on1/δ, whereδ is the desired false-positive probability. The quadratic
dependence on maximum tolerable delay comes essentially from the fact that on average it takes
Θ(p2) steps for a random walk to reach distancep from the origin. Our basic bounds assume the
value ofp∆ is given to the algorithm (Theorems 2.1 and 2.2); we then showhow to remove this
assumption, increasing the monitoring time by only anO(log log p∆) factor (Theorem 2.3).

We begin in Section 2.4.1 by considering a simple model of normal streams — we assume
that any normal streamSi can be modeled as a Poisson process, with a fixed Poisson rateλi. We
then generalize this model in Section 2.4.2. We make no additional assumptions on the attacking
streams.

2.4.1 A Simple Poisson Model

We first describe our detection algorithm and analysis for the case thatp∆ is known, and then later
show how this assumption can be removed.

The Detection Algorithm

Our algorithm is simple and efficient: for a given pair of streams, the monitor watches the packet
arrivals, and counts packets on both streams until the totalnumber of packets (on both streams)
reaches a certain threshold2(p∆ + 1)2.1 If in this time, the difference in the number of packets
of the two streams ever exceeds the packet boundp∆, we know the streams are normal; otherwise,
the monitor restarts. If the difference stays bounded for a sufficiently long time (log 1

δ such trials
of 2(p∆ + 1)2 packets), the monitor declares that the pair of streams is a stepping stone. The
algorithm is shown in Fig. 2.1.

We note that the algorithm is memory-efficient — we only need to keep track of the number of
packets seen on each stream. We also note that the algorithm does not need to know or compute
the Poisson rates; it simply needs to observe the packets coming in on the streams.

1The intuition for the parameters as well as the proof of correctness is in the analysis section.
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DETECT-ATTACKS (δ, p∆)

Setm = log 1
δ
, n = 2(p∆ + 1)2.

Form iterations
Forw = 1 to n packets observed onS1 ∪ S2.

Computed(w) = N1(w) − N2(w)
If |d(w)| > p∆ return NORMAL.

ResetN1 = N2 = 0.
return ATTACK.

Figure 2.1: Algorithm for stepping-stone detection (without chaff) with a simple Poisson model

Analysis

We first note that, by design,our algorithm will always identify a stepping-stone pair, providing
they sendM packets. We then show that the false positive rate ofδ is also achieved by the algorithm.
Under the assumption that normal streams may be modeled as Poisson processes, we show three
analytical results in the following analysis:

1. Whenp∆ is known, the monitor needs to observe no more thanM = 2(p∆ + 1)2 log 1
δ

packets on the union of the two streams under consideration,to guarantee a false positive
rate ofδ for any given pair of streams (Theorem 2.1).

2. Suppose instead that we wish to achieve aδ probability of false positive overall pairs of
streams that we examine. For instance, we may wish to achievea false positive rate ofδ over
an entire day of observations, rather than over a particularnumber of streams. Whenp∆ is
known, the monitor needs to observe no more thanM = 2(p∆ + 1)2 log i(i+1)

δ packets on
the union of theith pair of streams, to guarantee aδ chance of false positive among all pairs
of streams it examines (Theorem 2.2).

3. Whenp∆ is unknown, we can achieve the above guarantees with only anO(log log p∆)
factor increase in the number of additional packets that need to observe (Theorem 2.3).

Below, we first give some intuition and then the detailed theorem statements and analysis.

Intuition We first give some intuition behind the analysis. Consider two normal streams as Pois-
son processes with ratesλ1 andλ2. We can treat the difference between two Poisson processes as
a random walk, as shown in Fig. 2.2. Consider a sequence of packets generated in the union of
the two streams. The probability that a particular packet isgenerated by the first stream isλ1

λ1+λ2

(which we denoteµ1), and probability that it is generated by the second stream is λ2
λ1+λ2

(which we
call µ2). We can define a random variableZ to be the difference between the number of packets
generated by the streams. Every time a packet is sent on either S1 or S2, Z increases by1 with
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Figure 2.2: (a) Packets arriving in the two streams. (b) Viewing the arrival of packets as a random
walk with ratesλ1 andλ2.

probability µ1, and decreases by1 with probability µ2. It is therefore a one-dimensional random
walk. Assuming that our observation of the random walk begins at some unknown positionx, we
care about the expected time forZ to exit the bounded region[x − p∆, x + p∆]. Without loss of
generality, we may takex = 0. Then, if |Z| > p∆, the delay bound has to be violated for some
packet.

Theorem 2.1. Under the assumption that normal streams behave as Poisson processes, the algo-
rithm DETECT-ATTACKS will correctly detect stepping-stone attacks with a false positive probabil-
ity at mostδ for any given pair of streams, after monitoring2(p∆ + 1)2 log 1

δ packets on the union
of the two streams.

Proof: Let Z = N1(w) − N2(w). We first bound the probability thatZ of n packets. LetT be
the time taken for a one-dimensional random walk starting the origin to reachp∆ + 1 or −p∆ − 1
for the first time. Then, as in Feller[48], for a fair random walk,

E[T ] = (p∆ + 1)2.

For a biased random walk starting at the origin,E[T ] is always strictly less than(p∆ + 1)2.

By Markov’s inequality,

Pr[T ≥ 2(p∆ + 1)2] ≤ 1

2
.

Thus, the probability thatZ remains in the interval[−p∆, p∆] throughout the arrival ofn packets
on the union of the streams is bounded by1

2 .

To ensure that this is bounded by the given confidence level, we takem such observations ofn
time steps, so that

(

1
2

)m ≤ δ, or

m ≥ log
1

δ
.

We need to observem sets ofn packets; therefore, we needlog 1
δ intervals.

We have just shown in Theorem 2.1 that our algorithm in Fig. 2.1 will identify any given
stepping-stone pair correctly, and will have a probabilityδ of a false positive for any given non-
attacking pair of streams. We can also modify our algorithm so that it only has a probabilityδ of a
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false positive amongall the pairs of streams that we observe. That is, givenδ, we distribute it over
all the pairs of streams that we can observe, by allowing onlyδi(i+1) probability of false positive for

the ith pair of streams, and using the fact that
∑∞

i=1
δ

i(i+1) = δ. To see why this might be useful,
supposeδ = 0.001. Then, we would expect to falsely accuse one pair out of every1000 pairs of
(normal) streams. It could be more useful at times to be able to give a false positive rate of0.001
over an entire month of observations, rather than give that rate over a particular number of streams.

Theorem 2.2. Under the assumption that normal streams behave as Poisson processes, the algo-
rithm DETECT-ATTACKS will have a probability at mostδ of a false positive among all the pairs of
streams it examines if, for theith pair of streams, it uses a monitoring time of2(p∆ + 1)2 log i(i+1)

δ
packets.

Proof: We need to split our allowed false positivesδ among all the pairs we will observe; however,
since we do not know the number of pairs in advance, we do not split the δ evenly.

Instead, we allow theith pair of streams a false positive probability ofδi(i+1) , and then use the
previous algorithm with the updated false positive level. The result then follows from Theorem 2.1
and the fact that

∑∞
i=1

δ
i(i+1) = δ.

The arguments so far assume that the algorithmknowsthe quantityp∆. We now remove this
assumption by using a “guess and double” strategy. Letpj = 2j − 1. When a pair of streams is
“cleared” as not being a stepping-stone attack with respectto pj, we then consider it with respect
to pj+1. By setting the error parameters appropriately, we can maintain the guarantee that any
normal pair is falsely accused with probability at mostδ, while guaranteeing that any attacking
pair will be discovered with a monitoring time that depends only on theactualvalue ofp∆. Thus,
we can still obtain strong guarantees. In addition, even though this algorithm “never” finishes
monitoring a normal pair of streams, the time between steps at which the monitor compares the
differenceN1 − N2 increases over the sequence. This means that for the streamsthat have been
under consideration for a long period of time, the monitor tests differences less often, and thus does
not need to do substantial work, so long as the stream counters are running continuously.

Theorem 2.3. Assume that normal streams behave as Poisson processes. Then, even ifp∆ is
unknown, we can use algorithmDETECT-ATTACKS as a subroutine and have a false positive prob-
ability at mostδ, while correctly catching stepping-stone attacks withinO(p2

∆(log log p∆ +log 1
δ ))

packets, wherep∆ is theactual maximum value ofN1(t) − N2(t) for the attacker.

Proof: As discussed above, we run DETECT-ATTACKS using a sequence of “p∆” valuespj, where
pj = 2j − 1, incrementingj when the algorithm returns NORMAL. As in Theorem 2.2, we use

δ
j(j+1) as our false-positive probability on iterationj, which guarantees having at most aδ false-
positive probability overall. We now need to calculate the monitoring time. For a given attacking
pair, the number of packets needed to catch it is at most:

⌈log p∆⌉
∑

j=1

2 · 22j log
j(j + 1)

δ
.
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Since the entries in the summation are more than doubling with j, the sum is at most twice the

value of its largest term, and so the total monitoring time isO(p2
∆(log log p∆ + log

1

δ
)).

2.4.2 Generalizing the Poisson Model

We now relax the assumption that a normal process is Poisson with a fixed rateλ. Instead, we
assume that a normal process can be modeled as a sequence of Poisson processes, with varying
rates, and over varying time periods. From the point of view of our algorithm, one can view this as
a Poisson process with a user-adjustable “knob” that is being controlled by an adversary to fool us
into making a false accusation.

Note that this is a general model; we could use it to coarsely approximate almost any distribu-
tion, or pattern of usage. For example, at a high level, this model could approximately simulate
Pareto distributions which are thought to be a good model forusers’ typing patterns [96], by using a
Pareto distribution to choose our Poisson rates for varyingtime periods, which could be arbitrarily
small. Correlated users can be modeled as having the same sequence of Poisson rates and time
intervals: for example, co-workers may work together and take short or long breaks together.

Formally, for a given pair of streams, we will assume the firststream is a sequence given by
(λ11, t11), (λ12, t12), . . ., and the second stream by(λ21, t21), (λ22, t22), . . .. Let Ni(t) denote the
number of packets sent in streami by timet. Then, the key to the argument is that over any given
time intervalT , the number of packets sent by streami is distributed according to a Poisson process
with a single ratêλi,T , which is the weighted mean of the rates of all the Poisson processes during
that time. That is, if time intervalT contains a sequence of time intervalsjstart, . . . , jend, then
λ̂i,T = 1

|T |
∑jend

j=jstart
λijtij (breaking intervals if necessary to match the boundaries ofT ).

Theorem 2.4. Assuming that normal streams behave as sequences of Poissonprocesses, the algo-
rithm DETECT-ATTACKS will have a false positive rate of at mostδ, if it observes at least72 log 1

δ
intervals ofn packets each, wheren = 8(p∆ + 1)2.

Proof: Let S(t) be the number of packets on the union of the streams at timet. Let D(t) be the
difference in the number of packets at timet, i.e. N1(t) − N2(t). Let n̂ = 2(p∆ + 1)2. Let Et be
the event that at some timet′ ≤ t the quantity|D(t′)| exceededp∆. We defineT to be the time
whenPr[S(T ) ≥ n̂] = 1

2 . Then, from the proof of Theorem 2.1, for fixedT , n̂ = 2(p∆ + 1)2, we
know

Pr[¬ET |S(T ) ≥ n̂] ≤ 1

2
.

Therefore,Pr[ET ] ≥ Pr[ET |S(T ) ≥ n̂]Pr[S(T ) ≥ n̂]

≥ 1

2
(1 − 1

2
) =

1

4
.

By definition, for allt > T , Pr[Et] ≥ Pr[ET ], which, by the above, is at least1
4 .
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However, our algorithm does not knowT ; it can only observe the number of packets that appear
on the streams. We therefore have to estimate the probability that the timeT has passed when we
have observed, say,kn̂ packets on the union of the streams, for some suitablek. In other words, if
we have observedkn̂ packets at timet, we need to estimate the probability thatt ≥ T , in addition
to the eventET that we want.

We definetn to be the timet when the number of packets on the union of the streams isn (i.e.,
S(tn) = n).

Note that, by definition ofT , we havePr[S(T ) ≥ kn̂] ≤ 1
2k . So,Pr[tkn̂ < T ] ≤ 1

2k . Setting
k = 4, Pr[t4n̂ < T ] ≤ 1

16 . Therefore,

Pr[t4n̂ ≥ T ] ≤ 15

16
.

Therefore,

Pr[ET ∧ (t4n̂ ≥ T )] = 1 − Pr[¬ET ∨ (t4n̂ ≥ T )] ≥ 1 − (
3

4
+

1

16
) =

3

16
.

Note thatPr[ET ∧ (t4n̂ ≥ T )] ≤ Pr[Et4n̂
], therefore,

Pr[Et4n̂
] ≥ 3

16
.

Thus,Pr[¬Et4n̂
] ≤ 13

16 .

To bound this quantity by the given confidence level, we need to takem such observations of
4n̂ packets in the union of the streams, so that:

(

1 − 3

16

)m

≤ δ.

m ≥ log 1
δ

log
(

16
13

) .

Since 1
log( 16

13)
< 7

2 , we setm ≥ 7
2 log 1

δ .

Likewise, we have the analogues of Theorem 2.2 and Theorem 2.3 for the general model. We
omit their proofs, since they are very similar to the proofs of Theorem 2.2 and Theorem 2.3.

Theorem 2.5. Assuming that normal streams behave as sequences of Poissonprocesses, the al-
gorithm DETECT-ATTACKS will have a probability at mostδ of a false positive over all pairs of
streams it examines, if, for theith pair of streams, it observes72 log i(i+1)

δ intervals ofn packets
each, wheren = 8(p∆ + 1)2.
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Theorem 2.6. Assuming that normal streams behave as sequences of Poissonprocesses, then ifp∆

is unknown, we can use repeated-doubling and incur an extraO(log log p∆) factor in the number
of packets over that in Theorem 2.5, to achieve false-positive probabilityδ.

2.5 Chaff: Detection and Hardness Result

All the results in Section 2.4 rely on the attacker streams obeying two assumptions in Section 2.3
— in a pair of attacker streams, every packet sent on the first stream arrives on the second stream,
and any packet that arrives on the second stream arrives fromthe first stream. In this section, we
examine the consequences of relaxing these assumptions.

Notice that only the packets that must reach the target need to obey these two assumptions.
However, the attacker could insert some superfluous packetsinto either of the two streams, that do
not need to reach the target, and therefore, do not have to obey the assumptions. Such extraneous
packets are calledchaff. By introducing chaff into the streams, the attacker would try to ensure
that the number of packets observed in his two streams appearless correlated, and thus reduce the
chances of being detected.

Donoho et al. [43] also examine the consequences of the addition of chaff to attack streams.
They show that under the assumption that the chaff in the streams is generated by a Poisson process
that is independent of the non-chaff packets in the stepping-stone streams, it is possible to detect
correlation between stepping-stone pairs, as long as the streams have sufficient packets. However,
an attacker may not wish to generate chaff as a Poisson process. In this section, we assume that a
clever attacker will want to optimize his use of chaff, instead of adding it randomly to the streams.
In Section 2.5.1 we explain how to detect stepping stones using our algorithm when the attacker
uses a limited amount of chaff (Theorem 2.7). In Section 2.5.2 we describe how an attacker could
use chaff to make a pair of stepping-stone streams mimic two independent Poisson processes, and
thus ensure that the pair of streams are not correlated. We then give upper bounds on the minimum
chaff the attacker needs to do this (Theorems 2.8 and 2.9).

2.5.1 Algorithm for Detection with Chaff

Recall that our algorithm DETECT-ATTACKS is based on the observation that, with high probability,
two independent Poisson processes will differ by any fixed distance given sufficient time. An
attacker can, therefore, evade detection with our algorithm by introducing a sufficient difference
between the streams all the time. Specifically, our algorithm checks if the two streams have a
difference that is greater thanp∆ packets every time either stream gets a packet, until there are
2(p∆ + 1)2 packets in the union of the streams. To evade our algorithm asit stands (in Fig. 2.1),
all that the attacker might need to do is to send one packet of chaff on the faster stream.
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DETECT-ATTACKS-CHAFF (δ, p∆)

Setm = log 1
δ
, n = 8(p∆ + 1)2.

Form iterations
Forw = 1 to n packets observed onS1 ∪ S2.

Computed(w) = N1(w) − N2(w)
If |d(w)| > 2p∆ return NORMAL.

ResetN1 = N2 = 0. NORMAL.
return ATTACK.

Figure 2.3: Algorithm for stepping-stone detection with fewer thanp∆ packets of chaff every
8(p∆ + 1)2 packets.

Algorithm

We now modify DETECT-ATTACKS slightly, to detect stepping-stone attacks under a limitedamount
of chaff. Instead of waiting for the difference to exceedp∆ packets between the two streams, we
could wait for the difference to exceed2p∆ packets. The independent Poisson processes would
eventually get a difference of2p∆ + 1, but now, the attacker would need to send more thanp∆

packets in chaff in order to evade detection. He could get away with exactlyp∆ + 1 packets if he
sends all of the chaff packets in the same time interval, on the same stream. However, as long as
he sends fewer thanp∆ packets of chaff in every time interval, the monitor will flaghis streams as
stepping stones.2 The complete algorithm is shown in Fig. 2.3.

Analysis

We now show that DETECT-ATTACKS-CHAFF will correctly identify stepping stones with chaff, as
long as the attacker sends no more thanp∆ packets of chaff for every8(p∆ + 1)2 packets. Further,
any given non-attacking pair of streams will have no more than aδ chance of being called a stepping
stone.

Theorem 2.7. Under the assumption that normal streams behave as Poisson processes, and the
attacker sends fewer thanp∆ packets of chaff every8(p∆ + 1)2 packets, the algorithmDETECT-
ATTACKS-CHAFF will have a false positive rate of utmostδ, if we observelog 1

δ intervals of
8(p∆ + 1)2 packets each.

Proof: The analysis is similar to that of Theorem 2.1.

Let Z = N1(w) − N2(w), and letT be the time taken for a one-dimensional random walk

2We choose to wait for a difference of2p∆ packets here, because it is the integral multiple ofp∆ that maximizes
the rate at which the attacker may send chaff. with the non-integral multiple ofp∆ that maximizes the rate at which the
attacker must send chaff, but we omit the details here.
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starting the origin to reach2p∆ + 1 or−2p∆ − 1 for the first time. Again, as in Feller[48],

E[T ] ≤ (2p∆ + 1)2 ≤ 4(p∆ + 1)2.

By Markov’s inequality,

Pr[T ≥ 8(p∆ + 1)2] ≤ 1

2
.

Thus, the probability thatZ remains in the interval[−2p∆, 2p∆] throughout the arrival ofn packets
on the union of the streams is bounded by1

2 .

On the other hand, for an attack pair with no chaff, we know that N1(w)−N 2(w) ≤ p∆. When
the attacker can add less thanp∆ packets of chaff in8(p∆+1)2 packets,N1(w+n)−N2(w+n) <
2p∆, and thus, difference in packet count an attack pair cannot exceed2p∆ in n packets.

Note that Theorem 2.7 is the analogue of Theorem 2.1 when the chaff rate is bounded as
described above. The analogues to the other theorems in Section 2.4 can be obtained in a similar
manner.

Obviously, the attacker can evade detection by sending morethanp∆ packets of chaff for every
8(p∆ + 1)2 packets. Further, if we count in pre-specified intervals, the attacker would only need
to sendp∆ packets of chaff inoneof the intervals, since the algorithm only checks if the streams
differ by the specified bound inanyof the intervals.

We could address the second problem by sampling random intervals, and checking if the dif-
ferenceZ in those intervals is at least2p∆. We could also modify our algorithm to check if the
differenceZ stays outside2p∆ for at least a fourth of the intervals, and analyze the resulting prob-
abilities with Chernoff bounds. To defeat this, the attacker would have to send at least 1

8(p∆+1)

fraction the total packets on the union (p∆ + 1 packets of chaff every8(p∆ + 1)2 packets) in an
independent interval, so that every (sufficiently long) interval is unsuspicious.

However, if the attacker just chooses to send a lot of chaff packets on his stepping-stone streams,
then he will be able to evade the algorithm we proposed. This type of evasion is, to some extent,
inherent in the problem, not just the detection strategy we propose. In the next section, we show
how an attacker could successfully mimic two independent streams, so that no algorithm could
detect the attacker. We also give upper bounds on the minimumchaff the attacker needs to add to
his streams, so that his attack streams are completely masked as independent processes.

2.5.2 Hardness Result for Detection with Chaff

If an attacker is able to send alot of chaff, he can in effect ride his communication on the backsof
two truly independent Poisson processes. In this section, we analyze how much chaff this would
require. This gives limitations on what we could hope to detect if we do not make additional
assumptions on the attacker.
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Specifically, in order to simulate two independent Poisson processes exactly, the attacker could
first generate two independent Poisson processes, and then send packets on his streams to match
them. He needs to send chaff packets on one of the streams, when the constraints on the other
stream do not allow the non-chaff packet to be forwarded to/from it. In this way, he can mimic the
processes exactly, and pair of streams will not appear to be astepping-stone pair, to any monitor
watching it. Note that even if the inter-packet delays were actively manipulated by the monitor, the
attacker can still mimic two independent Poisson processes, and therefore, by our definition, will
be able to evade detection.

Let λ1 be the rate of the first Poisson process, andλ2 be the rate of the second Poisson process.
In our analysis, we assumeλ1 = λ2 = λ ≫ 1

∆ . If λ1 ≫ λ2, or λ1 ≪ λ2 the attacker will need
to send many more chaff packets on the faster stream, soλ1 = λ2 will be the best choice for the
attacker.

We model the Poisson processes as binomials. We choose to approximate the two independent
Poisson processes of rateλ as two independent binomial processes, for cleaner analysis. To gen-
erate these processes, we assume that the attacker flips two coins, each withλ bias (of getting a
head), at each time step.3 He has to send a packet (either a real packet or chaff) on a stream when
its corresponding coin turns up heads, and should send nothing when the coin turn up as tails. That
way, he ensures that the two streams model two independent binomial processes exactly. Since the
attacker generates the independent binomial processes, hecould flip coins∆ or more time steps
ahead, and then decide whether a non-chaff packet can be sentacross for a particular coin flip that
obeys all constraints, or if it has to be chaff.

We now show how the attacker could simulate two independently-generated binomial processes
with minimum chaff. First, the attacker generates two sequences of independent coin flips. The
following algorithm, BOUNDED-GREEDY-MATCH, then produces a strategy that minimizes chaff
for the attacker, for any pair of sequences of coin flips. Given two sequences of coin flips, the
attacker matches a head in first stream at timet to the first unmatched head in the second stream
in the time interval[t, t + ∆]. All matched heads become real (stepping-stone) packets, and all the
remaining heads become chaff. An example of the operation ofthe algorithm is shown in Fig. 2.5.2.

The following theorem shows that BOUNDED-GREEDY-MATCH will allow the attacker to pro-
duce the minimum amount of chaff needed, when the attacker simulates two binomial processes
that were generated independently.

Theorem 2.8. Given any pair of sequences of coin flips generated by two independent binomial
processes,BOUNDED-GREEDY-MATCH minimizes the chaff needed for a pair of stepping-stone
streams to mimic the given pair of sequences.

Proof: Suppose not, i.e., suppose there exists a sequence pair of coin flips σ for which BOUNDED-
GREEDY-MATCH is not optimal. LetS be the strategy produced by BOUNDED-GREEDY-MATCH

3We could, equivalently, assume that the attacker flips a coinwith λ
k

biask times in a time step. Ask → ∞, the
binomial approaches a Poisson process of rateλ.
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Figure 2.4: An illustration of the matching produced by the algorithm BOUNDED-GREEDY-
MATCH on two given sequences, with∆ = 2.

for σ. Let S′ be a better matching strategy, so thatChaff (S) > Chaff (S′). Then there exists a
head inσ such thath is matched with a headh′ throughS′, but not throughS.

Assume, wlog, thath is on the first stream at timet, andh′ on the second stream. ForS to be a
valid match,h′ should be in[t, t + ∆], andh′ must be unmatched underS′ to any other head. Let
us suppose thath′ is matched to another (earlier thant) head on the first stream underS (otherwise
BOUNDED-GREEDY-MATCH would have generated a match betweenh andh′ onS).

We track chain of the matching heads in the sequence backwards (starting fromh) in this way:
we take the currently matched head in one strategy, and look for the head that matches it in the
other strategy. When this chain of matchings stops, we must have an unmatched head, and one of
following two cases (the manner in which we trace the chain ofmatching heads, along with the
assumption that the unmatched headh is on the first stream, implies that we find only matched
heads on the second stream ofS, and the first stream ofS′):

• Case 1: The unmatched head is in stream 1 ofS′. In this case, an unmatched head in
S correlates with an unmatched head inS′, and therefore, this particular case is not our
counterexample, since each unmatched head underS will correspond to an unmatched head
underS′.

• Case 2: The unmatched head is in stream 2 ofS. In this case, we have to have reached this
head (call itg0) from its matching headg1 in S′; we have to reachg1 from matched head
g2 in S. Since we are tracing backwards in time, time ofg2 is greater than the time ofg0.
However, sinceg0 can be matched tog1, we have a contradiction, since we are not matching
the headg1 to the earliest available headg0, as per BOUNDED-GREEDY-MATCH.

The analysis whenh is on the second stream ofS is similar.

Thus, with the algorithm BOUNDED-GREEDY-MATCH, every unmatched head inS must have
a corresponding unmatched head inS′, therefore,Chaff (S) ≤ Chaff (S′), creating a contradiction.

Now we examine upper bounds on the chaff that will need to be sent by the attacker, in terms
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Stream 1
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(a) (b)

hhh2h2h4h4g1g1
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Stream 1

Stream 2

Strategy S: Case 2
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Strategy S’: Case 2

(c) (d)

Figure 2.5:The proof of Theorem 2.8. All the figures give an illustrationof how the heads are traced back.
(a) and (b) show case 1 of the proof, and (c) and (d) show case 2 of the proof. By assumption,h is unmatched
in S and matched inS′. h is matched toh′ in the strategyS′; in S, h′ is matched toh2; then, we look at
h2’s match inS′, call it h3; useh3 to find h4 in S, h4 to findh5 in S′, and so on. We continue tracing the
matches of heads backwards in this manner until we stop, reaching either case 1 or case 2. In case 1,g1 is
unmatched in strategyS′, and inS, g0 is unmatched inS, butg1 is not matched greedily.
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of the total packets sent. We give an upper bound on the amountof chaff that the attacker must
send in BOUNDED-GREEDY-MATCH. We note that our analysis shows how the attacker could do
this if he mimics two independent Poisson processes, but it may not be necessary for him to do this
in order to evade detection.

Theorem 2.9. If the attacker ensures that his stepping-stone streams mimic two truly independent
Poisson processes, then, underBOUNDED-GREEDY-MATCH, the attacker will not need to send
more than 1

q

2λ∆−2
√

2λ(1−2λ)∆
+0.05 fraction of packets as chaff in expectation, when the Poisson

rates of the streams are equal with rateλ.

Proof: We divide the total time (coin flips) into intervals that are∆ long, and examine the expected
difference in one of these intervals. Notice that for the packets that are within a specific∆ interval,
matches are not dependent on the times when they were generated. (i.e., any pair of packets in this
interval is no further than∆ apart in time, and therefore, could be made a valid match). Many more
packets than this can be matched, across the interval boundaries, but this gives us an easy upper
bound.

Consider the packets in the union of the two streams in this interval. Each packet in this union
can also be considered as though it were generated from a (different) unbiased coin, with heads as
stream 1 and tails as stream 2; once again, we have a uniform random walk. Since every head can
be matched to any available tail, the amount of chaff is the expected (absolute) difference in the
number of heads and tails. Call this differenceZ, and the packets on the union of the streamsX.
X is then a binomial with parameters2λ, and∆. Therefore,E[X] = 2λ∆. The expectation ofZX
is then the following:

E[
Z

X
] =

∑

x

1

x
E[Z|X = x]P (X = x)

=
∑

x

1√
x

P (X = x)

≤ 0.05 +
1√

2λ∆ − 2σ
, whereσ =

√

2λ(1 − 2λ)∆.

Since every interval of size∆ is identical, the attacker needs to send 1
q

2λ∆−2
√

2λ(1−2λ)∆
+0.05

fraction of packets as chaff, at most, in expectation.

2.6 Conclusion

In this chapter, we have proposed and analyzed algorithms for stepping-stone detection using tech-
niques from Computational Learning Theory and the analysisof random walks. Our results are the
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first to achieve provable (polynomial) upper bounds on the number of packets needed to confidently
detect and identify encrypted stepping-stone streams withproven guarantees on the probability of
falsely accusing non-attacking pairs. Moreover, our methods and analysis rely on very mild as-
sumptions, especially in comparison with previous work. Wealso examine the consequences when
the attacker inserts chaff into the stepping-stone traffic,and give bounds on the amount of chaff
that an attacker would have to send to evade detection. Our results are based on a new approach
which can detect correlation of streams at a fine-grained level. Our approach may apply to more
generalized traffic analysis domains, such as anonymous communication.

The results presented in this chapter are joint work with Avrim Blum and Dawn Song, and
have previously appeared at the7th International Sympoisum on Recent Advances in Intrusion
Detection, 2004 [17].
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Chapter 3

Limits of Signature-Generation with
Learning-based Algorithms

3.1 Introduction

It is well-known that automatic signature generation is important – often, there may be small time-
windows between when a vulnerability is discovered, and when fast-spreading exploits that target
it appear. Generating signatures manually is slow and error-prone, and thus, we need automatic
signature generation.

However, there are some requirements for the generated signatures to be useful. These sig-
natures need to identify most of the exploits (have low falsenegatives), and falsely identify very
few non-exploits (have low false positives). They need to capture properties of exploits that do not
appear in normal traffic. They also need to be efficient so thatsignatures can be generated quickly.
These requirements make automatic signature generation a hard problem.

A major line of research effort has focused on finding signatures usingpattern-based analysis,
i.e., by extracting byte patterns that uniquely distinguish exploits using network traffic statistics
[70, 104, 71, 91, 77]. Suchpattern-extraction algorithmsare attractive because the signatures can
be efficiently generated and matched. Pattern-extraction algorithms are, at core, machine learning
algorithms: they use a pool of data containing exploits and normal traffic (called thetraining pool),
and look forinvariant byte strings that are present across all exploit packets, but do not occur in
the normal traffic. Earlier work has shown that such distinguishing invariants exist, even when the
payloads are self-encrypting, e.g., even in polymorphic worms, the high-order bits of the return
address of buffer overflows and protocol framing bytes are found to be invariant[91, 77]. This
research has led to interest in how pattern-extraction algorithms could be attacked or evaded [97,
92, 61].

In this work, we show fundamental limits on the accuracy of a large class of pattern-extraction
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algorithms in an adversarial setting. We formulate a framework that allows unified analysis of all
such pattern-extraction algorithms, and show lower boundson the mistakes all pattern-extraction
algorithms need to make under some common assumptions, by showing how to adapt results from
learning theory. At a high level, our results show that algorithms for pattern-extraction signature-
generation can be forced into making a significant number of false positives or false negatives. Ear-
lier work on the limitations of pattern-extraction algorithms have focused on individual algorithms
and specific systems. For example, Perdisci et al. [97] demonstrate if an attacker can systematically
inject noise into the training pool, Polygraph [91] fails togenerate good signatures. Newsome et
al. [92] illustrate similar results in Paragraph even when adversary cannot inject arbitrary noise into
the training pool. Our results generalize these earlier results through theoretical analysis, demon-
strating that similar attacks are possible on all such algorithms, with similar assumptions.

The central conclusion of our theoretical analysis is that any pattern-extraction (and similar
learning-based) algorithms could be manipulated into making a number of mistakes on arbitrary
exploits, as a function of the adversary’s power to add misleading information to his exploits. Be-
cause we cannot predict how future exploits would look, it isimportant to know (and this result
shows us) when and how much pattern-extraction algorithms could be fooled. These results hold
when there is a valid signature of invariants, the signature-generator uses randomized algorithms,
whose output the adversary cannot predict, and even if host-monitoring techniques like taint analy-
sis [33, 37, 93, 108] are used to identify exactly which packets are exploits and which are not.

Our results are independent of the kind of function that the algorithm tries to learn over the
byte sequence, (i.e., the algorithm is allowed to learn any arbitrary complex function over the
invariant bytes), or computational complexity of the algorithm. Our analysis also offers insight
into algorithms that refuse to tolerate one-sided error, and the lower bounds for these algorithms
are much higher than results for more general algorithms. These results show that, it is indeed
much easier for an adversary to manipulate an algorithm thatmakes very few false positives, or
very few false negatives.

Existing experimental results (Perdisci et al. [97] and Paragraph[92]) already illustrate that the
assumptions for our analysis hold, at least for current families of pattern-extraction algorithms.
Our results demonstrate that if pattern-extraction algorithms (and similar signature-generation al-
gorithms) need to work in an adversarial environment, they need to be designed so that the as-
sumptions do not hold; i.e., that the adversary cannot find a large set of byte strings, resemble the
exploit’s invariants in traffic frequency statistics.

We also explore when pattern-extraction algorithms (and similar signature-generation algo-
rithms) may work. For example, if an exploit contains invariants that are never present in normal
traffic, then it seems likely that the exploit can be identified. Our results show that the lower bounds
of some families of algorithms are noticeably weakened, under some conditions,i.e., when there
is a gap between the distribution of tokens in normal traffic and the invariants of exploits. Our
analysis also offers insight into the kind of algorithms that may work and highlights the importance
of the function (over the invariants) that the algorithm learns: algorithms that look for a simple
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set of invariants (learning a simple conjunction of invariants) have far worse lower bounds than
algorithms that look for more complex functions over the invariants; this implies that, unlike the
results for arbitrary exploits, it is far easier for the adversary to manipulate those simple functions
when there is a gap in the traffic.

Our results are also applicable to other signature-generation techniques besides pattern-extraction
algorithms. If, for example, a signature-generation algorithm looks for protocol fields exceeding
specific lengths, but chooses the lengths based on malicioustraffic (e.g., COVERS [78]), our results
would still hold. The key limitation in pattern-extractionalgorithms is that the adversary can easily
add patterns that are similar to exploit’s invariants, and algorithm cannot distinguish between the
invariants and those added by the adversary (red herrings).Our results are applicable as long as
this kind of limitation holds: the adversary can embed similar properties to those invariant to the
exploit, and the algorithm cannot distinguish between them.

3.2 Definitions and Overview

We now present the main definitions and assumptions that we use throughout the paper.

3.2.1 Definitions

A signatureis a functionσ that classifies a given byte sequence (or, equivalently, packet) as ma-
licious or non-malicious,i.e., σ(y) = Malicious, when byte sequencey is an exploit, andσ(y) =
Non-Malicious, wheny is benign.

A signature may be based on various properties of the byte sequence, and we denote these
properties under consideration for signature generation as attributes. An attributeA is a function
whose input is the byte sequence and output is boolean: e.g.,A could be whetheraaaaa is present
in a byte sequence. For this attribute, for byte sequenceaaaaattttt, A(aaaaattttt) = true, while
for byte sequenceaabbccttttt, A(aabbccttttt) = false. A signature could then be considered a
function of attributes; thus, in effect, a signature is a function over boolean conditions. e.g., ifA(y)
andB(y) are attributes, a signature could beσ(y) = {Malicious : A(y) ∧ B(y)}. We say that an
attribute issatisfiedif it evaluates to true.

Recall pattern-extraction algorithms look for invariant byte strings that are present in the ex-
ploit, and not in normal traffic, and these invariants are byte strings that must all be present in the
exploit for it to be malicious, e.g., a signature reported byPolygraph [91] is a pair of byte strings,
’\xFF\xBF’ and ’\x00\x00\FA’ (the Lion worm exploiting the BIND TSIG vulnerability).We
refer to each such byte string as atoken. In our terminology, the attributes test for whether each of
these tokens is present, and signature is a conjunction of the two attributes. We could denote this
signature asσ(y) = {Malicious : ’\xFF\xBF’∈ y ∧ ’\x00\x00\FA’ ∈ y}.

More generally, for pattern-extraction algorithms, an attribute tests for the presence of a partic-
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ular token, perhaps at a particular location. For algorithms that use more information, other kinds
of attributes would also be needed, e.g., COVERS [78] considers lengths of fields, so an attribute
would also represent whether a particular field in the byte sequence is longer than a specific value.

For a fixed set of attributesG, we can represent a byte sequence by the attributes inG that it
satisfies, and we describe how to do so now. We define aninstancei for a byte sequence and a set
of attributesG to be a booleanm-tuple, i.e.,i ∈ {0, 1}m, where theith bit is 1 if theith property
holds true for the byte sequence. An instance thus is a representation of a byte sequence for a set of
attributes. So, ifG consists of the two attributes “Is{aaaaa} present?” and “Is{bbbbb} present?”,
the byte sequenceaaaaaxxxxbbbb would be represented as(1, 1), andcccccxxxxxbbbb would be
represented by(0, 1). The instance spaceis the set of all instancesI = {i ∈ {0, 1}m}. For the
rest of this paper, we consider the set of possible attributes G to be fixed. Every byte sequence
is represented as a vector in the instance space, and our discussion will be in this instance space
{0, 1}m.

We also introduce some machine learning terminology. The algorithm is given sometraining
data, which consists of malicious and non-malicious instances, along with thelabelsof each in-
stance, so that it knows which instances are malicious and which are not. The algorithm finds a
hypothesis, a function that classifies a given instance as malicious or non-malicious.

We define thetrue signatureto be the signature that achieves 0 false positives and 0 false
negatives, on any set of instances presented to it. In learning terminology, the true signature is the
target hypothesisthat needs to be found by the learning algorithm. Once the space of attributes
is fixed, we assume there is only one true signature; of course, there may be multiple functions
to represent this true signature.(If there are multiple signatures that can always achieve 0 false
positives and false negatives, then the bounds apply for each signature, so this assumption is not
limiting.) We refer to the attributes in the true signature ascritical attributes.

3.2.2 Overview of Learning Framework

The central question that we want to answer is the following:to what extent can an adversary force
every learning algorithm to learn the signature slowly? We answer this question by presenting lower
bounds on the algorithm’s performance. To do so, we need someassumptions, and in this section
we describe and justify some basic assumptions we use. Our goal in choosing these assumptions
is to give the algorithms in the signature generator as much power as possible. The lower bounds
show that, even so, the adversary can evade detection for a long time.

We focus on four different assumptions here: the learning model, the form of the true signature,
the label correctness, and the adversary’s knowledge of thealgorithms.

Learning model: Our analysis assumes that the algorithm is allowed to updateits internal
state after each batch of data that it sees, and these updatesmay be made over all of the data
accumulated so far. For example, if the algorithm has 100 packets in its initial training pool, and
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then gets 50 packets in the next batch, the algorithm may update its signature after seeing the
second batch, and may then use all 150 packets to generate theupdated signature.

This is a little different from the typical machine learningsetting, where the algorithm is given
a large batch of training data, allowed to learn a function over it, and then tested on new testing
data. However, since we have a malicious adversary who controls part of the data and aims to
delay learning, the adversary could ensure that, without updates, the algorithm never learns a good
signature. By allowing updates, algorithm might find a good signature over a longer period of time.
We can also perform a more informative analysis about how thealgorithm’s performance evolves
with more data over time. The learning algorithm still does get an initial training pool, which can
contain any number of malicious and non-malicious samples,as long as the assumption of Section
3 is obeyed.

In addition, since the adversary wants the algorithm to makeas many errors as possible, the
adversary aims to release information about the true signature as slowly as possible. The adver-
sary can present information about exactly one new instancein each batch (e.g., all the malicious
instances in the batch can be the same, so a mistake on the instance would cause a100% false neg-
ative).1 In effect, it is as if the algorithm gets one new instance at a time, classifies it, and updates
its internal state based on that instance. Our bounds will bein terms of the number of mistakes the
algorithm makes in this setting, which also corresponds to the number of updates it requires. In the
learning theory literature, this is known as the mistake-bound model [79].

Form of the true signature: We assume that the true signature of the exploit is a conjunction
of attributes – i.e., all attributes in the conjunction mustbe satisfied by the packet. We do so
because conjunctions are the simplest form of signatures that have been historically considered, and
lower bounds for conjunctions imply lower bounds for more complex functions that can represent
conjunctions. For example, these lower bounds are also lower bounds for regular expressions,
because regular expression signatures can represent conjunctions.

However, we do not make any assumption on the form of hypotheses chosen by the algorithms
for its internal state. The algorithm could use, for example, a weighted combination of tokens as
its classifier. The learning algorithm isnot required to learn a conjunction.

Label Correctness: We assume that every label given to the algorithm is correct.This means
the adversary is forced to be truthful, and cannot decide to change the signature (target hypothesis)
after the algorithm has been given data. This affords the algorithm a lot of power: it is as if the
algorithm has an oracle like a dynamic runtime checker, and can test each input on it. If the
adversary can lie, by adding carefully crafted noise for some instances, or change the target, the
lower bounds would only increase.

Adversary knowledge: We assume that the adversary knows the kinds of attributes considered
by the algorithm in question (and thus knows the instance space I). In some of our bounds (for

1Indeed, if the algorithm can update its hypothesis only every batch, it is optimal for the adversary to present exactly
one instance at a time.
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deterministic algorithms), the adversary needs to know thealgorithm he aims to mistrain, but this
is not required for the bounds on the randomized algorithms.These randomized bounds hold when
the adversary (a) knows the algorithm, but has no access to its private randomness, (b) does not
know the algorithm, or (c) does not know the parameters (e.g., statistical algorithms using soft
decision boundaries).

3.3 Reflecting Set

In this section we describe the formal framework we will use to analyze limitations on learning-
based signature generation. Our key assumption is that the adversary has the ability to construct
reflecting sets: spurious attributes (e.g., tokens) that, to the learning algorithm, look at least as
plausible apriori as the actual attributes in the signature. These take the role of the ”concept class”
in learning theory, and the larger the set, the stronger the limitation. Below, we motivate the notion
of reflecting sets and give formal definitions, focusing on pattern-extraction algorithms, especially
Polygraph [91] & Hamsa [77].

3.3.1 Motivation & Definitions

We begin by observing a common property of many strategies proposed to evade detection by
pattern-extraction algorithms. A wide range of strategieshave been proposed for evasion, and
all of them succeed because the adversary can increase the number of tokens that resemble the
tokens critical to the signature. For example, in red herring attacks [91], the attacker adds spurious
tokens to the true signature, and the attack succeeds when the algorithm mistakenly considers
those as part of the true signature. Likewise, in noise injection attacks [97], allergy attacks [61] and
suspicious/innocuous pool poisoning attacks [92], the adversary manipulates the token distribution
in the training or testing pool, by adding well-crafted (malicious or normal) packets with carefully
chosen tokens, and changing the distributions of various tokens in the training pool. Here again,
how effective the attack is depends on how much the attacker can change the tokens considered by
the algorithm.

Thus, these attacks succeed when the algorithm is unable to apriori distinguish between the
tokens critical to the true signature, and any spurious tokens that happen to resemble these critical
tokens. The attacker forces the algorithm to fail by carefully increasing the appropriate resemblance
between the critical and spurious tokens, and he may be able to do this for other kinds of attributes
as well. We will use the termreflecting setsto describe these sets of resembling attributes, as each
attribute within a reflecting set appears to reflect all of theother attributes in that set.

Definition: We now define reflecting sets formally: LetS denote the true signature for an exploit,
and letA denote a signature generation algorithm. LetPrA[S′] denote the probability thatA gives
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to the functionS′ being the true signature. LetC1, C2, . . . Cj be sets of attributes, such that the
signatureS contains an attributesi in eachCi. Let T be the set of functions obtained by choosing
one or more attributesci ∈ Ci, to replace the corresponding propertysi in S. LetWm andWnm be
the malicious and non-malicious instances seen by the algorithm so far, and letW = Wm ∪ Wnm.
Let TW be the set of functions inT consistent withW . If PrA[T ] = PrA[T ′], for any pair of
functionsT, T ′ ∈ TW , for all W , then the setsC1, C2 . . . Cj arereflecting setsfor the signatureS
and the algorithmA.

Thus, from the point of the view of the algorithm, it is as if any combination of attributes, as
long as one is picked from each reflecting set, could be the true signature even after analysis over
all of the training data. IfT denotes the set of all combinations of attributes that includes one from
each reflecting set, thento the algorithm, the true signatureS appears to be drawn at random from
T .

An additional aspect of this definition is that reflecting sets are specific to an algorithm (or a
family of algorithms). We define the reflecting sets this way because different algorithms could use
different aspects of possible attributes to identify a likely signature, and therefore, a reflecting set
for one algorithm may not be a reflecting set for another algorithm. For example, the conjunctions
algorithm of Polygraph uses every infrequent token that appears in all of the malicious instances as
its signature. For this algorithm, a reflecting set is very easily constructed by simply adding more
infrequent tokens to all of the malicious instances. Such a simple reflecting set, however, would
not work for other algorithms, e.g., the naive Bayes algorithm in Polygraph, or Hamsa’s algorithm.

Learning with Reflecting Sets: In this paper, we analyze the problem of learning a signature
with a malicious adversary as the following: for every critical attribute, the adversary may include
the respective reflecting set in the packets (normal or malicious, as needed). The goal is to find
the true signature by identifying the critical attributes,isolating them from their reflecting sets. We
define the problem formally in the next section.

3.3.2 Finding Reflecting Sets

The results of this paper are applicable to algorithms whereit is possible/easy for the adversary to
construct reflecting sets (or sets with a bias away from the true signature) for the attributes in the
true signature, e.g., pattern-extraction algorithms. In general, this could be done for algorithms that
require information from (adversarially-generated) exploits, but cannot identify the true cause of
the exploit, and therefore, the attribute or parameter theylearn can be forged by the attacker.

It is also not strictly necessary for all the attributes in the reflecting set to have identical traffic
statistics: the goal is to capture the algorithm’s inability to distinguish between different attributes
inside the set, and therefore, unable to bias any selection towards the true signature. If the reflecting
sets are chosen so that the algorithm’s choice of signature is lesslikely to be the true signature, then
the lower bounds would only increase, e.g., Hamsa’s algorithm prefers tokens with the smallest
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frequency in normal traffic pool, and the attack suggested adds spurious tokens that are even less
frequent, and therefore, would cause the algorithm to make at least as many mistakes.

The quantitative bounds on algorithms’ errors are related to the size of the reflecting sets that
can be found for the attributes. The size of any particular reflecting set depends on the nature of
the exploit (e.g., its distinguishing properties, the protocols applicable), the adversary’s ability to
manipulate the training and testing pool, and the kinds of signatures that the algorithm aims to learn
for it. The adversary may craft these reflecting sets either by explicitly including selected attributes
in the malicious instances, or sending specific types of instances in the training data. Because the
adversary crafts the reflecting set for the signature generators, the adversary knows the reflecting
set.

Earlier experimental work (e.g., in Paragraph) has demonstrated that reflecting sets can be
found for current generations of pattern-extraction algorithms. Further, polymorphic blending at-
tacks [50] suggest that it may be possible to find such reflecting sets for many pattern-extraction
algorithms, as long as the algorithms use byte-based trafficstatistics for finding the priors of the
critical tokens in the signature (e.g. [119]). We believe itwould be typically possible to find reflect-
ing sets for pattern-extraction algorithms in general, especially those which use the traffic statistics
of individual tokens, due to the heavy-tailed nature of normal traffic distribution, i.e., if tokens in
signatures typically consist of combinations that are rarein normal traffic, and the distribution of
token combinations in normal traffic is heavy-tailed, then it is likely that an adversary will be able
to easily find reflecting sets consisting of rare token combinations.

3.4 General Adversarial Model

In this section, we consider a general adversarial setting,and we present impossibility results on
learning algorithms that generate signatures in this model.

3.4.1 Learning Model

We present our analysis in the mistake-bound model of learning. As described in Section 3.2.2,
we choose this model because it affords the algorithm significant power, but even with this power,
the adversary can delay signature generation. In this model, the algorithm gets an initial training
pool (of any size), and then gets one instance at a time to classify, classifies it as malicious or
non-malicious, and is then told the correct label of the instance. The algorithm then updates its
hypothesis. The algorithm’s goal is to converge to the true signature while minimizing the mistakes
made.

Each instance given to the learning algorithm is anm-tuple boolean vector, i.e., a point in
{0, 1}m. The true signature, or target hypothesis, is a conjunctionof n attributes: an instance must
contain alln attributes to be malicious. As discussed in Section 3.3, we assume the adversary can

36



find a reflecting setCi of sizek for each critical attributei, and the algorithm cannot distinguish
between the attributes insideCi. It may, however, be able to distinguish between attributesin
different reflecting sets, and we need to account for this in the lower bounds. Thus, the set of all
valid hypothesesH is the set of all conjunctions containing an attribute from each reflecting set;
thus|H| = kn. We refer to then bits in the true signature as thetarget bits. Because the adversary
crafts the malicious data, he can ensure that even with an initial training pool, no information
is released about the critical attribute, to distinguish itin its reflecting set. The total number of
attributesm = nk, the product of the number of critical attributes and the size of each reflecting
set.

Our bounds are in terms of the number of mistakes made by the algorithm. The mistakes made
can be interpreted as the number of updates required to converge to the true signature, when the
algorithm receives the correct label right away. The mistakes in this model imply false positives
and negatives in the standard batch setting: a mistake on a malicious instance is a false negative,
and a mistake on a non-malicious instance is a false positive. The exact false positive and negative
rate that a mistake (or a sequence of mistakes) causes depends on the specific algorithm, but a
worst-case estimate on any particular batch can be seen: whenever the algorithm makes a mistake,
the adversary can generate a distribution that causes a100% false negative rate (for a malicious
instance), or potentially a large false positive rate (for anormal instance).

There are two ways in which a target hypothesis can be chosen for the lower-bounds analysis.
The adversary can choose the target hypothesis from the setH, or nature picks the target at random
from the setH, and the adversary knows the target hypothesis selected. Lower bounds for the
second way of choosing the target clearly imply lower boundsfor the first.

Representation of Hypothesis Even though the target hypothesis is a conjunction of the target
bits, there is no requirement that the learning algorithm learn a conjunction of the target bits. That is,
the learning algorithm is free to choose any function, as long as it agrees with the target hypothesis
on all the instances seen.

Formally, letx1, . . . , xm denotem bits of an instance, wherexj = {0, 1}. In this context, a
conjunction hypothesis is a functionxa ∧ xb ∧ . . . xr, for somer values, and evaluates to true if
all bits xa . . . xr are1. A linear separatorhypothesis is a function of the form

∑

i∈[1,m] wixi > q
where the weightswi ∈ ℜ. All instances that satisfy the condition (i.e., weighted combinations of
bits exceeds the thresholdq) evaluate to true.

Therepresentationof the hypothesis is the type of function learnt by the algorithm, e.g. a linear
separator or conjunction. Polygraph uses both conjunctions and linear separators, and Hamsa uses
conjunctions. The results in this section are independent of the hypothesis representation chosen.

37



3.4.2 Results

We now present our results in the learning model described above. Each of these lower bounds can
be derived from more general results in learning theory; ourproofs show an explicit construction of
instances that achieve the bounds for our setting. In the proof of each theorem, we show a sequence
of instances for which any algorithm must achieve the statedmistake-bound.2

We first present bounds on the overall number of mistakes thatany deterministic or random-
ized algorithm could be forced to make. Theorem 3.1 shows that every deterministic algorithm,
regardless of what it learns, could be forced to make at leastn log m

n mistakes by an adversary –
thus, the mistakes grow linearly in the size of the signature, but only logarithmically in the size of
the reflecting setsk = m

n .

Theorem 3.1. (Deterministic Algorithms) For every deterministic algorithm, an adversary can
generate a sequence of instances such that the algorithm is forced to make at leastn log k mistakes,
wherek is the size of the reflecting sets.

Before presenting the proof, we discuss some common elements of all proofs in this section.
As described in Sec. 3.2.2, the adversary is in control of themalicious instances presented in the
training data. The adversary’s goal is for the algorithm to learn as little as possible, and make many
mistakes. Thus, it is optimal for the adversary to generate all malicious instances identically, so
that each instance contains allk attributes of every reflection set. Note that this does not conflict
with our assumption that there is no noise in the training data, or that the adversary is required to
be truthful.

Formally, in the instance space{I = i ∈ {0, 1}m}, the argument above says that adversary
gives the algorithm many copies of the instancei = {1, 1, . . . 1} in the training pool. For example,
in red-herring attacks on pattern-extraction signature generators, this instance can be thought of the
initial input given to the learning algorithms: all initialinstances contain all red herrings as well as
the invariants. Note that the target hypothesis is selectedat adversarially or at random from the set
H, and all hypotheses inH are indistinguishable to the algorithm. This implies that the adversary
can ensure that the algorithm gains no additional information about the target bits from the training
data.

Proof: Our proof is an application of the bounds proven in [79] to oursetting. For completeness,
we present the whole proof here to illustrate the sequence ofinstances that the attacker can present,
in order to force the mistakes indicated in the lower bound.

Let us assume that the algorithm can divide bits into sets that correspond to a critical attribute
and its reflections. By definition of reflection, the algorithm cannot distinguish between thesek
properties, even if the algorithm is powerful enough to distinguish properties inton sets ofk.

2The adversary does not require knowledge of the algorithm’sbehaviour to generate the next instance. He would for
the lower bounds on deterministic algorithms, but the bounds for the randomized algorithms apply even if the algorithm
is a blackbox to the adversary.
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We show a sequence of instances that force the algorithm to make log k mistakes, for a single
reflecting set ofk properties. Since there aren such sets, and no reflecting set can provide infor-
mation about targets in any other reflecting set, using this strategy on each of will generaten log k
mistakes.

With knowledge of the deterministic algorithm, the adversary can decide where to place the
target bit in the reflecting set as follows: the adversary chooses a set oft bits. If the algorithm
labels it positive, it places the target bit in the other set of k− t bits, otherwise it places it in this set.
By observing the actions of the algorithm, the adversary haschosen a set of min(t, k − t) bits in
which to place the target bit. The adversary can repeat this process until it isolates where to place
the target bit.

Thus, because the algorithm is deterministic, it is equivalent to the adversary deciding which
bit to choose as the target bit, rather than deciding where toplace the target bit.

The adversary begins by settingt = k/2, i.e., it presents an instance withk/2 bits set. After
the algorithm makes a mistake on the instance, the adversarypresents an instance withk/4 bits
from thek/2 bits where the target bit needs to be present. This process continues until the number
of bits is reduced to1. The ith instance presented by the adversary hask/2i bits set to 1, and
forces the adversary to commit to the presence of the the target bit in one ofk/2i bits, and the
adversary forces a mistake on each instance. Thus, algorithm is forced to makelog k mistakes on
this sequence of examples.

If there are multiple critical attributes within a single reflection set, the adversary can treat this
set as two separate reflection sets, each of sizek, and achieve the same number of mistakes.

Since the bound of Theorem 3.1 scales logarithmically with the number of spurious attributes,
it is natural to ask whether this lower bound is tight. The Winnow algorithm [79] achieves a bound
within n log n additive factor, showing that the bound is nearly tight.

However, much of the error in the previous theorem comes fromthe adversary’s ability to
predict what the algorithm would do next. A common solution is to allow the algorithm to use
randomization. Theorem 3.2 analyzes the number of mistakesmade if the algorithm is randomized
(or equivalently, unknown) to the adversary. It shows that even if the signature generator uses a
randomized algorithm, the algorithm can be forced to generate a lot of mistakes in expectation, half
the mistakes of the deterministic case.

Theorem 3.2. (Randomized Algorithms)For any randomized algorithm, an adversary can gen-
erate a sequence of instances so that the algorithm will make, in expectation, at least12n log m

n
mistakes, wherek is the size of the reflecting sets.

Proof: Our proof is an application of the bounds proven in [79] to oursetting. For completeness,
we present the whole proof here to illustrate the sequence ofinstances that the attacker can present,
in order to force the mistakes indicated in the lower bound.

The proof is similar to Theorem 3.1. The initial instance presented by the adversary, as before,
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contains all attributes, or equivalently, allm bits set to1. As before, the algorithm may be suffi-
ciently powerful to distinguish the reflecting sets, but it cannot identify the critical attributes within
each reflecting set.

The sequence of instances that the adversary presents is similar, but chosen randomly. For each
reflecting set, the adversary does the following before the algorithm identifies the target bit. The
adversary chooses a set ofk/2 bits at random from all sets ofk/2 bits, and presents an instance with
this set ofk/2 bits. Then, with probability 1/2, the target bit is present in this set. The probability
that any decision given by the algorithm on this randomly chosen set ofk/2 bits is correct is1/2.
Thus, the algorithm has a chance of1/2 of making a mistake on this step.

Once the label is given by the adversary, the information about the target bit is reduced tok/2,
as in the deterministic case. The adversary then picks a set of size k/4 from the set of sizek/2
containing the target bit. This continues until the target bit is isolated, which takeslog k steps.
Thus, the algorithm has an expected error of1

2 log k.

For every reflecting set of sizek, the algorithm will make an expectedlog k
2 mistakes, and so

the total expected number of mistakes will be1
2n log k, i.e., 1

2n log m
n .

Theorem 3.2 shows that an arbitrary deterministic algorithm is not too much worse than a
randomized algorithm, and suggests that some deterministic algorithms may not fare too poorly.
This result is, however, dependent on the nature of determinism in the algorithm. For example,
one kind of extreme determinism is to guarantee no false positives or no false negatives. Such
algorithms are attractive, since it seems better to have to tolerate only one kind of error.

We now consider one-sided algorithms: algorithms which arenot allowed to make (many)
false positives or (many) false negatives. Our results showthat one-sided algorithms can be forced
into making many more errors than algorithms with an arbitrary break-down of mistakes (e.g., in
comparison to Theorem 3.1). Guaranteeing a small number of mistakes of either false positives or
false negatives forces the algorithm to make a large number of mistakes of the other kind.

Theorem 3.3. (Bounded False Positives)If an algorithm is not allowed to make any mistakes on
non-malicious instances, there exists a sequence of instances such that it is forced to make at least
n(k − 1) mistakes on malicious instances. More generally, consideran algorithm that is forced to
make fewer thant mistakes on the non-malicious instances, fort ≤ n. Then the algorithm must
make at least(n − t)(k − 1) mistakes on the malicious instances.

Proof: Our proof for the case oft = 0 is an application of the theorems in [9] to our problem, a
restriction of the general learning problem. We extend thisfor t > 0 in our proof. For completeness,
we present the whole proof here to illustrate the sequence ofinstances that the attacker can present,
in order to force the mistakes indicated in the lower bound.

Let t = 0. Then, we need to show a sequence of instances such that the algorithm makes at
leastn(k−1) mistakes. If the algorithm is allowed to makenomistake on non-malicious instances,
it must always label an instance to be non-malicious when it is uncertain of the label of an instance.
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In order to have the algorithm make a lot of mistakes, the adversary has to present a sequence of
instances such that the algorithm is always forced to label it non-malicious. The adversary does this
as follows: in theith epoch, he picks one reflecting setCi to focus on, and the instances presented
have the bits that correspond to all the other reflecting sets(i.e., other thanCi) all set to 1 (e.g., in
the first epoch, all bits that correspond to reflecting setsC2 to Cn are always set to 1). He starts
the epoch by presenting the instance with all bits inCi set to 1, and he chooses one additional
non-target bit from the current instance, and sets it to 0 to generate the instance that follows.

Thus, within an epoch, every instance received by the algorithm (subsequent to the first in-
stance) has one fewer bit set to 1 than the previous instance.However, it does not know whether
the target bit has been set to 0, by definition of the reflectingset, and therefore has to label the
instance non-malicious. As the adversary does not set the target bit to 0, each instance presented
to the algorithm is indeed malicious. The adversary can present k − 1 such instances for each
reflecting set, and thus, there aren(k − 1) mistakes made by the algorithm.

Whent ≥ 1, the algorithm may make at mostt incorrect guesses on non-malicious instances.
The adversary may use the same sequence of instances as described above, and because the algo-
rithm is deterministic, the adversary knows when the algorithm will label an instance to be mali-
cious. The adversary can then choose the target hypothesis so that, at that point, a non-malicious
instance is presented, i.e., it is the target bit of the relevant reflecting set that is dropped at the
instance (though all bits dropped earlier in the epoch are still non-target bits, as before). With this
change, algorithm has then made a mistake on a non-maliciousinstance, but also knows the target
bit for the relevant reflecting set, and will not make any moremistakes within that epoch. Thus,
each mistake on a non-malicious instance in this sequence reveals the target bit of one reflecting set,
but no information about any other reflecting set. When the algorithm is allowedt such mistakes,
the adversary can force the algorithm to make at least(n − t)(k − 1) mistakes on the malicious
instances.

Such large mistakes are not special to only algorithms that require a small number of false pos-
itives. Theorem 3.4 shows mistake-bounds for algorithms that must make very few false negatives.
Indeed, these mistake-bounds are much larger than those in Theorem 3.3, forkn ≫ n (i.e., since
reflecting sets may be large, but contain only one target bit each).

Theorem 3.4. (Bounded False Negatives)If an algorithm is allowed to make no mistakes on mali-
cious instances, an adversary can generate a sequence of instances so that the algorithm is forced
to makekn − 1 mistakes on non-malicious instances. More generally, consider a deterministic
algorithm that is forced to make fewer thant mistakes on malicious instances, fort < n. Then the
algorithm must make at leastk

n
t+1 − 1 mistakes on non-malicious instances.

Proof:

Our proof for the case oft = 0 is an application of the theorems in [9] to our problem, a
restriction of the general learning problem. We extend thisfor t > 0 in our proof. For completeness,
we present the whole proof here to illustrate the sequence ofinstances that the attacker can present,
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in order to force the mistakes indicated in the lower bound.

Once again, we begin with the case oft = 0. Now, the adversary is allowed to make no
mistakes on the malicious instances. Therefore, any time the algorithm receives an instance, it
must label it malicious, unless the algorithm is certain that the instance is not malicious.

The adversary presents any non-malicious instance withn bits present, subject to the following
two conditions: (1) exactly one bit is present from each reflecting set, (2) all target bits are not
present in the instance (this follows by definition of a non-malicious instance). Each instance in
this sequence is non-malicious, but the algorithm is forcedto label it malicious: the algorithm does
not have enough information to distinguish whether any particular bit present from a reflecting set
is truly the target bit for the reflecting set, until a malicious instance has been presented.

More formally, letA denote the set of all instances that satisfy the above two conditions: each
instance inA contains exactlyn bits set to 1, and only one bit is set from each reflecting set.
Let imal denote the sole malicious instance inA. The adversary presents instancesi1, i2, . . . from
A−{imal} to the algorithm, one at a time. DefineIw to be the set of the firstw instances presented,
for w < |A − {imal}|. With the non-malicious instances inIw, it is consistent for any instance in
remaining inA − Iw to be the malicious instance, and so the algorithm must continue to classify
the next instance as malicious. Thus, the algorithm is forced to make a mistake on every instance in
A− {imal}. There arekn − 1 such instances, and therefore, the algorithm makeskn − 1 mistakes.

A similar analysis can be applied for0 < t < n. We focus ont = 1 for simplicity. The
adversary now divides the reflecting sets into two equal groups,A1 andA2, and each reflecting set
goes into one ofA1 or A2; so, each groupA1 andA2 will account form/2 bits. The adversary
chooses instances in two phases: in the first phase, all instances set all bits fromA1 to 1, but only
set one bit from each reflecting set inA2 to 1 (som/2 bits in A1 but onlyn/2 bits in A2). In the
second phase, the roles ofA1 andA2 are reversed: all instances set all bits fromA2 to 1, but only
set one bit from each reflecting set inA1 to 1 (som/2 bits inA2 but onlyn/2 bits in A1). There
arekn/2 − 1 non-malicious instances in each phase.

Recall that the algorithm may make at most one mistake on a malicious instance, and thus it
can call an uncertain instance non-malicious at most once. Because the algorithm is deterministic,
the adversary knows when the algorithm will classify an instance to be non-malicious, and chooses,
ahead of time, the target hypothesis appropriately to ensure that at that point, a malicious instance
can be presented.

We term the algorithm to benon-conservativeif it labels an instance malicious in the first
kn/2 − 1 instances that it sees, otherwise we term to beconservative. For a non-conservative
algorithm, the adversary presents non-malicious instances from Phase 1 until the point where it
would label an instance malicious, and then the malicious instance from Phase 1, to ensure that the
algorithm makes a mistake on the malicious instance. It thenpresents the non-malicious instances
from Phase 2 to the algorithm. With this sequence of instances, the algorithm needs to identify
then/2 target bits in Phase 2 without making any mistakes on the malicious instances, and every
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hypothesis is consistent with the instances and labels presented in Phase 1. Thus, the mistake-
bound of Phase 2 reduces to the case oft = 0, with a target hypothesis of sizen/2, and so a
non-conservative algorithm makes at leastkn/2 − 1 mistakes.

The analysis for a conservative algorithm is similar, except that the malicious instance is pre-
sented at the appropriate point in Phase 2. Thus, this algorithm has to make at leastkn/2 − 1
mistakes on the non-malicious instances in Phase 1. The analysis whent < n is also similar, the
adversary simply divides the reflecting sets intont+1 groups, instead of dividing it into 2 groups,
whent = 1.

We note briefly that lower bounds in Theorems 3.3 and 3.4 may not be tight for large values of
t. Nevertheless, they still serve to illustrate the effect ofallowing very few false positives or false
negatives.

We note also that the bounds of Theorems 3.3 and 3.4 are very different. Intuitively, the ba-
sic difference between them arises from the kind of the information that is encoded in an exploit
(malicious instance), when compared to a non-exploit (non-malicious instance) packet. In The-
orem 3.3, the adversary forces the algorithm to learn the exploit from only exploit information,
while in Theorem 3.4, the adversary forces the algorithm to learn the exploit from only non-exploit
information. As there may be far more non-exploit packets than exploits, each of which encodes
very little information about the exploit, the adversary can be able to force many more errors in
Theorem 3.4.

3.4.3 Practical Implications

Discussion The central conclusion of the theoretical analysis is that any pattern-extraction (and
similar learning-based signature-generation) algorithms could be manipulated into making a signif-
icant number of mistakes, in terms of the total number of false positives and false negatives gener-
ated. This holds when the signature-generator uses randomized algorithms, whose output the adver-
sary cannot predict. It holds even if host-monitoring techniques like taint analysis [35, 37, 93, 108]
are used to identify exactly which packets are malicious andwhich are not. Our analysis suggests
that these algorithms could work only when they are designedso that a large reflecting set cannot
be found.

Existing experimental research has already demonstrated the feasibility of these attacks on
real systems, e.g. Paragraph shows that it is feasible to adda large number of tokens to a real
buffer-overflow exploit against the ATPhttp web server, andshows how this affects the detection
of polymorphic worms by Polygraph and Hamsa. This disruption is caused by the sequence of the
instances presented to the algorithms, so that the algorithm does not have enough information to
infer the correct target. In our proofs, we show constructions of sequences of instances that force
every algorithm to make a lot of mistakes.

The results also show that if pattern-extraction algorithms need to be used, an algorithm like
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Figure 3.1: Comparison of lower bounds and current algorithms for general case: number of up-
dates required before convergence to the true signature.

Winnow [79] may guarantee better accuracy in adversarial settings. Using a more complex algo-
rithm would not gain a significant improvement. This is especially so these bounds are independent
of the representation of the algorithms used (one could learn any arbitrary complex function over
the instance space), or the algorithm’s computational complexity. Still, Winnow’s mistake-bound
offers insight into using a more expressive representationthan the basic conjunction used in several
algorithms.

Lastly, our analysis offers insight into algorithms that refuse to tolerate one-sided error. The
mistake bounds for these results are much higher than results for more general algorithms. These
results show that, it is indeed much easier for an adversary to manipulate an algorithm that makes
very few false positives, or very few false negatives. Specifically, note differences in their depen-
dence onk, the size of the reflecting set: Theorems 3.1 and 3.2 have a logarithmic dependence on
k, while Theorems 3.3 and 3.4 have a polynomial dependence onk. Thus, for an arbitrary algo-
rithm, the adversary would not gain significantly from simply padding the malicious packets with
red herrings, though he does so for one sided algorithms.

Comparison to Existing Systems As a specific illustration of the bounds, we compare lower
bounds with the estimated mistakes (through calculation) that would be made by the Polygraph
suite of algorithms and Hamsa. These mistakes are made when reflecting sets can be found for
these pattern-extraction algorithms, but this has alreadybeen demonstrated in Paragraph.

For our comparisons, we use the attacks suggested in Paragraph for each of the algorithms. In
the red herring attack suggested on Polygraph’s conjunction algorithm, a mistake can be induced
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on every presented instance by dropping a token each time. Likewise, for the Hamsa’s algorithm, a
mistake can be induced for each spurious token by dropping the token with the smallest frequency
at the time. On the naive Bayes algorithm, mistakes can be induced by the correlated outlier attacks
shown: each malicious instance presented is crafted with tokens appearing in normal traffic, forcing
the algorithm to classify it as non-malicious.

Fig. 3.1 shows the number of iterations in which mistakes would be made, as a function of the
size of the reflecting set, for a signature with 10 tokens. Each of these algorithms require iterations
linear innk, wheren is the number of true critical attributes in the signature, and k is the size of
the reflecting set. The lower bounds, on the other hand, grow logarithmically ink. Of course, it is
harder to find a reflecting set for the Bayes algorithm than theconjunction algorithm in Polygraph,
and it is similarly harder to find a reflecting set for Hamsa’s algorithm. For example, if there are
10 tokens in the true target signature, a reflecting set of size 10 for each token would mean that
the lower bounds for deterministic algorithms require 34 updates, and the randomized algorithms
require 17 updates. In contrast, the Polygraph conjunctionalgorithm and Hamsa’s algorithm could
be manipulated into requiring 100 updates.

Further, all of these calculations assume that there is an effective way to ensure that the pre-
sented instances are (later, at time of update) correctly classified, and that updates are immediate. A
lag in updates would increase the number of batches seen (andtherefore, mistakes seen) before con-
verging. If, for example, the algorithm gets the correct label only every 10 iterations, the number
of mistakes could increase by a factor of 10.

3.5 Exploiting Gaps in Traffic

In this section, we examine when signature-generation algorithms would work, even in the presence
of adversaries, and when there may be large reflecting sets for the signatures. For example, if an
exploit’s invariant tokensneverappeared in normal traffic, it ought to be possible to identify this
exploit with pattern-extraction algorithms. Our goal is tounderstand conditions under which these
learning algorithms might work, even if they must learn overproperties which have reflecting sets.

The lower bounds analysis in the previous section was based on the existence of a sequence of
instances (or equivalently, an adversary who generated a sequence of instances) for the algorithm to
classify, and these instances could be drawn from any point in the instance space. Thus, effectively,
the algorithm needed to be able to classify every single instance correctly, and was required to have
a small number of mistakes on any sequence of instances. The hypothesis found by the algorithm
was required to agree with the target hypothesis on every single instance in the instance space.

However, there might be situations when such a requirement is more stringent than necessary.
For example, while we would certainly want the algorithm to be able to classify all malicious in-
stances generated by the adversary, perhaps we do not need the algorithm to classify all possible
non-malicious instances, unless they are regularly present in normal traffic. A reasonable goal
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might be to ask an algorithm to only classify correctly the non-malicious instances that are truly
present in normal traffic, rather than any arbitrary combination of properties generated by an ad-
versary. In this situation, an algorithm would need to agreewith the target hypothesis only on the
malicious instances, and the non-malicious instancespresent in normal traffic.

Thus, the algorithm can disagree with the target hypothesison a region of the instance space,
the region where the non-malicious instances are not present in normal traffic. In this case, it might
be possible to make fewer mistakes, as a function of how largethe gap between the malicious
instances and the normal instances are. The analysis in Sec.3.4 addresses the case when there is
no gap between normal instances and malicious instances.

Recall that the instance space is a boolean hypercube in{0, 1}m. The malicious instances are
instances which have alln target bits set to1, regardless of the values of the remainingm − n
bits. The non-malicious instances are all the remaining instances. The non-malicious instances
truly present in normal traffic may be only a small subset of these instances. We need a way to
quantify the region of the instance space that the algorithmdoes not need to classify correctly. We
do this by defining how to measure the gap between the two typesof traffic in Section 3.5.1. Then,
in Section 3.5.2, we describe the learning model. We describe results in Section 3.5.3, and their
practical implications in Section 3.5.4.

3.5.1 Defining the Gap

Intuitively, our goal is to measure how close the normal traffic is to the malicious instances, e.g., if
few attributes of the malicious instances are present in thenormal instances, we would like the gap
to be large. Further, we would like the gap to capture some intrinsic property between the normal
traffic and the malicious instances, which the adversary cannot manipulate over time. That way, we
can then measure the effect of the adversary’s manipulationof the malicious instances for different
kinds of gap.

We measure the gap in the following manner: letZ be the set of target attributes – the attributes
that must truly be present in the malicious instances (in ournotationn = |Z|). We define the
instance-overlapof a normal instancei to be the fraction of attributes ofZ that is present in the
instance. We define theoverlap-ratioof the normal traffic to be the maximum instance-overlap of
any instance in normal traffic. In other words, the fraction of target attributes present in a normal
instance is, at most, the overlap-ratio. So, for example, anexploit whose invariant is a single
token that never appears in normal traffic has overlap-ratio0. Our definition is motivated by the
observation that tokens extracted in signatures are very rare in normal traffic, and the appearance
of multiple tokens together is even rarer.
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3.5.2 Learning Model

The learning model in this section is similar to the one in Section 3.4, however, we need to make
some crucial changes. A hypothesis isoverlap-equivalentto the target hypothesis if the two hy-
potheses agree on all the malicious instances, and all non-malicious instances truly present in the
normal traffic. The goal of the learning algorithm is to find anoverlap-equivalent target hypothesis,
when the target hypothesis is drawn at random from the set of all valid hypotheses. As in Sec-
tion 3.4, we give mistake bounds for algorithms that are allowed any number of samples, and any
kind of running time. However, the bounds now depend on the representation that the algorithm
uses to find an overlap-equivalent hypothesis.

We used to denote the overlap-ratio of the normal traffic distribution with the target hypothesis.
The overlap-ratio also has an implication for the reflectingsets that the adversary chooses. The
attributes in the reflecting sets may also need to obey the overlap-ratio, otherwise, they may not be
reflecting sets for some algorithms anymore. That is, these sets may need to be chosen so that no
more thand fraction of the reflected attributes from different reflecting sets can be present together
in any instance in normal traffic.

3.5.3 Results

We now present lower bounds on the mistakes made in this model. Unlike the previous model,
these results depend on the representation used by the algorithm, whenever the overlap-ratiod < 1.
This is because there is always a signature that can be represented in the disjunctive normal form:
the signature just looks for the presence ofanyof thekn possible combinations of the attributes is
always correct.3 To our knowledge, this model has not been analyzed before.

We describe lower bounds for two commonly used representations: conjunctions and linear
combinations of attributes, and we show lower bounds on bothdeterministic and randomized algo-
rithms. Our bounds are in terms of the mistakes made on a sequence of instancesconsistentwith
a given overlap-ratiod: every non-malicious instance in the sequence has an instance-overlap of
at mostd. As these instances are consistent with overlap-ratiod, they could potentially appear in
normal traffic. In other words, our theorems imply that, whenthe overlap-ratio isd, there exists
normal traffic for which every algorithm has to make a certainnumber of errors (as a function of
d).

Theorems 3.5 and 3.6 show lower bounds for learning conjunctions for deterministic and ran-
domized algorithms. They show that the mistakes made by any algorithm that is forced to learn
conjunctions of attributes scales linearly with the numberof attributes, as well as the overlap-ratio
of the normal traffic distribution.

3Alternately, one can consider this signature to be an OR function of the set of all valid hypotheses described in
Section 3.4.1.
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Theorem 3.5. (Deterministic Algorithms using Conjunctions) Let the overlap-ratio of the nor-
mal traffic bed, and letk be the number of attributes in each reflecting set. For anyd, there exists
a sequence of instances consistent with overlap-ratiod such that any deterministic algorithm that
learns an overlap-equivalent conjunction will need to makeat least(k − 1)(dn + 1) mistakes.

Proof: We prove this in two parts: we first prove that any deterministic algorithm learning a
conjunction withdn + 1 bits may be forced to make a lot of mistakes, and then we show that there
exists a sequence of non-malicious instances consistent with overlap-ratiod, so that the adversary
can force algorithm to learn a conjunction withdn + 1 bits.

We first show that any deterministic algorithm that learns a conjunction withdn + 1 bits could
be forced to make(k − 1)(dn + 1) mistakes, when reflecting sets are of sizek. We count only the
mistakes made on malicious instances, and therefore each ofinstances must contain alln target bits.
The adversary may generate a sequence of instances in the following manner: he starts with the
malicious instance that has all bits set to 1, and in each subsequent instance, he sets one additional
non-target bit (from any reflecting set) to be 0. Because the algorithm is deterministic, the adver-
sary can choose the target hypothesis and the bit that is set to 0 at each point and ensure that the
algorithm makes a mistake on each instance. This way, for each reflecting set, the algorithm will
need to havek − 1 bits set to 0 before the target bit is revealed. As this procedure can be done for
each of the reflecting sets included in the learned conjunction, the algorithm makes(k−1)(dn+1)
mistakes.

Now, we show that all deterministic algorithms have to learna conjunction with at leastdn + 1
attributes. To do this, we use the following definitions. We term ablock to be all of the bits
corresponding to a reflecting set. We say that a block is set to0 if all bits in the block are 0, and
that a block is set to 1 if all bits in the block are set to 1. We will term azero-informationinstance
to be one that hasd blocks set to 1, and has all the remainingn − d blocks set to 0. The setK is
the set of all zero-information instances.

Each instance inK may appear in normal traffic: the instance contains no more thand target
bits set to 1. Each instance inK is also non-informative about the true target – all bits in the
reflecting set always appear simultaneously. With this setK, if the algorithm does not have at
leastdn + 1 bits (each from a different reflecting set) in its conjunction at any point, it can be
forced to make an error on a non-malicious instance: the adversary simply chooses non-malicious
instance fromK that satisfies the algorithm’s conjunction, and forces it tomake an error on a zero-
information instance. This mistake reveals no additional information to the algorithm about the
target hypothesis, and the adversary can force the algorithm to make it as long as the algorithm’s
conjunction has fewer thandn + 1 bits. Thus, the algorithm makes fewer mistakes if it always
learns a conjunction of size at leastdn + 1.

Theorem 3.6. (Randomized Algorithms using Conjunctions)Let the overlap-ratio of the normal
traffic bed, and letk be the number of attributes in each reflecting set. For anyd, there exists a
sequence of instances consistent with overlap-ratiod such that any randomized algorithm that
learn an overlap-equivalent conjunction will make, in expectation, at leastk−1

k (dn + 1) mistakes.
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Proof: The proof is similar to that of the previous theorem, but withtwo modifications. In our
proof, we useK, the set of zero-information instances defined in the previous proof.

First, the adversary no longer knows when the conjunction used by the algorithm contains at
leastdn + 1 attributes; however, he can force the algorithm to contain such a conjunction with
high probability by giving the algorithm, at random points in the sequence of instances, a non-
malicious instance fromK. Let T be the event that the algorithm uses a conjunction with fewer
thandn + 1 attributes. For anyǫ > 0, if Pr[T ] > ǫ, an instance drawn at random fromK will
force the algorithm to make a mistake with probabilityǫ/

( n
dn

)

. Thus, there is always a constant
chance of error on the non-malicious instances ifPr[T ] > ǫ. Therefore, if the algorithm uses a
conjunction with few attributes, a long sequence of random instances drawn fromK could generate,
in expectation, many non-informative errors on the non-malicious instances.

Now, if the algorithm tries to find a conjunction with at leastdn+1 attributes (and thus include
attributes from at leastdn+1 reflecting sets), it makes at leastk−1

k mistakes in expectation for each
of the(dn+1) attributes. As before, the adversary starts with the malicious instance that has all bits
set to 1, and in each subsequent round, picks one additional non-target bit (from any reflecting set)
to set to 0 in the instance that is presented. For every reflecting set that appears in the algorithm’s
conjunction, the algorithm has a1/k chance of making a mistake when any non-target bit is set to
0. Because the adversary can do thisk−1 times within a single reflecting set, the expected number
of mistakes isk−1

k , within one set. The adversary can ensure thatdn + 1 reflecting sets are used
with probability1 − ǫ, so the number of mistakes it makes, in expectation, is(1 − ǫ)k−1

k (dn + 1),
for anyǫ > 0.

Next we consider the minimum number of malicious instances that an adversary can send
through undetected, if the learning algorithm learns linear separators. Theorems 3.7 and 3.8 show
lower bounds for algorithms that need to learn overlap-equivalent linear separators.

Theorem 3.7. (Deterministic Algorithms using Linear Separators) Let the overlap-ratio of the
normal traffic bed, and letk be the number of attributes in each reflecting set. For anyd, there
exists a sequence of instances consistent with overlap-ratio d such that any deterministic algorithm
that learns overlap-equivalent linear separators will need to make at leastlog1/d k mistakes.

Proof: Recall thatCi denotes theith reflecting set. LetU = {Ci}i. Without loss of generality,
we will assume that the bits in the instance are reordered so that the firstk bits correspond to the
attributes in reflecting setC1; the nextk bits correspond to the attributes in the reflecting setC2,
and so on. Letxi,j be1 if the jth property of the reflecting setCi is present in the instance (ik+jth
bit is 1 in the reordered instance) and0 otherwise.

A linear separator that identifies malicious instances needs to be of the form
∑

i,j wi,jxi,j > t,
wherewi,j is a weight of token, andt is any fixed value witht > 0. For the proof, we will useK,
the set of zero-information instances defined in the proof ofTheorem 3.5. LetD be a set that con-
tains exactlyd-fraction of the reflecting sets. The adversary can then force the following constraints
to hold at every point of time: for everyD,

∑

a∈D

∑

j wa,j ≤ t. This is because if the constraints
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do not hold, the adversary can force the algorithm to make a mistake on a zero-information in-
stance fromK, and thus the algorithm makes a mistake that does not help in identifying the target
hypothesis.

As in the proof of Theorem 3.5, we show how the attacker generates mistakes on the malicious
instances with these constraints. The attacker constructsmalicious instances as follows: for each
reflecting setCi, the attacker chooses thep bits with the lowest weights, and sets the malicious
instance to have thesep bits to be1.

Let qi be the sum of the weights of thep bits for a reflecting setCi. Then, for every set
D as defined earlier,

∑

i∈D qi ≤ t p
k . Let D be the set of all such setsD. Then, we have

∑

D∈D
∑

i∈D qi ≤ |D|t p
k . This implies that

( n−1
dn−1

)
∑

i∈U qi ≤
( n
dn

)

t p
k , giving

∑

i∈U qi ≤ tp
kd .

By settingp ≤ kd,
∑

i∈U qi ≤ t. Thus, the attacker can send a malicious instance with the
appropriatep bits set, and the algorithm will make a mistake by labelling it non-malicious.

With this mistake, the attacker has reduced the size of everyreflecting set to effectively bekd
from the original size ofk: the algorithm now knows that the target bit has to be among the kd
bits that were set in the malicious instance just presented.The adversary can recurse this procedure
with the new reflecting sets, until their size has effectively reduced to 1, and this allows the attacker
to forcelog1/d k mistakes, orlog1/d

m
n .

Theorem 3.8. (Randomized Algorithms using Linear Separators) Let the overlap-ratio of the
normal traffic bed, and letk be the number of attributes in each reflecting set. For anyd, there ex-
ists a sequence of instances consistent with overlap-ratiod such that any randomized algorithm that
learns overlap-equivalent linear separators will need to make, in expectation, at least12 log1/2d k
mistakes to converge to a hypothesis equivalent to the target.

Proof: The proof is similar to that of Theorem 3.7; however, we need to make two modifications,
because the adversary does not always know the internal state of the algorithm. In our proof, we
useK, the set of zero-information instances defined in the earlier proofs.

First, the adversary no longer knows whether the constraint
∑

i,j wi,j ≤ t/d is disobeyed;
however, he can force it to hold with high probability by presenting the algorithm, at randomly
chosen points in sequence, a non-malicious instance fromK. In particular, for anyǫ > 0, if
Pr[

∑

i,j wi,j > t/d] > ǫ, an instance drawn at random fromK will cause the algorithm to
make a mistake with probabilitydǫ. Thus, there is always a constant chance of error on the non-
malicious instances ifPr[

∑

i,j wi,j > t/d] > ǫ – this chance of error does not approach 0 as
long as

∑

i,j wi,j > t/d. Therefore, if
∑

i,j wi,j > t/d, an arbitrarily long sequence of random
instances drawn fromK could generate, in expectation, arbitrarily many non-informative errors on
the non-malicious instances.

The second modification needed is that the adversary constructs a slightly different sequence
of malicious instances present to the algorithm. In this situation, the adversary cannot pick thep
smallest weights, since the adversary does not know thep smallest weights. Instead, the adversary
picksp/2 weights at random, from each reflecting set, and constructs an instance with those bits
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Figure 3.2: Comparison of lower bounds and algorithms when there is a large gap between the
normal traffic and malicious samples: no. of updates required before converging to true signature,
as a function of reflecting set

set to 1, and the rest set to 0. The probability that thesenp/2 weights exceedtp/kd is at most 1/2,
which means that the probability that an mistake is caused isat least 1/2, by Markov’s inequality.
Thus, at each step, the algorithm makes a mistake with probability 1/2, and the number of attributes
in each reflecting set reduces tokd/2. Thus, the algorithm makes1/2 log1/2d

m
n mistakes on the

malicious instances in expectation, when the constraint
∑

i,j wi,j > t/d holds. As this can be
set to hold with probability1 − ǫ, for any ǫ > 0, the expected number of mistakes is at least
1
2(1 − ǫ) log1/2d

m
n .

Since these lower bounds are representation-dependent, they cannot be directly compared to
the ones in Section 3.4.2. However, the results for learningoverlap-equivalent linear separators
are comparable to the lower bounds of Theorems 3.1 and 3.2: weknow that the lower bounds of
Theorems 3.1 and 3.2 are tight, and the Winnow algorithm learns a linear separator. We note that
d = n

n−1 , these lower bounds approach those of Section 3.4.2. Thus, when the gap between the
normal traffic and malicious exploits are large, it may be possible to learn with few mistakes.

3.5.4 Practical Implications

The results of this section suggest that pattern-extraction (and similar signature-generation) algo-
rithms would work in practice for some kinds of exploits – they would work better when the overlap
between tokens present in normal traffic and exploits is large. Our analysis suggests an easy way
of quickly quantifying the exploits such algorithms may work well for. In addition, it highlights
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the importance of choosing an appropriate representation to learn from: even if all signatures are
conjunctions of tokens (attributes), choosing a more flexible representation like linear separators
allows the adversary fewer ways to manipulate the algorithm’s behaviour.

Fig. 3.2 also shows that the representations chosen by the learning algorithm determine its
accuracy significantly. It shows the number of updates required to learn the true signature, when
there are 10 tokens in the true signature, and the overlap-ratio is 0.5 (i.e., any normal instance has
at most half the critical tokens). When the reflecting set is 10, algorithms learning conjunctions
still require 50 mistakes, while those learning linear separators require only 5. Conjunctions are
easy for an adversary to manipulate, and therefore can be forced to make far many more errors than
linear separators. The errors on linear separators also illustrate the extent to which the bounds are
weakened with a gap in traffic: the corresponding mistake-bound for arbitrary exploits is about 30.

Of course, normal traffic is difficult to model and may undergorapid changes. It may be
difficult to tell what the overlap-ratio of an exploit might be, and how likely it is to change, and
of course, one cannot predict the overlap-ratios of future exploits. Further, the data captured to
find the overlap-ratio might not be sufficient to identify a very rare token, and one might think that
the overlap-ratio is smaller than it truly is, which would cause false positives. However, if normal
traffic continues to originate from the same kind of distribution as the data captured, such false
positives are likely to be few and infrequent.

3.6 Related Work

As we have discussed pattern-extraction signature-generation algorithms throughout this paper, we
do not discuss them further here. Signature generation algorithms that use semantic information
have taken many different directions; some examples to point at directions are [21, 73, 117, 38, 34].
As it is not immediately clear when reflecting sets would exist if semantic information is used, our
results may not apply to these algorithms. A notable exception is COVERS [78], that uses protocol
semantics, but generates a property that can be manipulatedby the adversary.

We next discuss prior attacks on pattern-extraction algorithms. Perdisci et al. [97] showed
that if the adversary could add malicious noise to suspicious pool and the normal pool, Polygraph
fails to generate good signatures. Paragraph [92], demonstrates that even with a truthful adversary,
Polygraph and Hamsa [77] are vulnerable to attacks. Allergyattacks, forcing many false positives
and DoS against the network, also demonstrated on Polygraphand Hamsa [27]. However, these
papers demonstrate attacks on specific algorithms and systems, while our work shows general
lower bounds. Gundy et al [61] present a different kind of attack showing that polymorphic worms
do not need to have invariant bytes. Our work differs as it shows lower bounds even when there
invariant bytes. A related attack on intrusion detection systems are the polymorphic blending
attacks by Fogla et al. [50]. These attacks match all byte frequency statistics of normal traffic
under consideration by an IDS, and thus evade detection. This is different from our situation, as we
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do already have the appropriate target attributes under consideration, and these do uniquely identify
the exploit. Our work is also complementary to that of Crandall et al [36], as their work explores
the extent to which pattern-based signatures may need to be present at all in the packets containing
exploits. Our work shows that even if they are present, it is quite easy for the adversary to mislead
signature generators.

Finally, we discuss related work in learning in adversarialsettings. The learning theory com-
munity has explored theoretical questions on learning withmalicious adversaries and malicious
noise [69, 10, 23]. In this regard, the most related work is mentioned in Sec. 3.4. Experimentally,
there have been a few studies on learning adverserially. Lowd and Meek [82] study the problem
of an adversary reverse engineering classifiers, and show applications to reverse-engineering spam
filters [95]. Dalvi et al. [39] present a game-theoretic analysis of how an algorithm and adversary
could adapt to each other, and show applications to spam filtering. Barreno et al. [15] examine
when machine learning could be more secure at a more general level, presenting a framework, and
a lower bound on the work that an attacker must to evade an IDS.However, none of this work is
directly applicable to our problem.

3.7 Conclusion

We have shown fundamental limits on the accuracy of a large class of pattern-extraction algorithms
in an adversarial setting. Our work generalizes earlier work on attacks which have focused on
individual algorithms and current systems. We also analyzed and shown conditions under which
pattern-extraction may work. Our results are applicable toother kinds of signature-generation
algorithms that use easily forgeable properties of an exploit.

The results presented in this chapter are joint work with Avrim Blum and Dawn Song, and have
previously appeared at the15th Annual Network and Distributed Systems Security Symposium,
2008 [114].
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Chapter 4

Streaming Algorithms for Fast
Detection of Superspreaders

4.1 Introduction

Internet attacks such as distributed denial-of-service (DDoS) attacks and worm attacks are increas-
ing in severity. Network security monitoring can play an important role in defending against and
mitigating such large-scale Internet attacks – it can be used to detect drastic traffic pattern changes
that may indicate attacks or, more actively, to identify misbehaving hosts or victims being attacked,
in order to throttle attack traffic automatically.

For example, a compromised host doing fast scanning for wormpropagation often makes an
unusually high number of connections to distinct destinations within a short time. The Slammer
worm, for instance, caused some infected hosts to send up to26, 000 scans a second [88]. We call
such a host asuperspreader. (Note that a superspreader may also be known as a port scanner in
certain cases.) By identifying in real-time any source IP address that makes an unusually high num-
ber of distinct connections within a short time, a network monitoring point can identify hosts that
may be superspreaders and take appropriate action. For example, the identified potential attackers
(and victims) can be used to trigger the network logging system to log attacker traffic for detailed
real-time and post-mortem analysis of attacks, in order to throttle subsequent (similar) attack traffic
in real-time.

In this chapter, we study the problem of identifyingsuperspreaders. A superspreader is de-
fined to be a host that contacts at least a given number of distinct destinations within a short time
period. Superspreaders could be responsible for fast worm propagation, so detecting them early
is of paramount importance. Thus, given a sequence of packets, we would like to design an effi-
cient monitoring algorithm to identify in real-time which source IP addresses have contacted a high
number of distinct hosts within a time window.
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(s1, d1), (s2, d2), (s1, d1), (s3, d3), (s1, d1), (s2, d3), (s4, d1), (s2, d4), (s1, d1), (s5, d4), (s6, d6)

Figure 4.1:Example stream of (source, destination) pairs, starting with (s1, d1) and ending with
(s6, d6).

Note that a superspreader is different from the usual definition of a heavy-hitter ([55, 26, 46,
84, 41, 67]). A heavy-hitter might be a source that sends a lotof packets, and thus exceeds a
certain threshold of the total traffic. A superspreader, on the other hand, is a source that contacts
manydistinctdestinations. So, for instance, a source that is involved ina few extremely large file
transfers may be a heavy-hitter, but is not a superspreader.On the other hand, a source that sends
a single packet to many destinations might not create enoughtraffic to be a heavy-hitter, even if
it is a superspreader – some of the sources in our traces that are superspreaders create less than
0.004% of the total traffic analyzed; heavy-hitters typically involve a significantly higher fraction
of the traffic.

It is desirable to be able to do the monitoring on high-speed links, for example, on a large
enterprise network or an ISP network for a large number of home users. A major difficulty with
detecting superspreaders on a high-speed monitoring pointis that the traffic volume on high speed
links can be tens of gigabits per second and can contain millions of flows per minute. In addition,
within such a great number of flows and high volume of traffic, most of the flows may be normal
flows. The attack traffic may be an extremely small portion of the total traffic. Many traditional
approaches require the network monitoring points to maintain per-flow state. Keeping per-flow
state, however, often requires high memory storage, and hence is not practical for high speed links.
We need, therefore, efficient algorithms to find superspreaders that use memory sparingly.

The superspreader problem is an instance of a more general problem that we termheavy
distinct-hitters, which may be formulated as follows: given a stream of(x, y) pairs, find all the
x’s that are paired with a large number of distincty’s. Figure 4.1, for example, depicts a stream
where sources2 is paired with three distinct destinations, whereas all other sources in the stream
are paired with only one distinct destination; thuss2 is a heavy distinct-hitter for this (short) stream.

An algorithm for the heavy distinct-hitters problem has a wide range of networking applica-
tions. Clearly, we can solve the dual of the superspreader problem – finding the destinations which
are contacted by a large number of sources – and such destinations could be victims of DDoS at-
tacks. It can be used to identify which port has a high number of distinct destinations or distinct
source-destination pairs without keeping per-port information and thus aid in detection of attacks
such as worm propagation. Such a port is a heavy distinct-hitter in our setting (x is the port andy
is the destination or source-destination pair). Such an algorithm can also be used to identify which
port has high ICMP traffic, which often indicates high scanning activity and scanning worm propa-
gation, without keeping per-port information. For example, spammers often send the same emails
to many distinct destinations within a short period, and we could identify potential spammers with-
out keeping information for every sender. An algorithm for the heavy distinct-hitter problem may
also be useful in peer-to-peer networks, where it could be used to find nodes that talk to a lot of
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other nodes without keeping per-node information. For simplicity, in the rest of this chapter, we
will describe our algorithms for identifying superspreaders. The algorithms can be easily applied
to the other applications mentioned above.

To summarize, the contributions of our work are the following:

• We propose new streaming algorithms for identifyingsuperspreaders. Our algorithms are
the first to address this problem efficiently and provide proven accuracy and performance
bounds. The best previous approaches [47, 124] require a certain amount of memory to be
allocated for each source [47] or each flow [124] within the time window; we do not keep
state for every source, and thus our algorithms scale very well. We present two algorithms:
the first, a simpler one, which is already much better than existing approaches, and which
we use for base comparison; and the second, a more complex two-level filtering scheme, that
is more space-efficient on commonly-seen distributions. Inaddition, the two-level filtering
scheme may have other applications and be of independent interest.

• We also propose several extensions to enhance our algorithms – we extend our algorithms
to scenarios when deletion is allowed in the stream (Section4.4.1), to the sliding window
scenario (Section 4.4.2), and we propose efficient distributed versions of our algorithms (Sec-
tion 4.4.3). The deletion scenario is especially well-motivated – it can be used to find sources
that have a large number of distinct connection failures (this may be an indication of scan-
ning behavior), rather than just sources that contact a large number of distinct destinations.
That is, once the network monitoring point sees a response from a destination for a connec-
tion from a source, that source-destination pair gets deleted from the count of the number of
distinct connections a source makes.

• Our experimental results on traces with up to 10 million flowsconfirm our theoretical results.
Further, they show that the memory usage of our algorithms issubstantially smaller than
alternative approaches. Finally, we study the effect of different superspreader thresholds on
the performance of the algorithms, again confirming the theoretical analysis.

Note that our contribution is in the proposal of new streaming algorithms to enable efficient
network monitoring for attack detection and defense, whengivencertain parameters. Selecting and
testing the correct parameters, however, is application-dependent and outside of the scope of this
thesis.

Note that we cannot detect a malicious host that spoofs IP addresses and contacts many desti-
nations, since the algorithms will only operate on the input(src, dst) pairs. It is, however, difficult
to engage in TCP-based attacks with IP spoofing. Also, we may need special care when identifying
the connection direction. We can handle this issue in TCP traffic by checking for superspreaders
only in the SYN packets. In UDP traffic, though, this may not be possible, because we may not
be able to distinguish which of the two hosts sent the first packet without extra storage. Thus, in
UDP traffic, we may not be able to distinguish between a superspreader and a source that simply
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respondsto many clients. (In our abstraction, the latter is also a superspreader in case of UDP). In
practice, though, we expect that most sources that typically need to respond to many clients will
remain more or less constant over brief periods of time (e.g.web servers over a few days’ time),
and that it will be easy to identify these sources early, and keep them on a separate list, so that they
do not interfere in network anomaly detection.

The rest of the chapter is organized as follows. Section 4.2 defines the superspreader problem
and discusses previous approaches. Section 4.3 presents and compares two novel algorithms for
the superspreader problem. Section 4.4 presents our extensions to handle distributed monitoring,
deletions, and sliding windows. Section 4.5 presents our experimental results, and Section 4.6
presents conclusions.

4.2 Problem Definition and Previous Approaches

In this section, we present a formal definition of the problemand then discuss the deficiencies of
previous techniques in addressing the problem.

4.2.1 Problem Definition

We define ak-superspreaderas a host which contacts more thank unique destinations within a
given window ofN source-destination pairs. In Figure 4.1, for example, withk = 2, sources2 is
the onlyk-superspreader. Note that there may be as many asN/k k-superspreaders in a given set
of N packets, and reporting them would needΩ(N/k) space. Thus, this gives us a lower bound
on the space bounds needed to find superspreaders. It also follows from a lower bound in [7]
that any deterministic algorithm that accurately estimates (e.g., within 10%) the number of unique
destinations for a source needsΩ(k) space. Because we are interested in small space algorithms,
we must consider instead randomized algorithms.

More formally, given a user-specifiedb > 1 and confidence level0 < δ < 1, we seek to report
source IPs such that a source IP which contacts more thank unique destination IPs is reported
with probability at least1 − δ while a source IP with less thank/b distinct destinations is (falsely)
reported with probability at mostδ. For example, whenk = 500, b = 2 andδ = 0.05, we want to
report any source that contacts at least500 distinct destinations and report no source that contacts
less than250 distinct destinations with probability0.95.

We envision our algorithms to be useful in applications where it is acceptable to report sources
whose distinct destination count is within a factor of 2 (or afactor of 5, 10, etc.) of a superspreader.
For example, if we wish to identify sources involved in fast worm propagation and choosek = 500,
it suffices to setb = 2, as we do not expect to find many sources (in normal traffic) that contact
over250 destinations within a short period. When a much finer distinction needs to be made (when
b approaches1), we will require a very high sampling rate, and there will not be a substantial
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N Total no. of packets in a given time interval
k A superspreader sends to more thank

distinct destinations
b A false positive is a source that contacts

less thank/b distinct destinations but is
reported as a superspreader

δ Probability that a given source becomes a
false negative or a false positive

W Sliding window size
s Source IP address
d Destination IP address

Table 4.1: Summary of notation

reduction in memory usage or computational time.

Also, note that by our problem statement, a source will be identified as a superspreader with
high probability when it has contacted betweenk

b andk destinations. Thus, we will expect to report
the (potential)k-superspreaderbeforeit has contactedk destinations, and so our approach will not
delay the identification of the superspreader.

Table 4.1 summarizes the notation used in this chapter.

4.2.2 Related Work and Previous Approaches

There has been a volume of work done in the area of streaming algorithms (see the surveys in [11,
90]). However, none of this work addresses the problem of identifying superspreaders efficiently.
Perhaps most closely related is the problem of counting the number of distinct values in a stream.
It has been studied by a number of papers (e.g., [7, 12, 13, 30, 40, 49, 56, 57, 47]). The seminal
algorithm by Flajolet and Martin [49] and its variant due to Alon, Matias and Szegedy [7] estimate
the number of distinct values in a stream up to a relative error of ǫ> 1. Cohen [28], Gibbons and
Tirthapura [56], and Bar-Yossef et al. [13] give distinct counting algorithms that work for arbitrary
relative error. More recently, Bar-Yossefet al.[12] improve the space complexity of distinct values
counting on a single stream, and Cormodeet al. [30] show how to compute the number of distinct
values in a single stream in the presence of additionsand deletionsof items in the stream. Gibbons
and Tirthapura [57] give an (ǫ, δ)-approximation scheme for distinct values counting over asliding
windowof the lastN items, usingB = O( 1

ǫ2
log(1/δ) log N log R) memory bits. The algorithm

extends to handle distributed streams, whereB bits are used for each stream.

Previous Approaches: We now discuss existing approaches that may be applied to findsuper-
spreaders and their deficiencies.
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• Approach 1:As a first approach, Snort [100] simply keeps track of each source and the set of
distinct destinations it contacts within a specified time window. Thus, the memory required
by Snort will be at least the total number of distinct source-destination pairs within the time
window, which is impractical for high-speed networks.

• Approach 2:Instead of keeping a list of distinct destinations that a source contacts for each
source, an improved approach may be to use a (randomized) distinct counting algorithm to
keep an approximate count of distinct destinations a sourcecontacts for each source [47].
Along these lines, Estan et al. [47] propose using bitmaps toidentify port-scans. The trig-
gered bitmap construction that they propose keeps a small bitmap for each distinct source,
and once the source contacts more than 4 distinct destinations, expands the size of the bitmap.
Such an approach requiresn ·S space wheren is the total number of distinct sources (which
can beΩ(N)) and S is the amount of space required for the distinct counting algorithm
to estimate its count. These approaches are particularly inefficient when the number ofk-
superspreaders is small and many sources contact far fewer thank destinations.

• Approach 3:The recent work by Weaver et al. [124] proposes an interesting data structure
for finding scanning worms using Threshold Random Walk [65].This data structure may
be adapted to find superspreaders by tracking the number of distinct destinations contacted
in the address cache.1 However, it may not scale well to high-speed links, as it needs to
keep some state for every flow for a period of time (and thus, the memory usage could be
Ω(N)). We present a concrete example for the parameters in [124].The1 MB connection
cache keeps per-flow details, and after seeing1 million flows (in one direction), fewer than
37% of new flows (in the same direction) are expected to map to an unused entry in the
cache.2 When new flows map into an existing entry in the connection cache, the counter for
the source does not get updated. Thus, roughly63% of superspreaders that appear after these
million flows will not be identified (in expectation). With a time-out of10 minutes, a rate
of 1700 flows a second will saturate the1 MB connection cache to this point. If we assume
that these million flows come from distinct sources, and we need to find1000-superspreaders
with b = 2, and error probabilityδ = 0.05, our two-level filtering algorithm needs only an
expected24KB of space. Thus, in this scenario, our algorithm is more accurate and requires
much less space. However, their data structure is designed to find small scans quickly, and
in this case performance of our algorithms will degrade.

• Approach 4: Another approach that has not been previously considered isusing a heavy-
hitter algorithm in conjunction with a distinct-counting algorithm. We use a modified ver-
sion of a heavy-hitter algorithm to identify sources that send to many destinations. Specifi-
cally, whereas heavy-hitters count the number of destinations, we count (approximately) the
number of distinct destinations. This is done using a distinct counting algorithm. In our
experiments we compare with this approach, with LossyCounting [84] as the heavy-hitter

1We refer the reader to [124] for an understanding of the data structure. Here, we just describe how to use it for
detecting superspreaders and what the issues with doing so are.

2Theorems on occupancy problems give these numbers. For details, see [89].
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algorithm, and the first algorithm from [12] as the distinct-counting algorithm. The results
show that our algorithms use much less memory than this approach; the details are in Sec-
tion 4.5.

Other Related Work: A number of papers have proposed algorithms for related problems in
network traffic analysis. Estan and Varghese [46] propose two algorithms to identify the large flows
in network traffic, and give an accurate estimate of their sizes. Estan et al. [45] present an offline
algorithm that computes the multidimensional traffic clusters reflecting network usage patterns.
Duffield et al. [44] show that the number and average length offlows may be inferred even when
some flows are not sampled, and compute the distribution of flow lengths. Golab et al. [58] present
a deterministic single-pass algorithm to identify frequent items over sliding windows. Cormode and
Muthukrishnan [31] present sketch-based algorithms to identify large changes in network traffic.

4.3 Algorithms for Finding Superspreaders

We now propose two efficient algorithms to find superspreaders. We first propose a one-level
filtering algorithm, based on sampling from the set ofdistinct source-destination pairs. We then
present a more complex algorithm based on a novel two-level filtering scheme, which will be more
space-efficient than the one-level filtering algorithm for the distributions that (we expect) will be
more common.

4.3.1 One-level Filtering Algorithm

The intuition for our one-level filtering algorithm for identifying k-superspreaders over a given
interval ofN source-destination pairs is as follows.

We observe that if we sample thedistinct source-destination pairs in the packets such that
each distinct pair is included in the sample with probability p, then any source withm distinct
destinations is expected to occurpm times in the sample. Ifp were 1

k , then anyk-superspreader
(with its m ≥ k distinct destinations) would be expected to occur at least once in the sample,
whereas sources that are notk-superspreaders would be expectednot to occur in the sample. In
this way, we may hope to use the sample to identifyk-superspreaders3.

There are several difficulties with this approach. First, the resulting sample would be a mixture
of k-superspreaders and other sources that got “lucky” to be included in the sample. If there are
nok-superspreaders, for example, the sample will consist onlyof lucky sources. To overcome this,
we setp to be a constant factorc1 larger than1

k . Then, anyk-superspreader is expected to occur

3Note that we are sampling from the set of distinct source-destination pairs, not the set of packets we see; we perform
a computation on every element in the stream – the “sampling”is at a conceptual level. The lower bounds of sampling
approaches on counting distinct values [25] thus do not apply to our approach.
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Figure 4.2: The parametersc1 andr for the one-level filtering scheme.

at leastc1 times in the sample, whereas lucky sources may occur a few times in the sample but
nowhere nearc1 times. To minimize the space used by the algorithm, we seek tomakec1 as small
as possible while being sufficiently large to distinguishk-superspreaders from lucky sources. A
second, related difficulty is that there may be “unlucky”k-superspreaders that fail to appear in the
sample as many times as expected. To overcome this, we have a second parameterr < c1 and
report a source as ak-superspreader as long as it occurs at leastr times in the sample. A careful
choice ofc1 andr is required.

Finally, we need an approach for uniform sampling from thedistinct source-destination pairs.
To accomplish this, we use a random hash function that maps source-destination pairs to[0, 1) and
include in the sample all distinct pairs that hash to[0, p). Thus each distinct pair has probability
p of being included in the sample. Using a hash function ensures that the probability of being
included in the sample is not influenced by how many times a particular pair occurs. On the other
hand, if a pair is selected for the sample, then all its duplicate occurrences will also be selected. To
fix this, our algorithm checks for these subsequent duplicates and discards them.

Algorithm Description: Let srcIP anddstIPbe the source and destination IP addresses, respec-
tively, in a packet. Leth1 be a uniform random hash function that maps (srcIP, dstIP) pairs to [0, 1),
(that is, each input is equally likely to map to any value in[0, 1) independently of other inputs). At
a high level, the algorithm is as follows:

• Retain all distinct (srcIP, dstIP) pairs such thath1(srcIP, dstIP) < c1
k , wherec1 is given in

Figure 4.2.

• Report all srcIPs with more thanr retained, wherer is given by the equations in Fig-
ure 4.2(b).

We can implement the algorithm above using two hash-tables (with c1N
k buckets each): the first

one to detect and discard duplicate pairs from the sample, and the second one to count the number
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of distinct destinations for each source in the sample.

In more detail, the above steps can be implemented as follows. Our implementation has the
desirable property that eachk-superspreader is reported as soon as it is detected. We use two hash
tables: one to detect and discard duplicate pairs from the sample, and the other to count the number
of distinct destinations for each source in the sample. Thislatter hash table uses a second uniform
random hash functionh2 that maps srcIPs to[0, 1).

• Initially: Let T1 be a hash table withc1N/k entries, where each entry contains an initially
empty linked list of (srcIP, dstIP) pairs. LetT2 be a hash table withc1N/k entries, where
each entry contains an initially empty linked list of (srcIP, count) pairs.

• On arrival of a packet with srcIPs and dstIPd: If h1(s, d) ≥ c1/k then ignore the packet.
Otherwise:

1. Check entryc1N
k · h1(s, d) of T1, and insert(s, d) into the list for this entry if it is not

present. Otherwise, it is a duplicate pair and we ignore the packet.

2. At this point we know thatd is a new destination fors, i.e., this is the first time(s, d)
has appeared in the interval. We usec1N

k · h2(s) to look-ups in T2. If s is not found,
insert(s, 1) into the list for this entry, as this is the first destination for s in the sample.
On the other hand, ifs is found, then we increment its count, i.e., we replace the pair
(s,m) with (s,m + 1). If the new count equalsr + 1, we reports. In this way, each
declaredk-superspreader is reported exactly once.

Note that at the end of the interval, the counts inT2 can be used to provide a good estimate
on the number of distinct dstIPs for each reported srcIP (by scaling them up by the inverse of the
sampling rate, i.e., by a factor ofk/c1).

Accuracy Analysis: Our analysis yields the following theorem for precision:

Theorem 4.1. For any givenb > 1, positiveδ < 1, andt such thatb < k < 1, the above algorithm
reports srcIPs such that anyk-superspreader is reported with probability at least1 − δ, while a
srcIP with at mostk/b distinct destinations is (falsely) reported with probability at mostδ.

We defer the detailed proof to the full thesis.

Overhead Analysis: The total space is an expectedO(c1N/k) memory words. The choice ofc1

depends onb. By equation 4.2, we have thatc1 = O(ln(1/δ)( b
b−1 )2) = O((1 + 1

(b−1)2
) ln(1/δ))

for b ≤ 3. For3 < b < 2e2, b is a constant, soc1 = O(ln(1/δ)). For largerb, c1 = O(ln(1/δ)).
Thus across the entire range forb, we havec1 = O((1 + 1

(b−1)2
) ln(1/δ)). This implies that the
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total space is an expectedO
(

N
k ln 1

δ (1 + 1
(b−1)2 )

)

bits. For the typical case whereδ is a constant

andb ≥ 2, the algorithm requires space for onlyO(N/k) memory words.

As for the per-packet processing time, note that each hash table is expected to holdO(c1N/k)
entries throughout the course of the algorithm. Thus each hash table look-up takes constant ex-
pected time, and hence each packet is processed in constant expected time.

We now give some examples to illustrate the one-level filtering algorithm.

Example: In this example, we setk = 1000 and b = 2, which means we are interested in
reporting all sources that contact1000 or more destinations within a given time period, without
reporting any source that contacts less than500 destinations within that time. LetN be the total
number of packets seen in this time period.4 For this, we find numerically thatc1/k = 0.052,
and r = 39 suffice, whenδ = 0.05. Note that this sampling rate implies that in expectation,
94.8% of the packets will simply require one computation (hashingto see if the source-destination
pair falls belowc1/k), and5.2% of the packets will be selected for more processing. To storethe
source-destination pairs with a hash-table of0.052N , each of these selected packets will require (in
expectation) no more than a read and a write of two IP addresses, which is a small computational
overhead. To count the number of distinct destinations for any source in the first hash-table, we
could use another hash-table and have an additional overhead of (at most) 2 reads and 2 writes (an
IP address and a counter) per stored packet.

Note that these quantities donot depend on the distribution of the number of distinct desti-
nations by source. That is, even if nearly every source sent to exactly one destination, the basic
algorithm would have us store5.2% of these sources, where the number0.052 depends onk, b, and
N . We would like to reduce the memory used in storing these non-superspreader sources. Further,
we expect that most traces will have a very large number of sources that contact only a few distinct
destinations, andvery few superspreaders. Can we track the superspreaders accurately without
tracking so many non-superspreaders?

The difficulty here is that the one-level filtering algorithmneeds a certain minimum sampling
rate in order to distinguish between sources that send tok destinations andkb destinations. But
sources that contact only a few destinations also get sampled at this rate. In the next section, we
will effectively reduce the sampling rate of these non-superspreader sources without compromising
on the accuracy of the algorithm for detecting superspreaders.

4.3.2 Two-Level Filtering Algorithm

We now present another algorithm that usestwo levels of filters and is more memory-efficient
than one-level filtering in most cases. At a high level, the algorithm uses two levels of filtering

4In a real setting,N could be determined historically.
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function Two-Level Filtering(s, d)
Level2(s, d); Level1(s, d);

function Level1(s, d)
if(h1(s,d)< r1) inserts into T1

function Level2(s, d)
if (h2(s, d) > r2) return;
if (s /∈ T1) return;
else computep = h2(s,d)

r2

· γ and inserts into T2,p.

function Output
output all sources that appear in more thanω of the hash-tablesT2,i.

Figure 4.3: Two-level filtering pseudocode, where(s, d) represents a source-destination pair.

in the following manner: the first-level filter effectively decides whether we should keep more
information about a particular source, while the second-level filter effectively keeps a small digest
that can then be used to identify superspreaders. The first level has a lower sampling rate than the
second level. Thus intuitively, the first level is a coarse filter that filters out sources that contact
only a small number of distinct destinations, so that we do not need to allocate any memory space
for them. The second level is a more precise filter which uses more memory space, and we only
use it for sources that pass the first filter.

Intuitively, the reason why the two-level filtering algorithm is more space-efficient than the
one-level filtering algorithm is because the sampling rate for thefirst levelof two-level filtering
algorithm is lower than the sampling rate of the one-level filtering algorithm. (To compensate, the
sampling rate for thesecond levelwill need to be a bit higher.) If a source contacts sufficiently many
destinations, it will be sampled (and thus, stored) in both the one-level filtering algorithm and the
two-level filtering algorithm. But if a source contacts onlya few destinations, the probability that
it is sampled (and tracked) in the two-level filtering algorithm is much lower than the probability
that it is sampled (and tracked) in the one-level filtering algorithm. Thus, the two-level filtering
algorithm will store fewer sources that contact very few distinct destinations. It is therefore more
space-efficient when there are many sources that contact only a few distinct destinations.

This type of sampling at multiple levels is a new approach that may be of independent interest.

Algorithm Description: The algorithm takesr1, r2, γ, ω as parameters, wherer1 andr2 repre-
sent the sampling rate in the first and second level respectively, andω is a threshold. Given the
required values fork and b, the values ofr1, r2, γ, ω may be determined as in the analysis of
Theorem 4.2.

We keep one hash-tableT1 at the first level, andγ hash-tables denotedT2,i at the second level.
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Figure 4.4: The rater2 required fork = 1000, δ = 0.01, with varyingb.

Let h1 andh2 be uniform random hash functions that take a source-destination pair and return a
value in[0, 1) as described in the previous section.

For each packet(s, d), the network monitor performs the following operations as given in
pseudocode in Figure 4.3:

• Step 1: First, we computeh2(s, d). If h2(s, d) is greater than rater2, we skip to step 2.
Otherwise, we check to see if the sources is present in the hash-tableT1. If s is not present
in T1, then again, we skip to step 2. Otherwise, we inserts into level 2 as follows: If
h2(s, d) < r2 and s is present inT1, we inserts into the level-2 hash-tableT2,p, where

p = h2(s,d)
r2

· γ. Thus, we inserts into level 2 with at most probabilityr2, and every source
appearing in level 2 appears in level 1.

• Step 2: Ifh1(s, d) is less than rater1, we inserts into T1.

Finally, we output all sources that appear in more thanω of the tablesT2,i.

Optimizations: Note that in the above description, we use hash-tables to store the sampled ele-
ments for ease of explanation. We can easily optimize the storage space in the two-level sampling
further by using Bloom filters instead of hash-tables to store the sampled elements. A discussion
of Bloom filters may be found in [16, 20]. In addition, in the above description, we chose the
probability of inserting a sampled packet into any level-2 hash-tableT2,i to be equal to1/γ, for
simpler description and analysis. We can easily generalizethis to alter the probability of inserting
a sampled packet into any level-2 hash-table to be non-uniform, e.g., an exponential distribution.

Accuracy Analysis Our analysis yields the following theorem for precision:

Theorem 4.2. Givenk, N, b > 1 such thatk/b > 1 and0 < δ < 1. Let z = max( 2b
b−1 , 5). Let

r1 = z
k log 2

δ , andr2 be minimal value that satisfies the following constraints:
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(1) r2 ≥ 2 ln 2/δ

k(1−e−(z−1)/z)ǫ21
, and (2)r2 ≥ ln 1/δ

k(1−e−3/2b)((1+ǫ2) ln(1+ǫ2)−ǫ2)
, whereǫ1 = 1− 1−e−3/2b

1−1/e (1+

ǫ2), ǫ2 > 0, and0 < ǫ1 < 1.

Let ǫ′1 be the value ofǫ1 whenr2 is minimized in the above constraints. Letγ = r2k, and
ω = (1 − ǫ′1)γ(1 − 1

e ).

Then, for any givenb > 1, positiveδ < 1, andk such thatk/b > 1, Algorithm II reports srcIPs
such that anyk-superspreader is reported with probability at least1−δ, while a srcIP with at most
k/b distinct destinations is (falsely) reported with probability at mostδ.

We defer the complete proof to the thesis.

Figure 4.4(b) shows how the required rater2 varies withb. The thresholdω and the number of
hash-tablesγ vary similarly.

The expected space required isO(r1N + r2N). Note that, for a fixedb, both r1 andr2 are
O( 1

k ln 1
δ ), and thus the space required isO(N

k ln 1
δ ).

We may make a similar statement when we use Bloom filters rather than hash-tables to store
sampled elements as described in the optimization above. Using Bloom filters does not affect the
false negative rate, but only the false positive rate. We caneasily reduce the additional false positive
rate caused by the Bloom filter collision by setting the correct parameters of the Bloom filters using
the theorems in [16].

We observe also that the accuracy of both algorithms is independent of the input distribution
of source-destinations pairs, as long as the assumption of uniform random hash function is obeyed.
In addition, note that it is important to pick secret hash functions at run-time each time so that the
attacker cannot generate an input sequence that avoid certain hash values. Also, in practice, we
optimize our choice of the parameters numerically for both algorithms, since the bounds given by
the theorems may have larger constant factors than are strictly necessary.

Example: In this example, we setk = 1000 and b = 2, which means we are interested in
reporting all sources that contact1000 or more destinations, without reporting any source that
contacts less than500 destinations. For this, we find numerically thatr1 = 0.006, r2 = 0.15 and
γ = 100 suffice, whenδ = 0.05. Note that this sampling rate implies that85% of the flows will
need only to be hashed once and incur no memory accesses, and15% of the flows will have to
be additionally processed. The amount of computational overhead that these selected flows incur
will depend on the number of distinct destinations that their respective source contacts, so we will
examine two specific cases:
Case 1:For the sources that contact exactly one distinct destination each, in expectation,0.6% of
the packets will be entered into the first level, and require 1read and 1 write (of one IP address),
and15% of the packets will require exactly 1 read.
Case 2:For any particular superspreader, at most15% of the distinct flows (corresponding to that
superspreader) will require 2 distinct memory locations (1in level-1, 1 in level-2, of 1 IP address
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each, with 2 reads and 1 write).
Note that if the trace contains only sources that contact onedestination each (the first case), the
two-level filtering algorithm has much less overhead than the one-level filtering algorithm, and if
the trace contains only superspreaders (the second case), two-level filtering algorithm has about
three times as much overhead as one-level filtering algorithm. This gives an idea of the trade-off
between the algorithms; we expect that most sources only contact a few distinct destinations, and
thus the traces will resemble the first case far more than the second case.

Using a Bloom filter in both levels will reduce the memory storage required, but increase
the number of accesses that need to be made. If we use a Bloom filter with 8 independent hash
functions at each of the two levels, our memory storage will drop by a constant factor of at least
2.5 (estimating conservatively to account for additional false positives), and our computational
overhead will increase by a factor of 8 – since we will need to make 8 memory accesses for every
memory access of the hash-table implementation.

Note that there could exist as many asN
k superspreaders; thus, for constantb, all our bounds

are within alog 1
δ factor of the asymptotically optimal values.

4.4 Extensions

In this section we show how to extend our algorithms to handledeletions, and sliding windows and
distributed monitoring.

4.4.1 Superspreaders with Deletion

We can extend our algorithms to support streams that includeboth newly arriving (srcIP, dstIP)
pairs and thedeletionof earlier (srcIP, dstIP) pairs. Recall from Section 4.1 that a motivating
scenario for supporting such deletions is finding source IP addresses that contact a high number
of distinct destinations and do not get legitimate replies from a high number of these destinations.
Each in-bound legitimate reply packet with source IPx and destination IPy is viewed as a deletion
of an earlier request packet with source IPy and destination IPx from the corresponding flow, so
that the sourcey is charged for only distinct destinations without legitimate replies.

For the one-level filtering algorithm (Section 4.3.1), a deletion of (s, d) is handled by first
checking to see if(s, d) is in the hash-table. If it is not, thend is already not being accounted for
in s’s distinct destination count, so we can ignore the deletion. Otherwise, we delete(s, d) from
the hash-table. The precision, space, and time bounds are the same as in the case without dele-
tions. Similarly, we can extend the hash-table implementation of the two-level filtering algorithm
to handle deletions as well.5

5Technically, we need a slight modification of the algorithm described earlier; we need to store the destinations as
well at each level-2 hash-table; this may increase the memory required by at most a factor of 2.
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We can also use this approach to find those sources which have more thank failures and fewer
thank/b successes. We could find these sources by computing separately the sources that have at
leastk successes and those that have at leastk failures, and return the appropriate difference.

Note that the definition of ak-superspreader under deletions is not a stable one. At any point
in time, the monitor may have just processed a packet, and have no idea whether this pair will be
subsequently deleted. There may be a source right at thek-superspreader threshold that exceeds
the threshold unless the pair is subsequently deleted. Our algorithms can be readily adapted to
handle a variety of ways of treating this issue. For example,the one-level filtering algorithm can
report a source as atentativek-superspreader when its count inT2 reachesr + 1, and then report
at the end of the interval which sources (still) have counts greater thanr.

4.4.2 Superspreaders over Sliding Windows

In this section, we show how to extend our algorithms to handle sliding windows. Our goal is to
identify k-superspreaders with respect to the most recentW packets, i.e., hosts which contact more
thank unique destinations in the lastW packets. Our goal is to use far less space than the space
needed to hold all the pairs in the current window.

Figure 4.5 gives an example of a stream subject to a sliding window of sizeW = 4. The top
row shows the packets in the sliding window after the arrivalof (s1, d3). The middle row shows
that on the arrival of(s2, d3), the window includes this pair but drops(s1, d1). The bottom row
shows that on the arrival of(s2, d1), the window adds this pair but drops(s1, d2).

What makes the sliding window setting more difficult than thestandard setting is that a packet
is dropped from the window at each step, but we do not have the space to hold on to the packet
until it is time to drop it. This is in contrast to the deletions setting described in Section 4.4.1 where
we are given at the time of deletion the source-destination pair to delete.

In the sliding window setting, a source may transition between being ak-superspreader and
not, as the window slides. In Figure 4.5, for example, suppose that the threshold for being a
k-superspreader is having at least 3 distinct destinations (e.g.,k = 3). Then sources1 is a super-
spreader in the first window, but not the second or third windows.

We show how to adapt one-level filtering algorithm to handle sliding windows. the approach
for two-level filtering algorithm is similar. We keep a running counter of packets that is used to
associate each packet with its stream sequence number (seqNum). Thus if the counter is currently
x, the sliding window contains packets with sequence numbersx −W + 1, . . . , x. At a high level,
the algorithm works by (1) maintaining the pairs in our sample sorted by sequence number, in order
to find inO(1) time sample points that drop out of the sliding window, and (2) keeping track of the
largest sequence number for each pair in our sample, in orderto determine inO(1) time whether
there is at least one occurrence of the pair still in the window.

In further detail, the steps of the algorithm are as follows.
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(s1, d1), (s1, d2), (s2, d2), (s1, d3)
(s1, d2), (s2, d2), (s1, d3), (s2, d3)

(s2, d2), (s1, d3), (s2, d3), (s2, d1)

Figure 4.5: Example stream, showing three steps of a slidingwindow of sizeW = 4. The top row
shows the packets in the sliding window after the arrival of(s1, d3). The middle row shows that
on the arrival of(s2, d3), the window includes this pair but drops(s1, d1). The bottom row shows
that on the arrival of(s2, d1), the window adds this pair but drops(s1, d2).

• Initially: Let L be an initially empty linked list of (srcIP, dstIP, seqNum) triples, sorted by
increasing seqNum. LetT1 andT2 be as in the original one-level filtering algorithm, except
thatT1 now contains (srcIP, dstIP, seqNum) triples.

• On arrival of a packet with srcIPs and dstIPd: Let x be its assigned sequence number.

1. Account for a pair dropping out of the window, if any:If the tail of L is a triple(s, d, n)
such thatn = x − W , then remove the triple fromL and check to see if the triple
exists in entryc1N

k · h1(s, d) of T1. If the triple exists, then becauseT1 holds the latest
sequence numbers for each source-destination pair in the sample, we know that(s, d)
will not exist in the window after dropping(s, d, n). Accordingly, we perform the
following steps:

(a) Remove the triple fromT1.

(b) Use c1N
k · h2(s) to look-ups in T2, and decrement the count of this entry inT2,

i.e., replace the pair(s,m) with (s,m − 1).

(c) If the new count equals 0, we know that the source no longerappears in the sample
and we remove the pair fromT2.

On the other hand, if the triple does not exist, then there is some other triple(s, d, n′)
corresponding to a more recent occurrence of(s, d) in the stream (n < n′). Thus drop-
ping (s, d, n) changes neither the sampled pairs nor the source counts, so we simply
proceed to the next step.

2. Account for the new pair being included in the window:If h1(s, d) ≥ c1/k ignore the
packet. Else:

(a) Check entryc1N
k · h1(s, d) of T1 for a triple withs andd. If such an entry exists,

replace it with(s, d, x), maintaining the invariant that the entry has the latest se-
quence number, and return to process the next packet. Otherwise, insert(s, d, x)
into the list for this entry.

(b) At this point we know thatd is a new destination fors, i.e., this is the first time
(s, d) has appeared in the window. We usec1N

k · h2(s) to look-ups in T2. If s is
not found, insert(s, 1) into the list for this entry, as this is the first destination for
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Stream 1: (s1, d1), (s2, d2), (s3, d3), (s4, d4)
Stream 2: (s2, d3), (s1, d1), (s1, d1), (s3, d2)
Stream 3: (s4, d2), (s4, d4), (s2, d4), (s4, d3)

Figure 4.6: Example streams at 3 monitoring points

s in the sample. On the other hand, ifs is found, then we increment its count, i.e.,
we replace the pair(s,m) with (s,m+1). If the new count equalsr+1, we report
s.

The precision, time and space bounds are the same as in one-level filtering algorithm of Sec-
tion 4.3.1 withW substituted forN .

Note that the algorithm is readily modified to handle slidingwindows based on time, e.g., over
the last 60 minutes, by using timestamps instead of sequencenumbers. The precision, time and
space bounds are unchanged, except that the time is now an amortized time bound instead of an
expected one. This is because multiple pairs can drop out of the window during the time between
consecutive arrivals of new pairs. If more than a constant number of pairs drop out, then the
algorithm requires more than a constant amount of time to process them. However, each arriving
pair can drop out only once, so the amortized per-arrival cost is constant.

4.4.3 Distributed Superspreaders

In the distributed setting, we would like to identify sourceIP addresses that contact a large number
of unique hosts in the union of the streams monitored by a set of distributed monitoring points.
Consider for example, the three streams in Figure 4.6 andk = 3. Sourcess1, s2, s3, ands4 contact
1, 3, 2, and 3 distinct destinations, respectively. Thus forthe total ofN = 12 source-destination
pairs, onlys2 ands4 arek-superspreaders.

Note that a source IP address may contact a large number of hosts overall, but only a small
number of hosts in any one stream. Sources2 in Figure 4.6 is an example of this. A key challenge
is to enable this distributed identification while having only limited communication between the
monitoring points.

We describe how to modify our one-level filtering algorithm to work in a distributed setting.
First, each network monitor runs the algorithm as describedin Section 4.3.1 (all using the same
hash function, and with appropriately sized hash-tables, say c1N/kj if each of thej monitors
expects to seeN/j packets). The monitor reports any locally detected superspreader. Next, at the
end of the stream, each monitor sends its hash-table of(s, d) pairs to the central monitor. Finally,
the central monitor treats these hash-tables as a stream of(s, d) pairs, and using the same hash
function, runs the algorithm on this stream, and reports anysuperspreader found.

The overall space and time overhead of first step above summedover all the monitors is the
same as if one monitor monitors the union of the streams. The second step requires a total amount
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of communication equal to the sum of the space for the hash-tables, i.e., an expectedO(c1N/k)
memory words. Accounting for the last step increases the total space and time by at most a factor
of 2. Note that the algorithm does not require that all streams use an interval ofN/j packets.
As long as there are exactlyN packets in all, the algorithm achieves the precision boundsgiven
in Theorem 4.1. Thus our distributed one-level filtering algorithm uses little memory and little
communication. On the other hand, a similar extension to thetwo-level filtering algorithm results
in more communication in the distributed setting – specifically, at each step, the monitors would
need to have access to all the (individual) first-level hash-tables, which results in significant increase
in communication between monitors.

4.5 Experimental Results

We implemented our algorithms for finding superspreaders, and we evaluated them on network
traces taken from the NLANR archive [94], after they were injected with appropriate superspread-
ers as needed. All of our experiments were run on an Intel Pentium IV, 1.8GHz. We use the
OPENSSLimplementation of theSHA1hash function, picking a random key during each run, so
that the attacker cannot predict the hashing values. For a real implementation, one can use a more
efficient hash function. Both algorithms are implemented sothat the superspreaders get output at
the end of the run, once all the packets have been processed. We ran our experiments on several
traces and obtained similar results. Our results show that our algorithms are fast, have high preci-
sion, and use a small amount of memory. On average, the algorithms take on the order of a few
seconds for a hundred thousand to a million packets (with a non-optimized implementation).

In this section, we first examine the precision of the algorithms experimentally, then examine
the memory used ask, b andN change, and finally compare with the alternate approach proposed
in Section 4.2.2.

4.5.1 Experimental evaluation of precision

To illustrate the precision of the algorithms, we show a set of experimental results below. To the
base trace 1 (see Figure 4.8), we inserted various attack packets where some sources contacted a
high number of distinct destinations. That is, for given parametersk andb, we added100 sources
that send tok destinations each, and100 sources that send to just underk/b destinations each. This
was done in order to test if our algorithms do indeed distinguish between sources that send to more
thank destinations and fewer thank/b destinations.

We setδ = 0.05. In Figure 4.7, we show the results of our experiments, with regards to
precision of the algorithms. We examine the correctness of our algorithm by comparing it against
an exact calculation of the number of distinct destinationseach source contacts. We optimize
our choice of the other parameters numerically for both algorithms (in a manner suggested by the
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k b False Positives False Negatives
1-Level 2-Level 1-Level 2-Level

500 2 8.1e-5 6.3e-5 0 0
500 5 1.13e-4 1.13e-4 0 0
500 10 1.35e-4 8.1e-5 0.01 0
1000 2 4.95e-5 1.13e-4 0.02 0
1000 5 1.62e-4 0 0.02 0.02
1000 10 1.13e-4 9.45e-5 0 0.03
5000 2 8.1e-5 0 0 0
5000 5 4.95e-5 1.62e-5 0 0
5000 10 3.19e-5 1.62e-5 0 0.01
10000 2 1.62e-4 0 0.02 0
10000 5 3.2e-5 0 0.01 0
10000 10 1.62e-5 3.2e-5 0.04 0

Figure 4.7: Evaluation of the precision of one-level filtering and two-level filtering algorithms over
various settings fork andb, with δ = 0.05.

analysis of the theorems), since the bounds given by the theorems may have larger constant factors
than are strictly necessary.

We observe that the accuracy of both algorithms is comparable and bounded byδ, which con-
firms our theoretical results. Note that using a smaller value of δ would produce a smaller false
positive rate and false negative rate. We note that the falsepositive rate is much lower than the
false negative rate. Our sampling rates are chosen to distinguish sources that send tok destinations
from sources that send tok/b destinations with error rateδ. When a source sends to a very small
number of destinations (much smaller thank/b), the probability that it becomes a false positive is
significantly lower thanδ. Likewise, when a source sends to a very large number of destinations
(≫ k), the probability that it becomes a false negative is much less thanδ. Through the construc-
tion of our traces, there are only a100 possible sources that may be false negatives, and all of them
send to just overk destinations. There are many more sources that could be false positives, and
only a 100 of these sources send to nearlyk/b destinations. Thus, the false positive rate that is
seen is much less than the setδ. Further,all of the false positives in our experiments come from
the sources at the threshold that we added, not the original trace itself. The false positive rate is
typically of much more importance than the false negative rate, since there are usually many more
sources that could be false positives than sources that could be false negatives. Thus, it is very
useful to verify that the false positive rate is much lower than the statedδ in real traces, and that
the false positives observed do come only from the inserted traffic at the threshold.
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Length No. distinct No. distinct N (no. of
(in sec) sources src-dst pairs packets)

1 65 59,862 194,060 2.88e6

2 154 282,484 416,730 3.09e6

3 207 1.21e6 1.35e6 4.02e6

4 269 2.12e6 2.29e6 4.49e6

Figure 4.8: Base traces used for experiments

4.5.2 Memory usage on long traces

We now examine memory used on very long traces by one-level filtering algorithm (Section 4.3.1)
and the hash-table and Bloom-filter implementations of the two-level filtering algorithm (Section
4.3.2). To distinguish the two implementations of the two-level filtering algorithm, we will refer
to the hash-table implementation as 2LF-T, and the Bloom-filter implementation as 2LF-B. We
will use 1LF to refer to the one-level filtering algorithm. Weexamine the memory used as the
parametersk, b andN are allowed to vary. The memory usage reported is the number of elements
actually stored, which is always very close to the size of thehash-tables. (The size of each hash-
table set to be the expected number of elements that will be inserted, based on the sampling rates
andN .) For the bloom filter implementation, we use 8 independent hash functions.

The traces used for this section are constructed by taking four base traces of varying lengths,
and adding to each of them a hundred sources that send tok destinations, and a hundred sources
that send tok/b destinations. The details of the base traces are shown in Figure 4.8. We observe
that, with the largest of these traces, a source that sends to200 distinct destinations contributes
just about0.004% to the total traffic analyzed. The memory used is the number ofwords (or IP
addresses) that need to be stored.

The graphs in Figure 4.9 show the total memory used by each algorithm plotted against the
number of distinct sources in the trace, at different valuesof b. Notice that through our trace
construction procedure, the traces in Figure 4.9(a), 4.9(b), and 4.9(c) contain the same number of
distinct sources, even though the value ofb differs.

We observe that the memory used by the two algorithms is strongly correlated withb, as pointed
out by our theoretical analysis. For both algorithms, the memory required decreases sharply asb
increases from2 to 5, and then decreases more slowly. This can also be seen (for 2LF) from
Figure 4.4, in section 4.3.2.

Another observation is that, as expected, the memory used by1LF eventually exceeds the
memory used by 2LF-T & 2LF-B, for every value ofb. The number of sources at which the
memory used by 1LF exceeds the memory used by 2LF-T & 2LF-B also depends onb. We also
note that, as expected, the memory used by 2LF-B is much less than the memory used by 2LF-T
and 1LF .
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(b) b = 5
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(c) b = 10

Figure 4.9: Total memory used by the algorithms in words (i.e., IP addresses) vs number of distinct
sources, forb = 2, 5 and10, atk = 200.
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(a) k = 500
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(b) k = 1000
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(c) k = 5000

Figure 4.10: Total memory used by the algorithms in words (i.e., IP addresses) vs number of
distinct sources, fork = 500, 1000 and5000, atb = 2.
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We next examine the memory usage ask changes, which is shown in Figures 4.10 and 4.11.
We observe that the total memory used drops sharply ask increases, as expected: in 4.10(a), at
k = 500, the memory used ranges from20, 000 to 200, 000 IP addresses; in 4.10(c), atk = 5000,
it ranges from10, 000 to 55, 000 IP addresses. Even though the number of source-destinationpairs
increases whenk increases, we can afford to sample much less frequently. This in turn decreases
the number of sources stored that have very few destinations, and thus the total memory used
decreases.

Also, for everyk, as the number of packetsN increases, the memory used by 1LF eventually
exceeds the memory used by 2LF-T & 2LF-B. This is because of the two-level sampling scheme.
Since the first sampling rater1 is much smaller thanc1/k in 1LF , the number of non-superspreader
sources stored in 2LF-T & 2LF-B (r1N in expectation) is much less than in 1LF . The actual
number of sources at which this occurs depends onk. As k increases, the number of sources at
which the memory used by 1LF exceeds the memory used by 2LF-T (and 2LF-B) also increases,
since the sampling rates for both algorithms decrease in thesame way. We also observe that, once
again, the memory used by 2LF-B is significantly lower than 1LF and 2LF-T.
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Figure 4.11: Memory used per source vs number of distinct sources, for allk, by 1LF , 2LF-T, &
2LF-B atb = 2.

The graphs in Figure 4.11 show the memory used per source plotted against the number of
distinct sources, for variousk – ask increases, the total memory used drops. We observe that
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b 1LF 2LF-T 2LF-B Alt I Alt II
Trace 1

2 37610 16234 7223 49063 105589
5 9563 3241 1377 20746 48424
10 5685 2698 1136 16839 36823

Trace 2
2 71852 17536 7711 133988 273101
5 19298 4543 1865 76543 168256
10 12030 4000 1624 67007 135540

Figure 4.12: Comparisons of total memory used with traces 1 &2 for k = 1000 and varyingb.

each algorithm has a similar dependence onk, though the absolute memory usage is different, as
discussed.

Lastly, we tested both 1LF and 2LF-T on a trace with 10 millionsources that contacted a few
destinations each. Atk = 1000 andb = 2, the memory usage of 1LF and 2LF-T were about 1.04
million and 60,100 IP addresses respectively. Thus, we see that our algorithms do indeed scale
well as the number of flows increases.

4.5.3 Comparison with an Alternate Approach

We now show results comparing our approach to the Approach 4 described in Section 4.2.2: we
count the number of distinct destinations that a source sends to using LossyCounting [84], replacing
the regular counter with a distinct-element counter. We do not show experimental comparisons with
the other approaches as they all keep per-flow state, and so, it is clear that they need far more space
than our algorithms.

We chose the parameters for LossyCounting and the distinct counting algorithm so that (a)
the memory usage was minimized for eachb and (b) the false positive and false negative rates
were similar to (but at least as large as) the results of our algorithm over 10 iterations; we ensured
this by slowly reducing the memory used by the alternate algorithms until the error rates were
just slightly larger than our algorithm, in order to make a comparison that was favourable to the
alternate algorithms. We show experimental results with two variants of the approach: (1) use one
distinct counter per source (this is Alt I), and (2) uselog 1

δ distinct counters per source, and use
their median for the estimate of the number of distinct elements is used (this is Alt II). The memory
used is reported as the maximum of the total number of hash values stored for all the sources at any
particular time.

Figure 4.12 shows the result of the comparison of memory usage atk = 1000, for b = 2, 5 and
10, on Trace 1 & Trace 2. Note that all our algorithms show betterperformance than Alt I and Alt
II on Traces 1 & 2. The results for Trace 3 & Trace 4 are similar,except that Alt I uses less memory
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than 1LF whenb = 2.

4.6 Conclusion

In this chapter, we have described new streaming algorithmsfor identifying superspreaders on
high-speed networks. Our algorithms give proven guarantees on the accuracy and the memory
requirements. Compared to previous approaches, our algorithms are substantially more efficient,
both theoretically and experimentally. We also provide several extensions to our algorithms – we
can identify superspreaders in a distributed setting, overthe sliding windows, and when deletions
are allowed in the stream (which lets us identify sources that make a large number of failed con-
nections to distinct destinations). Our algorithms have many important networking and security
applications. We also hope that our algorithms will shed newlight on developing new fast stream-
ing algorithms for high-speed network monitoring.

The results presented in this chapter are joint work with Dawn Song and Phillip Gibbons and
Avrim Blum, and have previously appeared at the12th Annual Network and Distributed Systems
Security Symposium, 2005 [116].
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Chapter 5

Exploiting IP-based Network Structure
for Spam Mitigation

5.1 Introduction

E-mail has emerged as an indispensable and ubiquitous meansof communication today. Unfor-
tunately, the ever-growing volume of spam diminishes the efficiency of e-mail, and requires both
mail server and human resources to handle.

Great effort has focused on reducing the amount of spam that the end-users receive. Most
Internet Service Providers (ISPs) operate various types ofspam filters [1, 4, 5, 62] to identify and
remove spam e-mails before they are received by the end-user. E-mail software on end-hosts adds
an additional layer of filtering to remove this unwanted traffic, based on the typical email patterns
of the end-user.

Much less attention has been paid to how the large volume of spam impacts the mail infrastruc-
ture within an ISP, which has to receive, filter and deliver them appropriately. Spammers have a
strong incentive to send large volumes of spam – the more spamthey send, the more likely it is that
some of it can evade the spam filters deployed by the ISPs. It iseasy for the spammer to achieve
this – by sending spam using large botnets, spammers can easily generate far more messages than
even the largest mail servers can receive. In such conditions, it is critical to understand how the
mail server infrastructure can be made to prioritize legitimate mail, processing it preferentially over
spam.

In this context, the requirements for differentiating between spam and non-spam are slightly
different from regular spam-filtering. The primary requirement for regular spam-filtering is to be
conservative in discarding spam, and for this, computational cost is not usually a consideration.
However, when the mail server must prioritize the processing of legitimate mail, it has to use
a computationally-efficient technique to do so. In addition, in this situation, even an imperfect
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distinction criterion would be useful, as long as a significant fraction of the legitimate mail gets
classified correctly.

In our work, we explore the potential of using the historicalbehaviour of IP addresses to predict
whether an incoming email is likely to be legitimate or spam.Using IP addresses for classification
is computationally substantially more efficient than any content-based techniques. IP address infor-
mation can also be collected easily and is more difficult for aspammer to obfuscate. Our measure-
ment studies show that IP address information provides a stable discriminator between legitimate
mail and spam. We find that good mail servers send mostly legitimate mail and are persistent for
significant periods of time. We also find that the bulk of spam comes from IP prefixes that send
mostly spam and are also persistent. With these two findings,we can use the properties ofboth
legitimate mail and spam together, rather than using the properties of only legitimate mail or only
spam, in order to prioritize legitimate mail when needed.

We show that these measurements are valuable in an application where legitimate mail must be
prioritized. We focus on the situation when mail servers areoverloaded, i.e., they receive far more
mail than they can process, even though the legitimate mail received is a tiny fraction of the total
received. Since mail typically gets dropped at random when the server is overloaded, and spam
can be generated at will, the spammer has an incentive to overload the server. Indeed, the optimal
strategy for the spammer is to increase the load on the mail infrastructure to a point where the most
spam will be accepted by the server; this kind of behaviour has been observed on the mail servers
of large ISPs. In this work, we show an application of our measurement study to design techniques
based on the reputations of IP addresses and their aggregates and demonstrate the benefits to the
mail server overload problem.

Our contributions are two-fold. We first perform an extensive measurement study in order to
understand some IP-based properties of legitimate mail andspam. We then perform a simulation
study to evaluate how we can use these properties to prioritize legitimate mail when the mail server
is overloaded.

Our main results are the following:

• We find that a significant fraction of legitimate mail comes from IP addresses that last for a
long time, even though a very significant fraction of spam comes from IP addresses that are
ephemeral. This suggests that the history of “good” IP addresses, that is, IP addresses that
send mostly legitimate mail, could be used for prioritizingmail in spam mitigation.

• We explorenetwork-aware clustersas a candidate aggregation scheme to exploit structure
in IP addresses. Our results suggest that IP addresses responsible for the bulk of the spam
are well-clustered, and that the clusters responsible for the bulk of the spam are persistent.
This suggests that network-aware clusters may be good candidates to assign reputations to
unknown IP addresses.

• Based on our measurement results, we develop a simple reputation scheme that can prioritize
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IP addresses when the server is overloaded. Our simulationsshow that when the server
receives many more connection requests than it can process,our policy gives a factor of 3
improvement in the number of legitimate mails accepted overthe state-of-the-art.

We note that the server overload problem is just one application that illustrates how IP informa-
tion could be used for prioritizing email. This informationcould be used to prioritize e-mail at ad-
ditional points of the mail server infrastructure as well. However, the kind of structural information
that is reflected in the IP addresses may not always be a perfect discriminator between spammers
and senders of legitimate mail, and this is, indeed, reflected in the measurements. Such structural
IP information could, therefore, be used in combination with other techniques in a general-purpose
spam mitigation system, and this information is likely to beuseful by itself only when an aggressive
and computationally-efficient technique is needed.

The remainder of the chapter is structured as follows. We present our analysis of characteristics
of IP addresses and network-aware clusters that distinguish between legitimate mail and spam in
Sections 5.2 and 5.3 respectively. We present and evaluate our solution for protecting mail servers
under overload in Section 5.4. We review related work in Section 5.5 and conclude in Section 5.6.

5.2 Analysis of IP-Address Characteristics

In this section, we explore the extent to which IP-based identification can be used to distinguish
spammers from senders of legitimate e-mail based on differences in patterns of behaviour.

5.2.1 Data

Our data consists of traces from the mail server of a large company serving one of its corporate
locations with approximately 700 mailboxes, taken over a period of 166 days from January to June
2006. The location runs a PostFix mail server with extensivelogging that records the following: (a)
every attempted SMTP connection, with its IP address and time stamp, (b) whether the connection
was rejected, along with a reason for rejection, (c) if the connection was accepted, results of ad-
ditional mail server’s local spam-filtering tests, and if accepted for delivery, the results of running
SpamAssassin.

Fig. 5.1(a) shows a daily summary of the data for six months. It shows four quantities for
each day: (a) the number of SMTP connection requests made (including those that are denied via
blacklists), (b) the number of e-mails received by the mail server, (c) the number of e-mails that
were sent to SpamAssassin, and (d) the number of e-mails deemed legitimate by SpamAssassin.
The relative sizes of these four quantities on every day illustrate the scale of the problem: spam is
20 times larger than the legitimate mail received. (In our data set, there were 1.4 million legitimate
messages and 27 million spam messages in total.) Such a sharpimbalance indicates the potential
of a significant role for applications like maximizing legitimate mail accepted when the server is
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overloaded: if there is a way to prioritize legitimate mail,the server could handle it much more
quickly, because the volume of legitimate mail is tiny in comparison to spam.

In the following analysis, every message that is consideredlegitimate by SpamAssassin is
counted as a legitimate message; every message that is considered spam by SpamAssassin, the
mail server’s local spam-filtering tests, or through denialby a blacklist is counted as spam.

5.2.2 Analysis of IP Addresses

We first explore the behaviour of individual IP addresses that send legitimate mail and spam, with
the goal of uncovering any significant differences in their behavioral patterns.

Our analysis focuses on theIP spam-ratioof an IP address, which we define to be the frac-
tion of mail sent by the IP address that is spam. This is a simple, intuitive metric that captures
the spamming behaviour of an IP address: a low spam-ratio indicates that the IP address sends
mostly legitimate mail; a high spam-ratio indicates that the IP address sends mostly spam. Our
goal is to see whether the historical communication behaviour of IP addresses categorized by their
spam-ratios can differentiate between IP addresses of legitimate senders and spammers, for spam
mitigation.

As discussed earlier, the differentiation between the legitimate senders and spammers need
not be perfect; there are benefits to having even a partial differentiation, especially with a simple,
computationally inexpensive feature. For example, in the server overload problem, when all the
mail cannot be accepted, a partial separation would still help to increase the amount of legitimate
mail that is received.

In the IP-based analysis, we will address the following questions:

• Distribution by IP Spam Ratio: What is the distribution of IP addresses by their spam-ratio,
and what fraction of legitimate mail and spam is contributedby IP addresses with different
spam-ratios?

• Persistence: Are IP addresses with low/high spam-ratios present acrosslong time periods? If
they are, do such IP addresses contribute to a significant fraction of the legitimate mail/spam?

• Temporal Spam-Ratio Stability: Do many of the IP addresses that appear to be good on
average fluctuate between having very low and very high spam-ratios?

The answers to these three questions, taken together, give us an idea of the benefit we could
derive in using the history of IP address behaviour in spam mitigation. We show in Sec. 5.2.2,
that most IP addresses have a spam-ratio of0% or 100%, and also that a significant amount of the
legitimate mail comes from IP addresses whose spam-ratio exceeds zero. In Sec. 5.2.2, we show
that a very significant fraction of the legitimate mail comesfrom IP addresses that persist for a long
time, but only a tiny fraction of the spam comes from IP addresses that persist for a long time. In
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Sec. 5.2.2, we show that most IP addresses have a very high temporal ratio-stability – they do not
fluctuate between exhibiting a very low or very high daily spam-ratio over time.

Together, these three observations suggest thatidentifying IP addresses with low spam ratios
that regularly send legitimate mailcould be useful in spam mitigation and prioritizing legitimate
mail. In the rest of this section, we present the analysis that leads to these observations. For con-
creteness, we focus on how the analysis can help spam mitigation in the server overload problem.
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Figure 5.1: 1(a): Daily summary of the data set over 6 months.1(b): CDFs of IP spam-ratios for
many different days.

Distribution by IP Spam-Ratio

In this section, we explore how the IP addresses and their associated mail volumes are distributed
as a function of the IP spam-ratios. We focus here on the spam-ratio computed over a short time
period in order to understand the behaviour of IP addresses without being affected by their possible
fluctuations in time. Effectively, this analysis shows the limits of the differentiation that could be
achieved by using IP spam-ratio, even assuming that IP spam-ratio could be predicted for a given
IP address over short periods of time. In this section, we focus on day-long intervals, in order to
take into account possible time-of-day variations. We refer to the IP spam-ratio computed over a
day-long interval as thedaily spam-ratio.

Intuitively, we expect that most IP addresses either send mostly legitimate mail, or mostly spam,
and that most of the legitimate mail and spam comes from theseIP addresses. If this hypothesis
holds, then for spam mitigation, it will be sufficient if we can identify the IP addresses as senders
of legitimate mail or spammers. To test this hypothesis, we analyze the following two empirical
distributions: (a) the distribution of IP addresses as a function of the spam-ratios, and (b) the
distribution of legitimate mail/spam as a function of theirrespective IP addresses’ spam-ratio.
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We first analyze the distribution of IP addresses by their daily spam-ratios in Fig. 5.1(b). For
each day, it shows the empirical cumulative distribution function (CDF) of the daily spam-ratios of
individual IP addresses active on that day. Fig. 5.1(b) shows this daily CDF for a large number of
randomly selected days across the observation period.

Result 1. Distribution of IP addresses: Fig. 5.1(b) indicates: (i) Most IP addresses, send either
mostly spam or mostly legitimate mail. (ii) Fewer than1 − 2% of the active IP addresses have a
spam-ratio of between1%− 99%, i.e., there are very few IP addresses that send a non-trivial frac-
tion of both spam and legitimate mail. (iii) Further, the vast majority (nearly90%) of IP addresses
on any given day generate almost exclusively spam, and have spam-ratios between99% − 100%.

The above results indicate that identifying IP addresses with low or high spam-ratios could
identify most of the legitimate senders and spammers. In addition, for some applications (e.g., the
mail server overload problem), it would be valuable to identify the IP addresses that send the bulk
of the spam or the bulk of the legitimate mail, in terms of mailvolume. To do so, we next explore
how the daily legitimate mail or spam volumes are distributed as a function of the IP spam-ratios,
and the resulting implications.

Let Ik denote the set of all IP addresses that have a spam-ratio of atmostk. Fig. 5.2 examines
how the volume of legitimate mail and spam sent by the setIk depends on the spam-ratiok. Specif-
ically, let Li(k) andSi(k) be the fractions of the total daily legitimate mail and spam that comes
from all IPs in the setIk, on dayi. Fig. 5.2(a) plotsLi(k) averaged over all the days, along with
confidence intervals. Fig. 5.2(b) shows the corresponding distribution for the spam volumeSi(k).

Result 2. Distribution of legitimate mail volume: Fig. 5.2(a) shows that the bulk of the legitimate
mail (nearly70% on average) comes from IP addresses with a very low spam-ratio (k ≤ 5%).
However, a modest fraction (over7% on average) also comes from IP addresses with a high spam-
ratio (k ≥ 80%).

Result 3. Distribution of spam volume: Fig. 5.2(b) indicates that almost all (over99% on aver-
age) of the spam sent every day comes from IP addresses with anextremely high spam-ratio (when
k ≥ 95%). Indeed, the contribution of the IP addresses with lower spam-ratios (k ≤ 80%) is a
tiny fraction of the total.

We observe that the distribution of legitimate mail volume as a function of the spam-ratiok
is more diffused than the distribution of spam volume. Thereare two possible explanations for
such behaviour of the legitimate senders. First, spam-filtering software tends to be conservative,
allowing some spam to marked as legitimate mail. Second, a lot of legitimate mail tends to come
from large mail servers that cannot do perfect outgoing spam-filtering. These mail servers may,
therefore, have a slightly higher IP spam-ratio, and this would cause the distribution of legitimate
mail to be more diffused across the spam-ratio.

Together, the above results suggest that the IP spam-ratio may be a useful discriminating feature
for spam mitigation As an example, assume that we have a classification function that accepted
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Figure 5.2: Legitimate mail and spam contributions as a function of IP spam-ratio.

(or prioritized) all IP addresses with a spam-ratio of at most k and rejected all IP addresses with a
higher spam-ratio. Then, if we setk = 95%, we could accept (or prioritize) nearly all the legitimate
mail, and no more than1% of the spam. However, such a classification function requires perfect
knowledge of every IP address’s daily spam-ratio every single day, and in reality, this knowledge
may not be available.

Instead, our approach is to identify properties that occur over longer periods of time, and are
useful for predicting the current behaviour of an IP addressbased on long-term history, and these
properties are incorporated into classification functions. The effectiveness of such history-based
classification functions for spam mitigation depends on theextent to which IP addresses are long-
lived, how much of the legitimate email or spam are contributed by the long-lived IP addresses, and
to what extent the spam-ratio of an IP address varies over time. Sec. 5.2.2 and Sec. 5.2.2 explore
these questions.

For the following analysis, we focus on the spam-ratio of each individual IP address, computed
over the entire data set, since we are interested in its behaviour over its lifetime. We refer to this as
the lifetime spam-ratioof the IP address. We show the presence of two properties in this analysis:
(i) a significant fraction of legitimate mail comes from goodIP addresses that last for a long time
(persistence), and (ii) IP addresses that are good on average tend to have alow spam-ratio each time
they appear (temporal stability). These two properties directly influence how effective it would be
to use historical information for determining the likelihood of spam coming from an individual IP
address.

Persistence

Due to the community structure inherent in non-spam communication patterns, it seems reasonable
that most of the legitimate mail will originate from IP addresses that recur frequently. Previous
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studies have also indicated that most of the spam comes from IP addresses that are extremely short-
lived. These suggest the existence of a potentially significant difference in the behaviour of senders
of legitimate mail and spammers with respect to persistence. We next quantify the extent to which
these hypotheses hold, by examining the persistence of individual IP addresses.

Our methodology for understanding the persistence behavior of IP addresses is as follows:
we consider the set of all IP addresses with a low lifetime spam-ratio and examine how much
legitimate mail they send, as well as how much of the legitimate mail is sent by IP addresses that
are present for a long time. Such an understanding can indicate the potential of using a whitelist-
based approach for prioritizing legitimate mail. If, for instance, the bulk of the legitimate mail
comes from IP addresses that last for a long time, we could usethis property to prioritize legitimate
mail from long-lasting IP addresses with low spam-ratios.
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Figure 5.3: Persistence ofk-good IP addresses.

For this analysis, we use the following two definitions.

Definition 1. A k-good IP addressis an IP address whose lifetime spam-ratio is at mostk. A
k-good setis the set of allk-good IP addresses. Thus, a20-good set is the set of all IP addresses
whose lifetime spam-ratio is no more than20%.

We compute (a) the number ofk-good IP addresses present for at leastx distinct days, and
(b) the fraction of legitimate mail contributed byk-good IP addresses that are present in at leastx
distinct days.1 Fig. 5.3(a) shows the number of IP addresses that appear in atleastx distinct days,
for several different values ofk.

1Our analysis considers persistence of IP addresses only in our data set, i.e., it considers whether the IP address has
sent mail forx days to our mail server. These IP addresses may have sent mailto other mail servers on more days, and
combining data across multiple different mail servers may give a better picture of stablility of IP addresses sending mail.
Nevertheless, in this work, we focus on the persistence in one data set, as it highlights behavioural differences due to
community structure present within a single vantage point.
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Fig. 5.3(b) shows the fraction of the total legitimate mail that originates from IP addresses that
are in thek-good set and appear in at leastx days, for each thresholdk.

Most of the IP addresses in ak-good set are not present very long, and the number of IP
addresses falls quickly, especially in the first few days. However, their contribution to the legitimate
mail drops much more slowly asx increases. The result is that the few longer-lived IPs contribute
to most of the legitimate mail from ak-good set. For example, only 5% of all IP addresses in
the20-good set appear at least 10 distinct days, but they contribute to almost 87% of all legitimate
mail for the 20-good set. If thek-good set contributes to a significant fraction of the legitimate mail,
then the few longer-lived IP addresses also contribute significantly to the total legitimate mail. For
instance, IP addresses in the20-good set contribute to63.5% of the total legitimate mail received.
Only 2.1% of those IP addresses are present for at least 30 days, but they contribute to over50%
of the total legitimate mail received.

Result 4. Distribution of legitimate mail from persistent k-good IPs: Fig. 5.3 indicates that
(i) IP addresses with low lifetime spam ratios (smallk) tend to contribute a major proportion of
the total legitimate email, and (ii) only a small fraction ofthe IP addresses with a low lifetime
spam-ratio addresses appear over many days, but they contribute to a significant fraction of the
legitimate mail.

The graphs also reveal another trend: the longer an IP address lasts, the more stable is its
contribution to the legitimate mail. For example,0.09% of the IP addresses in the20-good set are
present for at least 60 days, but they contribute to over40% of the total legitimate mail received.
From this, we can infer that there were an additional1.2% of IP addresses in the20-good set that
were present for 30-59 days, but they only contributed to10% of the total legitimate mail received.

Fig. 5.4 presents a similar analysis of persistence for IP addresses with a high lifetime spam-
ratio. Like thek-good IP addresses andk-good sets, we definek-bad IP addresses andk-bad sets.

Definition 2. A k-bad IP addressis an IP address that has a lifetime spam-ratio of at leastk. A
k-bad setis the set of allk-bad IP addresses.

Fig. 5.4(a) presents the number of IP addresses in thek-bad set that are present in at leastx
days, and Fig. 5.4(b) presents the fraction of the total spamsent by IP addresses in thek-bad set
that are present in leastx days.

Result 5. Distribution of spam from persistent k-bad IPs: Fig. 5.4 indicates that (i) IP ad-
dresses with high lifetime spam ratios (large k) tend to contribute almost all of the spam, (ii) most
of these high spam-ratio IPs are only present for a short time(this is consistent with the finding in
[99]) and account for a large proportion of the overall spam,and (iii) the small fraction of these
IPs that do last several days contribute a non-trivial fraction of the overall spam; however, a much
larger fraction of spam comes from IP addresses that are not present for very long. As in the case
of thek-good IP addresses, the spam contribution from thek-bad IP addresses tends to get more
stable with time.
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Figure 5.4: Persistence ofk-bad IP addresses.

So, for instance, we can see from Fig. 5.4 that only1.5% of the IP addresses in the80-bad
set appear in at least 10 distinct days, and these contributeto 35.4% of the volume of spam from
the 80-bad set, and34% of the total spam. The difference is more pronounced for100-bad IP
addresses:2% of the 100-bad IP addresses appear for 10 or more distinct days, and contribute to
25% of the total spam volume.

The results of this section have implications in designing spam filters, especially for applica-
tions where the goal is to prioritize legitimate mail ratherthan discard spam. While spamming IP
addresses that are present sufficiently long can be blacklisted, the scope of a purely blacklisting
approach is limited. On the other hand, a very significant fraction of the legitimate mail can be
prioritized by using the history of the senders of legitimate mail.

Temporal Stability

Next, we seek to understand whether IP addresses in thek-good set change their daily spam-ratio
dramatically over the course of their lifetime. The question we want to answer is: of the IP ad-
dresses that appear in ak-good set (for small values ofk), what fraction of them have ever had
“high” daily spam-ratios, and how often do they have “high” spam-ratios? Thus, we want to under-
stand thetemporal stabilityof the spam-ratio of IP addresses ink-good sets. In this section, we
focus onk-good IP addresses; the results for thek-bad IP addresses are similar.

We compute the following metric: for each IP address in ak-good set, we count how often its
daily spam-ratio exceedsk (and normalize this count by the number of days it appears). We define
this quantity to be thefrequency-fraction excessof the IP address, for thek-good set. We plot the
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Figure 5.5: Temporal stability of IP addresses ink-good sets, shown by CCDF of frequency-
fraction excess.

complementary cdf (CCDF) of thefrequency-fraction excessof all IP addresses in thek-good set.2

Intuitively, the distribution of the frequency-fraction excess is a measure of how many IP addresses
in thek-good set exceedk, and how often they do so.

Fig. 5.5 shows the CCDF of the frequency-fraction excess forseveralk-good sets. It shows
that the majority of the IP addresses in eachk-good set have a frequency-fraction excess of 0, and
that95% of thek-good IP addresses have a frequency-fraction excess of at most0.1.

We explain the implications of Fig. 5.5 to the temporal stability of the spam-ratio of IP ad-
dresses with an example. We focus on thek-good set fork = 20: this is the set of IP addresses
whose lifetime spam-ratio is bounded by20%. We note that the frequency-fraction excess is 0 for
95% of the 20-good IP addresses. This implies that95% of IP addresses in thisk-good set do
not send more than20% spamany day, i.e., every time they appear, they have a daily spam-ratio
of at most20%. We also note that fewer than1% of the IP addresses in thisk-good set have a
frequency-fraction excess larger than0.2.

Thus, for manyk-good sets with smallk-values, only a few IP addresses have a significant
frequency-fraction excess, i.e., very few IP addresses in those sets exceed the valuek often. Since
they would need to exceedk often to change their spamming behaviour significantly, it follows that
most IP addresses in thek-good set do not change their spamming behaviour significantly.

In addition, the frequency-fraction excess is perhaps too strict a measure, since it is affected
even ifk is exceeded slightly. We also compute a similar measure thatincreases only whenk is
exceeded by5%. No more than 0.01% of IP address in thek-good set exceedk by 5%, for any
k ≤ 30%. Since we are especially interested in the temporal stability of IP addresses that appear
often, we compute also the frequency-fraction excess distribution for IP addresses that appear for

2That is, we plot the fraction of IP addresses in thek-good set whose frequency-fraction excess is at leastx. The
y-axis of the plot is restricted for readability.
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10, 20, 40 and 60 days. In each case, almost no IP address exceeds k by more than5%, for any
k ≤ 30%.

We summarize this discussion in the following result.

Result 6. Temporal stability of k-good IPs: Fig. 5.5 shows that most IP addresses ink-good
sets (for lowk, e.g.,k ≤ 30%) do not exceedk often; i.e., mostk-good IP addresses have low
spam-ratios (at mostk) nearly every day.

With the above result, we can analyze the behaviour ofk-good sets of IP addresses, constructed
over their entire lifetime, and their behaviour in shorter time intervals.

The analysis of these three properties of IP addresses indicates that a significant fraction of
the legitimate mail comes from IP addresses that persistently appear in the traffic. These IP ad-
dresses tend to exhibit stable behaviour: they do not fluctuate significantly between sending spam
and legitimate mail. These results lend weight to our hypothesis that spam mitigation efforts can
benefit by preferentially allocating resources to the stable and persistent senders of legitimate mail.
However, there is still a substantial portion of the mail that cannot be accounted for through only
IP address-based analysis. In the next section, we focus on how to account for this mail.

5.3 Analysis of Cluster Characteristics

So far, we have analyzed whether the historical behaviour ofindividual IP addresses can be used
to distinguish between senders of legitimate mail and spammers. However, if we only consider
the history of individual IP addresses, we cannot determinewhether a new, previously unseen, IP
address is likely to be a spammer or a sender of legitimate mail. If there are many such IP addresses,
then, in order to be useful, any prioritization scheme wouldneed to assign these new IP addresses
appropriate reputations as well. Indeed, in Sec. 5.2.2, we found that most IP addresses sending mail
are short-lived and that such short-lived IPs account for a significant proportion of both legitimate
mail and spam. Any prioritization scheme would thus need to be able to find reputations for these
IP addresses as well.

To address this issue, we explore whether coarser aggregations of IP addresses exhibit more
persistence and afford more effective discriminatory power for spam mitigation. If such aggrega-
tions of IP addresses can be found, the reputation of an unseen IP address could bederivedfrom
the historical reputation of the aggregation they belong to.

We focus on IP aggregations given bynetwork-aware clustersof IP addresses [72]. Network-
aware clusters are sets of unique network IP prefixes collected from a wide set of BGP routing table
snapshots. In this work, an IP address belongs to a network-aware cluster if the longest prefix match
of the IP address matches the prefix associated with the cluster. In the reputation mechanisms we
explore in Sec. 5.4, an IP address derives the reputation of the network-aware cluster that it belongs
to. We use network-aware clustering because these clustersrepresent IP addresses that are close in
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terms of network topology and do, with high probability, represent regions of the IP space that are
under the same administrative control and share similar security and spam policies [72].

In this section, we present measurements suggesting that network-aware clusters of IP ad-
dresses may provide a good basis for reputation-based classification of IP addresses. We focus
on the following questions:

• Granularity: Does the mail originating from network-aware clusters consist of mostly spam
or mostly legitimate mail, so that these clusters could be useful as a reputation-granting
mechanism for IP addresses?

• Persistence: Do individual network-aware clusters appear (i.e., do IP addresses belonging to
the clusters appear) over long periods of time, so that network-aware clusters could poten-
tially afford us a useful mechanism to distinguish between different kinds of ephemeral IP
addresses?

As in the IP-address case, we adopt the spam-ratio of a network-aware cluster as the discriminat-
ing feature of clusters and examine whether clusters with low/high spam-ratios are granular and
persistent.

Before examining these two properties in detail, we first summarize our analysis of the proper-
ties with respect to which clusters behave as IP addresses do: clusters turn out to be at least as (and
usually more) temporally stable as IP addresses(similar to the IP address behaviour explored in
Sec. 5.2.2), which is the expected behaviour;the distribution of clusters by daily cluster spam-ratio
is similar to the distribution of IP addresses by IP spam-ratio (similar to the IP address behaviour
explored in Sec. 5.2.2).

5.3.1 Cluster Granularity

For network-aware clustering of IP addresses to be useful, the clusters need to be sufficiently homo-
geneous in terms of their legitimate mail/spam behavior so that the cluster information can be used
to separate the bulk of legitimate mail from the bulk of spam.Recall that with the IP addresses,
we analyzed the extent to which IP spam-ratios could be used to identify the IP addresses sending
the bulk of legitimate mail and spam. Here, we analyze whether, instead of an IP’s individual
spam-ratio, the spam-ratio of the parent cluster can be usedfor the same purpose.

To do so, we need to understand how well the cluster spam-ratio approximates the IP spam-
ratio. In our context, we focus on the following question: can we still distinguish between the IP
addresses that send the bulk of the legitimate mail and the bulk of the spam? If we can, within a
margin of error, it would suggest that cluster-level analysis is nearly as good as IP-level analysis.

For the analysis here, we determine the spam-ratio of each cluster by analyzing the mail sent
by all IP addresses belonging to that cluster and assign to IPaddresses the spam-ratios of their
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Figure 5.6: Penalty of using cluster-level analysis.

respective clusters. In the rest of this discussion, we willrefer to legitimate mail/spam sent by IP
addresses belonging to a cluster as the legitimate mail/spam sent byor coming fromthat cluster.
As with the IP-based analysis, we examine how the volume of legitimate mail and spam from IP
addresses is distributed as a function of their cluster spam-ratios. To understand the additional error
imposed by using the cluster spam-ratio, we compare it with how those volumes are distributed as
a function of the IP spam-ratio.

Fig. 5.6(a) shows how the spam sent by IP addresses with a cluster or IP spam-ratio of at most
k varies withk. Specifically, on dayi, let CSi(k) andISi(k) be the fraction of spam sent by the
IP addresses with a cluster spam-ratio (and IP spam-ratio, respectively) of at mostk. Fig. 5.6(a)
plotsCSi(k) andISi(k) averaged over all the days in the data set, as a function ofk, along with
confidence intervals.

Result 7. Distribution of spam with cluster and IP spam-ratios: Fig. 5.6(a) shows that almost
all (over 95%) of the spam every day comes from IPs in clusters with a very high cluster spam-
ratio (over90%). A similar fraction (over99% on average) of the spam every day comes from IP
addresses with a very high IP spam-ratio (over90%).

This suggests that spammers responsible for a high volume ofthe total spam may be closely
correlated with the clusters that have a very high spam-ratio. The graph indicates that if we use a
spam-ratio threshold ofk ≤ 90% for spam mitigation, then using the IP spam-ratio rather than the
corresponding cluster spam-ratio as the discriminating feature would increase the amount of spam
identified by less than 2%. This suggests that cluster spam-ratios are a good approximation to IP
spam-ratios for identifying the bulk of the spam sent.

We next consider how legitimate mail is distributed with thecluster spam-ratios and compare
it with IP spam-ratios (Fig. 5.6(b)). We compute the following metric: LetCLi(k) andILi(k) be
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the fraction of legitimate mail sent by IPs with cluster and IP spam-ratios of at mostk on dayi.
Fig. 5.6(b) plotsCLi(k) andILi(k) averaged over all the days in the data set as a function ofk,
along with confidence intervals.

Result 8. Distribution of legitimate mail with cluster and IP spam-ratios: Fig. 5.6(b) shows
that a significant amount of legitimate mail is contributed by clusters with both low and high
spam-ratios. A significant fraction of the legitimate mail (around45% on average) comes from
IP addresses with a lowcluster spam-ratio(k ≤ 20%). However, a much larger fraction of the
legitimate mail (around70%, on average) originates from IP addresses with a similarly low IP
spam-ratio.

The picture here, therefore, is much less promising: even when we consider spam-ratios as
high as30 − 40%, the cluster spam-ratios can only distinguish, on average,around50% of the
legitimate mail. By contrast, IP spam-ratios can distinguish as much as70%. This suggests that IP
addresses responsible for the bulk of legitimate mail are much less correlated with clusters of low
spam-ratio.

We can then make the following conclusion: suppose we use a classification function to accept
or reject IP addresses based on their cluster spam-ratio. What additional penalty would we incur
over a similar classification function that used the IP address’s own spam-ratio? Fig. 5.6(b) suggests
that, if the threshold is set to90% or higher, we incur very little penalty in both legitimate mail
acceptance and spam. However, if the threshold is set to30 − 40%, we may incur as much as a
20% penalty in doing so.

However, there are two additional ways in which such a classification function could be en-
hanced. First, as we have seen, the bulk of the legitimate mail does come from persistentk-good
IP addresses. This suggests that we could potentially identify more legitimate mail by consider-
ing the persistentk-good IP addressesin addition to cluster-level information. Second, for some
applications, the correlation between high cluster spam-ratios and the bulk of the spam may be suf-
ficient to justify using cluster-level analysis. For example, under the existing distribution of spam
and legitimate mail, even a high cluster spam-ratio threshold would be sufficient to reduce the total
volume of the mail accepted by the mail server. This is exactly the situation in the server overload
problem and we see the effect in the simulations in Sec. 5.4.

5.3.2 Persistence

Next, we explore how persistent the network-aware clustersare, just as we did for the IP addresses.
We define a cluster to bepresenton a day if at least one IP address that belongs to that cluster
appears that day. We reported earlier that we found the clusters themselves to be at least as (and
usually more) temporally stable as IP addresses. Our next goal is to examine how much of the total
legitimate mail/spam the long-lived clusters contribute.
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As in Sec. 5.2.2, we will definek-good andk-bad clusters; to do that, we use thelifetime cluster
spam-ratio: the ratio of the total spam sent by the cluster to the total mail sent by it over its lifetime.

Definition 3. A k-good clusteris a cluster of IP addresses whose lifetime cluster spam-ratio is at
mostk. Thek-good cluster-setis the set of allk-good clusters. Ak-bad cluster is a cluster of
IP addresses whose lifetime cluster spam-ratio isat leastk. Thek-bad cluster-setis the set of all
k-bad clusters.

Fig. 5.7(a) examines the legitimate mail sent byk-good clusters for small values ofk. We
first note that thek-good clusters (even whenk is as large as30%) contribute less than40% of
the total legitimate mail; this is in contrast to, for instance,20-good IP addresses that contributed
to 63.5% of the total legitimate mail. However, we note the contribution from long-lived clusters
is far more than from long-lived individual IPs. The difference from Fig. 5.3(b) is striking: e.g.,
k-good clusters present for 60 or more days contribute to nearly 99% of the legitimate mail from
the k-good cluster set. So, any cluster accounting for a non-trivial volume of legitimate mail is
present for at least 60 days. Indeed, the legitimate mail sent by k-good clusters drops to90% of
k-good cluster-set’s total only when restricted to clusterspresent for120 or more days; by contrast,
for individual IP addresses, the legitimate mail contribution dropped to87% of the 20-good set’s
total after just10 days.
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Figure 5.7: Persistence of network-aware clusters.

Fig. 5.7(b) presents the same analysis fork-bad clusters. Again, there are noticeable differences
from thek-bad IP addresses, and also from thek-good clusters. A much larger fraction of spam
comes from long-lived clusters than from long-lived IPs in Fig. 5.4(b). For example, over92%
of the total spam is contributed by90-bad clusters present for at least 20 days. This is in sharp
contrast with thek-bad IP addresses, where only20% of the total spam comes from IP addresses
that last 20 or more days. We also note that the90-bad cluster-set contributes to nearly95% of
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the total spam. Thus, in contrast to the legitimate mail sentby k-good cluster-sets, the bulk of the
spam comes from thek-bad cluster-sets with highk.

Result 9. Distribution of mail from persistent clusters: Fig. 5.7 shows that the clusters that are
present for long periods with high cluster spam-ratios contribute the overwhelming fraction of the
spam sent, while those present for long periods with low cluster spam-ratios contribute a smaller,
though still significant, fraction of the legitimate mail sent.

The above result suggests that network-aware clustering can be used to address the problem
of transience of IP addresses in developing history-based reputations of IP addresses: even if indi-
vidual IP addresses are ephemeral, their (possibly collective) history would be useful in assigning
reputations to other IP addresses originating from the samecluster.

5.4 Spam Mitigation under Mail Server Overload

In the previous section, we have demonstrated that there aresignificant differences in the historical
behaviour of IP addresses that send a lot of spam, and those that send very little. In this section, we
consider how these differences in behaviour could be exploited for spam mitigation.

Our measurements have shown that senders of legitimate maildemonstrate significant stability
and persistence, while spammers do not. However, the bulk ofthe high volume spammers appear
to be clustered well within many persistent network-aware clusters. Together, these suggest that we
can design techniques based on the historical reputation ofan IP address and the cluster to which
it belongs. However, because mail rejection mechanisms necessarily need to be conservative, we
believe that such a reputation-based mechanism is primarily useful for prioritizing legitimate mail,
rather than actively discarding all suspected spammers.

As an application of these measurements, we now consider themail-server overload problem
described in the introduction. In this section, we demonstrate how the problem could be tackled
with a reputation-based mechanism that exploits these differences in behaviour. In Sec. 5.4.1, we
explain the mail-server overload problem in more detail. InSec. 5.4.2, we explain our approach,
describing the mail server simulation and algorithms that we use, and in Sec. 5.4.3, we present an
evaluation showing the performance improvement gained using these differences in behaviour.

We emphasize that this simulation study is intended to demonstrate the potential of using these
behavioural differences in the legitimate mail and spam forprioritizing exclusively by IP addresses.
However, it isnot intended to be comparable to content-based spam filtering. We also note that
these differences in behaviour could be applied in other ways as well and at other points in the mail
processing as well. The quantitative benefits that we achieve may be specific to our application and
may be different in other applications.
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5.4.1 Server Overload Problem

The problem we consider is the following: When the mail server receives more SMTP connections
than it can process in a time interval, how can it selectivelyaccept connections to maximize the
acceptance of legitimate mail? That is, the mail server receives a sequence of connection requests
from IP addresses every second, and each connection will send mail that is either legitimate or
spam. Whether the IP address sends spam or legitimate mail inthat connection is not known at the
time of the request, but is known after mail is processed by the spam filter. The mail server has a
finite capacity of the number of mails that can be processed ineach time interval, and may choose
the connections it accepts or rejects. The goal of the mail server is to selectively accept connections
in order to maximize the legitimate mail accepted.

We note that spammers have strong incentive to cause mail servers to overload, and illustrate
this with an example. Assume that a mail server can process 100 emails per second, that it will
start dropping new incoming SMTP connections when its load reaches 100 emails per second, and
that it crashes if the offered load reaches 200 emails per second. Assume also that 20 legitimate
emails are received per second. A spammer could increase theload of the mail server to 100% by
sending 80 emails per second which would be all received by the mail server. Alternatively, the
spammer could also increase the load to 199%, by sending 179 spam emails per second, and now
nearly half the requests would not be served. If the mail server is unable to distinguish between the
spam requests and the legitimate mail requests, it drops connections at random, and the spammer
will be able to successfully get through 89 spam emails per second to the mail server, as compared
to the 80 in the previous case.

Thus, the optimal operation point of a spammer, assuming that he has a large potential sending
capacity, is not the maximum capacity of the mail server but the maximum load before the mail
server will crash. This observation indicates that the approach of throwing more resources at the
problem would only work if the mail server capacity is increased to exceed the largest botnet
available to the spammer. This is typically not economically feasible and a different approach is
needed.

The results in Sec. 5.2 and Sec. 5.3 suggest that there may be ahistory-based reputation function
R, that relates IP addresses to their likelihood of sending spam. Thus, for example, ifR(i) is the
probability that an IP addressi sends legitimate mail, then maximizing the quantity

∑

R(i) would
maximize the expected number of accepted legitimate mail. If the reputation functionR were
known, this problem would be similar to admission control and deadline scheduling; however, in
our case,R is not known.

In this work, we choose onesimplehistory-based reputation function and demonstrate that it
performs well. We reiterate that our goal isnot to explore the space of the reputation functions or
to find the best reputation function. Rather, our goal is to demonstrate that they could potentially
be used to increase the legitimate mail accepted when the mail-server is overloaded. In addition,
our goal is to preferentially accept e-mails from certain IPaddressesonlywhen the mail servers are
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overloaded – we would like to minimize the impact on mail servers when they are not overloaded.
A poor choice ofR will then not impact the mail server under normal operation.

The techniques and the reputation functions that we choose address concerns that are different
from those addressed by standard IP-based classification techniques like blacklisting and greylist-
ing, as neither blacklisting nor greylisting would directly solve the server overload problem. Black-
listing has well-known issues: building a blacklist takes time and effort, most IP addresses that
send spam are observed to be ephemeral, appearing very few times, and many of them are not even
present in any single blacklist.

While greylisting is an attractive short-term solution that has been observed to work quite well
in practice, it is not robust to spammer evasion, since spammers could simply mimick the behaviour
of a normal mail server. Greylisting aims to optimize a different goal – its goal is to delay the mail
in the hope that a spam signature is generated in the mean time, so that spam can be distinguished
from non-spam; however, delaying the mail does not reduce the overall server load, since the
spammer can always return to send more mail, and computing a content-based spam signature
would continue to be as expensive. Indeed, greylisting gives spammers even more incentive to
overload mail servers by re-trying after a specified time period.

Our techniques for the server overload problem provide an additional layer of information when
compared to blacklisting and greylisting. It may be possible to use the IP structure information to
enhance greylisting, to decide, at finer granularities and with soft thresholding, which IP addresses
to deny.

5.4.2 Design and Algorithms

Today, when mail servers experience overload, they drop connections greedily: the server accepts
all connections until it is at maximum load, and then refusesall connection requests until its load
drops below the maximum. We aim to improve the performance under overload by using infor-
mation in the structure of IP addresses, as suggested by the results in Sec. 5.2 and Sec. 5.3. At a
high-level, our approach is to obtain a history of IP addresses and IP clusters, and use it to select the
IP addresses that we prioritize under overload. To explore the potential benefits of this approach,
we simulate the mail server operation and allow some additional functionality to handle overload.

To motivate our simulation, we describe briefly the way many mail servers in corporations and
ISPs operate. First, the sender’s mail server or a mail relaytries to connect to the receiving mail
server via TCP. The receiving mail server accepts the connection if capacity is available, and then
the mail servers perform the SMTP handshake and transfer theemail. The receiving mail server
stores the email to disk and adds it to the spam processing queue. For each e-mail on the queue,
the receiving mail server then performs content-based spamfiltering [3, 1] which is typically the
most expensive part of email processing. After this, the spam emails are dropped or delivered to a
spam mailbox, and the good emails are delivered to the inbox of the recipient.
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In our simulation we simplify the mail server model, while ensuring that it is still sufficiently
rich to capture the problem that we explore. We believe that our model is sufficiently representative
for a majority of mail server implementations used today; however, we acknowledge that there are
mail server architectures in use which are not fully captured in our model. In the next section, we
describe the simulation model in more detail.

Mail Server Simulation

We simulate mail-server operation in the following manner:

• Phase 1:When the mail server receives an SMTP connection request, itmay decide whether
or not to accept the connection. If it decides to accept the connection, the incoming mail
takest time units to be transferred to the mail server. Thus, if a server can acceptk
connection requests simultaneously, it behaves like ak-parallel processor in this phase. We
do so because this phase models the SMTP handshake and transfer of mail, and therefore, it
needs to model state for each connection separately.

• Phase 2: Once the mail has been received, it is added to a queue for spamfiltering and
delivery to the receiving mailbox if any. At each time-step,the mail server selects mails
from this queue and processes them; the number of mails chosen depend on the mail server’s
capacity and the cost of each individual mail. Here, since wemodel computation cycles, a
sequential processing model suffices. The mail server has a timeout: it discards any mail that
has been in the queue for more thanm time units. If the load has sufficient fluctuation, a large
timeout would be useful, but we want to minimize timeout since email has the expectation
of being timely.

We assume that the cost of denying/dropping a request is 0, the cost of processing the SMTP
connection isα fraction of its total cost, and the cost of the remainder is1 − α fraction of the
total cost. We also allow Phase 1 of the mail server simulatorto haveα fraction of the server’s
computational resources, and Phase 2 to have the remainder.Since the content-based analysis is
typically the most expensive part of processing a message, we expect thatα is likely to be small.

This two-phase simulation model allows for more flexibilityin our policy design, since it opens
the possibility of dropping emails which have already been received and are awaiting spam filtering
without wasting too many resources.

Policies

Next, we present the prioritization/drop policies that we implemented and evaluated on the mail
server simulator. In this simulation model, the default mail-server action corresponds to the follow-
ing: at each time-interval, the server accepts incoming requests in the order of arrival, as long as
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it is not overloaded. Once mail has been received, the serverprocesses the first mail in the queue,
and discards any mail that has exceeded its timeout. We referto this as thegreedypolicy.3

The space of policy options that a mail-server is allowed to operate determine the kinds of
benefits it can get. In this problem, one natural option for the mail server is to decide immediately
whether to accept or reject a connection request. However, such a policy may be quite sensitive
to fluctuation in the workload received at the mail server. Another option may be to reject some
e-mailsafter the SMTP connection has been accepted, butbeforeany spam-filtering checks or
content-based analysis (such as spam-filtering software) has been applied. Note that content-based
analysis typically is the most computationally expensive part of receiving mail. Thus, with this
option, the mail server may do a small amount of work for some additional emails that eventually
get rejected, but is less affected by the fluctuation of mail arrival workload. We restrict the space
of policy options to the time beforeanycontent-based analysis of the incoming mail is done.

To solve the mail-server overload problem, we implement thefollowing policies at the two
phases:

• Phase-1 policy: The policy in Phase 1 is designed to preferentially accept IP addresses with a
good reputation when the server is near maximum load: as the server gets closer to overload,
the policy only accepts IP addresses with better and better reputations. In addition, when the
load is below some percentage (we choose75%) of the total capacity, the server accepts all
mail: this way, it minimizes impact on normal operation of the mail server.4

• Phase-2 policy: The scheduling policy here is easier to design, since the queue has some
knowledge of what needs to be processed. Even a simple policythat greedily accepts the
item with the highest reputation value will do well, as long as the reputation function is
reasonably accurate. We use this greedy policy for Phase 2.

Our history-based reputation functionR is simple: First, we find a list of persistent senders of
legitimate mail from the same time period (we choose all senders that have appeared in at least 10
days), and for these IP addresses, we use their lifetime IP spam-ratio as their reputation value. For
the remaining IP addresses, we use their cluster spam-ratioas their reputation value: for each week,
we use the history of the preceding four weeks in computing the lifetime spam-ratio (defined over
4 weeks) for each cluster that sends mail.5 In this way, we combine the results of the IP-based
analysis and cluster-based analysis in Sec. 5.2 in designing the reputation function.

3To ensure that the current mail server policy is not unfairlymodelled under this simulation model, we evaluated
greedy policies in another simulation model, in which each connection tookz time units to process from start to end.
The performance of the greedy policy was similar, thereforewe do not describe the model further.

4Technically, this is slightly more complex: it examines if the load is below75% of the server capacity allowed to
Phase 1.

5One technical detail left to consider are the IP addresses originating from clusters without history. In our reputation
function, any IP address that has no history-based reputation value is given a slightly bad reputation.
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This reputation function is extremely simple, but it still illustrates the value of using a history-
based reputation mechanism to tackle the mail server overload problem. We also note that the
historical IP reputations based on network-aware clustersin this manner may not always be perfect
predictors of spamming behaviour. While network-aware clusters are an aggregation technique
with a basis in network structure, they could serve as a starting point for more complex clustering
techniques, and these techniques may also incorporate finernotions of granularity and confidence.

A more sophisticated approach to using the history of IP addresses and network-aware clusters
that addresses these concerns is likely to yield an improvement in performance, but is beyond the
scope of our work. In the following section, we describe the performance benefits that we gain
from using this reputation function in the evaluation.

5.4.3 Evaluation

We evaluate our history-based policies by replaying the traces of our data set on our simulator.
Since the traces record each connection request with a time-stamp, we can replay the traces to
simulate the exact workload received by the mail server. We do so, with the simplifying assumption
that each incoming e-mail incurs the same computational cost. Since our traces are fixed, we
simulate overload by decreasing the simulated server’s capacity, and replaying the same traces.
This way, we do not change the distribution and connection request times of IP addresses in the
input traces between the different experiments. At the sametime, it allows us to simulate, without
changing the traces, how the mail server behaves as a function of the increasing workload.

Simulation Parameters:We now explain the parameters that we choose for our simulation. We
choose the timet for the Phase 1 operation to be4s.6 We use60 seconds for the timeoutm, the
waiting time in the queue before Phase 2 (it implies that mailwill be delivered within 1 minute,
or discarded after Phase 1). This appears to be sufficiently small so as to not noticeably affect the
delivery of legitimate mail.7

To induce overload, we vary the capacity of the simulated mail server to 200, 100, 66, 50, and
40 messages/minute. The greedy policy processed an averageof 95.2% of the messages received
when the server capacity was set to 200 messages/minute, as seen in Table 2. At capacities larger
than 200 messages/minute, the number of messages processedby the greedy policy grows very
slowly, indicating that this is likely to be an effect of the distribution of connection requests in the
traces. For this reason, we take capacity of 200/minute as the required server capacity. We then
refer to the other server capacities in relation to requiredserver capacity for this trace workload:
a server with capacity of 100 messages/minute must process the same workload with half the

6We varyt for Phase 1 between 2-4s: our traces have a recorded time granularity of 1s, and the maximum seen in the
traces before a disconnect was 4s. This does not appear to impact the results presented here, since both kinds of policies
receive the same value oft. We present in the results fort = 4 seconds

7This value also has no noticeable impact on our results whenm ≥ 20s suggesting that most of the legitimate mail
is processed quickly, or not at all.
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capacity of the required server, so we define it to have anoverload-factorof 2. Likewise, the server
capacities we test 200, 100, 66, 50 and 40 messages/minute have overload-factors of around 1, 2,
3, 4, and 5 respectively.

Recall that the parameterα is the cost of processing the message at Phase 1. We expectα to
impact the performance, so we test two valuesα = 0.1, 0.5 in the evaluation; recall thatα is likely
to be small, and soα = 0.5 is a conservative choice here. The value ofα has no effect on the
performance of the greedy policy. For this reason, the discussion features only one greedy policy
for all values ofα. For the history-based policies,α sometimes has an effect on the performance,
since these policies allow for a decision to be taken at Phase2. We therefore refer to the history-
based policies as10-policy, and50-policy, for α = 0.1 and0.5 respectively.

Impact on Legitimate mail

We first compare the number of legitimate mails accepted by the different policies over many
time intervals, where each interval is an hour long. Since our goal is to maximize the amount of
legitimate mail accepted, the primary metric we use is thegoodput ratio: the ratio of legitimate mail
accepted by the mail server to the total legitimate mail in the time interval. This is a natural metric
to use, since it makes the different time intervals comparable, and so we can see if the policies
are consistently better than the greedy policy, rather thanbeing heavily weighted by the number of
legitimate mails in a few time intervals. For the performance evaluation, we examine the average
goodput ratio, the distribution of the goodput ratios and the goodput improvement factor.

Average Goodput Ratio:Table 1 shows the average goodput ratios for the different policies un-
der different levels of overload. It shows that, on average,for each of these overloads, the goodput
of any of the policies is better than the greedy policy. The difference is marginal at overload-factor
1, and increases quickly as the overload-factor increases:at overload-factor 4, the average goodput
ratio is64.3 − 64.5% for any of the history-based policies, in comparison to26.8% for the greedy
policy. We also observe that the history-based policies scale more gracefully with the overload.
Thus, we conclude that, on average, the history-based policies gain a significant improvement over
the greedy policy.

Distribution of Goodput Ratios:While the average goodput ratio is a useful summarization
tool, it does not give a complete picture of the performance.For this reason, we next compare the
distribution of the server goodput in the different time intervals. Fig. 5.8(a)-(b) shows the CDF
of the goodput ratios for the different policies, for two overload-factors: 1 and 4. We observe that
the goodput ratio distributions are quite similar for the greedy and history-based policies when the
overload-factor is 1 (Fig. 5.8(a)): about60% of the time, all of the policies accept100% messages.
This changes drastically as the overload-factor increases. Fig. 5.8(b) shows the goodput ratio distri-
butions for overload-factor 4. As much as50% of the time, the greedy policy has a goodput-ratio of
at most0.25. By contrast, more than90% of the time, the history-based policies have a goodput ra-
tio of at least0.5. The results show that the history-based policies have a consistent and significant
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improvement over the greedy policy when the load is sufficiently high.

Improvement factor of Goodput-Ratios:Finally, we compare the goodput ratios on a per-
interval basis. For this analysis, we focus on the10-policy; our goal is to seehow oftenthe 10-
policy does better than the greedy algorithm. That is, for each time interval, we compute the

goodput-factor, defined to beGoodput of10-Policy
Goodput of Greedy. Fig. 5.8(c) plots how often goodput-factor

lies between90%−300% for the different overload-factors. We note that when the overload-factor
is 1, the performance impact of our history-based policy on the legitimate mail is marginal: in all
the time intervals, the10-policy has a goodput-factor of at least90%, and over95% of the time, it
has a goodput factor of at least99%. As the overload-factor increases, the amount of time intervals
in which the10-policy has a goodput-factor of100% or more increases, meaning the number of
time intervals in which the 10-policy does better than the greedy algorithm increases, as we would
expect. When the overload-factor is 4, for example,66% of the time, the goodput-factor is at least
200%: 10-policy accepts at least twice as many legitimate mails as the greedy algorithm. We con-
clude that in most time intervals, the history-based policies perform better than the greedy policy,
and the factor of their improvement increases as the overload-factor increases.

Lastly, we note that the behaviour of the10-policy and the50-policy does not appear to dif-
fer too much when the overload-factor is sufficiently high orsufficiently low. With intermediate
overload-factors, they perform slightly differently, as we see in Table 1: the50-policy tends to
be a little more conservative about accepting messages thatmay not have a good reputation in
comparison to the10-policy.

Impact on Throughput and Spam

While our primary metric of performance is the goodput, we are still interested in the impact of
using the history-based policies on the total messages and spam processed by the mail server. While
these are not our primary goals, they are still important since they give a picture of the complete
effect of using these history-based policies.

Impact on Server Throughput:The history-based policies obviously gain their improvement
by selectively choosing the IP addresses to process: it selectively accepts only good IP addresses
in the incoming workload, if it is likely that the whole workload might not be processed. This
may result in a decrease in server throughput in comparison to the greedy policy for certain load.
For example, if the server receives a little less workload than it could process, the history-based
policies may process fewer messages than the greedy policy,because they may reserve capacity for
good IP addresses that they expect to see but which never actually appear. We observe this in our
simulations and we discuss it now.

We definethroughputto be fraction of the total messages processed by the server.Table 2
shows the average throughput achieved by both policies under various capacities of the server. At
overload-factor 1, when the greedy algorithm achieves an average throughput of95%, the history-
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Figure 5.8: (a) and (b): CDF of the goodput-ratios for two different overload-factors. (c): Perfor-
mance improvement (goodput-factor) for the 10-policy for various overload factors

Overload Greedy α = 0.1 α = 0.5
Factor

5 20.3 63 63.6
4 26.8 64.3 64.5
3 39.5 70.7 68.6
2 61.7 84.4 79.6
1 93.7 96 96.7

Table 1: Server Goodput (average, in %).
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Overload Greedy α = 0.1 α = 0.5
Factor

5 31.6 16.6 16.8
4 39.1 17 17
3 51.6 24.1 22.1
2 71.4 65.8 51.3
1 95.2 93.9 95

Table 2: Server throughput (average, in %).

Overload Greedy α = 0.1 α = 0.5
Factor

5 32 14.8 14.9
4 39.5 15.1 15.1
3 52 20.1 15.2
2 71.7 65.2 50.2
1 95.2 93.8 94.9

Table 3: Spam accepted (average, in %).

based policy algorithm achieves an average throughput of93%. However, even at this point, the
history-based policies accept a little more legitimate mail (on average) than the greedy policy. Note
that by design, the history-based policies guarantee that when the server receives no more than75%
of its maximum load capacity, its performance is no different from normal.

Impact on Spam:We also explored the effect of the history-based policies onthe number
of spam messages accepted. Table 3 shows the average fraction of spam messages accepted by
the policies under various overload factors. We see with an overload-factor of 1, the history-based
policies accept only0.3−1% less spam than the greedy algorithm. As the overload-factorincreases
and the history-based policies grow more and more conservative in accepting suspected spam, the
amount of spam accepted will decrease. For example, at a overload-factor of 2, this drops to
50.2%−65.5% for the history-based policies. When the overload-factor increases to 4, the history-
based policies accept less than 1/2 of the amount of spam accepted by the greedy policy. This
suggests that if the server receives much more workload thanit can process, the spam is affected
much more than the legitimate mail. Therefore, the spammer would not have an incentive to
increase the workload significantly, since it is the spam that gets most affected.

Thus, we have shown that our history-based policies achievea significant and consistent perfor-
mance improvement over the greedy policy when the server is under overload: we have seen this
with multiple metrics of the goodput ratio. We have also seenthat the history-based policies do not
impact the performance of the server too much when the serveris not under overload. Finally, we
have seen that the the spam is indeed affected when the serveris significantly overloaded; this is
precisely the behaviour we want to induce.
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5.5 Related Work

Since spam is so pervasive, much effort has been expended in developing techniques that mitigate
spam, and studies that understand various characteristicsof spammers. In this section, we briefly
survey some of the most related work. We first describe spam mitigation approaches and how they
may relate to our work on the server overload problem. Then wediscuss measurement studies that
are related and complementary to our measurement work.

Traditionally, the two primary approaches to spam mitigation have used content-based spam-
filtering and DNS blacklists. Content-based spam-filteringsoftware [3, 1] is typically applied at the
end of the mail processing queue, and there has been a lot of research [102, 86, 8, 83] in techniques
for content-based analysis and understanding its limits. Agarwal et al. [6] propose content-based
analysis to rate-limit spam at the router; this also reducesthe load on the mail server, but is not
useful for our situation as it may be too computationally expensive.

DNS blacklists [4, 5] are another popular way to reduce spam.Measurement analyzes on DNS
blacklists [66] have shown that over90% of the spamming IP addresses were present in at least one
blacklist at their time of appearance. Our approach is complementary to traditional blacklisting,
and the more recent greylisting [62] techniques – we aim to prioritize the legitimate mail, and use
the history of IP addresses to identify potential spammers.

Perhaps the closest in spirit to our work in mitigating server overload are those of Twining et
al. [112] and Tang et al. [109]. Twining et al. describe a prioritization mechanism that delays spam
more than it delays legitimate mail. However, their problemis different, as they eventually accept
all email, but just delay the spam. Such an approach would notwork when all the mail simply
cannot be accepted. While Tang et al. [109] do not consider the problem of server overload, they
describe a mechanism to assign trust to and classify IP addresses using SVMs. Our work differs in
the way it gets the historical reputations – rather than using a blackbox learning algorithm, it uses
the IP addresses and network-aware clusters, thus directlyutilizing the structure of the network.

There has also been interest in using reputation mechanismsfor identifying spam. There are
a few commercial IP-based reputation systems (e.g., SenderBase [2], TrustedSource [111]). A
general reputation system for internet defense has been proposed in [22]. There has been work
on using social network information for designing reputation-granting mechanisms to mitigate
spam [52, 59, 19]. Prakash et al. [98] propose community-based filters trained with classifiers
to identify spam. Our work differs from these reputation systems as it demonstrates the potential of
using network-aware clusters to assign reputations to IP addresses for prioritizing legitimate mail.

Recently, there have been studies on characterizing spammers, legitimate senders and mail traf-
fic, and we only discuss the most closely related work here. Ramachandran and Feamster [99]
present a detailed analysis of the network-level characteristics of spammers. By contrast, our work
focuses on the comparison between legitimate mail and spam and explores the stability of legit-
imate mail. We also use network-aware clusters to probabilistically distinguish the bulk of the
legitimate mail from the spam. Gomes et al. [60] study the e-mail arrivals, size distributions and
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temporal locality that distinguish spam traffic from non-spam traffic; these are interesting features
that distinguish spam and legitimate traffic patterns and provide general insights into behaviour.
Our measurement study differs as it focuses on understanding the historical behaviour of mail
servers at the network level that can be exploited to practical spam mitigation.

5.6 Conclusion

In this chapter, we have focused on using IP addresses as a computationally-efficient tool for spam
mitigation in situations when the distinction need not be perfectly accurate. We performed an exten-
sive analysis of IP addresses and network-aware clusters toidentify properties that can distinguish
the bulk of the legitimate mail and spam. Our analysis of IP addresses indicated that the bulk of the
legitimate mail comes from long-lived IP addresses, while the analysis of network-aware clusters
indicated that the bulk of the spam comes from clusters that are relatively long-lived. With these in-
sights, we proposed and simulated a history-based reputation mechanism for prioritizing legitimate
mail when the mail server is overloaded. Our simulations show that the history and the structure of
the IP addresses can be used to substantially reduce the adverse impact of mail server overload on
legitimate mail, by up to a factor of 3.

The results presented in this chapter is joint work with Subhabrata Sen, Oliver Spatscheck,
Patrick Haffner and Dawn Song, and have previously appearedat Usenix Security 2007 [115].
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Chapter 6

Tracking IP Prefixes Originating
Malicious Traffic Dynamically

6.1 Introduction

As the Internet traffic grows in volume and complexity, it becomes easier for malicious traffic
and malicious entities to remain unidentified. There is a growing trend of attackers using botnets
(large armies of compromised hosts) to carry out their attacks, as individual bots are expendable
and allow the attacker to preserve his anonymity. Indeed, several studies have shown that tracking
individual IP addresses (e.g., spamming bots) has only a limited scope in reducing malicious traffic
[66, 99, 115].

There has been recent interest in understandingregions of the IP space, rather individual IP
addresses, from where malicious traffic originates. This research has indicated that a lot of ma-
licious traffic observed (e.g., spam, scans) is focused on small, specific regions of the IP space.
For example, several studies have demonstrated that a significant amount of spam originates from
a relatively small number of/16 or /24 IP prefixes [99, 29]. Our earlier work (chapter 5) also
describes additional results in this vein: high-volume spammers are well-correlated with network-
aware clusters, and the cluster history be used to distinguish spammers from senders of legitimate
mail [115].

This kind of clustered behaviour is unsurprising, as bots originate much of the malicious traffic,
and networks that are easily compromised tend to contain many more bots than other networks.
Thus, easily compromised networks are likely to originate much more of the malicious traffic than
others. However, prior work has focused on finding correlations with afixedset of IP clusters: the
analysis typically takes as input a set of IP clusters, and finds clusters among those that originate
the most of the malicious traffic. Instead, we are interestedin finding the optimal clustering for
isolating malicious traffic from legitimate.
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In particular, we are interested in the following question:can we partition the IP space into
clusters such that can predict IP addresses sending malicious traffic? Such clusters may be use-
ful for many applications e.g. the results in [29] suggest also they could predict future botnet
addresses, our earlier work (chapter 4) suggests they may beuseful for spam mitigation. They
may also be useful for network management, and they may reveal compromised subnets actively
employed for malicious purposes. Thus, we want to explicitly find the clusters that have predic-
tive properties: while correlations may be informative, they are often insufficient for detection of
attacks and mitigation.

In addition, the regions that originate malicious traffic may change over time for many reasons,
attackers may be able to compromise more hosts, some hosts may get patched and no longer send
malicious traffic. An attacker may also choose to send malicious traffic from new regions to evade
detection. Such evasion has already been observed with individual IP addresses, e.g. spammers
query blacklists to identify those IP addresses which are blacklisted, and send spam from the others.
For these reasons, we want algorithms that can adapt dynamically when the clusters originating
malicious traffic change.

In this chapter, we design online algorithms to track dynamically malicious regions of the
IP address space, drawing on ideas from online machine learning, and prove guarantees on its
performance. Our performance guarantees ensure that if there is a set ofk IP clusters that are good
predictors, our algorithm will perform nearly as well as those clusters, on any kind of data. These
k IP clusters may even undergo certain kinds of changes over time, and cause only a small impact
per change on our algorithm’s performance. Our algorithm isalso extremely efficient; the space
required for the algorithm isO(klogk), and the computation overhead per IP address processed is
constant.

We evaluate our algorithm on real data of spam and legitimatemail seen at the enterprise
network of a large corporation. We find that our algorithm hasexcellent empirical results, and is
a huge improvement over classifications with network-awareclusters and /24 IP blocks. We also
observe that the clusters learnt by the algorithm evolve significantly over the time, illustrating that
malicious regions of the IP address may indeed be dynamic.

6.2 Definitions and Preliminaries

In this section, we describe the basic definitions and general framework for the algorithm that we
use in the rest of the chapter.

Our high-level goal is to design an algorithm that takes as input IP addresses flagged malicious
or non-malicious (e.g., spam logs, labelled with spam-filtering software), and finds a set of IP
clusters that predict whether a given IP address is malicious or non-malicious. Often, we may want
only a limited number of IP clustersm, to ensure that any application that low overhead on any
application that incorporates them.
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In machine learning terminology, the IP addresses are theinstancesto be given to the learning
algorithm, and theirlabels reflect whether the IP address was flagged to be malicious or non-
malicious. We also refer to a non-malicious instance (or IP)as apositiveinstance, and a malicious
instance as anegativeinstance. Theclassification functionthat the algorithm needs to learn is a set
of IP clusters and their associated labels. The classification function makes amistakewhenever it
labels a malicious IP address as non-malicious, or a non-malicious IP address as malicious. The
goal of the algorithm is to learn a classification function that minimizes the number of mistakes
that are made.

A classification function consisting of IP clusters can alsobe represented as a binary tree. The
IP address space is naturally interpreted as a directed binary tree: the leaves of the tree correspond
to individual IP addresses, and the non-leaf nodes correspond to IP prefix ranges. If each leaf node
of this binary tree is associated with a label, we get a decision tree over the IP address space. We
define IPTree to be any pruning of a decision tree over the IP address space.Thus, finding an
accurate IPtree is equivalent to finding an accurate set of IPclusters with the labels of individual IP
addresses.

Challenges Since our goal is to learn a good classifier for use on network traffic data, we need
to address some additional challenges. First, the learningalgorithm must have extremely low over-
head – the space overhead must be independent of the number ofIPs seen, the computation over-
head must be constant per IP seen, and the algorithm and must not need to access data it has seen
in the past in order to get updated on data that has just arrived. Second, since part of the data may
be generated by an adversary, we do not want guarantees that make assumptions about the data. In-
stead, we require worst-case guarantees on the algorithm’sperformance – we require guarantees to
hold overevery sequence of IP addressesthat may be given to the algorithm. Third, the IP clusters
may be dynamic and evolve over time, and we require the algorithm to be able to track dynamically
the malicious IP prefix ranges.

We address these challenges by designing algorithms in anonline model of learning[79]. In
this model, the algorithm receives an IP address to be classified, classifies it, and is then given the
correct label of the IP address and allowed to update its internal state. The benefits on the overhead
in this model are obvious: the algorithm sees only one instance at a time, and does not have to
store all the data simultaneously; the algorithm is designed to update with the new data without
needing to operate on the earlier data. Second, because the algorithm is allowed to keep updating
its classification function, the performance guarantees will not require that assumptions about the
data. Lastly, the online model allows the algorithm scope toevolve its classification function as the
underlying IP clusters evolve.

The usual kind of guarantees that we get in this framework is acomparison between the mis-
takes made by the online algorithm and an offline algorithm. Atypical point of comparison used
in the online learning model is the error of theoptimal offline fixedalgorithm. In this case, the
optimal offline fixed algorithm would be the tree of a given sizek i.e., the tree of sizek that makes
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the fewest mistakes on the entire sequence. However, if the true underlying IP clusters may change
over time, a better point of comparison would allow the offline tree to also change over time. How-
ever, to make such a comparison meaningful, the offline tree must pay an additional penalty each
time it changes (otherwise the offline tree would not be a meaningful point of comparison – it could
change for each IP address in the sequence, and thus make no mistakes).

Instead, we limit the kinds of changes the offline tree can make, and compare the performance
of our algorithm to the best IPtree withk leaves that makes only a small number of allowed changes.
We define anadaptive IPtreewith k leaves to be a tree that can (a) contain at mostk leaves, (b)
grow nodes over time, and (c) change the labels of its leaf nodes. Our goal is perform nearly as
well as any adaptive IPtree of size at mostk, and in particular, to make a number of mistakes that
is not too much larger than the number of mistakes plus the changes of the best such tree.

Problem Statement With this framework and these definitions, we can now presentour problem
statement: For any given sequence of IP addresses, compute an adaptive IPtreeT such that (a) for
everyadaptive treeT ′ of sizek, the mistakes made byT are bounded by a function of the mistakes
and the changes made byT ′, (b) T uses no more than˜O(k) space.

In the next section, we describe an algorithm in whichT will need to useO(k log k) nodes.

6.3 Algorithms and Analysis

In this section, we describe our main algorithm TrackIPTree. We begin with a high-level sketch of
the algorithm in Section 6.3.1, and then describe each component of it in detail in Section 6.3.2,
and finally summarize the complete algorithm in Section 6.3.3. Then in Section 6.3.4, we give the
algorithm’s performance guarantees, and in Section 6.3.5,we discuss how it might be adapted to
address issues that come up on real data sets.

6.3.1 Overview ofTrackIPTree

At a high-level, our algorithm operates as follows: when thealgorithm receives an IP address, it
considers all the nodes on the path of the IP address in the current IPtree. (Recall that the nodes
along the path of the IP address are all the prefixes of the IP address in the current IPtree.) The
algorithm uses all these prefix nodes together to compute a prediction for the IP address. To do so,
it gets the individual predictions of each of the prefix nodes, and combines them togther with the
relative importance of the prefixes nodes. Now, in the onlinemodel of learning, once the algorithm
has made a prediction, it receives the correct label (as described in Section 6.2). It uses this label to
“reward” the nodes that predict correctly (e.g., increase their importance), and penalize the nodes
that do not.
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To flesh out the overview of this algorithm, we still need to address a few issues: (1) deter-
mining the relative importance of different nodes; (2) determining whether a node is positive or
negative; (3) building an appropriate IPtree that is not toomuch larger than the optimal tree. We
address these issues by formulating each of them as a problemof combining expert advice[24]
in different situations. Before we fill out the details, we describe briefly the typical problem of
combining expert advice, and then adapt different variations of the problem to our setting.

Combining Predictions of Many Experts The typical problem of combining expert advice is
the following: we are given several experts who may each makea prediction on a given instance.
Our goal is to combine their predictions so that the number ofmistakes made is nearly as few as
the bestfixed expertin hindsight. This is a well-studied problem in online learning, with many
different variations and many results [79, 80, 81].

The algorithms designed to combine expert advice (expert algorithms) have a generic frame-
work. Like other algorithms in the online learning framework, the expert algorithms are also de-
scribed by a prediction rule and an update rule. Further, each expert carries a weight that describes
its importance. The prediction rule combines the weights ofdifferent experts’ predictions, based on
the instance to be classified, while the update rule describes how to penalize incorrect experts and
reward the correct experts. In this section, we focus only ondescribing the prediction and update
rules for each of the experts’ algorithms that we use; the summary of their guarantees is presented
in Section 6.3.4, as part of the analysis of TrackIPTree..

6.3.2 Subproblems ofTrackIPTree

With this framework, we can now address the three issues mentioned earlier: deciding the relative
importance between the different nodes along a path, determining whether a path should predict
positive or negative, and building an appropriate tree structure to represent the IPtree.

We disentangle these issues to address them as four separatesubproblems – two that manipulate
the predictions but do not change the structure of the IPtree, and two that build up the appropriate
tree structure in bounded space. In this section, we describe how to address each of these subprob-
lems, and in the next section, we describe how to combine the solutions of all the subproblems into
the complete algorithm TrackIPTree.

Before we describe the subproblems of the TrackIPTree algorithm, we introduce some notation.
Recall thatm is the maximum number of leaves allowed to our algorithm. We useǫ ∈ (0, 1) to
denote an online learning rate; it determines how quickly the tree learns from its mistakes a tree
with low ǫ will be more robust to noise, but adapt less quickly to changes, and vice versa. LetPi,T

denote the set of prefixes of IP addressi in the current treeT , i.e.,Pi,T consists of all nodes in the
path ofi onT .

113



SLEEPING EXPERTSALGORITHM

Initialization:
Initialize all weightsxi to 1.

Prediction Rule:
Denote set of “awake” experts byA
Select expertj with probabilitypj =

xj
P

j∈A xj
.

Update Rule:
Set costs as follows:

cost(j) = 0 for correct “awake” expert
cost(j) = 1 for incorrect “awake” expert

For expertt:

Rt =
[
P

j pjcost(j)]
(1+ǫ) − cost(t)

xt = xt(1 + ǫ)Rt

Figure 6.1: The Sleeping Experts Algorithm

Relative Importance along Path We first consider the problem of computing the relative im-
portance of the different nodes, and we address it with thesleeping expertsalgorithm [51]. The
sleeping experts setting is as follows: at every time step, some of the experts are ’awake” and make
a prediction on the current instance, and the remaining experts are “asleep”, and do not make a
prediction on the current instance. The sleeping experts algorithm guarantees that for any expertu,
the mistakes made by the algorithm are not much worse than themistakes made by the expertu on
the instances on whichu is awake.

In our context, we may consider that the nodes along the path of the IP address inT (i.e.,Pi,T )
have the “awake” experts, which we call thepath-node experts. The leaf of the optimal IPtree has
the best path-node expert, and the goal of our algorithm is topredict nearly as well as the best
“awake” path-node expert. We usexn to denote the weight of the path-node expert at noden in
T . When TrackIPTree needs to choose a path-node expert for an IP address, it uses the sleeping
experts algorithm to make a prediction: it chooses the path-node expert at noden with probability

xn
P

z∈Pi,T
xz

. Once the algorithm receives the label of the IP address, thepath-node experts that

predicted incorrectly are penalized, and those that predicted correctly are rewarded, as shown in
Fig. 6.1. We integrate this subproblem into the complete algorithm in Sec. 6.3.3.

Deciding Labels of Individual Nodes Next, we need to decide whether the path-node expert
at a noden should predict positive or negative. We use a different experts’ algorithm to address
this subproblem – theshifting expertsproblem. Specifically, we allow each noden to have two
additional experts – a positive expert, which always predicts positive, and a negative expert, which
always predicts negative, We call these expertsnode-labelexperts, and now our problem of decid-
ing the label of noden becomes the problem of predicting nearly as well as the best node-label
expert atn.
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We denote the weights of the positive and negative node-label experts byyn,+ andyn,− re-
spectively. The shifting experts algorithm operates as follows: To classify an IP address, the node
predicts positive with bias yn,+

yn,−+yn,+
, and negative with bias yn,−

yn,−+yn,+
. Every time the node re-

ceives a label, it increases the weight of the correct node-label expert byǫ, and decreases the weight
of the incorrect node-label expert byǫ (up to a maximum of 1, and a minimum of 0).

Thus, the shifting experts algorithm is effectively run on every node on the path of the IP
address inT , and the predictions of these nodes are combined with the sleeping experts algorithm
described earlier. Note that if the optimal IPtree switcheslabels, the weights on node-label experts
will slowly shift from the incorrect expert to the correct expert, and the weights will reflect the
correct expert in1

ǫ steps. Thus, the shifting experts algorithm applied at eachnode automatically
tracks changing labels on the leaves of the optimal IPtree.

Building Tree Structure We next address the subproblem of building an appropriate structure
for the IPtree – our high-level goal here is to grow only thosesubtrees that are critical to improve
the predictions of the IPtree. A natural approach is to target nodes that make a lot of mistakes,
and grow their subtrees: when a node in the IPtree makes a lot of mistakes, then either the node
has a subtree in the optimal IPtree that separates the positive and negative nodes, or the optimal
IPtree must also make the same mistakes. Since TrackIPTree cannot distinguish between these two
conditions, it simply splits any node that makes a lot of mistakes, and therefore needs to grow a
tree that is somewhat larger thank.

In particular, TrackIPTree operates as follows: it starts with only the root node, and tracks the
number of mistakes made at every node. Every time a node makes1

ǫ mistakes, TrackIPTree splits
the node into its children, TrackIPTree waits for1

ǫ mistakes at each node to add a little resilience
with noisy data – otherwise, it would have to split a node every time the optimal tree made a
mistake, and the IPtreewould grow very quickly. Note also that if the optimal tree grows nodes
over the sequence of IP addresses, this subproblem automatically handles the changes that must
occur in the IPtree that our algorithm builds.

Bounding Size of IPtree Since TrackIPTree splits any node that makes a lot of mistakes, it is
likely that the IPtree that it builds is split much farther than the optimal IPtree– TrackIPTree does
not know when to stop growing a subtree, and it splits even if the same mistakes are made by
the optimal IPtree. While this excessive splitting does notimpact the predictions of the path-node
experts or the node-label experts significantly, we still need to ensure that the IPtree built by our
algorithm does not become too large.

We address this issue by recasting it as a paging problem [105]: each node in the IPtree is a
page, and the optimal IPtree needs only2k pages. We allow the IPtree built by our algorithm to
havem leaves (and thus,2m nodes), and so the size of ourcacheis 2m and the optimal cache is2k.
We can then use a paging algorithm to discard nodes when the IPtree grows beyond2m nodes. In
Section 6.3.4, we show that them = O(k

ǫ log k
ǫ ) suffices, when the FLUSH-WHEN-FULL (FWF)

115



algorithm is used. In Section 6.3.5, we discuss alternativepaging algorithms that may be more
useful in a real applications.

6.3.3 The CompleteTrackIPTreeAlgorithm

We finally describe the complete TrackIPTree algorithm, putting together the component algo-
rithms that address each of the subproblems. Since it is an online learning algorithm, we summarize
its operation by its prediction and update rules as follows:

Prediction Rule: When TrackIPTree needs to classify IP addressi, it computes a prediction from
the current IPtreeT as follows:

• For each node on the pathPi,T , compute a predictionγj using the shifting experts’ prediction
rule: i.e., flip a coin of bias yj,+

yj,++yj,−
at nodej, and return predictionγj as positive if the

coin turns out heads and negative otherwise.γj now becomes the prediction of the path-node
expert at nodej.

• Using the nodes on the pathPi,T as the “awake” nodes, and their respective predictions
{γj}j∈Pi,T

, compute the prediction of the entire tree using the sleeping experts’ prediction
rule: i.e., for each nodej on the pathPi,T , select its path-node expert with probability

xj
∑

z∈Pi,T

xz

. The predictionγj of the selected path-node expert is the prediction of the al-

gorithm.

Update Rule: Once TrackIPTree receives the true label, it may update its treeT if necessary.
Regardless of whether the algorithm’s prediction was correct, the algorithm updates the weights of
the path-node experts and the node-label experts of each node on the pathPi,T , using the sleeping
experts’ update rule and shifting experts’ update rule respectively. In addition, if the algorithm
made an incorrect prediction, it does the following:

• Increment the number of mistakes on the leaf of the pathPi,T by 1. If the number of mistakes
in a leaf node ofT exceeds1ǫ , split the node into its children.

• If the leaf nodel onPi,T needs to split:

– Ensure that the IPtree has fewer thanm leaves; if not, discard the appropriate leaves
with the chosen paging algorithm.

– Create the children ofl and initialize their weights for the sleeping and shifting experts
algorithms.
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Thus, we have described the complete TrackIPTree algorithmthat puts together the components
that address each of the subproblems in the Section 6.3.2. Inthe next section, we show that the
number of mistakes made by TrackIPTree is a small function ofthe number of changes and the
number of mistakes made by any adaptive IPtree of sizek.

6.3.4 Analysis

In this section, we present an analysis of our main algorithmTrackIPTree in the online learning
model. Our analysis focuses on the case when FWF is used as thepaging algorithm for discarding
nodes.

Theorem 6.1. Fix k. Set the maximum number of leaves allowed to the TrackIPTreealgorithmm
to be2k

ǫ (log k+2). LetT be an adaptive IPtree with at mostk leaves. Let∆T,s denote the number
of timesT changed labels on its leaves overs, andMT,s denote the number of mistakes made by
T overs.

The algorithm TrackIPTree ensures that on any sequence of instancess, for all T , the number
of mistakes made by TrackIPTree is at most(1+3ǫ)MT,s +2

(

1
ǫ + 6

)

∆T,s with probability at least

1 −
(

1
k

)
k

2ǫ2 .

Proof:

Our analysis first considers the case when the structure of the tree includes all the nodes in the
optimal tree. Here we need to consider the effect of the shifting experts’ algorithm for choosing
a good node-label expert, of the sleeping experts’ algorithm for choosing the a good path-label
expert, and of combining them to get a bound on the mistakes made. LetOPT denote any adaptive
IPtree of sizek; our guarantees hold for all such adaptive IPtrees.

We begin by analyzing the mistakes caused in the shifting experts algorithm that decides the
label of an individual node. The optimal node-label expert can look at the entire sequence of
instances that arrive at nodej, and can decide which label to use to classify instances, andif it
chooses, when to switch its label. LetOPTj be the optimal shifting expert at nodej, andYj

denote the number of mistakes our algorithm makes at nodej.

Recall that we shiftǫ from the incorrect node-label expert to the correct node-label expert on
every instance that arrives at the node. So the experts at each noden have their weightsyn,+ = p
andyn,− = (1 − p) on many different instances in the sequence, for eachp. Let E+

p denote the
eventyn,+ increases fromp to p + ǫ after seeing an instance and its (positive) label, and letE−

p

denote the eventyn,− decreases fromp to p − ǫ after seeing an instance and its (negative) label.
Each instance may cause an eventE+

p or E−
p , or the algorithm will predict it correctly. Therefore,

to compute the expected error, we simply need to compute (a) the error caused during each event
E+

p andE−
p , and (b) the number of such events.

In a pair of events (E+
p , E−

p+ǫ), observe that weightyn,+ increases fromp to p+ǫ, and decreases
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back fromp + ǫ to p; therefore, we term this pair of events (E+
p , E−

p+ǫ) a cycle, and we denote the
set of all cycles byC. We observe in each cycle, the expected error of our algorithm is (1 + ǫ). We
note also that

∑

p E+
p + E−

p is at most|C| + 1
ǫ . Summing over all eventsE+

p andE−
p , the expected

error is(1+ǫ)|C|+ 1
ǫ . Each cycle inC corresponds to either a mistake byOPTj , or 1

ǫ of 2 changes
of OPTj ’s node-label experts. Thus, we can get the following bound on the mistakes made by the
node-label experts at nodej:

E[Yj ] = (1 + ǫ)(MOPTj +
2

ǫ
∆OPTj +

1

ǫ
,

E[Yj ] = (1 + ǫ)MOPTj + 2(1 +
1

ǫ
)∆OPTj) +

1

ǫ
.

Next, we analyze the mistakes caused in choosing the right path-label expert. Consider a node
j that is a leaf in the optimal tree. For all the IPs whose prefix is j, the best expert will be nodej,
and further, nodej will not be “awake” for any other IP. By applying the analysisof the sleeping
experts’ algorithm on the result of the shifting expert algorithm, we get:

E[Xj ] ≤ Yj(1 + ǫ) +
1

ǫ
log m.

Sincem = 8k
ǫ2 log k

ǫ < k3

ǫ3 , for k > 10, we get:

E[Xi] ≤ Yi(1 + ǫ) +
3

ǫ
log

k

ǫ
.

Since there arek such leaves in OPT, we can apply a similar analysis to sets of the IP addresses
classified by each of them. By summing over all the leaves of OPT, we have effectively summed
over the entire sequence of IP addresses, and so we can get:

E[X] ≤ (1 + ǫ)

(

MOPT (1 + ǫ) + 2

(

1 +
1

ǫ

)

∆OPT

)

+
4k

ǫ
log

k

ǫ
.

So far, we have analyzed the algorithm when the treeT starts with only the root node, and only
grows or changes the labels of its leaves. To complete the proof, we need to analyze the effect of
using the paging algorithm to ensure that the size ofT is bounded.

Recall that the FWF algorithm discards the entire treeT when the number of leaves inT
exceedsm, and restarts with only the root node. Thus, every timeT needs to exceedm leaves,
TrackIPTree moves back to the case we previously analyzed.

We define anepochto be a sequence of instances such thatT starts from the root node and
grows to havem leaves. We now bound the number of mistakes made in each epoch. Suppose we
setm such thatE[X] ≥ 4k

ǫ2
log k

ǫ .
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E[X] ≤ (1 + ǫ)

(

MOPT (1 + ǫ) + 2

(

1 +
1

ǫ

)

∆OPT

)

+
4k

ǫ
log

k

ǫ
,

or, (1 − ǫ)E[X] ≤ (1 + ǫ)

(

MOPT (1 + ǫ) + 2

(

1 +
1

ǫ

)

∆OPT

)

,

or,E[X] ≤ (1 + 3ǫ)MOPT + 2

(

6 +
1

ǫ

)

∆OPT

To ensure that the number of mistakes made by the optimal adaptive tree is at least4k
ǫ2 log k

ǫ

with high probability, setm = 8k
ǫ2 log k

ǫ .

Thus, we have shown that the mistakes made by TrackIPTree canbe bounded as a small func-
tion of the mistakes and changes made by any adaptive IPtree of sizek. In other words, if there is an
adaptive IPtree of size at mostk, that makes few changes and few mistakes on the input sequence
of IP addresses, then TrackIPTree will also make only a smallnumber of mistakes.

6.3.5 Modifying TrackIPTree for Experimental Issues

In this section, we discuss how the TrackIPTree algorithm can be adapted to resolve a variety of
issues that may arise in experiments on data from real applications, but are not considered in the
theoretical model used earlier in the chapter.

Optimization Criteria and Cost of Algorithm So far, our algorithms and analysis have assumed
that mistakes on positive and negative instances are equally expensive, and therefore, the only
quantity to minimize is the number of mistakes. However, in many real applications, one kind
of mistake (typically, the false positive) may be much more expensive than the other, or the data
may be extremely one-sided. In these situations, simply analyzing the number of mistakes is not
necessarily a good performance indicator.

Our algorithm and analysis can be easily adapted to this by assigning different costs for the
positive and negative scenarios. For example, if the positive data is1% the size of the negative data,
we can assign the cost of a mistake on a positive instance to be100 times the cost of a mistake on
a negative instance. Our new goal would be to minimize the total cost of the algorithm, rather than
the total number of mistakes, and as a consequence, it would ensure that the algorithm learns much
more quickly from the more expensive mistake.

Models of Learning and Usage We have described and analyzed our algorithm TrackIPTree in
an online learning model, in which it receives IP addresses one at a time, is allowed to classify the
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IP address, and then is given the correct label for the IP address. However, we can use the algorithm
in other settings as well that occur in real applications.

For example, if we need to quickly classify IP addresses for applications like spam mitigation,
we would also use the only prediction rule of TrackIPTree as an inexpensive coarse-grained dis-
criminator. In this situation, TrackIPTree is only guaranteed to predict well on instances similar
to the ones that were used to build the IPtree. If there is a change in the data distributions, the
algorithm would not be able to adapt until it is given the new labels reflecting those changes.

Further, it is clear we could also use TrackIPTree to run on data collected offline as well –
we can feed the algorithm the IP addresses and their corresponding labels one at a time. The
performance benefits of using TrackIPTree in the offline setting is again the reduced computational
and space overhead; in the experimental section, we demonstrate how TrackIPTree compares to the
optimal offline algorithm in terms of accuracy and overhead.

Paging Algorithm Our analysis assumes that when the IPtree has grown to its maximum allowed
size, the FLUSH-WHEN-FULL paging algorithm is used to discard nodes. FWF discards all pages
in the cache when the cache is full, and simply starts again with an empty cache. In our context,
this would correspond to discarding all nodes in the treeT , and starting again with only a newly
initialized root node.

In a real implementation, discarding the entire tree is likely a waste of information, and so we
instead use a paging algorithm that makes a a less drastic change to the tree. In particular, we use
LRU in our implementation of TrackIPTree to select nodes that may be removed from the tree, and
for efficiency, we discard a small fraction (e.g,1%) of the nodes inT (rather than just discarding a
single node at a time).

6.4 Evaluation

In this section, we present the results of our experiments inusing TrackIPTree to classify IP ad-
dresses as malicious or non-malicious, based on whether they send significant quantities of spam
or legitimate mail.

6.4.1 Data and Preliminaries

Our data set consists of e-mail logs that are classified into spam and legitimate mail using Spa-
mAssassin, collected over 6 months from January 2006 to June2006. The logs contain 28 million
messages, of which around 1.2 million are legitimate mail and the rest are spam. These are the
same logs used in the measurement analysis in Chapter 5.

For all the experimental results that follow, we use LRU as the paging algorithm, when nodes
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need to be discarded from the tree, and it discards1% of the nodes in the tree (i.e.,1% of m, the
maximum number of leaves allowed in the tree) every time. Ourresults are similar when LFU is
used as the paging algorithm, and the number of nodes discarded is varied between1 − 5% of m.
Our learning rateǫ is set to0.05 and the maximum number of leaves allowedm is set to10, 000.

Because our data contains mostly spam, evaluating the results in terms of the number of mis-
takes made is no longer meaningful – it would be trivial for any algorithm to achieve a very small
number of mistakes by classifying all the spam correctly, and very little of the legitimate mail cor-
rectly. However, an algorithm that classifies a significant fraction of the legitimate mail correctly is
likely preferable, even if it makes more mistakes overall. Therefore, we evaluate the performance
of the different algorithms by plotting the trade-off on their accuracy on spam and legitimate mail,
i.e., we plot the algorithm’s accuracy on spam subject to theconstraint that it classifies at leastx%
of the legitimate mail correctly.

Our experiments study three sets of results. First, we compare the accuracy tradeoff of Track-
IPTree with optimized /24 prefixes and network-aware clusters. Then, we examine the accuracy
tradeoff ask varies. Finally, we examine the distribution of IP prefix clusters generated over differ-
ent points of time, which gives us a snapshot of how the IPtreeis evolving.

6.4.2 A Baseline Algorithm

In order to use any pre-defined clusters to classify IP addresses, they need to be assigned labels.
Because our data is one-sided, we assign labels subject to the constraint that at least aw-fraction
of the positive labels are correct. We assign these labels using a basic greedy algorithm with two
passes over the data. The greedy algorithm will optimize thelabels of the clusters for the data, and
minimize the number of mistakes that need to be made on the negative instances, subject to the
constraint that at least aw-fraction of the positive labels are correct.

Specifically, we do the following: In the first pass, we store the number of positive and negative
labels at each cluster. At the end of the pass, we compute the ratio of positive to negative labels
in each leaf cluster, that we term thepositive-ratioof the leaf cluster. We sort the leaves by their
positive-ratio, and computem, the number of leaves that containw-fraction of the positive labels.
We assign positive labels to the topm clusters and negative labels to the rest. In the second pass,
we use these labels to classify the IP addresses.

Next, we examine /24 IP blocks and network-aware clusters perform when assigned labels with
this greedy algorithm, compared to TrackIPTree.

6.4.3 Comparisons with Baseline Algorithm

Our first set of experiments compares the accuracy of our algorithm with network-aware clusters
and /24 IP prefixes. We assign labels to these two sets of clusters using 2-pass greedy algorithm in
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Section 6.4.2. Note that this experimental set-up is favourable to the baseline clusters – since the
greedy algorithm gets two passes over the data, the clustersare optimized for the data that they will
be classifying.

Fig. 6.4.3(a) plots the accuracy curve of the three sets of clusters. It is clear that the accuracy of
TrackIPTree is significantly better than using either of thepre-defined clusters – for any choice of
accuracy of legitimate mail, the mistakes made by TrackIPTree is far lower than the mistakes made
by the network-aware clusters For instance, when the algorithms are constrained to classify at least
50% of the legitimate mail correctly, TrackIPTree classifies nearly 99% of the spam correctly as
well, while the pre-defined clusters classify only56 − 77% of the spam correctly.

Fig. 6.4.3(b) shows the number of leaves instantiated for each of the three IPtrees. For the
pre-defined clusters, we only instantiate leaves that are needed for the classification of our data.
Note that the trees for the baseline clusters are significantly lessspace-efficient than TrackIPTree –
they require at least a factor of 100 more leaves than TrackIPTree. Thus, TrackIPTree produces a
smaller set of clusters that have much better predictive power.

6.4.4 Effect of Changingm

Next, we explore the effect of changingm, the maximum number of leaves allowed to the Track-
IPTree. Larger values ofm typically imply higher accuracy for the algorithm. However, oncem
is large enough to capture the most of the distinct subtrees in the underlying optimal IPtree, any
further increase will not yield a significant improvement.

Fig. 6.4.4(a) shows the accuracy curves for the TrackIPTreewhen m ranges from 1,000 to
50,000 leaves. It is clear that when the TrackIPTree is allowed a maximum of only a 1000 leaves,
there is a noticeable drop in the classification accuracy. For instance, whenm = 10, 000, the
TrackIPTree is able to simultaneously classify77.2% of the legitimate mail and97% of the spam
correctly. However, form = 1000, the accuracy on the legitimate mail drops to57% when the
algorithm must classify97% of the spam correctly.

On the other hand, the results of TrackIPTree with 10,000 leaves or with 50,000 leaves are
quite similar. Whenm is increased from 10,000 leaves to 50,000 leaves, the algorithm’s accuracy
on the legitimate mail increases only marginally, from77.2% to 77.8%. Thus, for this data set,
little improvement seems to be gained by any increase inm beyond 10,000.

While this value ofm = 10, 000 is specific to this data set, the experiment illustrates the
tradeoff that appears with choosing different values ofm – too large am causes a performance
overhead without an improvement in accuracy (and may also result overfitting), while too small a
m could cause a significant loss in accuracy. By choosing an appropriatem for the application and
the environment, we can provide an good balance between accuracy and overhead.
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6.4.5 Cluster Distribution over Time

Finally, we examine the prefix sizes of the nodes in the tree generated by TrackIPTree, and how
the distribution of the prefix sizes changes over time. Fig. 6.4.4(b) plots the number of clusters
(normalized by2m) with different prefix sizes after 15, 30, and 60 days of running the algorithm
continuously.

Fig. 6.4.4(b) is one way to observe how the tree evolves over time. The fraction of clusters that
with prefix lengths between 15-17 increases by as much as a third, between the shortest and longest
time periods. On the other hand, the fraction of clusters with prefix lengths between 24-32 drops
by as much as a third between the same two periods. Clearly, the tree has lost a number of nodes
with prefix lengths between 24-32, and gained a number of themwith prefix-lengths 15-17.

The experiment suggests that the IP prefixes from which the spam and legitimate data originate
may change over time. While the early IPtree does not need to branch on many of the /15-/16 IP
blocks, the later IPtree does branch on them, while droppingmany of the smaller IP blocks. This
would happen only if the IPtree made sufficient mistakes between the 15th and the 60th days on all
of those nodes.

6.5 Related Work

In this section, we review related work that has not been previously mentioned earlier in the chapter.

The primary motivation for our work came from a series of measurement results and analysis,
all of which suggested that prefix-based IP address blocks may be useful for predicting malicious
and non-malicious network traffic. We have described this work in Section 6.1, and so we do not
go into detail again here.

There has been much interest in networking and database literature in efficient algorithms for
finding IP clusters; among these are algorithms for the heavy-hitter [46, 47, 45], hierarchical heavy-
hitter [129], multidimensional heavy-hitter problems [32]. The goal of these problems is to analyze
traffic patterns and detect new IP prefix ranges with significant activity. To our knowledge, none
of the work here has focused on the prediction problem – separating the regions of the IP address
space that send malicious and benign traffic.

There has also been work on related problems in the machine learning literature and algorithms
literature. Perhaps most closely related in the online learning literature is the work of Helmbold and
Schapire [63] that presents an algorithm to predict nearly as well as the best pruning of a decision
tree. Our problem has a few constraints that they do not: first, our algorithm needs to have low
space and computational overhead in order to scale to data seen even in enterprise networks today.
In addition, the underlying tree may change over time, and our algorithm needs to be able to adapt
to dynamic evolving data.
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A second line of closely related work considers the problem of finding decision trees over
streaming data [64, 42]. Our problem is a little different aswe do not actually need to build
a decision tree from scratch – at every node, we already know the how to branch further; the
structure of the tree is fixed. On the other hand, we also have two additional sources of complexity
in comparison to their setting: (1) our data may be generatedby an adversary, and thus our bounds
need to hold in adversarial environments, and (2) the underlying tree may change over time and
algorithm must adapt to the changes.

6.6 Conclusion

In this chapter, we design online algorithms to track dynamically malicious regions of the IP ad-
dress space, drawing on ideas from online machine learning.We prove guarantees on its perfor-
mance, and these guarantees ensure that as long as there isoneset ofk IP clusters that are good
predictors, our algorithm will perform nearly as well as those clusters, on any sequence data, when
allowedO(k log k) space. Thesek IP clusters may even undergo certain kinds of changes over
time, and cause only a small impact per change on our algorithm’s performance. We evaluated
our algorithm on real data of spam and legitimate mail seen atthe enterprise network of a large
corporation. We found that our algorithm has excellent empirical results, and its predictions are
orders of magnitude better than the predictions of two fixed clustering schemes – network-aware
clusters and /24 IP prefix blocks.
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Chapter 7

Conclusion

A recurring problem in network traffic analysis is to automatically distinguish legitimate traffic
from malicious or spurious traffic. This problem arises in several guises, e.g., for spam mitigation
at the network-level, we need to distinguish between the connections that originate from legitimate
mail servers and spammers; for worm detection, we need to distinguish between packets that con-
tain exploits and those that do not. Many of these problems are, at core, machine learning or data
mining problems – we need to either learn a classifier that identifies legitimate traffic patterns, or
to find a known traffic pattern of interest efficiently. However, it is often infeasible to directly ap-
ply classical techniques from machine learning and data mining to these problems, because of the
presence of intelligent adversaries and the scale of trafficon the Internet.

In this thesis, we examined four different instances of thisproblem in network traffic analysis,
and we used tools from computational learning theory and streaming algorithms to address them.
These four problems are characterized by different kinds ofstructure in network traffic, have dif-
ferent kinds of adversaries, and different kinds of scalingrequirements. In each of these problems,
the approach we take is to formally specify the structure of the problem and the adversary, and use
this structure to reason about the kind of performance guarantees we can get as a function of the
adversary’s power.

Chapter 2 examined the stepping-stones problem. Here, we used the temporal structure of the
traffic – in particular, the inter-packet timing delays – to identify pairs of streams that are likely to
be stepping-stones. We provided algorithms with strong upper bounds on the number of packets
they need to observe, to detect attacks with given false positive and false negative rates. We also
presented lower bounds showing how an adversary, with sufficient chaff, could evade any detection
mechanism that is based only on the timing delays between packets.

Chapter 3 explored the hardness of automatic signature generation usingpattern-extraction
algorithms, which are algorithms that use the content structure of network traffic to distinguish
worm traffic from normal traffic. A sequence of prior work has alternately developed a variety
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of systems, each demonstrating good experimental performance on the problem, and a variety of
attacks, demonstrating how each system could be evaded. We presented lower bounds showing how
any pattern-extraction algorithm could be misled, in the presence of an adversary with sufficient
control over the malicious data.

Chapter 4 presented efficient streaming algorithms to identify superspreaders, which are sources
that contact many distinct destinations in a short time period. The communication structure of most
hosts on the Internet makes finding superspreaders of interest to security applications, as they are
likely indicators of worms, scanning, or other malicious activity. Our experimental results on real
network traces showed that our algorithms are substantially more efficient than earlier approaches.

Chapters 5 and 6 focused on network-level spam mitigation. In Chapter 5, we performed a
systematic characterization of the discriminatory power of IP addresses for this problem, and our
analysis showed that the network-level characteristics ofspammers differ significantly from those
of legitimate mail senders. In Chapter 6, we examined the problem of leveraging this structure
as effectively as possible by tracking malicious regions ofthe IP address space. We developed
online algorithms to leverage this network structure with provable optimality guarantees. Our
experimental results demonstrated that our algorithm findsIP prefixes with predictive power that is
orders of magnitude more accurate than commonly-used IP prefixes.

The results in this thesis illustrate how the unusual challenges in traffic analysis for network
security may be tackled by using ideas – rather than classical blackbox techniques – from machine
learning and data mining. Chapters 2 & 3 illustrate how mathematical guarantees can add signif-
icantly to experimental analysis in an adversarial setting. For example, our results on learning-
based signature showed that by abstracting away the specificalgorithms and attacks, we could
analyze when the approach may or may not work, and how long an adversary could fool the ap-
proach. Chapters 4, 5 & 6 illustrate how problem-specific structure may be used to design efficient
algorithms. For example, in our work on detecting superspreaders, we used insights on traffic
distributions to design a novel (and substantially more efficient) algorithm than a straightforward
combination of sampling primitives. Likewise, our data analysis of spam empirically revealed a
key problem-specific structure inherent in spamming IP addresses, which we then used to enhance
spam mitigation at the network-level.

Finally, while this thesis has illustrated how ideas from machine learning provide great lever-
age to address the challenges of traffic analysis, it has still focused primarily on drawing ideas from
computational learning theory and streaming algorithm design. As applications grow more com-
plex and sophisticated, it is likely that the challenges will need to draw on ideas from many other
specialized sub-fields of machine learning and data mining leading to closer connections between
systems security and machine learning.
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