
Integrating Nominal and Structural Subtyping

Donna Malayeri and Jonathan Aldrich
May 2008

CMU-CS-08-120

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Nominal and structural subtyping each have their own strengths and weaknesses. Nominal sub-
typing allows programmers to explicitly express design intent, and, when types are associated
with run time tags, enables run-time type tests and external method dispatch. On the other hand,
structural subtyping is flexible and compositional, allowing unanticipated reuse. To date, nearly
all object-oriented languages fully support one subtyping paradigm or the other.

In this paper, we describe a core calculus for a language that integrates the key aspects of nominal
and structural subtyping in a unified framework. We have also merged the flexibility of struc-
tural subtyping with statically typechecked external methods, a novel combination. We prove
type safety for this language and illustrate its practical utility through examples that are not eas-
ily expressed in other languages. Our work provides a clean foundation for the design of future
languages that enjoy the benefits of both nominal and structural subtyping.

This research was supported in part by the U.S. Department of Defense, Army Research Office grant number DAAD19-
02-1-0389 entitled “Perpetually Available and Secure Information Systems,” and NSF CAREER award CCF-0546550.

Keywords: Nominal subtyping, structural subtyping, external dispatch

1 Introduction

In a language with structural subtyping, a type U is a subtype of T if its methods and fields are a
superset of T’s methods and fields. The interface of a class is simply its public fields and methods;
there is no need to declare a separate interface type. In a language with nominal subtyping, on the
other hand, U is a subtype of T if and only if it is declared to be. Accordingly, structural subtyping
can be considered intrinsic, while nominal subtyping is declarative. Each kind of subtyping has
its merits, but a formal model has not been developed for a language that integrates the two
subtyping disciplines.

Structural subtyping offers a number of advantages. It is often more expressive than nominal
subtyping, as subtyping relationships do not need to be declared ahead of time. It is compositional
and intrinsic, existing outside of the mind of the programmer. This has the advantage of support-
ing unanticipated reuse—programmers don’t have to plan for all possible scenarios. Additionally,
structural subtyping is often more notationally succinct. Programmers can concisely express type
requirements without having to define an entire subtyping hierarchy. In nominal systems, some
situations may require multiple inheritance or an unnecessary proliferation of types; in a struc-
tural system, the desired subtyping properties just arise naturally from the base cases. Finally,
structural subtyping is far superior in contexts where the structure of the data is of primary im-
portance, such as in data persistent environments or distributed computing. In contrast, nominal
subtyping can lead to unnecessary versioning problems: if some class C is modified to C′ (perhaps
to add a method m), C′ objects cannot be serialized and sent to a distributed process with the
original definition C, even if C′ is a strict extension of C.

As an example of the reuse benefits of structural subtyping, suppose class A has methods
foo(), a() and b(), and class B has methods foo(), x() and y(). Suppose also that the code
for A and B cannot be modified. In a language with structural subtyping, A and B share an
implicit common interface { foo } and a programmer can write code against this interface. But, in
a language with nominal subtyping, since the programmer did not plan ahead and create an IFoo
interface and make A and B its subtypes, there is no way to write code that takes advantage of this
commonality (short of using reflection). In contrast, with structural subtyping, if a class C is later
added that contains method foo(), it too will share this implicit interface. If a programmer adds
new methods to A, A’s interface type will change automatically, without the programmer having
to maintain the interface himself. If B or C also contain these new methods, the implicit combined
interfaces will automatically exist.

Nominal subtyping also has its advantages. First, it allows the programmer to express and
enforce design intent explicitly. A programmer’s defined subtyping hierarchy serves as checked
documentation that specifies how the various parts of a program are intended to work together.
Second, explicit specification has the advantage of preventing “accidental” subtyping relation-
ships, such as the standard example of cowboy.draw() and circle.draw(). Nominal subtyping
also allows recursive types to be easily and transparently defined, since recursion can simply go
through the declared names. Third, error messages are usually much more comprehensible, since,
for the most part, every type in a type error is one that the programmer has defined explicitly.
Finally, nominal subtyping enables efficient implementation of external dispatch.

External dispatch is provided by number of statically typed languages, such as Cecil [7, 8],
MultiJava [9], among others. External methods increase the flexibility and evolvability of code
because they do not fix in advance the set of methods of a class. Consider the example of a class
hierarchy that represents AST nodes. (This motivating example is expanded further in Sec. 2.3.)

1

Suppose this is part of a larger system, which includes an IDE for editing elements represented
by this AST. Now suppose a programmer wishes to add new functionality to the IDE but cannot
modify the original source code for the AST nodes. The new function provides the capability to
jump from one node to a node that it references; this differs depending on what type of node
is selected. Clearly, this functionality cannot be written without code that somehow performs
dispatch on the AST class hierarchy.

In a language without external dispatch, the developer has limited choices. Usually, she must
resort to manually writing instanceof tests, which is tedious and error-prone. In particular, if a
new element is added to the AST hierarchy, the implementation will not behave correctly.

If the developers of the original class hierarchy anticipated this need and implemented the Visi-
tor design pattern, it would then be easy to add new operations to the hierarchy, but then it would
be difficult to add new classes. At best, Visitor trades one problem for another.

On the other hand, in a language with external dispatch, a programmer simply writes an ex-
ternal method that dispatches on the AST class hierarchy (i.e., separate from its code). External
dispatch makes it easy to adapt existing code to new interfaces, since new code can be added as
an external method. Exhaustiveness checking rules for external methods ensure that when a new
class is added to the hierarchy, in the absence of an inherited method, a new method must be
added for that class.

Nominal subtyping enables efficient external dispatch since there is a name on which to tie
the dispatch. Additionally, if external dispatch were allowed on structural types, the problem
of accidental subtyping would be exacerbated, since overridden methods would apply wherever
there was a structural match. Further, ambiguity problems could frequently arise, which would
have to be manually resolved by the programmer. Consider, for example, a method m defined on
objects with a foo:int field. If m is also later defined for objects with a bar:char field, m is now
ambiguous—which method is called for an object with both fields?

In our language, Unity, we sidestep this issue—nominal and structural subtyping are inte-
grated. This makes efficient external dispatch compatible with structural subtyping, but also gives
programmers the benefits of both subtyping disciplines. Nominal subtyping gives programmers
the ability to express explicit design intent, while structural subtyping makes interfaces easier to
maintain and reuse.

Contributions. The contributions of this paper are as follows:

• A language design, Unity, that provides user-defined and structural subtyping relationships
in a novel and uniform way. Unity combines the flexibility of external dispatch with the
conceptual clarity of width and depth subtyping.

• A formalization of the design of Unity, along with proofs of type safety (Sec. 5).

• Examples that illustrate the expressiveness and flexibility of the language (Sec. 2), We con-
trast Unity with other languages in Sec. 2.1.

• A case study (Sec. 3) and an empirical study of several Java programs (Sec. 4).

2

2 Motivating Examples

We give, by example, the intuition behind Unity and illustrate combining structural subtyping
with external methods. In Unity, an object type is a record type tagged with a brand. Brands
induce the nominal subtyping relation, which we call “sub-branding.”1 Brands are nominal in
that the user defines the sub-brand relationship, like the subclass relation in languages like Java,
Eiffel, and C++.

When a brand β is defined, the programmer lists the fields that any objects tagged with β will
include. In other words, if the user defines the brand Point as having the fieldss {x : int, y : int},
then any value tagged with Point must include at least the labels x and y (with int type)—but
it may also contain additional fields, due to record subtyping. For instance, a programmer could
create a colored point object with the expression Point({x=0,y=1,color=blue}). Subtyping takes
into account both the nominal sub-brand relationship and the usual structural subtyping relation-
ship (width and depth) on records.

To integrate these two relationships, brand extension is constrained: the associated field types
must be subtypes. In other words, a brand β1 can be declared as a sub-brand of β2 only if
β1’s field type is a structural subtype of β2’s field type. As an example, suppose the brand
3DPoint is defined as 3DPoint({x:int, y:int, z:int}). 3DPoint can be declared as a sub-
brand of Point, since {x:int, y:int, z:int} is a sub-record of {x:int, y:int}. However,
a brand 1DPoint({x:int}) cannot be a sub-brand of Point (since it lacks the y field), nor can
FloatingPoint(x:float, y:float}) (assuming float is not a subtype of int).

2.1 Example 1: A Window Toolkit

Fig. 1 contains a code excerpt for a windowing system and illustrates the novel features of Unity.
The built-in brand Top is the root of the brand hierarchy, like Object in Java. To simplify the
presentation, we include only the field title. ScrollBar is defined as a type alias using the type
syntax. By default, a window does not have a scrollbar. The brands Textbox and StaticText
extend Window, and also do not scroll by default.2

To add scrolling functionality, we have defined the function scroll, which operates
on any Window (or sub-brand thereof) that has a getScrollBar() method. The type
Window({getScrollBar():ScrollBar}) classifies such an object. (We suppose here that the im-
plementation of scroll need only access the scrollbar field and the fields of Window.) Note that
the structural component of this type refers to another structural type, ScrollBar; structural types
may be arbitrarily nested.

Let us assume that in a non-scrolling textbox, the user can only enter a fixed num-
ber of characters. Consequently, we define the brand ScrollingTextbox in order to
change textbox functionality—in particular, the behavior when inserting a character. The
scroll function is applicable to ScrollingTextbox since it is automatically a subtype of
Window({getScrollBar():ScrollBar}).

In Unity, methods can be either internal (defined within a brand), or external (defined outside
the brand). To allow sound modular checking of external methods (see Sec. 5), only internal meth-
ods are permitted to be abstract; external methods must be concrete. The method insertChar has
been defined as an external method. This method is applicable to a Textbox or ScrollingTextbox

1The name “brand” is borrowed from Strongtalk [4], which in turn borrowed it from Modula-3.
2Note that all fields must be listed by the subtypes of Window; this design decision is merely to simplify our core calculus.

3

abstract brand Window ({title : string}) extends Top
concrete brand Textbox ({title : string, text : string}) extends Window
concrete brand StaticText ({title : string, text : string}) extends Window
concrete brand ScrollingTextbox({title : string, text : string, s : ScrollBar};

method getScrollbar() : ScrollBar = this.s)
extends Textbox

type ScrollBar = Top(getMaximum():int, setMaximum(x:int) : unit,
getValue():int, setValue(x:int) : unit)

let scroll = λw : Window({getScrollBar() : ScrollBar}) .
... // code that performs the scrolling operation

method insertChar Textbox({getCurrentPos() : int}) : unit =
λc : char // insert a character only if it will fit in the window

method insertChar ScrollingTextbox({getCurrentPos() : int}) : unit =
λc : char // insert the character, scrolling if necessary

method getCurrentPos(Textbox({pos:int})) : int = ...

Subtyping relationships

Window ({title : string, s : ScrollBar}) ≤ Window ({title : string})

Textbox ({...}) ≤ Window ({title : string})
ScrollingTextbox ({. . . }) ≤ Textbox ({. . . })
ScrollingTextbox({...}) ≤ Window({title : string, s : ScrollBar})

StaticText({. . . }) ≤ Window ({title : string})
StaticText({..., s : ScrollBar}) ≤ Window(title : string, s : ScrollBar)

Figure 1: Unity code for a windowing system. Nominal subtyping allows the brand
ScrollingTextbox to change the behavior of insertChar through tag dispatch, while struc-
tural subtyping allows the scroll function to apply to any window with an s : ScrollBar field.
ScrollBar is defined as a type alias using the type syntax. In the subtyping relationships, some
field names are elided with “. . . .”

that has a getCurrentPosmethod. Textbox does not have an internal getCurrentPosmethod, so
it has been added as an external method. The method getCurrentPos, in turn, is only applicable
to a Textbox that has a pos:int field. This illustrates the structural constraints that can be put on
a method. For a method m, a programmer can specify a set of fields and methods that must be
present in m’s receiver.

Since a textbox that scrolls allows the user to enter more text than the window size permits, a
new sub-brand had to be defined so that its implementation of insertChar could be overridden.
If other sub-brands of Window (such as StaticText) do not need to change their existing behav-
ior when a scrollbar is added, no new sub-brands need be defined. Scrolling functionality can
be added to these types by including a ScrollBar field and a getScrollBar() method, and the

4

scroll function is then applicable.
This example demonstrates both the use of functions (i.e., lambda expressions), and methods.

The difference between the two is that functions do not perform dispatch (that is, they cannot be
overridden), but they can be defined at any scope. Methods can be overridden, but they can only
be defined at the top-level.

These brand definitions induce subtyping relationships, shown below the code
listing in Fig. 1. Interestingly, ScrollingTextbox({. . .}) is a subtype of both
Window({getScrollBar():ScrollBar}) and of Textbox({. . .}), but we have avoided
both multiple inheritance and the problems typically associated with it. The type
Window({getScrollBar():ScrollBar}) is a conceptual interface that exists without being
named.

The example illustrates the two kinds of extensibility that Unity provides: structural extensi-
bility and brand extensibility.

• Structural types can be used to create structural method constraints—methods that an object
must have in order to conform to that type. They can be also be used to create a new type
that adds fields to an existing brand, without defining new behavior for the resulting type. So, a
ScrollBar can be added to a StaticText object without defining a new brand, as the existing
functionality of the static text box does not need to change if a scrollbar is added.

• Brand extension creates a new brand that can be used in dispatch; as a consequence, pro-
grams can define new behavior for the newly defined brand. Here, ScrollingTextbox is defined
as an extension of Textbox because the behavior of insertChar is different depending on
whether or not the text box has a scrollbar attached to it. Design intent is preserved because
whenever different behavior is required (such as with Cowboy.draw() and Circle.draw()),
nominal subtyping must be used.

Additionally, we see here the synergy between structural subtyping and external dispatch.
Structural subtyping can be used to specify the constraints of a method, and external methods can
be used to make existing brands conform to those constraints.

2.2 Comparison to Other Systems

Here we compare Unity to closely related systems. See Sec. 6 for other related work.

Java. In Java-like languages, expressing this example would be unwieldy. A common way
to express the necessary constraints would involve first defining two interfaces, IWindow and
IScrollableWindow. ScrollBarwould also have to be an interface.

If a programmer wished to allow the possibility of adding a scrollbar to a window class, even
without changing any other functionality, he would have to define a subclass that also imple-
mented IScrollableWindow. In this example, we would define the classes ScrollingWindow,
ScrollingTextbox, and ScrollingStaticText, though only ScrollingTextbox needs to change
any functionality; see the class diagram Fig. 2(b). Contrast this with the brand structure of the
Unity program depicted in Fig. 2(a). In Unity, only the types associated with dispatch need to be
defined, in contrast to Java.

The Java equivalent of the scroll function could be a static function of some helper class
and would take an object of type IScrollableWindow. Of course, if a programmer defined a

5

Window

StaticText

ScrollingTextbox

Textbox

(a) The windowing example as imple-
mented in Unity. Depicted here are the
brands that must be defined in order to ob-
tain the desired subtyping relationships.

IWindow

IScrollableWindow

ScrollingWindow

Window

ScrollingStaticText

StaticText

ScrollingTextbox

Textbox

(b) The same example implemented in Java. Dashed rectan-
gles are interfaces; solid rectangles are classes. Dashed lines
indicate the implements relationship and solid lines indicate
extends.

Figure 2: For the windowing example, the user-defined subtyping relationships necessary in Unity
vs. those necessary in Java.

new scrolling window class with the correct getScrollBar() method, but forgot to implement
IScrollableWindow, the scroll function could not be used on objects of that class. (This situation
often arises in Java programs, particularly when one wishes to use library code, the developers of
which are not even aware of the interface that they should implement.)

There are other oddities in the Java version. The Java class ScrollingWindow is semanti-
cally analogous to the Unity type Window(getScrollBar():ScrollBar), but ScrollingTextbox
and ScrollingStaticText are not subclasses of ScrollingWindow, while the corresponding Unity
types are subtypes of Window(getScrollBar():ScrollBar). To have such subtyping relationships
would require multiple inheritance in a language like Java, while the Unity code works with just
single inheritance. This illustrates the lack of expressiveness that is inherent in languages that
require the programmer to name all relevant subtyping relationships.

Traits. A language with traits [25] would provide a much cleaner solution than that of Java, but
would still lack the expressiveness of Unity’s structural subtyping. This is because traits are mainly
designed to solve issues of implementation inheritance (especially multiple inheritance) that are
largely orthogonal to the ones we are considering. In this example, the same subtyping hierarchy
would have to be created as in the Java example, but the scroll function could be written for
IScrollableWindow with the appropriate dispatch. (A static method could always be written in
Java, but it would not perform dispatch on subtypes.) This would enable some code reuse, but
would still require creating a number of types.

Mixins. In a language with mixins [3], the programmer would create a mixin class
ScrollableWindow that consists of the fields of Window along with s : ScrollBar and the code for
the function scroll. The code for the ScrollableWindow would then be mixed into StaticText
to create a ScrollingStaticText and into Textbox to create ScrollingTextbox. The behavior of
insertCharwould then be specialized for ScrollingTextbox.

6

With mixins, the same number of eventual classes would be created as in Java, but creating
them becomes easier because of mixin construction. In contrast with Unity, the code for scroll
cannot be reused unless the mixin ScrollableWindow is used, which restricts its flexibility. This
can pose a problem when interoperating with classes that were created in isolation from the mixin.
Mixins also require up-front planning; methods and fields cannot be added after-the-fact.

Structural subtyping. Languages which support structural subtyping, such as Moby [11],
O’Caml [15], and PolyTOIL [5], would elegantly express all of the desired subtyping relationships,
but these languages allow only internal dispatch—that is, all methods must be defined inside the
class definition. In our language, insertChar can be an external method; it need not reside in-
side the definitions of Textbox and ScrollingTextbox. It would be non-trivial to add support for
external dispatch or multimethods to these types of languages.

Cecil. Cecil fully supports external and multimethod dispatch [7, 8]. Cecil’s powerful, but very
complex, type system can express most of the necessary relationships (though new classes do need
to be defined for ScrollingWindow and ScrollingStaticText). To write the scroll function, a
programmer would have to use bounded quantification and a “where” clause constraint, the latter
being typechecked via a constraint solver. That is, in psuedo-code, the argument to scrollwould
have type:

for all T where T <: Window and signature getScrollBar(T) : ScrollBar

Here, the type ScrollBarwould have to be a class, rather than a structural type as in Unity, due to
two major shortcomings of where clauses: they cannot be nested and can only occur on top level
methods. Additionally, where clauses cannot be used to constrain the method’s receiver. In Unity,
on the other hand, structural types are compositional and can therefore be nested within another
type (e.g., ScrollBar in Fig. 1), can occur at any level in the program (e.g., the lambda expression
scroll), and can be used to constrain a method’s receiver (e.g., method insertChar).

Virtual classes. Some of the required relationships could be expressed elegantly using virtual
classes [16] or nested inheritance [21], but only with advance planning. To express this example,
the programmer would create a class Base containing the virtual classes Window, Textbox, and
StaticText. Then, she would create a subclass of Base, called Scroll, that contained its own
Window. This definition of Window would add a field for a scrollbar. Additionally, Scroll would
have a virtual class ScrollingTextbox which would include the new definition of insertChar.
The programmer would not to create a new class ScrollingStaticText since the new definition of
Window would automatically apply to StaticText (i.e., Scroll.StaticText would automatically
have a scrollbar).

The virtual classes solution is elegant, but if the programmer did not plan ahead and redefine
Window in the Scroll class, there would not be a way to describe this type. Essentially, virtual
classes make it very easy to reuse code across related classes (an advantage of virtual classes and
nested inheritance over Unity), but cannot easily express the structural types of Unity.

2.3 Example 2: AST Nodes in an IDE

In this section, we describe another example to show other ways in which Unity can be used.
Suppose we have an integrated development environment that includes an editor and a compiler.

7

abstract brand AstNode(;{abstract method compile : () → unit}) extends Top

concrete brand PlusNode ({n1 : AstNode(), n2 : AstNode()};
method compile() : unit = compilePlus(this); /* compile PlusNode */)
extends AstNode

concrete brand Num ({val : int}; method compile() : unit = ... /* compile Num*/)
extends AstNode

concrete brand Var ({s : Symbol}; method compile() : unit = ... /* compile Var */)
extends AstNode

// highlight the text corresponding to ‘node’ in the text editor,
// using the location specified by the ‘loc’ field
let highlightNode = λ node : AstNode(loc : Location). ...

// AST nodes with debug information
concrete brand DebugPlusNode ({n1 : AstNode(), n2 : AstNode(), loc : Location};
method compile() : unit = compilePlus(this); outputLocation(out, this.loc))
extends PlusNode

concrete brand DebugNum ({val : int, loc : Location};
method compile() : unit = ... /* compile DebugNum */) extends Num

concrete brand DebugVar ({s : Symbol, loc : Location, varName : string};
method compile() : unit = ... /* compile DebugVar */) extends Var

Figure 3: Example 2: AST Nodes in an IDE. The top portion is the code before changes to add
debug information to the AST. The function highlightNode makes use of structural information
and the external dispatch in compile changes its behavior for the declared Debug* sub-brands.

The top portion of Fig. 3 contains an excerpt of a simplified version of the code for such a system.
Here, the brands PlusNode, Num and Var define a simple abstract syntax tree. The internal method
compile performs compilation on an AstNode.

One can use structural subtyping to create AST nodes with additional information, such as a
node with a loc field specifying the file location of the code corresponding to the node. Additional
functions are available for such nodes, such as the function highlightNode that highlights a node’s
source code in the text editor.

We did not have to define a new brand for AST nodes that include file location information.
Whether or not a node contains file information, functions that operate over AST nodes need not
change their behavior, so in this case structural subtyping suffices.

Suppose now that the programmer wishes to add “debug” versions of these AST nodes that
contain additional output information for compiling in debug mode. For example, a DebugNum has
a Location field, while DebugVar includes a Location field as well as a string representation of the
variable name. The newly added code is listed in the bottom portion of Fig. 3.

Since each of these brands have been defined as extensions, they may also customize the be-
havior of compile to output this additional information when compiling. Additionally, since all
of the Debug* brands have a Location field, the function highlightNode can be used on objects of
this type.

This example again illustrates the expressiveness that achieved by combining nominal and
structural subtyping; highlightNode makes use of additional structural information, while
compile relies on nominal dispatch to behave differently in different situations.

8

2.4 Real-World Examples

The following real-world examples illustrate the gains in flexibility that could be achieved through
structural subtyping.

2.4.1 Eclipse SWT.

In the Eclipse SWT (Simple Windowing Toolkit), many classes (such as Button, Label, Link, etc.)
have the methods getText and setText, that set the main text for the control, such as a button’s
text, the text in a textbox, etc. However, there is no common IText interface. Many classes—13 in
total—also support adding an image through the getImage and setImagemethod, but again there
is no interface that captures this. A programmer may wish to write a method that sets the image of
any control by retrieving the image from an image registry. Given the current API, such a method
would have to rely on runtime reflection, with no guarantee of successful method invocation at
compile time.

2.4.2 Eclipse JDT.

In the JDT (Java Development Tools), there are 8 classes (including IMethod, IType, IField) that
have the method getElementName, but there is no IElement interface with this method. With
structural subtyping, these classes implicitly share an interface, and code could be written that is
polymorphic over the exact class type. For instance, a tree view of an AST may wish to display
packages, methods, and fields in a uniform way. With the current hierarchy it is not possible to
simply call the getElementName of the object, since these classes do not have an explicit interface
with this method.

3 Case Study: Optional Methods in Java

In this section, we describe the tradeoffs that a library designer must make when using a language
that has only nominal subtyping. The design of the Java collections library illustrates that de-
signers would rather circumvent the type system than have a proliferation of types. We believe
this situation often occurs with nominal subtyping, but because of structural subtyping, such a
situation need not occur in Unity.

In the Java collections library, the interface java.util.Collection has several “optional”
methods: add, addAll, clear, remove, removeAll, and retainAll. Many of the abstract classes
implementing Collection (e.g., AbstractCollection, AbstractList, AbstractSet) throw an
UnsupportedOperationException when those methods are called. There are a total of 30 op-
tional methods in java.util.*, and java.lang.Iterator has an additional optional method. The
methods were designed this way to avoid an explosion of interfaces such as MutableCollection,
ImmutableCollection, etc., and a corresponding increase in the number of sub-interfaces (e.g.,
MutableList, ImmutableList, etc.) [18].

Let us consider a Java collections framework without the optional methods. Figure 4 shows
a relevant portion of the current Java collections hierarchy. Figure 5 show new interfaces that
capture the distinction of mutability directly in the hierarchy—doing away with optional oper-
ations. The interface Collection<E> represents a collection that is modifiable, while the new

9

ArrayList

AbstractList

LinkedList

AbstractSet

<<interface>>
Set<E>

EnumSet HashSet

iterator() : Iterator<E>

<<interface>>
Iterable<E>

contains(Object o) : boolean
iterator() : Iterator<E>

<<interface>>
Collection<E>

listIterator() : ListIterator<E>

<<interface>>
List<E>

nextIndex() : int
hasPrevious() : boolean
previous() : E
previousIndex() : int
set(object : E)
add(object : E)

<<interface>>
ListIterator<E>

hasNext() : boolean
next() : E
remove()

<<interface>>
Iterator<E>

Figure 4: A portion of the Java collections framework. A few methods are highlighted in most
interfaces. Type parameters are elided in classes.

interface ReadableCollection<E> represents a collection that only contains read operations. Ac-
cordingly, its iterator() method returns a ReadIterator, which is defined without a remove()
operation. There are now two new ListIterator interfaces, for fixed-size lists, modifiable lists,
read-only lists. These correspond to the FixedSizeList<E> and ReadableList<E> interfaces in
Figure 5. (The interface FixedSizeList<E> has been added because selective overriding of meth-
ods in AbstractList would yield such a type, as noted in the documentation.) The hierarchy for
Set is similar to that of List (though simpler, since there are no fixed-size sets, and no set-specific
iterator).

In a language with structural subtyping, such as Unity, not all interesting combinations of
structural types have to be declared in advance (though in a library setting they might be, for
consistency’s sake). For a language with type abbreviations, the key idea is that a type abbreviation
would simply be syntactic sugar for a set of methods, which could be given an abbreviation with
a different name in another part of the system. Additionally, the subtyping relationships between
all the interfaces would not need to be defined in advance. Finally, as a side note, the notational
overhead in defining type abbreviations would be potentially far lower than that of defining a
Java interface, which has a relatively high notational cost (due, in part to the nominal nature of
interfaces).

For this example, in Unity, the new interfaces (shown in gray), would not necessarily need to
be defined by the library author, unless specifically needed. This eases the task of library devel-
opment, as the library author does not need to anticipate which supertypes of the given interfaces
would be useful for clients.

Thus, with a combination of nominal and structural subtyping, we need not sacrifice static type
safety in order to overcome the shortcomings of a purely nominal type system.

10

iterator() :
ReadIterator<E>

<<interface>>
ReadIterable<E>

<<interface>>
ReadableSet<E>

iterator() : Iterator<E>

<<interface>>
Iterable<E>

listIterator() :
ReadableListIterator<E>

<<interface>>
ReadableList<E>

listIterator() :
FixedSizeListIterator<E>

<<interface>>
FixedSizeList<E>

listIterator() :
ListIterator<E>

<<interface>>
List<E>

<<interface>>
Set<E>

contains(Object o) : boolean
iterator() : Readterator<E>

<<interface>>
ReadableCollection<E>

add(E object) : boolean
iterator() : Iterator<E>

<<interface>>
Collection<E>

remove()

<<interface>>
Iterator<E>

set(object : E)

<<interface>>
FixedSizeListIterator<E>

add(object : E)

<<interface>>
ListIterator<E>

hasNext() :
boolean
next() : E

<<interface>>
ReadIterator<E>

nextIndex() : int
hasPrevious() : boolean
previous() : E
previousIndex() : int

<<interface>>
ReadableListIterator<E>

Figure 5: Refactored AbstractList and AbstractSet classes, along with new interfaces to remove
optional methods. A few methods of most interfaces are highlighted for List and Set; for iterators,
all methods, except for inherited methods, are shown. New interfaces have a gray background.

4 Empirical Analysis

To determine if there are potential cases where structural subtyping would be useful in a real
system, we ran an analysis of 15 open-source Java programs. The analysis searches for common
method signatures that are not related through inheritance. A “common method” is any method
declaration where there exists in another class a method declaration with an identical name and
the same signature, but the method is not present in any common supertype of the two.

For instance, in Apache Collections, four buffer classes had the methods increment and
decrement, but these were not contained in a common superclass or super-interface. The results
of the analysis are in Fig. 6. Tomcat, a servlet container, had the greatest percentage of common
methods, 28.4%. Ant, the software build system, was close behind with 28.1%. Even the programs
with the smallest number of common methods had a significant number of them; Areca, a backup
program, had 11.9% common methods.

Inspecting the common methods, we found several cases where a structural type could be
useful. For instance, in Smack, a Jabber client library, there were 6 classes with the common
method String getElementName(). There were also 30 classes with the method String toXML()
which might also be a method that clients might wish to call in a uniform manner. In
JHotDraw, a GUI framework, there were 9 classes that had addPropertyChangeListener and
removePropertyChangeListener methods. In Log4j, a logging library, there were 4 classes with
the method int getBufferSize(), and 8 classes with the method setOption. In the Apache Col-
lections library, nearly all the common methods appeared to be potentially useful. For instance,
there were 5 iterator decorator classes with getIterator and setIteratormethods. 4 bag classes
had a method getBag, 4 buffer classes had a method getBuffer, and 4 classes had the method

11

Figure 6: Results of empirical analysis. For each program, the total number of methods, the num-
ber of common methods, the percentage of common methods compared to the total, the average
number of methods in each common method group, and the number of common method groups
are displayed. “Total methods” includes interface methods, abstract methods, and overriding im-
plementations of the same method. The results suggest that many Java programs have potential
uses of structural subtyping.

Total Common % Common Average Total common
methods methods methods/group groups

Tomcat 14678 4172 28.4% 3.2 1288
Ant 9178 2577 28.1% 3.5 727
JHotDraw 5149 1193 23.2% 2.8 428
Smack 3921 881 22.5% 3.3 270
Struts 3783 772 20.4% 2.7 291
Apache Forrest 164 28 17.1% 2.2 13
Cayenne 9243 1545 16.7% 2.8 553
Log4j 1950 312 16.0% 3.1 102
OpenFire 8135 1300 16.0% 2.8 470
Apache Collections 3762 584 15.5% 2.8 211
Derby 24521 3575 14.6% 2.5 1402
Lucene 2472 331 13.4% 2.5 134
jEdit 5845 699 12.0% 2.6 271
Apache HttpClient 1818 217 11.9% 2.6 83
Areca 3565 423 11.9% 2.6 163

getComparator. Additionally, 7 classes had the method int size() and 5 classes had the method
int indexOf(Object).

Note that we did not closely examine the implementations of these methods to determine if
they were semantically performing similar actions, as we were unfamiliar with the codebase. So,
it is possible that the methods coincidentally had similar names but were performing different
actions. In future work, we plan to study one application in depth to see how it can benefit from
structural subtyping.

Overall, however, we found the results to be promising, and they suggest that Java programs
could indeed benefit from structural subtyping. If a programmer wished to write code that called
a common method, he could easily do so by using a type—which exists implicitly—consisting
of that method. In contrast, in Java and other languages with nominal subtyping, programmers
would have to explicitly create interfaces. And, in some cases, the interface would contain only
one method, which seems an unnecessary overhead.

5 Formal System

The Unity grammar is presented in Fig. 7. The language is a lambda calculus extended with values
tagged with brands. Methods can be defined on a brand and the usual dispatch semantics apply.
Brand and method declarations are top-level. To define brands, the brand construct is used. A
brand can be either abstract or concrete. Objects cannot be created from abstract brands (similar

12

Programs p ::= decl in p | e | e; p
Declarations decl ::= brand-decl | ext-decl

Brand declaration brand-decl ::= mod brand β(τ; m-decl) extends β

Modifiers mod ::= abstract | concrete

Method declaration m-decl ::= abstract method m (m : τ) : τ

| method m (m : τ) : τ = e
External method ext-decl ::= method m β(m : τ) : τ = e

Expressions e ::= () | x | λx :τ. e | e e | β̂(e) | (` = e) | e.` | e.m | foldτ e | unfoldτ e

Types τ ::= unit | τ → τ | τ ∧ τ | β(m : τ) | {` : τ} | X | µX.τ | τ ⇒ τ

Values v ::= () | λx :τ. e | β̂(v) | (` = v) | foldτ v

Contexts Γ ::= · | Γ, x : τ

Σ ::= · | Σ, mod β(τ; mod m : τ) extends β

∆ ::= · | ∆, β̂(m = e) extends β̂

Conventions

β̂ ≡ tag value corresponding to β

reqΣ (β) = τ if β(τ; m : τ) extends β′ ∈ Σ

modifierΣ(β) = mod if mod β(τ; m : τ) extends β′ ∈ Σ
M ranges over m : τ

Figure 7: Unity grammar

to Java’s abstract classes). We use the metavariables β and θ to range over brand names. The
metavariable M ranges over a list of (method : type) pairs.

One of the valid expression forms for a program is an expression followed by a program (e; p).
In this last construct, the expression is evaluated and will be type correct according to the defini-
tions that preceded it.

When a brand is defined, a name is given for it, as well as the brand’s field type (usually a
record); this is the type of the fields of the brand. The programmer initializes the field value when
an object is created.

In Unity, a method is either internal or external. In the former case, the method is defined
along with the brand, like method declarations in Java-like languages. To allow modular exhaus-
tiveness checking of external methods, external methods cannot be abstract; a method body must
be provided for every external method. We have taken this rule from MultiJava [9].

When a method m is defined on a brand β, a set of methods is specified—the methods that
must exist within β (either internal or external) before m can be invoked.3 For example, in Fig. 1,

3For simplicity and to support information hiding, types cannot contain field constraints as in example 1, but this is not

13

the function insertChar required that its receiver have a getCurrentPosmethod.
To simplify the formal system, methods take only one argument: the this parameter. Additional

parameters may be specified using lambda expressions.4

If β is a brand name, then β̂ is the tag value corresponding to β. In other words, β(m : τ) is a
type, and β̂ is its run-time analogue.

To create objects, the expression form β̂(e) is used. This creates an object that is tagged with β̂.
Methods are called using e.m, while function application is written e1e2.

Our language includes a limited form of intersection types. Our motivation for including these
is to make external methods available to objects that were defined before the external method was
created. Section 5.1.2 describes this in more detail.

Σ is the subtyping context; it stores the user-declared sub-branding relationships. ∆ is the
corresponding run-time context. ∆ contains a strict subset of the information in Σ—it does not
contain whether a brand is abstract or concrete, and it does not keep track of the field type or
methods associated with each brand. We assume the existence of a special brand Top that is not
defined in Σ or ∆, but that may be extended by user-defined brands. Since every brand must have
a super-brand, the brand subtype hierarchy is a tree rooted at Top.

Like other object calculi, Unity is purely functional so as to simplify the system. State is orthog-
onal to the issues we are considering; our design should be easily adaptable to a language with
imperative features.

5.1 Static Semantics

Here we describe the subtyping and typing judgements shown in Figures 9, 11 and 12. Auxiliary
judgements are in Fig. 13.

5.1.1 Subtyping.

Subtyping comprises two parts: the sub-brand judgement (v) and the subtype judgement (≤),
shown in Figures 8 and 9. The first judgement is not on types, but brands, which are a component
of a type but not themselves a type. The sub-brand judgement is just the reflexive, transitive
closure of the declared extends relation.

The subtype judgement (≤) uses the sub-brand judgement in the third subtyping rule, which
states that an object type β1(M1) is a subtype of β2(M2) when β1 is a sub-brand of β2 (β1 v β2)
and M1 is a sub-record of M2 (M1 ≤ M2). There are additional conditions that β1(M1) type and
β2(M2) type, which ensures that these are valid types. The relevant type formation rule here is
BRAND-TYPE which checks that the given labels and types are a sub-record of the required fields for
the brand. This ensures that a brand type always contains at least the labels it was defined to have.
There is an additional check that the methods are valid overrides (override is defined in Fig. 13).
The rest of the rules for the type formation judgement are straightforward; the full judgement
appears in Fig. 10.

a fundamental limitation of the system.
4Note that if the body of a method is a lambda expression, it does not perform dispatch. To perform dispatch, the body

of the method should be another method call. In this way, asymmetric multimethods (multimethods where the order of
parameters is used in dispatch) can easily be encoded in our system. To encode a method m with body e that dispatches
on β1 and β2, method m in β1 dispatches to method m in β2, the body of which is e.

14

Σ ` β1 v β2

mod β1(τ; m : τ) extends β2 ∈ Σ
Σ ` β1 v β2

(SUB-BRAND-DECL)
Σ ` β v β

(SUB-BRAND-REFL)

Σ ` β1 v β2 Σ ` β2 v β3

Σ ` β1 v β3
(SUB-BRAND-TRANS)

Figure 8: Unity sub-branding judgement

Σ ` τ1 ≤ τ2

Σ ` τ ≤ τ
(SUB-REFL)

Σ ` τ1 ≤ τ2 Σ ` τ2 ≤ τ3

Σ ` τ1 ≤ τ3
(SUB-TRANS)

Σ ` β1 v β2 Σ `M1 <: M2 Σ ` β1(M1) type Σ ` β2(M2) type
Σ ` β1(M1) ≤ β2(M2)

(SUB-NAME)

Σ, X ≤ Y ` τ1 ≤ τ2

Σ ` µX.τ1 ≤ µY.τ2
(SUB-REC)

Σ ` σ1 ≤ τ1 Σ ` τ2 ≤ σ2

Σ ` τ1 → τ2 ≤ σ1 → σ2
(SUB-FUNC)

Σ ` τ ≤ σ1 Σ ` τ ≤ σ2

Σ ` τ ≤ σ1 ∧ σ2
(SUB-∧R)

Σ ` τ1 ≤ σ

Σ ` τ1 ∧ τ2 ≤ σ
(SUB-∧L1)

Σ ` τ2 ≤ σ

Σ ` τ1 ∧ τ2 ≤ σ
(SUB-∧L2)

{`i : τi
i∈1..n} is a permutation of {`j : τj

j∈1..n}
Σ ` {`i : τi

i∈1..n} ≤ {`j : τj
j∈1..n}

(SUB-REC-PERM)

n > m
Σ ` {`i : τi

i∈1..n} ≤ {`j : τj
j∈1..m}

(SUB-REC-WIDTH)

Σ ` τi ≤ σi (i∈1..n)

Σ ` {`i : τi} i∈1..n ≤ {`i : σi} i∈1..n (SUB-REC-DEPTH)

Σ ` β1 v β2

Σ ` β1(τ1) ∧ β2(τ2) ≤ β1(τ1 ∧ τ2)
(SUB-BRAND-∧L)

Σ ` β1 v β2 Σ `M2 <: M1 Σ ` σ1 ≤ σ2

Σ ` β1(M1)⇒ σ1 ≤ β2(M2)⇒ σ2
(SUB-METHOD)

Figure 9: Unity subtyping judgement

Our language includes a limited form of intersection types, à la Davies and Pfenning; the rules
for intersection types are borrowed from their work [10].

15

Γ | Σ ` τ type

Γ | Σ ` unit type
(UNIT-TYPE)

Γ | Σ ` τ1 type Γ | Σ ` τ2 type
Γ | Σ ` τ1 → τ2 type

(FUN-TYPE)

Γ | Σ ` τ1 type Γ | Σ ` τ2 type
Γ | Σ ` τ1 ∧ τ2 type

(∧-TYPE)

m distinct Γ | Σ ` σ type
Σ ` β extends β2 Σ ` override(m : σ, β2)

Γ | Σ ` β(m : σ) type
(BRAND-TYPE)

` distinct Γ | Σ ` τ type

Γ | Σ ` {` : τ} type
(RECORD-TYPE)

Γ, X type | Σ ` τ type
Γ | Σ ` µX.τ type

(MU-TYPE)

T type ∈ Γ
Γ | Σ ` T type

(VAR-TYPE)

Γ | Σ ` β(mi : θi(ni : σi)⇒ τ′i
i∈1..n) type Σ ` β v θi (i∈1..n) Γ | Σ ` τ2 type

Γ | Σ ` β(mi : θi(ni : σi)⇒ τ′i
i∈1..n)⇒ τ2 type

(METHOD-TYPE)

Figure 10: Unity type formation judgement

There is also a subtyping rule for a list of (method : type) pairs; it simply applies the record sub-
typing rule. The remaining subtyping rules are the standard reflexivity, transitivity, and function
subtyping rules.

5.1.2 Typing rules.

Full typing rules for typechecking programs and expressions appear in Figs. 11 and 12, respec-
tively. Auxiliary judgements are defined in Fig. 13. The interesting rules are TP-BRAND, TP-EXT-
METHOD, TP-NEW-OBJ and TP-INVOKE; the others are standard.

The rule TP-BRAND (Fig. 11) ensures that a brand declaration is well-formed. The newly defined
brand must contain at least the labels and fields of the supertype (possibly with refined types); this
is checked via the condition τ ≤ reqΣ (β′). Note that if a field type is a record, then subtypes must
list all the labels of the parent. Aside from simplifying the calculus, this sidesteps issues of variable
shadowing while allowing subtypes to refine the type of a particular label. The rule also checks
that the methods given are valid overrides of the methods of the super-brand, and, in the case of
concrete classes, that all methods are concrete.

This rule and the type formation rule for brands described above illustrate the need for both a
sub-brand and subtype judgement. The context Σ stores information about the fields and methods
of a brand; these are retrieved via reqΣ and methodsΣ (called by overrideΣ), respectively. Addition-
ally, without a runtime component to the nominal hierarchy, there would not be a way to perform
dispatch, which we describe in Sect. 5.2.

16

Σ ` p ok

β1 /∈ Σ τ ≤ reqΣ (β′) Σ ` β.m-decl : (modmm : τ)
Σ′ = Σ, mod β(τ; modm m : τ) extends β′ Σ′ ` β.(τ; m-decl) ok

mod = concrete implies abstractCover(modmm : τ, β′) override(m : τ, β′)
abstract method m ∈ m-decl implies mod = abstract Σ′ ` p ok

Σ `mod brand β(τ; m-decl) extends β′ in p ok
(TP-BRAND-INTRO)

Σ = {mod β1(σ; M′) extends β2}, Σ0
m /∈ M′ Σ′ = {mod β1(σ; M′, m : β1(M)⇒ τ) extends β2}, Σ0

override(β1(M)⇒ τ, β2) this : β1(M), fields : σ | Σ′ ` e : τ Σ′ ` p ok
Σ `method m β1(M) : τ = e in p ok

(TP-EXT-METHOD)

· | Σ ` e : τ

Σ ` e ok
(TP-EXPR1)

· | Σ ` e : τ Σ ` p ok
Σ ` e; p ok

(TP-EXPR2)

Figure 11: Unity typing judgement for programs

The rule TP-EXT-METHOD checks external method definitions. The existing brand definitions
are updated by adding the new external method via the new context Σ′. The rule also checks that
the method types of the external method defined on sub-brands are in the subtype relation, which
ensures that the context Σ′ is well-formed.

The rule TP-NEW-OBJ (Fig. 12) checks the correctness of the object creation expression. The rule
checks that the brand has been defined as concrete, and that the given record labels are a subtype
of the required record labels.

The rule TP-INVOKE typechecks method invocations. The method being called must be con-
tained in either the set of methods in the brand’s type, M, or in the set of methods of the brand
(methodsΣ(β)). Additionally, the methods in the brand’s type, combined with the methods of the
brand (via intersection) must be a subtype of the method’s required methods. Adding the inter-
section condition increases expressiveness over having the rule just consider the methods of the
brand, since the type might have methods defined on a sub-brand. For example, within the body
of the function λx : Top(toString : ()→ string). e, the type of x contains the method toString. If
we suppose that toString is not defined for the brand Top, then x’s type contains methods that
are not defined in the brand itself.

Unity includes standard iso-recursive µ types to the language, along with a fold and unfold
operation. In this system, it is possible to express types such as:

µX.Top(clone() : X)

which specifies that the result of the clone function is the type itself being defined. The advantage
to structural recursive types is that structural object interfaces, such as ScrollBar in Example 1,
can be specified as pure structural types (using the Top brand) while still being self-referential.

17

Γ | Σ ` e : τ

x : τ ∈ Γ
Γ | Σ ` x : τ

(TP-VAR)
Γ ` () : unit

(TP-UNIT)
Σ ` τ1 type Γ, x : τ1 | Σ ` e : τ2

Γ | Σ ` λx :τ1. e : τ1 → τ2
(TP-FUN)

Γ | Σ ` e1 : τ1 → τ2 Γ | Σ ` e2 : τ1

Γ | Σ ` e1 e2 : τ2
(TP-APP)

Γ | Σ ` e : σ Σ ` σ ≤ τ

Γ | Σ ` e : τ
(TP-SUBS)

concrete β(τ) ∈ Σ Γ | Σ ` e : τ′ Σ ` τ′ ≤ τ methodsΣ(β) = modm m : σ

Γ | Σ ` β̂(e) : β(m : σ)
(TP-NEW-OBJ)

Γ | Σ ` e : τ

Γ | Σ ` (` = e) : {` : τ}
(TP-NEW-RECORD)

Γ | Σ ` e : {`i : τi
i∈1..n}

Γ | Σ ` e.`k : τk
(TP-PROJ)

Γ | Σ ` e : β(M) mk : τmk ∈ (M ∧methodsΣ(β))
τmk = β′(n : σ)⇒ τ β(M ∧methodsΣ(β)) ≤ β′(n : σ)

Γ | Σ ` e.mk : τ
(TP-INVOKE)

Γ | Σ ` e : [µX.τ/X]τ
Γ | Σ ` foldµX.τ e : µX.τ

(TP-FOLD)
Γ | Σ ` e : µX.τ

Γ | Σ ` unfoldµX.τ e : [µX.τ/X]τ
(TP-UNFOLD)

Figure 12: Unity typing judgement for expressions

5.2 Dynamic Semantics

Most of the evaluation rules for Unity are standard; the evaluation judgement is in Fig. 14 and
auxiliary judgements are in Fig. 15.

The interesting evaluation rules are E-BRAND-DECL and E-EXT-DECL, which evaluate brand def-
initions and external method definitions, respectively. To evaluate a brand definition, the method
definitions are evaluated to the method body and the rest of the program is evaluated with the
extended context. Similarly, E-EXT-DECL updates the context with new method definitions for the
brand, then evaluates the rest of the program with the new context.

The auxiliary function mbody∆(m, β̂) finds the appropriate method body for a method m, start-
ing at the tag β̂. This function is used by the rule E-INVOKE, which within the method body re-
turned by mbody∆, substitutes the object for this and the field value of the object for fields.
Method declarations are evaluated in a straightforward manner; all of the type information is dis-
carded (so in the case of abstract methods, the entire declaration is discarded), leaving just the
method body.

5.3 Type Safety

The full proof of type safety is provided in a companion technical report [1]. We summarize the
main results here. First, we provide the definition of a well-formed context:

Definition 5.1 (Well-formed context).

18

Σ ` β.m-decl : τ

Σ ` β(m : σ)⇒ τ type
Σ ` β.mod method m1(m : σ) : τ = e : mod m1 : β(m : σ)⇒ τ

Σ ` β.(m; m-decl) ok

this : β(m : σ), fields : τ | Σ ` e : τ′

Σ ` β.method m1(m : σ) : τ′ = e ok

methodsΣ(β) = mod m : τ

Σ ` β1(τ; modi mi : τmi
i∈1..n) extends β2

methodsΣ(β2) = mod′j mj : σmj
j∈1..k, mod2 n : σ′m

methodsΣ(β1) = mod m : τ, mod2 n : σ′m methodsΣ(Top) = ·

Σ ` override(m : τ, β)

methodsΣ(β) = mod m : σ, modnn : σ′m τ ≤ σ

Σ ` override(m : τ, β)
m /∈ methodsΣ(β)

Σ ` override(m : τ, β)

abstractCoverΣ(concrete m : τ, β)

methodsΣ(β) = abstract ni : σi
i∈1..n, concrete n′ : σ′ ni ∈ m i∈1..n

abstractCoverΣ(concrete m : τ)

Figure 13: Unity typechecking auxiliary judgements

The context Σ is well-formed, iff the following conditions hold:

1. there is exactly one entry for each brand β.

2. if mod β1(τ; M) extends β2 ∈ Σ, then

(a) β2(M) type

(b) τ ≤ reqΣ (β2)

(c) if mod = concrete, then methodsΣ(β1) = concrete n : τ.

Our theorems on type safety assume a correspondence between the static brand definition
context Σ and the runtime context ∆. This ensures that the runtime context, which does not contain
type information, is consistent with the static typing context. Formally, this correspondence is
defined as follows:

19

e 7−→∆ e′

e1 7−→∆ e′1
e1 e2 7−→∆ e′1 e2

(E-APP1)
e2 7−→∆ e′2

v1 e2 7−→∆ v1 e′2
(E-APP2)

(λx :τ. e) v 7−→∆ [v/x] e
(E-APP-ABS)

ek 7−→∆ e′k
(`1 = v1, . . . , `k−1 = vk−1, `k = ek, . . .) 7−→∆ (. . . , `k = e′k, . . .)

(E-RECORD)

e 7−→∆ e′

e.` 7−→∆ e′.`
(E-PROJ1)

(`i = vi
i∈1..n).`k 7−→∆ vk

(E-PROJ2)

e 7−→∆ e′

β̂(e) 7−→∆ β̂(e′)
(E-BRAND-CONS)

e 7−→∆ e′

e.m 7−→∆ e′.m
(E-INVOKE1)

mbody∆(m, β̂) = e

β̂(v).m 7−→∆ {β̂(v)/this, v/fields} e
(E-INVOKE2)

e 7−→∆ e′

foldτ e 7−→∆ foldτ e′
(E-FOLD)

e 7−→∆ e′

unfoldτ e 7−→∆ unfoldτ e′
(E-UNFOLD)

unfoldτ (foldτ v) 7−→∆ v
(E-UNFOLD-FOLD)

Figure 14: Unity evaluation judgement

mbody∆(m, β̂) = e

β̂1(m0 = e0, m′ = e′m) extends β̂2 ∈ ∆

mbody∆(m0, β̂1) = e0

β̂1(m = e) extends β̂2 ∈ ∆
m0 /∈ m mbody∆(m0, β̂2) = e0

mbody∆(m0, β̂1) = e0

m-decl 7−→ m = e

abstract method m(m : σm) : τ 7−→ · method m(m : σm) : τ = e 7−→ m = e

Figure 15: Unity evaluation auxiliary judgements

Definition 5.2 (Models relation on contexts). The definition of Σ ` ∆ (Σ models ∆) is given by the
following inference rules:

· ` ·

Σ ` ∆ Σ′ = Σ, mod β1(τ; {concrete mi : β1(Mi)⇒ τ′i
i∈1..n}, abstract n : σ) extends β2

this : β1(Mi), fields : τ | Σ′ ` ei : τi (i∈1..n)

Σ′ ` ∆, β̂1(mi = ei
i∈1..n) extends β̂2

20

Type safety is proved using the standard progress and preservation theorems. For progress,
we prove a lemma that states that if we have a well-typed value whose type contains a method
mk, then a runtime context consistent with the static context must contain a method body for mk:

Lemma 5.1. If Γ | Σ ` β̂(v) : τ and Σ ` τ ≤ β′(M), where Σ ` ∆ and mk ∈ M, then mbody∆(mk, β̂)
is defined.

The lemma is stated in this way so that the subsumption case is easy to prove. The lemma is
proved by induction on the typing derivation. The interesting case is that of TP-NEW-OBJ, which
uses the definition of a well-formed context and that of Σ ` ∆.

Theorem 5.1 (Progress [programs]). If · | Σ ` p ok, for some Σ, then either p is a value or, for ∆
such that Σ ` ∆, there exist p′ and ∆′ such that p | ∆ 7−→ p′ | ∆′.

This theorem is proved by appealing to an auxiliary lemma that proves progress for expressions
and a standard canonical forms lemma. The interesting case is that of method invocation, which
is proved using Lemma 5.1.

Preservation is slightly more difficult to prove. We first prove the following lemma by induc-
tion on the typing derivation. The lemma states that the body of a method is well-typed if the
static context Σ models the runtime context ∆.

Lemma 5.2. If Γ | Σ ` θ̂(v) : σ and σ ≤ β(m0 : β′(M0)⇒ τ, M) and Σ `∆ and mbody∆(m0, θ̂) = e0,
then this : β′(M0), fields : reqΣ θ | Σ ` e0 : τ.

Theorem 5.2 (Preservation [programs]). If Γ | Σ ` p ok and Σ ` ∆ and p | ∆ 7−→ p′ | ∆′, then
there exists a Σ′ such that Σ′ ` ∆′ where Γ | Σ′ ` p′ ok.

We prove this theorem using of a preservation theorem on expressions, a standard substitution
lemma, and Lemma 5.2 above.

5.4 Modularity

Our typechecking rules are modular; each rule relies only on information in the context up to the
current program point, rather than requiring a global dictionary of brand definitions. Our exhaus-
tiveness checks are modular because external method definitions cannot be abstract (enforced by
the grammar); otherwise, information about all brand definitions would be required.

Since our language does not include modules, our ambiguity checks are not modular in the
strictest sense of the term, as they depend on all definitions up to the current program point.
However, our system could be easily extended with additional rules to support modular ambigu-
ity checking. Millstein and Chambers have developed such rules and have also defined several
levels of modular typechecking [19]. Our current system is compatible with their broadest notion
of modular typechecking, the so-called “most-extending module” approach, exemplified by their
language System E. To perform the most modular form of typechecking, however, we would re-
quire that all implementations of an external method be in the same module. Further, external
methods would be forbidden from overriding internal methods (currently permitted in our sys-
tem). These checks correspond to the restriction M1 in Dubious [19] and restriction R3 in MultiJava
[9].

A related issue is that of information hiding, a form of which our language supports. A brand’s
field value can only be accessed by the brand’s methods, effectively making them private. It would
be possible to extend this further and disallow external methods from accessing fields, or allow
marking some internal methods as private.

21

5.5 Polymorphism

We have designed an extension Unityα with polymorphism (presented in Appendix B), but we
have omitted this feature in this version of Unity since we discovered that polymorphism was
orthogonal to the issues surrounding nominal and structural subtyping. In Unityα, the syntax is
extended as follows:

brand-decl ::= mod brand ∀T. β〈T〉(τ; m-decl) extends β〈τ〉
ext-decl ::= method m ∀T′. β〈T′〉(m : τ) : τ = e

e ::= . . . | β̂[τ] | ΛT. e | e[e]
τ ::= . . . | X | β〈τ〉(m : τ) | ∀T. τ

The sub-brand judgement is on parameterized brands (i.e. β〈τ〉) and, aside from a new rule
for ∀T. τ types, the subtype judgement is essentially the same.

Note that in Unityα, methods are not polymorphic. However, since the language includes the
ΛT. e construct (type abstraction functions), many examples can be written using these.

6 Related Work

Type Systems. At the FOOL/WOOD ’07 workshop, we presented the predecessor of this version
of Unity [17]. Here, we have extended that work by adding methods and information hiding to
our core calculus, providing additional examples, and including a case study.

Researchers have recently considered the problem of integrating nominal and structural sub-
typing. Reppy and Turon have addressed the problem in the context of typechecking traits [24].
Their resulting type system is a hybrid of nominal and structural subtyping. However, in their
system, structural types are second-class; they apply to trait functions but not to expressions or
ordinary functions. Consequently, there is less expressiveness as compared with Unity: it is not
possible to constrain the argument of a function to have particular members, for example.

After our initial workshop proposal, Odersky et al. independently implemented a similar lan-
guage feature, validating the practical importance of our work. In Scala, type refinements allow a
nominal type to include additional structural information [22]. Scala type refinements have many
similarities with the language Whiteoak, an extension of Java with structural types [13]. Like Scala,
in Whiteoak, by using intersection types, a type can include both structural and nominal aspects.

Scala and Whiteoak differ from Unity in that they do not have external methods, nor do they
allow structural constraints to be placed on a method’s receiver. Also, the language designs have
neither been formalized nor proved sound.

Ostermann has designed a language that seeks to enhance the expressiveness of nominal sub-
typing to gain some of the benefits of structural subtyping [23]. Ostermann has identified an
additional important benefit of nominal subtyping—that of blame assignment: i.e., who accepts
responsibility for maintaining a subtype relation, the user or the designer of a component? The
language design is much more expressive than a purely nominal system; it is possible to, for exam-
ple, create subtypes of a class type without inheriting its implementation, and declare supertypes
of an existing type. But, this comes at the cost of a subtyping relation that is not transitive, which
may prove counter-intuitive to programmers. The programmer must manually provide a set of
“witness” types so that the typechecker can apply subsumption. Therefore, it is unclear whether
this approach is practical.

22

Bono et al. have also proposed a type system that includes both nominal and structural aspects,
but their system does not fully integrate the two disciplines [2]. The system only uses structural
typing when typechecking uses of the this variable, making their system considerably less ex-
pressive than ours.

The language MOBY is in many ways similar to Unity, as it supports structural subtyping and
a form of tag subtyping through its inheritance-based subtyping mechanism, which is similar to
our sub-branding [11, 12]. This allows expressing many useful subtyping constraints, but MOBY’s
class types are not integrated with object types in the same way as in Unity. For instance, in MOBY,
it is not possible to express the constraint that an object should have a particular class and should
have some particular methods (that are not defined in the class itself). Additionally, the object-
oriented core of MOBY supports only internal dispatch. MOBY does include “tagtypes” that are
very similar to our brands. These can be used to support downcasts or to encode multimethods,
but they are disjoint from the object-oriented core of the system.

Strongtalk presents a structural type system for Smalltalk and also supports named subtyping
relationships through its “brand” mechanism [4]. However, it is not possible to define subtyping
on brands. Additionally, since it is a type system for Smalltalk, it supports only the single dispatch
model.

Modula-3’s type system has structural types with branding, but not structural subtyping [20].
That is, its type system will treat two record types as equivalent if they have the same structure
but different type aliases, but does not recognize one as a subtype of the other if it has additional
fields. The object-oriented part of the language uses nominal subtyping.

In the C++ concepts proposal, concepts can be either nominal or structural [14]. However,
concepts apply only to template constraints, not to the subtyping relation.

External and Multimethod Dispatch. External and multimethod dispatch has been extensively
studied, but in the context of either dynamically typed languages, or languages with a purely nom-
inal type system. Cecil is one of the first languages to include statically checked multimethods, but
performs a whole-program analysis to ensure that multimethods are exhaustive and unambiguous
[7, 8]. As previously mentioned (Sect. 2.2), Cecil contains “where” clauses that can model some
aspects of structural types, but they can only appear on top-level methods and cannot be nested,
in contrast to Unity.

More recent work has focused on modular typechecking of external methods and multimeth-
ods, as well as the problem of integrating external methods into existing languages; this includes
the Dubious calculus (System M) and MultiJava [19, 9]. We have built on these existing techniques
for modular typechecking of external methods.

The language λ& [6] includes multimethod dispatch and includes structural subtyping on
methods, similar to Unity. However, the subtyping hierarchy on classes uses only nominal sub-
typing, in contrast to Unity.

Acknowledgements

We would like to thank Karl Crary and William Lovas for helpful discussion and feedback on our
language, and Kevin Bierhoff for comments on an earier version of this paper.

23

References

[1] Technical report.

[2] Viviana Bono, Ferruccio Damiani, and Elena Giachino. Separating Type, Behavior,
and State to Achieve Very Fine-grained Reuse. In Electronic proceedings of FTfJP’07
(http://www.cs.ru.nl/ftfjp/), 2007.

[3] G. Bracha and W. Cook. Mixin-based inheritance. In ECOOP ’90, 1990.

[4] Gilad Bracha and David Griswold. Strongtalk: typechecking Smalltalk in a production envi-
ronment. In OOPSLA ’93, pages 215–230, 1993.

[5] Kim B. Bruce, Angela Schuett, Robert van Gent, and Adrian Fiech. PolyTOIL: A type-safe
polymorphic object-oriented language. ACM Trans. Program. Lang. Syst., 25(2):225–290, 2003.

[6] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded func-
tions with subtyping. Inf. Comput., 117(1):115–135, 1995.

[7] Craig Chambers. Object-oriented multi-methods in Cecil. In ECOOP ’92, 1992.

[8] Craig Chambers and the Cecil Group. The Cecil language: specification and rationale, ver-
sion 3.2. Available at http://www.cs.washington.edu/research/projects/cecil/, Febru-
ary 2004.

[9] Curtis Clifton, Todd Millstein, Gary T. Leavens, and Craig Chambers. MultiJava: Design
rationale, compiler implementation, and applications. ACM Trans. Program. Lang. Syst.,
28(3):517–575, 2006.

[10] Rowan Davies and Frank Pfenning. Intersection types and computational effects. In ICFP ’00,
pages 198–208, 2000.

[11] Kathleen Fisher and John Reppy. The design of a class mechanism for Moby. In PLDI ’99,
pages 37–49, 1999.

[12] Kathleen Fisher and John Reppy. Inheritance-based subtyping. Inf. Comput., 177(1):28–55,
2002.

[13] Joseph Gil and Itay Maman. Whiteoak. Available at http://ssdl-wiki.cs.technion.ac.
il/wiki/index.php/Whiteoak, 2008.

[14] Douglas Gregor, Jaakko Järvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos Reis, and Andrew
Lumsdaine. Concepts: Linguistic support for generic programming in C++. In Proceedings of
OOPSLA ’06, pages 291–310. ACM Press, October 2006.

[15] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
The Objective Caml system, release 3.09. Available at http://caml.inria.fr/pub/docs/
manual-ocaml/index.html, 2004.

[16] O. L. Madsen and B. Moller-Pedersen. Virtual classes: a powerful mechanism in object-
oriented programming. In OOPSLA ’89, pages 397–406, 1989.

24

http://www.cs.washington.edu/research/projects/cecil/
http://ssdl-wiki.cs.technion.ac.il/wiki/index.php/Whiteoak
http://ssdl-wiki.cs.technion.ac.il/wiki/index.php/Whiteoak
http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://caml.inria.fr/pub/docs/manual-ocaml/index.html

[17] Donna Malayeri and Jonathan Aldrich. Combining structural subtyping and external dis-
patch. In FOOL/WOOD’07, January 2007. Available at http://foolwood07.cs.uchicago.
edu/program.html.

[18] Sun Microsystems. Java collections API design FAQ. Available at http://java.sun.com/
j2se/1.4.2/docs/guide/collections/designfaq.html, 2003.

[19] Todd D. Millstein and Craig Chambers. Modular statically typed multimethods. Inf. Comput.,
175(1):76–118, 2002.

[20] Greg Nelson, editor. Systems programming with Modula-3. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1991.

[21] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable extensibility via nested
inheritance. In OOPSLA ’04, pages 99–115, 2004.

[22] Martin Odersky. The Scala language specification. Available at http://www.scala-lang.
org/docu/files/ScalaReference.pdf, 2007.

[23] K. Ostermann. Nominal and Structural Subtyping in Component-Based Programming. Jour-
nal of Object Technology, 7(1), 2008.

[24] John Reppy and Aaron Turon. Metaprogramming with traits. In ECOOP 2007, July-August
2007.

[25] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits: Compos-
able units of behavior. In ECOOP ’03, 2003.

25

http://foolwood07.cs.uchicago.edu/program.html
http://foolwood07.cs.uchicago.edu/program.html
http://java.sun.com/j2se/1.4.2/docs/guide/collections/designfaq.html
http://java.sun.com/j2se/1.4.2/docs/guide/collections/designfaq.html
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf

A Unity Type Safety

A.1 Definitions

Definition A.1 (Well-formed context).
The context Σ is well-formed, iff the following conditions hold:

1. there is exactly one entry for each brand β.

2. if mod β1(τ; M) extends β2 ∈ Σ, then

(a) β2(M) type

(b) τ ≤ reqΣ β2

(c) if mod = concrete, then methodsΣβ1 = concrete n : τ.

Definition A.2 (Models relation on contexts).
The definition of Σ ` ∆ (Σ models ∆) is given by the following inference rules.

· ` ·

Σ ` ∆ Σ′ = Σ, mod β1(τ; {concrete mi : β1(Mi)⇒ τ′i
i∈1..n}, abstract n : σ) extends β2

this : β1(Mi), fields : τ | Σ′ ` ei : τi (i∈1..n)

Σ′ ` ∆, β̂1(mi = ei
i∈1..n) extends β̂2

A.2 Inversion Lemmas

Lemma A.1 (Inversion of subtyping).

1. If τ1 → τ2 ≤ σ1 → σ2, then Σ ` σ1 ≤ τ1 and Σ ` τ2 ≤ σ2.

2. If Σ ` β1(M1) ≤ β2(M2), then Σ ` β1 v β2 and Σ `M1 <: M2 and Σ ` β1(M1) type and
Σ ` β2(M2) type.

3. If Σ ` (`i : τi
i∈1..n) ≤ (kj : σj

j∈1..m), then {kj
j∈1..m} ⊆ {`i

i∈1..n} (` includes at least the labels in
k) and Σ ` τi ≤ σj for each common label `i = kj.

4. If Σ ` β1(M1)⇒ τ1 ≤ β2(M2)⇒ τ2 then Σ ` β1 v β2 and Σ `M2 <: M1 and Σ ` τ1 ≤ τ2.

Proof. By induction on the subtyping derivation, with case analysis of the final rule used. Vacuous
cases have been omitted.

1. Function type.

case SUB-REFL. Result is immediate.

case SUB-TRANS. We have τ1 → τ2 ≤ τ′1 → τ′2 and τ′1 → τ′2 ≤ σ1 → σ2. By the induction
hypothesis, τ′1 ≤ τ1 and τ2 ≤ τ′2 and σ1 ≤ τ′1 and τ′2 ≤ σ2. The result then follows from
SUB-TRANS.

case SUB-FUN. Result is immediate.

2. Brand type.

26

case SUB-REFL. Result is immediate from SUB-BRAND-REFL and SUB-REC-REFL.

case SUB-TRANS. We have β1(L1; M1) ≤ β′1(L′1; M′1) and β′1(L′1; M′1) ≤ β2(L2; M2). By the
induction hypothesis, β1 v β′1 and β′1 v β2 and (L1; M1) <: (L′1; M′1) and (L′1; M′1) <:
(L2; M2) and β1(L1; M1) type and β2(L2; M2) type. The result then follows from SUB-
BRAND-TRANS, SUB-REC-TRANS and SUB-NAME.

case SUB-NAME. Result is immediate.

3. Record type. Straightforward.

4. Function type. Straightforward.

Lemma A.2 (Inversion of the typing judgement).

1. If Γ | Σ ` λx :τ1. e : σ and Σ ` σ ≤ σ1 → σ2 then Σ ` σ1 ≤ τ1 and Γ, x : τ1 | Σ ` e : σ2.

2. If Γ | Σ ` θ̂(e) : τ and Σ ` τ ≤ β(M) then for some σ we have:

(a) Γ | Σ ` e : σ

(b) σ ≤ reqΣ θ

(c) Γ | Σ ` θ̂(e) : θ(methodsΣθ)
(d) Σ `methodsΣθ <: M

(e) Σ ` θ v β

3. If Γ | Σ ` foldµX.τ e : σ and σ ≤ µX.τ, then Γ | Σ ` e : [µX.τ/X] τ.

Proof. For each part, we proceed by induction on the typing derivation, with case analysis of the
final rule used. Vacuous cases have been omitted.

1. Γ | Σ ` λx :τ1. e : σ

case TP-FUN. σ = τ1 → τ2
By SUB-TRANS, τ1 → τ2 ≤ σ1 → σ2; by subtype inversion (Lemma A.1), σ1 ≤ τ1 and
τ2 ≤ σ2. By the rule’s premise, Γ, x : τ1 | Σ ` e : τ2, and the result follows from TP-SUBS.

case TP-SUBS. We have λx :τ1. e : τ and τ ≤ σ. By SUB-TRANS, τ ≤ σ1 → σ2 and the result
follows from the induction hypothesis.

2. Γ | Σ ` θ̂(e) : σ

case TP-NEW-OBJ. τ = θ(methodsΣθ).
Conclusions (a), (b) and (c) follow from the premises of TP-NEW-OBJ. By subtype in-
version (Lemma A.1), methodsΣθ <: M and θ v β, which proves conclusions (d) and
(e).

case TP-SUBS. Result follows from SUB-TRANS and the induction hypothesis.

3. Γ | Σ ` foldµX.τ e : σ. Straightforward.

27

A.3 Type safety theorems and lemmas

Lemma A.3. If Σ ` ∆ then Σ ` β1 v β2 iff ∆ ` β̂1 v β̂2.

Proof. Straightforward induction on Σ ` ∆.

Lemma A.4 (Canonical forms). Suppose · | Σ ` v : σ and Σ ` σ ≤ τ.

1. If τ = unit then v = ().

2. If τ = τ1 → τ2 then v is of the form λx :τ11. e.

3. If τ = β(m : τ) then v is of the form β̂′(v).

4. If τ = {` : τ} then v is of the form (k = v).

5. If τ = µX.τ then v is of the form foldσ v.

Proof. Straightforward induction on typing derivations.

Lemma A.5. If Σ ` β1 v β2 and mbody∆(m, β2) = e then mbody∆(m, β1) = e.

Proof. By induction on β1 v β2.

case SUB-BRAND-DECL. If either the first or second case of mbody applies, we have mbody(m, β̂2) =
e. By the second rule of mbody∆, mbody(m, β̂1) = e.

case SUB-BRAND-REFL. Immediate.

case SUB-BRAND-TRANS. We have β1 v β′1 and β′1 v β2. Applying the induction hypothesis to
β′1 v β1 gives mbody∆(m, β′1) = e. Applying the induction hypothesis to β1 v β′1 gives the
required result.

Lemma A.6. If Γ | Σ ` β̂(v) : τ and Σ ` τ ≤ β′(M), where Σ `∆ and mk ∈ M, then mbody∆(mk, β̂)
is defined.

Proof. By induction on β̂(v) : τ.

case TP-SUBS. Immediate from the induction hypothesis.

case TP-NEW-OBJ. We have β = β′. From the definition of a well-formed context Σ, modm =
concrete. From the definition of methodsΣ, either mk is defined in β or some super-brand θ
(i.e., some θ where β v θ). If it is defined in β, then mbody∆ is defined, by the definition of
Σ ` ∆. Otherwise, from the definition of Σ ` ∆, we have θ(mk = ek; m′ = e′) extends θ′ ∈ ∆.
By the definition of mbody∆, we have mbody∆(mk, θ̂) = ek. By Lemma A.5, mbody∆(mk, β̂) = ek,
which is the required result.

Lemma A.7 (Progress [expressions]). If · | Σ ` e : τ then either e is a value, or for some ∆ such
that Σ ` ∆, there is an e′ with e 7−→∆ e′.

28

Proof. By induction on e : τ, with case analysis of final rule used.

case TP-UNIT, TP-FUN. Immediate.

case TP-APP. Straightforward.

case TP-SUBS. Result follows from induction hypothesis.

case TP-NEW-OBJ. e = β̂(e1)
By the induction hypothesis, e1 is a value or it steps to some e′1. If it takes a step, then E-
BRAND-CONS applies. If it is a value, then then e is also a value.

case TP-NEW-RECORD e = (` = e)
By the induction hypothesis, each ei is a value or it steps to some e′i . If any ei steps, then the
rule E-RECORD applies. Otherwise, the entire expression is a value.

case TP-PROJ. e = e1.`k e1 : {` : τ}
By the induction hypothesis, either e1 is a value or it steps to some e′. If it is a value, then
by canonical forms it has the form (k = v) and E-PROJ2 applies. If it steps to e′, then E-PROJ1
applies.

case TP-INVOKE. e = e1.mk e1 : β(m : τ)
By the induction hypothesis, either e1 is a value or it steps to some e′1. If e1 evaluates to e′1,
E-INVOKE1 applies. Otherwise, by canonical forms, e1 has the form β̂′(v). By Lemma A.6,
mbody∆(m, β̂′) is defined; the rule E-INVOKE2 then applies.

case TP-FOLD. e = foldτ e1
By the induction hypothesis, either e1 is a value or it takes a step. If it takes a step, then the
rule E-FOLD applies. Otherwise, e is a value.

case TP-UNFOLD e = unfoldµX.τ e1
By the induction hypothesis, either e1 is a value or it takes a step. If it takes a step, then the
rule E-UNFOLD applies. Otherwise, it is a value v of type µX.τ. By canonical forms, v has
form foldµX.τ v1, so the rule E-UNFOLD-FOLD applies.

Theorem A.1 (Progress [programs]). If · | Σ ` p ok, for some Σ, then one of the following cases
holds:

1. p is a value

2. for ∆ such that Σ ` ∆, there exist p′ and ∆′ such that p | ∆ 7−→ p′ | ∆′.

Proof. By induction on p ok.

case TP-BRAND-INTRO. The rule E-BRAND-DECL applies.

case TP-EXT-METHOD. The rule E-EXT-DECL applies. ∆ has the appropriate form because Σ ` ∆
and Σ = {mod β1(σ, M) extends β2}, Σ0.

29

case TP-EXPR1. The result follows from the progress lemma for expressions (Lemma A.7).

case TP-EXPR2. By Lemma A.7, e 7−→∆ e′. By the induction hypothesis, p2 | ∆ 7−→ p′2 | ∆′. Then
the rule E-EXPR2 applies.

Lemma A.8 (Substitution).
If Γ, x : σ | Σ ` e1 : τ and Γ | Σ ` e2 : σ then Γ | Σ ` [e2/x] e1 : τ.

Proof. Straightforward induction on typing derivations.

Lemma A.9. If Γ, x : τ, Γ′ | Σ ` e : σ and τ′ ≤ τ, then Γ, x : τ′, Γ′ | Σ ` e : σ.

Proof. Straightforward induction on typing derivations.

Lemma A.10.
If Γ | Σ ` θ̂(v) : σ and σ ≤ β(m0 : β′(M0) ⇒ τ, M) and Σ ` ∆ and mbody∆(m0, θ̂) = e0, then
this : β′(M0), fields : reqΣ θ | Σ ` e0 : τ.

Proof. By induction on θ̂(v) : σ.

case TP-SUBS. Result follows from the induction hypothesis and SUB-TRANS.

case TP-NEW-OBJ. Let τ0 = β′(M0) ⇒ τ. We have β̂(v) : β(m0 : τ0, M). Since modifierΣβ =
concrete, methodsΣβ = concrete m : τ. There are two possible rules that apply for mbody∆. In
the first case, m0 is defined in β. From the definition of Σ ` ∆, we can conclude that this :
β(M0), fields : reqΣ β | Σ ` e0 : τ. This context is well-formed, since by a straightforward
typing inversion, β(M0) is a well-formed type.

Otherwise, from the definition of methodsΣ, there exists some β2 where m0 with type τ0 is
defined in β2 and β v β2. From the definition of Σ ` ∆, and the fact that mbody∆(m, β2) =
mbody∆(m, B), we know that this : β2(M0), fields : reqΣ β2 | Σ ` e0 : τ. The result then follows
from Lemma A.9.

Lemma A.11 (Preservation [expressions]).
If Γ | Σ ` e : τ and Σ ` ∆ and e 7−→∆ e′, then Γ | Σ ` e′ : τ.

Proof. By induction on e : τ.

case TP-VAR, TP-UNIT, TP-FUN. Vacuous; e does not evaluate.

case TP-APP. Straightforward.

case TP-SUBS. e : σ σ ≤ τ
By the induction hypothesis, e′ : σ and the result follows from TP-SUBS.

case TP-NEW-OBJ. e = β̂(e1) e1 : τ′

The only evaluation rule that applies is E-BRAND-CONS. By the induction hypothesis, e′1 : τ′.
The result then follows from TP-NEW-OBJ.

30

case TP-NEW-RECORD. The only evaluation rule that applies is E-RECORD. We have ek 7−→∆ e′k. By
the induction hypothesis, ek : τk. The result then follows from TP-NEW-RECORD.

case TP-PROJ. e : {ki : τi
i∈1..n}

There are two possible evaluation rules that apply:

case E-PROJ1. Result follows from the induction hypothesis and TP-PROJ.

case E-PROJ2. (`j = vj
j∈1..m).`k 7−→∆ vk

By typing inversion (Lemma A.2), we have {`j : τj
j∈1..m} ≤ {ki : τi

i∈1..n} and vk : τk,
which is the required result.

case TP-INVOKE.

Γ | Σ ` e : β(M)
mk : τmk ∈ (M ∧methodsΣ(β)) τmk = β′(n : σ)⇒ τ β(M ∧methodsΣ(β)) ≤ β′(n : σ)

Γ | Σ ` e.mk : τ

There are two possible evaluation rules that apply.

case E-INVOKE1. Result follows from the induction hypothesis and TP-INVOKE.

case E-INVOKE2.

mbody∆(m, β̂) = e

β̂(v).m 7−→∆ {β̂(v)/this, v/fields} e

We have θ̂(v) : β(M), where m : tk ∈ (M ∧methodsΣ(θ))
By typing inversion (Lemma A.2), θ̂(v) : β(methodsΣ(θ)) and methodsΣ(θ) <: M.
Therefore, (M ∧ methodsΣ(θ)) = methodsΣ(θ). By Lemma A.10, this : β′(n : σ), fields :
reqΣ θ | Σ ` em : τ′. The result follows from the substitution lemma (Lemma A.8).

case TP-FOLD. The only evaluation rule that applies is E-FOLD. The result follows from the induc-
tion hypothesis and TP-FOLD.

case TP-UNFOLD. There are two possible evaluation rules that apply.

case E-UNFOLD. The result follows from the induction hypothesis and TP-UNFOLD.

case E-UNFOLD-FOLD. We have e = unfoldµX.τ (foldµX.τ′ v) : τ, foldµX.τ′ : µX.τ. By typing
inversion (Lemma A.2), τ = τ′ and v : τ. But this is just what the expression evaluates
to, so this is the required result.

Theorem A.2 (Preservation [programs]).
If Γ | Σ ` p ok and Σ ` ∆ and p | ∆ 7−→ p′ | ∆′, then there exists a Σ′ such that Σ′ ` ∆′ where
Γ | Σ′ ` p′ ok.

Proof. By induction on p ok.

31

case TP-BRAND-INTRO.

β1 /∈ Σ τ ≤ reqΣ (β2)
Σ ` β1.m-decl : (modmm : τ) Σ′ = Σ, mod β1(τ; modm m : τ) extends β2

Σ′ ` β1.(τ; m-decl) ok mod = concrete implies abstractCover(modmm : τ, β2)
override(m : τ, β2) abstract method m ∈ m-decl implies mod = abstract Σ′ ` p ok

Σ `mod brand β1(τ; m-decl) extends β2 in p ok

The rule E-BRAND-DECL applies.

m-decl 7−→ m = e

mod brand β1(τ; m-decl) extends β2 in p | ∆ 7−→
p | ∆, (β1(m = e) extends β2)

Take ∆2 = ∆, (β1(m = e) extends β2). It remains to show that Σ′ ` ∆2. This result follows
from the definition of Σ′ ` β1.(τ; m-decl) ok and the definition of Σ ` ∆.

case TP-EXT-METHOD.

Σ = {mod β1(σ; M′) extends β2}, Σ0
m /∈ M′ Σ′ = {mod β1(σ; M′, m : β1(M)⇒ τ) extends β2}, Σ0

override(β1(M)⇒ τ, β2) this : β1(M), fields : σ | Σ′ ` e : τ Σ′ ` p1 ok
Σ `method m β(M) : τ = e in p1 ok

The rule E-EXT-DECL applies.

∆ = {β(m = e) extends β′}, ∆0

method m1 β(m : τ) : τ′ = e1 in p1 | ∆ 7−→
p1 | {β(m = e, m1 = e1) extends β′}, ∆0

From the definition of Σ ` ∆, ∆ has the form β(m = e) extends β′, ∆0, where Σ0 ` ∆0. Take
∆2 = β(m = e, m1 = e1) extends β′, ∆0. We have Σ′ ` p1 ok. It remains to show that Σ′ ` ∆2.
This result follows from the premise this : β(n : σ), fields : σ | Σ′ ` ei : τ′i and the definition
of Σ ` ∆.

case TP-EXPR1. The rule E-EXPR1 applies. The result then follows from the preservation lemma for
expressions (Lemma A.11).

case TP-EXPR2. The rule E-EXPR2 applies. The result then follows from the induction hypothesis
and the preservation lemma for expressions (Lemma A.11).

32

A.4 Validity theorems

Lemma A.12. If Σ ` σ type and Σ ` σ ≤ τ, then Σ ` τ type.

Proof. Straightforward induction on Σ ` σ ≤ τ.

Lemma A.13. If Γ, T type, Γ′ | Σ ` τ type and Γ, Γ′ | Σ ` σ type, then
Γ, [σ/T] Γ′ | Σ ` [σ/T] τ type.

Proof. Straightforward induction on τ type.

Lemma A.14. If X appears in τ and Γ | Σ ` [τ′/X] τ type then Γ | Σ ` τ′ type.

Proof. By induction on Γ | Σ ` [τ′/X] τ type.

case FUN-TYPE. We have [τ′/X] (τ1 → τ2) = [τ′/X] τ1 → [τ′/X] τ2. If X appears in τ, then either
X appears in τ1 or τ2, or both. In either case, the result follows from the induction hypothesis.

case ∧-TYPE. Similar to above.

case BRAND-TYPE. We have [τ′/X] β(m : σ) = β(m : [τ′/X] σ). The result then follows from the
induction hypothesis.

case RECORD-TYPE. Similar to above.

case MU-TYPE. Result follows from the induction hypothesis.

case VAR-TYPE. Immediate.

case METHOD-TYPE. Similar to case for FUN-TYPE.

Theorem A.3. If Γ | Σ ` e : τ, and Γ and Σ are well-formed, then Σ ` τ type.

Proof. By induction on e : τ.

case TP-VAR. Result follows from the fact that Γ is well-formed.

case TP-UNIT. Immediate.

case TP-FUN. Since τ1 type, Γ, x : τ1 is well-formed. The result then follows from the induction
hypothesis and FUN-TYPE.

case TP-APP. By the induction hypothesis, τ1 → τ2 type. By a straightforward inversion on the
type formation judgement, τ2 type, which is the required result.

case TP-SUBS. Result follows from the induction hypothesis and Lemma A.12.

case TP-NEW-OBJ. Result follows from the induction hypothesis and BRAND-TYPE.

case TP-NEW-RECORD. Result follows from the induction hypothesis and RECORD-TYPE.

case TP-PROJ. By the induction hypothesis, {`i : τi
i∈1..n} type. By a straightforward inversion of

the type formation judgement, τk type, which is the required result.

33

case TP-INVOKE. By the induction hypothesis, β(M) type. Let M = ` : τ. By a straightforward
inversion of the type formation judgement, τ type and therefore τmk = β′(M′) ⇒ τ′ type.
By another inversion of the type formation judgement, τ′ type, which is the required result.

case TP-FOLD. By the induction hypothesis, [µX.τ/X] τ type. Either τ contains X or it does not. If
it does not contain X, then the result of the substitution is simply τ and the result follows by
MU-TYPE. Otherwise, by Lemma A.14, we have that µX.τ type, which is the required result.

case TP-UNFOLD. By the induction hypothesis, µX.τ type. By inversion of the type formation
judgement, Γ, X type | Σ ` τ type. The result follows from the fact that type substitution
preserves well-formed types (Lemma A.13).

B Unityα formal system

B.1 Grammar

Programs p ::= decl in p | e | e; p
Declarations decl ::= brand-decl | ext-decl

Brand declaration brand-decl ::= mod brand ∀T. β〈T〉(τ; m-decl) extends β〈τ〉
Modifiers mod ::= abstract | concrete

Method declaration m-decl ::= abstract method m (m : τ) : τ

| method m (m : τ) : τ = e

External method ext-decl ::= method m ∀T. β〈T〉(m : τ) : τ = e

Expressions e ::= () | x | λx :τ. e | e e | β̂[τ](e) | (` = e)
| e.` | e.m | foldτ e | unfoldτ e | ΛT. e | e[e]

Types τ, σ ::= unit | τ → τ | τ ∧ τ | β〈τ〉(m : τ) | {` : τ} | X | T
| µX.τ | ∀T. τ | τ ⇒ τ

Values v ::= () | λx :τ. e | β̂[τ](v) | (` = v) | foldτ v | ΛT. e

Contexts Γ ::= · | Γ, x : τ | Γ, T type | Γ, X type

Σ ::= · | Σ, mod β〈T〉(τ; mod m : τ) extends β〈τ〉
∆ ::= · | ∆, β̂[T](m = e) extends β̂[τ]

34

Conventions

β̂ ≡ tag value corresponding to β

reqΣ (β〈σ〉) = {σ/T}τ if β〈T〉(τ; m : τ) ∈ Σ

modifierΣ(β) = mod if mod β〈T〉(τ; m : τ) ∈ Σ

typevarΣ(β) = T if β〈T〉(τ; m : τ) ∈ Σ
M ranges over m : τ

B.2 Static Semantics

B.2.1 Well-formed types

Γ | Σ ` τ type

Γ | Σ ` unit type
(UNIT-TYPE)

T type ∈ Γ
Γ | Σ ` T type

(TYPEVAR-TYPE)

Γ | Σ ` τ1 type Γ | Σ ` τ2 type
Γ | Σ ` τ1 → τ2 type

(FUN-TYPE)
Γ | Σ ` τ1 type Γ | Σ ` τ2 type

Γ | Σ ` τ1 ∧ τ2 type
(∧-TYPE)

β〈T〉 extends β2〈σ〉 ∈ Σ |T| = |τ| Γ | Σ ` τ type
m distinct Γ | Σ ` σm type Γ | Σ ` override(m : σm, β2〈[τ/T]σ〉)

Γ | Σ ` β〈τ〉(m : σm) type
(BRAND-TYPE)

` distinct Γ | Σ ` τ type

Γ | Σ ` {` : τ} type
(RECORD-TYPE)

Γ, X type | Σ ` τ type
Γ | Σ ` µX. τ type

(MU-TYPE)

Γ, T type | Σ ` τ type
Γ | Σ ` ∀T. τ type

(∀-TYPE)

Γ | Σ ` β〈σ〉(mi : τi
i∈1..n) type

τi = θi〈σ′i〉(Mi)⇒ τ′i Σ ` β〈σ〉 v θi〈σ′i〉 (i∈1..n) Γ | Σ ` τ2 type
Γ | Σ ` β〈σ〉(mi : τi

i∈1..n)⇒ τ2 type
(METHOD-TYPE)

B.2.2 Other auxillary judgements

Σ ` β〈T〉.m-decl : mod m : τ

Σ ` β〈T〉(m : σ)⇒ τ type
Σ ` (mod method β〈T〉.m(m : σ) : τ[= e]) : (mod m : β〈T〉(m : σ)⇒ τ)

35

Σ ` β〈T〉.(τ; m-decl) ok

T type, this : β〈T〉(m : σ), fields : τ | Σ ` e : τ′

Σ ` ∀T. β〈T〉.method m1(m : σ) : τ′ = e ok

methodsΣ(β〈τ〉) = mod m : τ

Σ ` β1〈T〉(τ; modi mi : τm
i∈1..n) extends β2〈τ〉

methodsΣ(β2〈τ〉) = mod′j mj : σj
j∈1..k, mod2 n : σ′m

methodsΣ(β1〈σ〉) = {σ/T}(mod m : τ, mod2 n : σ′m) methodsΣ(Top〈τ〉) = ·

Σ ` override(m : τ, β〈τ〉)

m : σ ∈ methodsΣ(β〈τ〉) Σ ` τ ≤ σ

Σ ` override(m : τ, β〈τ〉)
m /∈ methodsΣ(β〈τ〉)

Σ ` override(m : τ, β〈τ〉)

abstractCoverΣ(concrete m : τ, β〈τ〉)

methodsΣ(β〈τ〉) = abstract ni : σi
i∈1..n, concrete n′ : σ′ ni ∈ m i∈1..n

abstractCoverΣ(concrete m : τ, β〈τ〉)

Definition B.1 (Intersection on M).
Intersection on lists of method types is defined as intersecting types for methods, and concatenat-
ing additional methods. Formally:

(mi : τi
i∈1..n, M) ∧ (mi : τ′i

i∈1..n, M′)
def=
(
mi : (τi ∧ τ′i)

i∈1..n, M, M′
)

where the method names mi, M and M′ are mutually exclusive.

B.2.3 Subtyping

Sub-brand judgement. Γ | Σ ` β1〈τ1〉 v β2〈τ2〉

mod β1〈T〉 extends β2〈σ〉 ∈ Σ Γ | Σ ` τ type |typevarΣ(β1)| = |τ|
Γ | Σ ` β1〈τ〉 v β2〈{τ/T} σ〉

(SUB-BRAND-DECL)

|typevarΣβ| = |τ| Γ | Σ ` τ type
Γ | Σ ` β〈τ〉 v β〈τ〉

(SUB-BRAND-REFL)

Γ | Σ ` β1〈τ1〉 v β2〈τ2〉 Γ | Σ ` β2〈τ2〉 v β3〈τ3〉
Γ | Σ ` β1〈τ1〉 v β3〈τ3〉

(SUB-BRAND-TRANS)

36

Subtype judgement. Σ ` τ1 ≤ τ2

Σ ` τ ≤ τ
SUB-REFL

Σ ` τ1 ≤ τ2 Σ ` τ2 ≤ τ3

Σ ` τ1 ≤ τ3
SUB-TRANS

Σ ` β1〈τ1〉 v β2〈τ2〉 Σ ` τ1 ≤ τ2
Σ `M1 <: M2 Σ ` β1〈τ1〉(M1) type Σ ` β2〈τ2〉(M2) type

Σ ` β1〈τ1〉(M1) ≤ β2〈τ2〉(M2)
(SUB-NAME)

Σ, X ≤ Y ` τ1 ≤ τ2

Σ ` µX.τ1 ≤ µY.τ2
SUB-REC

Σ ` σ1 ≤ τ1 Σ ` τ2 ≤ σ2

Σ ` τ1 → τ2 ≤ σ1 → σ2
(SUB-FUNC)

Σ ` τ ≤ σ1 Σ ` τ ≤ σ2

Σ ` τ ≤ σ1 ∧ σ2
(SUB-∧R)

Σ ` τ1 ∧ τ2 ≤ τ1
(SUB-∧L1)

Σ ` τ1 ∧ τ2 ≤ τ2
(SUB-∧L2)

{`i : τi
i∈1..n} is a permutation of {`j : τj

j∈1..n}
Σ ` {`i : τi

i∈1..n} ≤ {`j : τj
j∈1..n}

(SUB-REC-PERM)

n > m
Σ ` {`i : τi

i∈1..n} ≤ {`j : τj
j∈1..m}

(SUB-REC-WIDTH)

Σ ` τi ≤ σi (i∈1..n)

Σ ` {`i : τi} i∈1..n ≤ {`i : σi} i∈1..n (SUB-REC-DEPTH)
T type | Σ ` τ1 ≤ τ2

Σ ` ∀T. τ1 ≤ ∀T. τ2
(SUB-∀)

Σ ` β1〈τ1〉 v β2〈τ2〉 Σ `M2 <: M1 Σ ` σ1 ≤ σ2

Σ ` β1〈τ1〉(M1)⇒ σ1 ≤ β2〈τ2〉(M2)⇒ σ2
(SUB-METHOD)

Subtyping on method records.

Σ ` {m : τ} ≤ {n : σ}
Σ `m : τ <: n : σ

(SUB-METHOD-REC)

37

B.2.4 Typing rules

Σ ` p ok

β1 /∈ Σ T type | Σ ` τ ≤ reqΣ (β2〈σ〉) Σ ` β1.m-decl : M
Σ′ = Σ, mod β1〈T〉(τ; M) extends β2〈σ〉 Σ′ ` β1〈T〉.(τ; m-decl) ok

mod = concrete implies abstractCover(M, β2〈σ〉) override(M, β2〈σ〉)
abstract method m ∈ M implies mod = abstract Σ′ ` p ok

Σ `mod brand ∀T. β1〈T〉(τ; m-decl) extends β2〈σ〉 in p ok
(TP-BRAND-INTRO)

Σ = {mod β1〈T〉(σ; M′) extends β2〈σ′〉}, Σ0
m /∈ M′ Σ′ = {mod β1〈T〉(σ; M′, m : β1〈T〉(M)⇒ τ) extends β2〈σ′〉}, Σ0

override(β1〈T〉(M)⇒ τ, β2〈σ′〉)
T type, this : β1〈T〉(M), fields : σ | Σ′ ` e : τ Σ′ ` p ok

Σ `method m ∀T. β1〈T〉(M) : τ = e in p ok
(TP-EXT-METHOD)

· | Σ ` e : τ

Σ ` e ok
(TP-EXPR1)

· | Σ ` e : τ Σ ` p ok
Σ ` e; p ok

(TP-EXPR2)

38

Γ | Σ ` e : τ

x : τ ∈ Γ
Γ | Σ ` x : τ

(TP-VAR)
Γ | Σ ` () : unit

(TP-UNIT)

Γ | Σ ` τ1 type Γ, x : τ1 | Σ ` e : τ2

Γ | Σ ` λx :τ1. e : τ1 → τ2
(TP-FUN)

Γ | Σ ` e1 : τ1 → τ2 Γ | Σ ` e2 : τ1

Γ | Σ ` e1 e2 : τ2
(TP-APP)

Γ | Σ ` e : σ Σ ` σ ≤ τ

Γ | Σ ` e : τ
(TP-SUBS)

modifierΣ(β) = concrete Γ | Σ ` e : τ Γ | Σ ` τ ≤ reqΣ (β〈σ〉)
methodsΣ(β〈σ〉) = modm m : τm Γ | Σ ` β〈σ〉(m : τm) type

Γ | Σ ` β̂[σ](e) : β〈σ〉(m : τm)
(TP-NEW-OBJ)

Γ | Σ ` e : τ

Γ | Σ ` (` = e) : {` : τ}
(TP-NEW-RECORD)

Γ | Σ ` e : {`i : τi
i∈1..n}

Γ | Σ ` e.`k : τk
(TP-PROJ)

Γ | Σ ` e : β〈τ〉(M)
mk : τk ∈ M τk = β′〈σ〉(M′)⇒ τ1 β〈τ〉(M) ≤ β′〈σ〉(M′)

Γ | Σ ` e.mk : τ1
(TP-INVOKE)

Γ | Σ ` e : [µX.τ/X]τ
Γ | Σ ` foldµX.τ e : µX.τ

(TP-FOLD)
Γ | Σ ` e : µX.τ

Γ | Σ ` unfoldµX.τ e : [µX.τ/X]τ
(TP-UNFOLD)

Γ, T type | Σ ` e : τ

Γ | Σ `ΛT. e : ∀T. τ
(TP-TYPEABS)

Γ | Σ ` e : ∀T. τ Γ | Σ ` σ type
Γ | Σ ` e[σ] : {σ/T} τ

(TP-TYPEAPP)

B.3 Dynamic Semantics

mbody∆(m, β̂[τ]) = e

β̂1[T](m0 = e0, m′ = e′) extends β̂2[σ] ∈ ∆

mbody∆(m0, β̂1[τ]) = {τ/T} e0

β̂1[T](m = e) extends β̂2[τ] ∈ ∆ m0 /∈ m mbody∆(m0, β̂2[τ]) = e0

mbody∆(m0, β̂1[σ]) = {σ/T} e0

39

m-decl 7−→ m = e

abstract method m(τ; m : σm) : τ 7−→ ·
(E-MDECL1)

method m(τ; m : σm) : τ = e 7−→ m = e
(E-MDECL2)

p | ∆ 7−→ p′ | ∆′

m-decl 7−→ m = e

mod brand ∀T. β1〈T〉(τ; m-decl) extends β2〈σ〉 in p | ∆ 7−→
p | ∆, (β1〈T〉(m = e) extends β2〈σ〉)

(E-BRAND-DECL)

∆ = {β〈T〉(m = em) extends β′〈τ〉}, ∆0

method m1 ∀T. β〈T〉(m : τ) : σ = e1 in p | ∆ 7−→
p | {β〈T〉(m = em, m1 = em1) extends β′〈τ〉}, ∆0

(E-EXT-DECL) e 7−→∆ e′

e | ∆ 7−→ e′ | ∆
(E-EXPR1)

e 7−→∆ e′

e; p | ∆ 7−→ e′; p | ∆
(E-EXPR2)

v; p | ∆ 7−→ p | ∆
(E-EXPR3)

40

e 7−→∆ e′

e1 7−→∆ e′1
e1 e2 7−→∆ e′1 e2

(E-APP1)
e2 7−→∆ e′2

v1 e2 7−→∆ v1 e′2
(E-APP2)

(λx :τ. e) v 7−→∆ {v/x} e
(E-APP-ABS)

ek 7−→∆ e′k
(`1 = v1, . . . , `k−1 = vk−1, `k = ek, . . .) 7−→∆ (. . . , `k = e′k, . . .)

(E-RECORD)

e 7−→∆ e′

e.` 7−→∆ e′.`
(E-PROJ1)

(`i = vi
i∈1..n).`k 7−→∆ vk

(E-PROJ2)

e 7−→∆ e′

β̂[τ](e) 7−→∆ β̂[τ](e′)
(E-BRAND-CONS)

e 7−→∆ e′

e.m 7−→∆ e′.m
(E-INVOKE1)

mbody∆(m, β̂[τ]) = e

β̂[τ](v).m 7−→∆ {β̂[τ](v)/this, v/fields} e
(E-INVOKE2)

e 7−→∆ e′

foldτ e 7−→∆ foldτ e′
(E-FOLD)

e 7−→∆ e′

unfoldτ e 7−→∆ unfoldτ e′
(E-UNFOLD)

unfoldτ (foldτ v) 7−→∆ v
(E-UNFOLD-FOLD)

e 7−→∆ e′

e[τ] 7−→∆ e′[τ]
E-TAPP

ΛT.e[τ] 7−→∆ {τ/T} e
E-TAPP-TABS

41

C Unityα Type safety

C.1 Definitions

Definition C.1 (Well-formed context).
The context Σ is well-formed, iff the following conditions hold:

1. there is exactly one entry for each brand β.

2. if mod β1〈T〉(τ; M) extends β2〈σ〉 ∈ Σ, then

(a) T type | Σ ` β2〈T〉(M) type

(b) T type | Σ ` τ ≤ reqΣ β2〈σ〉
(c) if mod = concrete, then methodsΣ(β1〈τ′〉) = concrete n : τ.

Definition C.2 (Models relation on contexts).
The context Σ models ∆, iff Σ `∆. The definition of Σ `∆ is given by the following inference rules.

· ` ·

Σ ` ∆
Σ′ = Σ, mod β1〈T〉(τ; {concrete mi : β1〈T〉(Mi)⇒ τ′i

i∈1..n}, abstract n : σm) extends β2〈σ〉
T type, this : β1〈T〉(Mi), fields : τ | Σ′ ` ei : τi (i∈1..n)

Σ′ ` ∆, β̂1[T](mi = ei
i∈1..n) extends β̂2[σ]

C.2 Inversion and Canonical Forms Lemmas

Lemma C.1 (Inversion of subtyping).

1. If τ1 → τ2 ≤ σ1 → σ2, then Σ ` σ1 ≤ τ1 and Σ ` τ2 ≤ σ2.

2. If Σ ` β1〈τ〉(M1) ≤ β2〈σ〉(M2), then Σ ` β1〈τ〉 v β2〈σ〉 and Σ ` M1 <: M2 and
Σ ` β1〈τ〉(M1) type and Σ ` β2〈σ〉(M2) type.

3. If Σ ` (`i : τi
i∈1..n) ≤ (kj : σj

j∈1..m), then {kj
j∈1..m} ⊆ {`i

i∈1..n} (` includes at least the labels in
k) and Σ ` τi ≤ σj for each common label `i = kj.

4. If Σ ` β1〈σ1〉(M1) ⇒ τ1 ≤ β2〈σ2〉(M2) ⇒ τ2 then Σ ` β1〈σ1〉 v β2〈σ2〉 and Σ `M2 <: M1
and Σ ` τ1 ≤ τ2.

5. If Σ ` ∀T. τ1 ≤ τ and Σ ` τ ≤ ∀T. τ2, then T type | Σ ` τ1 ≤ τ2.

Proof. Straightforward induction on the subtyping derivation.

Lemma C.2 (Inversion of the typing judgement).

1. If Γ | Σ ` λx :τ1. e : σ and Σ ` σ ≤ σ1 → σ2 then Σ ` σ1 ≤ τ1 and Γ, x : τ1 | Σ ` e : σ2.

2. If Γ | Σ ` θ̂[σ](e) : τ and Σ ` τ ≤ β〈σ′〉(M) then for some τ′ we have:

(a) Γ | Σ ` e : τ′

42

(b) τ′ ≤ reqΣ θ〈σ〉

(c) Γ | Σ ` θ̂[σ](e) : θ〈σ〉(methodsΣθ〈σ〉)
(d) Σ `methodsΣθ〈σ〉 <: M

(e) Σ ` θ〈σ〉 v β〈σ′〉

3. If Γ | Σ `ΛT. e : τ and Γ | Σ ` τ ≤ ∀T. σ, then Γ, T type | Σ ` e : σ.

Proof. By induction on the typing derivation, with case analysis of the final rule used. Vacuous
cases have been omitted.

1. Γ | Σ ` λx :τ1. e : τ

case TP-FUN. τ = τ1 → τ2
By SUB-TRANS, τ1 → τ2 ≤ σ1 → σ2; by subtype inversion (Lemma C.1), σ1 ≤ τ1 and
τ2 ≤ σ2. By the rule’s premise, Γ, x : τ1 | Σ ` e : τ2, and the result follows from TP-SUBS.

case TP-SUBS. We have λx :τ1. e : τ and τ ≤ σ. By SUB-TRANS, τ ≤ σ1 → σ2 and the result
follows from the induction hypothesis.

2. Γ | Σ ` θ̂[σ](e) : τ

case TP-NEW-OBJ. σ = θ〈σ〉(m : τ).
Conclusions (a), (b) and (c) follow from the premises of TP-NEW-OBJ. By subtype inver-
sion (Lemma C.1), methodsΣθ〈σ〉 <: M and θ〈σ〉 v β〈σ′〉, which proves conclusions (d)
and (e).

case TP-SUBS. Result follows from SUB-TRANS and the induction hypothesis.

3. Γ | Σ `ΛT. e : τ. Straightforward.

Lemma C.3 (Canonical forms). Suppose · | Σ ` v : σ and Σ ` σ ≤ τ.

1. If τ = unit then v = ().

2. If τ = τ1 → τ2 then v is of the form λx :τ11. e.

3. If τ = β〈σ〉(m : τ) then v is of the form β̂′[σ′](v).

4. If τ = {` : τ} then v is of the form (k = v).

5. If τ = µX.τ then v is of the form foldσ v.

6. If τ = ∀T. τ then v is of the form ΛT. e.

Proof. Straightforward induction on typing derivations.

43

C.3 Type substitution Lemmas

Lemma C.4 (Type substitution preserves well-formed types and subtyping).

1. If Γ, T type, Γ′ | Σ ` τ type and Γ, Γ′ | Σ ` σ type, then Γ, {σ/T} Γ′ | Σ ` {σ/T} τ type.

2. If Γ, T type, Γ′ | Σ ` τ1 ≤ τ2 and Γ, Γ′ | Σ ` σ type, then Γ, {σ/T} Γ′ | Σ ` {σ/T} τ1 ≤
{σ/T} τ2.

Proof. By mutual induction on the derivations of the judgements τ type and τ1 ≤ τ2.

1. case UNIT-TYPE. Immediate.

case TYPEVAR-TYPE. T′ type ∈ Γ, T type, Γ′.
There are three possible cases of the context that contains T′.

subcase T′ type ∈ Γ. Because the context is well-formed, {σ/T} T′ = T′. From this it
follows that Γ, Γ′ ` T′ type.

subcase T′ = T. Since {σ/T} T = σ, the result follows.
subcase T′ type ∈ Γ′. We have {σ/T} T′ ∈ {σ/T} Γ′. The result then follows from

T-TYPE.

case FUN-TYPE. We have Γ, T type, Γ′ ` τ1 type and Γ, T type, Γ′ ` τ2 type.
By the induction hypothesis, Γ, {σ/T} Γ′ ` {σ/T} τ1 type and
Γ, {σ/T} Γ′ ` {σ/T} τ2 type. By FUN-TYPE, Γ, {σ/T} Γ′ ` {σ/T} τ1 → {σ/T} τ2 type,
which is equivalent to {σ/T} (τ1 → τ2).

case ∧ -TYPE. Similar to above.

case ∀-TYPE. By the induction hypothesis, and the fact that {σ/T} T′ = T′, we have
Γ, {σ/T} Γ′ ` {σ/T} τ type. The result then follows from ∀-TYPE.

case BRAND-TYPE. We are to show that Γ, {σ/T} Γ′ | Σ ` {σ/T} β〈τ〉(m : σm) type. This last
expression is equivalent to β〈{σ/T} τ〉(m : {σ/T} σm).
We have Γ, T type, Γ′ | Σ ` τ type. By the induction hypothesis,
Γ, {σ/T} Γ′ | Σ ` {σ/T} τ type. Similiarly, Γ, {σ/T} Γ′ | Σ ` {σ/T} σm type,
which is the required result.

case RECORD-TYPE. Result follows from the induction hypothesis.

case MU-TYPE. Result follows from the induction hypothesis.

case METHOD-TYPE. We are to show that Γ, {σ/T} , Γ′ | Σ ` {σ/T} β〈τ〉(mi : τmi
i∈1..n) ⇒

{σ/T} τ2 type. This follows by applying the induction hypothesis to the premises
β〈τ〉(mi : τi

i∈1..n) type and τ2 type.

2. case SUB-REFL. Immediate.

case SUB-TRANS. Result follows from the induction hypothesis and SUB-TRANS.

case SUB-NAME. By the induction hypothesis of (1), β1〈{σ/T} τ1〉({σ/T}M1) type and
β2〈{σ/T} τ2〉({σ/T}M2) type. The result then follows from SUB-NAME.

case SUB-FUNC. Result follows from the induction hypothesis, SUB-FUNC, and the equality
{σ/T} (τ1 → τ2) = {σ/T} τ1 → {σ/T} τ2.

case SUB-∀. Result follows from the induction hypothesis and SUB-∀.

44

case SUB-∧R. By the induction hypothesis,
Γ, {σ/T} Γ′ ` {σ/T} τ ≤ {σ/T} σ1 and Γ, {σ/T} Γ′ ` {σ/T} τ ≤ {σ/T} σ2. The re-
sult then follows from SUB-∧R and the equality {σ/T} (τ1 ∧ τ2) = {σ/T} τ1 ∧ {σ/T} τ2

case SUB-∧L1 , SUB-∧L2. Similar to above.

case SUB-BRAND-∧L. Similar to above.

Lemma C.5 (Type substitution preserves types). If Γ, T type, Γ′ | Σ ` e : τ and Γ, Γ′ | Σ ` σ type,
then Γ, {σ/T} Γ′ ` {σ/T} e : {σ/T} τ.

Proof. By induction on e : τ.

case TP-VAR. There are two possible subcases of the context that x : τ appears in.

subcase x : τ ∈ Γ. In this case, because the context is well-formed and T does not appear in
Γ′, then {σ/T} τ = τ, which gives the required result.

subcase x : τ ∈ Γ′. From this it follows that x : {σ/T} τ ∈ {σ/T} Γ′. The result then follows
from TP-VAR.

case TP-FUN. It suffices to show that Γ, {σ/T} Γ′ ` λx :{σ/T} τ1. {σ/T} e1 : {σ/T} τ1 →
{σ/T} τ2, since {σ/T} (τ1 → τ2) = {σ/T} τ1 → {σ/T} τ2. From the induction hypothe-
sis, Γ, {σ/T} Γ′, x : {σ/T} τ1 | Σ ` {σ/T} e1 : {σ/T} τ2. Since substitution preserves the
well-typed property (Lemma C.4), the result follows from TP-FUN.

case TP-APP. The result follows from the induction hypothesis, the equality {σ/T} (τ1 → τ2) =
{σ/T} τ1 → {σ/T} τ2, and TP-APP.

case TP-SUBS. By the induction hypothesis, Γ, {σ/T} Γ′ ` {σ/T} e : {σ/T} σ′. Since substitution
preserves subtyping, {σ/T} σ′ ≤ {σ/T} τ. The result then follows from TP-SUBS.

case TP-NEW-OBJ. By the induction hypothesis, Γ, {σ/T} Γ′ | Σ ` {σ/T} e :
{σ/T} τ. Since substitution preserves the well-typed property (Lemma C.4),
Γ, {σ/T} Γ′ | Σ ` {σ/T} (β〈σ′〉(m : τ) type. We also have the equalities
{σ/T} (β̂[σ′](e) = β̂[{σ/T} σ′]({σ/T} e), {σ/T} reqΣ (β〈σ〉) = reqΣ (β〈{σ/T} σ〉) and
methodsΣ(β〈{σ/T} σ〉) = m : {σ/T} τm. From this, the result follows from TP-NEW-OBJ.

case TP-NEW-RECORD. The result follows from the induction hypothesis, the equalities
{σ/T} (` = e) = (` = {σ/T} e) and {{σ/T} ` : τ} = {` : {σ/T} τ} and TP-NEW-RECORD.

case TP-PROJ. The result follows from the induction hypothesis, the equality {{σ/T} ` : τ} =
{` : {σ/T} τ} and TP-PROJ.

case TP-INVOKE. The result follows from the induction hypothesis, the equality
{σ/T} (β′〈σ〉(M′)⇒ τ1) = {σ/T} (β′〈σ〉(M′))⇒ {σ/T} τ1 and TP-INVOKE.

case TP-FOLD, TP-UNFOLD. Straightforward.

case TP-TYPEABS. The result follows from the induction hypothesis, the equality {σ/T} T′ = T′,
and TP-TYPEABS.

45

case TP-TYPEAPP. The result follows from the induction hypothesis, the equality {σ/T} (e[σ′]) =
{σ/T} e[{σ/T} σ′], and TP-TYPEAPP.

C.4 Progress Lemmas and Theorem

Lemma C.6. If Σ ` ∆ then Σ ` β1〈τ〉 v β2〈σ〉 iff ∆ ` β̂1[τ] v β̂2[σ].

Proof. Straightforward induction on Σ ` ∆.

Lemma C.7. If Σ ` β1[τ] v β2[σ] and mbody∆(m, β2[σ]) = e then mbody∆(m, β1[τ]) = e′, for some
e′.

Proof. By induction on β1[τ] v β2[σ].

case SUB-BRAND-DECL. If either the first or second case of mbody applies, we have
mbody∆(m, β̂2[σ]) = e. By the second rule of mbody∆, mbody∆(m, β̂1[τ]) = {τ/T} e.

case SUB-BRAND-REFL. Immediate.

case SUB-BRAND-TRANS. We have β1[τ] v β′1[τ
′] and β′1[τ

′] v β2[σ]. Applying the induction hy-
pothesis to β′1[τ

′] v β2[σ] gives mbody∆(m, β′1[τ
′]) = e′. Applying the induction hypothesis

to β1[τ] v β′1[τ
′] gives the required result.

Lemma C.8. If Γ | Σ ` β̂[σ](v) : τ and Σ ` τ ≤ β′[σ′](M), where Σ ` ∆ and mk ∈ M, then
mbody∆(mk, β̂[σ]) is defined.

Proof. By induction on β̂[σ](v) : τ.

case TP-SUBS. Immediate from the induction hypothesis.

case TP-NEW-OBJ. We have β = β′. From the definition of a well-formed context Σ, modm =
concrete. From the definition of methodsΣ, either mk is defined in β or some proper super-
brand θ (i.e., some θ 6= β where β v θ). If it is defined in β, then mbody∆ is de-
fined, by the definition of Σ ` ∆. Otherwise, from the definition of Σ ` ∆, we have
θ̂[T](mk = ek; m′ = e′) extends θ̂′[τ′] ∈ ∆. Suppose we have θ̂0[T0](...) extends θ̂[τ]. By the
definition of mbody, we have mbody∆(mk, θ̂[τ]) = {τ/T} ek. Since θ̂[τ] v β̂[σ], by Lemma C.7,
mbody∆(mk, β̂[σ]) is defined, which is the required result.

Lemma C.9 (Progress [expressions]). If · | Σ ` e : τ then either e is a value, or for some ∆ such that
Σ ` ∆, there is an e′ with e 7−→∆ e′.

Proof. By induction on e : τ, with case analysis of final rule used.

case TP-UNIT, TP-FUN. Immediate.

46

case TP-APP. Straightforward.

case TP-SUBS. Result follows from induction hypothesis.

case TP-NEW-OBJ. e = β̂[τ](e1)
By the induction hypothesis, e1 is a value or it steps to some e′1. If it takes a step, then E-
BRAND-CONS applies. If it is a value, then then e is also a value.

case TP-NEW-RECORD e = (` = e)
By the induction hypothesis, each ei is a value or it steps to some e′i . If any ei steps, then the
rule E-RECORD applies. Otherwise, the entire expression is a value.

case TP-PROJ. e = e1.`k e1 : {` : τ}
By the induction hypothesis, either e1 is a value or it steps to some e′. If it is a value, then
by canonical forms it has the form (k = v) and E-PROJ2 applies. If it steps to e′, then E-PROJ1
applies.

case TP-INVOKE. e = e1.mk e1 : β〈σ〉(m : τ)
By the induction hypothesis, either e1 is a value or it steps to some e′1. If e1 evaluates to e′1,
E-INVOKE1 applies. Otherwise, by canonical forms, e1 has the form β̂′[σ′](v). By Lemma C.8,
mbody∆(m, β̂′[σ′]) is defined; the rule E-INVOKE2 then applies.

case TP-FOLD. e = foldτ e1
By the induction hypothesis, either e1 is a value or it takes a step. If it takes a step, then the
rule E-FOLD applies. Otherwise, e is a value.

case TP-UNFOLD e = unfoldµX.τ e1
By the induction hypothesis, either e1 is a value or it takes a step. If it takes a step, then the
rule E-UNFOLD applies. Otherwise, it is a value v of type µX.τ. By canonical forms, v has
form foldµX.τ v1, so the rule E-UNFOLD-FOLD applies.

case TP-TYPEABS. Immediate.

case TP-TYPEAPP. e = e1[σ] e : ∀T. τ.
By the induction hypothesis, either e1 is a value or e1 7−→ e′1, for some e′1. If e1 is a value,
then E-TAPPTABS applies, since by canonical forms, e1 has the form ΛT. e′. Otherwise, the
rule E-TAPP applies.

Theorem C.1 (Progress [programs]). If · | Σ ` p ok, for some Σ, then one of the following cases
holds:

1. p is a value

2. for ∆ such that Σ ` ∆, there exist p′ and ∆′ such that p | ∆ 7−→ p′ | ∆′.

Proof. By induction on p ok.

case TP-BRAND-INTRO. The rule E-BRAND-DECL applies.

47

case TP-EXT-METHOD. The rule E-EXT-DECL applies. ∆ has the appropriate form because Σ ` ∆
and Σ = {mod β1〈T〉(σ; M) extends β2〈σ〉}, Σ0.

case TP-EXPR1. The result follows from the progress lemma for expressions (Lemma C.9).

case TP-EXPR2. p = (e; p2)
By Lemma C.9, either e 7−→∆ e′ or e is a value. In the first case, E-EXPR2 applies; in the
second, E-EXPR3 applies.

C.5 Preservation Lemmas and Theorem

Lemma C.10 (Substitution).
If Γ, x : σ | Σ ` e1 : τ and Γ | Σ ` e2 : σ then Γ | Σ ` {e2/x} e1 : τ.

Proof. Straightforward induction on typing derivations.

Lemma C.11. If Γ, x : τ, Γ′ | Σ ` e : σ and τ′ ≤ τ, then Γ, x : τ′, Γ′ | Σ ` e : σ.

Proof. Straightforward induction on typing derivations.

Lemma C.12.
If Γ | Σ ` θ̂[τ](v) : σ and σ ≤ β〈τ′〉(m0 : β′〈τ′′〉(M0) ⇒ τ, M) and Σ ` ∆ and mbody∆(m0, θ̂[τ]) =
e0, then this : β′〈τ′′〉(M0), fields : reqΣ θ〈τ〉 | Σ ` e0 : τ.

Proof. By induction on θ̂(v) : σ.

case TP-SUBS. Result follows from the induction hypothesis and SUB-TRANS.

case TP-NEW-OBJ. Let τ0 = β′〈τ′′〉(M0) ⇒ τ. We have β̂[τ](v) : β〈τ〉(m0 : τ0, M). Since
modifier(β) = concrete, methodsΣ(β〈τ〉) = concrete m : τ. There are two possible rules that
apply for mbody∆. In the first case, m0 is defined in β. Therefore, β′′ = β and τ′′ = τ. From
the definition of Σ ` ∆, we can conclude that this : β〈τ〉(M0), fields : reqΣ β〈τ〉 | Σ ` e0 : τ.

Otherwise, from the definition of methodsΣ, there exists some β2 where m0 with type τ′0 is
defined in β2 and β〈τ〉 v β2〈τ2〉. From the definition of Σ ` ∆, we know that this :
β2(M0), fields : reqΣ β2 | Σ ` e0 : τ. The result then follows from Lemma C.11.

Lemma C.13 (Preservation [expressions]).
If Γ | Σ ` e : τ and Σ ` ∆ and e 7−→∆ e′, then Γ | Σ ` e′ : τ.

Proof. By induction on e : τ.

case TP-VAR, TP-UNIT, TP-FUN. Vacuous; e does not evaluate.

case TP-APP. Straightforward.

case TP-SUBS. e : σ σ ≤ τ
By the induction hypothesis, e′ : σ and the result follows from TP-SUBS.

48

case TP-NEW-OBJ. e = β̂[σ](e1) e1 : τ′

The only evaluation rule that applies is E-BRAND-CONS. By the induction hypothesis, e′1 : τ′.
The result then follows from TP-NEW-OBJ.

case TP-NEW-RECORD. The only evaluation rule that applies is E-RECORD. We have ek 7−→∆ e′k. By
the induction hypothesis, ek : τk. The result then follows from TP-NEW-RECORD.

case TP-PROJ. e : {ki : τi
i∈1..n}

There are two possible evaluation rules that apply:

case E-PROJ1. Result follows from the induction hypothesis and TP-PROJ.
case E-PROJ2. (`j = vj

j∈1..m).`k 7−→∆ vk
By typing inversion, we have {`j : τj

j∈1..m} ≤ {ki : τi
i∈1..n} and vk : τk, which is the

required result.

case TP-INVOKE.

Γ | Σ ` e : β〈τ〉(M) mk : τk ∈ M τk = β′〈σ〉(M′)⇒ τ1 β〈τ〉(M) ≤ β′〈σ〉(M′)
Γ | Σ ` e.mk : τ1

There are two possible evaluation rules that apply.

case E-INVOKE1. Result follows from the induction hypothesis and TP-INVOKE.
case E-INVOKE2.

mbody∆(m, θ̂[σ′]) = e0

θ̂[σ′](v).m 7−→∆ {θ̂[σ′](v)/this, v/fields} e0

We have θ̂[σ′](v) : β〈τ〉(M), where m : tk ∈ M
By Lemma C.12, this : β′〈σ〉(M′), fields : reqΣ θ〈σ′〉 | Σ ` e0 : τ1. By typing inversion
(Lemma C.2), and TP-SUBS, v : reqΣ θ〈σ′〉. By TP-SUBS, θ̂[σ′](v) : β′〈σ〉(M′). The result
follows from the substitution lemma (Lemma C.10).

case TP-FOLD. The only evaluation rule that applies is E-FOLD. The result follows from the induc-
tion hypothesis and TP-FOLD.

case TP-UNFOLD. There are two possible evaluation rules that apply.

case E-UNFOLD. The result follows from the induction hypothesis and TP-UNFOLD.
case E-UNFOLD-FOLD. We have e = unfoldµX.τ (foldµX.τ′ v) : τ, foldµX.τ′ : µX.τ. By typing

inversion, τ = τ′ and v : τ. But this is just what the expression evaluates to, so this is
the required result.

case TP-TYPEABS. Vacuous, e is a value.

case TP-TYPEAPP. There are two possible evaluation rules that apply:

subcase E-TAPP. e = e′[σ] e′ : ∀T. τ.
By the induction hypothesis, if e′ 7−→∆ e′′ then e′′ : ∀T. τ. The result then follows from
TP-TYPEAPP.

49

subcase E-TAPP-TABS. (ΛT. e1)[σ] 7−→∆ {σ/T} e1 Γ | Σ `ΛT. e1 : ∀T. τ
By typing inversion, Γ, T type | Σ ` e1 : τ. The result follows from the fact that type
substitution preserves types (Lemma C.5).

Theorem C.2 (Preservation [programs]).
If Γ | Σ ` p ok and Σ ` ∆ and p | ∆ 7−→ p′ | ∆′, then there exists a Σ′ such that Σ′ ` ∆′ where
Γ | Σ′ ` p′ ok.

Proof. By induction on p ok.

case TP-BRAND-INTRO.

β1 /∈ Σ T type | Σ ` τ ≤ reqΣ (β2〈σ〉)
Σ ` β1.m-decl : M Σ′ = Σ, mod β1〈T〉(τ; M) extends β2〈σ〉

Σ′ ` β1〈T〉.(τ; m-decl) ok mod = concrete implies abstractCover(M, β2〈σ〉)
override(M, β2〈σ〉) abstract method m ∈ M implies mod = abstract Σ′ ` p ok

Σ `mod brand ∀T. β1〈T〉(τ; m-decl) extends β2〈σ〉 in p ok

The rule E-BRAND-DECL applies.

m-decl 7−→ m = e

mod brand ∀T. β1〈T〉(τ; m-decl) extends β2〈σ〉 in p | ∆ 7−→
p | ∆, (β1〈T〉(m = e) extends β2〈σ〉)

Take ∆2 = ∆, (β1〈T〉(m = e) extends β2〈σ〉). It remains to show that Σ′ ` ∆2. This result
follows from the definition of Σ′ ` β1〈T〉.(τ; m-decl) ok and the definition of Σ ` ∆.

case TP-EXT-METHOD.

Σ = {mod β1〈T〉(σ; M′) extends β2〈σ′〉}, Σ0
m /∈ M′ Σ′ = {mod β1〈T〉(σ; M′, m : β1〈T〉(M)⇒ τ) extends β2〈σ′〉}, Σ0

override(β1〈T〉(M)⇒ τ, β2〈σ′〉)
T type, this : β1〈T〉(M), fields : σ | Σ′ ` e1 : τ Σ′ ` p ok

Σ `method m ∀T. β〈T〉(M) : τ = e1 in p ok

The rule E-EXT-DECL applies.

∆ = {β〈T〉(m = e) extends β′〈τ〉}, ∆0

method m1 ∀T. β〈T〉(m : τ) : τ = e1 in p | ∆ 7−→
p | {β〈T〉(m = e, m1 = e1) extends β′〈τ〉}, ∆0

50

From the definition of Σ ` ∆, ∆ has the form β〈T〉(m = e) extends β′〈τ〉, ∆0, where Σ0 ` ∆0.
Take ∆2 = β〈T〉(m = e, m1 = e1) extends β′〈τ〉, ∆0. We have Σ′ ` p1 ok. It remains to show
that Σ′ ` ∆2. This result follows from the premise T type, this : β〈T〉(M), fields : σ | Σ′ ` e1 :
τ and the definition of Σ ` ∆.

case TP-EXPR1. The rule E-EXPR1 applies. The result then follows from the preservation lemma for
expressions (Lemma C.13).

case TP-EXPR2. The rule E-EXPR2 applies. The result then follows from the induction hypothesis
and the preservation lemma for expressions (Lemma C.13).

51

	1 Introduction
	2 Motivating Examples
	2.1 Example 1: A Window Toolkit
	2.2 Comparison to Other Systems
	2.3 Example 2: AST Nodes in an IDE
	2.4 Real-World Examples
	2.4.1 Eclipse SWT.
	2.4.2 Eclipse JDT.

	3 Case Study: Optional Methods in Java
	4 Empirical Analysis
	5 Formal System
	5.1 Static Semantics
	5.1.1 Subtyping.
	5.1.2 Typing rules.

	5.2 Dynamic Semantics
	5.3 Type Safety
	5.4 Modularity
	5.5 Polymorphism

	6 Related Work
	A Unity Type Safety
	A.1 Definitions
	A.2 Inversion Lemmas
	A.3 Type safety theorems and lemmas
	A.4 Validity theorems

	B Unity formal system
	B.1 Grammar
	B.2 Static Semantics
	B.2.1 Well-formed types
	B.2.2 Other auxillary judgements
	B.2.3 Subtyping
	B.2.4 Typing rules

	B.3 Dynamic Semantics

	C Unity Type safety
	C.1 Definitions
	C.2 Inversion and Canonical Forms Lemmas
	C.3 Type substitution Lemmas
	C.4 Progress Lemmas and Theorem
	C.5 Preservation Lemmas and Theorem

