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Abstract

Interactive search of complex data poses significant challenges for traditional indexing methods because
of the infeasibility of determining an effective set of indicesa priori. This paper proposesjust-in-time
indexing, a new strategy that mitigates these challenges by exploiting a key characteristic of interactive
data exploration: iterative query refinement. During the refinement process, just-in-time indexing takes
advantage of user think time to create indiceson-the-flyfor query terms likely to be relevant to the current
user. Moreover, because a user typically refines a query after observing only a subset of the results, just-
in-time indexing indexes onlysubsetsof the data at a time. We present strategies for selecting which query
terms to index at any point in time, balancing the needs of the current user (immediate workload) versus the
projected needs of future users (long-term workload). We have implemented just-in-time indexing in the
Diamond architecture and validated its effectiveness for exploring image databases.
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1 Introduction

Relentless improvements in disk capacity and cost, combined with explosive growth in digital imaging
technologies lead to a formidable challenge:How does one discover something relevant to a particular task
in a large distributed repository of complex and loosely-structured data?For example, how does a military
intelligence analyst identify suspicious events from recent satellite images and surveillance videos? The term
“suspicious” refers to a vaguely-specified concept. It is highly context-dependent and spans an enormous
space of possibilities. While the analyst may have some notion of what he is searching for, it is often the
case that the precise definition of “suspicious” can only be given in hindsight. In other words, hypothesis
formation and hypothesis validation proceed hand-in-hand in a tightly-coupled and iterative sequence. We
refer to this inherently human-centric activity asinteractive data exploration (IDE).

Many domains lend themselves to IDE. For example, a pharmaceutical researcher may wish to identify
adverse effects of a new drug from a huge collection of automated cell-microscopy images. These images
would typically be obtained from an experiment that subjects a wide range of tissue samples under diverse
conditions to the new drug. The term “adverse effects” here is just as vague and ill-specified as “suspicious”
in the previous example. The most dangerous kinds of adverse effects are often those that are not anticipated,
and therefore cannot be searched for in an automated manner. Only a domain expert is likely to discover
such effects, and even then only in hindsight after viewing many images with evidence of those effects.

A key challenge in enabling fast IDE is that indexing techniques that are so successful in other contexts
(e.g., relational decision support systems, search engines, image retrieval systems) are far less useful for
complex data under ill-specified query workloads. As discussed further in Section 2, the richness of the data
requires high-dimensional representations that cause indexing to suffer from the curse of dimensionality [2,
5, 20]. Moreover, the richness of the query space (with its frequent use of user-defined search predicates)
and the unpredictability of the query workload mean that indexes selected a priori will rarely be useful.

All hope is not lost, however. An opportunity for a fundamentally new approach to indexing is revealed
by our experience with IDE on digital photograph collections [11], as well as our collaborative experience
with medical experts on IDE of mammograms [19] and pathology images, and with pharmaceutical experts
on IDE of adipocyte images [7]. This experience revealsiterative query refinementas a key characteristic of
IDE: a user issues a query, gets back a few results, and then uses these exemplary results to refine the query,
as shown in Figure 1 (explained in detail in Section 2). This continues until the user has found the desired
results (e.g., cell images demonstrating adverse effects) or gives up.

The new indexing strategy that we present in this paper exploits three aspects of iterative query refine-
ment. First, there is considerable redundancy in the queries posed during a single exploration session. Each
successive query is a refinement on the previous query, often repeating many of the same search predicates
(query terms). Thus, although it is often futile to predict which search predicate will get queried, a predicate
that gets queried is likely to be queried again by the user. In other words, there is significantshort-term
temporal locality of search predicates.Second, a user typically refines a query after seeing only tens of an-
swers returned. Thus, although it is often pointless to index an entire data set on even a previously-queried
search predicate, judiciously indexingsubsetsof the data on such predicates is an effective technique. Fi-
nally, because IDE is a thoughtful process, there is an opportunity during user think time to create partial
indexeson-the-flyfor query terms likely to be relevant to the current user. We call this new indexing strategy
just-in-time indexing.

This paper makes the following contributions.
• We identify the indexing challenges and opportunities in IDE.

• We propose the just-in-time indexing strategy. As illustrated in Figure 2, just-in-time indexing differs
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from traditional indexing in both its completeness and reactivity.

• We present and analyze schemes for selecting which query terms to index, balancing the needs of the
current user (immediate workload) versus the projected needs of future users (long-term workload).

• We validate the effectiveness of just-in-time indexing through trace-driven analysis of users perform-
ing IDE of image databases in a prototype IDE system.

The paper is organized as follows. Section 2 motivates just-in-time indexing and discusses related work.
Section 3 describes and analyzes several just-in-time indexing schemes. These are experimentally evaluated
in Section 4. Section 5 concludes the paper.

2 Why Just-in-Time Indexing?

2.1 The Interactive Data Exploration Setting

The phrase “interactive data exploration” can mean different things to different people. Our use of that
phrase focuses on a user examining complex data, where the complexity arises from the high dimensionality
and rich semantic content of the data. Images and video are two obvious examples of such complex data.
Based on our experience with users examining digital photograph collections and medical imaging collec-
tions, we describe a concrete setting for IDE. This setting motivates just-in-time indexing and defines the
framework within which we explore alternative policies.

Consider a typical IDE example. A user has a large number of vacation photos from a week-long cruise.
She wishes to select a few good pictures of whales to send to her friends. Unfortunately, her search tool
is not sophisticated enough to recognize the complex semantic concept of a whale. She therefore starts her
search by noting that all relevant images will contain large patches of water. Then, she iteratively refines her
search by viewing results to her current query and then modifying that query to get her closer to her goal.
Not all refinements are successful: some may lead to dead ends.

Figure 1(a) shows a typical sequence of queries for this example, while Figure 1(b) shows the corre-
sponding timeline. The first query,Q1, uses a predefined visual texture filter calledWater. Observing a
screenful of images satisfyingQ1, the user realizes thatQ1, while eliminating many irrelevant vacation
photos, fails to eliminate hundreds of photos taken around the cruise ship’s swimming pool. So she refines
her search by noting that the swimming pool photos do not contain large waves. This corresponds to query
Q2, which includes a predefinedOcean-waves filter. After observing two screenfuls of images satisfying
Q2, it dawns on the user that theOcean-waves filter, unfortunately, is dropping many photos of whales
taken on calm seas. Giving up on that filter, she considers other distinguishing characteristics. Noting that
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Table 1: Comparison of Typical Data Characteristics

Relational DSS Search Engine Image Retrieval IDE
Object DB row: web page: image: e.g., image:
& Size 100s B KBs 100KB-10MB 100KB-10MB
Number of objects 1012 109 106 106

Dimensionality 10s 1000s 100s-1000s 100s-1000s
Structured? fixed schema & domain fixed domain no no
Types of updates modifies + batch appends append only append only append only

Table 2: Comparison of Typical Query Characteristics

Relational DSS Search Engine Image Retrieval IDE
Query type SQL keyword search whole-image search filter-based search
Run to almost always yes yes rarely
completion? (only subset shown)
Query term term in Where clause keyword color, texture, keyword query-specific filter
User-defined infrequent no some query pervasive
functions in by example
query terms
Query term frequent pervasive frequent iterative
re-use refinement pattern
Anticipate definitely: only definitely: limited yes: limited yes for popular filters;
a priori tens of attrs means of searching query term types no for user-defined filters
frequent
query terms?
Interactive limited: help user limited: user tries sometimes: pervasive:
query with schema different keywords “more images see Figure 1(c)
formulation like this”
Primary response time, user stall time, user stall time user stall time
performance throughput throughput
metric(s)

the swimming pool photos all show a distinctive tile pattern, she creates aCruise-ship-pool-tile filter by
training a “color-selector” on sample patches of the tile pattern. In queryQ3, she negates theCruise-ship-
pool-tile filter in order to suppress the swimming pool photos. The results ofQ3 show many photos taken
during the whale watch, but few of them contain whales. Based on one photo with a whale in it, the user
creates aMore-like-this-whale filter that seeks “more images like this.” This filter, which is part ofQ4, is
defined using color patches from the gray whale. In this way, she obtains a manageable set of photos from
which she is easily able to select a set of aesthetically-pleasing images. As shown in Figure 1(c), the process
by which the user converges on these images is effectively an interleaved search in two spaces: the query
space and the object space. At each step of the process, the user observes only one or a few screenfuls of
objects satisfying her query (e.g., objectsO1ssatisfyingQ1).

The example above uses the term “filter” for a piece of code that can eliminate irrelevant data objects.
More formally, afilter is a piece of code that takes a data object as an input and outputs either true (i.e., the
objectpassesthe filter) or false (i.e., the objectfails the filter). For example, a filter looking for water will
pass any image in which it detects water. Note that filters can have false positives and false negatives. A
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filter-based search queryis a conjunction (AND) of filters,1 as exemplified byQ4 in Figure 1(a).
In the most general case, a filter could be custom code that is created afresh for each query. Less

onerous for the user, but still highly versatile, is the approach of using ad hocuser-definedfilters that can
be customized during a search session. For example, an image search application could support a color-
selection filter and a texture-selection filter that can be trained on example patches of color and texture
respectively. This effectively yields “more like this” filters (e.g., theMore-like-this-whale filter), where
the interpretation of “this” is specific to the search session. The generality of user-defined filters contributes
to the complexity of the IDE setting. Potentially most powerful from a domain-specific point of view
are predefined filtersand predefined filter templateswith scalar parameters. For example, a predefined
face-detector filter template may have a “view” parameter that can be instantiated with either “frontal” or
“profile”, in order to construct a filter searching for front-view faces (Frontal-face-detector) or side-view
faces (Profile-face-detector). In a medical search application, a predefined filter template for red blood
cells may support two parameter values: “normal” and “sickle cell.” In summary, we envision IDE spanning
a broad range of filter definition approaches that trade off specificity and ease of use for flexibility and ease
of customization.

2.2 Traditional Indexes Ill-suited for IDE

A number of characteristics of IDE make it a poor match for traditional indexes. In this section, we first
highlight the unique data and query characteristics of IDE and then explain why they are a poor fit for
traditional indexes.

Data and Query Comparison. Tables 1 and 2 qualitatively compare the data and query characteristics of
IDE with three common search settings: a relational decision support system that supports SQL queries
(DSS); a Web search engine that supports keyword search (SE); an image retrieval system such as QBIC [6]
that supports whole-image feature-based search (ImR ). The entries are not intended to be comprehensive
of all system installations for a given setting. Rather, the table seeks to reflect atypical installation, in
order to illuminate the similarities and differences between the settings, which will, in turn, inform indexing
challenges and opportunities.

As shown in Table 1, the data characteristics of IDE are qualitatively the same as ImR, but differ from
DSS and SE in that typically the data are large, unstructured objects. While the domain of SE is fixed (i.e.,
the set of words), the domain of IDE and ImR is unbounded (i.e., the set of all concepts that can be captured
by images).

As shown in Table 2, queries in IDE differ from those in DSS, SE, and ImR in significant ways, primarily
because of the richness of the query space and the iterative query refinement paradigm. First, a query in IDE
is rarely run to completion: it gets refined after one or a few screenfuls of returned answers. Second, while
ImR provides a fixed set of query terms (color, texture, keyword, etc.) that apply to the entire image, IDE
is characterized by user-defined filters that may apply to subregions of the image (e.g., theCruise-ship-
pool-tile filter in Figure 1(a)). Finally, while query term re-use is frequent or pervasive in DSS, SE and ImR
(e.g., the distribution of keywords used in searches is highly skewed), and can often be anticipated based
on historical trends, filter re-use patterns in IDE are more dynamic. Some filters are popular across search
sessions (e.g., theWater filter of Figure 1(a)), while others (typically ad hoc filters such asCruise-ship-
pool-tile in Figure 1(a)) are defined and only used within a single search session.

Problems with Traditional Indexes. The unique data and query characteristics of IDE make it ill-suited

1Although this paper focuses on conjunctions of filters, just-in-time indexing is also more generally applicable to disjunctions
and other boolean predicates.

5



for traditional indexes. Specifically, our argument focuses on indexes frequently used in the above three
search settings: B-Trees and Bitmapped Indexes as used in DSS, Inverted Indexes as used in SEs, and
Feature-Space Indexes as used in ImR. First, these indexes are often selected a priori. However, given the
richness of IDE’s data and query spaces, indexes selected a priori are likely to suffer from the curse of
dimensionality [2, 5, 20]. Second, selecting or tuning indexes according to a representative workload [3],
as is done in DSS, provides only limited value in IDE, because of IDE’s rich query space and prevalence
of ad hoc user-defined query terms (filters). Moreover, such workloads fail to capture an important source
of predictability: the re-use of query terms within a session. Third, feature-space indexes map each image
to a feature vector that reflects the entire image, based on a predefined set of features (color, texture, etc.).
Such indexes are too narrow for IDE’s rich space of user-defined filters applied to image subregions. Fourth,
inverted indexes are effective for well-defined domains with a fixed set of query terms (e.g., the set of words).
They are also effective for searching for images based on broad keyword labels. However, a high fraction
of images are unlabeled. Moreover, even expending the effort to supply tens of labels per image (e.g., using
human computation [18]) is of limited use for IDE, because the interesting aspects of an image are often not
known a priori. Moreover, semantically-rich labels often require experts with deep domain knowledge. As
confirmed by our experience with medical and pharmaceutical images, such experts are far too busy to label
more than a handful of images. Finally, traditional indexes are an all-or-nothing proposition: for a given
attribute/feature/etc., either a complete index is constructed or none at all. This is not a good match for IDE,
because its queries rarely run to completion.

2.3 Just-in-Time Indexing for IDE

To overcome these problems in using traditional indexing for IDE, we propose the “just-in-time” indexing
strategy. There are two key characteristics of just-in-time indexing, as depicted in Figure 2. First, it is
highly reactiveto the current query session, building new indexes (or augmenting existing indexes)on-the-
fly during user think time. Recall that IDE’s largely unpredictable workload limits the effectiveness of more a
priori approaches. Just-in-time indexing exploits the main source of predictability—a query term appearing
in a session is likely to be repeated again within the session (recall our earlier whale finding session)—by
often indexing a query term even on its first use. This is true even for ad hoc user-defined query terms such
as theCruise-ship-pool-tile filter, which may be useful only for the current user. Of course, just-in-time
indexing also seeks to exploit any predictability thatis present in the broader workload, e.g., by indexing
popular (typically predefined) filters such as aFrontal-face-detector filter or theWater filter.

Second, just-in-time indexing typically indexes only a small,adaptive subsetof the objects. This is
sufficient because a user typically refines the query after seeing only tens of objects returned. It is also
necessary, given the limited amount of user think time: index creation should not interfere with the servicing
of user requests. Indexing subsets of objects presents a number of interesting choices about what to index at
any point in time, e.g., how many objects to index, which query terms to index, etc. Moreover, just-in-time
indexing must balance its adaptivity to the current user against its support of broader workload trends. These
issues are addressed in Section 3.

Caveats and Limitations. Just-in-time indexing takes advantage of certain key characteristics of our IDE
setting. One crucial assumption is that the setting is response-time oriented, with relatively few users, so
thatuser think time provides opportunities for indexingusing system resources that would otherwise be idle.
As confirmed by our experiments, IDE is a cognitive process that involves considerable user think time.
Less crucial assumptions are that queries are restricted to conjunctions of pass/fail filters and that updates
are restricted to insertions of new objects. Finally, objects are assumed to be large, so that the index for a
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filter is 6–8 orders of magnitude smaller than the objects being indexed. This, in turn, implies that even a
large number of indexes can be supported with very fast access times: Fetching an entire index is orders
of magnitude faster than fetching the objects, and once fetched, an index can reside high in the memory
hierarchy (e.g., in the CPU’s on-chip cache). Relaxing these assumptions is beyond the scope of this paper.

Refining queries after seeing only a few screenfuls of objects raises important issues aboutwhichobjects
should be returned, given the system’s overall goal of quickly narrowing down the user’s search. This com-
plex issue, related to the field ofactive learning[5] in machine learning, is beyond the scope of this paper.
We will make the simplifying assumption that the screenful of objects returned by the system is somehow
representative; this could be approximated by using randomization to select objects (as in approximate query
processing [1], online aggregation [9, 10], etc.). This also has implications on what aspects of the total user
session time is under the system’s control. Namely, while the system can reduce user stall time (by returning
objects more quickly), it has no control over either the user think time or the number of requests made in a
session. For these reasons, we consideraverage user stall timeas the primary performance metric for IDE.

2.4 Related Work

Interactive exploration of data has a long history, and is an important component of decision support, data
mining, and information retrieval. Iterative query refinement (or drill-down) in search of interesting nuggets,
and the ability to iterate on what-if scenarios, is at the heart of interactive DSSs. As discussed above, for rela-
tional data, effective tools exist for analyzing workloads to determine those indexes that might be most ben-
eficial (e.g., [3]). For text data, effective indexing techniques have been around for decades (e.g., [17]), and
are rapidly improving to support increasingly more sophisticated search engines. For image data, feature-
space indexes (e.g., QBIC [6]) enable “whole-image” search queries. These are quite effective when the
semantic concept (e.g., sunset) dominates the image, but are ill-suited when it does not, e.g., “find me im-
ages of people wearing red lipstick.” Recent work on sub-image retrieval [13, 14] attempts to efficiently
index salient “keypoints” in images. However, such schemes rely on the hope that the user’s semantic needs
can be sufficiently characterized by the system’s limited concept of keypoints. This is problematic because
the keypoints of an image, although quite useful for finding correspondences between two images, often fail
to coincide with what the user finds salient in an image.

Many DSSs provide interactive GUIs to help users formulate their SQL queries to match the relational
DB schema. Recent work has focused on providing more comprehensive feedback to help users more
quickly converge on the desired query [15]. This differs from IDE in that the iterations do not involve
returning query answers.

Online aggregation [9, 10] provides users with early feedback on SQL queries by reporting partial an-
swers as database rows are processed. Users can interact with the system to focus its processing on specific
aspects of the running query, e.g., specific groups in a group-by query. They can also halt the processing
once the answers are “good enough”. The approach relies on a priori indexes over entire tables.

Query result caching (e.g., [8]) and just-in-time indexing both react to any use of a query term and
improve performance when query terms are re-used. The key difference is that just-in-time indexingspec-
ulatively indexes objects that are not in the query result. While some of our schemes can be viewed as
speculative work ahead, in which we prefetch the next screenful of objects prior to the user requesting them,
in other schemes we balance the needs of the current query against the projected needs of future queries.

Riedelet al. [16] advocate the use of active disks to speed up data mining of multimedia data. Dean
and Ghemawat [4] advocate the use ofMapReducefor searching many terabytes of data on thousands of
machines. Hustonet al. [12] propose the Diamond architecture for interactive discard-based search of non-
indexed data. Our work extends Diamond with just-in-time indexing.
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3 Just-In-Time Indexing Schemes

The goal of just-in-time indexing is to minimize user stall time by indexing objects during any available
idle time. To simplify the discussion, we consider a system supporting one user at a time, although the
techniques readily generalize to supporting simultaneous users (as long as there remains some idle time).
Thus, the available idle time is the time between user sessions plus the user think time during each session
(recall Figure 1). During such idle time, the system needs to decidewhich filtersto index onwhich objects
usingwhat type of index. In this section, we present and analyze our proposed schemes to address these
decisions.

We consider the following generic IDE query processing system. (The specific system used for our
experimental evaluation is described in Section 4.) The system responds to a user query with a screenful of
objects satisfying the query. We do not restrict the order in which objects are evaluated, so that the system
can optimize the ordering (based on disk layouts, head positions, index state, etc.). In evaluating a query on
an object, the system first checks its indexed data to see if the outcome of evaluating any of the query filters
on the object is already known. The object is discarded from the query result as soon as it fails one of the
filters in the query (we refer to this asearly discard). Thus, a subsequent filter need not be applied to an
object if the object fails an earlier filter. The system may spend user think time queuing up further objects
to be displayed and performing indexing tasks.

3.1 Partial Indexing Schemes

We present five alternative schemes for selecting which filters to index on what objects during available idle
time. These schemes vary in their support of the current query versus the overall query trends.

Current Query Work-Ahead. In this straightforward scheme, the system uses user think time (solely) to
work ahead on the current query. That is, it continues to evaluate the current query filters on additional
objects, even after a screenful has been displayed. This optimizes for the case that the user repeatedly
requests the next screenful of objects, but is less effective if the user refines the query instead. Note that,
because of early discard, each object may be indexed to a different degree, depending on the order in which
the filters in the current query are applied.

Popularity-Based. In this scheme, the system keeps statistics of filter use over a suitable time window, and
uses available idle time to index popular filters (e.g.,Frontal-face-detector andWater), irrespective of the
current query. Specifically, it greedily selects the most popular filter for which some objects remain to be
indexed and begins indexing these remaining objects. If it completes indexing this filter, it proceeds to the
next most popular filter, and so on, as time permits. This scheme optimizes for future queries that use these
popular filters, at the expense of the current query session. In particular, by not reacting to the current query
Q, it is not tailored to the common cases where the user either (1) requests the next screenful forQ or (2)
refines the query but re-uses some of the filters inQ.

Efficiency-Based. The preceding scheme fails to take into account two other important properties of a
filter, Fj , beyond its frequency: itsexecution time tj and itspass-rate(or selectivity) p j . Clearly, the slower
the filter, the more one would like to have it indexed, in order to avoid executing slow filters during user
stall time. Less obvious, perhaps, is the preference for indexing filters with low pass-rates. The lower the
pass-rate, the more effective the index is at quickly discarding objects. Let theefficiencyof a filter Fj be

defined asd+t j

p j
, whered is the time to fetch the object from disk. The efficiency reflects the expected time

to find the next object that passesFj ; the higher the efficiency, the more valuable the index. The Efficiency-
Based scheme generalizes the Popularity-Based scheme by prioritizing each filter based on the product of
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its frequency and efficiency. This will be defined more precisely in Section 3.2, after our cost model is
presented. This scheme optimizes for future queries, at the expense of the current query session. A key
challenge for this scheme is the potential inaccuracies in pass-rate estimates for filters that have yet to be
applied to many objects.

Dimension Switching. In this hybrid scheme, we seek to balance supporting the current query session
versus the overall query trends. Specifically, the system uses user think time to index any popular filter(s)
among those in the current query Q. It iterates through the objects, indexing all popular filters inQ on each
object, until the current idle period ends. Non-popular filters inQ are indexed only as needed to resolve the
object’s pass/fail outcome. For example, ifQ is the conjunction of an unpopular filterF1 and two popular
filters F2 andF3, this scheme first indexes an object onF2 and onF3, and then indexes onF1 if and only if
the object passes bothF2 andF3.

Viewing each filter in the query as evaluating an object along some “dimension”, we say that a filter
is aprimary dimensionif it gets applied to each object regardless of the outcome of other filters. We call
this schemedimension switchingbecause the system may switch its primary dimension(s) from non-popular
filters to popular filters. (In our whale finding scenario, for example, we may switch fromCruise-ship-
pool-tile to Water.) Thus, while a non-popular filterF1 may have minimized the time to deliver a screenful
of results to a user requestingQ, the popularF2 andF3 are better choices for future queries. This is because,
with early discard, the indexes along the primary dimensions (F2 andF3 after switching) end up being more
complete than the indexes along other dimensions. A key parameter in this scheme is the threshold used to
define when a filter is considered “popular”.

Self-Balancing.This scheme combines the best of the previous approaches by alternating between them as
the current situation warrants. Between user sessions, the scheme applies the Efficiency-Based scheme, as
this is optimized for future queries. During the user think time within a session, the scheme performs the
following, as time permits:

• First, apply the Current Query Work-Ahead scheme until the number of objects ready to be delivered
to the user exceeds a thresholdτ1.

• Next, apply the Dimension Switching scheme until the number of objects ready to be delivered ex-
ceeds a thresholdτ2.

• Finally, apply the Efficiency-Based scheme.
The key parameters in this scheme are the thresholdsτ1 andτ2. The idea is to start by optimizing for the
current queryQ, until the system has indexed sufficiently many objects satisfyingQ that it can quickly
respond to a “next screenful” request forQ. For example, ifτ1 were equal to the number of objects in a
screenful, then the request could be satisfied solely from the indexes. After that, the scheme begins to factor
in the overall query trends, until there are so many passing objects indexed that it makes sense to focus
entirely on the overall trends.

We also consider a Popularity-Based variant of the Self-Balancing scheme that uses Popularity-Based
within the scheme in place of Efficiency-Based, in order to avoid dealing with the issue of poor pass-rate
estimates in Efficiency-Based.

3.2 Analyzing the Schemes

Next, we provide an analytical comparison of the above schemes. We begin by formally defining a cost
model.
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Table 3: Notation Used in the Cost Model

O universe of objects
K number of possible filters
Fj filter j, j = 1, . . . ,K
D a database of objects fromO
N number of objects in the database
Oi object with ID i, i = 1, . . . ,N
Q a query (a conjunction of filters)
t j CPU time (in ms) to evaluateFj on an object
p j probability an object inD passesFj

f j probability a session containsFj

r probability that a filter used in a session
is re-used within the same session

d time (in ms) to fetch an object from disk
s number of objects in a screenful
ε given an object ID, time (in ms) to check if the object

has been indexed and retrieve its pass/fail outcome

3.2.1 Cost Model

As with any cost model, our goal is to capture the salient aspects without making the model unduly compli-
cated. Table 3 summarizes the notation used in our cost model. There is a (large) universeO of objects and
a (large) universe{F1, . . . ,FK}, of filters. Each filter is a binary function that takes an object fromO as its
single argument and returns either pass or fail. A given databaseD containsN objects,O1, . . . ,ON, from O.
Users pose queries toD, where each queryQ is the conjunction of a finite set of filters.

The number of possible filtersK is large in practice because first, there are millions of semantic concepts
that might be captured by filters. For example, in the animal domain alone, there may be separate filters for
each animal species of interest (dogs, cats, raccoons, etc.) and perhaps even individual breeds within a
species. Second, some feature selectors (e.g., color-selector or texture-selector) can be used to define an
extremely large number of distinct filters. For such selectors, the user takes one or more exemplar images,
selects a region of interest within each such image, and then defines a filter looking for “similar” regions
in other images, where similarity is defined based on a color histogram (as inMore-like-this-whale) or
a texture histogram. Thus, the number of such filters is proportional to the number of distinct possible
histograms, which is≈ 1064 in our implementation.

Associated with each filterFj are (1) itsexecution time: the (average) timet j in milliseconds to evaluate
Fj on an object, (2) itspass-rateor selectivity: the fractionp j of objects in a databaseD that passFj , and
(3) its session frequency: the fraction f j of sessions that includeFj . In practice, the system knows only
approximations of these metrics, which are estimated over time. We make afilter independenceassumption:
an object passesFj with probability p j independent of all other filters.

Recall from Section 2.3 that a filter occurring in a query is very likely to be re-used within the same IDE
session. For simplicity, we use a single parameterr for this probability. For the traces in our experiments
in Section 4,r ≈ 0.4. We defined to be the time in milliseconds to retrieve an object from disk, ands to
be the number of objects in a screenful. In our implementations= 6. Finally, we defineε to be the time in
milliseconds to check if an object has been indexed and, if so, retrieve its pass/fail outcome.
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3.2.2 Analysis of the Schemes

Our analysis studies the impact of partial indexes on user stall time, our primary performance metric. The
stall time can be greatly effected by the degree of correlation in what objects are indexed by different partial
indexes. Because a partial index may index an arbitrary subset of the objects, there are an exponential
number ways in which indexes may overlap. This myriad of possibilities arises in practice given early
discard because different queries use different combinations of filters. Thus, to make the analysis tractable,
we focus on simplified scenarios where a partial index is either “effectively” complete or “effectively” empty
with respect to generating a screenful of objects for a given query. All effectively complete partial indexes
have indexed any object needed to generate the screenful, whereas all effectively empty partial indexes have
not indexed any object of use in generating the screenful. The key insights are still revealed when focusing
on these two scenarios.

Consider a queryQ = F1∧·· ·∧ F̀ , when there are effectively complete indexes onF1 throughFi and no
prior indexes (or only effectively empty ones) onFi+1 throughF̀ (for somei, 0≤ i ≤ `). Assume that the
filters are evaluated on an objectO in order, i.e., firstF1, nextF2 if O passesF1, nextF3 if O passes bothF1

andF2, and so on. Then the expected user stall time,U1, while generating a screenful of objects is:

U1 =
s· ε

p1 · · · p`
+ · · ·+ s· ε

pi · · · p`
+ (1)

s· (d+ ti+1)
pi+1 · · · p`

+
s· ti+2

pi+2 · · · p`
+ · · ·+ s· t`

p`

Intuitively, Equation 1 reveals that we expect to accesssp1···p`
objects in order to finds that satisfyQ. For

example, if` = 2, p1 = 1
3 andp2 = 1

2 then on average,F1 passes every third object and of these,F2 passes
every other object; thus, we expect to access1

p1p2
= 6 objects in order to find the next object satisfyingQ.

We applyF1 to all these s
p1···p`

objects (at costε per object). Because of early discard, subsequent filters are
applied to fewer and fewer objects. (In our example,F2 is applied to only s

p2
objects, one third as many as

F1.) There are s
pi+1···p`

objects that pass all indexed filters; these objects must be fetched from disk (at cost
d). Finally, each non-indexed filterFj , j = i +1, . . . , `, applied to an object incurs costt j .

In the remainder of the section, we present four important rules of thumb arising from Equation 1. Proofs
of these results appear in the full paper.

Rule 1 To minimize the user stall time for generating the current screenful, first retrieve the outcome of
indexed filters in non-decreasing order of pj and then evaluate non-indexed filters in non-decreasing order
of t j

1−p j
.

The analysis in Equation 1 assumes that the filters are applied in order. Note, however, that because the
results of the query are independent of the order in which the filters are applied to an object, the system is
free to optimize this order. Rule 1 indicates the optimal approach. Intuitively, one might assume that higher
pass-rates filters would be preferred because the goal is to quickly find a screenful of objects to return.
However, as long as indexed filters are ordered before non-indexed filters, the number of objects fetched
from disk ( s

pi+1···p`
on average) in finding a screenful to return is independent of the filter order. Thus, the

system should favor filters that discard objects at a faster rate, saving the overheads of evaluating other filters
(or retrieving the outcomes if the filter is indexed) on the same objects, as confirmed by Equation 1.

Rule 2 The best indexes to have on hand for a query Q are for filters in Q that have low pass-rates and slow
execution times. However, the most important aspect is that the indexed filter occurs in Q.
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Rule 3 Because the probability r of intra-session re-use is orders of magnitude higher than the probability
f j of inter-session re-use for all but the topmost popular filters, schemes that focus on the filters in the current
query (Current Query Work-Ahead and Dimension Switching) are good choices for minimizing stall times:
they are effective both when the user requests the next screenful and when she instead refines the query.

Rule 4 As long as there remain unindexed highly-popular filters, indexing them is worthwhile. Usingf j

p j
(d+

t j) as the priority metric in the Efficiency-based scheme is a good choice for inter-session indexing (assuming
we have good estimates for fj , pj and tj ).

Together, these findings support Self-Balancing as a preferred scheme among the five proposed schemes.

3.3 Implementation Considerations

We conclude this section of just-in-time indexing schemes by discussing two important implementation
considerations: what type of index to use and how to structure the index catalog. Although in many respects,
just-in-time indexing is agnostic to these considerations, our design is particularly efficient in time and space.

Index Type and Implications. The query workload provides a natural choice for what type of index to
use. Namely, given that our queries are conjunctions of pass/fail filters, we use bitmapped indexes for each
filter. Note that the distinct values in our bitmapped index arepass, fail andunknown. Theunknownvalue
is necessary because our indexes are partial: at any point in time, we have evaluated the filter on only some
subset of the objects.

Bitmapped indexes often allow for NULL values (e.g., in Oracle), so one may consider using NULL to
represent the unknown state. However, a better approach is to build a bitmapped index on the valuespass
andfail, i.e., an index having a bitmap for which objects pass and a bitmap for which objects fail. Objects
that areunknownare hence represented only implicitly by their omission from the other two bitmaps. In
this way, inserting new objects into a database incursno maintenance overhead: such objects are implicitly
tagged asunknownwith respect to all existing indexes. This is in sharp contrast to traditional settings, where
bitmapped indexes must be kept up-to-date, incurring high overheads.

Because a typical object is 100KB–10MB, the size of each (partial) bitmapped index for a filter is 6-8
orders of magnitude smaller than the total size of all the objects that have passed or failed the filter. Thus,
as discussed in Section 2.3, a large number of indexes can be supported, each with very fast access time
relative to the time to fetch the objects from disk. Moreover, their small space and lack of maintenance costs
means that we can be exceedingly lazy about discarding old indexes.

Catalog Structure. The catalog of all existing indexes is stored as an inverted index. Because of the large
number of potential filters, many of which are ad hoc, we usethe hash of the filter descriptionas the key for
the inverted index. By definition, the filter description completely characterizes the filter. For example, it
may be (i) the name and version number of a predefined filter template together with any arguments, (ii) the
name, version number, histogram, and other arguments for a user-defined color-selector or texture-selector
filter, or (iii) the code binary for a custom code filter.

In summary, our bitmapped index approach and catalog structure enable the system to support up to
tens of thousands of partial indexes, with very fast access times (orders of magnitude faster than accessing
the objects), low space overhead (< 1% overhead for all the indexes together) and no required maintenance
costs.
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Figure 3: Diamond System Architecture

4 Evaluation

How much benefit does just-in-time indexing provide for IDE workloads?This is the central question ad-
dressed by our evaluation. To answer this question, we first examine IDE workloads to determine the extent
of iterative query refinement and the computational demands of user queries. We then study the effectiveness
of just-in-time indexing in reducing user stall time and overall search session time.

4.1 Implementation

We have extended the Diamond architecture described by Huston et al. [12] to support just-in-time indexing.
Figure 3 presents an overview of Diamond. Data objects are distributed over a collection of servers (right
side of the figure). A user interacts with a search application running on a client (left side of the figure).
The search application issues filter-based search queries calledsearchletson behalf of the user. Diamond
sends the searchlet code to each server and executes it there. Because objects can be tested independently,
searchlets run concurrently on servers. This enables Diamond to scale gracefully with the number of servers
in a large distributed repository. Servers execute independently and asychronously from one another, co-
ordinating only with client. Objects that pass the searchlet filters are transferred back to the client via an
optimized network protocol (labelled “Associative DMA” in Figure 3). At each server, Diamond determines
the best evaluation order for filters and performs dynamic load balancing between the client and the servers
to increase search efficiency. Diamond also caches filter outcomes at each server so that results from earlier
searches can be re-used.

Our implementation of just-in-time indexing preserves the independence of Diamond servers. Each
server maintains independent partial indexes for the data objects stored on that server. Based on consider-
ations of implementation complexity and likely benefit, our implementation corresponds to the Popularity-
Based variant of the Self-Balancing scheme discussed in Section 3. This variant requires its three component
schemes to be implemented: Current Query Work-Ahead, Popularity-Based and Dimension-Switching.

Implementing the Current Query Work-Ahead scheme in Diamond is straightforward. By default, Dia-
mond can be instructed to simply continue executing the filters in the current search. These results are used
to populate the partial index at each server. To implement the Popularity-Based scheme, we extend Diamond
to have each server track the frequency of the filters executed (i.e., thef j ’s). During idle periods, each server
sorts the filters by theirf j ’s and then populates a partial index with results from the most popular filter. If
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the index for this filter gets completed, the server node begins indexing the next most popular filter, and
so on. We implement the Dimension Switching scheme by modifying Diamond to always run the popular
filters that appear in the current search, regardless of the outcome of any filter on the given object. Thus, we
ensure that effort spent on partial indexing is relevant to the current user.

4.2 Experimental Setup

The specific Diamond application used in our experiments is the SnapFind digital photograph search ap-
plication [11]. Figure 4 shows a SnapFind screenshot. SnapFind supports a variety of predefined filters,
such as region-based color histograms, texture filters, face detection and image differencing. Users can also
customize color and texture filters by providing sample patches. This enables creation of specialized filters
to match well-known semantic concepts such as “grass”, “sky” and “brick” or distinctive features such as
Cruise-ship-pool-tile that are specific to a search session.

The hardware setup for our experiments consists of four identical servers connected to the client via a
1 Gbps Ethernet switch. Each server has a 1.2 GHz IntelR© PentiumR© III processor with 512 MB RAM
and a 73 GB SCSI disk. The client is a 1.8 GHz IntelR© Pentium-MR© processor. All systems run Ubuntu
Linux 6.06.

Our experiments instantiate the parameters of the just-in-time indexing schemes as follows. For Dimen-
sion Switching, we consider a filter to be popular if it has been used at least once prior to the start of the
current session. For Self-Balancing, we switch from Current Query Work-Ahead to Dimension Switching
once the client has a next screenful of objects ready to be delivered (i.e.,τ1 = s = 6). The client signals
the servers to switch schemes. Later, if a server encounters a backlog at the client it will switch to the
Popularity-Based scheme. Once the backlog clears, the server node returns to the Dimension Switching
scheme, unless signalled by the client to revert to Current Query Work-Ahead. Thus, although Section 3
presents each just-in-time indexing scheme as operating in a centralized fashion over the entire database, in
fact, the schemes operate in a more efficient, decentralized fashion over each server’s slice of the database.

4.3 Experimental Methodology

We captured the activity of users performing interactive search tasks through run-time tracing of Diamond
and SnapFind. By analyzing the traces for query structure and filter usage, we determine the extent of
iterative refinement and the characteristics of individual filter workloads.

To compare the performance of different indexing schemes, we usedtrace replayto reproduce captured
user workloads on the live system. Trace replay allows control of experimental conditions while preserving
both workload realism and replicability. The traces were captured at the level of the Searchlet API, and
replayed using a benchmarking tool.

We captured traces of eight users performing five different search tasks over sets of digital photographs.
The search scenarios are described below and summarized in Table 4. The first two searches emphasize
recall (fraction of relevant objects retrieved against the number of relevant objects in the database), implying
an exhaustive search. The last three favor precision (fraction of relevant objects retrieved against the number
of retrieved objects). Note that some of the search scenarios are vague by nature, and have many degrees of
freedom. Users did not have to find the same images; only those that fit the search description.

S1: The bitter breakup.Your brother has just broken up with his girlfriend. He is due to arrive in five
minutes and you realize that several pictures of his ex are in among a collection of photos you were
hoping to show him. You want to remove as many pictures of his ex as you can before he arrives. Users
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Figure 4:Screenshot of SnapFind

Table 4:Search Scenarios
Scenario Type Description ImagesDesired

S1 recall Find all images of a specific
person in five minutes.

2582 8

S2 recall Find five instances of theft in a
simulated surveillance image
dataset.

1072 6

S3 precision Find five pictures of
sailboats/windsurfers.

32,796 131

S4 precision Find three pictures of urban
outdoor scenes.

32,796 4,263

S5 precision Find ten pictures from a
colleague’s wedding.

32,796 67
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were given a picture of a well-known media personality to serve as the ex. The database contained
eight photos of the ex. The search application does not have face recognition capability, so the user is
the face recognizer for this search.

S2: Who took the goodies?Someone is stealing your jars of honey, but most of the surveillance footage is
really boring. Can you find the culprits? Users were given a database of unsorted images captured by
a stationary surveillance camera pointed at a counter on which there were initially five jars of honey.
The goal was to find images showing suspects stealing a jar of honey.

S3: Get me a Sailboat!You work for an ad agency and need to urgently find five images of sail-
boats/windsurfers to meet a deadline. Unfortunately, your image database has 32,976 images. What
will you do? Users were given a large corpus of photos gathered from professional image collections
and personal photographs. Their goal was to retrieve five photos containing at least one sailboat or
windsurfer.

S4: Urban scenes.You are looking for a suitable piece of artwork for your office from an on-line art store.
You have decided on an outdoor urban scene theme and your task is to find three such images. This
task was very similar to the previous one, except that the semantic concept required analyzing the
entire image rather than a specific object.

S5: Wedding photos.Your colleague was married recently, but you only managed to get one photo. For-
tunately, your friends share their photo collections with you, so you could copy some of their photos
of the event — if you can find them. Your goal is to find ten photos of the wedding in this large col-
lection, and you may use elements from the inital photo as examples in constructing searches. Users
were given a large set of photos and encouraged to use example-based queries to search for the target
images.

4.4 Results: Query Characteristics

Table 5 shows the number of queries performed by each user to complete each search task. There was
considerable variability in the number of queries, ranging from 1 to 22 per task, with an average of 6
queries. Table 6 shows the number of distinct filters, or query terms, used for each search. The numbers
in parentheses indicate how many of these were predefined filters. The users defined a total of 105 distinct
filters, and used 9 of 16 pre-defined filters. Again, the number of filters defined per session varied widely,
from 0 to 13, with an average of 4 filters. Search S4, finding urban scenes, was sufficiently general that it did
not require many filters. One determined user completed the task without defining any filters. Predefined
filters were used primarily in S3 (shades of blue) and S5 (black and white). As many as four distinct
predefined filters were used in a single query.

Figure 5 shows the extent of filter reuse for the entire collection of searches. The graph is interpreted
as follows: for each point on thex-axis, the primaryy-value (left side) shows the number of user-defined
filters used at mostx times over all queries or sessions. The secondary y-axis (right side) shows the number
of predefined filters used at mostx times over all queries or sessions. The graph shows that 40% of filters
are reused. One filter, for face detection, was used 66 times (i.e., it appeared in 27% of the queries). Nine
pre-defined filters were used, and one (for the color white) was used in 15 queries. The session curves
show the extent of filter reuse across search sessions. The graph shows that the vast majority of filters are
used in a single session. Four user-defined filters were used across sessions. These were the filters for face
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Table 5:Number of Queries per Session

S1 S2 S3 S4 S5
User 1 7 7 7 2 6
User 2 6 3 4 2 9
User 3 3 14 4 3 4
User 4 3 3 6 3 2
User 5 3 7 5 4 5
User 6 16 10 5 1 11
User 7 10 3 4 5 2
User 8 14 22 5 1 12

Table 6:Number of Distinct Filters per Session. In parentheses, how many were predefined filters.

S1 S2 S3 S4 S5
User 1 6 (1) 5 (0) 6 (4) 2 (2) 4 (0)
User 2 4 (0) 3 (0) 2 (0) 2 (1) 6 (2)
User 3 1 (0) 7 (0) 4 (3) 1 (0) 4 (3)
User 4 3 (0) 2 (0) 4 (4) 1 (0) 1 (0)
User 5 2 (0) 9 (0) 3 (1) 1 (1) 3 (0)
User 6 11 (0) 6 (0) 5 (2) 1 (1) 7 (2)
User 7 4 (0) 2 (0) 3 (2) 3 (0) 1 (0)
User 8 13 (0) 10 (0) 2 (1) 0 (0) 9 (2)
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Table 7:Average Filter Execution Time, by Type

Filter or Execution Time (ms)
Filter Template Minimum Maximum
Color 0.5 2.7
Color (stride=1) 202.2 307.1
Texture 58.7 72.2
Image difference 5.9 8.6
Face detection (front) 492.0 1286.4
Face detection (profile) 625.8 1865.3
Body detection (full) 324.6 1153.5
Body detection (upper) 744.8 2529.1
Body detection (lower) 381.2 n/a

detection — one for frontal face views and one for profiles, upper body detection, and full body detection.
Pre-defined filters tended to be used across multiple sessions. Values between 25 and 65 on thex-axis are
omitted for brevity as they do not change.

Figure 7 shows the source of filter reuse for each search session. The search sessions are grouped by task;
within a group users 1–8 are shown left to right. The light-colored section of the bar shows the number of
filters that were defined and used only within the session. The crosshatched section of the bar shows filters
that were defined in some other session. In other words, it shows the extent of cross-session reuse. The
dark-colored section of the bar shows reuse within the search session. Most sessions (93%) exhibited some
kind of reuse. The type and extent of reuse varied widely between searches. To speed up these searches, an
indexing scheme must take advantage of both intra-session and inter-session reuse.

4.5 Results: Filter Characteristics

This section reports on selectivity and performance of the observed filters in isolation. Pass rates for filters
are shown in Figure 6 (note the log scale on the X axis). The graph is read as follows: for a given pass rate
x, they value is the percentage of filters used whose pass rates were less thanx. The graph shows that most
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filters were selective. Half of the defined filters discarded over 96% of objects, and nearly one quarter of the
filters discarded over 99% of objects.

The average filter execution time varied over three orders of magnitude depending on filter type, as
shown in Table 7. Color and texture filters are defined by example. The execution time of color and texture
filters increases with the number of examples. As many as nine examples were used. The ranges in Table 7
represent the lowest and highest average filter execution time for the color and texture filters defined. Color
filters also varied based on stride length in pixels. All but three filters were defined with the default stride
length of 16 pixels; the remaining were defined with a stride length of 1. Since the stride length applies in
both image dimensions, the execution time varies as the square of the stride length.

Image differencing filters were used exclusively in search task S2 to eliminate background surveillance
camera images. The ranges shown are over the average execution times for all image difference filters
defined. The most expensive filters were those for frontal face, profile face and upper body detection, which
are based on the OpenCV computer vision libary. The ranges shown for each filter represent the performance
over all three of the image repositories listed in Table 4.

4.6 Results: Just-in-Time Indexing

Using trace replay, we compare the performance of just-in-time indexing against the worst and best case
performance for each traced workload: no indexing andclairvoyant indexing. In clairvoyant indexing,
partial indexes exist for exactly the filters and objects needed by the traced workload. For the just-in-time
indexing case, each workload begins with the partial indexes created as a result of the other users performing
the same search task. We assume pessimistically that no idle time occurred between prior sessions. Thus
only the idle periods that occur within prior sessions are available for just-in-time indexing.

Figure 8 shows the average user stall time for each traced workload and indexing scheme. Just-in-time
indexing improved user stall times compared to no indexing in 80% of the searches. In 30% of the searches
the improvement was a factor of three or more. In 12% of the searches, the performance improvement was
optimal - that is, equivalent to that of clairvoyant indexing. Just-in-time indexing provided no improvement
in average user stall time for 15% of the searches. However, for 2/3 of those searches, even clairvoyant
indexing provided no performance benefit. For the remaining 5% of the searches, just-in-time indexing in-
creased average user stall time slightly, by 0.7 seconds in the worst case of U7 performing S1. This anomaly
appears to be an artifact of the implementation of filter result caching in Diamond. We are investigating the
anomaly and approaches for addressing it.

Figure 9 shows the end-to-end session time for the workloads and indexing schemes. Just-in-time in-
dexing improved overall session time compared to no indexing in 70% of the searches, in some cases by a
factor of two or more. In 25% of the searches, the session time of searches using just-in-time indexing was
equivalent to that of clairvoyant indexing. For all except two of the remaining searches even clairvoyant
indexing did not improve session time. As with user stall time, just-in-time indexing increased session time
slightly for U7 performing S1.

The workloads that benefitted the most from just-in-time indexing were those with filter reuse, specifi-
cally inter-session filter reuse. Just-in-time indexing was able to take advantage of the popularity of the face
detection filters used in searches S1, S2, and S5. Because face detection is also costly, the resulting indexes
yielded significant performance improvement.
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5 Conclusion

This paper proposes the concept of just-in-time indexing for interactive searches in large repositories of
complex data. We distinguish this idea from traditional indexing in two key respects. First, just-in-time
indexing is highly reactive to the current query session, building new indexes during idle periods of the
search. Second, it typically creates an index only over a small, adaptive subset of the data. We explore sev-
eral schemes for generating these partial indexes and demonstrate that just-in-time indexing can significantly
reduce the user stall time on a variety of interactive data exploration tasks.
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