
No-Compromise Caching of Dynamic Content
from Relational Databases

Niraj Tolia∗ and M. Satyanarayanan
August 2006

CMU-CS-06-146

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

This research was supported by the National Science Foundation (NSF) under grant number CCR-0205266. Any
opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF or Carnegie Mellon University. All unidentified trademarks mentioned in the
paper are properties of their respective owners.



Keywords: content addressable storage, relational database systems, database caching, mid-
tier caching, wide area networks, bandwidth optimization, network latency, network delay, network
bandwidth, multi-tier architecture, structural similarity detection, rabin fingerprinting, RUBBoS,
RUBiS



Abstract

With the growing use of dynamic web content generated from relational databases, traditional
caching solutions for throughput and latency improvements are ineffective. We describe a middle-
ware layer called Ganesh that reduces the volume of data transmitted without semantic interpre-
tation of queries or results. It achieves this reduction through the use of cryptographic hashing to
detect similarities with previous results. These benefits do not require any compromise of the strict
consistency semantics provided by the back-end database. Further, Ganesh does not require mod-
ifications to applications, web servers, or database servers, and works with closed-source applica-
tions and databases. Using two benchmarks representative of dynamic web sites, measurements of
our prototype show that it can increase end-to-end throughput by as much as twofold for non-data
intensive applications and by as much as tenfold for data intensive ones.





1 Introduction
An increasing fraction of web content is dynamically generated from back-end relational databases.
Even when database content remains unchanged, temporal locality of access cannot be exploited
because dynamic content is not cacheable by web browsers or by intermediate caching servers such
as Akamai mirrors [1]. In a multi-tiered architecture, each web request can stress the WAN link
between the web server and the database. This causes user experience to be highly variable because
there is no caching to insulate the client from bursty loads. Previous attempts in caching dynamic
database content have generally weakened transactional semantics [3, 5] or required application
modifications [20, 44].

We report on a new solution that takes the form of a database-agnostic middleware layer called
Ganesh. Ganesh makes no effort to semantically interpret the contents of queries or their results.
Instead, it relies exclusively on cryptographic hashing to detect similarities with previous results.
Hash-based similarity detection has seen increasing use in distributed file systems [30, 47, 48] for
improving performance on low-bandwidth networks. However, these techniques have not been
used for relational databases. Unlike previous approaches that use generic methods to detect sim-
ilarity, Ganesh exploits the structure of relational database results to yield superior performance
improvement.

One faces at least three challenges in applying hash-based similarity detection to back-end
databases. First, previous work in this space has traditionally viewed storage content as uninter-
preted bags of bits with no internal structure. This allows hash-based techniques to operate on long,
contiguous runs of data for maximum effectiveness. In contrast, relational databases have rich in-
ternal structure that may not be as amenable to hash-based similarity detection. Second, relational
databases have very tight integrity and consistency constraints that must not be compromised by
the use of hash-based techniques. Third, the source code of commercial databases is typically not
available. This is in contrast to previous work which presumed availability of source code.

Our experiments show that Ganesh, while conceptually simple, can improve performance sig-
nificantly at bandwidths representative of today’s commercial Internet. On benchmarks model-
ing multi-tiered web applications, the throughput improvement was as high as tenfold for data-
intensive workloads. For workloads that were not data-intensive, throughput improvements of up
to twofold were observed. Even when bandwidth was not a constraint, Ganesh had low overhead
and did not hurt performance. Our experiments also confirm that exploiting the structure present
in database results is crucial to this performance improvement.

We begin with background on multi-tier web architectures and hash-based systems. We then
present a description of Ganesh’s design and implementation in Section 3. Next, we report on
our evaluation of Ganesh in Sections 4–7. We discuss related work in Section 8 and conclude in
Section 9.

1



Back-End Database 
Server

Front-End Web and
Application Servers

Figure 1: Multi-Tier Architecture

2 Background

2.1 Dynamic Content Generation
As the World Wide Web has grown, many web sites have decentralized their data and functionality
by pushing them to the edges of the Internet. Today, eBusiness systems often use a three-tiered
architecture consisting of a front-end web server, an application server, and a back-end database
server. Figure 1 illustrates this architecture. The first two tiers can be replicated close to a concen-
tration of clients at the edge of the Internet. This improves user experience by lowering end-to-end
latency and reducing exposure to backbone traffic congestion. It can also increase the availability
and scalability of web services.

Content that is generated dynamically from the back-end database cannot be cached in the
first two tiers. Replication of the database is not feasible either, because of the difficult task of
simultaneously providing strong consistency, availability, and tolerance to network partitions in a
distributed database system [10]. As a result, databases tend to be centralized to meet the strong
consistency requirements of many eBusiness applications such as banking, finance, and online
retailing [50]. Thus, the back-end database is usually located far from many sets of first and
second-tier nodes [4]. In the absence of both caching and replication, WAN bandwidth can easily
become a limiting factor in the performance and scalability of data-intensive applications.

2.2 Hash-Based Systems
Ganesh’s focus is on efficient transmission of results by discovering similarities with the results
of previous queries. As SQL queries can generate large results, hash-based techniques lend them-
selves well to the problem of efficiently transferring these large results across bandwidth con-
strained links.

The use of hash-based techniques to reduce the volume of data transmitted has emerged as a
common theme of many recent storage systems, as discussed in Section 8.2. These techniques rely
on some basic assumptions. Cryptographic hash functions are assumed to be collision-resistant. In
other words, it is computationally intractable to find two inputs that hash to the same output. The
functions are also assumed to be one-way; that is, finding an input that results in a specific output

2



is computationally infeasible. Menezes et al. [27] provide more details about these assumptions.
Trusting in the collision resistance of cryptographic hash functions, hash-based systems assume

that collisions do not occur. Hence, they are able to treat the hash of a data item as its unique iden-
tifier. A collection of data items effectively becomes content-addressable, allowing a small hash to
serve as a codeword for a much larger data item in permanent storage or network transmission.

The assumption that collisions are so rare as to be effectively non-existent has recently come
under fire [22]. A hash function may prove over time to be less collision-resistant than expected.
However, as explained by Black [8], we believe that these issues do not form a concern for Ganesh.
All communication is between trusted parts of the system and an adversary has no way to force
Ganesh to accept any bogus data. Further, Ganesh does not depend critically on any specific hash
function. While we currently use SHA-1 [42], replacing it with a different hash function would be
simple. There would be no impact on performance as stronger hash functions (e.g. SHA-256 [43])
only add a few extra bytes and the generated hashes are still orders of magnitude smaller than the
data items they represent. No re-hashing of permanent storage is required since Ganesh only uses
hashing on volatile data.

3 Design and Implementation
Ganesh exploits redundancy in the result stream to avoid transmitting result fragments that are
already present at the query site. Redundancy can arise naturally in many different ways. For
example, a query repeated after a certain interval may return a different result because of updates
to the database; however, there may be significant commonality in the two results. As another
example, a user who is refining a search may generate a sequence of queries with overlapping
results. When Ganesh detects redundancy, it suppresses transmission of the corresponding result
fragments. Instead, it transmits a much smaller digest of those fragments and lets the query site
reconstruct the result through hash lookup in a cache of previous results. In effect, Ganesh uses
computation at the edges to reduce Internet communication.

Our detailed description of Ganesh focuses on four aspects. We first explain our approach
to detecting similarity in query results. Next, we discuss how the Ganesh architecture makes it
completely invisible to all components of a multi-tier system. We then describe Ganesh’s proxy-
based approach and the dataflow for detecting similarity.

3.1 Detecting Similarity
One of the key design decisions in Ganesh is how similarity is detected. There are many potential
ways to decompose a result into fragments. The optimal way is, of course, the one that results
in the smallest possible object for transmission for a given query’s results. Finding this optimal
decomposition is a difficult problem because of the large space of possibilities and because the
optimal choice depends on many factors such as the contents of the query’s result, the history of
recent results, and the cache management algorithm used.

When an object is opaque, the use of Rabin fingerprints [11, 36] to detect common data be-
tween two objects has been successfully shown in the past by systems such as LBFS [30] and

3



Figure 2: Rabin Fingerprinting vs. Ganesh’s Chunking

CASPER [47]. Rabin fingerprinting uses a sliding window over the data to compute a rolling hash.
Assuming that the hash function is uniformly distributed, a chunk boundary is defined whenever
the lower order bits of the hash value equal some predetermined value. The number of lower order
bits used defines the average chunk size. These sub-divided chunks of the object become the unit
of comparison for detecting similarity between different objects.

As the locations of boundaries found by using Rabin fingerprints is stochastically determined,
they usually fail to align with any structural properties of the underlying data. This is usually not a
problem for storage systems that store unstructured data. However, while the algorithm deals well
with in-place updates, insertions and deletions, it performs poorly in the presence of any reordering
of data.

Figure 2 shows an example where two results, A and B, consisting of three rows, have the same
data but have different sort attributes. In the extreme case, Rabin fingerprinting might be unable
to find any similar data due to the way it detects chunk boundaries. Fortunately, Ganesh can use
domain specific knowledge for more precise boundary detection. The information we exploit is that
a query’s result reflects the structure of a relational database where all data is organized as tables
and rows. It is therefore simple to check for similarity with previous results at two granularities:
first the entire result, and then individual rows. The end of a row in a result serves as a natural
chunk boundary. It is important to note that using the tabular structure in results only involves
shallow interpretation of the data. Ganesh does not perform any deeper semantic interpretation
such as understanding data types, result schema, or integrity constraints.

Tuning Rabin fingerprinting for a workload can also be difficult. If the average chunk size is
too large, chunks can span multiple result rows. However, selecting a smaller average chunk size
increases the amount of metadata required to the describe the results. This, in turn, would decrease
the savings obtained via its use. Rabin fingerprinting also needs two computationally-expensive
passes over the data: once to determine chunk boundaries and one again to generate cryptographic
hashes for the chunks. Ganesh only needs a single pass for hash generation as the chunk boundaries
are provided by the data’s natural structure.

The performance comparison in Section 6 shows that Ganesh’s row-based algorithm outper-
forms Rabin fingerprinting. Given that previous work has already shown that Rabin fingerprinting
performs better than gzip [30], we do not compare Ganesh to compression algorithms in this paper.

4



Client Database

Web and 
Application Server
Native JDBC Driver WAN

(a) Native Architecture

Client

Database

Ganesh Proxy
Native JDBC Driver

WAN

Web and 
Application Server

Ganesh JDBC Driver

(b) Ganesh’s Interposition-based Architecture

Figure 3: Native vs. Ganesh Architecture

3.2 Transparency
The key factor influencing our design was the need for Ganesh to be completely transparent to all
components of a typical eBusiness system: web servers, application servers, and database servers.
Without this, Ganesh stands little chance of having a significant real-world impact. Requiring
modifications to any of the above components would raise the barrier for entry of Ganesh into an
existing system, and thus reduce its chances of adoption. Preserving transparency is simplified
by the fact that Ganesh is purely a performance enhancement, not a functionality or usability
enhancement.

We chose agent interposition [23] as the architectural approach to realizing our goal. This
approach relies on the existence of a compact programming interface that is already widely used
by target software. It also relies on a mechanism to easily add new code without disrupting existing
module structure.

These conditions are easily met in our context because of the popularity of Java as the program-
ming language for eBusiness systems. The Java Database Connectivity (JDBC) API [39] allows
Java applications to access a wide variety of databases and even other tabular data repositories such
as flat files. Access to these data sources is provided by JDBC drivers that translate between the
JDBC API and the database communication mechanism. Figure 3(a) shows how JDBC is typically
used in an application.

While JDBC drivers can be implemented in many ways (including use of JDBC to Open
Database Connectivity (ODBC) bridges), all major database vendors support pure Java drivers
today. As the JDBC interface is standardized, one can substitute one JDBC driver for another
without application modifications. The JDBC driver thus becomes the natural module to exploit
for code interposition. Java’s support for Remote Method Invocation (RMI) completes the picture

5



by simplifying code placement.
Figure 3(b) shows how we interpose Ganesh. At the web and application server end of the

WAN, we replace the JDBC driver with a Ganesh JDBC driver that presents the same interface
to the application. The Ganesh driver maintains an in-memory cache of result fragments from
previous queries and performs reassembly of results. At the database end of the WAN, we add
a new process called the Ganesh proxy. This proxy, which can be shared by multiple front-end
nodes, consists of two parts: code to detect similarity in result fragments and the original native
JDBC driver that communicates with the database. The use of a proxy at the database end makes
Ganesh database-agnostic and simplifies prototyping and experimentation. Ganesh is thus able to
work with a wide range of databases and applications, requiring no modifications to either.

3.3 Proxy-Based Caching
The native JDBC driver shown in Figure 3(a) is a lightweight code component supplied by the
database vendor. Its main function is to mediate communication between the application and the
remote database. It forwards queries, buffers entire results, and responds to application requests to
view parts of results.

The Ganesh JDBC driver shown in Figure 3(b) presents the application with an interface identi-
cal to that provided by the native driver. It provides the ability to reconstruct results from compact
hash-based descriptions sent by the proxy. To perform this reconstruction, the driver maintains
an in-memory cache of recently-received results. This cache is only used as a source of result
fragments in reconstructing results. No attempt is made by the Ganesh driver or proxy to track
database updates. The lack of cache consistency does not hurt correctness as a description of the
results is always fetched from the proxy — at worst, there will be no performance benefit from
using Ganesh. Stale data will simply be paged out of the cache over time.

The Ganesh proxy interacts with the database via the native JDBC driver, which remains un-
changed between Figures 3(a) and (b). The database is thus completely unaware of the existence
of the proxy. The proxy does not examine any queries received from the Ganesh driver but passes
them to the native driver. Instead, the proxy is responsible for inspecting database output received
from the native driver, detecting similar results, and generating hash-based encodings of these
results whenever enough similarity is found.

To generate a hash-based encoding, the proxy must be aware of what result fragments are
available in the Ganesh driver’s cache. One approach is to be optimistic, and to assume that all
result fragments are available. This will result in the smallest possible initial transmission of a
result. However, in cases where there is little overlap with previous results, the Ganesh driver will
have to make many calls to the proxy during reconstruction to fetch missing result fragments. To
avoid this situation, the proxy loosely tracks the state of the Ganesh driver’s cache. Since both
components are under our control, it is relatively simple to do this without resorting to gray-box
techniques [7] or explicit communication for maintaining cache coherence. Instead, the proxy
simulates the Ganesh driver’s cache management algorithm and uses this to maintain a list of
hashes for which the Ganesh driver is likely to possess the result fragments. In case of mistracking,
there will be no loss of correctness but there will be extra round-trip delays to fetch the missing
fragments. If the client detects loss of synchronization with the proxy, it can ask the proxy to reset

6



Object Output Stream

Convert ResultSet

Object Input Stream

Convert ResultSet

All Data

Recipe 
ResultSet

All Data

ResultSet

Network

Ganesh Proxy Ganesh JDBC Driver

Result
Set

Recipe 
Result 

Set

Yes
Yes

No

No

G
anesh Input S

tream

G
anesh O

utput S
tream

Figure 4: Dataflow for Result Handling

the state shared between them. Also note that the proxy does not need to keep the result fragments
themselves, only their hashes. This allows the proxy to remain scalable even when it is shared by
many front-end nodes.

3.4 Encoding and Decoding Results
The Ganesh proxy receives database output as Java objects from the native JDBC driver. It exam-
ines this output to see if a Java object of type ResultSet is present. Java uses this data type to
store results of database queries. If a ResultSet object is found, it is shrunk as discussed below.
All other Java objects are passed through unmodified.

The proxy converts ResultSet objects into objects of a new type called RecipeResultSet.
We use the term “recipe” for this compact description of a database result because of its similarity
to a file recipe in the CASPER file system [47]. The conversion replaces each result fragment that
is likely to be present in the Ganesh driver’s cache by a SHA-1 hash of that fragment. Previously
unseen result fragments are retained verbatim. The proxy also retains hashes for the new result
fragments as they will be present in the driver’s cache in the future. It should be noted that the
proxy only caches hashes for result fragments and does not cache recipes.

Based on the discussion in Section 3.1, we decided to allow the proxy to check for similarity at
the entire result and then the row level before constructing the RecipeResultSet. If the entire
result is predicted to be present in the Ganesh driver’s cache, the RecipeResultSet is simply a
single hash of the entire result. Otherwise, it contains hashes for those rows predicted to be present
in that cache; all other rows are retained verbatim. If the proxy estimates an overall space savings,
it will serialize1 and transmit the RecipeResultSet. Otherwise the original ResultSet is

1Serialization is the Java equivalent of marshaling.

7



Benchmark Dataset Details
500,000 Users

BBOARD 2.0 GB 12,000 Stories
3,298,000 Comments

1,000,000 Users
AUCTION 1.3 GB 34,000 Items

Table 1: Benchmark Dataset Details

transmitted.
A reverse transformation of RecipeResultSet objects into ResultSet objects is per-

formed by the Ganesh driver. Figure 4 illustrates ResultSet handling at both ends. Each SHA-1
hash found in a RecipeResultSet is looked up in the local cache of result fragments. On a
hit, the hash is replaced by the corresponding fragment. On a miss, the driver contacts the Ganesh
proxy to fetch the fragment. All previously unseen result fragments that were retained verbatim by
the proxy are hashed and added to the result cache.

There should be very few misses if the proxy has accurately tracked the Ganesh driver’s cache
state. A future optimization would be to batch the fetch of missing fragments. This would be
valuable when there are many small missing fragments in a high-latency WAN. Once the transfor-
mation is complete, the fully reconstructed ResultSet object is passed up to the application.

4 Experimental Validation
Three questions follow naturally from the goals and design of Ganesh:

• First, can performance can be improved significantly by exploiting similarity across database
results?

• Second, how important is Ganesh’s structural similarity detection relative to Rabin fingerprinting-
based similarity detecting?

• Third, is the overhead of Ganesh’s proxy-based design acceptable?

Our evaluation answers these question through controlled experiments with the Ganesh proto-
type. This section describes the benchmarks used, our evaluation procedure, and the experimental
setup. Results of the experiments are presented in Sections 5, 6, and 7.

4.1 Benchmarks
Our evaluation is based on two benchmarks [6] that have been widely used by other researchers
to evaluate various aspects of multi-tier and eBusiness architectures. Earlier work has used these
benchmarks to explore the performance of different architectures for serving dynamic content [13],

8



the evaluation of method-caching in multi-tier systems [33], and the development of recovery
techniques for Internet services [12]. The first benchmark, BBOARD, is modeled after Slashdot,
a technology-oriented news site. The second benchmark, AUCTION, is modeled after eBay, an
online auction site. Both benchmarks are maintained by the Java Middleware Open Benchmarking
(JMOB) group of the ObjectWeb Consortium [32], an international open source community hosted
by INRIA. In both benchmarks, most content is dynamically generated from information stored in
a database. Details of the datasets used can be found in Table 1. Sections 4.1.1 and 4.1.2 describe
these benchmarks in more detail.

4.1.1 The BBOARD Benchmark

The BBOARD benchmark, also known as RUBBoS (Rice University Bulletin Board System) [6],
models Slashdot, a popular technology-oriented web site. Slashdot aggregates links to news stories
and other topics of interest found elsewhere on the web. In addition to being a news aggregation
site, Slashdot also allows users to customize their view of the site. The site also serves as a bulletin
board by allowing users to comment on the posted stories in a threaded conversation form. It is
not uncommon for a story to gather hundreds of comments in a matter of hours. The BBOARD
benchmark is similar to the site and models the activities of a user, including read-only operations
such as browsing the stories of the day, browsing story categories, and viewing comments as well
as write operations such as new user registration, adding and moderating comments, and story
submission.

The benchmark consists of three different phases: a short warm-up phase, a runtime phase
representing the main body of the workload, and a short cool-down phase. In this paper we only
report results from the runtime phase. The warm-up phase is important in establishing dynamic
system state, but measurements from that phase are not significant for our evaluation. The cool-
down phase is solely for allowing the benchmark to shut down.

The warm-up, runtime, and cool-down phases are 2 minutes, 15 minutes, and 2 minutes re-
spectively. The number of simulated clients were 400, 800, 1200, and 1600. The benchmark is
available in a Java Servlets and PHP version and has different datasets; we evaluated Ganesh using
the Java Servlets version and the Expanded dataset.

The BBOARD benchmark defines two different workloads. The first, the Authoring mix, con-
sists of 70% read-only operations and 30% read-write operations. The second, the Browsing mix
contains only read-only operations and does not update the database.

4.1.2 The AUCTION Benchmark

The AUCTION benchmark, also known as RUBiS (Rice University Bidding System) [6], models
eBay, the online auction site. The eBay web site is used to buy and sell items via an auction format.
The main activities of a user include browsing, selling, or bidding for items. Modeling the activities
on this site, this benchmark includes read-only activities such as browsing items by category and
by region, as well as read-write activities such as bidding for items, buying and selling items, and
leaving feedback on completed transactions.

9



As with BBOARD, the benchmark consists of three different phases. The warm-up, runtime,
and cool-down phases for this experiment are 1 minute and 30 seconds, 15 minutes, and 1 minute
respectively. We tested Ganesh with four client configurations where the number of test clients was
set to 400, 800, 1200, and 1600. The benchmark is available in a Enterprise Java Bean (EJB), Java
Servlets, and PHP version and has different datasets; we evaluated Ganesh with the Java Servlets
version and the Expanded dataset.

The AUCTION benchmark defines two different workloads. The first, the Bidding mix, con-
sists of 70% read-only operations and 30% read-write operations. The second, the Browsing mix
contains only read-only operations and does not update the database.

4.2 Experimental Procedure
Both benchmarks involve a synthetic workload of clients accessing a web server. The number
of clients emulated is an experimental parameter. Each emulated client runs an instance of the
benchmark in its own thread, using a matrix to transition between different benchmark states. The
matrix defines a stochastic model with probabilities of transitioning between the different states
that represent typical user actions. An example transition is a user logging into the AUCTION
system and then deciding on whether to post an item for sale or bid on active auctions. Each
client also models user think time between requests. The think time is modeled as an exponential
distribution with a mean of 7 seconds.

We evaluate Ganesh along two axes: number of clients and WAN bandwidth. Higher loads are
especially useful in understanding Ganesh’s performance when the CPU or disk of the database
server or proxy is the limiting factor. A previous study has shown that approximately 50% of the
wide-area Internet bottlenecks observed had an available bandwidth under 10 Mb/s [2]. Based on
this work, we focus our evaluation on the WAN bandwidth of 5 Mb/s with 66 ms of round-trip
latency, representative of severely constrained network paths, and 20 Mb/s with 33 ms of round-
trip latency, representative of a moderately constrained network path. We also report Ganesh’s
performance at 100 Mb/s with no added round-trip latency. This bandwidth, representative of
an unconstrained network, is especially useful in revealing any potential overhead of Ganesh in
situations where WAN bandwidth is not the limiting factor. For each combination of number of
clients and WAN bandwidth, we measured results from the two configurations listed below:

• Native: This configuration corresponds to Figure 3(a). Native avoids Ganesh’s overhead in
using a proxy and performing Java object serialization.

• Ganesh: This configuration corresponds to Figure 3(b). For a given number of clients and
WAN bandwidth, comparing these results to the corresponding Native results gives the per-
formance benefit due to the Ganesh middleware system.

The metric used to quantify the improvement in throughput is the number of client requests
that can be serviced per second. The metric used to quantify Ganesh’s overhead is the average
response time for a client request. For all of the experiments, the Ganesh driver used by the

10



NetEm
Router Ganesh

Proxy
Clients Web and

Application Server
Database 

Server

Figure 5: Experimental Setup

application server used a cache size of 100,000 items2. The proxy was effective in tracking the
Ganesh driver’s cache state; for all of our experiments the miss rate on the driver never exceeded
0.7%.

4.3 Experimental Setup
The experimental setup used for the benchmarks can be seen in Figure 5. All machines were 3.2
GHz Pentium 4s (with Hyper-Threading enabled.) With the exception of the database server, all
machines had 2 GB of SDRAM and ran the Fedora Core Linux distribution. The database server
had 4 GB of SDRAM.

We used Apache’s Tomcat as both the application server that hosted the Java Servlets and the
web server. Both benchmarks used Java Servlets to generate the dynamic content. The database
server used the open source MySQL database. For the native JDBC drivers, we used the Connec-
tor/J drivers provided by MySQL. The application server used Sun’s Java Virtual Machine as the
runtime environment for the Java Servlets. The sysstat tool was used to monitor the CPU, network,
disk, and memory utilization on all machines.

The machines were connected by a switched gigabit Ethernet network. As shown in Figure 5,
the front-end web and application server was separated from the proxy and database server by a
NetEm router [21]. This router allowed us to control the bandwidth and latency settings on the
network. The NetEm router is a standard PC with two network cards running the Linux Traffic
Control and Network Emulation software. The bandwidth and latency constraints were only ap-
plied to the link between the application server and the database for the native case and between
the application server and the proxy for the Ganesh case. There is no communication between the
application server and the database with Ganesh as all data flows through the proxy. As our focus
was on the WAN link between the application server and the database, there were no constraints
on the link between the simulated test clients and the web server.

2Java does not provide a sizeof() operator to determine the memory footprint of an object. Java caches therefore
limit their size based on the number of objects. The maximum memory footprint of cache dumps taken at the end of
the experiments never exceeded 212 MB.

11



5 Throughput and Response Time
In this section, we address the first question raised in Section 4: Can performance can be improved
significantly by exploiting similarity across database results? To answer this question, we use
results from the BBOARD and AUCTION benchmarks. We use two metrics to quantify the perfor-
mance improvement obtainable through the use of Ganesh: throughput, from the perspective of the
web server, and average response time, from the perspective of the client. Throughput is measured
in terms of the number of client requests that can be serviced per second.

5.1 BBOARD Results and Analysis
5.1.1 Authoring Mix

Figures 6 (a) and (b) present the average number of requests serviced per second and the average
response time for these requests as perceived by the clients for BBOARD’s Authoring Mix.

As Figure 6 (a) shows, Native easily saturates the 5 Mb/s link. At 400 clients, the Native
solution delivers 29 requests/sec with an average response time of 8.3 seconds. Native’s throughput
drops with an increase in test clients as clients timeout due to congestion at the application server.
Usability studies have shown that response times above 10 seconds cause the user to move on to
other tasks [28, 51]. Based on these numbers, increasing the number of test clients makes the
Native system unusable. Ganesh at 5 Mb/s, however, delivers a twofold improvement with 400 test
clients and a fivefold improvement at 1200 clients. Ganesh’s performance drops slightly at 1200
and 1600 clients as the network is saturated. Compared to Native, Figure 6 (b) shows that Ganesh’s
response times are substantially lower with sub-second response times at 400 clients. Even at 1600
test clients, Ganesh’s average response time of 9.9 seconds allows the BBOARD system to remain
usable.

Figure 6 (a) also shows that for 400 and 800 test clients Ganesh at 5 Mb/s has the same through-
put and average response time as Native at 20 Mb/s. Only at 1200 and 1600 clients does Native at
20 Mb/s deliver higher throughput than Ganesh at 5 Mb/s.

Comparing both Ganesh and Native at 20 Mb/s, we see that Ganesh is no longer bandwidth
constrained and delivers up to a twofold improvement over Native at 1600 test clients. As Ganesh
does not saturate the network with higher test client configurations, at 1600 test clients, its average
response time is 0.1 seconds rather than Native’s 7.7 seconds.

As expected, there are no visible gains from Ganesh at the high bandwidth case of 100 Mb/s
where the network is no longer the bottleneck. Ganesh, however, still tracks Native in terms of
throughput.

5.1.2 Browsing Mix

Figures 6 (c) and (d) present the average number of requests serviced per second and the average
response time for these requests as perceived by the clients for BBOARD’s Browsing Mix.

Regardless of the test client configuration, Figure 6 (c) shows that Native’s throughput at 5
Mb/s is limited to 10 reqs/sec. Ganesh at 5 Mb/s with 400 test clients, delivers more than a sixfold

12



0

50

100

150

200

250

40
0

80
0

12
00

16
00 40

0

80
0

12
00

16
00 40

0

80
0

12
00

16
00

5 Mb/s 20 Mb/s 100 Mb/s
Test Clients

R
eq

ue
st

s 
/ s

ec

Native Ganesh

0.001

0.01

0.1

1

10

100

40
0

80
0

12
00

16
00 40

0
80

0
12

00
16

00 40
0

80
0

12
00

16
00

5 Mb/s 20 Mb/s 100 Mb/s
Test Clients

A
vg

. R
es

p.
 T

im
e 

(s
ec

)

Native Ganesh
Note Logscale

(a) Throughput: Authoring Mix (b) Response Time: Authoring Mix

0

50

100

150

200

250

40
0

80
0

12
00

16
00 40

0

80
0

12
00

16
00 40

0

80
0

12
00

16
00

5 Mb/s 20 Mb/s 100 Mb/s
Test Clients

R
eq

ue
st

s 
/ s

ec

Native Ganesh

0.001

0.01

0.1

1

10

100

40
0

80
0

12
00

16
00 40
0

80
0

12
00

16
00 40
0

80
0

12
00

16
00

5 Mb/s 20 Mb/s 100 Mb/s
Test Clients

A
vg

. R
es

p.
 T

im
e 

(s
ec

)

Native Ganesh
Note Logscale

(c) Throughput: Browsing Mix (d) Response Time: Browsing Mix

All results are the mean of three trials. The maximum standard deviation for throughput
and response time was 9.8% and 11.9% respectively of the corresponding mean.

Figure 6: BBOARD Benchmark - Throughput and Average Response Time

increase in throughput. The improvement increases to over a eleven-fold increase at 800 test clients
before Ganesh saturates the network. Further, Figure 6 (d) shows that Native’s average response
time of 35 seconds at 400 test clients make the system unusable. These high response times further
increase with the addition of test clients. Even with the 1600 test client configuration Ganesh
delivers an acceptable average response time of 8.2 seconds.

Due to the data-intensive nature of the Browsing mix, Ganesh at 5 Mb/s surprisingly performs
much better than Native at 20 Mb/s. Further, as shown in Figure 6 (d), while the average response
time for Native at 20 Mb/s is acceptable at 400 test clients, it is unusable with 800 test clients with
an average response time of 15.8 seconds. Like the 5 Mb/s case, this response time increases with
the addition of extra test clients.

Ganesh at 20 Mb/s and both Native and Ganesh at 100 Mb/s are not bandwidth limited. How-

13



0

50

100

150

200

250

40
0

80
0

12
00

16
00 40

0

80
0

12
00

16
00 40

0

80
0

12
00

16
00

5 Mb/s 20 Mb/s 100 Mb/s
Test Clients

R
eq

ue
st

s 
/ s

ec

Native Ganesh

0.001

0.01

0.1

1

10

100

40
0

80
0

12
00

16
00 40
0

80
0

12
00

16
00 40
0

80
0

12
00

16
00

5 Mb/s 20 Mb/s 100 Mb/s
Test Clients

A
vg

. R
es

p.
 T

im
e 

(s
ec

)

Native Ganesh
Note Logscale

(a) Throughput: Authoring Mix (b) Response Time: Authoring Mix

0

50

100

150

200

250

40
0

80
0

12
00

16
00 40
0

80
0

12
00

16
00 40
0

80
0

12
00

16
00

5 Mb/s 20 Mb/s 100 Mb/s
Test Clients

R
eq

ue
st

s 
/ s

ec

Native Ganesh

0.001

0.01

0.1

1

10

100

40
0

80
0

12
00

16
00 40

0
80

0
12

00
16

00 40
0

80
0

12
00

16
00

5 Mb/s 20 Mb/s 100 Mb/s
Test Clients

A
vg

. R
es

p.
 T

im
e 

(s
ec

)

Native Ganesh
Note Logscale

(c) Throughput: Browsing Mix (d) Response Time: Browsing Mix

All results are the mean of three trials. The maximum standard deviation for throughput
and response time was 7.2% and 11.5% respectively of the corresponding mean.

Figure 7: BBOARD Benchmark - Filter Variant - Throughput and Average Response Time

ever, performance plateaus out after 1200 test clients due to the database CPU being saturated.

5.1.3 Filter Variant

We were surprised by the Native performance from the BBOARD benchmark. At the bandwidth of 5
Mb/s, Native performance was lower than what we had expected. It turned out the benchmark code
that displays stories read all the comments associated with the particular story from the database
and only then did some post-processing to select the comments to be displayed. While this is
exactly the behavior of SlashCode, the code base behind the Slashdot web site, we decided to
modify the benchmark to perform some pre-filtering at the database. This modified benchmark,
named the Filter Variant, models a developer who applies optimizations at the SQL level to transfer
less data. The results from this benchmark are presented in Figure 7 and are briefly summarized

14



below.
For the Authoring mix, at 800 test clients at 5 Mb/s, Figure 7 (a) shows that Native’s throughput

increase by 85% when compared to the original benchmark while Ganesh’s improvement is smaller
at 15%. Native’s performance drops above 800 clients as the test clients time out due to high
response times. The most significant gain for Native is seen at 20 Mb/s. At 1600 test clients, when
compared to the original benchmark, Native sees a 73% improvement in throughput and a 77%
reduction in average response time. While Ganesh sees no improvement when compared to the
original, it still processes 19% more requests/sec than Native. Thus, while the optimizations were
more helpful to Native, Ganesh still delivers an improvement in performance.

For the Browsing mix, Figures 7 (c) and (d) show that Native again benefits at the bandwidth
of 20 Mb/s. When compared to the original benchmark, at 400 test clients, Native sees an 53%
throughput improvement and an 80% reduction in average response time. However, it still saturates
the network and the addition of extra clients only increases the average response time. While the
overall gain due to Ganesh at 20 Mb/s decreases, Figure 7 (c) shows that it can still deliver more
than a fourfold throughput improvement at 1600 test clients.

A side-effect of the benchmark optimization was that it decreased the load on the database CPU.
Therefore, when comparing Figure 6 (c) and Figure 7 (c), we see that Ganesh at 20 Mb/s as well
as Native and Ganesh at 100 Mb/s can deliver a higher throughput than the original benchmark.

5.2 AUCTION Results and Analysis
5.2.1 Bidding Mix

Figures 8 (a) and (b) present the average number of requests serviced per second and the average
response time for these requests as perceived by the clients for AUCTION’s Bidding Mix. As
mentioned earlier, the Bidding mix consists of a mixture of read and write operations.

The AUCTION benchmark is not as data intensive as BBOARD. Therefore, most of the gains are
observed at the lower bandwidth of 5 Mb/s. Figure 8 (a) shows that the increase in throughput due
to Ganesh ranges from 8% at 400 test clients to 18% with 1600 test clients. As seen in Figure 8 (b),
the average response times for Ganesh are significantly lower than Native ranging from a decrease
of 84% at 800 test clients to 88% at 1600 test clients.

Figure 8 (a) also shows that with a fourfold increase of bandwidth from 5 Mb/s to 20 Mb/s,
Native is no longer bandwidth constrained and there is no performance difference between Ganesh
and Native. With the higher test client configurations, we did observe that the bandwidth used by
Ganesh was lower than Native. Ganesh might still be useful in these non-constrained scenarios if
bandwidth is purchased on a metered basis. Similar results are seen for the 100 Mb/s scenario.

5.2.2 Browsing Mix

For AUCTION’s Browsing Mix, Figures 8 (c) and (d) present the average number of requests
serviced per second and the average response time for these requests as perceived by the clients.

Again, most of the gains are observed at lower bandwidths. At 5 Mb/s, Native and Ganesh
deliver similar throughput and response times with 400 test clients. While the throughput for both

15



0
50

100
150
200
250
300
350

40
0

80
0

12
00

16
00 40

0

80
0

12
00

16
00 40

0

80
0

12
00

16
00

5 Mb/s 20 Mb/s 100 Mb/s
Test Clients

R
eq

ue
st

s 
/ s

ec

Native Ganesh

0.001

0.01

0.1

1

10

40
0

80
0

12
00

16
00 40
0

80
0

12
00

16
00 40
0

80
0

12
00

16
00

5 Mb/s 20 Mb/s 100 Mb/s
Test Clients

A
vg

. R
es

p.
 T

im
e 

(s
ec

)

Native Ganesh
Note Logscale

(a) Throughput: Bidding Mix (b) Response Time: Bidding Mix

0
50

100
150
200
250
300
350

40
0

80
0

12
00

16
00 40
0

80
0

12
00

16
00 40
0

80
0

12
00

16
00

5 Mb/s 20 Mb/s 100 Mb/s
Test Clients

R
eq

ue
st

s 
/ s

ec

Native Ganesh

0.001

0.01

0.1

1

10

40
0

80
0

12
00

16
00 40

0
80

0
12

00
16

00 40
0

80
0

12
00

16
00

5 Mb/s 20 Mb/s 100 Mb/s
Test Clients

A
vg

. R
es

p.
 T

im
e 

(s
ec

)

Native Ganesh
Note Logscale

(c) Throughput: Browsing Mix (d) Response Time: Browsing Mix

All results are the mean of three trials. The maximum standard deviation for throughput
and response time was 2.2% and 11.8% respectively of the corresponding mean.

Figure 8: AUCTION Benchmark - Throughput and Average Response Time

remains the same at 800 test clients, Figure 8 (d) shows that Ganesh’s average response time is
62% lower than Native. Native saturates the link at 800 clients and adding extra test clients only
increases the average response time. Ganesh, regardless of the test client configuration, is not
bandwidth constrained and maintains the same response time. At 1600 test clients, Figure 8 (c)
shows that Ganesh’s throughput is almost twice that of Native.

At the higher bandwidths of 20 and 100 Mb/s, neither Ganesh nor Native is bandwidth limited
and deliver equivalent throughput and response times.

16



Benchmark Orig. Size Ganesh Size Rabin Size
SelectSort1 223.6 MB 5.4 MB 219.3 MB
SelectSort2 223.6 MB 5.4 MB 223.6 MB

Table 2: Similarity Microbenchmarks

6 Structural vs. Rabin Similarity
In this section, we address the second question raised in Section 4: How important is Ganesh’s
structural similarity detection relative to Rabin fingerprinting-based similarity detecting? To an-
swer this question, we used microbenchmarks and the BBOARD and AUCTION benchmarks. As
Ganesh always performed better than Rabin fingerprinting, we only present a subset of the results
here in the interests of brevity.

6.1 Microbenchmarks
Two microbenchmarks show an example of the effects of data reordering on Rabin fingerprinting
algorithm. In the first micro-benchmark, SelectSort1, a query with a specified sort order selects
223.6 MB of data spread over approximately 280 K rows. The query is then repeated with a
different sort attribute. While the same number of rows and the same data is returned, the order of
rows is different. In such a scenario, one would expect a large amount of similarity to be detected
between both results. As Table 2 shows, Ganesh’s row-based algorithm achieves a 97.6% reduction
while the Rabin fingerprinting algorithm, with the average chunk size parameter set to 4 KB, only
achieves a 1% reduction. The reason, as shown earlier in Figure 2, is that with Rabin fingerprinting,
the spans of data between two consecutive boundaries usually cross row boundaries. With the order
of the rows changing in the second result and the Rabin fingerprints now spanning different rows,
the algorithm is unable to detect significant similarity. The small gain seen is mostly for those
single rows that are large enough to be broken into multiple chunks.

SelectSort2, another micro-benchmark executed the same queries but increased the minimum
chunk size of the Rabin fingerprinting algorithm. As can be seen in Table 2, even the small gain
from the previous microbenchmark disappears as the minimum chunk size was greater than the
average row size. While one can partially address these problems by dynamically varying the
parameters of the Rabin fingerprinting algorithm, this can be computationally expensive, especially
in the presence of changing workloads.

6.2 Application Benchmarks
We ran the BBOARD benchmark described in Section 4.1.1 on two versions of Ganesh: the first
with Rabin fingerprinting used as the chunking algorithm and the second with Ganesh’s row-based
algorithm. Rabin’s results for the Browsing Mix are normalized to Ganesh’s results and presented
in Figure 9.

17



0.0

0.2

0.4

0.6

0.8

1.0

40
0

80
0

12
00

16
00 40

0
80

0
12

00
16

00 40
0

80
0

12
00

16
00

5 Mb/s 20 Mb/s 100 Mb/s
Test Clients

N
or

m
. T

hr
ou

gh
pu

t
31

.8

3.8 2.8 2.3

23
.8

32
.8

5.8
3.6 1.8 2.1 1.1 1.0

0
5

10
15
20
25
30
35

40
0

80
0

12
00

16
00 40

0
80

0
12

00
16

00 40
0

80
0

12
00

16
00

5 Mb/s 20 Mb/s 100 Mb/s
Test Clients

N
or

m
. R

es
po

ns
e 

Ti
m

e

(a) Normalized Throughput: Higher is better (b) Normalized Response Time: Higher is worse

For throughput, a normalized result greater than 1 implies that Rabin is better, For re-
sponse time, a normalized result greater than 1 implies that Ganesh is better. All results
are the mean of three trials. The maximum standard deviation for throughput and re-
sponse time was 9.1% and 13.9% respectively of the corresponding mean.

Figure 9: Normalized Comparison of Ganesh vs. Rabin - BBOARD Browsing Mix

As Figure 9 (a) shows, at 5 Mb/s, independent of the test client configuration, Rabin signifi-
cantly underperforms Ganesh. This happens because of a combination of two reasons. First, as
outlined in Section 3.1, Rabin finds less similarity as it does not exploit the result’s structural in-
formation. Second, this benchmark contained some queries that generated large results. In this
case, Rabin, with a small average chunk size, generated a large number of objects that evicted
other useful data from the cache. In contrast, Ganesh was able to detect these large rows and cor-
respondingly increase the size of the chunks. This was confirmed as cache statistics showed that
Ganesh’s hit ratio was roughly three time that of Rabin. Throughput measurements at 20 Mb/s
were similar with the exception of Rabin’s performance with 400 test clients. In this case, Ganesh
was not network limited and, in fact, the throughput was the same as 400 clients at 5 Mb/s. Rabin,
however, took advantage of the bandwidth increase from 5 to 20 Mb/s to deliver a slightly better
performance. At 100 Mb/s, Rabin’s throughput was almost similar to Ganesh as bandwidth was
no longer a bottleneck.

The normalized response time, presented in Figure 9 (b), shows similar trends. At 5 and
20 Mb/s, the addition of test clients decreases the normalized response time as Ganesh’s aver-
age response time increases faster than Rabin’s. However, at no point does Rabin outperform
Ganesh. Note that at 400 and 800 clients at 100 Mb/s, Rabin does have a higher overhead even
when it is not bandwidth constrained. As mentioned in Section 3.1, this is due to the fact that
Rabin has to hash each ResultSet twice. The overhead disappears with 1200 and 1600 clients
as the database CPU is saturated and limits the performance of both Ganesh and Rabin.

18



7 Proxy Overhead
In this section, we address the third question raised in Section 4: Is the overhead of Ganesh’s
proxy-based design acceptable? To answer this question, one needs to concentrate on its perfor-
mance at the higher bandwidths. Our evaluation in Section 5 showed that Ganesh, when compared
to Native, can deliver a substantial throughput improvement at lower bandwidths. It is only at
higher bandwidths that latency, measured by the average response time for a client request, and
throughput, measured by the number of client requests that can be serviced per second, overheads
would be visible.

Looking at the Authoring mix of the original BBOARD benchmark, there are no visible gains
from Ganesh at 100 Mb/s. Ganesh, however, still tracks Native in terms of throughput. While the
average response time is higher for Ganesh, the absolute difference is in between 0.01 and 0.04
seconds and would be imperceptible to the end-user. The Browsing mix shows an even smaller dif-
ference in average response times. The results from the filter variant of the BBOARD benchmarks
are similar. Even for the AUCTION benchmark, the difference between Native and Ganesh’s re-
sponse time at 100 Mb/s was never greater than 0.02 seconds. The only exception to the above
results was seen in the filter variant of the BBOARD benchmark where Ganesh at 1600 test clients
added 0.85 seconds to the average response time. Thus, even for much faster networks where the
WAN link is not the bottleneck, Ganesh always delivers throughput equivalent to Native. While
some extra latency is added by the proxy-based design, it is usually imperceptible.

8 Related Work
To the best of our knowledge, Ganesh is the first system that combines the use of hash-based tech-
niques with caching of database results to improve throughput and response times for applications
with dynamic content. We also believe that it is also the first system to demonstrate the benefits
of using structural information for detecting similarity. In this section, we first discuss alternative
approaches to caching dynamic content and then examine other uses of hash-based primitives in
distributed systems.

8.1 Caching Dynamic Content
At the database layer, a number of systems have advocated middle-tier caching where parts of the
database are replicated at the edge or server. Examples of such systems include DBCache [3],
MTCache [25], DBProxy [5], and ABR-cache [17]. These systems either cache entire tables in
what is essentially a replicated database or use materialized views from previous query replies [24].
They require tight integration with the back-end database to ensure a time bound on the propagation
of updates. These systems are also usually targeted towards workloads that do not require strict
consistency and can tolerate stale data. Further, unlike Ganesh, some of these mid-tier caching
solutions [3, 4], suffer from the complexity of having to participate in query planing and distributed
query processing.

19



Gao et al. [20] propose using a distributed object replication architecture where the data store’s
consistency requirements are adapted on a per-application basis. These solutions require sub-
stantial developer resources and detailed understanding of the application being modified. While
systems that attempt to automate the partitioning and replication of an application’s database ex-
ist [44], they do not provide full transaction semantics. In comparison, Ganesh is completely
transparent to applications and does not weaken any of the semantics provided by the underlying
database.

Recent work in the evaluation of edge caching options for dynamic web sites [50] has suggested
that, without careful planning, employing complex offloading strategies can hurt performance.
Instead, the work advocates for an architecture in which all tiers except the database should be
offloaded to the edge. Our evaluation of Ganesh has shown that it would benefit these scenarios.
To improve database scalability, C-JDBC [14] and Ganymed [34] also advocate the use of an
interposition-based architecture to transparently cluster and replicate databases at the middleware
level. The approaches of these architectures and Ganesh are complementary and they would benefit
each other.

Moving up to the presentation layer, there has been widespread adoption of fragment-based
caching [19, 38], which improves cache utilization by separately caching different parts of gener-
ated web pages. While fragment-based caching works at the edge, a recent proposal has proposed
moving web page assembly to the clients to optimize content delivery [37]. While Ganesh is not
used at the presentation layer, the same principles have been applied in Duplicate Transfer De-
tection [29] to increase web cache efficiency as well as for web access across bandwidth limited
links [40].

8.2 Hash-based Systems
The past few years have seen the emergence of many systems that exploit hash-based techniques.
At the heart of all these systems is the idea of detecting similarity in data without requiring inter-
pretation of that data. This simple yet elegant idea relies on cryptographic hashing, as discussed
earlier in Section 2. Successful applications of this idea span a wide range of storage systems. Ex-
amples include peer-to-peer backup of personal computing files [15], storage-efficient archiving of
data [35], remote file synchronization [49], and finding similar files [26].

Spring and Wetherall [45] apply similar principles at the network level. Using synchronized
caches at both ends of a network link, duplicated data is replaced by smaller tokens for transmission
and then restored at the remote end. This and other hash-based systems such as the CASPER [47]
and LBFS [30] filesystems, and Layer-2 bandwidth optimizers such as Riverbed and Peribit use
Rabin fingerprinting [36] to discover spans of commonality in data. This approach is especially
useful when data items are modified in-place through insertions, deletions, and updates. However,
as Section 6 shows, the performance of this technique can show a dramatic drop in the presence of
data reordering. Ganesh instead uses row boundaries as dividers for detecting similarity.

The most aggressive use of hash-based techniques is by systems that use hashes as the pri-
mary identifiers for objects in persistent storage. Storage systems such as Ivy [31], CFS [16] and
PAST [18] that have been built using distributed hash tables [41, 46] fall into this category. Single
Instance Storage [9] and Venti [35] are other examples of such systems. As discussed in Sec-

20



tion 2.2, the use of cryptographic hashes for addressing persistent data represents a deeper level of
faith in their collision-resistance than that assumed by Ganesh. If time reveals shortcomings in the
hash algorithm, the effort involved in correcting the flaw is much greater. In Ganesh, it is merely a
matter of replacing the hash algorithm.

9 Conclusion
The growing use of dynamic web content generated from relational databases places increased
demands on WAN bandwidth. Traditional caching solutions for bandwidth and latency reduc-
tion are often ineffective for such content. This paper shows that the impact of WAN accesses
to databases can be substantially reduced through the Ganesh architecture without any compro-
mise of the database’s strict consistency semantics. The essence of the Ganesh architecture is the
use of computation at the edges to reduce communication through the Internet. Borrowing tech-
niques from the storage world, Ganesh is able to use cryptographic hashes to detect similarity with
previous results and send compact recipes of results rather than full results. Our design uses inter-
position to achieve complete transparency: clients, application servers, and database servers are all
unaware of Ganesh’s presence and require no modification.

Our experimental evaluation confirms that Ganesh, while conceptually simple, can be highly
effective in improving throughput and response time. Using two benchmarks representative of
dynamic web sites, our results show that Ganesh can increase end-to-end throughput by as much as
tenfold in low bandwidth environments. Our experiments also confirm that exploiting the structure
present in database results to detect similarity is crucial to this performance improvement.

Acknowledgments
We are grateful to Emmanuel Cecchet from Emic Networks, Nicolas Modrzyk from INRIA, and
Julie Marguerite from ObjectWeb who have helped us in understanding the design of C-JDBC,
on which Ganesh is based, and the JMOB benchmarks. We would also like to thank Anastassia
Ailamaki and David G. Andersen for their feedback on early versions of this work.

References
[1] Akamai. http://www.akamai.com/.

[2] Aditya Akella, Srinivasan Seshan, and Anees Shaikh. An empirical evaluation of wide-area
internet bottlenecks. In Proceedings of the 3rd ACM SIGCOMM Conference on Internet
Measurement, pages 101–114, Miami Beach, FL, USA, October 2003.

[3] Mehmet Altinel, Qiong Luo, Sailesh Krishnamurthy, C. Mohan, Hamid Pirahesh, Bruce G.
Lindsay, Honguk Woo, and Larry Brown. Dbcache: Database caching for web application
servers. In Proceedings of the 2002 ACM SIGMOD International Conference on Management
of Data, pages 612–612, 2002.

21

http://www.akamai.com/


[4] Mehmet Altinel, Christof Bornhövd, Sailesh Krishnamurthy, C. Mohan, Hamid Pirahesh,
and Berthold Reinwald. Cache tables: Paving the way for an adaptive database cache. In
Proceedings of 29th International Conference on Very Large Data Bases, pages 718–729,
Berlin, Germany, 2003.

[5] Khalil Amiri, Sanghyun Park, Renu Tewari, and Sriram Padmanabhan. Dbproxy: A dynamic
data cache for web applications. In Proceedings of the IEEE International Conference on
Data Engineering (ICDE), March 2003.

[6] Cristiana Amza, Emmanuel Cecchet, Anupam Chanda, Alan Cox, Sameh Elnikety, Romer
Gil, Julie Marguerite, Karthick Rajamani, and Willy Zwaenepoe. Specification and im-
plementation of dynamic web site benchmarks. In Proceedings of the Fifth Annual IEEE
International Workshop on Workload Characterization (WWC-5), pages 3–13, Austin, TX,
November 2002.

[7] Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. Information and control in gray-
box systems. In 18th ACM Symposium on Operating Systems Principles, Banff, Canada,
2001.

[8] J. Black. Compare-by-hash: A reasoned analysis. In Proceedings of the 2006 USENIX
Annual Technical Conference, pages 85–90, Boston, MA, May 2006.

[9] William J. Bolosky, Scott Corbin, David Goebel, , and John R. Douceur. Single instance
storage in windows 2000. In Proceedings of the 4th USENIX Windows Systems Symposium,
pages 13–24, Seattle, WA, August 2000.

[10] Eric A. Brewer. Lessons from giant-scale services. IEEE Internet Computing, 5(4):46–55,
2001.

[11] Andrei Broder, Steven Glassman, Mark Manasse, and Geoffrey Zweig. Syntactic clustering
of the web. In Proceedings of the 6th International WWW Conference, 1997.

[12] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando Fox. Mi-
croreboot - a technique for cheap recovery. In Proceedings of the Sixth Symposium on Oper-
ating Systems Design and Implementation (OSDI), pages 31–44, 2004.

[13] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie Marguerite, and Willy
Zwaenepoel. Performance comparison of middleware architectures for generating dynamic
web content. In Proceedings of the Fourth ACM/IFIP/USENIX International Middleware
Conference, Rio de Janeiro, Brazil, June 2003.

[14] Emmanuel Cecchet, Julie Marguerite, and Willy Zwaenepoel. C-JDBC: Flexible database
clustering middleware. In Proceedings of the 2004 USENIX Annual Technical Conference,
Boston, MA, June 2004.

[15] Landon P. Cox, Christopher D. Murray, and Brian D. Noble. Pastiche: Making backup cheap
and easy. In OSDI: Symposium on Operating Systems Design and Implementation, 2002.

22



[16] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-area
cooperative storage with CFS. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01), Chateau Lake Louise, Banff, Canada, October 2001.

[17] Louis Degenaro, Arun Iyengar, Ilya Lipkind, and Isabelle Rouvellou. A middleware sys-
tem which intelligently caches query results. In Middleware ’00: IFIP/ACM International
Conference on Distributed systems platforms, pages 24–44, 2000.

[18] P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer storage utility. In
HotOS VIII, pages 75–80, Schloss Elmau, Germany, May 2001.

[19] ESI. Edge side includes. http://www.esi.org.

[20] Lei Gao, Mike Dahlin, Amol Nayate, Jiandan Zheng, and Arun Iyengar. Application specific
data replication for edge services. In WWW ’03: Proceedings of the Twelfth International
Conference on World Wide Web, pages 449–460, 2003.

[21] Stephen Hemminger. Netem - emulating real networks in the lab. In Proceedings of the 2005
Linux Conference Australia, Canberra, Australia, April 2005.

[22] Val Henson. An analysis of compare-by-hash. In Proceedings of the 9th Workshop on Hot
Topics in Operating Systems (HotOS IX), pages 13–18, May 2003.

[23] Michael B. Jones. Interposition agents: Transparently interposing user code at the system
interface. In 14th ACM Symposium on Operating Systems Principles, 1993.

[24] Alexandros Labrinidis and Nick Roussopoulos. Balancing performance and data freshness in
web database servers. In Proceedings of the 29th VLDB Conference, September 2003.

[25] Per-Ake Larson, Jonathan Goldstein, and Jingren Zhou. Transparent mid-tier database
caching in sql server. In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, pages 661–661, 2003.

[26] Udi Manber. Finding similar files in a large file system. In Proceedings of the USENIX Winter
1994 Technical Conference, pages 1–10, San Fransisco, CA, 17–21 1994.

[27] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied
Cryptography. CRC Press, Inc., 1996. ISBN 0-8493-8523-7.

[28] R. B. Miller. Response time in man-computer conversational transactions. In Proceedings of
the AFIPS Fall Joint Computer Conference, pages 267–277, 1968.

[29] Jeffrey C. Mogul, Yee Man Chan, and Terence Kelly. Design, implementation, and evaluation
of duplicate transfer detection in http. In Proceedings of the First Symposium on Networked
Systems Design and Implementation, San Francisco, CA, March 2004.

23



[30] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-bandwidth network file system. In
Proceedings of the 18th ACM Symposium on Operating Systems Principles, Chateau Lake
Louise, Banff, Canada, October 2001.

[31] Athicha Muthitacharoen, Robert Morris, Thomer Gil, and Benjie Chen. Ivy: A read/write
peer-to-peer file system. In Proceedings of the 5th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’02), Boston, Massachusetts, December 2002.

[32] ObjectWeb. Objectweb consortium. http://www.objectweb.org/.

[33] Daniel Pfeifer and Hannes Jakschitsch. Method-based caching in multi-tiered server appli-
cations. In Proceedings of the Fifth International Symposium on Distributed Objects and
Applications, pages 1312–1332, Catania, Sicily, Italy, November 2003.

[34] Christian Plattner and Gustavo Alonso. Ganymed: Scalable replication for transactional web
applications. In Proceedings of the 5th ACM/IFIP/USENIX International Conference on
Middleware, pages 155–174, 2004.

[35] Sean Quinlan and Sean Dorward. Venti: A new approach to archival storage. In Proceedings
of the FAST 2002 Conference on File and Storage Technologies, 2002.

[36] Michael Rabin. Fingerprinting by random polynomials. In Harvard University Center for
Research in Computing Technology Technical Report TR-15-81, 1981.

[37] Michael Rabinovich, Zhen Xiao, Fred Douglis, and Chuck Kalmanek. Moving edge side
includes to the real edge – the clients. In Proceedings of the 4th USENIX Symposium on
Internet Technologies and Systems, Seattle, WA, March 2003.

[38] Lakshmish Ramaswamy, Arun Iyengar, Ling Liu, and Fred Douglis. Automatic detection
of fragments in dynamically generated web pages. In WWW ’04: Proceedings of the 13th
International Conference on World Wide Web, pages 443–454, 2004.

[39] George Reese. Database Programming with JDBC and Java. O’Reilly, 1st edition, June
1997.

[40] Sean Rhea, Kevin Liang, and Eric Brewer. Value-based web caching. In Proceedings of the
Twelfth International World Wide Web Conference, May 2003.

[41] Rowstron, A., Druschel, P. Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems. In Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), Heidelberg, Germany, November 2001.

[42] Secure Hash Standard (SHS). Technical Report FIPS PUB 180-1, NIST, 1995.

[43] Secure Hash Standard (SHS). Technical Report FIPS PUB 180-2, NIST, August 2002.

24

http://www.objectweb.org/


[44] Swaminathan Sivasubramanian, Gustavo Alonso, Guillaume Pierre, and Maarten van Steen.
Globedb: Autonomic data replication for web applications. In WWW ’05: Proceedings of the
14th International World-Wide Web conference, May 2005.

[45] Neil T. Spring and David Wetherall. A protocol-independent technique for eliminating re-
dundant network traffic. In Proceedings of ACM SIGCOMM, August 2000.

[46] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H. Chord: A scalable peer-
to-peer lookup service for internet applications. In Proceedings of the ACM SIGCOMM 2001,
San Diego, CA, August 2001.

[47] Niraj Tolia, Michael Kozuch, Mahadev Satyanarayanan, Brad Karp, Adrian Perrig, and
Thomas Bressoud. Opportunistic use of content addressable storage for distributed file sys-
tems. In Proceedings of the 2003 USENIX Annual Technical Conference, pages 127–140,
San Antonio, TX, June 2003.

[48] Niraj Tolia, Jan Harkes, Michael Kozuch, and Mahadev Satyanarayanan. Integrating portable
and distributed storage. In Proceedings of the 3rd USENIX Conference on File and Storage
Technologies, San Francisco, CA, March 31 - April 2, 2004.

[49] A. Tridgell and P. Mackerras. The rsync Algorithm. Technical Report TR-CS-96-05, Depart-
ment of Computer Science, The Australian National University, Canberra, Australia, 1996.

[50] Chun Yuan, Yu Chen, and Zheng Zhang. Evaluation of edge caching/offloading for dynamic
content delivery. In WWW ’03: Proceedings of the Twelfth International Conference on World
Wide Web, pages 461–471, 2003.

[51] Zona Research. The need for speed II, research report, 2001.

25


	1 Introduction
	2 Background
	2.1 Dynamic Content Generation
	2.2 Hash-Based Systems

	3 Design and Implementation
	3.1 Detecting Similarity
	3.2 Transparency
	3.3 Proxy-Based Caching
	3.4 Encoding and Decoding Results

	4 Experimental Validation
	4.1 Benchmarks
	4.1.1 The BBOARD Benchmark
	4.1.2 The AUCTION Benchmark

	4.2 Experimental Procedure
	4.3 Experimental Setup

	5 Throughput and Response Time
	5.1 BBOARD Results and Analysis
	5.1.1 Authoring Mix
	5.1.2 Browsing Mix
	5.1.3 Filter Variant

	5.2 AUCTION Results and Analysis
	5.2.1 Bidding Mix
	5.2.2 Browsing Mix


	6 Structural vs. Rabin Similarity
	6.1 Microbenchmarks
	6.2 Application Benchmarks

	7 Proxy Overhead
	8 Related Work
	8.1 Caching Dynamic Content
	8.2 Hash-based Systems

	9 Conclusion

