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Abstract

We present a new algorithm, Sparse Voronoi Refinement, that produces a conformal Delau-
nay mesh in arbitrary dimension with guaranteed mesh size and quality. Our algorithm runs
in output-sensitive time O(n log(L/s)+m), with constants depending only on dimension and
on prescribed element shape quality bounds. For a large class of inputs, including integer
coordinates, this matches the optimal time bound of Θ(n log n + m). Our new technique
uses interleaving: we maintain a sparse mesh as we mix the recovery of input features with
the addition of Steiner vertices for quality improvement.
This technical report is the long version of an article [HMP06] presented at IMR 2006, and
contains full proofs.
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1 Introduction

One of the main missing components in current tetrahedral meshing algorithms research
is the existence of refinement algorithms with good run time analysis. Runtime analy-
sis for some methods (notably those involving quad-trees or octrees) has been straightfor-
ward [MV00, HPU05] due to the very structured spatial decomposition. However, there are
many practical meshing algorithms with very poor run time guarantees.

The goal in designing Sparse Voronoi Refinement (SVR) was to create a meshing algo-
rithm that was similar in implementation and style to many widely used meshing algorithms,
but with the added benefit of very strong worst-case bounds on the runtime complexity and
space usage. An additional achievement of SVR is that the algorithm can work in any fixed
dimension d. The most practical implementations of SVR will probably take advantage of
fixing d = 3, but higher dimensional meshing (spacetime methods, etc.) is a growing area of
future research to which SVR can contribute.

The three important aspects of a mesh that are addressed by SVR are that the mesh
resolve all the input features (conforming), that mesh elements be well-shaped (quality), and
that the number of elements be small (size-guarantee).

Quality: In this work, we will refer to a quality mesh as one in which the radius-edge
ratio is bounded by a constant for any mesh element. In three dimensions, this metric is
somewhat lacking, as it can admit a family of poorly-shaped elements known as slivers,
although it is known how to post-process a radius-edge mesh and eliminate slivers. On the
other hand, this criterion allows better proof generalization and yields strong bounds on the
aspect ratio of the Voronoi Diagram, the dual of the Delaunay triangulation. Thus most of
the SVR operations and metrics are defined on the Voronoi diagram. This vastly simplifies
most of the proofs, especially for d ≥ 3. An actual implementation of SVR would likely only
use the Delaunay, but the conceptual framework of the Voronoi is essential to understanding
the algorithmic design of SVR. We further discuss mesh quality, Voronoi quality, and the
elimination of slivers in Section 2.1.

Conforming: Sparse Voronoi Refinement produces a Voronoi diagram such that the dual
Delaunay triangulation conforms to the input. That is, every input feature is represented
in the output Delaunay mesh by one or several segments, triangles, and higher-dimensional
facets. For Delaunay meshes, a careful selection of Steiner points is used to force that the
mesh connectivity implicitly conforms to the input.

Size Guarantee:
Let mopt be the number of vertices in the smallest conforming radius-edge quality De-

launay mesh of the input. A meshing algorithm is said to be size-optimal if it outputs a
mesh of size O(mopt). Viewing meshing as an optimization problem (minimize the number
of total vertices, subject to the constraints), a size-optimal algorithm is one that produces a
constant-factor approximation to the minimum mesh size. We show that SVR is size-optimal
on point sets.

SVR’s output mesh is not optimal among all radius-edge meshes in three or more dimen-
sions: consider a perpendicular pair of edges with minium distance ε between them. The
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optimal radius-edge mesh would form a sliver. The optimal aspect-ratio mesh will resolve the
feature. We cannot guarantee that we will or that we will not resolve the tiny feature, thus
we do not know exactly how to compare SVR’s size guarantee to any reasonable optimality
condition. Note, however, that this is typical for Delaunay refinement algorithms: our size
guarantee is neither better nor worse than the usual.

Time and Space Usage: Given a Piecewise Linear Complex (PLC) as input [MTTW99],
we will use n to denote the total number of input features (vertices, segments, triangles and
larger facets, etc). We will use L/s to denote the the ratio of the diameter of the PLC to
the smallest pairwise distance between two disjoint features of the PLC. The notation L/s
is historic, and the concept appears in many works under many names; the current most
common name is the spread of the input ([Eri01] contains a long list of references).

Sparse Voronoi Refinement has worst case runtime bounded by O(n logL/s + m), where
m is the number of output vertices. This runtime bound is a vast improvement over prior
meshing algorithms for three and higher dimensions. For almost all interesting inputs, this
bound is equivalent to O(n log n + m), which is optimal (using a sorting lower bound). SVR
also has optimal output-sensitive space usage O(m).

Overview: Most versions of Delaunay refinement algorithms (Section 2 contains a short
survey of such methods) first construct the Delaunay triangulation of the input points as
a preprocess. Because such algorithms initially construct the Delaunay triangulation, their
time and space complexity is bounded from below by the size of the initial Delaunay tri-
angulation (the number of edges, triangles, tetrahedra, etc.) Unfortunately, in dimension
higher than two, the complexity of the Delaunay triangulation (that is, the number of edges,
triangles, tetrahedra, etc.) can be super-linear in the number of input vertices: Ω(ndd/2e) in
the worst case. More concretely, in three dimensions this implies that any such algorithm
has worse case space and runtime Ω(n2), which is impractical for large inputs – furthermore,
some of the classic worst-case examples look very much like engineered surfaces one might
want to mesh.

However, it is well known that a quality Delaunay mesh with m vertices has only O(m) el-
ements [MTTW99, Tal97], implying that it should be possible to break the O(ndd/2e) runtime
barrier by avoiding the preprocessing step.

Sparse Voronoi Refinement accomplishes this by interleaving the traditional preprocess
with the main body of the algorithm. We maintain a Delaunay mesh throughout the algo-
rithm, but enforce that it is always a quality radius-edge mesh. The input point set and
features are gradually recovered over the life of the algorithm, rather than at initialization.

By maintaining the quality of the mesh, SVR ensures that it is sparse: the degree of
any vertex is at most constant. This allows all the mesh modifications to be performed in
constant time, so that the runtime work for the refinement process is only O(m) (Section 8),
plus bookkeeping of O(n log(L/s)) term arising from point location costs (Section 9).

Other meshing algorithms that have achieved related runtime bounds are discussed in
Section 2.3.

SVR expands the capabilities of existing analyzed meshing algorithms in terms of practi-
cal output size and generalization to higher dimension. SVR also represents the first analyzed
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3D Delaunay refinement algorithm to achieve the near-optimal bounds we claim. Nonethe-
less, SVR does not yet completely solve the meshing problem because it has overly strict
restrictions on the geometry of the input. Future work in this regard is discussed in Section
10.

Some notation needed to understand the algorithms, proofs, and input restrictions is
presented in Section 3.

Our description of SVR will start with a simplified, toy version of SVR that operates on
an input point set without input features or boundary concerns. Important new algorithmic
and proof techniques are discussed in this section. The goal is to present the salient novel
features of SVR, so that the reader can better understand the general method behind SVR
and the geometric intuitions behind the proofs.

Having described the simplest case, we will carefully present the full SVR algorithm, with
the added complications for handling boundaries and input features. The approaches taken
by SVR to address these complexities are highly similar to previous works [MPW02].

The proofs of SVR’s spacing and runtime all build on some structural results about
quality Voronoi diagrams. We have a section (Section 6) that lays out some proofs of these
results, wherein we find that dealing only with the Voronoi diagram dramatically simplifies
the life of the theorist. The implementer should keep in mind that all the statements about
the Voronoi diagram have equivalent dual statements on the Delaunay triangulation.

2 Related Work

2.1 Mesh Quality and Well-Spaced Points

It has long been known that the Finite Element Method converges to a solution if there
are no large (almost 180◦) angles in the mesh. The closely related problem of ensuring
there are no small (almost 0◦) angles in the mesh has proven to be more tractable using the
Delaunay triangulation, which has well-understood geometric and topological properties. In
general, the smallest angle in the Delaunay triangulation can be still very small, though it
is maximal over all possible triangulations; therefore, to ensure a quality mesh, we must
add Steiner vertices. When all the angles in a simplex are large, the simplex has good
aspect ratio, which is variously described as the ratio between the radius (or volume) of
the minimum circumscribing ball to the maximum inscribed ball, or the ratio between the
volume of the simplex to the length of its shortest edge.

In generalizing to higher dimension, it is much more convenient to use a different defini-
tion of mesh quality than the aspect ratio. The radius-edge ratio of a simplex is the ratio
of the circumradius to the length of the smallest edge of the simplex, where the circumradius
of a simplex is the radius of the d-dimensional circumball that passes through its vertices. It
was observed more than ten years ago that meshes with good radius-edge have the property
that the points from the mesh are well spaced in a precise technical sense. In particular, the
Voronoi diagram of the point set has the property that each Voronoi polytope has good as-
pect ratio (since the Voronoi region may be unbounded one has to carefully define its aspect
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ratio; see Definition 3.1). This work has motivated research into efficient algorithms to gen-
erate these good radius-edges meshes. Indeed, most methods related to Ruppert’s Delaunay
refinement algorithm generate meshes that explicitly satisfy the radius-edge condition rather
than the aspect ratio condition.

It was observed more than ten years ago [MTTW99] that meshes with good radius-edge
have the property that the points from the mesh are well spaced in a precise technical sense.
In particular, the Voronoi diagram of the point set has the property that each Voronoi
polytope has good aspect ratio, since the Voronoi region may be unbounded one must be
careful with the definition (see Definition 3.1). This work has motivated research into efficient
algorithms to generate these good radius-edges meshes.

In two dimensions, the radius-edge ratio corresponds exactly with the aspect ratio. In
three and higher dimension, this is not true: there are simplices with good (small, near one)
radius-edge ratio that have bad (large, near infinite) aspect ratio. Because of their shape in
3D, these types of elements are known as slivers.

Historically, many algorithms have been proposed that take as input a good radius-edge
3D mesh, and refine it into a sliver-free, good aspect-ratio mesh [Che97, ELM+00, LT01].

In particular, using the results and techniques of our analysis, a very simple timing
analysis of the Li-Teng algorithm for sliver removal ([LT01], extended by Li to higher di-
mension [Li03]) shows that it will work with linear time and space requirements on point
sets. Such an algorithm can easily be run as a post-process to SVR in order to generate a
sliver-free mesh. Therefore, we henceforth ignore the issue of slivers.

The notion of “slivers” in more than three dimensions is not well understood to our
knowledge. This is partly the motivation for SVR to generate a quality Voronoi diagram, a
notion which easily generalizes to higher dimensions.

2.2 Delaunay Refinement Algorithms

There have been several different approaches to the meshing problem. The idea of generating
a mesh whose size is within a constant factor of optimal was first considered by Bern, Epstein,
and Gilbert [BEG94] using a quadtree approach. A 3D extension was given by Mitchell and
Vavasis [Mit93].

Chew introduced a 2D Delauanay refinement algorithm [Che89] and showed termination.
The quality of the initial triangulation was improved by adding the circumcenters of poor
quality triangles as Steiner vertices. This produced a mesh with no small angles, but inserted
many more Steiner vertices than necessary.

Ruppert [Rup95] extended this idea of adding circumcenters for 2D meshing to produce
a mesh that was within a constant factor in size from the optimal and also handled line
segments as input features. The extension of this algorithm to 3D has been ongoing research.
Some methods assume that that Ruppert’s local feature size function is given [MTT+96].
Others refine a bad aspect ratio mesh directly [She98, MPW02]. These methods by them
selves do not give constant approximation size meshes since the may include slivers. But
they do produce meshes that have size bounded below by a constant times the local feature
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size.
Many algorithms for Delaunay refinement in 3D have been proposed [She02, CP03, PW04,

CD03], but so far have eluded nontrivial runtime analysis. Trivial runtime bounds such as
O(m3) be found in most cases. Simple examples can usually give bad worst-case perfor-
mance for naive implementations of these algorithms. As mentioned, they will all suffer
from intermediate size Ω(n2) in the worst case.

2.3 Optimal Time Meshing Algorithms

Finding refinement algorithms that have provably good run times has also been of interest.
Spielman, Teng, and Üngör [STÜ02] proved that Ruppert’s and Shewchuk’s algorithms can
be made to run in O(lg2 L/s) parallel steps. They did not, however, prove a work bound.
Miller [Mil04] provided the first sub-quadratic time bound in 2D with a sequential work
bound of O((n lg Γ+m) lg m), in which Γ is a localized version of L/s (in particular, Γ ≤ L/s).
The extra lg m factor is related to a priority queue that was required for the runtime proof
in the presence of input segments.

Sparse Voronoi Refinement achieves a runtime bound of O(n lg L/s+m). For any inputs
where L/s is bounded by a polynomial of n, this bound is O(n lg n + m), which is optimal.
The most commonly analyzed class of inputs which meet this criterion are inputs with integer
coordinates.

Quadtree meshing algorithms in 2D and octree algorithms in 3D have been shown to run
in optimal time for integer point-set input [BEG90, MV00, BET99]. While octree algorithms
and Delaunay refinement algorithms both produce a mesh which is within a constant factor
of the local feature size, Delaunay refinement algorithms have been shown to produce far
fewer vertices than octree methods in practice, thus motivating the need for faster Delaunay
based algorithms like Sparse Voronoi Refinement.

Recently, Har-Peled and Üngör [HPU05] used a quadtree method as a pre-processing
step to produce a size-guaranteed triangulation in optimal time for integer point-set input
in 2D. Their algorithm presents a mix between Delaunay refinement methods and quadtree
methods. Published versions of this algorithm do not yet handle features or higher dimen-
sion. Their use of a quadtree is essentially as an auxiliary structure for point location type
operations. We expect that Sparse Voronoi refinement will have an advantage in that the
mesh itself is used as a point location structure, requiring less overhead both in runtime and
in development time.

2.4 Complexity of the Delaunay Triangulation

There are many simple examples of points sets in three dimensions whose Delaunay triangu-
lation realizes the worst-case quadratic complexity. Some families of 3D input, notably those
for which L/s ∈ o(n), can be shown to have subquadratic Delaunay complexity. However,
their worst-case complexity is still ω((L/s)3). For example, when L/s ∈ Θ(

√
n), then the

Delaunay complexity has worst case Ω(n3/2), which is unacceptable for large inputs [Eri01].
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Independently, even if the input is favorable enough that the Delaunay has linear com-
plexity, and even in just two dimensions, a poor ordering of refinement steps could still give
quadratic runtime [Bar02].

3 Preliminaries

Throughout this paper, unless explicitly stated otherwise, all objects are in E
d. Given a set

S, the convex closure of S, denoted CC(S), is the smallest convex set containing S, while
the convex hull is the boundary of CC(S).

Throughout, all balls will refer to topologically open balls. We say that a point x
encroaches on a ball B if x ∈ B; that is, if x is interior to the ball.

A simplex is the convex closure of an affine independent set of points. Given a simplex
it has a well-defined circumcircle (the minimum radius circle) containing its points. It in
turn has a well-defined circumradius and circumcenter.

The diameter of a compact set is the maximum distance between any pair of points in
the set.

A polytope is the convex combination of finite set of points P . The dimension of the
polytope is the dimension of the affine subspace generated by P . The boundaries as well as
the domain we consider are a collection of polytopes. We formally use the formal definition
of a Piecewise Linear Complex (PLC) from [MTTW99].

For this paper, we place additional requirements on the input; we expect that most if not
all of these can be lifted with additional work drawing on existing techniques. First, we make
the usual Draconian requirement that the angle between any two intersecting polytopes,
when one is not contained in the other, is at least 90◦. We also require that polytopes
have a convex hull that is defined by O(1) vertices (although we place no restriction on the
number of interior vertices); and furthermore that the hull vertices are well-spaced. Finally,
the definition of a PLC requires that all input facets are convex. This would be a minor
restriction were input angles unrestricted, because one can always decompose the PLC facets
as needed to fulfill this condition. In the Future Work Section 10 we discuss how to lift some
of these restrictions.

We define a mesh M as a set of vertices in E
d and the Voronoi diagram of the vertices.

The Voronoi cell of a mesh vertex v is denoted VM(v). We will call the set of nodes of
the Voronoi diagram the Voronoi nodes (these are not the vertices of M). We define the
outradius RM(v) to be the distance from v to the farthest Voronoi node of its cell. We
define the inradius rM(v) to be the distance from v to the point of closest approach of the
boundary of the Voronoi cell. When the mesh in question is clear, we may write Rv or rv

for brevity.
Given a set of points P , let CC(P ) denote the convex closure of P , i.e., the smallest

convex set containing P .

Definition 3.1 Given a mesh M and a mesh vertex v, the aspect ratio of the Voronoi cell
VM(v) is RM(v)/rM(v).
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We say M has aspect ratio τ if for each vertex v ∈ vertices(M) the aspect ratio of V (p)
is at most τ . In this case, we will refer to M as a τ -quality Voronoi diagram.

We will assume throughout there are no degeneracies, that is, no sphere of dimension
k ≤ d containing k + 2 points. Algorithms to address degeneracies have been considered;
incorporating these method into our framework could be easily addressed following Miller,
Pav, and Walkington [MPW02].

A crucial definition is that of local feature size, as defined by Ruppert [Rup95]. Let
lfs(x) be the minimum distance from any point x ∈ CC(P ) to two disjoint polytopes of the
input PLC. We also define a closely related function, the current feature size cfsM(x),
which is the distance from x to the second-nearest mesh vertex of M . We will simply write
cfs when it is clear that only one mesh M is involved. This notion of cfs has been written
elsewhere as lfsM , lfs0, or lfs0,M , however, in this work we will use cfs to strongly disambiguate
the two notions. The lfs never changes and counts distance to any polytope. The cfs decreases
between intermediate meshes as refinement proceeds, and only counts distance to vertices.

Given any point p in the convex closure of G we consider the lowest dimensional cell
containing p. We call this the containing dimension of p, denoted CD(p).

We will need a spacing function defined everywhere for our runtime bounds. We use the
gap size definition originally defined for mesh coarsening [MTT99, Tal97].

Definition 3.2 Let P be a point set in E
d. A gap-ball B of P is any d-ball meeting the

following two criteria:

• B is not encroached by any point in P .

• The center of B lies inside the convex closure CC(P ).

Definition 3.3 Let P be a point set in E
d. Let x be a point in CC(P ). The gap size GP (x)

is the radius of the largest gap-ball B of P such that x lies on the surface of B.
For brevity, we define that GM(x) ≡ Gvertices(M)(x).

Clearly, the gap size is a monotone decreasing function as we add vertices to the mesh:
the shape of the convex closure does not change, but it gets harder to satisfy the non-
encroachment requirement.

Definition 3.4 Let a mesh M and a point x ∈ CC(M) be given. We define the grading
of M at x as:

ΓM(x) =
GM(x)

cfsM(x)

This notion of grading is useful for capturing the relative quality of a mesh, with the
advantage that Γ is defined everywhere in the convex closure, rather than just at vertices
like many mesh metrics. This notion and nearly-equivalent notions for grading have used
before [MTT99, Tal97, Mil04, HPU05].
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Simplified-SVR(P : d-dim point set, τ : mesh quality constant, k: 0 < k ≤ 1 )
1: Assume an initial Voronoi mesh M exists.
2: Let U be the set of uninserted input vertices: U = P − V (M)
3: while U is non-empty do
4: Perform a break move
5: while M has aspect ratio worse than τ do
6: Perform a clean move
7: end while
8: end while

TryInsert(p: d-dim point, M d-dim mesh, U : set of uninserted d-dim points)
9: if ∃u ∈ Us.t.|pu| ≤ kNNM(p) then

10: Yield : Insert u into M , updating U and the Voronoi diagram.
11: else
12: Insert p into M , updating the Voronoi diagram.
13: end if

Figure 1: The simplified SVR algorithm on a periodic point set. The break and clean moves
are described in the text.

4 Simplified Algorithm

In this section, we describe a simplified version of our algorithm without any input feature
complications or boundary concerns. For the simple algorithm, the input is a set of points in
the infinite plane E

d where the hypercube [0, L1/d]d repeats. While this is not a particularly
realistic model of computation, it does allow us to develop the intuition we use for the
full algorithm, while avoiding considerable distractions. Furthermore, the periodic point set
model can be simulated by embedding the input hypercube within a larger bounding box.

For the purposes of this simplified exposition, we will not discuss initialization, except to
note that it is only linear work, assigning uninserted vertices to one of a constant number
Voronoi cells. At a basic level, SVR operates incrementally. At any point in time, we have
a Voronoi diagram. Some of the input points are Voronoi vertices, some of the input points
are not yet recovered. The Voronoi diagram also has Steiner vertices. Every input point
that is not yet recovered is contained in some Voronoi cell.

The algorithm iteratively plays one of three moves until none of the moves apply:

• clean move: Pick a Voronoi cell of bad aspect ratio. Take its farthest Voronoi node,
and try to insert it using TryInsert.

• break move on an input: Pick an input vertex that has been recovered in the mesh and
whose Voronoi cell includes an input point. Take its farthest Voronoi node, and try to
insert it using TryInsert.

• break move on a Steiner vertex: Pick a mesh vertex that is not an input (it is a Steiner
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Figure 2: The cell of v is being destroyed by SVR (either because it is skinny, or because
p′′ is inside); SVR tries to add the farthest Voronoi node p. The outer circle around p is of
radius Rv; the inner disc, in grey, is of radius kRv. (A) Because the uninserted input point
p′ is near p, SVR must yield – otherwise, an artificially small feature will have been created,
violating our size guarantees. (B) The uninserted input point p′′ is too far from p, so SVR
does not yield. Our size guarantees would be maintained were SVR to yield to p′′, but the
time bounds would be violated because p′′ may be arbitrarily close to v.

point) and whose Voronoi cell includes an input point. Unconditionally insert one of
the input points.

Assuming this algorithm terminates, at that point there will be no cells of bad aspect
ratio, and all the input vertices will have been recovered, so the algorithm will have produced
a quality conforming mesh.

We add the additional constraint that clean moves take precedence over break moves.
One can then think of the algorithm as operating in phases. Each phase, SVR starts with
a quality mesh, “breaks” it with a break move; then “cleans” using only clean moves, until
quality is re-established.

When the algorithm considers adding a Steiner point, it may instead yield to an input
vertex if there is one nearby. This ensures that no Steiner point ever is inserted too close to
an input vertex, which is critical for guaranteed mesh size. Suppose SVR is cleaning a skinny
Voronoi cell V (v) and considers the addition of Steiner p. There is an empty ball around p of
radius Rv. This provides a natural definition of “nearby,” for yielding purposes. For reasons
related to runtime analysis, we must reduce the radius of this neighborhood by a constant
factor k, slightly smaller than 1. Expressed concisely, we will yield to an unrecovered input
point p′ if |pp′| < kRv (see Figure 2).

Why does the runtime argument need k < 1? If we relaxed to k = 1, p′ might be
arbitrarily close to v (or some other vertex). Such a situation would cause an arbitrarily bad
break in the quality of the mesh. This would cause us to lose sparsity guarantees, which would
in turn destroy runtime guarantees. For this reason, the constants in the runtime analysis
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will depend on 1/(1−k), greatly increasing as k approaches 1. On the other hand, guarantees
about spacing and mesh size work best when we are most aggressive about yielding to input
vertices rather than adding more Steiner vertices: smaller k makes for larger output. There
is a tradeoff here, which we expect argues for setting k close to 1.

The proof that the simplified SVR terminates with guaranteed mesh size is almost ver-
batim from Ruppert [Rup95], albeit adapted to higher dimension and with an additional
case for yielding to input vertices. What is novel are the proofs that bound the runtime and
intermediate mesh quality.

Under appropriate settings of the user-given parameters τ and k (namely, kτ > 2
√

2 and
0 < k < 1), we can guarantee that M never has aspect ratio worse than some constant
τ ′ that depends only on τ , k, and d – even during the clean and break phases. It is well
known [MTTW99, Tal97] that if the mesh vertices are well-spaced, then the Delaunay and
its dual Voronoi have size linear in the number of vertices. In particular, every vertex has
constant degree (its Voronoi cell has a constant number of facets). This further implies
that inserting a vertex into such a mesh will take only constant time using an incremental
algorithm; this gives us the O(m) bound for refinement work.

The only charge left, then, is the point location: determining whether any unrecovered
vertices are included in the k-ball around p. The point location structure we use is almost
trivial: the algorithm simply stores the list of unrecovered input vertices that each cell
includes. When a new mesh vertex is inserted, the insertion algorithm also recomputes the
lists of affected Voronoi cells. Then, to determine whether any unrecovered vertices are in
the k-ball, the algorithm merely queries each neighboring Voronoi cell in turn.

We use an amortized analysis for the point location charges that is reminiscent of the
two-dimensional analysis of Miller [Mil04]: we charge the point location not to the Voronoi
node that is prompting the test, but to the unrecovered vertex being tested. There are two
sub-charges: the relocation charge for updating point location information, and the charge
for point location queries. Both charges are computed similarly, so in this section we will
merely sketch out the former case.

Consider an unrecovered vertex u. Whenever the Voronoi cell that contains u changes,
a new vertex p was inserted nearby – at a distance related to (within a constant factor of)
cfs(u). Furthermore, when p is inserted, SVR ensures via the yielding rules that the nearest
neighbor of p is no closer than a distance related to cfs(p). Finally, because u and p are
close, cfs(p) is related to cfs(u). Thus, for every p whose insertion affects u, p is both close
(distance O(cfs(u)) and has a large (radius Ω(cfs(u))) empty ball around it. Therefore, an
adversary can only pack a constant number of vertices around u before the feature size at u
falls by half.

Later, we will prove that cfs(u) is at most the diameter L of the periodic region, and
never goes below Ω(s). Thus, the adversary can force the algorithm to halve the feature size
at most log(L/s) times around u. So the number of times that u is relocated will be at most
O(log(L/s)). Precise statements of the lemmas are found in Section 9.

As we develop the full algorithm, the important techniques of this section will remain the
same: as long as SVR ensures that no new vertex is ever inserted too close to an existing mesh
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vertex, the algorithm always has a quality mesh (not too broken). In turn, this implies that
the insertion is fast and that the gap size around unrecovered features falls exponentially, so
that the point location costs are also small.

5 Full Algorithm

This section describes the full algorithm in excrutiating detail. The input is described as a
PLC, and must meet the criteria described in Section 3.

As scratch data structures, we maintain the following:

• A mesh MF for every feature F . The entire domain Ω is treated as merely the biggest
feature.

• A set of work queues. Elements on each work queue are balls – triples of a Voronoi
node c, its associated radius r (which is equal to NNMF

(c) when the ball is created),
and the feature F which contains c.

The work queues are of three types: skinny, encroached, and unresolved and
are processed in that order. For each type, we maintain an independent queue for each
dimension. Skinny elements are processed from lowest dimension to highest; the other
elements are processed in the reverse order.

• A bipartite mapping for each dimension i between balls of lower dimension j < i, which
must be protected, and Voronoi cells of dimension i. The mapping is maintained in
the trivial way with the operations Link and Unlink. Operation Cellsi(b) returns
the set of cells in dimension i associated with a ball, and Ballsi(v) returns the set of
balls associated with a Voronoi cell V (v) in dimension i.

In the bootstrapping phase of the algorithm, we Initialize the data structures for each
feature. We generate the Voronoi diagram of the convex hull of each feature F , then dis-
tribute each sub-feature’s protecting balls among the cells of MF , and we populate the work
queues. Because we have required each feature to have a small, well-spaced convex hull,
initialization runs in linear time and produces quality meshes for each feature.

In a nice input (as we assume we are given), the initial skinny and encroached work
queues will all be empty. However, MΩ will not correspond to the desired input. This
motivates the need for the unresolved queues. An i-ball is defined by i + 1 vertices. We
say an i-ball is resolved in MF if it appears as a Delaunay subfacet of MF – that is, if all i+1
vertices are, pairwise, each other’s neighbours. Thus a 0-ball is resolved if the corresponding
vertex is in the mesh; a 1-ball is resolved if both its vertices are in the mesh, and also the
corresponding edge links two neighbours in the Voronoi graph; etc. There are two reasons for
the unresolved queues: (1) to recover vertices; (2) to recover single-encroached features,
as described below.

As in the point-set case, the algorithm will now iteratively perform break and clean
moves until it reaches a quality conformal mesh. These are encoded in the work queues: a
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d The ambient dimension.
P The input piecewise linear complex.
Pi The i-dimensional facets of P.
Ω The input domain (a convex subset of E

d).
F A feature: a facet of P (vertex, edge, . . . , Ω).

F+ A feature that contains F .
MF The current refined mesh of F .

c A Voronoi node (the circumcenter of a simplex).
V A set of Voronoi cells.
v A single Voronoi cell.
b A protective ball represented as a triple 〈(c, r), F 〉. Geometric tests performed on b are

performed on B(c, r); F is the feature that b is helping protect.
S The set of sub-balls that intersect a region.
Y The set of sub-balls to which an insertion must yield.
C The set of Cells that will be modified by the insertion of a point.
C ′ The set of Cells that were modified by the insertion of a point.

Table 1: List of variable names used in the SVR algorithm.

break move draws from an encroached or unresolved queue; a clean move draws from
a skinny queue. However, we must sequence the moves correctly across dimensions. In
particular, we maintain the invariant that every mesh is always of good quality. We first
refine for quality (clean moves) from the bottom (lowest dimension) up. Next, we refine for
input (break moves) from top down. This approach is critical to establishing the runtime
bound, though it is irrelevant to the correctness proof: a buggy order will slowly produce
the correct result.

When we consider adding a Steiner point in Split, as before, we may have to yield to an
input vertex and ForceInsert it instead of the Steiner point. However, we may also have
to yield to lower-dimensional input features: otherwise a Steiner point could be added very
close to a feature, defeating the sizing proofs. Furthermore, the ball b being Split will still
exist after yielding: inserting new vertices into a lower-dimensional mesh does not affect F .
This explains the goto in line 15 of Split. The reinvocation of Split is likely to yield to a
new vertex inserted by one of the lower-dimensional facets, or to instead find itself inserting
the original circumcenter.

The set of lower-dimensional balls discovered in Split may be very large: of linear size.
Therefore, each iteration may take linear time. We cannot afford to discover the encroached
subballs one by one; instead we must either deal with all encroached subballs simultaneously
or perform additional bookkeeping.

Unlike in standard Delaunay mesh refinement techniques, for runtime reasons we are
required to occasionally allow input protective balls to be encroached by mesh vertices;
however, we only allow a single encroachment, and only by vertices of an equal- or lower-
dimensional feature (including by input points). The need for this is based on the fact that
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SVR(P: a piecewise linear complex)
1: Initialize(P)
2: while workqueues are not empty do
3: b = Dequeue()
4: Split(b)
5: end while
6: return MΩ

Figure 3: The mainline of the SVR algorithm. We simply process events, denoted by the
protective ball that needs to be split.

Split(b: a ball 〈(c, r), F 〉)
1: if c is no longer a Voronoi node of MF then return
2: compute V : the set of Voronoi cells that intersect B(c, r)
3: compute S = ∪v∈V Balls(v)
4: if ∃b′ ∈ S such that b′ is a vertex-ball and b′ ∈ B(c, r) then
5: b′ represents a point p
6: ForceInsert(b, p)
7: else
8: compute Y , the set of balls in S encroached by c
9: if Y is empty then

10: ForceInsert(b, c)
11: else
12: for each b′ ∈ Y do
13: Split(b′)
14: end for
15: goto 2
16: end if
17: end if

Figure 4: How to split a protective ball. Clearly, if the ball is no longer being protected, we
no longer need to split it (and, indeed, we must not). Otherwise, look for a nearby vertex
if there is one; if so, yield to it and insert the vertex (line 6). If not, look for nearby lower-
dimensional protective balls that we encroach. If there are some, split them all (line 13).
Splitting them will create new vertices we may want to yield to, or new protective balls we
encroach, so try splitting b again (line 15).
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ForceInsert(b: a ball 〈(c, r), F 〉, p: a point)
1: Starting at c in MF , compute the set of cells C that p will change.
2: Create C ′: the reshaped cells, plus the new cell for p.
3: Update MF , replacing C by C ′

4: Compute S = ∪v∈CBalls(v)
5: ∀v ∈ C, Unlink(v, Balls(v))
6: for all v′ ∈ C ′ do
7: compute S ′ = {b ∈ S|b ∩ v′ 6= 0}
8: AddLink(v′, S ′)
9: end for

10: for all v′ ∈ C ′ do
11: if v′ is a skinny Voronoi cell then
12: let (c′, r′) be the farthest Voronoi node of v′

13: Enqueue(〈(c′, r′), F 〉, skinny, dim(F ))
14: end if
15: end for
16: for all dimensions i > dim(F ) do
17: ReplaceBalls(C, C ′, i)
18: end for

Figure 5: The ForceInsert routine actually inserts a point p into a mesh for a feature F .
First, we update the mesh MF ; then we update the auxiliary data structures for F . Next,
we add any new Skinny events (AddLink handles the other types of events). Finally, we
add the information to all the higher-dimensional meshes that contain F .
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Initialize(P: a piecewise linear complex)
1: let Pi be the i-dimensional features
2: for i = d downto 0 do
3: for each feature F ∈ Pi do
4: create the Voronoi tesselation MF = Voronoi(∂F )
5: end for
6: end for
7: for each feature F ∈ P do
8: for each Voronoi node (c, r) ∈MF do
9: create ball b = 〈(c, r), F 〉

10: for each feature F+ that contains F do
11: AddBall(F+, b)
12: if b is encroached by a vertex of MF+ then
13: Enqueue(b, encroached, dim(F+))
14: end if
15: if b is not resolved by MF+ then
16: Enqueue(b,unresolved, dim(F+))
17: end if
18: ∀v ∈MF+ that intersect b, AddLink(v, b)
19: end for
20: end for
21: end for

Figure 6: Initialization proceeds by building the Voronoi diagram of the convex hull of each
feature, then building the intermediate structures in bottom-up fashion. Because of the
assumption that the convex hull has constant size, we can loop over all the cells of any
feature’s mesh in constant time.
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ReplaceBalls(B, B′, i)
1: cells ← ∪b∈B(Cellsi(b))
2: for all b ∈ B do
3: for all v ∈ cells do
4: RemoveLink(v, i, b)
5: end for
6: end for
7: for all b′ ∈ B′ do
8: for all v ∈ cells do
9: if V (v) intersects b′, then AddLink(v, i, b′)

10: end for
11: if b is not resolved by cells, Enqeueue(b,unresolved, i)
12: end for

Figure 7: After a mesh inserts a point, all higher-dimensional meshes need to be informed
of the new point and the new protective balls; this may add items to the work queues.

AddLink(v, i, b)
Add v to Cellsi(b)
Add b to Ballsi(v)
if v encroaches b then

if v is a Steiner point then
Increment SteinerEncroachers(b)

else
Increment InputEncroachers(b)

end if
if SteinerEncroachersi(b) > 0 or InputEncroachersi(b) > 1 then

Enqueue(b, encroached, i)
end if

end if

Figure 8: AddLink and RemoveLink maintain the mapping between protective balls and
cells, along with testing whether the protective ball is encroached and needs to be fixed.
RemoveLink is symmetric to AddLink and thus we leave it as an exercise to the reader.
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Dequeue
for i = 0 to d do

pop and return if workqueue(skinny, i) is non-empty
end for
for i = d downto 0 do

pop and return if workqueue(encroached, i) is non-empty
end for
for i = d downto 0 do

if workqueue(unresolved, i) is non-empty then
b← pop one element off the queue
using Cellsi(b), check if b is now resolved
if not, return b

end if
end for

Figure 9: Dequeue accesses the work queues in the order described in the text. Elements
never become non-skinny unless the farthest Voronoi node was removed, in which case it is
no longer in the mesh. Similarly, encroached balls never become unencroached. However,
unresolved elements may have become resolved. We check here so that calling code need not
reason about why any ball is being processed.

while we can charge according to the spread (L/s) of the input for the point location of
features the user input, we want the charge on sub-features the algorithm creates to be
only linear in the size of the output. Allowing singly-encroached input features allows the
algorithm to ensure it never performs point location on any non-input protective balls until
the gap size around the protective ball is related to its diameter.

Encroachment is normally disallowed so that the encroachment test becomes a cheap test
for ensuring that input features appear in the output. However, if the input feature does not
appear in the output, it will be on the unresolved queue. Therefore there are no worries
that allowing single encroachment will cause the output to misconform.

Without allowing single-encroachment, the lg(L/s) term is applied to the output size,
rather than only the input, which would cause the algorithm to run in O(m lg L/s). It is
unclear whether the distinction matters in practice.

6 Structural Properties of Quality Voronoi Diagrams

In this section we present several structural lemmas about good radius-edge meshes. These
lemmas are crucial for our analysis and may be well suited for timing analysis of future
algorithms.
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6.1 Feature size in gap balls

Let M be a τ -quality Voronoi diagram in E
d. Our first main goal in this section is to show

that the cfs of any point in a gap-ball is bounded below by a constant times the ball’s radius.

Lemma 6.1 Suppose that M is a τ -quality Voronoi diagram, and suppose that B is a gap-
ball of M with center c and radius r. If x ∈ B ∩ CC(M) then

cfs(x) ≥ c6.1r

where c6.1 depends only on τ and is independent of dimension.

To prove 6.1, we first need a technical fact that is most likely not new.

Lemma 6.2 If q ∈ CC(M) and q ∈ Vp for some point p ∈ M then there exists a Voronoi
point v on Vp such that |qp| ≤ |vp|

Proof: Let q ∈ CC(M) ∩ Vp as in the hypothesis. We may assume that the affine dimen-
sion CC(M) is d for otherwise we may project the problem into a lower dimensions space.
WLOG we may assume that p is the origin. Consider the linear programming problem with
constraints taken as the facets of Vp and objective function max qT x. We know that the
problem is feasible. Thus, there are two possibilities for the solution: (1) it is a finite zero-
dimensional cell, or (2) there is an unbounded sequence of solutions. In the first case the
solution is a Voronoi point of Vp which must have a distance to p of at least |qp|. We show
the second case is not possible by way of a contradiction. Suppose that u is a vector such
that (a) qT u > 0 and (b) all point on the array determined by u are in Vp. By condition (b)
the open half-space {x | xT u > 0} is disjoint from CC(M). But q is in this open half-space,
contradicting the fact that q ∈ CC(M). Thus case (2) is not possible.

As a corollary we get the following fact that we will use repeatedly:

Lemma 6.3 Consider a point x ∈ VM(v)∩CC(M) for an arbitrary mesh M and an arbitrary
vertex v ∈M . Then:

rM(v) ≤ cfs
M

(x) ≤ 2RM(v)

Proof: The nearest neighbour of x is v by definition. The closest x can be to a vertex v′

other than v is when x is on the boundary of VM(v), since that point is equidistant from v and
some v′; then cfsM(x) = |xv|. To minimize |xv| while still being on the boundary, we choose
the point of closest approach of the boundary to v, which by definition is at |xv| = rM(v).

For the upper bound, walk from x to its nearest Voronoi node; this is a distance of at
most RM (v) from Lemma 6.2. This node is at distance at most RM(v) from at least d+1 > 2
vertices, thus we have a path of length at most 2RM(v) from x to more than two vertices.

We will proceed toward proving Lemma 6.1 by starting with a few simple observations.
First, suppose that q is in a gap-ball B of radius r and center c. It follows that cfs(q) ≥ r−|qc|.
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Figure 10: A Ball B such at Vp contains q and b.

Second, suppose that q in the the Voronoi cell Vp. It follows that cfs(q) ≥ |pq| and
cfs(q) ≥ rp. To see the second inequality we may assume that |pq| ≤ rp. Consider any other
p′ ∈ V (M) be given with p′ 6= p. We know that |pp′| ≥ 2rp and by the triangle inequality
|pq|+ |qp′| ≥ |pp′|. Thus |qp′| ≥ rp.

We now use these two observations for the proof of Lemma 6.1:
Proof: Let B be a ball and M a Voronoi diagram as in the hypothesis of the lemma. By
scaling it will suffice to prove the lemma for r = 1 and show that the local feature size is
bounded below by a constant.

Further, let x ∈ B ∩ CC(M). If |xc| < 1/2 then cfs(x) ≥ 1/2 by the first observation
above. Thus we may assume that |xc| ≥ 1/2.

Consider the ray −→cx. Let q and b be the points on −→cx at a distance 1/2 and 1 from c.
It will suffice to bound from below the local feature size of all points on −→cx between q and
b in CC(M). Let Vp be a Voronoi region containing q. Let Rp and rp be the inradius and
outradius of Vp. See Figure 6.1.

Since x ∈ CC(M) and c ∈ CC(M), it follows by convexity that q ∈ CC(M). Thus by
Lemma 6.2 we know that |qp| ≤ Rp. There are two cases depending on whether or not
b ∈ Vp.

Case 1: Suppose that b ∈ Vp. Since both q and b are in Vp it follows that x ∈ Vp and
thus cfs(x) ≥ rp. Since p 6∈ B, we know that 1/2 ≤ |qp|. using the fact that Vp has bounded
aspect ratio we get:

cfs(x) ≥ rp ≥ Rp/τ ≥
1

2τ

Case 2: Suppose that b 6∈ Vp. Thus |bp| > rp. We next will prove a lower bound on
|qp|. WLOG we can write c, q, b, and p in Cartesian coordinate. The proof will hold any
dimension but for the simplicity of the exposition we will only consider the plane containing
the points c, q, b, and p. Thus we may assume that c = (0, 0), q = (1/2, 0), b = (1, 0), and
p = (x, y).
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Since we are lower-bounding |qp|, WLOG we may assume that |cp| = 1, i.e., x2 + y2 = 1.
We get the following chain of inequalities:

|qp| ≤ Rp ≤ τrp ≤ τ |bp|

Define d := |qp|. Consider the calculation of d2

d2 = (x− 1/2)2 + y2 = 5/4 + x (1)

Here we used the fact that x2 + y2 = 1. By a similar calculation we get that (|bp|)2 = 2− 2x
Thus (5/4− x) ≤ τ 2(2− 2x), i.e.

x ≤ 1− 1

4(2τ 2 − 1)
(2)

Using Equations 1 and 2 we get:

d2 ≥ 5/4− (1− 1

4(2τ 2 − 1)
) = 1/4(1 +

1

2τ 2 − 1
) (3)

If we write d = 1/2+ δ then cfs(x) ≥ δ. Using Equation 3 and the fact that δ2 + δ+1/4 = d2

we get that

δ2 + δ ≥ 1

4(2τ 2 − 1)
(4)

Thus by the quadratic formula we get that

δ ≥
−1 +

√

1 + 1
2τ2−1

2
(5)

Thus for τ > 1/
√

2 the local feature size at x is bounded away from zero and the bound is
only a function of τ .

We now a state a lemma that is functionally equivalent to Lemma 6.1, but allows the
gap-ball to have one vertex encroaching it.

Lemma 6.4 Suppose M is a τ -quality Voronoi diagram and p is a Voronoi vertex. Define
M ′ as the Voronoi diagram of V (M)\{p}. Suppose B is a gap-ball of radius r in M ′, then
for all x ∈ B:

cfs
M

(x) ≥ c6.4r

Proof: For the proof, we will simply remove p, show that we can still apply Lemma 6.1,
and then put p back in, and show that the result is not much changed.

Claim: M ′ is a ((2 + τ)τ)-quality Voronoi diagram. Consider any vertex v in M ′ whose
cell Vv is different from it’s cell in M . Then v must have been adjacent to p. We argue that
Vv still has relatively good aspect ratio.

First we note that rM ′(v) ≥ rM(v).
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Second, we have by adjacency that RM ′(v) ≤ 2RM(v) + RM(p).
Since v and p were neighbors, we have RM (p) ≤ τRM (v).
From which it follows RM ′(v) ≤ (2 + τ)RM (v).
Since RM(v)/rM(v) ≤ τ by assumption, we then combine inequalities to obtain:

RM ′(v)

rM ′(v)
≤ (2 + τ)τ

So the aspect ratio of Vv is still quality.
Since we have shown that M ′ is quality, we can then apply Lemma 6.1 to a given x ∈ B,

and obtain:
cfs
M ′

(x) ≥ c6.1r

Where c6.1 depends only on (2 + τ)τ .

We now claim that cfsM ′(x) ≤ 2τ cfsM(x).
Let q be the Voronoi vertex of M such that x ∈ Vq. Let w be the nearest Voronoi node to x.
By construction, w must be on Vq, so |qw| ≤ RM(q).
We use the fact that the cfs of a Voronoi node is not changed by the single deletion of a
Voronoi vertex, since it is equidistant to d + 1 vertices.
i.e. cfsM ′(w) = cfsM(w) = RM(q). We have:

cfs
M ′

(x) ≤ cfs
M ′

(w) + |xw| ≤ cfs
M

(w) + RM(q)

≤ 2RM(q) ≤ 2τrM (q) ≤ 2τ cfs
M

(x)

Summing up, we combine these inequalities to find that:

cfs
M

(x) ≥ c6.1

2τ
r = c6.4r

for a suitably defined constant c6.4, where c6.1 in this equation depends on (τ + 2)τ .

6.2 Grading guarantees

We now state two lemmas that relate the grading Γ of a Voronoi diagram to the quality τ .
These lemmas are not really new, but we include more simple formulations than prior work.

Lemma 6.5 (Quality Gives Bounded Grading) Suppose M is a τ -quality Voronoi di-
agram. Then there exists a constant c6.5 depending only on τ such that ΓM(x) ≤ c6.5 for any
x ∈ CC(M).

Proof: Let B be any gap-ball with x on the surface. By Lemma 6.1, so we obtain that:

cfs
M

(x) ≥ c6.1(τ)GM(x)
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But then clearly,

ΓM(x) ≤ 1

c6.1(τ)

So we define c6.5(τ) = 1/c6.1(τ) and we are finished.

Lemma 6.6 (Bounded Grading Gives Quality) Suppose we have a Voronoi diagram
M , and suppose that ΓM(p) ≤ ρ at every vertex p ∈M . Suppose further that every Voronoi
node of M is contained in CC(M). Then M is a 2ρ-quality Voronoi diagram.

Proof: Let p ∈ M be given. Rp is the distance from p to v, the circumcenter of some
Delaunay simplex. Consider the ball centered at p of radius Rp. Given our assumptions, this
is a gap-ball, so we have:

Rp ≤ GM(p)

Note further that 2rp = NNM(p), so it follows that:

Rp

rp

≤ 2GM(p)

NNM(p)
= 2ΓM(p) ≤ 2ρ

Hence Vp has aspect ratio at most 2ρ.
We note that the hypothesis for Lemma 6.6 is satisfied when we have a τ -quality mesh

such that the diametral ball of every mesh simplex on the convex hull is unencroached.

6.3 Packing lemma

We can prove a Lemma that relates to packing a set of some vertices around a given center.
This general notion will be employed in several of the proofs about quality meshes and
Voronoi diagrams. Intuitively, the distance between these vertices as we move away from the
center increases geometrically, like in a quality mesh. If we take a set of annuli whose radii
incrementally double, Lemma 6.7 shows that there will be a constant number of vertices in
each annulus.

Everywhere that a term related to log L/s appears in the analysis of SVR is a result of
this lemma. In particular, the radii of the annuli generally range from L down to s and
decrease by a factor of two each time, so there will be log L/s total annuli, each containing
a constant number of vertices.

Lemma 6.7 Consider an annulus of radii (R1, R2) in d dimensions. Consider a family of
balls where each ball has its center within the annulus; each ball has radius at least r; and
no ball includes any other ball’s center. The number of such balls that fit is bounded by:

(2
R2

r
+ 1)d − (2

R1

r
− 1)d For R1 > r/2

(2
R2

r
+ 1)d For R1 ≤ r/2
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Figure 11: An illustration showing the intuition behind Lemma 6.7 and its later uses. A
quality Voronoi diagram packs vertices around the small central feature. There are only a
constant number of vertices in each radius-doubling annulus (shown in gray).

Proof: First, reduce the radius of every ball to exactly r. Clearly this can only reduce the
volume of intersection between each ball and the annulus, increasing the number of balls
that can fit.

Next, halve the radius of each ball. This yields a packing of the balls: no two balls
intersect except at a point. Again, this can only reduce the volume of each ball.

Let Vd
1 be the volume of the unit sphere in d dimensions. A shrunken ball therefore has

volume a = Vd(r/2)d.
One of these shrunken balls on the boundary of the annulus can only enclose space within

distance r/2 of the annulus boundaries; therefore, if we grow the annulus by r/2 in both
directions, we will have an object that completely includes all the balls. The enlarged annulus
has volume A = Vd(R2 − r/2)d − Vd(max(R1 − r/2, 0)d.

Because the shrunken balls are non-overlapping and are completely enclosed in the en-
larged annulus, we have at most A/a balls that can fit, which, after some algebra, yields the
result.

6.4 Degree bound

The lemmas just presented allow a generalization of the bounded-ply theorem of Miller et
al. [MTTW95].

Lemma 6.8 (Quality gives bounded degree) Suppose we have a mesh M of quality τ .
Then there is a constant ∆ depending only on τ and d such that any empty ball centered in
CC(M) intersects at most ∆ cells of M .

1Vd = 2πd/2

d Γ(d/2) , where Γ is the recursive function Γ(d + 1) = d Γ(d). This is not the same Γ as we have

been using for the grading of a mesh. This is the real Γ that all those mathematicians use.
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Proof: Let us name the empty ball: b = B(c, r).
A Voronoi cell VM(v) that intersects b has some point x ∈ b ∩ VM(v). By Lemma 6.3 we

know that cfsM(x) ≤ 2RM(v). By Lemma 6.1 we also know that cfsM(x) ≥ c6.1r.
In other words, any Voronoi cell that intersects b is defined by a vertex at distance O(r)

from c, and has in-radius Ω(r). By the Packing Lemma, there can only be O(1) such objects.

This implies that the Delaunay graph has bounded ply; the Voronoi diagram has bounded
degree; and, the reason for our generalization, any lower-dimensional protective ball is only
watched by a bounded number of higher-dimensional Voronoi cells.

The bound holds if we allow O(1) points to encroach on a ball also: removing O(1) points
from a τ -quality mesh clearly will give a bounded-quality Voronoi diagram M ′ (of quality
exponentially worsening with the number of removed points). The ball will at worse encroach
every cell it encroaches in M ′, plus the cells of the O(1) points, which is still a constant.

7 Spacing

The key lemma that Ruppert used in his paper stated that the algorithm will never insert
two points more than a constant factor closer to each other than what is dictated by the lfs
function over the input – in fact, it will never even consider inserting a point too close to a
neighbour. By controlling the spacing of output vertices, Ruppert could then prove that his
algorithm terminates with a mesh within a constant factor of the optimal size. We will do
the same; we also need to control the spacing in order to achieve our time bounds.

The statement of the theorem is as follows:

Theorem 7.1 (Spacing Theorem) For any point p considered for insertion into a mesh
M , whether or not p is eventually inserted, we have that: lfs(p) ≤ CNN(p)

The proof follows in the next two subsections.
From Theorem 7.1 we get a corollary which allows us to bound the nearest neighbour of

a mesh vertex at any time – in particular, at the end of the algorithm:

Corollary 7.2 In any mesh M produced during the run of the algorithm, for any mesh
vertex v ∈M , we have that: lfs(v) ≤ (1 + C)NNM(v)

Proof: At the time we inserted v, we had (by the theorem) that lfs(v) ≤ CNNMv
(v). If

it is the case that NNMv
(v) = NNM(v) then the statement is proven. Otherwise, consider

v′ the nearest neighbour of v in M . When v′ was inserted, lfs(v′) ≤ cNNMv′
(v′) again

by the induction hypothesis. Clearly, NNMv′
(v′) ≤ |vv′| since v existed in Mv′ . Ergo,

lfs(v′) ≤ CNNM(v). Plugging into the Lipschitz condition:

lfs(v) ≤ lfs(v′) + |vv′|
≤ C|vv′|+ |vv′|
≤ (1 + C)|vv′|

And |vv′| = NNM(v) by definition of v′.
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Figure 12: Destroying the skinny Voronoi cell of v in the clean phase. SVR tries to add the
farthest Voronoi node p, but it might yield to some input point p′ that is nearby p.

7.1 PPS Model

The simplest case is for the periodic point set algorithm of Section 4.
The algorithm can be seen as iteratively considering a sequence of points for insertion,

inserting some and discarding others; this produces a sequence of meshes. The proof of the
theorem will be by induction on that sequence. We denote by Mp the most recent mesh, M
or earlier, in which point p was considered for insertion.

The proof of the theorem proceeds by cases. We consider two constants C0 and Cd,
the first relating to input vertices, the second to Steiner points. We shall constrain these
constants (in boxes for ease of reading), and show that the set of constrains admits a solution.
The cases are according to the following decision tree:

• If p is a Steiner point, then:

– If the algorithm is executing a break move, then

lfs(p) ≤ 2NNM(p)

Proof: If the algorithm is attempting to insert a Voronoi node during a break
move, then the cell being refined using p must be the Voronoi cell of an input
vertex; and the cell must contain a second input vertex. Therefore, there are two
input vertices within the diameter of the cell, which can be used to defined the
lfs(p). But NNM(p) is no larger than half the cell diameter.

This case constrains Cd ≥ 2
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Figure 13: Inserting an input vertex close to an input.

– Otherwise, the algorithm is executing a clean move, and

lfs(p) ≤ (2τ−1(1 + C) + 1)NNM(p)

Proof: Corollary 7.2 tells us that by induction, lfs(v) ≤ (1+ C)NNM(v). Mean-
while, since the cell is ill-shaped, we know that R(v)/r(v) > τ , thus NNM(v) <
R(v)/τ . Furthermore, p is the farthest Voronoi node, so R(v) = |vp| = NNM(p).
Using the Lipschitz condition, we know

lfs(p) ≤ lfs(v) + |vp|

Substitutions lead to the desired result. This is exactly analogous to Ruppert’s
proof.

This case constrains Cd ≥ 2τ−1(1 + C) + 1

• Otherwise, p is an input vertex. Let v be the vertex in whose cell p lies (that is, v is
the nearest neighbour of p).

– If v is an input vertex,
lfs(p) ≤ NNM(p)

Proof: This is immediate by definition of lfs(p) and of v.

This case constrains C0 ≥ 1

– Otherwise v is a Steiner point, and

lfs(p) ≤ (1 +
Cd

k
)NNM(p)

Proof: We know lfs(v) ≤ CdNNMv
(v) from the prior cases. Furthermore, we

know that v did not yield to input vertex p, which means that |vp| ≥ kNNMv
(v).

Finally, we use the Lipschitz condition and some algebra to prove the result.

This case constrains C0 ≥ 1 + Cd

k
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The only thing that remains to be proven is that C0, and Cd are, in fact, strictly positive
constants as claimed.

From Cd ≥ 2 we get the constraint C0 ≥ 1 + 2
k
.

From Cd ≥ 2τ−1(1+C)+1 then some algebra shows that C0 ≥ (1+k)τ+2
kτ−2

. To have positive
non-zero constants, this adds the additional constraint that kτ > 2.

To finish the theorem, then, we say that for kτ > 2, there exists a constant (namely C0)
that satisfies the condition lfs(p) ≤ CNN(p).

7.2 Full algorithm

For the fully-general case, we need to add a small amount of complication. Instead of just
two constants C0 and Cd we need one for every dimension: Ci is the spacing for a Steiner
vertex added as the result of splitting an i-dimensional facet.

The proof for Cd is identical to the point set proof, yielding Cd ≥ 2 and Cd ≥ 2τ−1(1 + C) + 1 .

The proof for C0 is almost identical, except that now C0 depends on C1 rather than Cd. Thus

we have: C0 ≥ 1 + C1

k
.

For Ci, we are considering inserting a Steiner point p which is the circumcenter of a
ball B. The reason we want to insert p is that some point q we considered for insertion
encroached on B. We use the following lemma:

Lemma 7.3 Let q be a Voronoi node in a mesh M that encroaches on a lower-dimensional
protective ball B. Then

NNM(q) ≤ 2

k
r(B)

Proof: Let M− be the lower-dimensional mesh of which B is a protective ball. The pro-
tective ball is defined by some vertices, including s. If s ∈ M , then clearly NNM(q) ≤ |qs|.
Otherwise, kNNM(q) ≤ |qs| or else q would have yielded to s. Meanwhile, we also know that
|qs| ≤ 2r(B) since both are in or on the boundary of the ball. Substituting the prior bounds
gives us the result.

Intuitively, this lemma says that the algorithm never processes an encroachment on a
protective ball until the protective ball is large with respect to the current feature size.
Note that we can tighten the result for the case that B is in dimension d = 1: when q is
encroaching on the diametral ball of a segment. The maximum distance from q to s then is
just
√

2r(B) rather than 2r(B). The lemma can be tightened for higher dimension also, but
only by a few percent, unless we modify the algorithm.

Comparing to prior work, this is precisely the same bound as has been proven before,
except that because of the vertex yielding rule we lose a factor 1/k.

We can now state the main lemma of this section:

Lemma 7.4 When the algorithm considers refining a mesh M of dimension i by inserting
p, then:

lfs(p) ≤ CiNNM(p)
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Decision tree:

• If q is an input vertex, then lfs(p) ≤ NNM(p). Proof: B is already encroached by
another input vertex w, or else the algorithm wouldn’t split B. We know that w is the
nearest neighbour of p since w is in the mesh and only one vertex can encroach on B:
NN(p) = |pw|. Let u be the closer of q and w; then |pw| ≥ |pu|. Meanwhile, by the
assumption that input features meet only at orthogonal angles, we know that u must
lie on a different input feature than p, so lfs(p) ≤ |pu|.
In other words, this requires that Ci ≥ 1

• Otherwise, q is a Steiner point. Proof: Let M+ be the mesh attempting to insert q.
Let j = CD(q) = dim(M+) > i. We know we considered q for insertion in M , therefore
lfs(q) ≤ CjNN(q). Furthermore, we know NN(p) is the radius of B, implying that since
q encroached on B, |pq| ≤ NN(p). Finally, from Lemma 7.3, NNM+(q) ≤ 2

k
NNM(p).

Algebra:

lfs(p) ≤ lfs(q) + |pq|
lfs(p) ≤ CjNN(q) + NN(p)

lfs(p) ≤ (
2

k
Cj + 1)NN(p)

Therefore, this requires that Ci ≥ 2
k
Cj + 1 for all j > i; in particular, it requires

Ci ≥ 2
k
Ci+1 + 1 for i ≥ 2 and C1 ≥

√
2

k
C2 + 1

All in all, this means that we have:

C0 ≥ 1 + k−1C1

C1 ≥ 1 +

√
2

k
C2

Ci ≥ 1 +
2

k
Ci+1

Cd ≥ max(2, 1 + 2
1 + C0

τ
)

Solving for C0 shows that the Spacing Theorem holds whenever τkd > 2d−1/2 .
We now prove a spacing theorem that will be useful for later timing analysis. This

theorem essentially states that the size of lower dimensional meshes does not shrink beyond
a constant factor of the highest dimensional mesh. The proof is similar to the previous
spacing results.

Lemma 7.5 Suppose p is considered for insertion in Mi (1 ≤ i < d) at some time, then at
that time there exists a constant α such that α cfsi(p) > cfsi+1(p).
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Proof: Suppose in the first case that p was considered as a split move (the center of a ball
b) that was encroached by q. By Lemma 7.3, we have

NNMi+1
(q) ≤ 2

k
R(b) =

2

k
cfs
i

(p)

q was some Voronoi Node (or split point) considered for insertion in Mi+1, so in either case

NNMi+1
(q) = cfs

i+1
(q)

Since p was the center of ball b, we also have cfsi(p) = R(b). Using Lipshitz, we can combine
this to obtain:

cfs
i+1

(p) ≤ cfs
i+1

(q) + |pq|

= NNMi+1
(q) + R(b)

≤ (
2

k
+ 1)R(b) = (

2

k
+ 1) cfs

i
(p)

So as long as there exist α ≥ 1 + 2
k

, then the lemma will be satisfied in this case.

Suppose in the second case that p is a Voronoi node of a skinny Voronoi cell belonging
to q.
As in previous lemmas, we can apply the hypothesis inductively on q or its nearest neighbor
of Mi, and we find that (1 + α) cfsi(q) ≥ cfsi+1(q). We have:

cfs
i

(p) = |pq| = Rq ≥ τrq =
τ

2
cfs
i

(q) ≥ τ

2(1 + α)
cfs
i+1

(q)

Then:

α cfs
i

(p) ≥ τ

2
cfs
i+1

(q)− cfs
i

(p)

≥ τ

2
(cfs
i+1

(p)− |pq|)− cfs
i

(p)

=
τ

2
cfs
i+1

(p)− (1 +
τ

2
) cfs

i
(p)

Thus:
2

τ
(α + 1 +

τ

2
) cfs

i
(p) ≥ cfs

i+1
(p)

Or simply:

(
2α

τ
+

2

τ
+ 1) cfs

i
(p) ≥ cfs

i+1
(p)

So we must find an α such that α ≥ 2α
τ

+ 2
τ

+ 1, but this simply requires that

α ≥ (τ + 2)/(τ − 2)
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Clearly, we can always take an α so large when τ > 2.
Combining Lemma 7.5 over all dimensions, we can see that there exist a constant (expo-

nential in dimension) so that cfsM(p) ∈ Ω(cfsMd
(p)) for any feature mesh M and any point

p ∈ M . In particular, this allows us to lower bound the size of any protective balls which
are queued.

Lemma 7.6 There exists a constant β, such that for any protective ball b with center p in
mesh M : from a lower dimensional mesh,

R(b) ≥ β cfs
d

(p)

The lemma follows trivially, since R(b) = cfsM(p) ∈ Ω(cfsd(p)) by earlier arguments.

8 Quality maintenance

The key property on which all our bounds depend is that at every stage of the algorithm, the
mesh is always a quality mesh. This determines our runtime and space bounds. The quality
is not the τ quality bound that the user calls for – we cannot guarantee that the quality
won’t degrade by some amount – but is only smaller by a constant function of parameters τ
and k, and of the dimension d.

To prove the result we first need some technical lemmas:

Lemma 8.1 (A Break Move Only Marginally Decreases NN) For any vertex u in a
mesh M , executing a break move to obtain M ′ decreases the nearest neighbor of u by at most
a factor of (1− k)/2, that is:

NNM ′(u) ≥ 1− k

2
NNM(u)

Proof:
Suppose we are breaking the Voronoi cell of p. Suppose its farthest Voronoi vertex is v

at radius Rp.
There are two cases, either we insert v, or we yield to a point v′. For any u ∈ M ,

NNM(u) = NNM ′(u) unless v (or v′) is the new nearest neighbor of u.
Case 1: We inserted v. If v is the new nearest neighbor of u, then the nearest neighbor

of u is at most cut in half:

NNM(u) ≤ |up| ≤ |uv|+ Rp ≤ 2|uv| ≤ 2NNM ′(u)

Case 2: We yielded to v′. If v′ is now the nearest neighbor of u, then the argument is
the same with a worst constant. First we have:

|uv| ≤ 1

1− k
|uv′|
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From which it follows:

NNM(u) ≤ |up| ≤ |uv|+ |vp| ≤ 2|uv| ≤ 2

(1− k)
|uv′| = 2

(1− k)
NNM ′(u)

Lemma 8.2 (Cleaning Preserves Current Feature Size) If we begin with a mesh M ′,
and we execute a series of moves consisting only of clean moves to obtain M ′′, then for every
vertex v ∈M ′′, we have:

cfs
M ′

(v) ≤ c8.2NNM ′′(v)

Proof:
We first claim that at the time of insertion of any vertex v,

cfs
M ′

(v) ≤ (c8.2 − 1)NNM ′′

v
(v)

This fact has the obvious corollary that for any mesh M ′′,

cfs
M ′

(v) ≤ (c8.2)NNM ′′(v)

(the proof is identical to Corollary 7.2)
We proceed then to prove the fact as above. Suppose we wish to break some skinny

Voronoi cell of p. There are two cases, either we insert the center v or we yield to some input
point v′.

Suppose first we insert the center, v. Then we have by induction:

cfs
M ′

(v) ≤ |vp|+ cfs
M ′

(p) ≤ Rp + c8.2NNM ′′(p)

≤ Rp + 2c8.2rp

Since p was skinny:

≤ Rp
2c8.2

τ
=≤ (1 +

2c8.2

τ
)Rp = (1 +

2c8.2

τ
)NNM ′(v)

The second case is when we yield to some input point v′.
Proof is similar:

cfs
M ′

(v′) ≤ |v′p|+ cfs
M ′

(p) ≤ (1 + k)Rp + c8.2NNM ′′(p)

≤ (1 + k)Rp + 2c8.2rp

≤ (1 + k +
2c8.2

τ
Rp ≤ (1 + k +

2c8.2

τ

1

1− k
NNM ′′(v′)
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It can be seen that if we set c8.2 > (1 + k)τ/(τ(1− k)− 2) then the induction hypotheses

hold properly. Note here that we now require τ · (1− k) > 2 .

We will now show Lemma 8.3, which roughly states that the quality of the mesh is
only marginally decreased by a single break move. This lemma is fairly intuitive since a
break move inserts one vertex that is relatively far from its neighbors, and so it does not
significantly degrade the mesh quality.

Lemma 8.3 (Break Quality) There exists τ ′ depending only on τ and k such that M ′ is
a τ ′-quality mesh.

Proof: Suppose v is a vertex inserted by a break move into M to obtain to M ′.
We note that for vertices of a mesh, cfsM(u) = NNM(u), so ΓM can be written with NNM

in the denominator for vertices of M .
For every point x in M ′, clearly GM ′(x) ≤ GM(x), since refinement can only decrease G.
And by Lemma 8.1, for every vertex u 6= v in M ′, NNM ′(u) ≥ 1−k

2
NNM(u).

Consider also the new vertex v. We have that cfsM(v) ≤ 2Rp, where p was Voronoi site
that was broken to create M ′. We also have that NNM ′(v) ≥ (1−k)Rp, from which it follows
that NNM ′(v) ≥ 1−k

2
cfsM(v).

Since M was τ -quality, by Lemma 6.5 we then obtain that for every vertex u ∈M ′:

Γ′
M(u) ≤ 2

(1− k)
ΓM(u) ≤ 2c6.5(τ)

(1− k)

Since ΓM ′ is bounded at every vertex, it then follows from Lemma 6.6 that M ′ is a
τ ′-quality mesh where τ ′ = 4c6.5(τ)/(1− k).

We now show Lemma 8.4, which roughly that the cleaning process is approximately
monotone with respect to quality. While cleaning to improve the mesh quality from τ ′ back
to τ , we will never reach an intermediate stage where the quality of the mesh is more than
marginally worse.

Lemma 8.4 (Intermediate Quality) There exists τ ′′ depending only on τ and k such that
every M ′′ is a τ ′′-quality mesh.

Proof: Assume that we have M ′′, a τ ′′-quality mesh obtained in the process of cleaning
M ′. First note as before that for every point x, GM ′′(x) ≤ GM ′(x).
Note that by Lemma 8.2, we have that for every vertex v,

NNM ′′(v) ≥ c8.2 cfs
M ′

(v)

And since M ′ was τ ′-quality, we can combine with Lemma 6.5 to obtain that:

ΓM ′′(v) ≤ 1

c8.2
ΓM ′(v) ≤ c6.5(τ

′)

c8.2

Since ΓM ′′ is bounded at every vertex, it then follows from Lemma 6.6 that M ′′ is a
τ ′′-quality mesh where τ ′′ = 2c6.5(τ

′)/c8.2.
Corollary 8.5 is the obvious corollary following from Lemmas 8.3 and 8.4.
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Theorem 8.5 (Always Quality) At any point during Sparse Voronoi Refinement, the in-
termediate mesh is a τ ′′-quality mesh.

Corollary 8.6 (Sparse Mesh) Any intermediate mesh during the lifetime of Sparse Voronoi
Refinement is sparse, i.e. there is a constant depending only on τ and k that bounds the de-
gree of every vertex.

Proof: This follows directly from Corollary 8.5 and Theorem 3.15 in [MTTW95]. A Delau-
nay mesh with bounded constant radius-edge ratio is of bounded constant degree depending
only on the quality (τ ′′).

9 Runtime analysis

When we look at the algorithm, the astute reader will intuit that there are two kinds of
operations occurring. One kind is trivial to bound to run in O(1) time thanks to the spar-
sity result of the previous section. The other kind is non-trivial: how big is Ballsv in
ForceInsert, for instance?

To handle this, we will amortize the cost of handling a protective ball over the lifetime of
the ball. We can think about Point Location Events (PLEs), as a pair consisting of a Split
or ForceInsert along with a protective ball being affected. We will claim that the total
runtime is just the number of PLEs. We will bound this number of events with an amortized
argument, claiming a bound on the number of PLEs per protective ball.

The main tool of this section will be to show that in some sense, PLEs are packed around
a protective ball. Whenever we have a PLE, the ForceInsert occuring is largely disjoint
from other possible events, relative to the distance at which a protective ball is affected.

We now formalize these notions, including later definitions for a PLE, in a rigorous proof.
In all the cases, we will be considering some PLE involving the ForceInsert of a point

q′ affecting a protective ball with center p, and the goal will be to bound the proximity of p
and q′ through intermediaries. We will frequently refer to the scenarios as depicted in Figure
14 and Figure 15.

9.1 Currency exchange lemmas:

Lemma 9.1 In the Split scenario, NN(q) ≤ O(NN(q′)).

Proof: We know that |qq′| ≤ kNN(q). Therefore, there is an annulus of width (1−k)NN(q)
separating q′ from a region that may have points in it: NN(q′) ≥ (1− k)NN(q).

Lemma 9.2 In the Split case, R(v) ≤ O(NN(q)).

Proof: Consider a point x ∈ B(q,NN(q)) ∩ V (v). Such a point exists because we know we
Split only searches Voronoi cells that intersect the circumball centered at q.
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Lemma 9.3

Figure 14: The ForceInsert Scenario. Left: The Voronoi cell of v is modified by the
ForceInsert of q′, and so every point p in Balls(v) must be checked for relocation. Right:
When we consider the presence of subfacets, any protective ball b (center p) in Balls(v)
must be checked for relocation. In either case, we will claim that p and q′ are not relatively
too far apart, so we will charge the ForceInsert PLEto their proximity.

By virtue of x being within V (v), the current feature size cfs(x) must be at least r(v),
since at the least, x is equidistant from v and a second point, and the closest equidistant point
is by definition exactly r(v). Furthermore, r(v) ≥ R(v)/τ because the cell is of bounded
aspect ratio.

Meanwhile, by virtue of x being within B(q,NN(q)), where q is a circumcenter, cfs(x) is
no further than twice the radius NN(q) from at least d + 1 points.

Putting these together yields the result: R(v) ≤ τ cfs(x) ≤ 2τNN(q).

Lemma 9.3 In the ForceInsert scenario, let M be the mesh before q′ is inserted, and let
M ′ be the mesh after q′ is inserted. Then: R′

M(q) ≤ O(NNM(q′)).

Proof: Because VM ′(q′) is a quality cell, RM ′(q′) ≤ τrM ′(q′) = τ
2
NNM ′(q′). But q′ is the

only difference in spacing between M and M ′, so NNM ′(q′) = NNM(q′).
Thus RM ′(q′) ≤ τ

2
NNM(q′)

Lemma 9.4 In the ForceInsert scenario, let M be the mesh before q′ is inserted, and let
M ′ be the mesh after q′ is inserted. Then: RM(v) ≤ O(NNM(q′)).

Proof: Consider a point x ∈ VM ′(q′) ∩ VM(v).
As before, we know that cfsM(x) ≥ rM(v) ≥ RM(v)/τ .
By the Lipschitz condition, cfsM(x) ≤ cfsM(q′) + |xq′|. The farthest Voronoi node from

q′ in M ′ (after q′ is inserted) is at distance RM ′(q′). A Voronoi node has d + 1 equidistant
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Figure 15: The Split Scenario. Left: When performing a Split of q, we query Balls(v) to
see if it contains any point p to which we could yield. Eventually, we ForceInsert some q′.
(Perhaps q is q′, or perhaps we yielded to some q′). We claim that p and q′ are not relatively
too far apart, so we will charge the Split PLE to their proximity. Right: In the case where
subfacets are present, p is the center of some ball b who is in Balls(v).
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mesh vertices; only one of them is q′, so cfsM(q′) ≤ 2RM ′(q′). More simply, |xq′| ≤ RM ′(q′),
leading to cfsM(x) ≤ 3RM ′(q′). Finally, Lemma 9.3 leaves us with: RM(v) ≤ 3τ2

2
NNM(q′).

Lemma 9.5 In both Split and ForceInsert scenarios, r ≤ O(R(v)).

Proof: Consider a point x ∈ B(p, r) ∩ V (v).
By virtue of x being within B, we know from Lemma 6.1 that cfs(x) ≥ c6.1 cfs(p). Fur-

thermore, B is singly-encroached, so cfs(p) ≥ r.
Meanwhile, by virtue of x being within V (v), we know that cfs(x) ≤ 2R(v).
Putting these together yields the result: r ≤ cfs(p) ≤ cfs(x)/c6.1 ≤ 2

c6.1
R(v)

Lemma 9.6 In the Split case, |pq′| ≤ O(NN(q′)).

Proof: Consider x ∈ B(p, r) ∩ V (v) and x′ ∈ B(q,NN(q)) ∩ V (v).
By the triangle inequality, |pq′| ≤ |px|+ |xv|+ |vx′|+ |x′q|+ |qq′|. We can fill each term

in trivially: |px| ≤ r and |xv| ≤ R(v) by the definition of x. |vx′| ≤ R(v) and |x′q| ≤ NN(q)
by the definition of x′. Finally, |qq′| ≤ kNN(q) by construction.

Computing the sum and converting (via the currency-conversion lemmas) to units of
NN(q′) yields the result:

|pq′| ≤
4τ(1 + 1

c6.1
) + (1 + k)

1− k
NN(q′)

Lemma 9.7 In the ForceInsert case, |pq′| ≤ O(NN(q′)).

Proof: Consider x ∈ B(p, r) ∩ VM(v) and x′ ∈ VM ′(q′) ∩ VM(v).
By the triangle inequality, |pq′| ≤ |px|+ |xv|+ |vx′|+ |x′q′|. As in the Split case, |px| ≤ r

and |xv| ≤ R(v) follow by the definition of x; similarly, |vx′| ≤ R(v) and |x′q′| ≤ RM ′(q′).
We can convert these using the currency-conversion lemmas to reach the conclusion |pq′| ≤
(3τ 2(1 + 1

c6.1
) + τ/2)NN(q′).

Definition 9.8 Consider an event in an i-dimensional mesh when the algorithm needs to
do O(1) work and charges it to a subfacet B = B(p, r); subsequently, point q′ is inserted.

Such an event is dubbed a Packed Point Location Event if |pq′| ≤ NN(q′). We tag the
event with the dimension of the mesh that caused it, and with the (abbreviated) name of the
function, either S for Split, or F for ForceInsert.

For instance, PLEi
S(B, q′) means a Split into an i-dimensional mesh caused a PLE on

the protective ball B, and subsequently actually inserted q′.

Lemma 9.9 (Annulus Proof) Consider a point p in space. At most O(1) PLEs occur
around p that insert points in an annulus A(p, l, 2l) = B(p, 2l)− B(p, l) for any l.
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Proof: Consider any two PLEs a and b. The newer one has an empty ball of radius
NN(a) ∈ Ω(|pa|) = Ω(l) by the definition of a PLE. Therefore, |ab| ∈ Ω(l). Because this is
true of every pair of PLEs in the annulus around p, every PLE has an ball of radius Ω(l)
around it that is empty of any other PLE. Obviously, only a constant number of such empty
balls can fit into the annulus.

Lemma 9.9 and the definition of a PLE together directly imply the following:

Corollary 9.10 Consider a protective ball b = B(p, r). Let cfs0(p) be the feature size at p
when the ball was created (either in the call to ForceInsert, or at initialization). Let cfs1(p)
be the feature size at p when the ball is last affected (either by being destroyed in ForceIn-
sert, or because no further vertices are inserted nearby). Then at most O(lg(cfs0(p)/ cfs1()))
PLEs of any type can occur that affect b.

9.2 Full cost accounting

Not all the cost of Split and ForceInsert can directly be charged to PLEs. Here, we
account for all costs.

Lemma 9.11 All but O(1) of the work of ForceInsert can be charged to PLEs.

Proof: The costs of ForceInsert are:

• Inserting the point and updating the mesh. The cavities C and C ′ have size O(1)
thanks to Lemma 6.8. Thus, this takes O(1) time.

• Gathering all the protective balls and reassigning them. Each ball b′ in S incurs
O(1) work as we iterate over S a constant number of times to reassign all the lower-
dimensional protective balls. Furthermore, we know from Lemma 9.7 that the geometry
of the situation matches the requirement for calling this a PLE on b′.

• Marking skinny cells. C ′ has constant size, so this takes only O(1) work.

• Calls to ReplaceBalls. Again, C and C ′ have constant size; furthermore, there are
only d dimensions.

Lemma 9.12 All but O(1) of the work of each invocation of Split can be charged to PLEs.

Proof: A similar analysis to the above almost works. There remains one complication:
making sure that the recursive invocation in line 15 happens only O(1) times before we
finally insert a point. This is required to prove that each ball b ∈ S is only queried O(1)
times per insertion, as is needed for the definition of a PLE.

By Lemma 7.6, every protective ball we might yield to has size Ω(r). If we split a ball,
then the new balls it creates necessarily have smaller radius. If we needed to split balls
ω(1) times in a row, then the new ball would have been split to size o(r), a contradiction.
Therefore, every ball inspected in Split is inspected at most O(1) times before a point is
finally inserted.
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Theorem 9.13 Total algorithm runtime charges sum to O(n lg L/s + m).

Proof: Every time we insert a vertex, we pay for O(1) overhead in Split and ForceInsert
as we have just proved.

The PLE charges we account for as follows. For input protective balls (and input points),
the smallest PLE has radius Ω(s) thanks to the spacing proof (Lemma 7.1). Meanwhile,
no points are inserted outside the mesh, so the largest PLE has radius O(L). Thus each
protective ball present at initialization time will have associated with it O(lg L/s) PLEs. By
definition, there are n initial balls, leading to the O(n lgL/s) term.

The remainder of the protective balls created during the algorithm were necessarily cre-
ated by ForceInsert. Any such ball b has cfs0(b) ∈ O(cfs1(b)), so PLE charges are O(1)
each. Every such ball is created by a ForceInsert which adds a point to the output (m
total), and each ForceInsert creates only O(1) new balls according to Theorem 8.6. Thus
the total PLE charges on non-input protective balls are O(m).

10 Conclusions

We have shown how to produce, in near-optimal time, a conformal mesh of the input domain,
in arbitrary dimension. While this is a first, there are many remaining questions.

Firstly, we allow the user to demand a value of τ ≥ 2d−1/2, equivalent to a radius-edge
ratio of ρ ≥ 2d−3/2. With some proof work (without changing the algorithm at all), we know
how to improve this slightly in d > 2, but not substantially. In two dimensions, our bound
matches Ruppert’s original bound of 20.7◦, or ρ ≥ 2

√
2 – and indeed it should, since our

proof is based on the same precepts. In the decade since the publication of Ruppert’s result,
his proof has been improved to allow the user to demand angles of more than 25◦; and it is
believed that the correct answer is that the user should be able to demand almost 30◦ on any
input (of course, on some inputs, the user can demand even larger angles). It is less clear
how the bound changes according to dimension, but we believe our stated bound is much
too conservative.

Most egregiously, we have demanded that the user must give us a PLC with all angles
orthogonal or obtuse. Several recent papers have begun addressing the issue of removing
the 90◦ angle restriction [CP03, PW04]. These techniques seek to create, at initialization,
a protective region around small angles, requiring an oracle that will provide the algorithm
with the lfs at many points. This requirement leads to very poor runtime bounds with any
naive analysis. To incorporate these methods into SVR, the natural method would be to
create some protective region that could adapt as SVR recovers more input features. Indeed,
the recent work of Pav and Walkington [PW04] appears to be moving in this direction, as
they attempt to reduce the oracular requirements. We believe that as algorithms for three
dimensional meshing with arbitrary domains continue to mature, they can be incorporated
into SVR to achieve better runtime guarantees.

Certainly, future work will include the parallelization of SVR, which is important for
any modern large-scale meshing algorithm. All of the mesh modifications in SVR are local,
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so basic shared memory algorithmic techniques involving a conflict graph will most likely
suffice. This analysis is in progress, and we do not foresee any major difficulties.

The last possibility is the reduction of the point location costs from O(n log(L/s)) down
to O(n log n) for inputs with pathological spread. This is mainly of theoretical concern. One
possibility would be to cluster together several small input features and point locate them
as a conglomerate, until the mesh is refined down to a relatively polynomial spread. It is
quite unclear how to properly define such a clustering strategy, but vague intuitions suggest
that something akin to well-separated pair decompositions [CK92] might suffice.
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