
Distributed Pattern Discovery in Multiple
Streams

Jimeng Sun† Spiros Papadimitriou§ Christos Faloutsos†

Jan 2006
CMU-CS-06-100

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

†
Computer Science Department, Carnegie Mellon University, PA, USA, {jimeng,christos}@cs.cmu.edu

§ IBM Watson Research Center, NY, USA. This work is done while he was studying at CMU,
spapadim@cs.cmu.edu

This material is based upon work supported by the National Science Foundation under Grants No. IIS-0209107
IIS-0205224 INT-0318547 SENSOR-0329549 IIS-0326322 This work is also supported in part by the Pennsylvania
Infrastructure Technology Alliance (PITA), a partnership of Carnegie Mellon, Lehigh University and the Common-
wealth of Pennsylvania’s Department of Community and Economic Development (DCED). Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation, or other funding parties.



Keywords: Data mining, Stream mining, Distributed mining, Privacy preserving data mining



Abstract

Given m groups of streams which consist of n1, . . . , nm co-evolving streams in each group, we
want to: (i) incrementally find local patterns within a single group, (ii) efficiently obtain global
patterns across groups, and more importantly, (iii) efficiently do that in real time while limiting
shared information across groups. In this paper, we present a distributed, hierarchical algorithm
addressing these problems. It first monitors local patterns within each group and further summa-
rizes all local patterns from different groups into global patterns. The global patterns are leveraged
to improve and refine the local patterns, in a simple and elegant way. Moreover, our method
requires only a single pass over the data, without any buffering, and limits information sharing
and communication across groups. Our experimental case studies and evaluation confirm that the
proposed method can perform hierarchical correlation detection efficiently and effectively.





1 Introduction

Data streams have received considerable attention in various communities (theory, databases, data
mining, networking, systems), due to several important applications, such as network analysis [7],
sensor network monitoring [23], financial data analysis [24], and scientific data processing [25].
All these applications have in common that: (i) massive amounts of data arrive at high rates,
which makes traditional database systems prohibitively slow, (ii) the data and queries are usually
distributed in a large network, which makes a centralized approach infeasible, and (iii) users or
higher-level applications, require immediate responses and cannot afford any post-processing (e.g.,
in network intrusion detection). Data stream systems have been prototyped [1, 18, 4] and deployed
in practice [7].

In addition to providing SQL-like support for data stream management systems (DSMS), it is
crucial to detect patterns and correlations that may exist in co-evolving data streams. Streams are
often inherently correlated (e.g., temperatures in the same building, traffic in the same network,
prices in the same market, etc.) and it is possible to reduce hundreds of numerical streams into just
a handful of patterns that compactly describe the key trends and dramatically reduce the complex-
ity of further data processing. We propose an approach to do this incrementally in a distributed
environment.

Limitations of centralized approach: Multiple co-evolving streams often arise in a large dis-
tributed system, such as computer networks and sensor networks. Centralized approaches usually
will not work in this setting. The reasons are: (i) Communication constraint; it is too expensive
to transfer all data to a central node for processing and mining. (ii) Power consumption; in a
wireless sensor network, minimizing information exchange is crucial because many sensors have
very limited power. Moreover, wireless power consumption between two nodes usually increases
quadratically with the distance, which implies that transmitting all messages to single node is pro-
hibitively expensive. (iii) Robustness concerns; centralized approaches always suffer from single
point of failure. (iv) Privacy concerns; in any network connecting multiple autonomous systems
(e.g., multiple companies forming a collaborative network), no system is willing to share all the
information, while they all want to know the global patterns. To sum up, a distributed online
algorithm is highly needed to address all the above concerns.

Motivation and intuition: We describe a motivating scenario, to illustrate the problem we want
to solve. Consider a large computer network, in which multiple autonomous sites participate.
Each site (e.g., company) wants to monitor local traffic patterns in their system, as well as to know
global network traffic patterns so that they can compare their local patterns with global ones to do
predication and anomaly detection. The method has to be: (i) Fast; early detection is crucially
important to reduce the impact of virus spreading. (ii) Scalable; a huge number of nodes in the
network require a distributed framework that can react in real-time. (iii) Secure; an individual
autonomous system wants to limit shared information in order to protect privacy.

To address this problem, we propose a hierarchical framework that intuitively works as fol-
lows (also see Figure 1): 1) Each autonomous system first finds its local patterns and shares them
with other groups (details in section 4). 2) Global patterns are discovered based on the shared

1



Distributed Systems Stream Groups Local Patterns Global Patterns

 

 

 

Figure 1: Distributed data mining architecture.

local patterns (details in section 5). 3) From the global patterns, each autonomous system further
refines/verifies their local patterns.

There are two main options on where the global patterns are computed. First, all local patterns
are broadcast to all systems and global patterns are computed at individual systems. Second, a
high-level agent collects all local patterns from different systems, then computes global patterns
and sends them back to individual systems. For presentation simplicity, we only focus on latter
case1, though we believe our proposed approaches can apply to the former case with very little
modification.

We proved that the quality of our hierarchical method is as good as the centralized approach
(where all measurements are sent to the central site). And our method can reduce the commu-
nication cost significantly while still preserving the good quality compared with the centralized
approach. At the extreme, without any communication to the central agent (e.g., when the central
agent is down), local patterns can still be computed independently. Moreover, the hierarchical
method hides the original stream measurements (only aggregated patterns are shared) from the
central agent as well as other stream groups, so that globally shared information is limited.

Contributions: The problem of pattern discovery in a large number of co-evolving groups of
streams has important applications in many different domains. We introduce a hierarchical frame-
work to discover local and global patterns effectively and efficiently across multiple groups of
streams. The proposed method satisfies the following requirements:

• It is streaming, i.e., it is incremental without any buffering of historical data.

• It scales linearly with the number of streams.

• It runs in a distributed fashion requiring small communication cost.

• It avoids a single point of failure, which all centralized approaches have.

• It utilizes the global patterns to improve and refine the local patterns, in a simple and elegant
way.

• It reduces the information that has to be shared across different groups, thereby protecting
privacy.

1Note that the latter case is quite different to centralized approaches, because instead of all measurements to be
sent to a central site, here only aggregated information are needed, which is much smaller.

2



The local and global patterns we discover have multiple uses. They provide a succinct summary
to the user. Potentially, users can compare their own local patterns with the global ones to detect
outliers. Finally, they facilitate interpolations and handling of missing values [19].

The rest of the paper is organised as follows: Section 2 formally defines the problem. Section 3
presents the overall framework of our algorithm. Section 4 and Section 5 illustrate how to compute
local and global patterns, respectively. Section 6 presents experimental studies that demonstrate the
effectiveness and efficiency of our approach. Section 7 discusses related work, on stream mining
and parallel mining algorithms. Finally, in Section 8 we conclude.

2 Problem formalization

In this section we present the distributed mining problem formally. Given m groups of streams
which consist of {n1, . . . , nm} co-evolving numeric streams, respectively, we want to solve the
following two problems: (i) incrementally find patterns within a single group (local pattern moni-
toring), and (ii) efficiently obtain global patterns from all the local patterns (global pattern detec-
tion).

More specifically, we view original streams as points in a high-dimensional space, with one
point per time tick. Local patterns are then extracted as low-dimensional projections of the original
points. Furthermore, we continuously track the basis of the low-dimensional spaces for each group
in a way that global patterns can be easily constructed.

More formally, the i-th group Si consists of a (unbounded) sequence of ni-dimensional vec-
tors(points) where ni is the number of streams in Si, 1 ≤ i ≤ m. Si can also be viewed as a matrix
with ni columns and an unbounded number of rows. The intersection Si(t, l) at the t-th row and
l-th column of Si, represents the value of the l-th node/stream recorded at time t in the i-th group.
The t-th row of Si, denoted as Si(t, :), is the vector of all the values recorded at time t in i-th group.
Note that we assume measurements from different nodes within a group are synchronized along
the time dimension. We believe this constraint can be relaxed, but it would probably lead to a more
complicated solution.

With above definition in mind, local pattern monitoring can be modelled as a function,

FL : (Si(t + 1, :), G(t, :))→ Li(t + 1, :), (1)

where the inputs are 1) the new input point Si(t + 1, :) at time t + 1 and the current global pattern
G(t, :) and the output is the local pattern Li(t + 1, :) at time t + 1. Details on constructing such a
function will be explained in section 4. Likewise, global pattern detection is modelled as another
function,

FG : (L1(t + 1, :), . . . , Lm(t + 1, :))→ G(t + 1, :), (2)

where the inputs are local patterns Li(t + 1, :) from all groups at time t + 1 and the output is the
new global pattern G(t + 1, :).

Having formally defined the two functions, Section 3 introduces the distributed mining frame-
work in terms of FL and FG. The details of FL and FG are then presented in section 4 and section 5,
respectively.

3



Symbol Description

ni number of streams in group i

m total number of stream groups
n total number of streams in all groups (

∑m

1
ni)

Si i-th stream group (1 ≤ i ≤ m) consisting of ni streams
Si(t, l) the value from l-th stream at time t in group i

Si(t, :) a ni-dimensional vector of all the values recorded at time t in group i

Ŝi(t, :) the reconstruction of Si(t, :), Ŝi(t, :) = Li(t, :)×Wi,t

Wi,t a ki × ni participation weight matrix at time t for group i

k(ki) number of global(local) patterns
Li(t, :) a ki-dimensional projection of Si(t, :) (local patterns at t for group i)
G(t, :) a k-dimensional vector (global patterns at time t)
FL(FG) the function computing local(global) patterns.
Et,i Total energy captured by group i at time t.
Êt,i Total energy captured by the local patterns of group i at time t.
fi,E , Fi,E Lower and upper bounds on the fraction of energy for group i.

Table 1: Description of notation.

3 Distributed mining framework

In this section, we introduce the general framework for distributed mining. More specifically, we
present the meta-algorithm to show the overall flow, using FL (local patterns monitoring) and FG

(global patterns detection) as black boxes.
Intuitively, it is natural that global patterns are computed based on all local patterns from m

groups. On the other hand, it might be a surprise that the local patterns of group i take as input both
the stream measurements of group i and the global patterns. Stream measurements are a natural set
of inputs, since local patterns are their summary. However, we also need global patterns as another
input so that local patterns can be represented consistently across all groups. This is important at
the next stage, when constructing global patterns out of the local patterns; we elaborate on this
later. The meta-algorithm is the following:

Algorithm DISTRIBUTEDMINING

0. (Initialization) At t = 0, set G(t, :)← null
1. For all t > 1

(Update local patterns) For i← 1 to m, set Li(t, :) := FL(Si(t, :), G(t− 1, :))
(update global patterns) Set G(t, :) := FG(L1, . . . , Lm)

4 Local pattern monitoring

In this section we present the method for discovering patterns within a stream group. More specif-
ically, we explain the details of function FL (Equation 1). We first describe the intuition behind
the algorithm and then present the algorithm formally. Finally we discuss how to determine the
number of local patterns ki.

4



(a) Original Wi,t(1, :) (b) Update process (c) Resulting Wi,t+1(1, :)

Figure 2: Illustration of updating Wi,t(1, :) when a new point Si(t, :) arrives.

The goal of FL is to find the low dimensional projection Li(t, :) and the participation weights
Wi,t so as to guarantee that the reconstruction error ‖Si(t, :) − Ŝi(t, :)‖

2 over time is predictably
small. Note that the reconstruction of Si(t, :) is defined as Ŝi(t, :) = Li(t, :)×Wi,t. The Wi,t can
be considered as the basis on which the original high-dimensional points are projected.

This formulation is closely related to PCA [15], which tries to find both a low rank approxima-
tion Y and the participation weights W from original data X , such that (Y, W ) = argmin‖X −
Y ×W‖2. But a fundamental difference is that PCA requires the entire data matrix X available
up front, while in our setting Si grows continually and rapidly, without bound. This requires a
fast incremental algorithm that finds the projection quickly and is also capable of updating the
participation weights as the data distribution changes.

If we assume that the Si(t, :) are drawn according to some distribution that does not change
over time (i.e., under stationarity assumptions), then the weight vectors Wi,t converge to the true
principal directions. However, even if there are non-stationarities in the data (i.e., gradual drift),
we can still deal with these very effectively, as we explain shortly.

Tracking local patterns: The first step is, for a given ki, to incrementally update the k × ni

participation weight matrix Wi,t, which serves as a basis of the low-dimensional projection for
Si(t, :). Later in this section, we describe the method for choosing ki. For the moment, assume
that the number of patterns ki is given.

We use an algorithm based on adaptive filtering techniques [22, 13], which have been tried and
tested in practice, performing well in a variety of settings and applications (e.g., image compression
and signal tracking for antenna arrays).

The main idea behind the algorithm is to read the new values Si(t+1, :) ≡ [Si(t+1, 1), . . . , Si(t+
1, ni)] from the ni streams of group i at time t + 1, and perform three steps: (1) Compute the low
dimensional projection yj, 1 ≤ j ≤ ki, based on the current weights Wi,t, by projecting Si(t+1, :)
onto these.(2) Estimate the reconstruction error (~ej below) and the energy.(3) Compute Wi,t+1

and output the actual local pattern Li(t + 1, :). To illustrate this, Figure 2(b) shows the ~e1 and y1

when the new data Si(t + 1, :) enters the system. Intuitively, the goal is to adaptively update Wi,t

so that it quickly converges to the “truth.”
In particular, we want to update Wi,t(j, :) more when ~ej is large. The magnitude of the update

also takes into account the past data currently “captured” in the system, which is why the update
step size is inversely proportional to di. Finally, the update takes into account the global pattern

5



G(t, j)—only when a global pattern is not available, we use the local projection ~yj. This is crucial
to ensure that the local patterns are represented consistently among groups. It is a simple and
elegant way by which the global patterns direct the projections into the local subspaces and improve
the quality of the local patterns, while sharing very limited information. Moreover, it simplifies the
global pattern detection algorithm (see Section 5)

Algorithm FL

Input: new vector Si(t + 1, :), old global patterns G(t, :)
Output: local patterns (ki-dimensional projection) Li(t + 1, :)
1. Initialize ~x1 := Si(t + 1, :).
2. For 1 ≤ j ≤ k, we perform the following in order:

yj := ~xjWi,t(j, :)
T (yj = projection onto Wi,t(j, :))

If G(t, :) = null, then G(t, j) := yj (handling boundary case)

dj ← λdj + y2

j (local energy, determining update magnitude)

~e := ~xj −G(t, j)Wi,t(j, :) (error, ~e ⊥ Wi,t(j, :))

Wi,t+1(j, :)←Wi,t(j, :) + 1

dj
G(t, j)~e (update participation weight)

~xj+1 := ~xj −G(t, j)Wi,t+1(j, :) (repeat with remainder of ~x).

3. Compute the new projection Li(t + 1, :) := Si(t + 1, :)W T
i,t+1

For each j, ~xj is the component of Si(t + 1, :) in the orthogonal complement of the space
spanned by the updated weight Wi,t+1(j

′, :), 1 ≤ j ′ < j. The vectors Wi,t+1 are in order of
importance (more precisely, in order of decreasing eigenvalue or energy). It can be shown that,
under stationarity assumptions, these updated Wi,t+1 converge to the true principal directions.

The term λ is an exponential forgetting factor between 0 and 1, which helps adapt to more
recent behavior. For instance, λ = 1 means putting equal weights on all historical data, while
smaller λ means putting higher weight on more recent data. This allows us to follow trend drifts
over time. Typical choices are 0.96 ≤ λ ≤ 0.98 [13]. We chose 0.96 throughout all experiments.
As long as the values of Si do not vary wildly, the exact value of λ is not crucial.

So far, we understand how to track the local patterns for each individual group. Next we
illustrate how to decide the number of local patterns ki.

Detecting the number of local patterns: In practice, we do not know the number ki of local
patterns. We propose to estimate ki on the fly, so that we maintain a high percentage fi,E of the en-
ergy Ei,t. Energy thresholding is a common method to determine how many principal components
are needed [15] and corresponds to a bound on the total squared reconstruction error. Formally,
the energy Ei,t (at time t) of the sequence of ~xt is defined as

Ei,t := 1

t

∑t

τ=1
‖Si(τ, :)‖

2 = 1

t

∑t

τ=1

∑ni

j=1
Si(τ, j)

2.

Similarly, the energy Êi,t of the reconstruction ˆSi(t, :) is defined as

Êi,t := 1

t

∑t

τ=1
‖Ŝi(τ, :)‖

2 = 1

t

∑t

τ=1
‖Li(t, :)×Wi,t‖

2 = 1

t

∑t

τ=1
‖Li(t, :)‖

2.

For each group, we have a low-energy and a high-energy threshold, fi,E and Fi,E, respectively.
We keep enough local patterns ki, so the retained energy is within the range [fi,E ·Ei,t, Fi,E ·Ei,t].

6



Dataset n k Description
Chlorine 166 2 Chlorine concentrations from EPANET.
Motes-Light 48 2–4 Light sensor measurements.
Motes-Humid 48 2 Humidity sensor measurements.
Motes-Temp 48 2 Temperature sensor measurements.
Motes-Volt 48 2 Battery voltage measurements.

Table 2: Description of datasets

Whenever we get outside these bounds, we increase or decrease ki. In more detail, the steps are:
(1) Estimate the full energy Ei,t+1 from the sum of squares of Si(τ, :). (2) Estimate the energy
Êi,t+1 of the ki local patterns. (3) Adjust ki if needed. We introduce a new local pattern (update
ki ← ki + 1) if the current local patterns maintain too little energy, i.e., Êi,t+1 < fi,EEi,t. We drop
a local pattern (update ki ← ki − 1), if the maintained energy is too high, i.e., Êi,t+1 > Fi,EEi,t+1.
The energy thresholds fi,E and Fi,E are chosen according to recommendations in the literature [15].
We set fi,E = 0.95 and threshold Fi,E = 0.98.

5 Global pattern detection

In this section we present the method for obtaining global patterns over all groups. More specifi-
cally, we explain the details of function FG (Equation 2).

First of all, what is a global pattern? Similar to local pattern, global pattern is low dimensional
projections of the streams from all groups. Loosely speaking, assume only one global group exists
which consists of all streams, the global patterns are the local patterns obtained by applying FL on
the global group—this is essentially the centralized approach. In other words, we want to obtain
the result of the centralized approach without centralized computation.

As explained before, FL has been designed in a way that it is easy to combine all different local
patterns into global patterns. More specifically, we have:

Lemma 1. Assuming the same ki for all groups, the global patterns from the centralized approach
equal the sum of all local patterns. i.e., G(t, :) = FL([S1(t, :), . . . , Sm(t, :)]) equals

∑m

i=1
Li(t, :)

Proof. Let G(t + 1, :) =
∑m

i=1
Li(t, :) be the global patterns from distributed approach and

Li = Si(t, :) × W T
i,t from algorithm FL. Therefore, G(t + 1, :) = [S1(t, :), . . . , Sm(t, :)] ×

[W1,t, . . . , Wm,t]
T . That is exactly the result of global approach (i.e., considering all streams as

one group and applying FL on that). Other update steps can be proved using similar arguments,
therefore omitted.

The algorithm exactly follows the lemma above. The j-th global pattern is the sum of all the
j-th local patterns from m groups.

Algorithm FG

Input: all local patterns L1(t, :), . . . , Lm(t, :)
Output: global patterns G(t, :)
0. Set k := max(ki) for 1 ≤ i ≤ m
1. For 1 ≤ j ≤ k, set G(t, j) :=

∑m

i=1
Li(t, j) (if j > ki then Li(t, j) ≡ 0)

7



0 100 200 300 400 500

0.0
0.2

0.4
0.6

0.8
1.0

Original measurements

0.0
0.2

0.4
0.6

0.8
1.0

Reconstruction

0 500 1000 1500 2000

−1
0

1
2

3
4

time

hid
de

n v
ar

s

(a) Measurements and reconstruction (b) Local patterns

Figure 3: Chlorine dataset: (a) Actual measurements and reconstruction at four junctions. We
plot only 500 consecutive timestamps (the patterns repeat after that). (b) Two local (and also
global) patterns.

6 Experimental evaluation

In this section we first present case studies on real and realistic datasets to demonstrate the ef-
fectiveness of our approach in discovering patterns among distributed streams. Then we discuss
performance issues. In particular, we show that (i) identified patterns have natural interpretations,
(ii) very few patterns can achieve good reconstruction, (iii) processing time per stream is constant,
and (iv) communication cost is small.

6.1 Case Study I — Chlorine concentrations

Description The Chlorine dataset was generated by EPANET 2.0 [8] which accurately sim-
ulates the hydraulic and chemical phenomena within drinking water distribution systems. We
monitor the chlorine concentration level at 166 junctions(streams) for 4310 timestamps during 15
days (one time tick every five minutes). The data was generated using the input network with the
demand patterns, pressures and flows specified at each node. We partition the junctions into 4
groups of roughly equal size based on their geographical proximity.

Data characteristics This dataset is an example of homogeneous streams. The two key fea-
tures are: (1) A clear global periodic pattern (daily cycle, dominating residential demand pattern).
Chlorine concentrations reflect this, with few exceptions. (2) A slight time shift across different
junctions, which is due to the time it takes for fresh water to flow down the pipes from the reser-
voirs. Thus, most streams exhibit the same sinusoidal-like pattern, but with gradual “phase shift”
as we go further away from the reservoir.

Results The proposed method can successfully summarize the data using two local patterns per
group (i.e., eight local patterns in total) plus two global patterns, as opposed to the original 166
streams) . Figure 3(a) shows the reconstruction for four sensors from one group over 500 times-
tamps. Just two local patterns give very good reconstruction. Since the streams all have similar
periodic behavior, the pair of global patterns is similar to the pairs of local patterns. Overall recon-
struction error is below 4%, using the L2 norm (see also 6.3).

8



0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

re
sc

a
le

d
 L

ig
h

t

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

time
re

sc
a

le
d

 T
e

m
p

e
ra

tu
re

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

time

re
sc

a
le

d
 H

u
m

id
ity

0 500 1000 1500 2000
0

1

2

3

4

5

time

re
sc

a
le

d
 V

o
lta

g
e

(a) Light measurements (b) Temperature (c) Humidity (c) Voltage
Figure 4: Mote dataset: original measurements (blue) and reconstruction (red) are very close. And
the method converges very quickly with 20-50 time ticks.

Interpretation The two local/global patterns (Figure 3(b)) reflect the two key dataset character-
istics: (1) The first hidden variable captures the global, periodic pattern. (2) The second one also
follows a very similar periodic pattern, but with a slight “phase shift.” It turns out that the two
hidden variables together are sufficient to express any other time series with an arbitrary “phase
shift.”

6.2 Case study II — Mote sensors

Description The Motes dataset consists of 4 groups of sensor measurements (i.e., light inten-
sity, humidity, temperature, battery voltages) collected using 48 Berkeley Mote sensors at different
locations in a lab, over a period of a month. This is an example of heterogeneous streams. All the
streams are scaled to have unit variance, to be comparable across different measures. In particular,
streams from different groups behave very differently. This can be considered as a bad scenario
for our method. The goal is to show that the method can still work well even when the groups are
not related. If we do know the groups are unrelated up front, we can treat them separately without
bothering to find global patterns. However, in practice, such prior knowledge is not available. Our
method is still a sound approach in this case.

Data characteristics The main characteristics (see the blue curves in Figure 4) are: (1) Light
measurements exhibit a clear global periodic pattern (daily cycle) with occasional big spikes from
some sensors (outliers), (2) Temperature shows a weak daily cycle and a lot of bursts. (3) Humidity
does not have any regular pattern. (4) Voltage is almost flat with a small downward trend.

Results The reconstruction is very good (see the red curves in Figure 4(a)), with relative error
below 6%. Furthermore, the local patterns from different groups are correlated well with the orig-
inal measurements (see Figure 6). The global patterns (in Figure 5) are combinations of different
patterns from all groups and reveal the overall behavior of all the groups.

6.3 Performance evaluation

In this section we discuss performance issues. First, we show that the proposed method requires
very limited space and time. Next, we elaborate on tradeoff between accuracy and communication
cost.

9



0 500 1000 1500 2000
0

20

40

60

80

time

g
lo

b
a
l 
p
a
tt
e
rn

Figure 5: Global patterns

0 500 1000 1500 2000
0

5

10

15

20

time

Li
gh

t p
at

te
rn

0 500 1000 1500 2000
0

1

2

3

4

5

6

7

time

Te
m

pe
ra

tu
re

 p
at

te
rn

(a) Light patterns (b) Temperature patterns

0 500 1000 1500 2000
0

5

10

15

20

25

time

Hu
m

id
ity

 p
at

te
rn

0 500 1000 1500 2000
0

10

20

30

40

time

Vo
lta

ge
 p

at
te

rn

(c) Humidity patterns (d) Voltage patterns

Figure 6: Local patterns

Time and space requirements: For local pattern monitoring, time scales linearly with respect
to (i) stream size t, (ii) number of streams ni, and (iii) number of local patterns ki. This is because,
for each time tick t, we have to update the weights Wi,t, which consist of ni numbers for each of
the ki local patterns. The space requirements also scale linearly with ni and ki and are independent
of stream size. For global pattern detection, the time scales linearly with the number of groups m.
Space depends only on the number of global patterns k = maxi ki.

Accuracy and communication cost: In terms of accuracy, everything boils down to the quality
of the summary provided by the local/global patterns. To this end, we use the relative reconstruc-
tion error (‖S − Ŝ‖2/‖S‖2 where S are the original streams and Ŝ are the reconstructions) as the
evaluation metric. The best performance is obtained when accurate global patterns are known to all
groups. But this requires exchanging up-to-date local/global patterns at every timestamp among all
groups, which is prohibitively expensive. One efficient way to deal with this problem is to increase
the communication period, which is the number of timestamps between successive local/global
pattern transmissions. For example, we can achieve a 10-fold reduction on communication cost
by changing the period from 10 to 1000 timestamps. Figure 7 shows reconstruction error vs. com-
munication period for both real datasets. Overall, the relative error rate increases very slowly as
the communication period increases. This implies that we can dramatically reduce communication
with minimal sacrifice of accuracy.

7 Related work

Stream mining Many stream processing and mining techniques have been studied (see tutorial
[10]). Much of the work has focused on finding interesting patterns in a single stream. Ganti
et al. [9] propose a generic framework for stream mining. Guha et al. [11] propose a one-pass
k-median clustering algorithm. Recently, [14, 20] address the problem of finding patterns over
concept drifting streams.

10



20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

period

re
lat

ive
 e

rro
r

Group1
Group2
Group3
Group4

20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

period

re
lat

ive
 e

rro
r

Light
Temp
Humid
Volt

(a) Relative error rate on Chlorine (b) Relative error rate on Motes

Figure 7: Accuracy drops slowly as the update period increases.

Guha et al. [12] study on discovering correlations among multiple streams, by first doing di-
mensionality reduction with random projections, and then periodically computing the SVD. How-
ever, the method incurs high overhead because of the SVD re-computation. Yuan et al. [21] de-
veloped an incremental subspace learning algorithm, with application in text data. Papadimitriou
et al. [19] improve on correlation discovering, which requires constant processing time per times-
tamp without any buffering. However, both methods still use a centralized approach that has all
the undesirable properties as we list in Section 1.

Distributed data mining Most of works on distributed data mining focus on extending classic
(centralized) data mining algorithms into distributed environment, such as association rules mining
[6], frequent item sets [17]. Web is a popular distributed environment. Several techniques are
proposed specifically for that, for example, distributed top-k query [3] and Bayes-net mining on
web [5]. But our focus are on finding numeric patterns, which is different.

Privacy preserving data mining Recent year many researchers start to study the privacy issues
associated with data mining. The most related discussion is on how much privacy can be pro-
tected using subspace projection method [2, 16]. Liu et al. [16] discuss the subspace projection
method and propose a possible method to breach the protection using Independent component
analysis(ICA). All the method provides a good insight on the issues on privacy protection. Our
method focuses more on incremental online computation of subspace projection.

8 Conclusion

We focus on finding patterns in a large number of distributed streams. More specifically, we
first find local patterns within each group, where the number of local patterns is automatically
determined based on reconstruction error. Next, global patterns are identified, based on the local
patterns from all groups. Our proposed method has the following desirable characteristics:

• It discovers underlying correlations among multiple stream groups incrementally, via a few
patterns.

• It automatically estimates the number ki of local patterns to track, and it can automatically
adapt, if ki changes.

11



• It is distributed, avoiding a single point of failure and reducing communication cost and
power consumption.

• It utilizes the global patterns to improve and refine the local patterns, in a simple and elegant
way.

• It requires limited shared information from different groups, while being able to successfully
monitor global patterns.

• It scales up extremely well, due to its incremental and hierarchical nature.

• Its computation demands are low. Its space demands are also limited: no buffering of any
historical data.

We evaluated our method on several datasets, where it indeed discovered the patterns. We gain
significant communication savings, with small accuracy loss.

References

[1] Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sang-
don Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a new model and
architecture for data stream management. The VLDB Journal, 12(2):120–139, 2003.

[2] C. Agrawal and P. Yu. A condensation approach to privacy preserving data mining. In EDBT,
2004.

[3] B. Babcock and C. Olston. Distributed Top-K Monitoring. In SIGMOD, 2003.

[4] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M.
Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden, Vijayshankar Raman, Fred
Reiss, and Mehul A. Shah. Telegraphcq: Continuous dataflow processing for an uncertain
world. In CIDR, 2003.

[5] R. Chen, S. Krishnamoorthy, and H. Kargupta. Distributed Web Mining using Bayesian
Networks from Multiple Data Streams. In ICDM, pages 281–288, 2001.

[6] D. W. Cheung, V. T. Ng, A. W. Fu, and Y. Fu. Efficient Mining of Association Rules in
Distributed Databases. TKDE, 8:911–922, 1996.

[7] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk. Gigascope:
a stream database for network applications. In SIGMOD, 2003.

[8] EPANET. http://www.epa.gov/ORD/NRMRL/wswrd/epanet.html.

[9] Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. Mining data streams under
block evolution. SIGKDD Explorations, (2):1–10, 2002.

[10] Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Querying and mining data
streams: you only get one look a tutorial. In SIGMOD, 2002.

12

http://www.epa.gov/ORD/NRMRL/wswrd/epanet.html


[11] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams:
Theory and practice. IEEE TKDE, 15(3):515–528, 2003.

[12] Sudipto Guha, Dimitrios Gunopulos, and Nick Koudas. Correlating synchronous and asyn-
chronous data streams. In KDD, 2003.

[13] S. Haykin. Adaptive Filter Theory. Prentice Hall, 1992.

[14] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data streams. In
KDD, 2001.

[15] I.T. Jolliffe. Principal Component Analysis. Springer, 2002.

[16] K. Liu, H. Kargupta, and J. Ryan. Multiplicative noise, random projection, and privacy
preserving data mining from distributed multi-party data. In TKDE, 2005.

[17] K. K. Loo, I. Tong, B. Kao, and D. Cheung. Online Algorithms for Mining Inter-Stream
Associations From Large Sensor Networks. In PAKDD, 2005.

[18] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston,
J. Rosenstein, and R. Varma. Query processing, resource management, and approximation in
a data stream management system. In CIDR, 2003.

[19] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. Streaming pattern discovery in
multiple time-series. In VLDB, pages 697–708, 2005.

[20] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting data streams
using ensemble classifiers. In Proc.ACM SIGKDD, 2003.

[21] J. Yan, Q. Cheng, Q. Yang, and B. Zhang. An incremental subspace learning algorithm to
categorize large scale text data. In APWeb, 2005.

[22] Bin Yang. Projection approximation subspace tracking. IEEE Trans. Sig. Proc., 43(1):95–
107, 1995.

[23] Y. Yao and J. Gehrke. Query processing in sensor networks. In CIDR, 2003.

[24] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands of data streams in real
time. In VLDB, 2002.

[25] Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams. In KDD, 2003.

13


	Introduction
	Problem formalization
	Distributed mining framework
	Local pattern monitoring
	Global pattern detection
	Experimental evaluation
	Case Study I --- Chlorine concentrations
	Case study II --- Mote sensors
	Performance evaluation

	Related work
	Conclusion

