
FANFARE for the Common Flow

Elaine Shi Bryan Parno Adrian Perrig
Yih-Chun Hu Bruce Maggs

February 2005
Updated June 2005
CMU-CS-05-148

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

This paper presents FANFARE1, a suite of infrastructure-based primitives that empowers routers and receivers to
secure and enforce various flow-control mechanisms, such as per-flow admission control, service differentiation,
and congestion control, even in the face of sophisticated attackers. In FANFARE, a sender must receive capabilities
from both a receiver and forwarding routers in order to acquire a certain bandwidth allocation, thus empowering
both receivers and routers to control the rates of flows. FANFARE provides strong incremental deployment prop-
erties; in particular, FANFARE’s automatic congestion response mechanism can protect a downstream legacy link
from being flooded by FANFARE traffic. In FANFARE, routers use no per-flow state; they only need to rely on
local information to make decisions, and hence do not have to trust other routers. FANFARE can be used to secure
several known architectures for managing flows. In this paper, for example, we show how to use FANFARE to halt
DDoS attacks and to secure a Diffserv infrastructure.
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1 Introduction
The Internet today relies on cooperative congestion control protocols to ensure that resources are allocated fairly
between competing flows [33]. These protocols provide fair sharing, however, only when end hosts behave in a
protocol-compliant manner. A single malicious host can send packets at an arbitrarily high rate to any receiver,
potentially jeopardizing inter-flow fairness or overloading network links on the path to the receiver. A more so-
phisticated attacker may disguise the malicious host through the use of IP spoofing. Even more capable attacks
might involve colluding sender/receiver pairs or leverage compromised routers. On a larger scale, attackers may
employ zombies in Distributed Denial-of-Service (DDoS) attacks.

Several lines of work in the literature address these attacks. For example, networking researchers have pro-
moted infrastructure-based flow-control mechanisms, where routers actively throttle “misbehaving” flows, i.e.,
those that use a disproportionate share of the bandwidth. Infrastructure-based flow control can also support useful
features such as service differentiation [6] and service guarantees [7]. Unfortunately, much of the existing work
in this category identifies flows based on their source and destination address, so that an attacker can spoof the IP
address of a trusted high-priority host and thereby acquire the bandwidth necessary to facilitate its attack. Several
of these mechanisms also rely on cooperation between routers [6, 40, 41], which introduces the possibility that a
single compromised router can have a global impact.

Another approach focuses on protecting a receiver’s network from being flooded. In practice, this is sometimes
accomplished by requesting that an ISP upstream from the receiver manually install a filter to block attack traffic.
Installing such filters, however, is cumbersome, and does not work well against large-scale DDoS attacks. Alterna-
tively, various proposed protocols [1, 3, 26, 28, 45, 46] allow a receiver to prevent traffic from being sent towards it
by handing out capabilities to legitimate senders. Other researchers propose IP pushback schemes [11, 18, 30, 31],
where the receiver asks upstream routers to filter aggregates of attack packets. Most of these schemes rely on the
receiver not only to protect itself, but also to act as a gatekeeper to prevent a malicious sender from flooding the
links between the sender and the receiver. However, a malicious receiver may collude with the sender to allow it to
use high-priority traffic to flood the intermediate network links. In particular, all of the previous schemes described
above fail to prevent a pair of malicious endhosts from flooding the network path between them if the bottleneck
link spans legacy routers.

Regardless of the specific approach, a fundamental difficulty in addressing these attacks is that current Internet
standards require both routers and recipients to make decisions based on unsecured information, since almost all
the fields in a packet may be forged by a sender or altered by a malicious router.

This paper presents FANFARE, a suite of primitives with which mechanisms for regulating flows can be se-
cured and enforced. FANFARE is a capability-based scheme, like [1, 3, 26, 28, 45, 46]. Unlike previous schemes,
however, FANFARE has all of the following properties:

• FANFARE participants make only local decisions. The receiver and the routers all operate independently
and are not required to establish any trust relationships. Thus, none of the parties need to establish shared
keys or exchange public keys. This approach greatly reduces vulnerability to router compromise, since a
malicious router can only influence links directly under its control.

• FANFARE is incrementally deployable. It accommodates legacy routers, and does not prevent communica-
tion between legacy/upgraded clients and legacy/upgraded servers.

• FANFARE will not issue a capability to a flow if the requested capacity is not available on the entire path
from the sender to the receiver, even if the bottleneck is a link between legacy routers. Furthermore, FAN-
FARE routers can protect legacy links from malicious sender/receiver pairs and compromised routers, even
if those pairs and routers are upgraded. Hence, FANFARE embodies the “do no harm” principle: upgrading
senders and receivers does not enable new attacks on the legacy infrastructure.

• FANFARE maintains no per-flow state at the routers. FANFARE also requires only lightweight processing
at the routers.

• FANFARE reacts very quickly to misbehaving flows and congestion, yet accomplishes this with relatively
long-lived capabilities, which provide resilience to bursty loss.

• FANFARE can be used to secure existing protocols and architectures such as TCP [33], Diffserv [6], and
CSFQ [40].
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1.1 Secure Flow Architectures
FANFARE is a secure flow architecture. A secure flow architecture provides a framework for allowing routers and
receivers to make nuanced decisions about the traffic they support. The architecture enforces these decisions on
a per-flow basis even in the presence of strong adversaries. Ideally, a secure flow architecture should provide the
following properties:

Secure flow identification. Routers and recipients should be able to securely identify a network flow and its
associated parameters. The parameters may include the flow’s current level of service, as well as the amount of
time it has been active. Securing these identifiers allows routers and recipients to make sophisticated decisions
about the flow. For example, routers and recipients can impose time limits on policy decisions or craft policies that
gradually upgrade a flow’s level of service based on its current level as well as its age.

FANFARE allows secure flow identification through a capability system. A capability is a marking embedded
in a packet’s header. The marking associates a packet with its flow identification in a way that is resilient to IP
spoofing; the marking also ties a packet to its service parameters.

Secure admission control. Because routers and the network have finite resources, they cannot grant reservation
requests for an arbitrary number of flows. Routers and receivers must therefore be able to decide which flows to
admit, and what level of bandwidth or router resources to assign to each flow. This decision process is called ad-
mission control. Admission control consists of two components, an admission control algorithm and enforcement
mechanism. An admission control algorithm takes flow reservation requests as input and outputs a set of flows to
accept and a level of service to assign to each accepted flow.

Enforcement of admission control can be enabled through secure flow identification: routers must be able
securely identify a flow’s assigned service level whenever an admission control decision is made.

In the literature, researchers have proposed several algorithms for performing admission control [20, 17]. FAN-
FARE does not dictate which specific admission control algorithm should be used. Instead, by building on the
capability system as described above, FANFARE provides a granting and enforcement mechanism that accommo-
dates different admission control algorithms. FANFARE allows routers and a receiver to accept a flow by jointly
issuing capabilities to the sender. Routers and receivers can halt an accepted flow at any time by ending the provi-
sion of capabilities. Routers and a receiver can also upgrade or downgrade a flow’s service level by changing the
service level parameters in the capabilities issued.

Secure flow regulation. While admission control assigns service parameters to each flow, flow regulation involves
scheduling and monitoring flows to ensure they obtain their level of guaranteed service. Secure flow regulation
must also ensure that malicious flows do not use more than their allotted share of bandwidth. Furthermore, mali-
cious hosts should not be allowed to continue sending packets if the recipient or a router along the path decides to
halt the flow. Researchers have proposed various infrastructure-based mechanisms to rate limit flows [11, 29, 42].
It is beyond the scope of this paper to propose a new flow regulation algorithm. Instead FANFARE assumes the
existence of such a flow regulation component on the routers and provides the primitives necessary to secure it.

Secure congestion control. Most current congestion control mechanisms rely on endhosts to faithfully back off
when congestion occurs, but a malicious sender can violate the protocol to gain an unfair advantage over legitimate
traffic. A secure flow architecture should enforce proper behavior in the face of congested links, even when
malicious parties attempt to collude to flood an intervening link.

FANFARE provides a mechanism for enforcing congestion control. In FANFARE, a sender’s probability of
receiving a capability is inversely proportional to the congestion level between the communicating end-hosts, and
the amount of bandwidth resource the sender is requesting. Therefore, when a link between two end-hosts is
congested, the sender is unable to maintain a high bandwidth reservation and has to reduce its sending rate, even if
the congestion occurs on a downstream link between two legacy routers.

1.2 Assumptions
In this paper, we assume a strong adversary model in which both endhosts and network routers may be com-
promised. After compromise, they may collude with each other. As two examples of potential misbehavior, we
consider adversaries that may be selfish or malicious. A selfish adversary attempts to use an unfair share of the
network bandwidth. For example, the attacker may send more traffic than permitted by its priority class or refuse
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to back off when congestion occurs. A malicious adversary attempts to perform a DoS attack by flooding one or
more parts of the network. The attack may take place using a distributed set of compromised nodes (i.e., a DDoS
attack). We also assume that compromised hosts can spoof the IP addresses of legitimate clients.

FANFARE information is transmitted in the headers of existing packets. Hence we assume that we have
sufficient marking space in the IP packet. Our scheme requires space for a packet’s priority class, two capabilities,
a handful of flags and an optional field for additional information. We suggest a method for including these fields
while maintaining IPv4 compatibility in Section 7.3. Since we piggyback our information on the existing traffic
between a sender and receiver, FANFARE requires no additional packets.

We also assume short-term route stability between hosts for the time it takes to conduct a packet exchange.
Short-term instability will not break our system, but will degrade performance. Finally, we assume that flows are
bidirectional and send packets at regular rates. If communication is unidirectional, we assume that the receiver can
send packets to the sender. We assume that endhosts deploy FANFARE; however, if either endpoint has not been
upgraded, they can still communicate by falling back to legacy protocols.

1.3 Outline
The remainder of this paper is organized as follows. Section 2 describes the FANFARE protocol. Section 3 then
provides guidelines for configuring FANFARE. An analysis of various attacks and FANFARE’s ability to defend
against them comes in Section 4. Next, Section 5 presents applications of FANFARE. An experimental evaluation
of FANFARE appears in Section 6. We conclude with a discussion in Section 7, an explanation of related work in
Section 8, and a summary in Section 9.

2 FANFARE: Flow-Aware Network Framework for Attack Resistance through Enforcement
The FANFARE framework provides two basic primitives for securely regulating network flows. The first primitive
provides cryptographically secure path-dependent markings that are created by the routers between a sender and
a receiver. These markings are combined to create capabilities that provide secure flow identification, prevent IP
spoofing, and allow receivers and routers to enforce admission control decisions. The second primitive builds on
the first and uses secret sharing to give routers a secure, automated congestion response system. With the second
primitive, FANFARE can continue to prevent malicious behavior even with downstream bottleneck legacy links.
In a full deployment of FANFARE routers, the first primitive would suffice to avoid congestion, but by providing
the second primitive, we enable incremental deployment, since it allows FANFARE to guarantee strong properties
even in partial-deployment environments.

We now introduce the two FANFARE primitives. A complete listing of the terminology used in this paper is
provided in the appendix.

2.1 Full FANFARE Deployment
Overview. We delineate a hierarchy of priority classes for network traffic based on the number of packets allowed
during a given time period. Traffic from any priority class takes precedence over legacy traffic. A sender can only
send traffic using a given priority class if the receiver and all of the routers on the path have agreed to provide
the corresponding level of service. We enforce these restrictions through the use of capabilities. To construct a
capability, the sender sends an initialization request (INIT-REQ) packet to the receiver using non-prioritized (best-
effort) traffic. Each router along the way inserts independently selected markings into the packet, and the receiver
returns the aggregate of the markings (which together form a capability) to the sender. The sender then includes
the capability in subsequent prioritized data packets.

When a router receives a prioritized data packet, it checks the capability by verifying that the marking it would
normally insert is equal to the marking present in the packet. If the router notices a discrepancy or if the capability
has expired, the router drops the packet. Thus, if any router along the path declines to include a marking, or if the
receiver refuses to return the accumulated capability, then the sender’s traffic will be quickly squelched, since it
will not have the correct capability.

Figure 1 illustrates the fields in a FANFARE-enabled packet. A router validates a packet’s current priority class
by checking the Capcur fields; meanwhile, it inserts new markings into the Capnext fields.

We now specify the procedure for initializing FANFARE traffic, increasing the priority of a sender’s traffic,
and maintaining a priority once it has been obtained.
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Figure 1: FANFARE Packet Header The FANFARE header contains the sender’s current priority class, as well as space for
a requested class. The hop count records the number of routers along the path from the sender to the receiver. A one-bit flag
(REQ) indicates whether the packet is part of an initialization round (an INIT-REQ packet) or part of a consolidation round
(a CONS-REQ packet). Another flag (FAIL) indicates whether the current request has failed. We also use two MAC Fields
to make router markings interdependent (see Section 2.3). The bulk of the header is composed of two capability sections, a
Capcur and a Capnext. Each capability section contains an Initialization Field, Capinit, and a Consolidation Field, Capcons.
The Initialization field consists of a pair of entries for each router along the path, one entry for a timestamp and the other for
the router’s marking. The consolidation field is constructed similarly, but each router’s contribution also includes a share ID.

Initialization. A sender initializes a FANFARE flow by using non-prioritized traffic to send an INIT-REQ packet
to the receiver. In the INIT-REQ packet, the sender sets the current priority to 0 and fills in the requested priority
field. Both capability fields (Capinit

cur and Capinit
next) are initially empty. When a router receives an INIT-REQ packet,

it first makes an admission control decision. This decision must be based on the router’s current capacity, but
otherwise it may be dictated by the router’s administrator. If the router decides not to admit the flow, it erases any
markings in the Capinit

next field that may have been inserted by previous routers, sets the failure bit in the header,1 and
forwards the packet along.2 This prevents the sender from assembling a correct capability and effectively denies
the sender the ability to send prioritized traffic. The router may optionally update the requested priority field to
indicate the highest priority class it is willing to provide, so that the sender can make an informed request in its

1The failure bit alerts subsequent routers that this request has already failed, so they may also reject it without performing potentially
expensive admission control decisions. While a malicious router might set the failure bit on legitimate packets, it could simply drop the
packets, so we choose to include the bit in favor of the increased performance it enables.

2Even though the router has decided to reject the sender’s request, it must still forward the packet, since the entire FANFARE system is
designed to piggyback on the existing traffic between the sender and receiver. In other words, the router still has an obligation to deliver the
data in the packet, even if it denies the FANFARE priority request.
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next request.
If the router decides to allow the traffic flow, then it appends its marking to the list of markings in the packet’s

Capinit
next field. We describe the details of the marking scheme below, but for now, it suffices that each router chooses

a marking based on flow-specific information, the requested class, the router’s secret key and the list of markings
from previous routers. When the INIT-REQ packet arrives at the receiver, the receiver also makes an admission
control decision as to whether it wishes to permit this flow. If it decides to allow the sender to transmit traffic, it
collects the entries in the Capinit

next field and includes them in a reply to the sender. In subsequent traffic, the sender
includes the assembled markings in the Capinit

cur field and sets the current priority class field to the value of the
priority class it has requested.

Requesting a Higher Priority. If a sender already possesses a correct capability for some priority class, it may
request an upgrade to a higher class. The sender constructs a new INIT-REQ packet that includes its current priority
class, Capinit

cur, and the new priority class requested. The round proceeds exactly like the initial round, and if the
router decides to accept the upgrade request, it adds its markings to the Cap init

next field. The receiver and the routers
may base their admission control decisions on the sender’s current priority class. For example, they might utilize
a TCP-like mechanism and dictate that a sender may only request priority class PCi+1 if it currently has priority
class PCi. If the recipient and all of the routers on the path agree to the new priority class, then the sender updates
the contents of subsequent packets to reflect the new priority class and includes the corresponding capability.

Maintaining a Priority. Once a sender achieves a certain priority class, it must perform regular maintenance or
the associated capability will expire. To maintain its priority, the sender must regularly initiate a new initialization
round with the request priority class set to its current priority class. The packet must also contain Cap init

cur. If the
round succeeds, the sender replaces the contents of the Cap init

cur with those of the Capinit
next and continues using its

current priority class. If the request fails, it can retry the request or request a lower priority class.

2.2 Incremental Deployment
In a full FANFARE deployment, link congestion can be prevented if all routers do not over-commit local resources
in their admission control, and enforce flow regulation to ensure that no flow gets more than its allotted bandwidth.
However, in a legacy environment, several FANFARE-enabled routers may feed into a legacy router. Since the
legacy router cannot distinguish between FANFARE flows and non-prioritized packets, prioritized traffic from
the FANFARE-enabled routers may cause congestion at the legacy link. Even in the full deployment case, if a
FANFARE router is malicious, it can cause congestion by admitting more prioritized traffic than allowed by local
link capacity.

To achieve enforceable congestion control, we extend the scheme described above to include two rounds of
capability negotiation: an initialization round and a consolidation round. The initialization round is identical to the
scheme above, but the consolidation round uses secret sharing techniques to enforce automatic congestion control.
To move from best effort to the lowest class of priority traffic, a sender must successfully complete an initialization
round. To maintain its current priority class or ascend to a higher class, a sender must successfully complete both
rounds.

The intuition behind the secret sharing scheme is to split a Capcons into multiple shares and attach only one
share to each packet. Only when a sufficient number of shares have been collected can an end-host reconstruct
the capability. An end-host has only a limited amount of time (dictated by τ init) to collect the shares for the
same capability. When a link is congested, a flow is unable to successfully transmit enough shares to construct a
capability for its current priority class. As a result, it will be forced to slow its sending rate and acquire a capability
for a lower priority class.

Initialization. The first initialization round allows a sender to elevate its traffic from best-effort service to the low-
est level priority class of service. The sender can then use the resulting capability to request higher priorities. The
sender activates the initialization round by sending an INIT-REQ packet to the receiver. In the INIT-REQ packet,
the sender must set the current priority to 0 and set the requested priority to 1, the lowest priority class possible.
This round is the same as the initialization round in the full deployment case, and if it completes successfully, the
sender includes the assembled markings in the Capinit

cur field and sets the current priority class field to 1.
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Requesting a Higher Priority. Once a sender has obtained a priority class and corresponding capability, it may
request an upgrade. This time, the sender must complete both an initialization and a consolidation round. First,
the sender constructs an INIT-REQ packet that includes its current priority class, the associated capability, and the
new priority class requested. The round proceeds exactly like the initial round. Assuming this round completes
successfully, the sender can initiate the consolidation round.

To begin the consolidation round, the sender moves the accumulated markings from the initialization round into
the Capinit

next field of a CONS-REQ packet. The CONS-REQ packet also includes the sender’s current capability and
priority class, as well as the requested priority class. Both MAC fields are set to 0. The sender then sends n packets
with the same CONS-REQ information to the receiver, where n is the maximum number of packets per time period
permitted by the sender’s current priority class. When a router receives a CONS-REQ packet, it verifies the current
capability (see Section 2.3) and verifies that the Capinit

next field contains the marking it would have assigned during
the initialization round. It then calculates a second marking (again, we discuss the details in Section 2.3) and
transforms the marking into m shares using a (t, m) secret sharing algorithm (e.g., Shamir’s secret sharing [37])
such that any set of t or more shares suffice to reconstruct the marking, but any collection of t − 1 shares reveals
no information about the marking. The router appends a randomly chosen share (along with the share’s ID) onto
the list of markings in the packet’s Capcons

next field and forwards the packet to the next router. The choice of t and
m is dependent on the priority class, and in Section 3.4, we show how to derive appropriate values. For now, we
assume that the number of shares provided for each class is known, so that the receiver knows how many pieces
must be collected to assemble a complete capability.

Thus, if t distinct CONS-REQ packets arrive at the receiver, they can be combined to create a correct entry for
the Capcons

next field, which the receiver can return to the sender. If t distinct CONS-REQ packets fail to arrive, then
the sender can either retry the request or submit a request for a class with a lower threshold. If the sender does
receive the completed entry for the Capcons

next field, then it moves both that field and the Capinit
next field to the Capcur

field and reinitializes the MAC field to 0. Now the sender can utilize the requested priority class.

Maintaining a Priority. As before, once a sender receives a capability for a priority class, it must still perform
regular maintenance to prevent the capability from expiring. We require the sender to renew the Cap init frequently,
but allow a longer validity window for the Capcons. To renew a Capinit, the sender initiates an INIT-REQ round
identical to the initialization round, but this time it also includes its current class and associated capability. If the
round succeeds, the sender replaces the contents of the Cap init

cur with the markings from the Capinit
next field that were

returned by the receiver. To renew the Capcons field, the sender must also initiate another consolidation round and
replace the contents of the Capcons

cur field with the new markings in the Capcons
next field.

2.3 Router Algorithm Details
In this section, we detail the router algorithm for issuing and validating capabilities.

2.3.1 Packet Update

When an INIT-REQ packet arrives at a router, the router must first decide whether to admit the flow at the requested
priority level. This decision must be based on the router’s available resources and may be based on the flow’s
previous priority class, an external mechanism utilized by the router’s administrators, or both. If the router decides
to deny the sender’s request, it erases all previous markings from the packet’s Cap init

next field and forwards the
packet. This prevents the sender from assembling a correct capability and thus prevents the sender from achieving
the requested priority class. If the router does decide to admit the flow, it calculates an appropriate marking. For
an INIT-REQ packet, the router uses the last b bits of

(1) MACK(source IP||dest IP||requested class||TTL||incoming interface||previous Cap init
next markings||T )

where K is the router’s secret key, T is the router’s current timestamp, and previous Cap init
next markings refer to all

of the markings inserted into the Capinit
next field by previous routers on the path. The router appends this marking,

along with Tinit, the last linit bits of the timestamp T , to the entries in the Capinit
next field, increments the hop count,

and forwards the packet.
When a CONS-REQ packet arrives, the router first validates the current capability, as well as its own entry in

the Capinit
next field. If all of these fields validate, the router retrieves the timestamp T it used to calculate the marking
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in the Capinit
next field. Note that a malicious sender cannot fake the timestamp, since we use the timestamp to validate

the marking from the initialization round (see Section 2.3.2 for more details on the validation process). Using K,
the router calculates a new marking, Mcons, as the last b bits of

(2) MACK(source IP||dest IP||requested class||TTL||incoming interface||MFnext||T )

Using a (t,m) secret sharing scheme, the router transforms the new marking into m shares and appends a randomly
selected share, the share’s ID and the timestamp Tcons, the last lcons bits of T , to the list of entries in the Capcons

next
field. The router also updates the next MAC field (MFnext), such that

(3) MFnext = MACK(MFnext||T )

It then increments the hop count and forwards the packet along.
While similar to Equation 1, the calculation of Equation 2 includes the contents of the MAC field rather than

the markings inserted by previous routers. We use the MAC field so that the marking is dependent on the markings
of previous routers, making it even more difficult for an adversary to guess a correct capability.3

2.3.2 Capability Validation

When a packet arrives claiming to deserve a given priority class, a router must validate both of the Capcur fields
(i.e., the initialization and the consolidation fields). If any field fails to validate properly, the router immediately
drops the packet. To validate a Capinit field, the router uses the timestamp Tinit that accompanies the marking to
calculate Equation 1. For the previous markings, it uses all of the markings in the Cap init field that come before
its own marking (it cannot use the markings that come after its own, since they were not used to compute the first
marking). It also uses the current priority class in place of requested priority class. To validate the consolidation
field, the router uses the timestamp Tcons. The router recalculates Equation 2 using Tcons, the current class instead
of the requested class, and the current MAC field instead of the next MAC field. This allows it to exactly replicate
the marking it would have provided to the sender when it first conducted the consolidation round. If the marking
does not match the newly calculated value, the router immediately drops the packet.

Because Tinit and Tcons only record the last linit and lcons bits of the router’s internal timestamp T , the router
must fill in the high order bits of the timestamp before using it to validate a capability. Equation 4 is used to
compute the full timestamp T ′

init by extending Tinit with the upper bits of T . T in Equation 4 represents the router’s
current internal timestamp value.

(4) T ′
init =

{

bT/2linitc · 2linit + Tinit Tinit ≤ T mod 2linit

bT/2linit − 1c · 2linit + Tinit Tinit > T mod 2linit

The full timestamp T ′
cons can be extended from Tcons in a similar way.

Therefore, a Capinit is valid for at most τinit = 2linit∆τ time; and a Capcons is valid for at most τcons = 2lcons∆τ
time, where ∆τ is the resolution of a timestamp.

3 Configuring FANFARE
In this section, we describe in detail how to configure FANFARE. We explain the interactions and implications
of various FANFARE parameters. In particular, we present a typical configuration for FANFARE that achieves
good performance, good security guarantees and TCP-friendliness over a downstream legacy link. The typical
configuration proposed in this section also represents what is used in our simulation.

3.1 Timing Parameter Selection
FANFARE requires the selection of certain timing parameters; in particular, the lifetime of an initializer (τ init) and
consolidator (τcons), the length of identifiers for initializers (linit) and consolidators (linit), and the granularity of
timestamps ∆τ . For the purposes of this discussion, we assume that the router’s internal timestamp representation
T has a sufficient number of bits such that it does not wrap around. A router increments its timestamp T every ∆τ

3We cannot base it on the contents of the Capcons
next field, since that contains a random share from each previous router.
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seconds. We then pick τinit and τcons to be multiples of ∆τ . Intuitively, a consolidator must have a longer lifetime
than an initializer, because it takes more time to reconstruct a consolidator.

Tinit and Tcons wraps around every 2linit · ∆τ and 2lcons · ∆τ seconds. A Capinit is only valid if it is issued in
the most recent 2linit · ∆τ seconds; and a Capcons is valid only if it is issued in the most recent 2lcons · ∆τ seconds.
Therefore, linit = dlg(τinit/∆τ)e; and lcons = dlg(τcons/∆τ)e.

First, we choose a timestamp interval ∆τ . Since τinit and τcons are multiples of ∆τ , ∆τ should be small
enough to allow relatively rapid reaction to changes in link utilization, but large enough to keep the size of the
timestamp field small. The timescale for changing priority classes (whether up or down) is a multiple of ∆τ ,
so the time FANFARE takes to react to changes in network conditions and the convergence of FANFARE after
the introduction of new flows are all multiples of ∆τ . However, given fixed τ init and τcons, the timestamp field
is of length Θ(lg( 1

∆τ
)), so we cannot make ∆τ arbitrarily small. For this reason, we selected ∆τ = 1s in our

simulations.
τinit is chosen as a multiple of ∆τ . Because we do not expect routers and senders to be time synchronized, an

unlucky sender may only have τinit−∆τ time to acquire a capability. Thus, we must choose τinit ≥ 2∆τ . A smaller
τinit has two advantages: first, it allows routers and receivers to more quickly revoke a capability, and second, it
allows a smaller choice of τcons (see below), which allows a more rapid reaction to changes in link utilization. As
a result, we selected the smallest possible τinit of 2 seconds for our simulations.

τcons is also chosen as a multiple of ∆τ , and must be greater than τinit; otherwise, as soon as the capability is
reconstructed, it will no longer be valid. Since a capability could be reconstructed as late as τ init, it is guaranteed to
be useful for at least τcons − τinit. Ideally, a sender can use the capability until it can reconstruct the next capability;
since the construction of an additional capability takes time τinit −∆τ , a capability can be retained until the failure
of

⌊

τcons−τinit
τinit−∆τ

⌋

consecutive attempts to construct a capability. Our simulations used τcons = 4s to allow for 2

attempts to renew a capability.
Using this typical set of timing parameters, linit = 1 and lcons = 2, i.e., 1 bit is required to encode every Capinit

timestamp, and 2 bits are needed to encode every Capcons timestamp.

3.2 Capability-based Enforcement
Ideally, an attacker should be unable to correctly guess all of the markings that compose a legitimate capability. For
a given router, the probability of guessing a marking of length b bits is 1

2b
. For a path with r FANFARE routers, the

probability that an attacker correctly guesses a complete capability is 1
2b·r

. Ultimately, the choice of b represents a
tradeoff between security and space constraints in the packet header.

A colluding pair of endhosts can perform a capability guessing attack: the sender performs an exhaustive
search by enumerating capabilities. If a packet succeeds in getting through to the colluding receiver, the receiver
returns the corresponding capability to the sender. To address the guessing attack, we propose to use more marking
bits for higher bandwidth classes. In the guessing attack, the expected number of packets the sender needs to send
to succeed is 2b·r−1. However, due to the very limited lifetime of a Capinit, the attacker has less than τinit time
to perform the attack. If the attacker currently possesses a bandwidth reservation of B, then he can succeed in
blasting through B · τinit/pck size packets in τinit time, where pck size is the packet size. Therefore, the number
of marking bits needed is Θ(lg(B · τinit)).

3.3 Enforcing Flow Regulation
FANFARE does not dictate what specific flow regulation policy and algorithm should be used. However, in this
section, we describe one possible way to instantiate a flow regulation policy and algorithm. We show in our simu-
lation that using a similar flow regulation algorithm as described below, it is possible to achieve TCP-friendliness
over a downstream bottleneck legacy link.

Decaying Capabilities. In FANFARE, a flow has two properties as stated by its capability: age and priority class.
A router is allowed to make flow regulation decisions based on both properties.

In particular, given the age of a consolidation marking, a router can distinguish between capability’s stated
priority class (SPC) and its effective priority class (EPC). The capability’s SPC is the current priority class as
dictated by the packet header. The EPC reflects the actual class of service a flow with that priority class receives
from the network at any given point in time. Initially, the flow’s EPC is equivalent to its SPC. In general, we can
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downgrade the flow’s EPC over time, rather than cutting off the flow immediately when the age of its Capcons

exceeds the time limit. In other words, the router selects a downgrading function f that specifies a flow’s EPC
given its SPC and age. The function could provide the full SPC for the entire lifetime of the capability and then
cut off service entirely, e.g.,

(5) f(SPC , age) =

{

SPC age ≤ τcons
0 age > τcons

but a router could also choose a more gradual decay function, such as

(6) f(SPC , age) =

{

SPC age ≤ τcons

SPC
(

1
γ

)

age−τcons
age > τcons

where γ is a parameter that specifies how fast a capability’s EPC downgrades. A gradual downgrading function
helps to compensate legitimate flows for the probabilistic nature of the consolidation round. For example, assume
that routers implement an admission policy in which they refuse to give out priority class PCi+1 unless a flow
currently possesses at least PCi. Using Equation 6, if a high priority flow probabilistically fails to assemble a
sufficient number of shares before the current Capcons times out, its effective rate will degrade, rather than abruptly
falling back to PC0, which would force it to complete several rounds of capability negotiation before it can regain
a high priority class.

FANFARE does not dictate what flow regulation algorithm to be used, however, in Section 6, we show that by
picking a decaying function similar to Equation 6, it is possible to achieve TCP-friendliness over a downstream
legacy link.

Router Rate Limiting. To provide service differentiation for prioritized traffic, the routers must prevent flows
from consuming more resources than allowed by their priority class. However, we would like to accomplish
this goal without requiring per-flow state at the routers. Thus, we use a modified multistage filter [11] for each
supported traffic class to track the largest flows within that priority group. The key insight is that as long as the
largest flows within a priority class do not exceed that class’s traffic threshold, then all of the flows within the class
must also be below the limit. Since we can halt a misbehaving flow by erasing its capability and/or dropping its
packets, we can eliminate the largest flows and then apply the multistage filter again to determine the new set of
largest flows. We repeat this process until the largest flows respect the threshold for their priority class. We provide
more details for the multi-stage filter algorithm in Appendix B.

3.4 Enforced Congestion Control
In this section, we explain how to pick parameters for the secret-sharing scheme. In essence, we use the secret-
sharing scheme to provide automatic and enforceable congestion control. When a link is congested, a flow is
unable to successfully transmit enough shares to construct a capability for its current priority class, and hence the
sender is forced to slow down.

In Appendix C, we give the theoretical derivation for the probability that a sender successfully receives a
capability. The result of the theoretical analysis is shown in Figure 2. As we can see from the figure, the larger the
number of distinct shares, the steeper the slope of the curve. An intuitive explanation for this is that as the number
of distinct fragments increases, each fragment is more likely to appear in a single packet only, so packet loss has a
greater impact on the number of distinct shares received. Conversely, if the number of distinct fragments is small,
multiple packets will contain the same share, attenuating the effect of packet loss.

We now discuss the selection of the parameters m and t, which determine the probability that a sender can
obtain a capability, given a congested link. We want to ensure that a sender has a high probability of obtaining a
capability if packet loss is low, and has a low probability of obtaining a capability if packet loss is high. When
packet loss is low, q ≤ qlow, we want the probability of obtaining the capability to be at least ρlow. Similarly, if
packet loss is high, q ≥ qhigh, we want the probability of obtaining the capability to be at most ρhigh.

To find the optimal values for t and m, we compute the values that minimize the squared error of the desired
probabilities:

(7) argmin
t,m

(

(Pm(t, n · (1 − qlow)) − ρlow)2 + (Pm(t, n · (1 − qhigh)) − ρhigh)
2

)
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Figure 2: Probability of obtaining t distinct shares after a sender sends 100 packets for varying amounts of packet loss. For
this figure, we vary m and compute t such that we achieve a reconstruction probability of at least ρlow = 95% for packet loss
probability of qlow = 3%.

where Pm(t, α) is the probability that at least t distinct shares are received after receiving α packets. In our
simulation we set qlow = 3%, ρlow = 95%, qhigh = 30%, and ρhigh = 5%. For these values, we obtain m = 80 and
t = 52, given that 100 packets are sent.

4 Attack and Defense Analysis
In this section, we study possible attacks against FANFARE and explain how we defend against them. We focus
on FANFARE specific attacks, since attacks that target vulnerabilities in the underlying architecture (such as those
targeting the secure hash function or the multi-stage filtering technique) lie outside the scope of this paper. In this
discussion, we assume that an established flow is unable to trick the router’s flow regulation mechanism into giving
it more than a minimal (ε) advantage over its maximum allowable bandwidth, since a flow that exceeds 1 + ε of
its allowable bitrate will be detected and throttled, with high probability. We consider attacks both by malicious
endhosts and by malicious routers.

4.1 Defending against Malicious Endhosts
A malicious endhost can inject traffic with either a prioritized flow or through best effort traffic.

To attack using prioritized traffic, a sender needs to possess the correct capabilities. FANFARE’s first tier
defense against attacks through prioritized traffic is router- and recipient-based admission control. In FANFARE, a
capability is jointly issued by the network and the recipient. When a FANFARE-enabled router detects congestion
on a local link, it can halt or downgrade any flow by refusing to tag its packets with markings. When the recipient’s
network is under a DDoS attack, the recipient can also stop flows by not supplying capabilities to the attackers.

Sometimes an adversary may be well-concealed and it may attempt to illegally acquire a high priority class to
facilitate its attack. To achieve this, the attacker may attempt to blast through more CONS-REQ packets than a
legitimate sender would have done. However, multistage filtering will ensure that an attacker cannot send signifi-
cantly more packets than a legitimate sender.

A colluding receiver may attempt to assist the malicious sender in an attempt to flood the route between them
with high priority traffic. In FANFARE, a colluding receiver is subject to the routers’ admission control decisions.
Meanwhile, a malicious receiver is unable to accelerate the capability reconstruction process, for it can only receive
as many consolidators as a legitimate receiver in the same position. So even when the receiver maliciously colludes
with the sender, the sender cannot achieve a higher sending rate than if it were sending to a legitimate receiver.

In FANFARE, an attacker using IP spoofing is unable to flood network links through priority traffic, since
she does not have the correct return path to obtain a capability. An attacker that fails to obtain a capability may
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attempt to guess the correct capability. We show in Section 3.2 that with our cryptographic mechanisms in place,
the adversary is not likely to guess a correct capability. Thus, when an adversary attempts a DDoS attack using
guessed capabilities, with high probability, the attack traffic will be dropped early on the path, before reaching the
access link to the recipient’s network. FANFARE prevents an attacker from spoofing its source IP address only
when the destination is legitimate. A colluding receiver can return the capability to the real IP address of the IP
spoofing attacker. Intermediate routers therefore cannot rely on the source IP address for admission control. None
of the previous schemes [46, 45] prevent IP spoofing.

An attacker may attempt to perform IP spoofing to interfere with an established flow. Because the spoofer’s
packets traverse a different path than the legitimate traffic, the capabilities will differ. If the destination returns
capabilities constructed using the spoofed route to the legitimate sender, the legitimate sender will lose priority. To
prevent this attack, when a destination is returning a new initializer, it will ensure that the packet contains a valid,
previously returned consolidator, and when a destination is reconstructing a new consolidator, it will ensure that
the packet contains a valid, previously returned initializer. This links together all communications starting from
the first returned initializer.

The adversary may also attempt to attack using best-effort traffic. In FANFARE, best-effort traffic will not
disrupt prioritized traffic at a FANFARE-enabled router, since the router will always give precedence to priority
traffic. With full deployment of FANFARE, we need not worry about best-effort traffic causing congestion for
priority traffic downstream, since a FANFARE router will not admit more prioritized traffic than it can handle, and
since FANFARE routers drop best-effort traffic in favor of prioritized traffic. During the early stages of deployment,
however, best-effort traffic may cause congestion at legacy routers. As discussed in Section 7.1, this effect can be
mitigated by limiting the percentage of bandwidth provided to best-effort traffic. Though FANFARE does not
prevent legacy links from being flooded by malicious legacy traffic, we do show in Section 6 that FANFARE is
friendly to legitimate TCP flows over a legacy link.

4.2 Defending against Malicious Routers
A malicious router might try to assist a malicious endhost by artificially elevating its privilege level. However,
since each FANFARE router makes its admission decision independently of other routers, the malicious router’s
designation will not affect legitimate routers. This illustrates the benefits of our minimal trust assumption approach.
A malicious router may also drop or delay the packets of a legitimate flow, but since a router has full control over
packets it forwards, these attacks are outside the scope of this paper.

Malicious routers may also collude. Two colluding routers can use all of the priority bandwidth between
them. First, the routers determine which privileged flows forwarded by the upstream router reach the downstream
router. The upstream router then replaces the data in each packet from each such flow with data it wishes to send
to the downstream router. When the packet reaches the downstream router, the downstream router processes the
data added in this way, and forwards the corrupt packet normally (to allow the receiver to reconstruct the next
capability).

An alternative (and generally equivalent) attack is for both routers to deny admission to any flows other than
their own. If no policy control or admission control is applied at intermediate routers, then the collaborating
malicious routers can obtain the same capabilities.

Unfortunately, none of the prior schemes defend against this attack, and we leave it as future work.

5 Applications of FANFARE
By designing FANFARE as a secure framework, we allow a wide variety of applications to integrate security
into the network layer. In this section, we demonstrate the flexibility of FANFARE by securing several existing
applications; in the future, new applications can utilize FANFARE as a secure foundation to build upon. Below, we
discuss FANFARE’s ability to quickly halt distributed denial-of-service attacks and show how to securely provide
differentiated levels of service to network flows.

5.1 Halting Distributed Denial-of-Service Attacks
FANFARE provides strong properties for preventing and halting DDoS attacks. First, the sender relies on the
receiver to return the capability assembled by the sender’s INIT-REQ and CONS-REQ packets. If the receiver de-
termines that it is facing a DDoS attack, or even decides that it has already committed too many network resources
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to its current set of clients, it can stop returning capabilities to senders. As we show in Section 3.2, without receiv-
ing the capability from the receiver, the sender has a low probability of forging a correct capability. Furthermore,
as soon as an attack packet without the appropriate marking arrives at a FANFARE router, the router will drop the
packet. As a result, attack traffic is dropped at routers near the attacker, before it can congest the link leading to
the recipient.

The use of secret sharing during the consolidation round provides additional benefits. If FANFARE only used
the initialization round without the consolidation round, a malicious endhost on the same subnet as the victim could
provide an attacker with an appropriate capability. However, if the attack generates congestion in the network,
then during the consolidation round, the attackers will be unable to receive enough shares to assemble a correct
capability. Thus, the attacker will be forced to send at a lower rate. Furthermore, since FANFARE provides the
primitives for securely differentiating traffic into multiple priority classes, an attacker cannot gain an advantage
at the expense of a legitimate sender attempting to connect to the receiver. Since FANFARE-enabled routers give
preference to prioritized traffic over legacy traffic, an attacker cannot use best-effort traffic to disrupt established
priority connections.

5.2 Securing Diffserv
Diffserv Primer. The goal of Diffserv [6] is to provide scalable service differentiation without per-flow state at
core routers. In Diffserv, a DS domain is a set of network nodes that run a common provisioning policy. Traffic
entering a DS domain will be classified and conditioned by DS boundary routers (i.e., edge routers). To convey
the classification decision, the edge router marks the packet with a DS code point value. The code point specifies
which Per-Hop-Behavior (PHB) aggregate the packet belongs to. Thus DS interior routers (i.e., core routers)
can select the forwarding behavior for each packet according to the code point marking. To provide scalability,
sophisticated service provisioning and traffic conditioning functions that require per-flow state are only performed
at the edge routers, where traffic volume is lower and flows are fewer. On the other hand, core routers do not keep
state; they therefore apply a simpler forwarding behavior to each packet as specified by its code point marking.
Simple resource management mechanisms such as RED [14] can be employed by core routers to provide service
differentiation to different PHB aggregates.

IP Spoofing against Diffserv. Edge routers classify packets according to the content of some portion of the packet
header such as the source and destination address. Without any authentication mechanism, a malicious endhost
can easily forge the packet header and deceive a legitimate Diffserv router into providing prioritized service to its
traffic. For instance, consider a DS domain configured with a policy where host A is promised a 50Mb channel to
D, whereas M only has a 2Mb channel to D. Now if M spoofs the address of A, Diffserv routers will be enticed
into believing that traffic from M to D is prioritized. Thus M can succeed in injecting significantly more traffic
than it should.

In Section 6, we show through simulation how such an IP spoofing attacker can gain bandwidth at the expense
of legitimate senders if a downstream legacy link is congested.

Securing Diffserv through FANFARE. We can leverage FANFARE to secure Diffserv against the IP spoofing at-
tack. Basically, FANFARE’s cryptographically secured path dependent markings can be directly added to Diffserv
without requiring any changes to the Diffserv architecture or operational semantics. The only difference is that
now, before classifying and conditioning a traffic flow, a FANFARE enabled Diffserv edge router needs to verify
the source and destination addresses of a packet by verifying its capability. Since an IP spoofing attacker does not
possess a return path to receive a capability, he is unable to acquire priority service through IP spoofing.

6 Evaluation
In this section, we first analyze FANFARE’s header overhead and router storage and computational overhead.
Then we present the simulation of FANFARE. The simulation demonstrates two critical properties of FANFARE:
first, that FANFARE’s congestion response mechanism provides fairness between competing flows in the face of
congestion on a downstream legacy link, and second, that FANFARE can be parameterized to be friendly to TCP
traffic across a congested legacy link. We show that fairness and TCP friendliness is preserved even in the presence
of an adversary that controls two malicious end hosts communicating across the legacy link.
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6.1 Overhead Analysis
Header Overhead. The communication overhead depends on many parameter choices. The maximum hop count
has the largest impact on the FANFARE header size, since we allocate space for each FANFARE router in each
capability field. However, after construction of the initial capability Cap init

cur in the INIT-REQ round, the sender
knows the number of FANFARE-enabled routers on the path. Moreover, the initial exchange only requires the
Capinit

cur field; the other three capability fields are not required. Subsequent FANFARE headers need only carry
sufficient space to carry the exact number of markings of the routers on the path, resulting in much smaller overhead
since most Internet paths are short, and FANFARE routers may be sparsely deployed.

Using 1 byte to encode the priority class, 1 byte for the hop count and flags, 3 bits for the timestamp, 2 bits
for the marking, 8 bits for the share ID, and a maximum hop count of 32 hops, the header size for the INIT-REQ
packet is 23 bytes. Assuming 4 FANFARE routers, the size of each subsequent header is also 23 bytes, and 43
bytes for 8 enabled routers.

Router Overhead. Even though the new generation of VLSI technology has enabled us to produce extremely
powerful routers, requiring minimal state at each router is still a desirable property. FANFARE avoids using per-
flow state to enable scalability to large networks.

FANFARE also requires minimal per-packet processing. In FANFARE, per-packet processing can be per-
formed very quickly and does not slow down the fast path. FANFARE requires the computation of two functions
for each packet: the message authentication code (MAC) and the secret sharing; both can be performed in parallel
with the route lookup. MAC functions are computationally very efficient, and can be performed at line speed in
dedicated hardware [38]. For example, we can use a high-speed block cipher to construct a CBC-MAC function.
Secret sharing is another operation that requires attention. For large values of the number of possible secret shares
m, secret sharing using a scheme like Shamir’s [37] is computationally expensive, since Shamir’s scheme evaluates
a polynomial of order m to generate each share. To speed up the computation of these shares and to facilitate fast
hardware implementation, we split up the secret into several chunks and perform secret sharing on each chunk.
For example, we can split the marking into q chunks C0, . . . , Cq such that all q chunks are necessary to reconstruct
the marking. Fewer shares are computed for each chunk, allowing for an efficient hardware implementation. The
tradeoff of this mechanism is that the receiver has to be able to reconstruct each chunk to be able to get the entire
marking; however, by applying a second level of forward error correction we can resolve this shortcoming.

6.2 Simulation
Simulation Setup. To evaluate the security and efficiency of our design, we implement FANFARE in the ns-2
simulator and test its effectiveness under several topologies and types of attacks. We evaluate the effectiveness
of FANFARE’s flow control as compared to legacy TCP and Diffserv with a legacy router. We parameterize
FANFARE as follows:

• Timestamp interval T is 1 second
• Bandwidth for class i ∈ [1, 127] is 50(i + 1) kbps
• Bottleneck bandwidth is 1500 kbps
In our scenario, we model a single bottleneck link between two legacy routers. Figure 3 shows a simplified

sketch of this scenario. Each flow enters the legacy router from a different FANFARE router. None of the FAN-
FARE routers know the bandwidth of the bottleneck link. We also consider a different scenario in which competing
flows merge at a single FANFARE router before entering the legacy router, but due to space constraints, we show
the results from the first scenario only, as the results from the second scenario are nearly identical. We show the
goodput of each flow as a moving average over ten seconds.

Throughout the simulation, we use a simple admission control policy where a FANFARE router gives out
priority class no greater than PCi+1 when a requesting flow holds a current capability whose effective priority
class is at least PCi. We choose secret sharing parameters using the methodology described in Section 3.4, tuning
the input to require lower packet loss rate for higher priority classes. The reason for requiring lower packet loss at
higher priority classes is to ensure system stability: if two flows f1 and f2 share a common bottleneck legacy link
downstream, they will statistically experience the same packet loss rate, and will therefore converge to the same
priority class. Capabilities are downgraded over time as follows: for the first four timestamp intervals after the
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Figure 3: A simplified diagram of our simulation topology. FANFARE flows run from Fs1, Fs2, and Fs3 to Fr1, Fr2, and Fr3
respectively. Legacy TCP traffic runs between Ls1 and Lr1, and L1 and L2 are legacy routers on either end of the bottleneck
link. The Fs1, Fs2, and Fs3 nodes each represent a series of FANFARE-enabled routers. The dashed lines represent the legacy
links, and line thickness represents the relative bandwidths of the links.
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Figure 4: Simulation results for three different congestion control protocols under attack.

initializer is accepted, the effective priority class is equal to the stated priority class. After that time, each elapsed
timestamp interval reduces the effective priority class by a factor of 2, rounding down each time. Though we
use this specific set of policies in our simulation, FANFARE’s design is general enough to allow the use of other
admission and flow control policies.

Simulation Results. To demonstrate the effectiveness of FANFARE as compared to previous flow control mecha-
nisms, we examine the flow control provided by legacy TCP as well as Diffserv. To evaluate legacy TCP, we allow
a single TCP flow to compete with a malicious Constant Bit Rate (CBR) flow. To evaluate Diffserv, we allow two
legitimate CBR flows to compete against a malicious CBR flow that forges its IP source address to take advantage
of a PHB aggregate not intended for that malicious flow.

Figure 4(a) demonstrates the extreme unfairness to TCP when sharing a link with malicious flows. Legitimate
TCP senders back off in the face of packet loss, whereas a malicious sender can aggressively inject traffic at a
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high rate without regard to the successful delivery of its packets. As a result, very shortly after the malicious CBR
sender is introduced, legitimate TCP throughput drops to zero.

Like many other infrastructure-enforced flow control mechanisms, Diffserv partially addresses the problem
of aggressive endhosts compromising inter-flow fairness. However, as demonstrated in Figure 4(b), Diffserv is
prone to an IP spoofing attack. Here Diffserv routers are configured with a policy that promises a high-bandwidth
channel between endhosts A and B. By spoofing the IP address of A, the attacker tricks routers into applying the
high-bandwidth PHB to its packets, and as a result acquires a considerable fraction of the available bandwidth at
the expense of legitimate flows.

Providing TCP friendliness over a legacy link is also a desirable feature of FANFARE. FANFARE can be
parameterized to require that flows with capabilities back off faster than TCP flows in the face of congestion.
Figure 4(c) shows the TCP-friendly performance of two legitimate CBR flows and one attack CBR flow when
competing with one legacy TCP flow. This shows that FANFARE can enforce TCP-friendly behavior, even on
FANFARE-enabled flows with a malicious sender and receiver. (Of course, an attacker able to send a legacy CBR
flow will be able to compete unfairly with a legacy TCP flow.) This property allows an ISP to prevent its customers
from flooding attacks by rate-limiting packets sent on non-FANFARE flows, since FANFARE flows are securely
restricted to behave in a TCP-friendly manner, even when the bottleneck link is between two legacy routers.

7 Discussion
7.1 Restricting Best-effort Traffic for Incremental Deployment
As mentioned earlier, if all routers used FANFARE, we could entirely prevent link congestion, since routers can
ensure that they do not over-allocate bandwidth resources. A malicious flow that attempts to inject more traffic
than its allocated bandwidth will be throttled by the flow regulation algorithm on the routers. However, with
legacy links in the system, there is still the potential for attacker flooding. If several FANFARE-enabled routers
connect to a legacy router (as shown in Figure 3), and the enabled routers have very few prioritized flows, then
the adversary could use best-effort traffic at multiple routers to flood the legacy link. This could negatively affect
prioritized flows. As one potential remedy, we could have FANFARE-enabled routers restrict legacy traffic to
a fixed percentage of link bandwidth, such that the combination of multiple routers feeding into a legacy link
cannot exceed its capacity. This has the additional advantage in that it incentivizes endhosts to upgrade to the
FANFARE system. On the other hand, until endhosts upgrade, the routers will underutilize the full bandwidth of
the links, since they will restrict legacy traffic even when there is not enough prioritized traffic to use the remaining
bandwidth. To mitigate this underutilization, routers can initially allocate a large percentage of bandwidth to legacy
traffic, and then gradually decrease the percentage as more endhosts upgrade to the FANFARE system.

7.2 Route Stability
Since a capability is only valid on a specific sequence of routers, a capability is not valid for a path other than
the one on which it was constructed. Thus, after a route change, a flow will soon get dropped after the point of
change. An alternative approach would be to convert privileged flows to unprivileged as soon as the capability
does not match any more, but an attacker could exploit this by guessing the early bits of a capability to get past the
initial FANFARE router. Moreover, unprivileged traffic may cause congestion on legacy links, thus endangering
the safety of privileged flows across those links.

Thus we recommend requiring an endhost to set up a new capability after a route change. Assuming route
changes are not too frequent, this approach is the safest and most viable.

7.3 IPv4 Compatibility
FANFARE requires the use of many header bits, and such bits are not available in the IPv4 header. In this section,
we sketch a solution that adds a new header to hold these bits. Our design is similar to the Hop-by-Hop Options
header in IPv6 [9]. We allocate a new protocol number, which we place in the IP Protocol field. Our header then
follows the IP header, and in addition to the fields described in Section 2 includes space for a Next Header field,
which identifies the protocol immediately following the FANFARE header.

To use FANFARE with TCP, we add an option to TCP which is set by all FANFARE-enabled hosts. A FAN-
FARE client attempting to connect to a server sends each TCP SYN packet twice: once embedded inside a FAN-
FARE packet, and once as a legacy IPv4 packet. If the server speaks FANFARE, it will accept the FANFARE
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packet. It will also drop any TCP packet with the FANFARE-enabled option set, so the TCP packet sent over
legacy IPv4 will be ignored. On the other hand, a legacy server will ignore the FANFARE packet and accept
legacy IPv4 packet.

FANFARE packets must set the “Don’t Fragment” bit in the IP header. A host deploying FANFARE must
perform Path MTU Discovery [32] for each flow, and fragment all datagrams that would exceed the MTU after
inclusion of the IP header and FANFARE header. FANFARE headers should optionally contain fragment offset
fields to allow the destination to reconstruct the original packet before they are delivered to the application.

7.4 Compatibility with ICMP, NAT and Loose Source Routing
Internet routers use ICMP messages to inform a packet’s source when the packet encounters certain problems; for
example, when the packet has exceeded its maximum time-to-live, or when a packet with the “don’t fragment”
bit set traverses a link with a MTU smaller than the packet size. ICMP messages include the IP header and the
first eight bytes of the protocol payload of the triggering packet. These values must allow the sender to determine
which flow caused the error, and must not include any capabilities. To satisfy the first constraint, a node may cache
the correlation between IP source, destination, and identifier fields with the corresponding flow. To satisfy the
second constraint, we ensure that the first eight bytes of the FANFARE header does not contain any information
from which the source can derive capabilities. In particular, it should include the next header field, the FANFARE
header length, the current and requested priorities, the hop count and flags, and the MAC field.

Many Internet hosts are connected through Network Address Translators (NATs), which allow several hosts to
share a single IP address. If the NAT does not understand FANFARE packets, then it will not be able to handle
them. However, if the NAT deploys FANFARE, then it can cause all flows traversing it to be FANFARE-enabled,
even if the end host does not deploy FANFARE.

With loose source routing, a sender can specify a set of routers its traffic should traverse. In this case, FAN-
FARE admission control should look at the IP destination address, which represents the next hop along the path,
to make admission control decisions. A FANFARE router may optionally inspect the loose source route option;
however, there is no guarantee that the current IP destination will continue to forward the packet towards the desti-
nation indicated in the loose source route option. By forwarding a packet with a FANFARE header, an intermediate
node may be providing some of its FANFARE resources to a flow that it is not actually participating in.

8 Related Work
Appendix E reviews research in Quality of Service (QoS), congestion avoidance and control, policing, and DoS/DDoS
defense mechanisms. In this section, we focus on the most closely related work: capability-based mechanisms,
where a capability grants the right to send priority traffic to a destination. Alexander et al. [1] present such an
architecture in the context of active networks. Lakshminarayanan et al. [26] leverage the i3 infrastructure [39] to
enable a receiver to cut off unwanted senders. In their system, a private trigger is like a capability that can be
revoked by the receiver. Anderson et al. [3] present an infrastructure where the sender uses a capability to set up a
path to the receiver. While these systems achieve some of the properties of FANFARE, they are stateful and require
trust relationships (i.e., secure keys) to be set up between infrastructure nodes and endhosts. Moreover, they do not
address the issue of congestion across legacy links.

The most closely related works are by Machiraju et al. [29], Yaar et al. [45] and Yang et al. [46]. Machiraju
et al. propose a secure QoS architecture [29]. They use lightweight certificates to enable routers to designate
bandwidth reservations, and they propose a stateless recursive monitoring algorithm for routers to throttle flows
that attempt to exceed their allotted bandwidth. However, they do not address incremental deployment and they
do not enforce congestion control in the face of malicious routers that attempt to flood a link by overallocating
bandwidth.

In SIFF [45], researchers propose a capability system to allow a receiver to enforce flow-based admission
control. In both SIFF and FANFARE, routers mark packets to form a capability, which the receiver forwards to
the sender. In contrast to FANFARE, SIFF only distinguishes between best effort and privileged flows, but does
not provide multiple classes of service. Hence, in SIFF, a receiver cannot control a sender’s rate, and must be very
careful not to give capabilities to malicious senders. Also, SIFF routers cannot police traffic. They do not catch
flows that send at a very high rate, and cannot slow down flows. Yang et al. address some of the above mentioned
problems with SIFF. They allow a receiver to issue capabilities with fine-grained service levels, and propose a
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capability-based router queue management scheme to achieve per-source fair queuing. Furthermore, they have the
routers perform rate-limiting to throttle malicious flows that attempt to exceed that allotted bandwidth. Their rate-
limiting algorithm requires per-flow state on the order of 100 bytes, and hence is expensive. Meanwhile, Yang et al.
only allow the receiver to perform admission control, and they do not address the issue of protecting a downstream
legacy link from being flooded.

9 Conclusion
We present FANFARE, a framework for providing secure flow control. FANFARE enables routers and receivers to
precisely control the upper bound on the bandwidth of each flow, without requiring any per-flow state on routers or
any established cryptographic keys between routers or endhosts. Our system works well in legacy environments,
even if only a small fraction of updated routers are deployed.

FANFARE enables several applications. Servers can use it to admit new flows liberally at the lowest rate, and
only upgrade the allowed bandwidth once the user is authenticated; in such an environment, DDoS attacks cannot
flood a server to squelch customers’ flows.

FANFARE also enables construction of secure congestion control mechanisms, as FANFARE flows compete
fairly with TCP, even if the bottleneck link is between legacy routers, and even if both endhosts are malicious.
Thus, our system can provide secure versions of Diffserv, Intserv, TCP, XCP, as well as many other protocols.
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A Notation
Table 1 summarizes the notation used in the paper.

Table 1: Notation used in this paper
n Number of packets a sender can send

during one time period
∆τ Timestamp resolution at a router
b Number of bits each router uses in its

marking
t Threshold number of shares required for

reconstruction in our secret sharing scheme
m Total number of shares created in our

secret sharing scheme
r Number of routers along a path

τinit Duration of an initialization marking
τcons Duration of a consolidation marking
T A router’s internal timestamp value

Tinit Timestamp in an initialization marking
Tcons Timestamp in a consolidation marking
linit Number of bits in Tinit
lcons Number of bits in Tcons
PCi Priority class i

MACK(M) MAC of M using key K

B Stateless Router Rate Limiting
Developed by Estan and Varghese [11], multistage filters can identify the largest flows within a packet stream
using only a constant number of memory references per packet and a small amount of memory, while providing an
error rate inversely proportional to the size of memory, whereas the error rate for traditional sampling is inversely
proportional to the square root of the size of the memory. Each stage, s, of a multistage filter consists of a set
of counters and an independent hash function, hs. Each counter is initially set to 0. When a packet arrives, the
multistage filter hashes the flow id with each of the hash functions. It computes the minimum value over all of the
counters selected by the hash functions, and increments any counter equal to the minimum value. If the minimum
value exceeds a certain threshold, we add the flow to a small pool of flows whose usage is tracked precisely (i.e.,
we allocate one counter per flow for the suspicious flows). Since all of the packets for a given flow must hash to the
same counter in each stage, we are guaranteed never to miss a large sender (i.e., no false negatives). There is the
potential for false positives, but by incrementing only the minimum-valued counters, we significantly reduce the
probability of errors, and the precision of the individual counters will help eliminate most of the remaining errors.
Periodically, we reset the hash counters to 0, but we continue to track any of the flows in the individual counter
pool that exceed a second threshold. This prevents an attacker from sending all of his or her traffic immediately
before the counters reset.

C Derivation of Secret Sharing Parameters
In the FANFARE system, a flow can send up to n packets per time interval, where n is dictated by the sender’s
priority class. Recall that when a router calculates a marking for a CONS-REQ packet, it creates m shares of
the marking, and it randomly selects one of the shares to insert into the packet. The receiver must accumulate t
distinct shares to reconstruct the marking (and thus provide the sender with a valid capability). If α packets reach
the recipient, the probability of receiving exactly k distinct shares is [12]:

(8) P [exactly k distinct shares after α packets] = pm(k, α) =

(

m

m − k

) k
∑

i=0

(−1)i

(

k

i

)(

1 −
m − k + i

m

)α
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Hence, the probability that the receiver obtains at least t distinct shares after receiving α packets is:

(9)

P [At least t distinct shares after α packets] = Pm(t, α) =

min(α,m)
∑

j=t

pm(j, α)

=

min(α,m)
∑

j=t

(

m

m − j

) j
∑

i=0

(−1)i

(

j

i

)(

1 −
m − j + i

m

)α

If we assume independent packet loss with probability q, the probability of receiving a capability, PC , is the
sum over the product of the probability that at least l packets arrive at the recipient given the packet loss and the
probability that those l packets suffice to reconstruct the marking for a given router, i.e.,

(10) PC =
n

∑

l=t

(

n

l

)

(1 − q)lqn−lPm(t, l)

D Compensating for Round Trip Time
When a sender using FANFARE requests an initializer, the sender does not receive a reply for one round trip
time rtt. If each router includes the currently applicable initializer, the sender only has τinit − rtt to send the
packets necessary to accumulate the necessary consolidators. To prevent senders with long round trip times from
being disadvantaged, we allow a sender to include in its initializer request an estimated round trip time ertt. After
ensuring that ertt falls within a reasonable range (for example, less than 500 milliseconds), routers forwarding such
an initializer request place in the packet an initializer that is valid after time ertt.

A sender choosing too large an ertt will receive an initializer which is not yet valid; however, this is self-
correcting for two reasons. First, the sender can measure the actual round trip time of the initializer request and
delay the use of the new initializer until the estimated round trip time has elapsed. Secondly, even if the sender
begins early usage of the initializer, it will be rejected by an intermediate router if that router has not yet begun to
use that initializer.

E Additional Related Work
QoS. The IETF has defined two architectures to provide QoS in the Internet: Intserv [7] and Diffserv [6]. Intserv
provides fine-grained per-flow QoS guarantees, while Diffserv is more coarse-grained and operates on aggregates.
FANFARE provides support for implementing Diffserv in a robust and secure fashion, even in malicious environ-
ments, while preventing malicious flows from flooding even if the bottleneck link is a legacy link. FANFARE can
also be used to secure an approximate version Intserv, which provides stronger QoS guarantees, without requiring
per-flow state on routers, provided that all routers on an Intserv path deploy FANFARE.

Congestion Avoidance and Control. Many researchers have studied the challenge of congestion avoidance and
control, and seminal work was done on TCP [5, 19], RED [14], ECN [34], CSFQ [40, 41], and XCP [24]. TCP,
ECN, and RED4 assume that the sender cooperates with congestion control, so a malicious sender can still flood
a victim even with these mechanisms. XCP and CSFQ cannot provide congestion control on a bottleneck link if
that bottleneck is between two legacy routers. Under some of these schemes, even a malicious client can entice a
server to send large quantities of data, potentially causing congestion [35].

4In RED, a malicious sender merely experiences a droptail queue of nondeterministic length.
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Policing. To cope with malicious senders or sender-receiver pairs, Floyd et al. propose an infrastructure-based
approach in which each router can detect and limit “unfriendly” flows [13] by calculating short-term statistics
based on its scheduling queue. An alternative approach by Estan et al. [11] proposes an efficient mechanism for
detecting high-rate flows. However, neither work provides protection for legacy links in times of congestion. One
of the main goals of our work is to prevent two collaborating malicious endhosts from flooding the path between
them using priority flows, even if the bottleneck link is across a legacy link. The idea of requiring receivers to prove
reception of traffic to prevent oversubscription was proposed by Gorinsky et al. [16] in the context of multicast,
and by Savage et al. [35] in the context of TCP Daytona. In a scheme similar to our secret sharing approach for
detecting congested links, Gorinsky leverages forward error correction for detection. Recently, Byers et al. [8]
proposed forward error correction for efficient multicast encryption as well.

DoS/DDoS Defense Mechanisms. To defend against DoS and DDoS attacks, researchers have proposed server-
based, network-based, and server- and network-based countermeasures. To defend against TCP SYN flooding and
IP spoofing attacks, several server-based filtering techniques have been proposed [21, 23, 27, 36]. Researchers
have also proposed computational puzzles to slow down the attack rate [4, 10, 22, 43], but Gligor shows that these
approaches are not sufficient to guarantee an upper bound on the maximum waiting time [15]. Other researchers
propose a network-based filtering infrastructure, for example Mirkovic et al. [31], and Estan and Varghese [11].
Combinations of server-based and network-based DDoS defense mechanisms include the Pushback framework
by Mahajan et al. [30, 18], and the path identification approach to detect spoofed source IP addresses by Yaar et
al. [44]. Keromytis et al. present an overlay infrastructure to defend against DDoS attacks [25], and Andersen
generalizes the architecture [2].
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