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Abstract

A hybrid algorithm is a collection of heuristics, paired with a polynomial time selector S that runs
on the input to decide which heuristic should be executed to solve the problem. Hybrid algorithms
are interesting in scenarios where the selector must decide between heuristics that are “good” with
respect to different complexity measures.
In this paper, we focus on hybrid algorithms with a “hardness-defying” property: for a problem
Π, there is a set of complexity measures {mi} whereby Π is known or conjectured to be hard
(or unsolvable) for each mi, but for each heuristic hi of the hybrid algorithm, one can give a
complexity guarantee for hi on the instances of Π that S selects for hi that is strictly better than
mi. For example, we show that for NP-hard problems such as Max-Ek-Lin-p, Longest Path and
Minimum Bandwidth, a given instance can either be solved exactly in “sub-exponential” (2o(n))
time, or be approximated in polynomial time with an approximation ratio exceeding that of the
known or conjectured inapproximability of the problem, assuming P 6= NP. We also prove some
inherent limitations to the design of hybrid algorithms that arise under the assumption that NP
requires exponential time algorithms.





1 Introduction

Motivation. Ever since the foundation of NP-completeness was laid down by Cook, Levin and
other pioneers in the 1970s, our community has devised a number of algorithmic strategies to cope
with hardness results.

The two strategies that this paper develops upon are approximation algorithms and improved
exponential time algorithms, both of which were suggested relatively early on (such as by Garey
and Johnson [24]). As the community made progress by designing better algorithms using these
strategies, better understanding of their limitations were also obtained. On the approximation side,
we now have the PCP Theorem [2] which shows there are hard problems with theoretical limitations
to their approximability. On the other side, the theory of fixed-parameter tractability [14] suggests
similar limitations apply for improved exponential time algorithms on a wide range of problems.

Before the next breakthrough in algorithm design arrives, can we find new ways to use existing
strategies to obtain useful algorithms for coping with hard problems?

Hybrid Algorithms. Our observation is that if we are willing to accept the practicality of
approximation algorithms and improved exponential time algorithms,1 as well as other hardness
coping strategies, then we may also be willing to use a combination of them. On a high level, our
proposal is to efficiently partition the duty of solving a problem into cases, where within each case
a strategy can be applied to obtain a greater degree of success than what was possible without
such partitioning. The fact that such partitioning is possible may be somewhat counterintuitive
and we will elaborate on this later. For now, let us first introduce the notion of hybrid algorithms
(occasionally shorthanded as “hybrids”).

We define a hybrid algorithm as a collection of algorithms H = {h1, . . . , hk} called heuristics,
coupled with an efficient (polynomial time) procedure S called a selector. Given an instance x of
a problem, S(x) returns the index i of some heuristic hi ∈ H and then hi will be executed on x.
Intuitively, the purpose of S is to somehow select the “best” hi for solving or deciding x according
to some criteria defined by algorithm designers. The design of selectors given an existing collection
of heuristics in practice is called the algorithm selection problem [44] and has been studied in
numerous contexts within artificial intelligence and operations research (see [37, 36, 32, 17, 25, 10]
for a sample). Our novelty, however, is to allow the use of a different performance measure for each
heuristic.

Performance Measures. The use of hybrid algorithms may seem to be a trivial2 proposal:
asymptotically speaking, if minimum runtime is the desired measure, then for a constant number
of heuristics, one can simply interleave the runs of all heuristics until one of them stops. However,
when the heuristics are good according to somewhat orthogonal performance measures, algorithm
selection becomes an interesting and highly non-trivial exercise.

In this paper, we focus on hybrids with two heuristics: one is a super-polynomial time exact
algorithm and the other is a polynomial time approximation algorithm. We will see that some
NP-hard problems admit a hybrid algorithm where a given instance can either be solved exactly in

1For example, see monographs by Garey and Johnson [24, ch. 6] and by Vazirani [49, p. IX].
2We are aware of one exception in the study of competitive analysis (e.g.,[34]), where one can select from an

unbounded number of heuristics and can switch between heuristics based on the requests.
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“sub-exponential” (2o(n)) time, or be approximated in polynomial time but with an approximation
ratio exceeding that of the known inapproximability of the problem, assuming P 6= NP.

1.1 Contributions

Existence of Good Hybrids. While it seems that restricting a heuristic to a special case
would likely improve its performance, we feel that the ability to partition the problem space of
some NP-hard problems by efficient selectors is somewhat surprising. First, for many problems,
it appears that the special cases admitting an improved approximation and the cases with an
improved exponential time solution typically have great overlap. Examples of this are myriad in the
literature.3 Moreover, the prevailing intuition seems to be that problem classes not approximable
to within some constant (or worse) factor also do not admit a 2o(n) time exact algorithm, e.g. MAX-
SNP [11, 33]. Hence the partitioning of an NP-hard problem seems, a priori, to be either unlikely
or impossible. Furthermore, even if such partitioning is possible, the most näıve way of doing so
could still require a selector capable of solving NP-hard problems, which would defeat its purpose.
(See Remark 2.1 for a technical example.) Thus an efficient selector is in itself interesting.

Maximum Constraint Satisfaction. In Max-Ek-Lin-p, the goal is to satisfy a maximum
number of linear equations over Zp with exactly k ≥ 3 variables per equation, for some constant k.
This problem has been widely studied in learning, cryptography, and complexity theory. For odd
k and all fixed ε > 0, we present a hybrid algorithm for Max-Ek-Lin-p that does exactly one of
the followings, after a polynomial time test on an instance with n variables and m equations:

• produces an optimal solution in O(pεn) time, or

• approximates the optimum in polynomial time, with a 1/p + ε′ performance ratio, for ε′ =
O(εn/m).

Note that the case where m/n is a constant is in general hard to (1/p + ε)-approximate [27] cf.
Section 2.2 The algorithm also generalizes to various hard-to-approximate constraint satisfaction
problems cf. Section 3.

This result is counterintuitive in the following sense, for k > 2. If Max-Ek-Lin-2 is in O(2εn)
time for all ε, it is not hard to show that many other hard problems are also solvable within that
time. Similarly, Max-Ek-Lin-p is not approximable within 1/p + ε for any ε > 0, unless P =
NP [27]. Therefore neither of these two measures seem almost-everywhere achievable, but we can
efficiently select exactly one of the measures on every instance.

Longest Path and Minimum Bandwidth. We also give hybrid algorithms for two long-studied
optimization problems on undirected graphs: Longest Path and Minimum Bandwidth. Our
algorithm for Longest Path yields either:

• a longest path in O(m + n2`(n)`(n)!) time, or

• an `(n) node path in linear time.
3For one, Planar Dominating Set has a PTAS [3] and is fixed-parameter tractable [14], whereas Dominating

Set is probably not (1− ε) log n-approximable [18], and not fixed-parameter tractable unless W[2] = FPT [14].
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To achieve this, we give a simple DFS algorithm that returns either a long path or a path de-
composition of low width, for any graph. If we set `(n) = n

α(n) log n for any unbounded function

α, the trade-off becomes Õ(2n/α(n)) time or an O(α(n) log n)-approximation to Longest Path.
Note that the best exact algorithm known is a 40-year-old Õ(2n) dynamic programming solution
due to Bellman, also Held and Karp [4, 5, 28]. It is also known that Longest Path cannot be
O(2log1−ε n)-approximated unless NP is in quasi-polynomial time [35]. Hence we have substantially
improved upon on both fronts by considering an exact vs. approximation trade-off.

We also show a weaker but still compelling trade-off for Minimum Bandwidth. A crucial com-
ponent of our algorithm is an extension of Plotkin, Rao, and Smith’s minor-separator theorem [43]
that generalizes the original in several aspects. The algorithm yields either

• a layout achieving the exact minimum bandwidth in 4n+o(n) time, or

• a O((log2.5 n)(log log n)(log2 log log n))-approximation in polynomial time.

Both cases outperform the best known corresponding worst-case algorithms, one taking Õ(10n)
runtime to solve exactly [19] and one providing an O(log3 n

√
log log n) approximation in polynomial

time [16]. Note that Minimum Bandwidth is hard for any fixed level of the fixed-parameter
tractability hierarchy [8] (hence it is difficult to approximate to within some constant factor).
Recent results further suggest that we are unlikely to have an algorithm that, given b and a graph,
determines if it has bandwidth b in f(b)no(b) time for any reasonable function f [12]. Confronted
with such intractability, we feel that the hybrid approach may be a more productive strategy for this
problem. The techniques we use to obtain the trade-off here are somewhat interesting in themselves:
we either look for a constant-degree expander as a minor—resulting in a good bandwidth lower
bound and therefore approximation ratio, or we decompose the graph using small separators and
solve the problem exactly.

Limitations of Hybrids. Finally, we have shown several limitations on hybrid algorithms of the
exact vs. approximate variety based on natural hardness assumptions such as “Sat requires 2Ω(n)

time” and P 6= NP.

1.2 Discussions

Other Coping Strategies. In a recent survey on computational tractability by Downey, Fel-
lows and Stege [15], other strategies such as parameterized complexity, average-case complexity,
randomized algorithms and quantum algorithms are also described and contrasted. Although we
have identified approximation algorithms and improved exponential time algorithms as a nice com-
bination for the problems in this paper, more creative combinations could also be considered.

Other Related Topics. We also note that the theory of P -selective sets [46] is vaguely related
to our notion of an efficient selector. A set S ⊆ Σ∗ is P -selective if, for every pair (x, y), there is a
polynomial time algorithm A : Σ∗×Σ∗ → Σ∗ such that (a) A(x, y) ∈ {x, y} and (b) (x ∈ S or y ∈ L)
implies A(x, y) ∈ L. In our case we have one instance at a time and need only decide what algorithm
to run, a potentially simpler choice. Some work has been devoted to (automatically) identifying
cases for which certain approximation algorithms work well, with mostly negative results. For
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example, Bodlaender et. al [9] showed that identifying graphs where the canonical greedy algorithm
for maximum independent set yields a ratio r ≥ 1 is co-NP-hard, for any fixed r.

A Word of Caution. We note that our intention to use hybrids is to, in a sense, circumvent
inapproximability results since collapses of some complexity classes seem unlikely. However, we
also note that applying existing hybrids to new problems may become complicated.4 Still we also
believe that the study of hybrids may be fruitful for designing better worst-case approximation
algorithms and/or improved exponential time algorithms, in that a good hybrid algorithm can
expose the “difficult” cases for both strategies.

2 Hybrid Algorithms for Constraint Satisfaction Problems

In Max-Ek-Lin-p, we are given a set of m linear equations each having k variables over n variables
with values in Zp, and we wish to find a setting of the xi’s whereby a maximum number of equations
hold. It will be convenient to translate the set of equations into a set of constraints to be satisfied,
in which case an equation (

∑
j∈I xj ≡ b mod p) becomes a constraint (

∑
j∈I xj − b). For a given

constraint c, define vars(c) to be the set of variables appearing in c. An i-constraint is defined as a
constraint with exactly i variables.

It is known that for all k ≥ 3 and primes p, Max-Ek-Lin-p is (1/p)-approximable by choosing
random assignments, and this is optimal unless P = NP [27]. We do not know of improved exponen-
tial time algorithms for Max-3-Lin-2, though some have been proposed for Max-3-Sat. Dantsin,
Gavrilovich, Hirsch, and Konev [13] showed that Max-3-Sat can be (7/8 + ε)-approximated in
O(28εm) time (later improved to be in terms of n by Hirsch [30]). Our proposal is of course much
stronger, in that we only wish to commit to sub-exponential time for an exact solution. Moreover,
it does not seem possible to convert their exponential time approximation algorithm into a hybrid
algorithm of the nice form given below.

2.1 Counting the Fraction of Solutions to a 2-CNF

We begin our CSP algorithms with a warm-up example. It is not known if there is a polynomial
time approximation with additive error 1/2f(n) for counting the fraction of 2-Sat solutions for any
f(n) ∈ o(n), though it is possible to do so in sub-exponential time (that is, 2O(f(n))) [29]. A hybrid
approach gives a quick partial result in this direction.

Theorem 2.1 For any ε > 0 and f(n) ∈ o(n), there is a hybrid algorithm for the fraction of
satisfying assignments of 2-Sat, that gives either the exact fraction in Õ(2εn) time, or counts
within additive error at most 1/2f(n) in polynomial time.

Proof. Choose a maximal independent set M over the 2-CNF clauses (all clauses in M are
disjoint). If |M | ≤ log3(2)εn, then try all 3log3(2)εn = 2εn satisfying assignments of M for the exact
fraction. Otherwise, at most a (3/4)log3(2)εn fraction of the assignments satisfy the formula. If

4One issue would be the composability of hybrid algorithms. A worst-case algorithm invoking a hybrid in this
paper as a subroutine may end up having to deal with with “the worse of both worlds” as it must be prepared to
accept an approximate solution or incur super-polynomial running time.
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(3/4)log3(2)εn > 1/2f(n), then since f(n) = o(n), n is bounded from above by a constant, and exact
solution takes O(1) time. Otherwise, output (3/4)log3(2)εn as an approximate fraction within an
additive error of 1/2f(n). ¤

2.2 Why Max-k-Lin-2 Probably Requires Exponential Time?

Before we give the Max-E3-Lin-2 algorithm, let us first (briefly) outline why it is unlikely for the
problem to be exactly solvable in sub-exponential time. The Sparsification Lemma of Impagliazzo,
Paturi, and Zane [33] implies the following.

Theorem 2.2 If Max-Ek-Lin-2 is in 2εn time for all ε > 0, then (k + 1)-Sat on n variables,
Vertex Cover (Clique, Independent Set) on n vertices, and Set Cover on k-sets over a
universe of size n are all solvable in 2εn time.

In fact, the hypothesis can also be replaced with the assumption that Max-Ek-Lin-2 is in 2εm

time, as the reduction from (k+1)-Sat to Max-Ek-Lin-2 only introduces O(km) equations, where
m is the number of clauses in the k-Sat instance. Moreover, the following shows in yet another
sense that the hard cases of approximation are the ones where m/n = O(1). This is relevant to our
cause, as the algorithm we will give works best on instances with this property.

Lemma 2.1 (Folklore) Suppose Max-E3-Lin-2 can be solved exactly in time t(m), where m is
the number of equations. Then for all ε > 0, there is a randomized (1−ε)-approximation algorithm
(with high success probability) for Max-E3-Lin-2 running in O(poly(n) · t(n/ε2)) time, where n is
the number of variables.

Proof. See appendix. ¤
The proof of the above lemma is not dependent on the number of variables per equation or

equations mod 2, and holds for any constraint satisfaction problem where one has m constraints
and n variables. It is interesting that, while Impagliazzo, Paturi, and Zane have the same aim
(reducing time bounds in terms of m to time bounds in terms of n), their lemma preserves exact
solution, but their proof is more complicated and does not work for arbitrary constraint satisfaction.

2.3 Algorithm for Max-E3-Lin-2

We now establish a hybrid algorithm for Max-E3-Lin-2. Later on, we will extend this to Max-
Ek-Lin-p for any odd k and prime p.

Theorem 2.3 For all ε > 0, there is a polynomial time selector that, on all instances F of Max-
E3-Lin-2 with n variables and m equations, either

• runs an exact algorithm that returns an optimal solution to F in Õ(2εn) time, or

• runs a polynomial time algorithm that returns a (1
2 + εn

12m)-approximate solution.
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Remark 2.1 Note a näıve attempt at getting this trade-off requires an NP-hard selector. Namely,
suppose one could estimate the fraction of equations satisfiable by the procedure. If the fraction is
less than (1 − ε)m, then the randomized algorithm returning m/2 is a good approximation. If the
fraction is at least (1−ε)m, then for all Õ(

(
m
εm

)
) sets S of at most εm equations, attempt to satisfy

all equations in F − S, which can be checked in polynomial time using Gaussian elimination.

Proof of Theorem 2.3: Let F denote a collection of k-constraints, where k = 3 in this proof.
(The definition below will also be used for general k.) The selector will search for an S ⊆ F of the
following kind.

Definition 2.1 Let S ⊆ F , β ∈ (0, 1]. S is a β-disjoint hitter of F iff
(Hitting) For all c ∈ F − S, at least k − 1 variables of c appear in S.
(Disjointness) There exists D ⊆ S such that |D| ≥ β|S|, and every c ∈ D has at least two

variables not appearing in any c′ ∈ D s.t. c′ 6= c.

We say that a class of instances has explicit β-disjoint hitters if there is a polynomial time
algorithm that, given an instance from the class, produces a β-disjoint hitter S and D ⊆ S such
that D has the above disjointness property. The theorem immediately follows from two claims,
which will be established in the next two sections.
Claim 1: If Max-E3-Lin-2 has explicit β-disjoint hitters, then Max-E3-Lin-2 admits a hybrid
algorithm that either solves in Õ(2εn) time or approximates with ratio 1

2 + εβn
6m .

Claim 2: Max-E3-Lin-2 has explicit 1/2-disjoint hitters.
Claim 2 is easier, so we prove it first. We conjecture that it can be substantially improved upon.

2.3.1 Proof of Claim 2

We greedily construct a 1/2-disjoint hitter. Construe constraints as sets in the standard way, taking
a constraint c as its variable set vars(c). (Note for linear equations mod 2, at most two constraints
map to the same 3-set; in the event of such a collision, arbitrarily pick one of the constraints in
the following.) First, greedily construct a maximal disjoint collection M of 3-sets from F . Now
remove M from F . For each c remaining in F , remove every variable x in vars(M)∩ vars(c) from c.
The remaining is a (possibly multi-)set F ′ with at most two variables per set. Construct a maximal
disjoint set N over the 2-sets of F ′. Let N ′ ⊆ F be the original collection of 3-sets corresponding
to the 2-sets in N . Set S = M ∪N ′ and D to be the larger of M and N ′.

Clearly, |D| ≥ |S|/2. The hitting property holds for S, by construction. The disjointness
property holds, as either D = M , where the c ∈ M are disjoint, or D = N ′, where each c ∈ N ′ has
two variables not appearing in any other c′ ∈ N ′. This completes the proof of Claim 2.

2.3.2 Proof of Claim 1

First we give the overall proof idea. After removing degeneracies from the instance, the selector
finds an explicit disjoint hitter S. Depending on |S|, the selector will decide whether to approximate
or solve exactly. Intuitively,
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• if S is large, its “disjointness” makes it possible to satisfy at least 1
2 + βεn

6m of the constraints
in F , and

• if S is small, “hitting” ensures that any assignment to the variables in S reduces F to an
instance that is exactly solvable in polynomial time.

We now detail the construction. The selector first removes some degeneracies from F , if they
exist. Define a constraint c ∈ F to be degenerate if c′ ∈ F where c′ ≡ (c + 1) mod 2. Observe that
the total number of degenerate constraints is even.
Fact: Let Fdeg be the set of degenerate constraints. Then every variable assignment satisfies exactly
|Fdeg|/2 constraints of Fdeg.

This follows since every assignment satisfies either c or c + 1, but not both. W.l.o.g., we can
remove all degenerate pairs of constraints from F , as exactly 1/2 of them are always satisfied. Then
the selector finds a β-disjoint hitter S. If |S| ≤ εn/3, the selector returns “exact”, otherwise it
returns “approximate”.

The exact algorithm takes S as above, and tries all possible assignments to variables appearing
in S. By the hitting property, for any such variable assignment, the remaining constraint set
is a Max-1-Lin-2 instance which can be solved exactly in linear time. This procedure takes
Õ(8εn/3) = Õ(2εn) time.

Now we describe the approximation algorithm. Let D ⊆ S have the disjointness property. The
idea is to show that a randomized algorithm can simultaneously satisfy all constraints of D as
well as half the optimal number of constraints satisfiable in the rest of F . Since it is only run if
|D| ≥ β|S| > εβn/3, this yields a non-trivial improvement in approximation.

After removing degeneracies and obtaining the β-disjoint hitter S, the approximation runs a
simple procedure Choose: for all c ∈ D, choose a satisfying assignment for c uniformly at random;
then set each unassigned variable in F to 0 or 1 with equal probability.

We just remark here that the approximation algorithm (namely, the subroutine Choose) can
be derandomized using conditional expectation. We will prove that it is at worst a (1

2 + εβn
6m )-

approximation on instances where the selector says “approximate”. Let m∗ be the maximum
number of satisfiable constraints in F . Let mnon−deg and mdeg be the number of non-degenerate
and degenerate c ∈ F , respectively. Let mD = |D|. Note we have the inequalities

mnon−deg ≥ mD, mnon−deg + mdeg = m, and mnon−deg + mdeg

2 ≥ m∗.
The following lemma implies that half of the non-degenerate remainder is satisfied, in expecta-

tion. Informally, it says that the distribution of assignments that Choose returns “looks random”
to each constraint of F −D.

Lemma 2.2 Suppose D has the disjointness property. Then for any non-degenerate 3-constraint
c′′ ∈ F −D, Choose satisfies c′′ with probability 1/2.

Proof. See Appendix. ¤

By Lemma 2.2, the expected number of constraints satisfied is therefore at least
mD + (mnon−deg −mD)/2 + mdeg/2 = 1

2(mdeg + mnon−deg + mD) = 1
2(m + mD) ≥ (1

2 + εβn
6m )m∗.

This completes the proof of Claim 1 and hence the theorem. ¤
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2.4 A More General Case

Extending the algorithm to Max-Ek-Lin-p for odd k ≥ 3 and prime p is relatively straightforward.
First, observe the degeneracy notion here still means that at most one of the constraints among a
group of at most p are satisfied by any assignment, and in our case, we satisfy at least one of them.
The notion of correlated pairs is analogous.

The selector now picks a 1
k−1 -disjoint hitter on the instance. Namely, it chooses sets of con-

straints Sk, Sk−1, . . ., S2. Each Si is a maximal disjoint set of k-constraints, chosen after the
variables of the sets Sk, . . . , Si+1 were eliminated from consideration. (In the result for Max-E3-
Lin-2, we only chose an S3, then an S2.) If | ∪k

i=2 Si| ≤ εn/k, then do an exact solution as before
in time (pk)εn/k = pεn. Otherwise, some Si is of size at least εn/(k(k − 1)). Choose now selects
a random satisfying assignment over all constraints in Si, with independent random assignments
for all variables appearing in multiple constraints of Si and variables not in Si. Now there are
i ≥ 2 variables remaining in each equation of Si, and a random satisfying assignment is chosen
from them.

We claim that now every non-degenerate k-constraint c not in Si is satisfied with probability
1/p. Consider just the case i = 2; the other cases follow similarly. If c contains no correlated pairs,
then trivially it is satisfied with probability 1/p. Otherwise, because k is odd, there is at least one
variable x in c whose correlated counterpart (if there is one) does not appear in c; x is thus set 0-1
uniformly and independently from the k − 1 other variables of c and the claim follows. Therefore,
we obtain:

Theorem 2.4 Let k ≥ 3 be odd. For all ε > 0, there is an algorithm for Max-k-Lin-p on n
variables and m equations that either returns a (1

p + εn
pk(k−1)m)-approximate solution in polynomial

time, or an exact solution in Õ(pεn) time.

3 Optimization with Three-Variable Boolean Constraints

Let f be a Boolean function on k variables, and X be the set of all 2n literals on n Boolean variables.
An f-formula C is a collection of k-tuples from Xk. Each k-tuple c is called a constraint, and a
constraint c is satisfied by an assignment to X if the assignment makes f(c) true. The Max-Ek-f
problem gives an f -formula, and the goal is to find a variable assignment that satisfies a maximum
number of constraints.

We now define a general condition on constraint satisfaction problems for which we can prove
the existence of good hybrid algorithms.

Definition 3.1 Let C be an f -formula. C has overlap if two clauses in C have exactly the same
variables.

For example, the CNF formula (x∨y)∧(x∨y) has overlap, but (x∨y)∧(x∨z) does not. It may
appear at first that forbidding overlap is a severe restriction, and therefore the hybrid algorithm
is not as surprising in this case. Nevertheless, one can show that approximating instances without
overlap is still difficult. We focus on the case of Max-E3-Sat; in our opinion it is most convenient
to formulate.
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Theorem 3.1 If Max-E3-Sat instances without overlap can be approximated within a 7/8 + ε
factor in polynomial time, then RP = NP.

The proof uses two applications of a Chernoff bound and is deferred to the appendix.
In spite of the above inapproximability result, we can show that a large class of CSPs on three

constraints admit hybrid algorithms, if instances are without overlap. Similar to [20], let t be
the number of assignments satisfying the 3-variable Boolean function f , and b be the number of
satisfying assignments for f with odd parity. Say f is biased if 2b 6= t. Notice that OR, AND,
MAJORITY, XOR, etc. are all biased. We give a general hybrid strategy for optimization problems
defined with respect to some biased function f , with three variables per constraint and no overlap.
The main tool employed is an easy-to-verify lemma.

Lemma 3.1 Let x, y, z be Boolean variables, and ε ∈ [0, 1/4]. Consider the procedure that picks
either equation x + y + z = 1 with probability 1 − ε, or equation x + y + z = 0 with probability ε,
then a random satisfying assignment for the equation picked. The resulting distribution is pairwise
independent over {x, y, z}.

Theorem 3.2 Let k be odd, and f be a k-variable biased Boolean function, with random assignment
threshold α, i.e., a random assignment satisfies f with probability α. Max-Ek-f instances on n
variables and ∆n non-overlapping constraints admit an algorithm that either solves in time 2εn or
approximates in polynomial time with ratio α + ε

pk(k−1)∆ .

Proof.(Sketch) Similar to the proof of Theorem 2.4, choose maximal disjoint sets Sk, Sk−1, . . .,
S2. If all of the sets are small, solve exactly, otherwise, let Si be the large set. Let c ∈ Si be
a constraint on variables x, y, and z. Since c is biased, one of the equations x + y + z = 1 or
x + y + z = 0 has the property that the number of its satisfying assignments that also satisfy c
is strictly greater than the corresponding number for the other equation. Set ε > 0 such that the
following procedure satisfies at least 1 − ε/2 constraints in Si: For each c ∈ Si, let x, y and z be
its variables. With probability ε, pick a random satisfying assignment of x + y + z = 0; otherwise
pick a random falsifying assignment. Such an ε > 0 exists by Lemma 3.1. A similar analysis to
Theorem 2.3 yields the result. ¤

4 Hybrid Algorithms for Graph Problems

We now turn our attention to two well-studied NP-complete problems on graphs: Longest Path
and Minimum Bandwidth. In the hybrid algorithms for constraint satisfaction, a simple greedy
procedure found a subset of constraints with certain properties. Within the domain of graph
problems, we get more sophisticated approaches by exploiting properties of graph minors and
graphs with bounded treewidth. The Longest Path algorithm will attempt to construct a long
path, or it will build a path decomposition of small width, in which case a dynamic programming
algorithm is applied. We present two Minimum Bandwidth algorithms. One is very simple
and was suggested to us by Uriel Feige; the exact case solves in sub-exponential time but the
approximation is only O(log3 n). The second achieves a better approximation, and employs an
generalization of Plotkin, Rao, and Smith’s minor-separator theorem [43] that yields substantially
smaller separators when the minor is sparse.
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4.1 Longest Path

The Longest Path problem has been notoriously difficult in terms of obtaining good approxi-
mation and good exact algorithms. For years it was not even known how to find a path of length
O(log n) (or determine none exists) in polynomial time, until Alon, Yuster, and Zwick [1] in 1994.
The best known result to date is Gabow’s algorithm giving a path of length exp(

√
log `/ log log `) in

a graph with longest path length ` in polynomial time [23]. On the other hand, it is known that an
exact 2o(`) algorithm for finding a path of length ` would imply 3-Sat (hence many other NP-hard
problems) is in 2o(n) time [11]. Lingas and Wahlen [38] recently claimed the following trade-off for
Longest Path.

Theorem 4.1 (Lingas and Wahlen, Corollary 1) Let G be an (undirected) graph on n ver-
tices, and let 1 ≤ q ≤ n. One can produce either a simple path in G of length not less than q in
polynomial time, or a longest path of G in time 2O(q

√
n log2.5 n).

They use as subroutines a minor-separator algorithm of Plotkin, Rao, and Smith [43] and an
algorithm of Gupta and Nishimura [26] for topological embeddings on graphs of small treewidth.
We obtain a substantially better hybrid algorithm by a more direct approach.

Theorem 4.2 Let `(n) ∈ o(n) be a proper (constructible) function of n. Longest Path admits
an algorithm that always produces either

• a longest path in O(m + n2`(n)`(n)!) time, or

• an `(n) node path in linear time.

Remark 4.1 For `(n) = o( n
log n), the exact algorithm of Theorem 4.2 takes 2o(n) time. In contrast,

Lingas and Wahlen [38] only guarantee 2o(n) time in the exact solution when the polynomial time
case finds an o(

√
n

log2.5 n
) length path.

We begin with a simple algorithm that, in linear time, either finds an `-node path or builds a
path decomposition of the graph, with width at most `.

Lemma 4.1 Let ` > 0 be an integer. There is an O(m) time algorithm Path-Decomp that on a
graph G either produces a path that is at least ` nodes long, or produces a path decomposition of G
with width at most `.

Path-Decomp starts by considering a DFS tree T of G rooted at an arbitrary vertex r. If the
length of the longest path from r to a leaf of T is at least `, then return that path. If not, a path
decomposition is built: for a leaf vertex v in T , define the bag Wv to be v along with its ancestors
in T . Let v1, . . . , vk be the order that leaf nodes appear in an in-order traversal of T . Note by DFS,
all the neighbors of a vertex u are either ancestors or descendants of u in T . From this observation,
it is easy to show that the collection {Wv} paired with P = {(v1, v2), (v2, v3), . . . , (vn−1, vn)} is a
path decomposition of G. As the longest path in T is at most `, the width of each bag is at most
`− 1.
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4.1.1 Hybrid Algorithm for Longest Path

We now prove Theorem 4.2. Let `(n) be a function of n. Given a graph G, we run Path-Decomp with
`(n); if it returns an `(n) length path, then we are done; otherwise, it returns a path decomposition
of width ≤ ` − 1. Bodlaender [7] claims the existence of O(2``!n) time algorithm for Longest
Path on graphs of treewidth at most `.

Theorem 4.3 (Theorem 2.2, [7]) There exists an algorithm that uses O(2kk!n) time and find
the longest cycle (or longest path) in a given graph G that is given together with a tree decomposition
of G with treewidth ≤ k.

However, the “proof” of this result does not give an algorithm or even a hint of how to start one!
So for completeness, we include a simple dynamic programming algorithm achieving O((2`n`!)3 · `)
time for graphs of pathwidth ` in the Appendix.

It is quite possible that the exact case above can be further improved, as we obtained a path
decomposition and not just a tree decomposition.

Remark 4.2 A similar strategy yields an identical trade-off for Longest Cycle. To sketch our
idea, Path-Decomp is replaced with an algorithm of Fellows and Langston [21] that either produces
a cycle of length ` or tree decomposition of width at most `.

4.2 Minimum Bandwidth Algorithms

The minimum bandwidth problem is (in)famous in combinatorial optimization. Given an undi-
rected graph G, we wish to embed its vertices onto a line such that the maximum stretch of any
edge of G is minimized. Let [n] = {1, . . . , n}. Formally, we are given G = ([n], E) for some natural
number n, and are looking for π ∈ Sn such that

max
{i,j}∈E

|π(i)− π(j)|

is minimized. The best known exact algorithm for minimum bandwidth is by Feige and Kilian [19]
and runs in Õ(10n) time. The best known approximation algorithm is an O((log3 n)(log1/2 log n))-
approximation of Dunagan and Vempala [16]. Here we present two hybrid algorithms that improve
on these in both of its cases. The first is very simple and was kindly suggested to us by Uriel
Feige. It either solves in 2n/α(n) or approximates with O((log3 n)α(n)) ratio, for any α. The
second algorithm is technically more involved in description and analysis. While its exact case uses
4n+o(n) time, its approximation case achieves an O((log2.5 n)(log log n)(log2 log log n)) ratio. Both
algorithms crucially depend on an algorithm of Blum et al., which approximates the minimum
bandwidth B to within a factor of

√
n
B log n.

Theorem 4.4 (Suggested to us by Uriel Feige) Let α(n) be an arbitrary constructible func-
tion. There exists an algorithm that on an n vertex graph G either

• approximates the minimum bandwidth within a factor of O(α(n) · log3 n), or

• produces a linear arrangement of minimum bandwidth in time O(2
n

α(n) ).

11



Proof. Run the O(
√

n
B log n) approximation algorithm of Blum et al. If it returns an arrangement

of bandwidth w ≥ n
α(n)·log n , then we know it actually approximated the bandwidth within a factor

of O( n
w log2 n), which is O(α(n) log3 n). On the other hand, if w < n

α(n)·log n , then run an O(nb)
time algorithm of Monien and Sudborough [41] to find an arrangement of bandwidth at most b for

increasing values of b. This finds an arrangement of minimum bandwidth in O(
∑ n

α(n) log n

b=1 nb) steps,
which is O(2

n
α(n) ). ¤

Theorem 4.5 Let α(n) = Ω((log2 log n)(log4 log log n)). Minimum Bandwidth admits an algo-
rithm that given an n-node graph G always produces, after a polynomial time test, either

• a linear arrangement achieving the minimum bandwidth in 4n+o(n) time, or

• an O(
√

α(n) · log2.5 n)-approximation in polynomial time.

The remainder of this section outlines the proof of this theorem. We will first strengthen the
Plotkin-Rao-Smith minor-separator theorem by (a) guaranteeing a 1

2− 1
2 separator and (b) yielding

a much tighter minor-separator trade-off when the underlying source graph H is sparse.

4.2.1 A Generalization of Plotkin-Rao-Smith

A graph M is said to be an H-minor in a graph G if M is a subgraph of G and the vertices of M
can be partitioned into |V (H)| subsets, a set S(v) for each vertex v of H, so that each S(v) induces
a connected subgraph of M and if (u, v) ∈ E(H), then there is an edge between S(u) and S(v).
The sets S(v) are called supernodes.

Plotkin, Rao and Smith [43] obtain the following result relating graph minors and separators.

Theorem 4.6 ([43]) Given a graph G on n nodes, and a positive integer h, there is a polynomial
time algorithm that will produce either a Kh minor of size O(h

√
n log n), or will find a 1

3 − 2
3

separator of size O(h
√

n log n).

A Kh-minor contains an H minor for any H with |V (H)| ≤ h. However, for sparse graphs
H, Theorem 4.6 gives a minor and separator size depending linearly on h. We extend the minor-
separator result to yield a better minor vs. separator trade-off. Namely, the sizes of the minor and
the separator are related to the number of edges in H. For sparse graphs this implies a square root,
not linear, dependence on h.

Theorem 4.7 Given two graphs G and H with |V (G)| = n, |E(H)| = h, there is a polynomial
time algorithm that will either produce an H-minor in G of size O(

√
hn log n), or will find a 1

3 − 2
3

separator of size O(
√

hn log n).

The separator in the above theorems cuts the graph into two parts so that neither of the two
sides is of size more than 2/3 of the original graph. For many problems (including our case), a
more balanced separation can be useful. We extend the minor/separator result to allow finding a
1
2 − 1

2 separator for certain values of h, keeping the same trade-off.
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Theorem 4.8 Let G and H be graphs, with |V (G)| = n, |E(H)| = h.
If h = O( n

(log3 n)(log2 log n)(log4 log log n)
), there is a polynomial time algorithm, Minor-Or-Separator,

that will either produce an H-minor in G of size O(
√

hn log n), or will find a 1
2 − 1

2 separator of G
with size O(

√
hn log n).

To prove the above results, we first show a lemma given in [43].

Lemma 4.2 Let G = (V,E) be a graph with |V | = n, ` ≥ 1 be an integer and A1, . . . , Ak be k
nonempty subsets of V . Then either

1. there is a rooted subtree T of G of depth at most 4` log n such that for all i = 1, . . . , k,
V (T ) ∩Ai 6= ∅, or

2. there exists an S ( V such that |N(S) ∩ (V − S)| ≤ |S|
` and 0 < |S| ≤ n

2 .

Proof of Lemma 4.2: We prove this by providing a procedure to output either T or S.

Algorithm 1 FindTreeOrCluster(G, A1, . . . , Ak, `)
For some v ∈ V , let R ← {{v}}
Let R′ ← R ∪N(R) ∪N(N(R))
while R 6= V and (|R′| ≥ |R|(1 + 1/`) or |V −R| ≥ |V −R′|(1 + 1/`)) do

R ← R′

R′ ← R ∪N(R) ∪N(N(R))
end while
if for all i = 1, . . . , k, some vi ∈ R ∩Ai then

return a tree T of shortest paths from v to each vi

else
S ← R ∪N(R)
if |S| ≤ |V − S| then

return S
else

return V − S
end if

end if

The above procedure, FindTreeOrCluster(G), picks a node and does BFS from it building up a
set R. Every two BFS stages it checks whether R expanded or its complement shrunk a lot. The
BFS stops if neither of these occurred. A tree is returned if at the last stage R intersects each
of the sets Ai non-trivially. If a tree is not returned, then the smaller of R or its complement is
returned as the set S.

Notice that if FindTreeOrCluster(G) does not return a tree, then the set it returns must be
nonempty. This is because, first by construction S 6= ∅, and second, if S = R ∪ N(R) = V 6= R,
then |V − (R∪N(R)∪N(N(R)))| = 0 ≤ |V −R| and the while loop could not have stopped at R.
Also, if R = V , then R touches all sets Ai and the algorithm would have returned a tree.
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If FindTreeOrCluster(G) returns a tree T , the tree must have depth at most 4` log n. To see this
first note that the process of augmenting R either increases R or decreases V − R by a factor of
1 + 1/` and so the loop has to terminate in at most 2 log n

log(1+1/`) ≤ 2` log n iterations. Since each
iteration increases the maximum distance from v by at most 2, the depth of the tree cannot be
more than 4` log n.

To show that |N(S) ∩ (V − S)| ≤ |S|
` , it suffices to show that for A = R ∪N(R),

|N(A) ∩ (V −A)| ≤ |A|
`

and |N(V −A) ∩A| ≤ |V −A|
`

.

The termination condition ensures that

|R ∪N(R) ∪N(N(R))| ≤ |R| (1 +
1
`
), and(1)

|V −R| ≤ |V − (R ∪N(R) ∪N(N(R)))| (1 +
1
`
).(2)

It is easy to see that

|R ∪N(R) ∪N(N(R))| = |N(A) ∩ (V −A)|+ |A|, and
|A ∩N(V −A)| ≤ |A| − |R|.

By inequality 1, we get

|N(A) ∩ (V −A)| ≤ |R| − |A|+ |R|
`
≤ |A|

`
.

By inequality 2, we get

|V |
`

+ |R| ≥ (1 +
1
`
)(|N(A) ∩ (V −A)|+ |A|) ≥ (1 +

1
`
) |A|, and

|A| − |R| ≤ |V | − |A|
`

.

Since A = R∪N(R) and since no neighbors of V −A in A can be in R (otherwise V −A∩A 6= ∅),

|N(V −A) ∩A| ≤ |V −A|
`

.

We note why we need to do two rounds of BFS. Doing only one round would suffice for finding a
minor or a set with the non-expanding property. However, with only one round we cannot guarantee
that the set will be nonempty and of size at most half the graph. ¤

Lemma 4.2 allows us to give an algorithm satisfying the requirements of Theorem 4.7. The
proof is similar to the proof of Theorem 4.6.
Proof of Theorem 4.7:

Consider algorithm 2/3-Minor-Or-Separator given as Algorithm 2. Iteratively, it uses algorithm
FindTreeOrCluster to build an H-minor, and a subset Vr of V (G) which has few outside neighbors
not in the minor. In each iteration, it attempts to find in W = V (G) −M − Vr a tree supernode
corresponding to a new node v of H, so that it intersects the neighborhood of each supernode
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corresponding to a neighbor of v already built. If FindTreeOrCluster does not return a tree but a
set, 2/3-Minor-Or-Separator adds more nodes to Vr. The iterations terminate if either the minor M
has been built, or W is of size at most 2n

3 .
If 2/3-Minor-Or-Separator outputs a separator S, S separates V (G) into Vr and W −N(Vr). Due

to the termination condition, |W −N(Vr)| ≤ |W | ≤ 2n
3 and |Vr| ≤ |V −W ′|+ |W ′|

2 = |V | − |W ′|
2 ≤

n− n
3 = 2n

3 , where W ′ is W before the final iteration. Due to Lemma 4.2, if a subset of W is moved
to Vr, then it has at most |Vr|

` neighbors in W . If a subset of M is moved to Vr, then it has no
neighbors in W . Hence in the end |(N(Vr)− Vr)| ≤ |Vr|

` ≤ 2n
3` .

Let H[v1, . . . , vk] denote the subgraph of H induced by v1, . . . , vk ∈ V (H). At the beginning of
each while loop iteration, M can be partitioned into k supernodes A1, . . . , Ak and one can associate
each Ai with a distinct vertex vi in H so that for every (vi, vj) ∈ EH , there is an edge from a node
in Ai to a node in Aj in G. That is, M corresponds to a H ′ = H[v1, . . . , vk] minor in G. To see
this, notice that this holds at the very beginning of the while loop by construction. Suppose it
holds at the kth iteration. If during the (k + 1)st iteration a tree T is added to M , then it was
associated with some vertex w in H that was not covered by M yet, and by construction and by
lemma 4.2, M continues to obey the minor condition. If a supernode Ai was removed because its
neighborhood in W was empty, the remaining graph is a H ′′ = H[v1, . . . , vi−1, vi+1, . . . , vk]-minor
of G.

Furthermore, we claim that |M | ≤ 8`|E(H ′)| log n. To see this, notice that once a supernode is
added, its size is never changed unless it is removed. At the time of the addition of a supernode,
its size is bounded by 4` degH(u) log n, by construction through algorithm FindTreeOrCluster. Once
the minor is completed, its size is

|M | ≤ 4` log n
∑

u∈H

degH(u) = 8`h log n.

Therefore, the final size of the separator is at most 2n
3` + 8`h log n.

¤
To obtain a 1

2 − 1
2 separator version of Theorem 4.7, we use ideas from the Lipton and Tarjan

separator theorem on planar graphs [39]. The approach is very similar—we use the 1
3 − 2

3 separator
version of the theorem with diminishing values for ` on the larger partition at each stage.
Proof of Theorem 4.8:

We are given graphs G and H with |V (G)| = n and |E(H)| = h. We define a sequence of sets
A1

i , A
2
i , Ri, Si so that for each i:

1. A1
i , A

2
i , Ri, Si partition V .

2. There are no edges between A1
i , A

2
i and Ri.

3. |A1
i | ≤ |A2

i | ≤ |A1
i ∪Ri ∪ Si|.

4. |Ri| ≤ 2|Ri−1|
3 .

Intuitively, Si will be the separator we are building up, A1
i will be the smaller partition and A2

i will
be the larger partition. Ri will consist of the subgraph we will invoke recursion on.
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Algorithm 2 : 2/3-Minor-Or-Separator(G, H, `)
Let M ← {v} for some v ∈ V
Associate v with some u in H
k ← 1 {k is the number of supernodes in M}
Let Vr ← ∅
Let W ← V − Vr −M
while |W | ≥ 2n

3 do
{M here is a H ′ minor of G for an induced subgraph H ′ of H with supernodes A1, . . . , Ak

corresponding to vertices v1, . . . , vk in H ′.}
if M has |VH | supernodes then

return M
end if
for all j = 1, . . . , k do

if NW (Aj) = ∅ but NH−H′(vj) 6= ∅ then
Vr ← Vr ∪ V (Aj)
M ← M − V (Aj)

end if
end for
Find the new value of k and relabel the supernodes the vertices in H covered from 1 to k.
{This also means that H ′ gets smaller.}
Pick a vertex w ∈ VH − V (H ′)
Let Ai1 , . . . , Aid be the supernodes in M corresponding to the neighbors of w in H ′

For each j = 1, . . . , d let Bij = NW (Aij )
Run FindTreeOrCluster(W , Bi1 , . . . , Bid , `) to either get a tree T or a set S
if T was returned then

M ← M ∪ V (T )
Ak+1 ← V (T ) {now M has k + 1 supernodes}
W ← W − V (T )

else if S was returned then
Vr ← Vr ∪ S
W ← W − S

end if
end while
return separator M ∪ (N(Vr)− Vr)
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Let A1
0 = A2

0 = S0 = ∅, and R0 = V . This clearly satisfies all the four conditions above.
Consider A1

i−1, A
2
i−1, Ri−1, Si−1 and assume they satisfy the conditions. We will show how to

construct A1
i , A

2
i , Ri, Si from these while keeping the conditions satisfied.

Let Gi be the subgraph of G induced by Ri−1. For `i = pi`, run 2/3-Minor-Or-Separator(Gi,
H, `i) to obtain either an H-minor of Gi of size at most O(hpi` log((2

3)in)) = O(h` log n), or a
separator of Gi of size

O

(
(2
3)in

pi`
+ h(pi`) log

(
(
2
3
)in

))
.

Suppose a separator S was found. Then let B1 and B2 be the smaller and larger partitions
respectively. Furthermore, let A1

i and A2
i be the smaller and larger of B1 ∪ A1

i−1 and A2
i−1. Also,

let Ri = B2 and Si = Si−1 ∪ S.
Observe that if the four conditions hold for i− 1, they hold for i by construction. We continue

this process until Rk = ∅. In the end, by these conditions we get a partition of V , (A1
k, A

2
k, Sk) with

no edges between A1
k and A2

k with |A1
k| ≤ |A2

k| ≤ n
2 .

In order to be able to run 2/3-Minor-Or-Separator, we need `i ≥ 1 for all i. There can be at
most log 3

2
n stages of the algorithm since at each stage i the size of Gi is divided by at least 3

2 .

Hence we must have ` ≥ maxi∈[0,dlog 3
2

ne] 1
pi

.

Now let’s see how large the separator can be:

log3/2 n∑

i=0

[
n(2

3)i

pi`
+ pi`h log

(
n(

2
3
)i

)] ≤ n

`

log3/2 n∑

i=0

(2
3)i

pi
+ h` log n

log3/2 n∑

i=0

pi

≤ c1
n

`
+ c2h` log n ≤ max(c1, c2)

[
n

`
+ h` log n

]

Therefore we either find an H-minor of size O(h` log n), or we get a 1
2 − 1

2 separator of size O(n/`+
h` log n). ¤

For our purposes, pi = 1
(i+3) log(i+3)(log log(i+3))2

suffices. To show that
∑∞

i=0 pi converges, we
recall Gamma and Delta encoding of integers. Given an integer n, its Gamma encoding is blog2 nc
zero bits followed by the binary encoding of n. The Delta encoding of n is the Gamma encoding of
blog2 nc + 1 followed by the binary encoding of n with the most significant bit excluded. We can
continue doing this for one more level, to get a Phi encoding of n as the Delta encoding of blog2 nc+1
followed by the binary encoding of n with the most significant bit excluded. The length of a Gamma
encoding is at most 1+2 log n. The length of a Delta encoding is at most 1+2 log log n+log n, and
the length of a Phi encoding is at most 1+2 log log log n+log log n+log n. By the Kraft-McMillan
inequality, we get

1 ≥
∞∑

i=3

2−(1+2 log log log n+log log n+log n) =
∞∑

i=3

1
2n log n(log log n)2

.

Therefore,
∑∞

i=0 pi ≤ 2.
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Furthermore, notice that we can bound
∑∞

i=0(
2
3)i 1

pi
by the integral

∫ ∞

2
(
2
3
)xx log x(log log x)2dx ≤ C

∫ ∞

0
(
2
3
)xx2

for some constant C. This can be further bounded by the product rule to yield a bound of C 2
(ln 3

2
)3

.

Since both sums involving pi are bounded, we conclude the proof of Theorem 4.8. ¤

4.2.2 The Bandwidth Algorithm

Our bandwidth algorithm works by finding a constant-degree expander of size Ω( n
α(n) log3 n

) as a
minor or decomposing the graph by repeatedly finding small separators. If such a minor is found,
one can show a good lower bound on the bandwidth of the overall graph, and use the Blum et al.
approximation to obtain a O(log2.5 n log log n(log log log n)2) ratio. If no such minor is found, then
the resulting graph decomposition allows us to exactly solve the problem faster.

4.2.3 Selection and The Approximation Case

Using the Minor-Or-Separator algorithm, we search for a constant degree expander minor in G. If
the minor is not found, then we have a small separator and a collection of these will constitute a
graph decomposition.

Definition 4.1 Let ε ∈ (0, 1).
G is an ε-expander if for all S ⊆ V with |S| ≤ |V |/2, |S ∪N(S)| ≥ (1 + ε)|S|.
G is d-regular if all nodes of G have degree d.

Lemma 4.3 If G has an H-minor where H is an ε-expander on h nodes, then G has bandwidth
Ω(h).

Proof.

Let M be the H–minor of G. We show that M has bandwidth Ω(h). Suppose M has k nodes
and h supernodes. Consider any linear arrangement of the nodes of M . Let hLHS (and hRHS)
be the number of supernodes completely contained among the first (and last) k/2 nodes in the
arrangement. Let hS = h − hLHS − hRHS ; i.e., the number of supernodes having a node in both
the first and second half of the arrangement.

First, we claim if hS ≥ ε ·h for some ε > 0, then the bandwidth is at least ε ·h. Each supernode
is disjoint from other supernodes and is connected, so the arrangement has ε · h nodes in the first
half that connect to distinct nodes in the second half. Any arrangement with this property has
bandwidth at least ε · h.

If hLHS < h/3 or hRHS < h/3 then hS > 2h/3, so the bandwidth is Ω(h) in this case.
If hLHS ≥ h/3, then the supernodes contained in the first half have at least εh/3 supernodes

as neighbors, by the expansion condition. Hence, either at least half of these neighbors are in the
second half, or at least half of these neighbors are supernodes with vertices in both halves. Thus
either hS ≥ εh/6, in which case the bandwidth of M is at least ε · h/6, or there are εh/6 edges
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crossing from nodes in the first half to distinct nodes in the second half. So again the bandwidth
is at least Ω(h). ¤

Let n be the number of vertices in G, and H be an Θ( n
α(n) log3 n

)-node, 5-regular, (2 −√3)/4-

expander, for α(n) = Ω((log2 log n)(log4 log log n)). We will try to find an H-minor of G. An
expander with such parameters can be efficiently constructed, cf. Gabber and Galil [22], and so the
Minor-Or-Separator algorithm can be employed to search for an H-minor. If such a minor is found,
we conclude a good lower bound on the bandwidth of G.

Corollary 4.1 If Minor-Or-Separator returns an H-minor of G, then G has bandwidth Ω( n
α(n) log3 n

).

Recall Blum et al. guarantees an O(
√

n/B log n)-approximation. Thus in the above case, it is
at least an O(

√
α(n) · log1.5 n · log n) = O(

√
α(n) log2.5 n) approximation.

4.2.4 The Exact Case

If the desired minor is not found, then Minor-Or-Separator returns a O( n
γ(n)·log log n·log n) node sep-

arator, for γ(n) = Ω(log2 log log n). Suppose we decompose the graph by repeatedly finding a
node separator of size O( n

γ(n)·log log n·log n), removing it, and invoking recursion separately on the
two (disconnected) parts of the graph until the size of the subgraph under consideration becomes

n
γ(n)·log log n·log n . In this way, we build a tree T where each tree node corresponds to a separator of

the graph. Given this graph decomposition, Minimum Bandwidth can be solved in 4n+o(n) time.
Our recursive algorithm will build up a partial linear arrangement φ of the nodes on the line, along
with a set C of layout constraints for the remaining nodes in the current subtree of T . (Initially,
these two are empty.)

Suppose there are at most s nodes in each tree node.

Bandwidth(T,C, φ):
Let r be the root of T and let Sr be the separator of r. Let TL and TR be the left and right

subtrees of T . Let t be the number of nodes of G appearing in the tree nodes of T .
If T is a single node, try all 2O(s log s) ways to extend φ to the nodes of T under constraints C

and return the one with smallest bandwidth.
Try all O(ts) extensions of φ to Sr (call it φ′) that obey C, and all O(2t−s) ways to give

constraints (call them C ′) specifying which (currently) unassigned indices of the linear arrangement
should contain nodes of TL, and which contain nodes of TR. Let C ′′ = C ∪ C ′.

Obtain φL = Bandwidth(TL, C ′, φ′) and φR = Bandwidth(TR, C ′, φ′). Return a φ′′ yielding the
minimum bandwidth over all φ′ and C ′′, where

φ′′(v) =





φL(v) for v ∈ TL,

φR(v) for v ∈ TR,

φ′(v) for v ∈ Sr.

Claim 1: The above algorithm returns the minimum bandwidth of G.
Proof. By induction on n. ¤
Claim 2: The above algorithm runs in time 4n+o(n).
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Proof. Modulo polynomial factors, we have the following recurrence for the runtime:
T (n) ≤ 2n−s · ns · 2T (n/2) + 1, T (s) ≤ 2O(s log s).

One can easily check by induction that T (n) = 4n · ns log(n/s) works for any s such that s <
ε n

log n·log(n/s) for all ε > 0. As γ(n) is unbounded, we have s = o( n
log n·log log n) which suffices. ¤

5 Solving Quantified Boolean Formulas (QBF)

We do not intend hybrid algorithms to be restricted solely to exact vs. approximate trade-offs,
but this pair of measures has certainly helped us develop our ideas. We now briefly turn to
another pair more motivated by complexity theoretic interests than practical considerations. In
terms of quantified Boolean formulas, the notion of approximation is a little less coherent. Rather
than pitting efficient approximation versus exact solution, our aim is to show that each QBF is
solvable in either faster-than-2n time, or in alternating linear time with a relatively small number
of alternations. (For background on alternation, cf. [42].)

Let EQBF be the set of true quantified Boolean formulas in prefix-normal form over arbitrary
propositional predicates, satisfying the following regularity condition on quantification:

• If the formula has n variables and has a alternations, then every quantifier block contains
exactly bn/ac variables, except for the last block which contains (n mod a) variables.

Proposition 5.1 EQBF is PSPACE-complete.

We will show that for all ε > 0, every instance of EQBF can be solved either in essentally
O(2(1−ε/2)n) expected worst-case time, or in alternating linear time with few (εn) alternations.
The test deciding which case happens simply checks the number of alternations. Below, ZPTIME[t]
is the class of decision problems solvable in worst-case expected time t, and Σk − TIME[t] is the class
solvable by alternating TMs using at most k alternations, starting in an existential state.

Theorem 5.1 For all ε > 0,

EQBF for n-variable instances is in ZPTIME[2(1−ε/2+O(1/21/ε))n]⊕P Σεn−TIME[nO(1)].

Note that no better algorithm than the trivial 2n one is currently known for EQBF, or any
interesting variant of it. Similarly, it not known (or believed) that one can quickly reduce a QBF
F on an arbitrary predicate down to an F ′ where the number of alternations in F ′ is a small
fraction of the number of alternations in F . However, one can neatly partition EQBF into “lower
alternation” cases and “faster runtime” cases. The construction not only holds for constant ε > 0
but also for any decreasing function f with values in the interval (0, 1], so e.g. one gets either
2n−n/ log n expected time or (n/ log n)-alternating linear time for EQBF (these particular values are
interesting, as the best known randomized algorithm for CNF satisfiability has such runtime [45]).
Theorem 5.1 holds due to a generalization of probabilistic game-tree search [47]. We defer the
algorithm and proof to the appendix.

Theorem 5.2 EQBF with k alternations are solvable in expected O

((
2k+1

2

) n
2k

)
worst-case time.
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Remark 5.1 For k = 1, one obtains
(
3
2

)n/2
= 3n/2 runtime. Observe

(
2k+1

2

) 1
2k increases as k

increases. Therefore, the fewer the alternations in the formula, the greater the runtime bound.

Proof of Theorem 5.1: (Sketch) Initially, our algorithm B chooses two uniform random per-
mutations of [2k]. Call the two sequences u1, . . . , u2k and e1, . . . , e2k . Suppose the first variable x1

is universal (the case where x1 is existential is analogous). The k bits u1 are substituted for the
k variables in the quantifier block containing xi, then e1 is substituted for the k variables in the
subsequent existential block. Then

(*) B is recursively called on the remaining formula.
• If the call returns false, e2 is substituted instead of e1, and B is called again as in (*). If that

fails, e3 is substituted for e2 and B is called, etc., until either (1) an ei is found that yields true, or
(2) e2k failed.

– If (1), the next k values for the universal variables (u2) are substituted for u1, a new random
permutation e1, . . . , e2k is chosen, e1 is substituted for the existential block following the universal
block of xi, and B is recursively called as in (*).

– If (2), B concludes the formula is false.
• If the call returns true and ui is the current set of k values for the universal variables, then

ui+1 is substituted in place of ui, a new random permutation e1, . . . , e2k is chosen, e1 is substituted
for the existentials, and the process restarts from (*). If i = 2k, B concludes the formula is true.
This concludes the description of B.

Observe B is a backtrack algorithm simply making randomized assignment choices in a certain
manner, thus it always returns the correct answer. It remains to show its expected runtime is
the claimed quantity. Clearly, two quantifier blocks are assigned before each recursive call, so the
recursion depth is n/(2k).

Suppose the formula given to B is false. Then B guesses a k-bit v for the universal variables
(such that every setting of the existential variables yields false) with probability 1/2k. (That is,
u1 = v with probability 1/2k.) If this fails, u2 = v with probability 1/2k, and so on. Every
time a “wrong” ui is chosen, B must consider all 2k settings of the existential variables. One may
derive that the expected number of recursive calls at any point (of the recursion tree) is at most∑2k

i=1 i =
(
2k+1

2

)
, since

2k ·
(

1
2k

+ 2 · 2k − 1
2k

1
2k − 1

+ 3 · 2k − 1
2k

2k − 2
2k − 1

1
2k − 2

+ · · · + 2k · 2k − 1
2k

2k − 2
2k − 1

· · · 1
2

)

= 2k · ( 1
2k

+
2
2k

+
3
2k

+ · · ·+ 2k

2k
) =

2k∑

i=1

i =
(

2k + 1
2

)
.

Similarly, if the formula is true, all ui settings are considered. For each one, the guessed e1 is the
correct existential setting with probability 1/2k; if this fails, e2 is the correct one with probability
1/2k, etc. The expected number of recursive calls is therefore represented by the same expression
above. ¤

By letting ε = 1
k , the above runtime bound for EQBF with greater than εn alternations is
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at most
(
21/ε+1

2

) εn
2 = (21/ε + 1)εn/22

n
2
− εn

2 ≤ 2n/2(1+ ε

21/ε
)2n/22−

εn
2 = 2n

�
1− ε

2
+O( ε

21/ε
)
�
, where the

inequality holds by a small lemma:

Lemma 5.1 For all ε ∈ (0, 1], (21/ε + 1)εn/2 ≤ 2n/2(1+ ε

21/ε
).

Proof. (21/ε+1)εn/2

2n/2 = (21/ε+1
21/ε )εn/2 = (1 + 1

21/ε )εn/2, thus (21/ε + 1)εn/2 = 2n/2(1 + 1
21/ε )εn/2. By the

well-known inequality log2(1 + x) ≤ x, 2n/2(1 + 1
21/ε )εn/2 = 2n/22log2

�
1+ 1

21/ε

�
εn/2 ≤ 2n/22εn/21+1/ε

=

2n/2(1+ ε

21/ε
). ¤

6 Some Limitations of Hybrid Algorithms

Several dimensions are available for exploring the possibility of hybrid algorithms. One can inquire
about the complexity of the two classes required given a polynomial time selector, or one can
consider hardness in terms of the complexity of the algorithm selector. The former kind we call
“class-based hardness”, and the latter kind we call “selector-based hardness”. Here, we focus on
algorithms of the exact/approximate variety.

It will be useful for us to define a natural complexity class involving both approximation com-
plexity and time complexity.

Definition 6.1 An optimization problem Π is in the class APX-TIME[r(n), t(n)] if there is an
algorithm A that always returns a feasible solution y to Π in time t(n), and the approximation
ratio of A is r(n).

We also define a polynomial select of two complexity classes, as a formal version of algorithm
selection.

Definition 6.2 Let C and D be complexity classes. A problem Π is in C⊕PD if there is a polynomial
time function f from instances of Π to {0, 1} such that {x ∈ Π : f(x) = 0} ∈ C, {x ∈ Π : f(x) =
1} ∈ D.

Just as C ∩ D denotes the “intersection of C and D”, we propose to call C ⊕P D the p-
selection of C and D. To illustrate, Theorem 2.3 says Max-E3-Lin-2 ∈ ⋂

ε>0(TIME[2εn] ⊕p APX-
TIME[12 + εn

6m , n]), where TIME[t(n)] is the class of optimization problems solvable in t(n) time.
(Unless otherwise stated, t always denotes a time constructible function.) The definition of p-
selection is intended to be a complexity-theoretic classification of problems solvable by hybrid
algorithms. We may put forth the following simple proposition connecting p-selection and hybrid
algorithms, stated informally for the purposes of exposition.
Informal Proposition. Let ({h1, . . . , hk}, S) be a hybrid algorithm for Π, and let C1,. . .,Ck be
complexity classes. Define Li := {x ∈ Π : S(x) = i}. If for all i = 1, . . . , k it holds that Li ∈ Ci and
hi solves Li within the resources of Ci (i.e. hi is a “witness” to Li ∈ Ci), then

Π ∈ (C1 ⊕P (C2 ⊕P · · · (Ck−1 ⊕P Ck)))
In terms of class-based hardness, we unfortunately have little to say at the moment (that has

not already been said in some other way). It would be nice to have reasonable conditions that imply
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something like MAX-SNP ⊆ SUBEXP ⊕P PTAS is unlikely; i.e. one cannot efficiently select between
(1+ ε)-approximation or sub-exponential exact solution. Let the Exponential Time Hypothesis for
Sat, a.k.a. ETH for Sat be the assumption that Sat on inputs of size L requires 2δL time for
some δ > 0, almost everywhere.

Proposition 6.1 ETH for Sat implies Max-Ek-Lin-2 is not in APX-TIME[1/2 + ε, 2no(1)
], for

some ε > 0.

Proof. Follows from H̊astad’s well-known inapproximability results [27]. There, a reduction from
solving Sat on n variables to approximating Max-Ek-Lin-2 on nO(f(ε)) variables within 1/2 + ε
is given (for some large function f). ¤

Corollary 6.1 ETH for Sat implies that Max-Ek-Lin-2 is not in APX-TIME[1/2 + ε, nO(1)]⊕P

TIME[2no(1)
], for some ε > 0.

Thus we cannot improve the Max-Ek-Lin-2 algorithm significantly (from exact time 2εn to
2no(1)

), assuming the exponential-time hypothesis. Note the same results extend to Max-Ek-Sat
without overlap, Max-Ek-And without overlap, etc., with appropriate substitutions for the fraction
1/2 in the above.

The Max-E3-Lin-2 algorithm immediately implies that a “linear” many-one sub-exponential
time reduction from Sat to Max-E3-Lin-2 (1/2 + ε)-approximation in fact does not exist, if ETH
for Sat holds. Contrast this with the following facts:

1. there is a many-one polynomial time reduction from Sat to Max-E3-Lin-2 (1/2+ε)-approx-
imation (but the reduction blows up the number of clauses by a large polynomial, whereas
we assume only a linear increase), and

2. there is a sub-exponential time Turing reduction from k-Sat to Max-3-Lin-2 (but the Turing
reduction needs 2εn oracle calls).

This result may have some relevance to the question of whether linear length PCPs with perfect
completeness exist, as PCPs of linear length along with the ETH for Sat would imply for some
constant c that c-approximating Max-Sat requires 2Ω(n) time [6]. (Of course, here it is important
to note that our result only holds for Sat where the number of clauses is linearly related to the
number of variables, so we have not shown completely that some consequence of ‘perfect’ linear
length PCPs indeed holds.)

Theorem 6.1 For all k′ ≥ 3, ETH for Sat implies that for all constants c > 1 and ∆ > 1, any
many-one reduction from Sat on m = ∆n clauses and n variables to Max-E3-Lin-2 (1/2 + ε)-
approximation on (at most) cm clauses and (at most) cn variables requires 2εm time for some
ε > 0.

Proof. If such a reduction existed running in time 2εm for all ε > 0, then choose ε < min{ δ
6 , c·δ

6∆},
where δ is such that Sat-solving requires O(2δn) steps. Reduce a given Sat formula into a Max-
E3-Lin-2 instance, and letting ε′ = 6ε, run the selector from Theorem 2.3 using ε′. If it says
“exact”, then solving the Sat instance takes less than 2ε′n < 2δn time. If it says “approximate”,
then the approximation algorithm gives a fast solution within 1/2+ ε′/6 = 1/2+ ε of the optimum,
which is enough to decide the Sat instance by assumption. ¤
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6.1 Selector-Based Hardness

We can also show some simple requirements on the complexity of selectors for certain hard problems
under certain measures. Intuitively, our objective here is to prove that in the exact/approximation
case, an efficient selector cannot be heavily biased toward one type of solution over the other. We
have a couple of results along these lines, using the following assumption.

Assumption 1 Π is a MAX-SNP-complete problem in TIME[t1] ⊕P APX− TIME[α + ε, t2] for
some time constructible t1 and t2, where α is an inapproximability ratio for Π. (That is, Π /∈
APX− TIME[α + ε, nO(1)] unless P = NP.) Define A ⊆ Π to be the subset of instances (α + ε)-
approximated in t2, and E ⊆ Π be the set solved exactly in t1 (so {A, E} is a partition of Π).

Let m ∈ N, and Πm be the class of instances on inputs of size m, where size is measured by the
number of constraints. We say that a set S ⊆ Π is f(m)-sparse if |S ∩Πm| ≤ f(m) and f(m)-dense
if |S ∩ Πm| ≥ f(m). Assuming the p-dimension of NP is greater than zero (a working conjecture
with numerous plausible consequences [40]) and the exact solution runs in only 2no(1)

time, there
must be a dense set of instances being approximated.

Theorem 6.2 Given Assumption 1, if t1 ∈ 2no(1)
then A is 2nδ

-dense for some δ > 0, unless
dimp(NP) = 0. (cf. [40] for definition).

Proof. (Sketch) The following is proved in Hitchcock [31]: If dimp(NP) > 0, then for all
ε > 0 there exists a δ, δ′ > 0 such that any 2nδ

-time approximation algorithm for Max-3-Sat has
performance ratio less than 7/8 + ε on a 2nδ′

-dense set of satisfiable instances. One can, in a
straightforward way, adapt his proof to any Π in MAX-SNP, where if α is the inapproximability
ratio for Π, then α takes the place of 7/8 in the above. ¤

Also, if a selector only employs exact solution on a sufficiently sparse set, then we can effectively
remove the selector entirely.

Definition 6.3 Π admits arbitrarily large constraints of constant size iff there exists a K ≥ 1 such
that for all k ≥ K and instances x of Π, adding a constraint c on k variables to x still results in
an instance of Π.

Theorem 6.3 Given Assumption 1, if Π admits arbitrarily large constraints of constant size, E is
mO(1)-sparse, and t2 ∈ O(nO(1)), then P = NP.

Proof. We will approximate Π within the ratio α + ε. Let Sε be the selector and let Aε be the
approximation algorithm existing due to Assumption 1. For any x ∈ Π, if Sε(x) says to exactly
solve, we will local search for an approximately good solution. Suppose E is mk-sparse. Construe
x ∈ Π (recall Π is MAX-SNP-complete) as a set of constraints, and the optimization problem is to
satisfy a maximum number. Let Sk+1 be the collection of all (k + 1)-sets of constraints not in x,
over the variables of x. For all k-sets y ⊆ x, and y′ ∈ Sk+1, consider x′ = (x− y)∪ y′. Observe that
x′ is still an instance of Π since it admits arbitrarily large constraints of constant size. Since E is
sparse, there must be an y and y′ such that Sε(x′) says to approximate. Suppose the optimal value
for x is m∗, and thus it is at least (m∗ − k) on x∆y′, where ∆ denotes the symmetric difference.
But notice 7/8(m∗ − k) + ε(m∗ − k) clauses are satisfied, i.e., (7/8 + ε)m∗ −O(1) clauses, so P =
NP. ¤

In general, if E is mf(m)-sparse then Π is in APX-TIME[mf(m) + t2, α + ε− f(m)
m ].
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7 Conclusion

Many areas within Theory today are in a sense characterized by the different methodologies and
measures that researchers use to analyze and attack hard problems. Much work in average case
analysis, approximation algorithms, improved exponential algorithms, and fixed-parameter algo-
rithms are all different responses to the same stimuli: the ubiquity of seemingly intractable prob-
lems in the world. Hybrid algorithms offer a means to unify ideas and strategies from these different
areas, while gaining a greater understanding of how these measures relate. To reflect our poor in-
tuitions concerning these relationships, our study has revealed several counterintuitive results, some
of which are not only theoretically interesting but also practically so. Obviously many directions
exist for further work; here are some that we consider promising.

• Prove some more structural properties of the p-selection operator. Can interesting character-
izations of common complexity classes be found using this kind of operator? It seems likely,
given our preliminary findings.

• Find hybrid algorithms for other well-studied problems in constraint satisfaction, e.g. Max-
3-Sat. This task has resisted our efforts for some time, although we have found that often
even the simplest hybrid algorithms can be surprisingly elusive. This is due in no small part
to the fact that we are simply not accustomed to thinking of “trading off” in this way.

• Find more interesting graph problems for which a minor-or-separator theorem or a path-or-
treewidth theorem leads to a hybrid algorithm, or apply our tools to get improved worst-case
algorithms. Many existing graph algorithms work assuming the absence of certain minors;
diametrically, it is an intriguing question as to what problems are better solved in the presence
of a large minor.

• Prove hardness results—i.e., that particularly strong exact vs. approximate hybrid algorithms
are impossible for some NP-hard problems, assuming they cannot be solved in sub-exponential
time. It might be productive to focus on problems that are very hard to approximate, such as
Independent Set. It seems unlikely, for example, that Independent Set admits a hybrid
algorithm taking either 2εn time or efficient (1 + ε)-approximation. However, proving this
(under some nice assumption) or its negation has been more daunting than we first thought.
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A Proofs

Some of the proofs have been omitted from the main paper. For completeness, we present them
here.

A.1 Proof of Lemma 2.2

Recall we are proving:

Lemma A.1 Suppose D has the disjointness property. Then for any non-degenerate 3-constraint
c′′ ∈ F −D, Choose satisfies c′′ with probability 1/2.

Consider the following (equivalent) algorithm. Set each variable not appearing in any constraint
of D randomly. For each 3-constraint c ∈ D, suppose c is x + y + z = K in the following, with x
and y being two variables not appearing in any other c′ ∈ D. We say that x and y form a correlated
pair. Choose a random assignment for z (if one has not already been chosen), then randomly choose
one of the two possible assignments to x and y that satisfy c.

Clearly, two correlated pairs obtained from two different constraints in D are disjoint. Thus if
{x, y} is a correlated pair, then for any variable v 6= y and v 6= x, Pr[x = v] = 1/2. Moreover, for
any variable v 6= z, v 6= x, v 6= y, the assignment to v is independent of the assignment to x and y.

Now suppose c′′ ∈ F −D. The lemma is certainly true if there is no correlated pair of variables
in c′′, as all other variable assignments are independent. As the correlated pairs are disjoint, the
3-constraint c′′ contains at most one correlated pair {x, y} from some c ∈ D. (Note the other
variable of c′′ may be in some correlated pair, just not one with x or y.) Since c′′ is non-degenerate,
the other variable (say, v) of c′′ is assigned independently of x and y (c does not contain v), hence
Pr[c′′ = 1] = 1/2 and the lemma holds. ¤

A.2 Algorithm for Longest Path Assuming Bounded Pathwidth At Most `

As explicit references for the problem were lacking, here we sketch a simple O((2` ·`!·n)3`) algorithm
for finding the longest path of a graph, given a path decomposition of width at most `.

Let {Wi} with i ∈ [n′] for some n′ ≤ n denote the bags of a path decomposition. We will use
dynamic programming and start building subproblems from one endpoint of the path (W1), with
the “final” subproblems appearing at the other endpoint (Wn′).

First we fix two endpoints u and v of G upfront, as the endpoints of the path. (Hence the
following will be run O(n2) times.) Along the way, in the subproblems we will implicitly only
permit a single edge to connect to u and v.

The subproblems are represented by: an integer i ∈ [n′], and a collection C of pairs (ui, vi)
where ui, vi ∈ Wi. We will build up a function f whereby f(C, i) is the maximum length of a path
collection over W1 ∪ · · · ∪Wi where the endpoints of each path are precisely the (ui, vi) ∈ C.

For i = 1, we enumerate all ways to choose a subset S of W1 (the endpoints) along with a
permutation π of ` nodes. It is easy to see that S and π specify a path collection, and that every
possible path collection gets specified by at least one such S and π. This step takes O(2``!`) time
and produces f(C, 1) for all possible C.

29



Now suppose we know f(C, i) for all C and i, and we want to determine f(C ′, i + 1) for some
collection of pairs C ′ = {(uj , vj)} drawn from Wi+1. To obtain this, we consider all possible
orderings π of vertices from Wi+1, subsets S of Wi+1, subsets T of Wi with cardinality |S|, and
orderings of T . Over those orderings such that the ith vertex of S has an edge to the ith vertex of
T , we determine

f(C ′, i + 1) = max{[length of paths in Wi+1 induced by ordering π with S and C ′ as endpoints]
+ f(CT , i)},

where CT is the collection of pairs corresponding to the ordering of T ; i.e., for T = (t1, t2, . . . , t`′),
it is the set of (tj , tj+1) where j is odd.

At each path node i, there are at most 2``! subproblems to save in a table. For each, there are
(2``!)2 possible orderings and sets to be considered in the max, it takes O(`) time to verify one.

Therefore, the algorithm takes at most O((2``!)3`n3) time, where the extra n2 comes from
enumerating all possible pairs of nodes.

A.3 Proof of Lemma 2.1

We will employ the following Chernoff bound in our argument.

Fact 1 Let X1, . . . , Xn be independent Boolean-valued random variables, with Pr[Xi = 1] = p.
Then for ε ∈ (0, 1/4), Pr[

∑
i Xi ≥ (p + ε)n] ≤ e−2ε2n.

We will give an algorithm A that, on instance F , runs in t(n/ε2) time and returns f ∈ [0, 1]
that is within ε of the maximum fraction of equations satisfiable in F . Querying A via substitution
of variables for values in F allows one to produce an assignment satisfying this fraction with
O(poly(n)) calls to A.

Given an instance F , A chooses a random sample S (independent and uniform) of equations in
F , with |S| = n/ε2, and runs the exact algorithm on S. Let a ∈ {0, 1}n be an assignment to F , and
suppose a satisfies a fraction fa of equations in F . The probability that a satisfies more than fa +ε
equations in S is, by Fact 1, at most e−2ε2(n/ε2) = e−2n; by symmetry, less than fa − ε equations
in S are satisfied with this probability. A union bound over all 2n assignments shows that S has
a maximum satisfiable fraction of clauses within ε of the optimum for F with probability at least
1− 1/cn for some c > 1. ¤

A.4 Proof of Theorem 3.1

Proof. Fix ε > 0. Let F be a E3-CNF formula on n variables x1, . . . , xn, with m clauses. For
all i = 1, . . . , n, a literal on the variable xi will be denoted by the variable li ∈ {xi, xi}. Put
c = (n2m)/9 and L = n2/3. We will randomly build a new formula F ′ with L · n = n5/3 variables
and c clauses, such that: F ′ has no clauses sharing exactly the same three variables, if F is satisfiable
then F ′ is satisfiable, and if no more than (7/8 + ε)m clauses of F can be satisfied at once, then
no more than (7/8 + ε)c clauses of F ′ can be satisfied.

Our reduction bears resemblance to inapproximability results of Trevisan [48]. For each variable
xi in F , we have L variables x1

i , x
2
i , . . . , x

l
i in a formula F ′′. For each clause {li ∨ lj ∨ lk} in F , add
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the [L]3 clauses {lri ∨ lsj ∨ ltk} in F ′′, for all (r, s, t) ∈ [L]3. Now, randomly sample c clauses from F ′′.
If any two clauses have exactly the same variables, remove them from F ′′. Output the remaining
collection as F ′.

It is clear that, if F is satisfiable, then F ′ is satisfiable. Also, by construction, F ′ has no clauses
sharing exactly the same variables. We will first show that the number of clauses removed from
F ′′ due to this vanishes to zero asymptotically, in which case the removal of these clauses does not
affect the ratio of satisfied clauses. Let (r, s, t) ∈ [L]3, and the indicator variable Xr,i,s,j,t,k

I to be
1 iff the I-th clause chosen in the sample (I = 1, ..., c) has variables xr

i ,x
s
j , and xt

k. The number
of clauses in F ′ with the variables xr

i ,x
s
j , and xt

k is at most 8 (the same number as F ), whereas
the total number of clauses is L3m. Thus Pr[Xr,i,s,j,t,k

I ] ≤ 8
mL3 . By a standard Chernoff bound

(Fact 1), the probability that a clause with xr
i ,x

s
j , and xt

k is chosen more than once in c trials is
Pr[

∑c
i=1 Xr,i,s,j,t,k

I ≥ 2] ≤ exp(−2ε2c), assuming 2 ≥ (1 + ε)8c/(mL3) = (1 + ε)8/9 (note ε ≤ 1/8).
Thus the expected number of clauses occurring more than once in the sample of c is, by a union
bound, at most L3m/ exp(ε2c) = 9c/ exp(ε2c) ∈ o(1).

Now we show that if no assignment to variables of F satisfies (7/8 + ε)m clauses of it, then no
assignment to variables of F ′ satisfies (7/8 + ε + ε′)c clauses of it for all constant ε′ > 0, with high
probability. Suppose αm clauses are satisfied by the original F . Then an α fraction of the clauses
in F ′′ (i.e. F ′ prior to clause sampling) are satisfied. Let a be one of the 2n·L variable assignments
to F ′′. When a clause is picked from F ′ at random, it has probability α of being satisfied by a. By
the same Chernoff bound, the probability that more than (α+ ε)c clauses of F ′ are satisfied by a is
at most exp(−2ε2c). Assuming at most αm clauses are satisfied by any assignment to F , a union
bound implies that the probability that any assignment satisfies more than (α + ε)c clauses of F ′

is 2n·L/e−2ε2c < 1/dn for some d > 1. ¤
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