
Optimistic Intra-Transaction Parallelism

on Chip Multiprocessors
Christopher B. Colohan∗

Anastassia Ailamaki∗ J. Gregory Steffan†

Todd C. Mowry∗

March 2005
CMU-CS-05-118

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
†Department of Electrical & Computer Engineering, University of Toronto, Toronto,
Ontario, Canada

This research is supported by grants from the National Science Foundation and from IBM. Anastassia
Ailamaki is partially supported by a Sloan Fellowship.

Keywords: thread level speculation, TLS, database systems, chip multiprocessors,
OLTP, TPC-C

Abstract

With the advent of chip multiprocessors, exploiting intra-transaction parallelism is an at-
tractive way of improving transaction performance. However, exploiting intra-transaction
parallelism in existing database systems is difficult, for two reasons: first, significant changes
are required to avoid races or conflicts within the DBMS, and second, adding threads to
transactions requires a high level of sophistication from transaction programmers. In this
paper we show how dividing a transaction into speculative threads solves both problems—it
minimizes the changes required to the DBMS, and the details of parallelization are hidden
from the transaction programmer. Our technique requires a limited number of small, local-
ized changes to a subset of the low-level data structures in the DBMS. Through this method
of parallelizing transactions we can dramatically improve performance: on a simulated 4-
processor chip-multiprocessor, we improve the response time by more than a factor of two
when running an OLTP workload.

1 Introduction

We are in the midst of a revolution in microprocessor design: computer systems from all of
the major manufacturers that feature chip multiprocessors (CMPs) and simultaneous multi-
threading (SMT) are entering the marketplace. Examples include Intel’s “Smithfield” (dual-
core Pentium IV’s with 2-way SMT), IBM’s Power 5 (combinable, dual-core, 2-way SMT
processors), AMD’s Opteron (dual-core), and Sun Microsystems’s Niagara (an 8-processor
CMP). How can database systems exploit this increasing abundance of hardware-supported
threads? Currently, for OLTP workloads, threads are primarily used to increase transac-
tion throughput ; ideally, we could also use these parallel resources to decrease transaction
latency. Although most commercial database systems do exploit intra-query parallelism
within a transaction, this form of parallelism is only useful for long running queries, while
OLTP workloads tend to issue multiple short queries. To the best of our knowledge, com-
mercial database systems do not exploit intra-transaction parallelism [2, 11, 20], and for
good reason.

Parallelizing a transaction is difficult. First, the DBMS must be modified to support
multiple threads per transaction. Latches must be added to data structures which are shared
between threads in the transaction. These latches add complexity and hinder performance.
Second, the transaction must be divided into parallel threads. Consider the New Order
transaction, which is the prevalent transaction in TPC-C [6] (Figure 1). We can parallelize
the main loop (which represents 80% of the execution time), such that each loop iteration
runs as a thread. The transaction programmer must understand when these threads may
interfere with each other, and add inter-thread locks to avoid problems; e.g., the thread
should use inter-thread locks to ensure that only one thread updates the quantity of an
item in the stock table at a time. Finally, the transaction programmer must test the new
transaction to ensure that the resulting parallel execution is correct and ensure that no new
deadlock conditions or subtle race conditions were introduced, and then repeat the entire
process until satisfactory performance is achieved.

1.1 Incremental Parallelization with Thread-Level Speculation

Fortunately, computer architecture researchers have anticipated this problem and have de-
veloped hardware support for chip multiprocessors which makes parallelization easier, called
Thread Level Speculation (TLS) [17, 18, 7]. Support for TLS is simple and elegant, has
been implemented in Sun’s MAJC [18] and Stanford’s Hydra [7] CMPs, and is a strong
candidate technology for future high-end CMPs. In a nutshell, TLS allows a program to be
divided arbitrarily into speculative threads (or epochs) which are executed in parallel. The
TLS mechanism ensures that the parallel execution is identical to the original sequential
execution. It preserves sequential semantics by tracking data dependences between epochs
and restarting threads when their execution diverges from the original sequential execution
(TLS is described in more detail in Section 2). In essence, dividing a program into epochs
improves performance and does not affect correctness.

Our goal is to parallelize important OLTP transactions, to achieve high performance with

1

begin transaction {
Read customer info [customer, warehouse]

Read & increment order # [district]

Create new order [orders, neworder]

for(each item in order){
Get item info [item]

if(invalid item)
abort transaction

Read item quantity from stock [stock]

Decrement item quantity
Record new item quantity [stock]

Compute price
Record order info [order line]

}

80
%

of
tr

an
sa

ct
io

n
ex

ec
u
ti

on
ti

m
e

} end transaction

Figure 1: The New Order transaction. In brackets are the database tables touched by
each operation.

low implementation overhead. In this study we parallelize the main loop of the New Order
transaction running on the BerkeleyDB DBMS [13]. We execute that transaction on a TLS
system which provides profile information identifying the performance bottleneck; we then
perform localized optimizations on the DBMS code to remove that bottleneck. Removal of
each bottleneck exposes the next bottleneck, so we repeat the process. This paper describes
the bottlenecks we encountered (Section 4), and provides general techniques for eliminating
them (Section 3).

While the results in this paper are gathered with the New Order transaction running
on BerkeleyDB, our techniques can be generalized in two important ways. First, the changes
we made were to DBMS data structures and functions which are shared by all transactions,
hence the optimizations we describe can be applied to any transaction. Second, we change
fundamental primitives used by all database systems (such as latches and locks), hence our
techniques are not specific to BerkeleyDB and can be applied to other database systems.
Applying our techniques required changing less than 1200 lines out of 180,000 lines of code
in the DBMS, and took a graduate student about one month of work. As a result we have
doubled the performance of the New Order transaction.

1.2 Related Work

Traditionally, high-performance database systems have targeted inter-transaction parallelism,
or intra-operation parallelism, while this paper introduces new techniques for exploiting
intra-transaction parallelism. Previous work on intra-transaction parallelism has focused
on hand-parallelized transactions [9, 15]—requiring great effort from the programmer and

2

significant changes to the DBMS. In this paper we show how to exploit intra-transaction
parallelism with very little effort by the transaction programmer, and minimal changes to
the DBMS.

This paper draws upon Kung’s optimistic concurrency control work [10] in two ways.
First, the execution of epochs in thread level speculation is very similar to the execution
of optimistic transactions: epochs optimistically assume that they will not conflict with
other epochs, epochs compare all of their reads and writes to earlier epochs to ensure a
serializable execution, and epochs commit when they succeed or abort and restart when
speculation fails. Second, we optimistically omit lock and latch acquires in epochs, and
let the TLS mechanism resolve conflicts. Our technique for optimistically omitting locks is
also similar to transactional memory [8]. Where the approach to lock elision in this paper
diverges from both transactional memory and optimistic concurrency control is that we allow
speculative transactions to interact with non-speculative transactions with no changes to the
non-speculative transactions.

The idea of using speculative execution to simplify manual parallelization was first pro-
posed by Prabhu and Olukotun for parallelizing SPEC benchmarks on the Hydra chip mul-
tiprocessor [14, 7]. The base Hydra multiprocessor uses a design similar to the shared cache
CPU design used in the evaluation portion of this paper.

1.3 Contributions

This paper makes the following contributions: (i) it solves the problem of parallelizing the
central loop of a transaction, which reduces transaction latency and hence decreases con-
tention for resources used by the transaction; (ii) it provides a methodology for eliminating
the data dependences which limit parallel performance, describing three specific techniques
for eliminating these dependences and examples of their application; (iii) it demonstrates the
application of these techniques by incrementally parallelizing a transaction running on a real
DBMS, reducing transaction latency by more than a factor of two on a four-CPU machine.

In the next section we explain how the TLS mechanism enables incremental paralleliza-
tion of transactions. Section 3 describes the three techniques we use to eliminate data
dependences between epochs. Section 4 shows how these three techniques are applied by ex-
plaining the performance optimizations we performed on the DBMS. In Section 5 we measure
the performance gain of each optimization, and we conclude in Section 6.

2 Applying TLS to Transaction Execution

When extracting intra-transaction parallelism, thread level speculation (TLS) allows the pro-
grammer to parallelize aggressively without worrying about correctness. Consider a trans-
action which updates several rows in a database: if the rows are indeed independent, then
these updates could be performed in parallel. However, since the row IDs are typically not
known in advance, the updates must instead be performed sequentially to preserve potential
read and write dependences between different updates to the same row. With TLS support,

3

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

*p=...

*q=...

...=*p

...=*q
T

im
e

(a) Sequential execution.

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Violation!

E
po

ch
 1

E
po

ch
 2

*p=...

*q=...

...=*p

�
�
�
�
�

�
�
�
�
�

...=*p

...=*q

(b) Parallel execution with TLS.

Figure 2: How TLS ensures that all reads and writes occur in the original sequential order.

the updates could be performed aggressively in parallel, limited only by the actual run-time
dependences between rows. The following describes the basic functionality of TLS, including
both software and hardware support.

2.1 Software Support for TLS

Under TLS, sequential code (Figure 2(a)) is divided into epochs, which are executed in
parallel by the system (Figure 2(b)). The system is aware of the original sequential order of
the epochs, and also observes every read and write to memory that the epoch performs (i.e.
the reads and writes through p and q).

The system observes whether epoch 1 ever writes to a memory location which has already
been read by epoch 2—if so, then epoch 2 has violated sequential semantics, and is rewound
and re-executed with the correct value. For example, in Figure 2(b) we see that epoch 2
read p before epoch 1 wrote to p, so we restart epoch 2. On the second execution epoch 2
reads the new value. Note that the read of q does not cause a violation, since it executes
after the write to q, and thus reads the correct value. By observing all loads and stores, and
restarting an epoch whenever it consumes an incorrect value, the TLS mechanism ensures
that the parallel execution is identical to the original sequential execution.

The execution of epochs is similar to the execution of transactions in a system with
optimistic concurrency control [10]: an epoch either commits or is violated (aborts), and if
there are no dependences between epochs then their concurrent execution will be successful.
The difference is that epochs are much smaller than transactions (we demonstrate the use of
between 5 and 150 epochs per transaction in this paper), and hardware support makes the
cost of violating and restarting an epoch much lower than the cost of aborting and restarting
a transaction. In addition, the ordering of the epochs is specified by their epoch number
when the epochs are created, while with optimistic concurrency control the serial ordering
is determined by the transaction commit order.

How does a programmer use this programming model to incrementally improve perfor-
mance? First, and most importantly, the programmer can simply specify the decomposition
of the transaction into epochs and do nothing further, and the result will be a correct parallel
execution of the transaction (albeit one that does not necessarily perform very well). The

4

Violation!

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

E
po

ch
 1

E
po

ch
 2

*q=... ...=*q

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

{Longer!

Violation!

E
po

ch
 1

E
po

ch
 2

*p=...

*q=...

...=*p

T
im

e

�
�
�
�
�

�
�
�
�
�

...=*q�
�
�
�
�

�
�
�
�
�

...=*p

...=*q

(a) Eliminating *p dependence can hurt perfor-
mance.

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

E
po

ch
 1

Violation!*q=...

�
�
�

�
�
�

...=*q

�
�
�

�
�
�

...=*q

E
po

ch
 2

a

E
po

ch
 2

b

(b) Execution with
sub-epochs.

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

Done

Stall

...=*q
*q=...

�
�
�

�
�
�

(c) Idealized paral-
lel execution.

Figure 3: Sub-epochs improve performance when dependences exist.

epochs will likely have dependences between them which will cause violations (i.e., cause
speculation to fail). If this is the case, then the programmer can use feedback from the TLS
system to identify the cause of each dependence and try to eliminate them.

For example, one dependence which we encountered when parallelizing New Order was
in the buffer pool: every time a page was requested and it was present in the buffer pool,
the global variable st cache hit would be incremented. The increment would both read
and write the variable, and so whenever an epoch requested a page from the buffer pool it
would cause any later epochs which had already made a buffer pool request to be violated
and restart. Once the system told us about this dependence it was easy to correct—we
changed the code so that there was one copy of st cache hit per CPU, and updated the
appropriate copy of the variable on a buffer pool hit. We then modified the code which reads
this variable (which is only invoked rarely, since this variable is used only as a performance
monitoring statistic) to sum all of the per-CPU copies. In this example a simple change to
the code can eliminate a performance limiting data dependence.

2.1.1 Tolerating Dependence Violations

Previous TLS work has focused on programs with small epochs that have few frequent data
dependences between them. Eliminating the only frequent data dependence between a pair
of epochs removes the main source of violations, and results in a large performance gain.
Unfortunately, in database systems the epochs are large and have many data dependences.
How does eliminating a data dependence affect these epochs?

In Figure 3(a) we show what happens when the programmer eliminates the dependence
caused by p. In this particular case, removing that dependence actually hurts performance!
The problem is that when one dependence is eliminated it can expose other dependences,
and merely delay an inevitable roll-back and re-execution. This problem can be avoided by
dividing an epoch into several sub-epochs (Figure 3(b)). A sub-epoch acts like a checkpoint
or sub-transaction: when a violation occurs execution is rolled back just to the last sub-

5

epoch, which means that less work has to be rolled back and redone. Compare the execution
with sub-epochs (Figure 3(b)) to an idealized parallel execution where each read does not
execute until any dependent write has already executed (Figure 3(c)): as an epoch is broken
into more and more sub-epochs, it approaches the performance of this idealized execution.
In practice the number of supported sub-epochs is limited by hardware overheads [1], in this
paper we assume 8 sub-epochs per epoch are used.

2.2 Hardware Support for TLS

The study presented in this paper is based on a hardware implementation of TLS which
buffers speculative state in the cache hierarchy, and detects dependence violations by ob-
serving cache coherence messages [17, 5]. Previous TLS designs focused on applications with
small epochs (50 to 5,000 dynamic instructions), while the large epochs (60,000 instructions)
in a database transaction require the additional ability to buffer the state of very large
epochs, as well as support for sub-epochs so that violations have a tolerable performance
penalty. Therefore, concurrently with the work presented in this paper, we also designed a
new implementation of TLS hardware that supports both large epochs and sub-epochs, the
details of which are beyond the scope of this paper and are available in a technical report [1].

3 Techniques for Eliminating Dependences

To evaluate the potential of applying TLS to a database system, we implemented the New
Order transaction from the TPC-C benchmark on the BerkeleyDB storage manager. We
chose New Order as the representative transaction in TPC-C because it is rich in read
and update operations, it accounts for half of the workload, and it is used to measure
throughput in TPC-C (TMPC). Pseudo-code for the transaction is shown in Figure 1. We
want to parallelize the for loop in the transaction, as this loop comprises 80% of execution
time. At a high level, this loop reads the item table, updates the stock table, and appends
to the order line table. Since it is read-only, the read of the item table cannot cause a
data dependence between epochs. The append to the order line table should not cause
data dependences either, since a new order line is generated for each epoch. The update of
the stock table is potentially problematic—if two epochs were to refer to the same item,
then one epoch’s update of the stock table might interfere with another epoch’s update.
However, in the benchmark specification items are randomly chosen uniformly from a set of
100,000 items, and so the probability of any two epochs conflicting is very small. At this
high level, thanks to the infrequency of data dependences, it appears that this loop is an
ideal candidate for parallelization using TLS.

While our high-level analysis concludes that TLS parallelization is promising, the imple-
mentation details of query execution algorithms and access methods reveal more potentially-
limiting data dependences: read/write accesses to locks, latches, the buffer pool, logging,
and B-tree indexes will cause data dependences between epochs. To eliminate these data
dependences we propose and analyze three techniques:

6

1. Partition data structures. A standard memory allocation operation (db malloc) im-
plementation uses a single pool of memory, and parallel accesses to this shared pool will
conflict. Using a separate pool of memory for each concurrent epoch avoids such conflicts.
Many other dependences are also due to multiple epochs sharing a resource in memory—
these dependences can be avoided by partitioning that resource.

2. Exploit isolated undoable operations (IUOs). The TLS mechanism ensures that
all attempts to fetch and pin a page(pin page) in the buffer pool by one epoch complete
before any invocations of pin page in the next epoch begin, due to conflicts in the data
structures which maintain LRU information. We prefer to allow pin page operations to
complete in any order. An epoch can simply call pin page with speculation disabled: if the
epoch is violated then the fetched page just remains in the buffer pool, and unpin page can
be invoked to release the page. This works because the pin page operation is undoable and
isolated. An undoable function has a corresponding function which can undo the isolated
function’s effects. An isolated function can be undone without affecting any other epoch
or thread in the system. When speculatively parallelizing a transaction, we exploit isolated
undoable operations by executing them non-speculatively, and call the corresponding undo
function if the epoch is violated. This is similar to nested top actions in ARIES [12], since
we modify the execution but preserve higher level semantics.

3. Postpone operations until the end of the epoch. When a log entry is generated,
it is assigned a log sequence number and increments a global variable. This log sequence
number counter forms a dependence between these two epochs. Our key insight was that
an epoch never uses log sequence numbers—it only generates them. We can generate log
entries during the execution of the epoch, and assign all of the sequence numbers at the end
of the epoch after all previous epochs have completed, and just before committing the epoch
(which makes the new log entries visible to the rest of the system). When an operation has
no impact on the execution of the epoch, and instead only affects other transactions then it
can be delayed until the end of the epoch.

In the next section we explore the major subsystems of the DBMS, and show how these
three techniques can be used to eliminate the critical dependences we encountered while
tuning the New Order transaction.

4 Performance Tuning

When we first parallelized the New Order transaction we encountered many dependences
throughout the DBMS code. Some dependences are easy to eliminate through a local change
to the source code: for example, false sharing dependences (see Section 4.5) can be elimi-
nated by inserting padding in data structures so that independent variables do not share a
single cache line. Other data dependences are inherent in the basic design of the database
system, such as the creation of log sequence numbers or the locking subsystem. In the

7

following sections we tour the database system’s major components, and explain how we
eliminate or avoid dependences on the common path in order to increase concurrency for
TLS parallelization.

4.1 Resource Management

A large portion of every DBMS is concerned with resource management. Resources include
latches, locks, cursors, private and shared memory, and pages in the buffer pool. All of these
resources can be acquired and released. Dependences between epochs occur when two epochs
try to acquire the same resource, or when the data structures which track unused resources
are shared between epochs. In the following sections we look at each of these resources and
develop strategies for executing them in parallel while avoiding data dependences.

4.1.1 Latches

The database system uses latches extensively to protect data structures, and as a building
block for locks. Latches are required for correct execution when multiple transactions are
executing concurrently, and ensure that only one thread is accessing a given shared data
structure at any time. Latches are typically held for only a short period of time—in Sec-
tion 4.1.2 we discuss locks, which offer concurrency control for database entities.

Latches form a dependence between epochs because of how they are implemented: a
typical implementation uses a read-test-write cycle on a memory location (which may be
implemented as a test-and-set, load-linked/store-conditional, atomic increment, or other
atomic instruction). This read-test-write cycle can cause a data dependence violation be-
tween epochs (Figure 4(a)).

Under TLS, using latches to serialize accesses within a transaction is completely unnecessary—
the TLS mechanism already ensures that any data protected by the latch is accessed in a
serializable order, namely the original sequential program order. Hence using latches to pre-
serve mutual exclusion between epochs is redundant with the existing TLS mechanism [8].
However, latches do ensure that mutual exclusion is maintained between transactions, and
TLS does not perform that function. So we cannot simply discard the latches; we must
instead ensure that they preserve mutual exclusion between transactions without causing
violations between the epochs within a transaction.

There are two operations performed on a latch: acquire and release. Let us first consider
release operations. When a latch is released, the latch and the data it protects become
available to other transactions. Since, under TLS, modifications made by an epoch are
buffered until it commits, we must postpone all release operations until after the epoch has
fully committed. Release operations can be postponed by building a list of pending release
operations as the epoch executes, and then performing all of the releases in the pending list
when the epoch commits. If the epoch is violated, we simply reset this list.

Next we consider acquire operations. During normal execution, when a latch is acquired
it prevents other transactions in the system from changing the associated data. A näıve
approach to handling a latch acquire under TLS is to perform the acquire non-speculatively at

8

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Release
...work...
Acquire Violation! Acquire

(a) Latch operations create dependences.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

...work...

Acquire

...work...

(enqueue release)

Commit work

...work...

(enqueue release)

{Large critical sect
io

n

oldest

oldest

latch_cnt++

latch_cnt−−

latch_cnt++

latch_cnt−−

latch_cnt++

Commit work

Release

latch_cnt−−

(b) Aggressive latch acquire. The long critical section that results may cause performance issues.

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Sm
al

l c
ri

tic
al

 s
ec

tio
ns

Acquire
Commit work
Release

Acquire
Commit work
Release

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Acquire
...work...
Release

...work...
(enqueue acquire)

(enqueue release)
...work...
(enqueue acquire)

(enqueue release)
{

{

{

oldest

oldest

(c) Lazy latch acquire. Delaying the acquire shrinks the critical section.

Figure 4: Adapting latches for use under TLS execution.

the point when it is encountered. This can be implemented by a recursive latch, which counts
the number of acquires and releases, and makes the latch available to other transactions only
when the count reaches zero. This aggressive approach, shown in Figure 4(b), has a major
drawback: since latch releases have been delayed until the end of the epoch, we have increased
the overall size of the critical section. In addition, since we have parallel overlap between
multiple critical sections in a single transaction, the latch may be held for an extended period
of time.

To avoid long critical sections, we can also postpone acquires as shown in Figure 4(c). In
this lazy approach, all latch acquires are performed at the end of the epoch, then the buffered
speculative modifications are committed, and finally all latch releases are performed. This

9

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Acquire 2
Release 2

Release 1
Acquire 1

Transaction 1 Transaction 2

Acquire 1
Release 1

Acquire 2
Release 2

T
im

e

(a) Latch operations before re-ordering.
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Release 2Release 1
Release 2 Release 1

Transaction 1 Transaction 2

Acquire 1Acquire 2
Acquire 1 Acquire 2

T
im

e

Deadlock

(b) Latch operations after re-ordering.

Figure 5: Delaying latch release operations until after a epoch commits can introduce dead-
lock.

method results in much smaller critical sections, even when acquire and release operations
for a given latch are encountered repeatedly during an epoch. A potential disadvantage of
this approach is that if another transaction changes the protected data, the epoch will violate
and restart.

Both the lazy and aggressive latch schemes have a potential problem: they re-order the
latch release operations relative to the latch acquire operations as specified in the original
program. If multiple latches are acquired by a single epoch, a deadlock may emerge that
is not possible in the sequential execution, as shown in Figure 5. Although such deadlocks
should be rare, there are two strategies to remedy them: avoidance and recovery. Deadlock
can be avoided using two traditional techniques: (i) perform all latch acquires in a single
atomic operation, or (ii) enforce a global latch acquire ordering [16], such as by sorting the
acquire queue by latch address. If avoidance is not possible, we can instead recover from
deadlock once detected (perhaps through a time-out) by violating and restarting one of the
deadlocked epochs. Forward progress is guaranteed because there is always at least one
epoch (the oldest) which executes non-speculatively. The key insight is that restarting an
epoch is much cheaper than restarting the entire transaction since there are many epochs
per transaction.

4.1.2 Locks

Locks are a more sophisticated form of concurrency control than latches. Instead of providing
simple mutual exclusion, locks allow multiple threads into a critical section at the same time
if the lock types are compatible: multiple readers are allowed into a critical section at a time,
while writers have exclusive access. Locks also provide deadlock detection, since multiple
locks can be held at once and they are meant to be held for longer periods of time than
latches.

We start by parallelizing locks using a lazy locking scheme, similar to the lazy latch
scheme in Section 4.1.1. When an acquire operation is encountered in speculative code, we
cannot simply delay the entire acquire operation until the end of the epoch, since a handle

10

must be returned. Instead, we return an indirect handle, which is a pointer to an empty
handle that is filled in at the end of the epoch when the lock acquire is actually performed.

To summarize our scheme so far, at the end of an epoch all of the lock acquires en-
countered in that epoch are performed, the changes made by the epoch are committed, and
then all of the lock releases encountered in the epoch are performed. This scheme will re-
sult in correct execution, but holding all of the locks used by an epoch simultaneously can
be a performance bottleneck in the database, particularly for the locks used for searching
B-trees. We avoid this problem through a minor change: at the end of the epoch we (i)
acquire and release all read-only locks in the order that the acquire and release operations
were encountered during the epoch, we then (ii) perform all non-read-only lock acquires that
were encountered during the epoch, (iii) commit the epoch’s changes to memory, and then
(iv) perform all non-read-only lock releases that were encountered during the epoch. Since
a B-tree search involves briefly acquiring a large number of read-only locks, this ensures
that those locks are held for minimal time; we need not hold the read-only locks during
the epoch commit because the system view of an epoch commit is similar to a transaction
commit: it either succeeds or fails. By acquiring and releasing the locks we ensure that the
epoch commit does not occur in the middle of a non-read-only critical section in some other
transaction. If latches were labeled as read-only or read/write this optimization could also
be applied to latches in addition to locks.

Our method of executing lock acquires may also possibly cause a deadlock situation. Sim-
ilar to latches, we can recover from a detected deadlock situation by violating and restarting
one of the deadlocked epochs.

4.1.3 Cursor Management

Cursors are data structures used to index into and traverse B-trees. Since they are used
quite frequently and their creation is expensive, they are maintained in pre-allocated stacks.
Unused cursors are stored in a free cursor stack. A dependence between epochs is created
when one epoch puts a cursor onto the free cursor stack and the next epoch removes that
cursor from the stack, since both operations manipulate the free pointer. Preserving this
dependence is not required for correct execution: the second epoch did not need to get the
exact same cursor, but instead wanted to get any cursor from the free stack. We can eliminate
this dependence by partitioning the stack, and hence maintaining a separate stack for each
processor. This implies that more cursors will have to be allocated, but that each cursor
will only be used by the CPU which allocated it, increasing cache locality and eliminating
dependences between epochs.

4.1.4 Memory Allocation

The free cursor pool mentioned above is just a special case of memory allocation. The
general purpose memory allocators (such as db malloc) in the database system introduce
dependences between epochs when they update their internal data structures. To avoid these
dependences, we must substitute an allocator designed with TLS in mind: in the common

11

case, such an allocator should not communicate between CPUs. Fortunately, this is also a
requirement of highly scalable parallel applications. The Hoard memory allocator [3] is one
such allocator, which maintains separate free lists for each CPU, so that most requests for
memory do not communicate. In the next section we show an even simpler way of avoiding
dependences which does not require modifying or changing the underlying memory allocator.

4.1.5 Buffer Pool Management

When either a transaction or the DBMS itself need to read a page of the database, they
request that page by invoking the pin page operation on the buffer pool. This operation
reads the requested page into memory (if it is not already there), pins it in memory, and
returns a pointer to it. Once finished with the page, it is released by the unpin page

operation.
Conceptually, the buffer pool is very similar to the memory allocator, since it manages

memory. However, the buffer pool is different because users explicitly name the memory
they want, and different pin page operations can pin the same page. Therefore, simply
partitioning the page pool between epochs will not suffice. Instead, we exploit the fact that
the order in which pin page operations take place does not matter. If a speculative epoch
fetches the wrong page from disk, we simply must return that page to the free pool. We
implement this by executing the pin page function non-speculatively, so that it really does
get the page and pin it in a way which is visible to the entire system. If the epoch which
called pin page is later violated, we can undo this action by calling unpin page. (This is
similar to the compensating transactions used in Sagas [4].)

The code wrapper shown in Figure 6 implements this modified version of pin page. In
particular, this code does the following.

1. Provides thorough error checking. Since this routine is called from a speculative thread,
the parameters could be invalid.

2. Acquires a latch which provides mutual exclusion between epochs within a transac-
tion, to guard against the possibility that pin page was not implemented with intra-
transaction concurrency in mind. However, this latch can be eliminated if the pro-
grammer determines that the implementation of pin page is safe in this respect.

3. Temporarily suspends speculation. While speculation is suspended, the epoch is non-
speculative and hence all reads will observe committed machine state and all writes
will be immediately visible to the rest of the system (i.e., no buffering occurs). Hence
reads performed by pin page will not cause violations.

4. Saves a pointer to the recovery function, unpin page. If the epoch is violated then
unpin page will be called to undo the execution of the corresponding call to pin page.

Relaxing ordering constraints simplifies coding: instead of redesigning the buffer pool to
be amenable to TLS execution, we place this simple wrapper around the allocation function.

12

page t *pin page wrapper(pageid t id) {
static intra transaction latch mut;
page t *ret;

suspend speculation(); // (3)
check pin page arguments(id); // (1)
acquire latch(&mut); // (2)

ret = pin page(id);

release latch(&mut); // (2)
on violation call(unpin page, ret); // (4)
resume speculation(); // (3)

return ret;
}

Figure 6: Wrapper for the pin page function which allows the ordering between epochs to
be relaxed.

However, this method requires that the pin page function be an isolated undoable operation.
The pin page function is undoable: calling unpin page undoes the call to pin page. The
pin page is also isolated: when it is undone via unpin page no other transaction or earlier
epoch is forced to rewind or otherwise alter its execution.

Similar reasoning shows that the cursor allocation function and db malloc are also iso-
lated undoable operations, and so this code template could be applied to these functions
instead of partitioning their free pools. The pin page and latch acquire functions also
look like isolated undoable operations—but as we found above in Section 4.1.1, without
great care speculatively executing these functions out of original sequential order can cause
performance problems (by increasing critical section sizes) or create deadlock conditions (by
re-ordering latch acquires).

The unpin page operation for the buffer pool is not undoable, since an attempt to undo it
with a pin page operation may cause the page to be mapped at a different address. Because
of this, we treat it similarly to a lock or latch release operation, and enqueue it to be executed
after the epoch commits.

4.2 The Log

Every time the database is modified the changes are appended to the log. For recovery
to work properly (using ARIES [12]) each log entry must have a log sequence number.
Unfortunately, incrementing the log sequence number causes a data dependence between
epochs. To avoid this dependence, we modify the logging code to append log entries for
speculative epochs to a per-CPU buffer. When an epoch commits, we loop over this buffer

13

to assign log sequence numbers to log entries, then append the entire buffer to the log.

4.3 B-Trees

B-trees are used extensively in the database system to index the database. The primary
operations involving the B-tree are reading records, updating existing records, and inserting
new records. Neither reading nor updating records modify the B-tree, and hence will not
cause dependences between epochs. In contrast, insert operations modify the leaf pages of
the B-tree. Therefore if the changes made by two epochs happen to fall on the same page
then the update of the free space count for that page can cause a violation.

One strength of TLS parallelization is that infrequent data dependences need not be
addressed, since the TLS mechanism will ensure correctness in such cases. An example
of such an infrequent data dependence is a B-tree page split. Page splits can also cause
lots of data dependences, but since they happen infrequently (by design) we can afford to
just ignore them. In the rare cases when they occur, the TLS mechanism will ensure their
correct sequential execution. The TLS mechanism provides a valuable fall back, allowing
the programmer to avoid the effort of designing a algorithm for parallel page-splits.

The B-tree code in BerkeleyDB contains a simple performance optimization: when a
search is requested, it begins the search by inspecting the page located by the previous
search through a “last page referenced” pointer (this assumes some degree of locality in ac-
cesses). Accesses to this pointer cause a data dependence between epochs. Since the resulting
violations can hurt performance, we decided to disable this “last page” optimization for TLS
execution. Alternatively, one could retain this optimization without causing violations by
maintaining a separate “last page reference” pointer per CPU.

4.4 Error Checks

Our study indicated that error checking code in the database system can occasionally cause
dependences between epochs. The most important of these is a dependence caused by
reference counting for cursors—a mechanism in the DBMS which tracks how many cursors
are currently in use by a transaction, and ensures that none are in use when the transaction
commits. Since this code is solely for debugging a transaction implementation, it can be
safely removed once the transaction has been thoroughly tested.

4.5 False Sharing

To minimize overhead, the TLS mechanism tracks data dependences at the granularity of
a cache-line. However, accesses to different variables which happen to be allocated on the
same cache line can cause data dependence violations due to false sharing. This problem
can be remedied by inserting padding to ensure that variables which are frequently-accessed
by different CPUs are not allocated on the same cache line.1

1Insertion of padding works for most data structures, but is not appropriate for data structures which
mirror disk-resident data, such as B-tree page headers. In this case, changes will have to be made to the

14

5 Experimental Results

In this section we evaluate both the ease with which a DBMS programmer can parallelize a
representative transaction, as well as the resulting performance of that transaction.

5.1 Benchmark Infrastructure

Our experimental workload executes the New Order transaction running on top of Berke-
leyDB 4.1.25. Evaluations of techniques to increase concurrency in databases typically config-
ure TPC-C to use multiple warehouses, since transactions would quickly become lock-bound
with only one warehouse. In contrast, our technique is able to extract concurrency from
within a single transaction, and so we configure TPC-C with only a single warehouse. The
parameters for each New Order transaction are chosen using the Unix random function,
and each experiment uses the same seed for repeatability. The benchmark executes as fol-
lows: (i) start the DBMS; (ii) execute 10 New Order transactions to warm up the buffer
pool; (iii) start timing; (iv) execute 100 New Order transactions; (v) stop timing.

All code is compiled using gcc 2.95.3 with O3 optimization on a SGI MIPS-based ma-
chine. The BerkeleyDB database system is compiled as a shared library, which is linked with
the benchmark that contains the transaction code.

To apply TLS to this benchmark we start with the unaltered (New Order) transac-
tion, mark the main loop within it as parallel, and executed it on a simulated system with
TLS support. The system reports back the load and store program counters of the instruc-
tions which caused violations, and we use that information to determine the cause (in the
source code) of the most critical performance bottleneck. We then apply the appropriate
optimization from Section 4 and repeat.

5.2 Simulation Infrastructure

We perform our evaluation using a detailed, trace-driven simulation of a chip-multiprocessor
composed of 4-way issue, out-of-order, superscalar processors similar to the MIPS R14000 [19],
but modernized to have a 128-entry reorder buffer. Each processor has its own physically
private data and instruction caches, connected to a unified second level cache by a cross-
bar switch. Register renaming, the reorder buffer, branch prediction, instruction fetching,
branching penalties, and the memory hierarchy (including bandwidth and contention) are
all modeled, and are parameterized as shown in Table 1. Latencies due to disk accesses are
not modeled, and hence these results are most readily applicable to situations where the
database’s working set fits into main memory.

5.3 Scaling Intra-Transaction Parallelism

In the Normal bars of Figure 7 we see the performance of the optimized transaction as
the number of CPUs is varied. The Seq bar represents the unmodified benchmark running

B-tree data structure itself (see Section 4.3).

15

Table 1: Simulation parameters.

Pipeline Parameters
Issue Width 4
Functional Units 2 Int, 2 FP, 1 Mem, 1 Branch
Reorder Buffer Size 128
Integer Multiply 12 cycles
Integer Divide 76 cycles
All Other Integer 1 cycle
FP Divide 15 cycles
FP Square Root 20 cycles
All Other FP 2 cycles
Branch Prediction GShare (16KB, 8 history bits)

Memory Parameters
Cache Line Size 32B
Instruction Cache 32KB, 4-way set-assoc
Data Cache 32KB, 4-way set-assoc,2 banks
Unified Secondary Cache 2MB, 4-way set-assoc, 4 banks
Speculative Victim Cache 64 entry
Miss Handlers 128 for data, 2 for insts
Crossbar Interconnect 8B per cycle per bank
Minimum Miss Latency 40 cycles
to Secondary Cache
Minimum Miss Latency 75 cycles
to Local Memory
Main Memory Bandwidth 1 access per 20 cycles

on a single core of an 8 core chip multiprocessor, while the 2 CPU, 4 CPU and 8 CPU
bars represent the execution of full TLS-optimized executables running on 2, 4 and 8 CPUs.
Large improvements in transaction latency can be obtained by using 2 or 4 CPUs, although
the additional benefits of using 8 CPUs are small.

To better understand this data we break down each bar by where time is being spent—
the breakdown is explained in Table 2. In Figure 7 we have normalized all bars to the 8
CPU case so that the subdivisions of each bar can be directly compared. This means that
the Seq breakdown shows one CPU executing and 7 CPUs idling, the 2 CPU breakdown
shows two CPUs executing and 6 CPUs idling, and so on.

None of the bars show that a significant fraction of the time was spent on failed speculation—
this means that our performance tuning was successful at eliminating performance critical
data dependences. As the number of CPUs increases there is a nominal increase in both
failed speculation and time spent awaiting the latch used to serialize isolated undoable op-
erations: as more epochs are executed concurrently, contention increases for both shared
data and the latch. As the number of CPUs increases there is also an increase in time spent
awaiting cache misses: spreading the execution of the transaction over more CPUs decreases

16

|0

|1

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

1.
00

S
eq

0.
67

2
C

P
U

s
0.

48
4

C
P

U
s

0.
42

8
C

P
U

s

Normal

1.
00

S
eq

0.
59

2
C

P
U

s
0.

37
4

C
P

U
s

0.
30

8
C

P
U

s

Modified

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

Figure 7: Performance of optimized benchmark while varying the number of CPUs.

Table 2: Explanation of graph breakdown.

Category Explanation

Idle Not enough threads were available to keep the CPUs busy.
Failed CPU executed code which was later undone due to a violation (includes all time

spent executing failed code.)
Latch Stall Stalled awaiting latch; latch is used in isolated undoable operations.
Cache Miss Stalled on a cache miss.
Busy CPU was busy executing code.

cache locality, since the execution is partitioned over more level 1 caches.
The dominant component of all of the Normal bars in Figure 7 is idle time, for three

reasons. First, in the Seq, 2 CPU and 4 CPU case we show the unused CPUs as idle.
Second, the loop that we parallelized in the transaction only covers 80% of the transaction’s
execution time, and during the remaining 20% of the time only one CPU is in use. Third,
TPC-C specifies that the New Order transaction will order between 5 and 15 items, which
means that on average each transaction will have only 10 epochs—this means that as we
execute the last epochs in the loop load imbalance will leave CPUs idling. The effects of
all three of these issues are magnified as more CPUs are added. To reduce idle time we
modified the invocation of the transaction so that each order contains between 50 and 150
items (shown in the Modified bars of Figure 7). We found that this modification decreases
the amount of time spent idling, and does not significantly affect the trends in cache usage,
violations, or idle time. The Modified bars demonstrate that transactions which contain
more parallelism make more effective use of CPUs.

The results in Figure 7 show that there is a performance trade-off when using TLS to

17

|0

|1

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

1.
00

S
eq

ue
nt

ia
l

1.
04

N
o

O
pt

im
iz

at
io

ns
1.

12
La

zy
 L

at
ch

1.
05

La
zy

 L
oc

ks
1.

09
IU

O
 M

al
lo

c/
F

re
e

0.
65

IU
O

 P
ag

e
C

ac
he

0.
66

S
pl

it
C

ur
so

r
Q

ue
ue

0.
58

R
em

ov
e

E
rr

or
 C

he
ck

0.
49

F
al

se
 S

ha
rin

g
0.

49
R

em
ov

e
P

er
f O

pt
0.

48
D

el
ay

 L
og

 E
nt

rie
s

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

Figure 8: Performance impact of adding each optimization one-by-one on a four CPU ma-
chine.

exploit intra-transaction parallelism: devoting more CPUs to executing a single transaction
improves performance, but there are diminishing returns due to a lack of parallelism, in-
creased contention, and/or a decrease in cache locality. One of the strengths of using TLS
for intra-transaction parallelism is that it can be enabled or disabled at any time, and the
number of CPUs can be dynamically tuned. The database system’s scheduler can dynami-
cally increase the number of CPUs available to a transaction if CPUs are idling, or to speed
up a transaction which holds heavily contended locks. If many epochs are being violated,
and thus the intra-transaction parallelism is providing little performance benefit, then the
scheduler could reduce the number of CPUs available to the transaction. If the transac-
tion compiler simply emitted a TLS parallel version of all loops in transactions then the
scheduler could use sampling to choose loops to parallelize: the scheduler could periodically
enable TLS for loops which are not already running in parallel, and periodically disable TLS
for loops which are running in parallel. If the change improves performance then it is made
permanent.

5.4 Impact of Each Optimization

In Figure 8 we see the results of the optimization process on a four CPU system. In this case
the breakdown of the bars is normalized to a four CPU system, and so 3

4
of the Sequential

bar is marked as Idle, since three of the four CPUs are idling during the entire execution.
The No Optimizations bar shows what happens if we parallelize the loop and make no
other optimizations—the existing data dependences in the DBMS prevent any parallelism
from being exploited, and the fact that we have taken a sequential transaction and run it on
four CPUs has reduced cache locality, causing it to slow down slightly.

The major source of violations in our newly-parallelized transaction are the reads and
writes to latches; hence we perform the lazy latch optimization described in Section 4.1.1.

18

This optimization fixes the first performance bottleneck, and exposes the next bottleneck
which is in the lock code. The first optimization also causes a bit of a slowdown, since the
next bottleneck causes violations to happen further away from sub-epoch boundaries—hence
when violations do occur more execution has to be rewound (illustrated in Figure 3).

Once we have eliminated latches as a bottleneck, the next bottleneck exposed is in the
locking subsystem. We remove the lock bottleneck by implementing lazy locks from Sec-
tion 4.1.2. We continue to remove the bottlenecks one by one: applying the code template
from Figure 6 to db malloc and the pin page operation, parallelizing the free cursor pool,
removing dependence causing error checks (Section 4.4), adding padding to avoid violations
due to false sharing (Section 4.5), removing the “last page referenced” pointer from the B-
tree search code (Section 4.3), and delaying the generation of log entries until epochs are
ready to commit (Section 4.2).

It is tempting to look at Figure 8 and conclude that the most important optimization was
parallelizing the buffer pool, since adding this optimization caused the execution time to drop
by 40%. However, this is not the case since the impact of the optimizations is cumulative.
If we take the No Optimizations build and just enable the buffer pool optimization then
the normalized performance is 0.98. Instead, Figure 8 implies that the iterative optimization
process which we used works well—as the DBMS programmer removes performance limiting
dependences performance gradually improves (and exposes new dependences). Removing
dependences decreases the time spent on failed execution, and improves performance.

6 Conclusions

Chip multiprocessing has arrived, as evidenced by recent products (and announced road
maps) from Intel, AMD, IBM and Sun Microsystems. While the database community has
long embraced parallel processing, the fact that an application must exploit parallel threads
to tap the performance potential of these additional CPU cores presents a major challenge
for desktop applications. Processor architects have responded to this challenge through a
new mechanism—thread-level speculation (TLS)—that enables optimistic parallelization on
chip multiprocessors. Fortunately for the database community, although TLS was originally
designed to overcome the daunting challenge of parallelizing desktop applications, it also
allows us to tap new forms of parallelism within a DBMS that had previously been too
painful to consider.

In this paper, we have focused on one such opportunity enabled by TLS: exploiting
intra-transaction parallelism. Our experimental results demonstrate that we can speed up
the latency (not just the throughput) of the most important transaction in TPC-C (New
Order) by more than twofold by exploiting TLS on a chip multiprocessor with four CPU
cores, or by a factor of 1.5 with two cores. TLS allows the database’s scheduler to use CPU
cores to improve latency when throughput is not the primary concern. In contrast with
previous approaches to exploiting intra-transaction parallelism, we place almost no burden on
the transaction programmer (they merely demarcate epoch boundaries). Although changes
to the DBMS code are required to achieve this benefit, they affected less than 1200 out

19

of 180,000 lines of code in BerkeleyDB, they were implemented in roughly a month by a
graduate student, and we expect that they would generalize to other DBMSs. We hope
that these promising results will inspire database researchers to find other opportunities for
exploiting untapped parallelism through TLS.

References

[1] C.B. Colohan, A. Ailamaki, J.G. Steffan, and T.C. Mowry. Extending Thread Level
Speculation Hardware Support to Large Epochs: Databases and Beyond. Technical Re-
port CMU-CS-05-109, School of Computer Science, Carnegie Mellon University, March
2005.

[2] IBM Corporation. IBM DB2 Universal Database Administration Guide: Performance.
IBM Corporation, 2004.

[3] E.D. Berger and K.S. McKinley and R.D. Blumofe and P.R. Wilson. Hoard: A Scalable
Memory Allocator for Multithreaded Applications. In Proceedings of the 9th ASPLOS,
2000.

[4] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the 1987 ACM SIGMOD
international conference on Management of data, pages 249–259. ACM Press, 1987.

[5] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative Versioning Cache. In
Proceedings of the 4th HPCA, February 1998.

[6] J. Gray. The Benchmark Handbook for Transaction Processing Systems. Morgan-
Kaufmann Publishers, Inc., 1993.

[7] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and K. Olukotun. The Stanford
Hydra CMP. IEEE Micro Magazine, March-April 2000.

[8] M. Herlihy and J. Moss. Transactional memory: Architectural support for lock-free
data structures. In Proceedings of the 20th ISCA, 1993.

[9] H. Kaufmann and H. J. Schek. Extending tp-monitors for intra-transaction parallelism.
In Proceedings of the 4th PDIS, 1996.

[10] H.T. Kung and J.T. Robinson. On optimistic methods for concurrency control. ACM
TODS, pages 213–226, June 1981.

[11] J.H. Miller and H. Lau. Microsoft SQL Server 2000 Resource Kit, chapter RDBMS
Performance Tuning Guide for Data Warehousing, pages 575–653. Microsoft Press,
2001.

20

[12] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: A Transaction
Recovery Method Supporting Fine-Granularity Locking and Partial Rollbacks Using
Write-Ahead Logging. ACM TODS, March 1992.

[13] Michael Olson, Keith Bostic, and Margo Seltzer. Berkeley db. In Proceedings of the
Summer Usenix Technical Conference, June 1999.

[14] M.K. Prabhu and K. Olukotun. Using thread-level speculation to simplify manual
parallelization. In Proceedings of PPoPP, June 2003.

[15] M. Rys, M.C. Norrie, and H.J. Schek. Intra-transaction parallelism in the mapping
of an object model to a relational multi-processor system. In Proceedings of the 22nd
VLDB, 1996.

[16] A. Silberschatz, P.B. Galvin, and G. Gagne. Operating System Concepts. John Wiley
& Sons, Inc., 2002.

[17] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A Scalable Approach to
Thread-Level Speculation. In ISCA 27, June 2000.

[18] M. Tremblay. MAJC: Microprocessor Architecture for Java Computing. HotChips ’99,
August 1999.

[19] K. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro, April 1996.

[20] C. Zuzarte. Personal communication, 2005.

21

	1 Introduction
	1.1 Incremental Parallelization with Thread-Level Speculation
	1.2 Related Work
	1.3 Contributions

	2 Applying TLS to Transaction Execution
	2.1 Software Support for TLS
	2.1.1 Tolerating Dependence Violations

	2.2 Hardware Support for TLS

	3 Techniques for Eliminating Dependences
	4 Performance Tuning
	4.1 Resource Management
	4.1.1 Latches
	4.1.2 Locks
	4.1.3 Cursor Management
	4.1.4 Memory Allocation
	4.1.5 Buffer Pool Management

	4.2 The Log
	4.3 B-Trees
	4.4 Error Checks
	4.5 False Sharing

	5 Experimental Results
	5.1 Benchmark Infrastructure
	5.2 Simulation Infrastructure
	5.3 Scaling Intra-Transaction Parallelism
	5.4 Impact of Each Optimization

	6 Conclusions

