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Abstract

Satisfiability procedures have shown significant promise for symbolic simulation
of large circuits, hence they have been used in many formal verification tech-
niques, including automated abstraction refinement, ATPG etc. We show how
to use modern SAT solvers like Chaff and GRASP to compute images of sets
of states and how to efficiently detect fixed point of the sets of states during
reachability analysis. Our method is completely SAT based, and does not use
BDDs at all. The sets of states and transition relation are represented in clausal
form, which can be processed by SAT checkers. The SAT checker subsequently
generates the set of newly reached states in clausal form as well. At the heart
of our engine lie two efficient algorithms. The first algorithm shortens the cubes
that the SAT checker generates by a static-analysis algorithm, which signifi-
cantly reduces the number of cubes the SAT checker needs to enumerate. The
second algorithm reduces the space required to store sets of states as a set of
cubes by a recursive cube-merging procedure. We demonstrate the effectiveness
of our procedure on ISCAS sequential benchmarks for reachability. In particu-
lar; our algorithm does not have BDD size explosion surprises and deteriorates
in a predictable manner.



1 Introduction

Image Computation and Reachability Analysis Computing the set of
states reachable in one step from a given set of states under a transition rela-
tion forms the heart of many symbolic state exploration algorithms, including
reachability analysis, model checking [8, 6, 7], etc. This operation is called im-
age computation. Let us consider a state transition relation 7" over the set of
states S. The set of states is defined by the set of valuations over a vector of
state variables x. We denote a set or a vector of variables in a boldface. The
transition relation T'(x,1,x’) relates states defined by valuations of present state
variables x and inputs i to states defined by valuations of next state variables x’.
Note that we are using propositional formulas S(x) and T'(x, i, x’) to represent
set of states and set of transitions. The image of S(x) under T'(x,i,x’) is given
by the following equation.

Img(S(x") = Ix.T(x,i,x") A S(x) (1)

In reachability analysis, beginning with the set of initial states Sy, images
are repeatedly computed until the set of states does not grow any more, in other
words, the least fixed point of the following equation is computed.

X = puX.(So U Img(X)) (2)

Following simple algorithm computes this fixed point.
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Figure 1: Reachability algorithm

In this algorithm, S; denotes the set of newly discovered states in each
iteration. Once there are no more states to be discovered, we have reached
a fixed point.

As noted earlier, the sets of states and sets of transitions are traditionally
represented by BDDs ([3, 8, 5, 4]). It is well known that while BDDs are
compact representations of many functions, they unfortunately suffer from size
explosion for many circuits. A BDD based model checker is like a black box.



A slight change in circuit or variable order can make model checking infeasible.
Moreover, there are some functions like multipliers, where the BDDs are always
exponentially large in the number of variables. BDD based model checkers do
not have a gradual degradation in performance, and the performance is often
not predictable. We offer a SAT procedure based image computation and fixed
point detection mechanism that is robust and degrades gradually. The runtime
of our algorithm depends on the size of the input circuit and the diameter of
the circuit only.

SAT Procedures Recently, propositional SAT checkers have demonstrated
tremendous success on various classes of SAT formulas. The key to the effec-
tiveness of SAT checkers like Chaff [16], GRASP [19], and SATO [20] is non-
chronological backtracking, efficient conflict driven learning of conflict clauses,
and improved decision heuristics.

SAT checkers have been successfully used for Bounded Model Checking
(BMC) [2], where the design under consideration is unrolled and the property
is symbolically verified using SAT procedures. BMC is effective for showing
the presence of errors. However, BMC is not at all effective for showing that a
specification is true unless the diameter of the state space is known. Moreover,
BMC performance degrades when searching for deep counterexamples. The ba-
sic problem with BMC is that there is no mechanism to detect whether a fixed
point has been reached while exploring state space. A more serious problem is
that the transition relation is unrolled for progressively increasing number of
steps; hence, searching for deeper counterexamples becomes impractical. Our
algorithm is used to detect fixed points in image computations and the SAT
checker never has to deal with multiple unrollings of the transition relation. In
each SAT checker run, only one step of the image computation is done at a time.

The efficiency of SAT procedures has made it possible to handle circuits with
a few thousand of variables, much larger than any BDD based model checker is
able to do at present.

The basic framework for these SAT procedures, shown in Figure 2, is based
on Davis-Putnam-Longeman-Loveland (DPLL) backtracking search, . The func-
tion decide_next_branch() chooses the branching variable at current decision
level. The function deduce() does Boolean constraint propagation to deduce
further assignments. In the process, it might infer that the present set of as-
signments to variables do not lead to any satisfying solution. This is termed
as a conflict, as at least one CNF clause remains unsatisfied. In case of a con-
flict, new clauses are learned by analyze_conflict() that hopefully prevent
the same unsuccessful search in the future. The conflict analysis also returns
a variable for which another value should be tried. This variable may not be
the most recent variable decided, leading to a non-chronological backtrack. If
all variables have been decided, then we have found a satisfying assignment and
the procedure returns. The strength of various SAT checkers lies in their imple-
mentation of constraint propagation, non-chronological backtracking, decision
heuristics, and learning.



while(1) {
if (decide_next_branch()) { // Branching
while (deduce() == conflict) { // Propagate implications
blevel = analyse_conflict(); // Learning
if (blevel == 0)
return UNSAT;

else
backtrack(blevel) ; // Non-chronological
// backtrack
}
}
else // no branch means all vars
// have been assigned
return SAT;

Figure 2: Basic DPLL backtracking search (used from [16] for illustration pur-
pose)

Modern SAT checkers work by introducing conflict clauses in the learning
phase and by non-chronological backtracking. Implication graphs are used for
Boolean constraint propagation. The vertexes of this graph are literals, and
each edge is labeled with the clause that forces the assignment. When a clause
becomes unsatisfiable as a result of the current set of assignments (decision
assignments or implied assignments), a conflict clause is introduced to record
the cause of the conflict, so that the same futile search is never repeated. The
conflict clause is learned from the structure of the implication graph. When
the search backtracks, it backtracks to the most recent variable in the conflict
clause just added, not to the variable that was assigned last.

In our algorithm, we use the Chaff SAT checker [16], as it has been demon-
strated to be the most powerful SAT checker on a wide class of problems.

The rest of the paper is organized as follows. In Section 2, we describe our
basic SAT based reachability algorithm. This algorithm is inefficient as given,
therefore, in Section 3, we describe efficient data structure for storing sets of
states as DNF cubes and a cube enlargement procedure. In Section 4, related
work is described. Finally, we conclude in Section 6 with directions for future
research.

2 SAT Based Fixed Point Computation

SAT checkers like Chaff read propositional formulas represented in conjunctive
normal forms (CNFs). We present an algorithm that does not use any BDDs.
We assume that the transition relation T'(x,1i,x’) is already represented in as
a set of CNF clauses. It is customary to convert any transition relation repre-



sented as a set of propositional formula to CNF form by introducing intermediate
variables. This translation is polynomial in the size of the original circuit. We
represent the set of newly reached states after each iteration of the reachability
loop (S; in Figure 1) as a set of disjunctive normal form (DNF) cubes. The
set of all reachable states after each step (Syeacn) is also represented in DNF.
Since Syeqen is in DNF, =S,.cqcn will be automatically in CNF. As Chaff needs
CNF representation, we convert S; from DNF to CNF by introducing interme-
diate variables. In each iteration ¢, we ask the SAT checker to find satisfying
assignments to the formula below.

Si—1(x) AT(x,1,x") A =Sreach(x) (3)

This formula corresponds to step 5 of the basic reachability algorithm (Fig. 1).
This formula asks the SAT checker to compute a satisfying assignment such
that the present state variables x and input variables i satisfy the predicate
Si—1(x) ANT(x,1,%x'), i. e., the set of states reachable from the newly discovered
states in the previous iteration. We conjoin with this the negation of the set of
all accumulated states so far (—Syeqchn), thus we ask SAT checker to compute
only the states that have not been seen so far. If the SAT checker concludes that
the formula is unsatisfiable, then it means that the set of newly reached states
S; is empty, and we have reached fixed point. On the other hand, if the SAT
checker finds a satisfying assignment to this formula in present state x, input i,
intermediate and x’ variables, the projection of this assignment on x’ variables
gives a subset of newly reached states. Note that this partial assignment to x’ is
consistent with the full assignment that the SAT checker finds to the formula 3.
The formula 3 describes all constraints on the next set of states. Therefore, the
projection is a valid state reachable from S;_; following the transition relation
T. Therefore, the following lemma easily follows.

Lemma 2.1 The projection of any partial satisfying assignment to Equation 3
in x, i, X' and intermediate variables to just X' is a valid partial assignment in
x’ describing a newly discovered state reachable from S;_1 following T.

We add this state to S;(x) as a DNF cube d, after translating the next state
variables in the cube to present state variables. The negation of d is a CNF
clause, which is added as a conflict clause in the SAT engine. This clause —d is
called a blocking clause. Thus after finding each satisfying assignment, the set
Sreach(Xl> grows.

We present the high level algorithm in Figure 3. The algorithm has two
loops. The outer loop carries out different steps of image computation, while
the inner loop is implicit in the SAT checker, and enumerates sets of the newly
reached states in a particular step.

Each satisfying cube d is added to S; and S,qqcn after enlarging it to d’ in
step 6. The addition of A’ to Syeqcp is done in the SAT checker when the blocking
clause —~d’ is added. As noted earlier, negation of S;cqcn i automatically in
CNF.



/* It is assumed that Sy is given in DNF form */
SATREACHABILITY(S))
1+ 1
Sreach — SO
while (Si,1 7é (b) {
Si— ¢
/¥ DNFtoCNF converts a formula to CNF by
introducing intermediate variables */

N R

5 for (each satisfying partial assignment d in x’ to
DNFtoCNF(S;—1(x)) ANT(x,1,x") A =Speacn (X))
/* d contains only next state variables */

d’ «— EnlargeCube(d)

Add —d’ as a blocking clause

Si «— AddCube(S;, next2current(d’))

Sreach < AddCUbe(STeaciu d/)

10 endfor

1 )

12 return next2current(Sreach)
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Figure 3: Outline of SAT based reachability algorithm

3 Efficient Implementation of SAT Based Reach-
ability

This algorithm, as it is, is very inefficient and hence impractical. The first
problem comes from the way the SAT checker computes satisfying assignments
or cubes. Chaff SAT checker gives values to all variables in any assignment.
We then project this assignment to d, which assigns values to all next state
variables x’. Therefore d describes only one newly reached states. Enumerating
states one at a time is clearly very inefficient. However, most times, only a
partial assignment to all variables satisfies the clause database given to SAT. A
partial assignment to x’ describes more than one state at a time, the larger the
set the few the number of assignments. This is advantageous in two ways, first
the blocking clause for d prunes the SAT search space drastically, second, the
number of state enumerations required go down considerably. Therefore, it is
desired that the partial assignment be as small as possible. It is clearly to our
advantage to get as small cubes as possible, since smaller cubes cover a larger
number of assignments. Given a cube computed by Chaff, it may be possible
to throw away certain assignments from the cube, and still get a satisfying
cube. By a static analysis of the transition relation, we infer the unnecessary
assignments in d. This procedure EnlargeCube is called in line 6 on d to get a



smaller cube d’.

The second problem is that the representation of the sets S,cqcn and even
S; can grow too large. For example, if we consider a counter that counts up
to 239, each iteration of the while loop will add only one state to S;eqcn. Thus
we will have to represent 230 clauses for Sreqen. However, the DNF clause 1
represents all possible values of the counter. In other words, after a satisfying
assignment to Syeqcn is found, we can combine multiple clauses to get a smaller
partial assignment. For example, the DNF clauses x1 Axs A—xg and x1 Axs Axg
can be combined to x1 A x5. An efficient data structure is needed to support
this AddClause operation, since many clauses may be added, and each clause
can potentially be combined with more than one existing clause. We use a hash
table, eacy entry of which contains a trie.

We give a cube enlargement heuristic procedure next, which is followed by a
description of an efficient data structure that stores S; and S;¢qcn. The enlarge-
ment procedure reduces the number of set enumerations, hence the amount of
time, while the seconf procedure reduces the space requirement.

3.1 Cube Enlargement

There are five types of variables that appear in the SAT formula 3: present
state variables x, circuit inputs 7, next state variables x’, intermediate variables
ig introduced while converting S;_; to CNF, and the intermediate variables
iy introduced while converting the transition relation T'(x,1i,x’) to CNF. The
SAT checker finds a satisfying assignment c, possibly to all these variables.
However, the cube d of line 7 in the algorithm (Fig. 3) is just in terms of
x’ variables. In order to reduce the number of assignments in d, we present
the following procedure. This procedure assumes that the transition relation is
given in functional form, i.e., there is a transition function f;(x) for each next
state variables x;. Let Supp(f;) denote the support set of f;, i.e., the variables
that f; depends on. This assumption is true for circuit descriptions. When an
assignment to a next state variable z} can be ignored, we say that x} is *.

Free Variables

First, we describe the concept of free variables, i.e., the variables that are free to
choose any value, despite SAT checker assigning them specific values. In order
to detect whether the variable v is free or not, the following conservative tests
are used. If v is an input variable or an intermediate variable, then it is definitely
free. Moreover, for functional transition relations, we don’t even need to check
if an intermediate variable appears in other transition functions or not, since
intermediate variables are generated from local translation for f;. The only real
problem is if v is a present state variable. The only constraints that are placed
on the present state variables are from S; 1. To see if the present satisfying
assignment c restricts v or not, we can just check that assignment to v does
not affect the present satisfying assignment. This can be efficiently detected as
follows. While translating the DNF corresponding to S;_; to CNF, we introduce



one intermediate variable for each DNF cube. In essence, the truth value of each
DNF cube is captured in the corresponding variable. Suppose i1,1is,... ,i; are
the intermediate variables corresponding to DNF cubes D1, Do, ..., Dy in S;_1.
The translation of the S;_1 constraint in Eqn. 3 looks like:

(i1Vi2V...Vik)/\(i1<:>D1)/\(i2<:>D2)/\...A(ik<:>Dk) (4)

Each equality ¢; < D; gives rise to a set of CNF clauses, which we haven’t
expanded for the sake of brevity.

If the satisfying assignment ¢ makes any of intermediate variables true, the
corresponding DNF cube is true, and we don’t need to see if any other DNF cube
is true or not, since the truth of only one DNF cube satisfies the S;_; clauses.
So we find the first intermediate variable i; that is set to true. All present state
variables not mentioned in the DNF cube D) are irrelevant for satisfying S;_1
constraint, hence, they can be assumed to be free.

Free Transition Functions

Let us denote the set of free variables in the support of a transition function f;
as FreeSupp(f;).

The main idea is that if a transition function f; (for %) depends on a variable
v (which is either a present state variable, input or an intermediate variable from
i;), and the following conditions are satisfied, we can guarantee that z, can be
set to either 1 or 0. Thus, the value of z} can be safely ignored from the present
assignment.

1. Variable v is free.

2. Values of non-free variables in Supp(f;) are propagated and do not force
fi to a particular value. For example, when f; = z1 A z2, x1 is free, f;
satisfies condition 3, but 2 = 0 in S;_1. This forces f; to 0. So constant
values of non-free variables are propagated first.

3. The function f; does not share free support with any other transition
function, i.e., FreeSupp(f;) N FreeSupp(f;) = ¢,j # i. Moreover, the
variable v appears in the formula for f; in exactly one place. In other
words, the variable v does not appear in any other propositional function.

Note that there may be other conditions under which z can still choose both
values. However, this conditions allow us to do a static analysis of the circuit.

The third condition is too restrictive in practice. Usually, transition func-
tions do share common variables. In order to infer that a next state variable
x} can assume both values, we can simplify the transition functions by further
constant-propagating values of some free variables as well (remember that we
already constant-propagate the values of non-free variables). For example, sup-
pose that fi = x1|ig and fo = x1|i3, and x1,i; and i3 are free variables. Suppose
the SAT assignment is a = 0,47 = 0,73 = 1. Since both f; and f5 share the
variable 1, we can not safely say that both 2} and xf are *. However, we can



replace x1 by 0, and propagate the effects, giving us f; = i3 and fy = i3. Now,
both fi and fy become independent, as can be set to *. Note that since z1 is a
free variable, we could have chosen x; = 1, different from the SAT assignment.
In order to determine which variables to assign values to, till the functions be-
come independent, we use a greedy strategy. We order the variables by the
number of times they appear in all transition functions. Beginning with the
variable that occurs the most number of times, we keep replacing the variables
by constants (from SAT assignment) and propagating the effect, until transition
functions become independent and next state variables can be inferred to be *s.
In the worst case, all transition functions become constants, whose values agree
with the satisfying assignment.

Most analysis of this procedure can be done statically just once. The only
changing part is detection of free present state variables. Note that this is just
one alternative. There can be other options. For example, we considered using
efficient approximate set cover algorithms to find out the literals that cover all
clauses of formula 3. Another option is to use BDD based symbolic simulation
to infer multiple cubes. The given cube enlargement procedure produces one
smaller cube. However, using BDDs for simulation of the circuit for one step
and then applying constants to some of BDD variables to contain the BDD sizes
can yield a set of many states at once.

3.2 Efficient Set Representation

The set of states are represented as a set of DNF cubes. However, it is easy to
see that each new cube that is added to S, cqcn has a potential to be merged
with other cubes to form shorter cubes. For example, the boolean function 1
is an exponentially compact representation than four DNF cubes a A b, —a A
b,a N =b,—a A =b. We describe the following procedure to add a cube to the
existing set of cubes. We assume that the variables in the cubes are ordered.
The set is represented by a hash table, where each hash table entry stores a
subset of cubes in a trie form. Each trie stores cubes that are made up of
the same CNF variables. The hash table is indexed by the hash computed
from a signature of a cube. In the following algorithm (Figure 4), assume that
the DNF cube d is represented as a vector of integers, each integer identifying
a particular propositional variable, negative if the literal is negative, positive
otherwise. For example, if a, b, ¢, d, e, f... are variables, then they are identified
by the integers 1,2,3,4,5,6,.... So a cube (a A =c A —~f) is represented by the
vector d = [1,—3,—6]. The function ComputeSignature computes a bit string
that is used to compute the hash value for a cube. The bit string is ordered,
just as variables in the cubes are, and contains 1 for each variable (in any
phase) present and 0 for the variables not present in the cube. The trailing
0s are removed to get a shorter bit string. So the signature for the cube d is
101001. Not that even though there may be variables numbered 7,8,9, .., the
0s corresponding to them do not appear in the signature.

Since each trie stores cubes made up of the same variables, the cubes are
represented by bit strings of the same length as the number of variables in the



cubes of the trie. Essentially, if a literal is positive, the bit corresponding to it
is 1, and 0 otherwise. So the cube d is stored as 100.

The crux of the AddCube procedure is between lines 5-19. Given an incom-
ing cube d, it tries to find all other cubes from the trie that differ from d in
just one bit. For each such cube d’ found (lines 10-13), the cube computed by
merging d and d’ is added to S by calling AddCube recursively. The merged
cube is essentially cube d with the matched bit (i*" bit) removed. If d doesn’t
match at the " bit, then the next bit is checked. Once the traversal over trie
is done, we check if d was merged with anything. If it was, then we no longer
keep d. Line 18 just updates the hash table with potentially modified trie.

Note that the algorithm doesn’t guarantee absolute minimum cubes. In fact,
to do so, we may need to keep all cubes, even after they are merged, in the hopes
of merging them with other future cubes. But the main focus of the algorithm
is to reduce space, and not get the absolute smallest cubes. Another point to
note is that since the SAT checker always finds new states that haven’t been
discovered so far, we assume that the trie Ty does not already contain d.

The complexity of this algorithm in the worst case can be O(n?), not count-
ing the recursive calls. Here n is the number of state variables. Each of line 1,
3-4, 6 and 17 cost O(n), while hash lookups and updates on lines 2 and 18 are
essentially constant time operations. Lines 10 and 11 cost O(m) 4+ O(m — 1) +
...+ 0(1) = 0(m?) = O(n?).

3.3 Complexity of the Set Representation

The set of DNF cubes representing S; or Syeqch possess a useful property. By
the negation of Syeqcn in the SAT formula (Eqn. 3), we guarantee that no newly
generated DNF cube shares a satisfying assignment with any existing cube in
sets S; or Sreqen- Thus the set of DNF cubes representing these sets are disjoint,
in that they do not have any common assignment. For example, the DNF cube
bV ¢V d cannot occur if the cube a V bV c is already present, as they share
a common assignment a = b = ¢ = d = 1. However, cube =a VbV ¢V d can
occur. If we can detect that the set of cubes is a tautology, we can terminate the
reachability, as we have reached all the states. Our cube addition algorithm is
online in nature. We now actually prove that if the set of DNF cubes are given
a priori that do not share a common a satisfying assignment, then detecting if it
is a tautology is polynomial. The general problem of detecting DNF tautology
is NP-complete, so is its dual CNF satisfiability.

We call the problem of tautology detection of a set of DNF cubes that do
not share any common assignment pairwise an R-TAUT problem. The proce-
dure for tautology detection works simply by counting the number of satisfying
assignments. Suppose there are ¢ DNF cubes made up from a total of m vari-
ables. The cubes do not share common assignments pair wise. Suppose cube &
has literals l1,ls,... ,l;,. There are a total of 2™ possible assignments to vari-
ables, and if each assignment is a satisfying assignment, then the DNF cubes
are a tautology. Cube ¢ describes a total of 2™~ assignments agreeing with
the literals in cube i. As we know that no two cubes i and j share any common
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COMPUTESIGNATURE(d, m)
/* m is the size of the cube d, assume d is sorted */
Je1
for (i from 1 to d[m])
if (¢ = |d[j]|) /* variable is present in d */
Sd[i] —1
Je=g+1
else
Sd[i] —0
endif
endfor
return sy

ADpDCUBE(S, d, n, m)

/* n is the total number of variables, m is the number of variables in d */

sq <« ComputeSignature(d, m)
/* Ty is the trie in which d will be stored */
Ty «+— HashLookup(S,sq)
/* compute the representation of d to store in Ty */
for (i from 1 to m)
b[i] — (d[i] >0)71:0
endfor
match «— false
Ty «— Trielnsert(Ty,b)
curr_node «— Ty,
for (i from 1 to m)
b[i] < 1 — b[i] /* flip the i*" bit */
if (Trie Lookup(curr_node,b[i : m]) = true)
/* match at the ith bit */
Ty < TrieDelete(Ty,b)
/* insert the merged cube */
S — AddCube(S,d[1:¢—1]::d[i + 1 : m],n,m)
match «— true
endif
b[i] < 1 — b[i] /* flip it back to what it was */
curr_node «— (b[i] = 1)?curr_node.right : curr_node.le ft
endfor
if (match = true)
Ty < TrieDelete(Ty, b)
/* update the trie for this cube */
S «— HashUpdate(S,sq, Ty)
return S

Figure 4: Procedures AddChhe and ComputeSignature.



assignment, the total number of assignments that satisfy both cube i and j are
precisely 2"~ ¢ +2™~%_ The total number of satisfying assignments for the set
of DNF cubes is just

QmTer L gm=c 1 4 QM Ce,

Clearly, the additions can be carried out in time polynomial in m and ¢, the
size of problem input. Hence the theorem

Theorem 3.1 R-TAUT is in P.

Note that in our case, the set of DNF cubes are not given a priori. However,
this procedure can be run periodically on S,cqcn to find out if all states have
been reached, in which case we stop the search. We also use this counting
mechanism to report the number of reached states.

4 Related Work

The first completely SAT based reachability algorithm was reported by McMil-
lan in [14]. The main difference between our approaches is that we represent
the set of states in DNF, while he presented it in CNF. A SAT based enumera-
tion algorithm is used to compute a CNF formula equivalent to a given formula
characterizing preimages. However, we use intermediate variables to convert
DNF representation to CNF while running SAT. He used zero suppressed BDDs
(zDDs) to store CNF clauses, and used a SAT conflict analysis based heuristic
to enlarge the cubes. We did not compare the results reported in [14] as the set
of benchmarks in [14] was not publicly available.

In [11], the authors used procedure similar to ours to compute preimages.
They also intermediate variables to convert DNF cubes to CNF formula. How-
ever, they use offline Espresso [17] algorithm to reduce the number of cubes.
Our cube storage procedure is on-line, in the sense that it processes the cubes
as they are generated. Moreover, they do not have any algorithm to enlarge the
cubes. We doubt their results. They also reported them only on two different
circuits and for safety property checking only, which can be much easier than
to do than computing reachability. Our attempts to contact them to get more
information about the properties they checked failed.

In [18], the authors used ATPG instead of SAT to compute preimages. They
used BDDS to store the resultant sets of states. ATPG allows reasoning directly
on the circuits, hence they do not have any intermediate variables. They report
results on only two circuits. These are known to be difficult circuits, however.

In [15], the only aim was to compute the sequential diameter, also called
diameter of the circuit. They did not compute the reachable set of states at all.
Their procedure was based on the Chaff SAT checker as well. Their procedures
shared many similarities with bounded model checking (BMC) [1]. They build
a SAT formula describing symbolic simulations of increasing length. In our
approach, we explicitly compute the set of reachable states, and the SAT checker

11



does not have to compute more than one step of symbolic simulation at a time.
This we believe is a significant advantage that our method has over [15] and
BMC. Using BMC for depth equal to circuit diameter is sufficient for Gp kind
of LTL properties. In [12], this notion is generalized to that of completeness
threshold (CT). The authors describe a sorting network built on top of SAT
formula for computing diameters.

In [10, 9], a mixed BDD and SAT based approach to image computation is
described. They use SAT procedure to derive a top level disjunctive decompo-
sition of image computation and use BDD based image computation for each
leaf subproblem.

5 Experimental Results

We implemented our algorithms on top of the zChaff SAT solver. The SAT
solver is modified to enumerate satisfying solutions by adding blocking clauses.
We implemented our program in C++ as part of a larger high level verification
system.

We conducted our experiments on a 1.53GHz dual AMD Athlon processor
machine with 3GB of memory running Linux. The memory cutoff was set to
1.5GB of resident program size, and the time cut off was set to 1000 seconds.
The results are summarized in table 1. For each circuit, we report the number of
latches, the number of reachability steps that we could complete, the number of
cubes stored in the representation for the reachable states, the number of cubes
that were enumerated as blocking clauses (or how many times line 7 in algorithm
of Figure 3 was called), the ratio of the number cubes v/s the number of blocking
clauses added in percentage, and the total running time (user time+system time)
in seconds. Note that the number of cubes in final set representation is much
smaller than the total number of enumerated cubes, as evidenced by the %age
size column. This asserts that the space saving data structure for storing cubes
is effective. We compare our results with primarily that of [15]. We would like
to emphasize that in [15], only the depth was computed, and the actual set of
reachable states was not computed.

The circuits that we report come from mainly three sources, ISCAS’89
benchmarks, TU set of circuits from Synopsys, and some circuits that were trans-
lated from Verilog code available from various sources. The IU set of circuits
are various abstractions of parts of a picoJava microprocessor implementation.

For a relatively small timeout value, we have been able to do reachability for
many circuits. We have outperformed [15] by a large magnitude on all but one
small completed benchmarks. They used a faster machine (2GHz v/s 1.53GHz)
as well. The effectiveness of the cube merging procedure is evident from “%age
space” column. The savings are dramatic for circuits that have counter like
structures in them (iu**, s208.1, s420.1, s838.1, s635) and other circuits (s1512,
59234, s13207, s1423, s526, s526n). For other circuits, it can be inferred that
the SAT checker and cube enlargement procedures generate many disjoint cubes
that can not be merged with existing set of cubes. This may be dependent on
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Circuit || # latches | # steps Space Requirement Time (sec) Comparison with [15]
# cubes | # blocking clauses ’ %age space Max. Depth | Time (sec)
decss 86 85% 655 131304 0.50 1000.00
iu30 30 4* 3343 72037 4.64 1000.00
iu3s 35 3* 1479 94424 1.57 1000.00
iud0 40 2% 20 33168 0.06 1000.00
iudb 45 1* 2294 165192 1.39 1000.00
$208.1 8 255 8 255 3.14 0.56
$298 14 18 33 217 15.21 0.33 18 19.3
s344 15 6 558 2624 21.27 15.30
5349 15 6 546 2624 20.81 14.82
5382 21 150 337 8864 3.80 7.71
5386 6 7 6 12 50.00 0.21 7 0.18
s400 21 150 336 8864 3.79 7.81
$420.1 16 65535 16 65535 0.02 213.97
s444 21 150 341 8864 3.85 8.00
s499 22 21 21 21 100.00 1.74 21 1.07
s510 6 46 10 46 21.74 0.47 46 144.81
$526 21 150 381 8867 4.30 9.35
$526n 21 150 372 8867 4.20 9.21
$635 32 | 125528* 66 125528 0.05 1000.00
s641 19 6 321 1543 20.80 2.24 6 97.03
s713 19 6 363 1543 23.53 2.53 6 126.94
s820 5 10 11 24 45.83 0.48 10 2.51
$832 5 10 11 24 45.83 0.47
s838.1 32 | 155441%* 26 155441 0.02 1000.00
s953 29 10 189 503 37.57 2.01 10 102.23
s967 29 10 177 548 32.30 3.12
s1196 18 2 802 2615 30.67 6.79 2 232.84
s1238 18 2 849 2615 32.47 7.26
s1269 37 1* 2136 4339 49.23 1000.00 * 5000
s1423 74 3* 2652 55568 4.77 1000.00 26* 5000
$1488 6 21 19 47 40.43 0.87 21 96.87
s1494 6 21 19 47 40.43 0.87
s1512 57 4% 2035 178175 1.14 1000.00
s9234 228 8* 507 6651 7.62 1000.00
s13207 669 2% 76 1824 4.17 1000.00
515850 597 5* 362 2558 14.15 1000.00
$38584 1452 2% 58 452 12.83 1000.00

Table 1: Experimental results on a set of circuits from various sources including ISCAS’89 and Synopsys. The comparison is

against [15]. Note: (*)-reachability was not complete. Empty boxes denote results N/A.




circuit structure.

In [13], our tool was used to enumerate symbolic solutions to certain pred-
icate abstraction formulas. The characteristic of these formulas was that the
number of variables to be quantified was much larger (an order of magnitude)
than the number of variables representing the set of states. In our case, the
number of variables to be quantified is x, I, and i;y.

6 Conclusions and Future Work

We presented a completely SAT based image computation algorithm. The ef-
fectiveness of this algorithm is demonstrated for reachability analysis on many
large circuits. This algorithm can be used for computing pre images equally
well, hence it can be used in a general SAT based symbolic model checking al-
gorithm. The novel features of our algorithm are an efficient data structure for
storing sets of states as DNF cubes and a cube enlargement procedure based on
static circuit analysis.

There are many directions for future research. The cube enlargement pro-
cedure can be improved by the use of BDD based symbolic simulation. One
obvious extension that we are working on is to do full CTL model checking
using this procedure. A related question to explore is whether techniques like
iterative squaring can be used with SAT to speed up fixpoint detection in reach-
ability. We want to extend this procedure for solving general quantified Boolean
formulas (QBFs). Our algorithm was used in [13] for solving QBFs with one
existential quantifier that arise in symbolic predicate abstraction. We are also
identifying other problem domains where our method can be applied.
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