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Abstract

We propose a framework for comparing the performance of two queueing policies. Our
framework is motivated by the notion of competitive analysis, widely used by the com-
puter science community to analyze the performance of online algorithms. We apply our

framework to compare M/GI/1/FB and M/GI/1/SJF with M/GI/1/SRPT, and obtain new

results about the performance of M/GI/1/FB and M/GI/1/SJF.
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1 Introduction

An online algorithm for a problem is one in which decisions must be made based on past
events without information about the future. Such algorithms are most natural in job
scheduling, routing in communication networks, investment planning, and other scenarios
where decisions must be made without knowledge of future events. In contrast, an offline
algorithm for a problem is one where it is assumed that the algorithm is given the entire
input instance in the beginning, and the goal is to compute the optimal or near optimal
solution. For instance, problems within the domains of linear programming and graph
optimization are most naturally studied as offline problems.

We will briefly introduce the notion of competitive analysis, which is used to analyze
the performance of online algorithms. For details, an excellent introduction to competitive

analysis and online algorithms in general can be found in [1]. We begin with the definition

of an optimization problem. An optimization problem P, consists of a set I of inputs and

a cost function C. With every input I is a set of feasible outputs F (I), and associated

with each feasible solution O in F (I) is a positive cost C(I, O), representing the cost of the

output O on the input I. An optimal algorithm OPT is such that for all legal inputs I,

OPT (I) = min
O∈F (I)

C(I,O)

That is, the optimal algorithm computes the optimal solution on each instance. An online
algorithm ALG is c-competitive if there is a constant α such that for all input sequences I,

ALG(I) ≤ c ·OPT (I) + α.

Since the online algorithm is at a disadvantage when compared with the optimal algorithm,
c may depend on the size of the input, and typically c > 1. The goal is usually to give a
constant competitive online algorithm for a problem.

The important point to note about the definition of competitive analysis is that if an
algorithm is c-competitive, it guarantees that the output produced by the algorithm is no
more than c times worse than optimal on all possible inputs. In particular, there are no
statistical or probabilistic assumptions on the input. For our purposes, competitive analysis
can be thought of as a framework for comparing the performance of two algorithms within
which a performance guarantee holds for all possible inputs.

Let us now consider the comparison techniques used in queueing theory. A thorough

survey of these techniques can be found in the books by Stoyan [3, 10]. Typically these

techniques can be classified in two kinds:
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1. Those that show a given random variable is stochastically smaller than another ran-
dom variable, particularly when the job size distribution satisfies a condition such as

having an increasing/decreasing failure rate (IFR/DFR), or being new better/worse

than used in expectation (NBUE/NWUE). See [3, 10, 11] for a discussion of such re-

sults.

2. Those that bound the performance as a function of load, other parameters of the job

size distribution, or a combination of both. For example, results such as E[T ]PS ≤
1/(1−ρ)E[T ]SRPT or E[T ]FCFS ≤ (C2 +1)E[T ]PS , where E[T ]P denotes the average

response time (i.e. sojourn time) under some policy P and C2 denotes the coefficient

of variation of the job size distribution.

The first approach, while interesting in its own right, is usually somewhat specific, and
does not allow comparisons of policies in full generality. A drawback of the second approach
is that the guarantee varies as a function of load or other parameters of the input instance
such as the job size distribution. That is, it does not provide a uniform guarantee on the
performance of the algorithm.

Our framework for comparing queueing policies will partially address some problems
stated above. Before we state the framework, we first state our main motivating problem:

How well can we schedule jobs in the absence of knowledge of jobs sizes, so as

to minimize the total response (sojourn) time?

It is well known that the optimal algorithm for minimizing the total response time is

Shortest-Remaining-Processing-Time-First (SRPT), which works on the job with the shortest

remaining processing requirement at all times [8]. However, one widespread criticism of SRPT

is that it requires exact knowledge of job sizes. This may not be available in many practical
settings, for example in operating systems, where the server has no idea about the size of
the job on which it is working.

Many natural scheduling policies do not use knowledge of the job sizes. Some of the most

commonly studied among these are First-Come-First-Served (FCFS), Processor-Sharing (PS)

and Feedback (FB) 1. Of particular interest is FB, which is designed to perform like SRPT in

the absence of knowledge of job sizes. Indeed, FB has found widespread use in operating
systems like Unix and other time sharing systems like CTSS. Under FB, at any moment,

1FB is also referred to as Shortest-Elapsed-Time (SET) and Least-Attained-Service (LAS).
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the server works on the job that has received the smallest processing at that instant. If
more than one job has received the least amount of processing, then the server time-shares

among these jobs (i.e. gives each such job an equal share of processing). Our goal will

be to bound the performance of FB as compared with SRPT.

2 Preliminaries

Throughout this paper we assume that the system is a single M/GI/1 queue with arrival

rate λ. We will assume that the job size distribution is continuous with probability density

function f(t). The cumulative job size distribution will be denoted by F (t). We will denote

1− F (t) by F̄ (t), and X will refer to the service time of a job. The load (utilization), ρ, of

the server is ρ
def= λE[X]. The load made up by the jobs of size less than or equal to x is

ρ(x) def= λ
∫ x
0 tf(t)dt.

The focus of our work will be comparing the performance of policies to the optimal
policy, SRPT. Schrage and Miller first derived the expressions for the response times in

an M/GI/1/SRPT system [8]. This was further analyzed and generalized by [4, 6]. The

optimality of SRPT for mean response time was shown by [7, 9].

E[T (x)]SRPT =
λ

∫ x
0 tF̄ (t)dt

(1− ρ(x))2
+

∫ x

0

dt

1− ρ(t)

For simplicity, we will split E[T (x)]SRPT into two parts, the waiting time (denoted by

E[W (x)]SRPT ) and the residence time (denoted by E[R(x)]SRPT ) where E[W (x)]SRPT =
λ
R x
0 tF̄ (t)dt

(1−ρ(x))2
and E[R(x)]SRPT =

∫ x
0

dt
1−ρ(t) .

2.1 The Framework

We define the following two notions for comparing response times under a scheduling policy:

1. Competitiveness: We say that a policy P is competitive with respect to (wrt) a class

of distributions D, if there exists a c such that the average response time under P is
no more than c times than that under SRPT for any job size distribution in D.

If D consists of the class of all possible distributions, we state that P is competitive.

Formally, let E[T ](ρ,G)P denote the average response time under policy P with load

ρ and job size distribution G . Then, P is competitive wrt D if ∃ a constant c such
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that

E[T ](ρ,G)P ≤ cE[T ](ρ,G)SRPT ∀ρ < 1,∀G ∈ D (1)

2. Strict Competitiveness: This is a stronger notion than competitiveness. Here we
require that for each value of the job size x, the expected response time under P be
no more than a constant times that under SRPT.

Formally, if E[T (x)](ρ,G)P denote the expected response time for job of size x under

policy P , then P is strictly competitive if

E[T (x)](ρ,G)P ≤ cE[T (x)](ρ,G)SRPT , ∀x,∀ρ < 1,∀G (2)

Strict competitiveness for a class of distributions D is similarly defined.

The important point in the definitions above is that the constant c does not depend
upon the load ρ. Indeed, the question is interesting only when the load ρ is arbitrary. In
particular, if the load is small it is easily seen that any reasonable policy will not be much
worse than SRPT. Secondly, if c were allowed to depend on ρ, then the question becomes
less interesting since it does not provide a strict enough criteria for distinguishing among
different policies.

For example, let us consider the policy PS. It is well known that E[T (x)](ρ,G)PS =

x/(1 − ρ) and clearly, as E[T (x)](ρ,G)SRPT ≥ x, it is easy to see that E[T (x)](ρ, F )PS ≤
1/(1 − ρ)E[T (x)](ρ,G)SRPT . However, the above definition implies that PS cannot be

strictly competitive. To see this, consider any continuous job distribution with support on

[a, b]. Then the expected response time of the job with size a will be a/(1 − ρ) under PS,

where as it is easy to see that it will never exceed 2a under SRPT. Thus, choosing the load
ρ arbitrarily close to 1, we can make the ratio under PS and SRPT as large as required. So,
if some scheduling policy is competitive or strictly competitive, then it is close to SRPT in
a very strong sense.

It is interesting to notice that, although in this paper we consider competitiveness with
respect to SRPT, in general, we can consider competitiveness with respect to and arbitrary
policy Q.

2.2 Our Results

We first consider policies that do not make use of job sizes. For ease of analysis, we restrict
our attention to job size distributions that are continuous and have a finite mean. We show
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that the policy FB is strictly competitive if and only if (iff) the service distribution has a

specific form. Further, if f(x) is non-increasing, FB is strictly competitive iff the service

distribution has a regularly varying tail (see Definition 3.1). In particular we show that

Theorem 3 FB is strictly competitive with respect to a class of distributions D iff every

D ∈ D has F̄ (x) of the following form:

F̄ (x) = ce−
R x

z α(t)/tdt for some z and all x > z where lim
t→∞α(t) = α. (3)

This gives a tight characterization of the class of distributions for which FB is strictly
competitive and hence behaves like SRPT. The result implies that the performance of FB
is likely good in practice, where distributions of job sizes are often Pareto. Surprisingly
however FB will not be strictly competitive for bounded Pareto distributions or, in fact, for
any bounded distributions.

Our second result deals with the policy Preemptive-Shortest-Job-First (PSJF). PSJF is

often proposed as an approximation for SRPT, since it is easier to implement in a practical
system. Note that under SRPT the priority of a job needs to be updated constantly as it
is remaining processing time decreases. On the other hand, an incoming job is assigned
a priority based on its job size, and this priority is never changed. We show that PSJF is
strictly competitive for all job size distributions. In particular we show that

Theorem 4 For all continuous job size distributions, PSJF is strictly 3-competitive.

It is perhaps surprising that the guarantee holds for all job sizes, for all job size distri-
butions, and for all values of load.

3 FB

We now move to an analysis of FB scheduling. Recall that under FB, the job with the
least attained service gets the processor to itself. If several jobs all have the least attained
service, they time-share the processor via PS. This is a very practical policy, since a job’s
age is always known, although it’s size may not be known.

We need some preliminary notation.

ρx = λ

∫ x

0
F̄ (t)dt = λ

(∫ x

0
tf(t)dt + xF̄ (x)

)
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Then we have [2]

E[T (x)]FB =
λ

∫ x
0 tF̄ (t)dt

(1− ρx)2
+

∫ x

0

dt

1− ρx

Although FB does not technically have a waiting time, it will be useful when comparing

to SRPT to define E[W (x)]FB = λ
R x
0 tF̄ (t)dt

(1−ρx)2
and E[R(x)]FB =

∫ x
0

dt
1−ρx

.

It is easy to see that for any distribution, if load ρ < 1, then E[T (x)]FB is no more than

1/(1− ρ)2 times E[T (x)]SRPT . We now ask a stronger question as to whether FB is strictly

competitive with respect to SRPT.

Moving towards our goal, we notice that the ratio of E[R(x)]FB and E[R(x)]SRPT is

at least (1− ρ(x))/(1− ρx) and that the ratio of E[W (x)]FB and E[W (x)]SRPT is exactly

(1− ρ(x))2/(1− ρx)2. Thus, a necessary condition for E[T (x)]FB/E[T (x)]SRPT < c, is that

(1− ρ(x))/(1− ρx) ≤ c. We state this condition as

Observation 1 E[T (x)]FB/E[T (x)]SRPT > (1− ρ(x))/(1− ρx) Thus

1− ρ(x)
1− ρx

> c ⇒ E[T (x)]FB

E[T (x)]SRPT
> c

Surprisingly, this condition is also sufficient in the sense of the following theorem.

Theorem 1 (1− ρ(x))/(1− ρx) ≤ c implies that

E[T (x)]FB

E[T (x)]SRPT
≤ 3c2

Before we prove this theorem, we need two lemmata.

Lemma 3.1

E[R(x)]FB −E[R(x)]SRPT ≤ 2E[W (x)]FB (4)
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Proof: Consider,

E[R(x)]FB − E[R(x)]SRPT =
∫ x

0

(ρx − ρ(t))dt

(1− ρ(t))(1− ρx)

≤
∫ x

0

(ρx − ρ(t))dt

(1− ρx)(1− ρx)

≤
∫ x
0 (ρx − ρ(t))dt

(1− ρx)(1− ρx)

=
xρx −

∫ x
0 ρ(t)dt

(1− ρx)(1− ρx)

=
xρx − xρ(x) + λ

∫ x
0 t2f(t)dt

(1− ρx)(1− ρx)

=
λ(

∫ x
0 t2f(t)dt + x2F̄ (x))
(1− ρx)(1− ρx)

= 2E[W (x)]FB

The first step follows by simply substituting the expressions for E[R(x)]FB and E[R(x)]SRPT .

The second step follows from the first since 1− ρ(t) ≥ 1− ρ(x) ≥ 1− ρx. 2

We can now extend this lemma as follows.

Lemma 3.2 If E[W (x)]FB ≤ kE[W (x)]SRPT , then E[T (x)]FB ≤ 3kE[T (x)]SRPT .

Proof: We know that E[W (x)]FB ≤ kE[W (x)]SRPT and hence

3E[W (x)]FB ≤ 3kE[W (x)]SRPT

Adding E[R(x)]SRPT to the left hand side and 3kE[R(x)]SRPT to the right hand side we

obtain:

3E[W (x)]FB + E[R(x)]SRPT ≤ 3kE[W (x)]SRPT + 3kE[R(x)]SRPT (5)

But, by Lemma 3.1 we have that E[R(x)]FB ≤ 2E[W (x)]FB + E[R(x)]SRPT , and hence

that

E[W (x)]FB + E[R(x)]FB ≤ 3E[W (x)]FB + E[R(x)]SRPT (6)
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Combining Equation 5 and Equation 6 gives that

E[W (x)]FB + E[R(x)]FB ≤ 3k(E[W (x)]SRPT + E[R(x)]SRPT )

and hence the result follows. 2

We can now easily prove Theorem 1.

Proof: (of Theorem 1) Clearly if (1−ρ(x))/(1−ρx) ≤ c this implies that E[W (x)]FB/E[W (x)]SRPT ≤
c2, which by Lemma 3.2 implies that E[T (x)]FB/E[T (x)]SRPT ≤ 3c2. Thus we are done. 2

By Observation 1 and Theorem 1 it follows that in order to prove strict competitiveness

it is sufficient to consider the quantity (1− ρ(x))/(1− ρx) and show that it is bounded by

a constant for all x and ρ. Our goal will be characterize the service distributions for which
this property is satisfied.

We first show that FB is not strictly competitive for any bounded distribution.

Theorem 2 FB is not strictly competitive under any bounded service distribution.

Proof: Since the service distribution is bounded, there is a finite p such that F̄ (x) > 0 for

all x < p and F̄ (p) = 0.

We will show that (1− ρ(x))/(1− ρx) can be made arbitrarily large by choosing ρ → 1

and x arbitrarily close to p. By observation 1 we know that (1 − ρ(x))/(1 − ρx) ≤ c is

necessary for E[T (x)]FB/E[T (x)]SRPT ≤ c, thus this will give us the desired result.

When ρ → 1,

1− ρ(x)
1− ρx

→ ρ− ρ(x)
ρ− ρx

=

∫ p
x tf(t)dt∫ p
x F̄ (t)dt

≥ x
∫ p
x f(t)dt∫ p

x F̄ (t)dt

≥ x
∫ p
x f(t)dt

(p− x)F̄ (x)

=
xF̄ (x)

(p− x)F̄ (x)

=
x

p− x
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The fourth step follows from the third since F̄ (x) is decreasing in x.

Now, choosing x = p− ε and making ε arbitrarily small we can make 1−ρ(x)
1−ρx

and hence

E[T (x)]FB/E[T (x)]SRPT as large as required. 2

Thus, we only need to consider distributions which have an infinite support. For (1−
ρ(x))/(1 − ρx) ≤ c to hold for all x, clearly a necessary condition is that it holds when
x →∞:

lim
x→∞

1− ρ(x)
1− ρx

≤ c (7)

We will now show that Condition 7 holds only for probability distributions satisfying
Equation 3. And, finally, all distributions of this type will satisfy our condition.

Before stating the theorem, recall the following definition.

Definition 3.1 A distribution function F (x), x ≥ 0 is said to have a regularly varying tail

with index α < 0 if, for arbitrary t > 0,

lim
x→∞

F̄ (tx)
F̄ (x)

= tα

It is important to point out that in the special case when f(x) is non-increasing, we have

additionally that Equation 3 holds iff F (x) has a regularly varying tail [5, Pages 54-74].

Theorem 3 FB is strictly competitive iff every the service distribution is of the form:

F̄ (x) = ce−
R x

z α(t)/tdt for some z and all x > z where lim
t→∞α(t) = α. (8)

Proof: We begin by showing that Condition 7 holds for distributions of the form 8. Again,

let ρ → 1. (Notice that for all ρ bounded away from 1 Condition 7 holds trivially.)

1− ρ(x)
1− ρx

→
∫∞
x tf(t)dt∫∞
x F̄ (t)dt

As x → ∞, both the fractions tend to 0, so we need to evaluate the limit by applying

L’Hopital’s Rule. Thus, the limit is xf(x)
F̄ (x)

. Let µ(x) def= f(x)/F̄ (x) (a.k.a. the hazard rate

of X). Then Condition 7 becomes:

lim
x→∞xµ(x) ≤ α
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This condition is met iff F̄ (x) is of the form specified in Equation 8 [5, Pages 54-74].

Now, for the other direction we must show that for distributions satisfying Equation 8

there exists some constant k such that (1 − ρ(x))/(1 − ρx) ≤ k holds for all x. Consider

a finite x. We have already shown that there exists a constant c such that limx→∞(1 −
ρ(x))/(1 − ρx) ≤ α. Thus, because tµ(t) is continuous and F̄ (t) has unbounded support,

there exists a constant for each x, αx, such that tµ(t) ≤ αx for all t ≥ x. Applying this

bound as ρ → 1:

1− ρ(x)
1− ρx

→
∫∞
x tf(t)dt∫∞
x F̄ (t)dt

=

∫∞
x tµ(t)F̄ (t)dt∫∞

x F̄ (t)dt

≤ αx

∫∞
x F̄ (t)dt∫∞

x F̄ (t)dt
= αx

Finally, we can again notice that xµ(x) is continuous and has a finite limit both as

x → 0 and as x →∞; thus there exists a k < ∞ such that supαx = k, which completes the
proof. 2

4 PSJF

At any given point, the PSJF policy schedules the job in the system that arrived with the
smallest size. This is similar to SRPT in that PSJF biases towards the short jobs, however it
can be viewed as a harsher policy because it does not allow the large jobs to increase their
priority when they become short. Further, PSJF is much simpler to implement than SRPT

since we need only assign priorities to jobs upon arrival; we do not change the priority of a
job as it is worked on. We can write the expected time in system for a job of size x under
this policy as follows

E[T (x)]PSJF =
λ

∫ x
0 t2f(t)dt

2(1− ρ(x))2
+

x

1− ρ(x)

Again, we will call the first term the waiting time, i.e. E[W (x)]PSJF = λ
R x
0 t2f(t)dt

2(1−ρ(x))2
and the

second term will be the residence time i.e. E[R(x)]PSJF = x
1−ρ(x) . Interestingly, although

PSJF is much more unfair to large jobs than SRPT, it is still strictly competitive under all
distributions.
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Theorem 4 For all continuous job size distributions, PSJF is strictly 3-competitive with
respect to SRPT.

Before we prove Theorem 4, we will need a lemma, which bounds the residence time
under PSJF.

Lemma 1 E[R(x)]PSJF − E[R(x)]SRPT ≤ 2E[W (x)]PSJF .

Proof: We consider the quantity E[R(x)]PSJF − E[R(x)]SRPT .

E[R(x)]PSJF − E[R(x)]SRPT =
x

1− ρ(x)
−

∫ x

0

dt

1− ρ(t)

=
∫ x

0

(ρ(x)− ρ(t))dt

(1− ρ(t))(1− ρ(x))

≤
∫ x

0

(ρ(x)− ρ(t))dt

(1− ρ(x))2

=
xρ(x)− ∫ x

0 ρ(t)dt

(1− ρ(x))2

=
xρ(x)− xρ(x) + λ

∫ x
0 t2f(t)dt

(1− ρ(x))2

=
λ

∫ x
0 t2f(t)dt + x2F̄ (x)

(1− ρ(x))2

= 2E[W (x)]PSJF

The third step follows from the first since 1− ρ(x) ≤ 1− ρ(t) for t ≤ x. 2

Proof: (of Theorem 4:) By Lemma 1 we know that E[R(x)]PSJF ≤ E[R(x)]SRPT +

2E[W (x)]PSJF . Now, adding E[W (x)]PSJF to both the sides we get that

E[W (x)]PSJF + E[R(x)]PSJF ≤ E[R(x)]SRPT + 3E[W (x)]PSJF

Finally using the fact that E[W (x)]PSJF ≤ E[W (x)]SRPT , ∀x, we get the following chain

on inequalities

E[T (x)]PSJF = E[W (x)]PSJF + E[R(x)]PSJF

≤ 3E[W (x)]PSJF + E[R(x)]SRPT

≤ 3E[W (x)]SRPT + E[R(x)]SRPT

≤ 3E[W (x)]SRPT + 3E[R(x)]SRPT

= 3E[T (x)]SRPT
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5 Conclusion

We consider a new model for comparing the performance of queueing policies. To summarize
our approach, instead of asking whether one policy is strictly better than the other, we
relax this condition to ask if one policy is no more than some constant times worse than
the other policy. This allows us to compare policies a new way. In particular, it allows us
to compare and bound the performance of a policy that might be inherently disadvantaged
when compared with the optimal policy.

For example, we compared FB (which does not make use of job size while scheduling) to

SRPT, and PSJF (which does not change the priority of a job as it executes) to SRPT. When

comparing FB to SRPT we found that FB is only strictly competitive for a specific class
distributions, which when the density function of the service distribution is non-increasing
reduces to exactly those distributions with regularly varying tails. Thus, the performance
of FB is likely to be good on many practical distributions, such as Pareto distributions.
Surprisingly though, FB is not strictly competitive for any bounded distributions, including
the bounded Pareto. PSJF however, is strictly competitive for all service distributions.
Thus, by not allowing jobs to change priority while in the system, PSJF is only giving up a
constant factor of performance.
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