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Abstract

For many discriminative classifiers, it is desirable to convert an unnormalized confidence score output from the classifier
to a normalized probability estimate. Such a method can also be used for creating better estimates from a probabilistic
classifier that outputs poor estimates. Typical parametric methods have an underlying assumption that the score distribution
for a class is symmetric; we motivate why this assumption is undesirable, especially when the scores are output by a
classifier. Two asymmetric families, an asymmetric generalization of a Gaussian and a Laplace distribution, are presented,
and a method of fitting them in expected linear time is described. Finally, an experimental analysis of parametric fits to the
outputs of two text classifiers, naı̈ve Bayes (which is known to emit poor probabilities) and a linear SVM, is conducted.
The analysis shows that one of these asymmetric families is theoretically attractive (introducing few new parameters while
increasing flexibility), computationally efficient, and empirically preferable.
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1 Introduction

Classifiers that give probability estimates are more flexible
in practice than those that give only a simple classification
or even a ranking. Probability estimates can be used in
a Bayesian risk model (Duda et al., 2001) to make cost-
sensitive decisions (Zadrozny & Elkan, 2001), for combin-
ing decisions (Bourlard & Morgan, 1990), and for active
learning (Lewis & Gale, 1994; Saar-Tsechansky & Provost,
2001). However, a probability estimate must have stronger
constraints than simply falling in the interval

� �������
to be

useful. They must be “good” in some sense.

Calibration formalizes the concept that probabilities
emitted by a classifier adhere to a fixed standard. A classi-
fier is said to be well-calibrated if as the number of predic-
tions goes to infinity the predicted probability goes to the
empirical probability (DeGroot & Fienberg, 1983). Occa-
sionally “calibration” is used loosely in the literature to in-
dicate a method generates good probability estimates (see
Performance Measures below).

Focus on improving probability estimates has been
growing in the machine learning literature. Zadrozny and
Elkan (2001) provide a corrective measure for decision
trees (termed curtailment) and a non-parametric method for
recalibrating naı̈ve Bayes. Our work provides parametric
methods applicable to naı̈ve Bayes which complement the
non-parametric methods they propose when data scarcity is
an issue. In addition, their non-parametric methods reduce
the resolution of the scores output by the classifier, but the
methods here do not have such a weakness since they are
continuous functions.

There is a variety of other work that this paper extends.
Lewis and Gale (1994) use logistic regression to recalibrate
naı̈ve Bayes though the quality of the probability estimates
are not directly evaluated; they are simply used in active
learning. Platt (1999) uses a logistic regression framework
that models noisy class labels to produce probabilities from
the raw output of an SVM. His work showed that this post-
processing method not only can produce probability esti-
mates of similar quality to regularized likelihood kernel
methods, but it also tends to produce sparser kernels. Fi-
nally, Bennett (2000) obtained moderate gains by applying
Platt’s method to the recalibration of naı̈ve Bayes but also
found there were more problematic areas than when this
method was applied to SVMs.

Recalibrating poorly calibrated classifiers is not a new
problem. Lindley et al. (1979) first proposed the idea of
recalibrating classifiers, and DeGroot and Fienberg (1983;
1986) gave the now accepted standard formalization for the
problem of assessing calibration initiated by others (Brier,
1950; Winkler, 1969).

2 Problem Definition & Approach

2.1 Problem Definition

The general problem we are concerned with is highlighted
in figure 1. A classifier produces a prediction about a dat-
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Figure 1: We are concerned with how to perform the box
highlighted in grey. The internals are for one type of ap-
proach.

apoint and gives some score �
	��
 indicating the strength of
its decision that the datapoint belongs to the positive class.
We assume throughout there are only two classes: the pos-
itive and the negative class (’+’ and ’-’ respectively). 1

Since we are concerned with using methods that will
also work acceptably when there is little data, we focus on
parametric methods. There are two general types of para-
metric approaches. The first of these tries to fit the posterior
function directly, i.e. there is one function estimator that
performs a direct mapping of the score � to the probability� 	���� �
	��
� . The second type of approach breaks the prob-
lem down as shown in the grey box of figure 1. An estima-
tor for each of the class-conditional densities (i.e. ��	���� ��
and ��	��
���� ) is produced, then Bayes’ rule and the class pri-
ors are used to obtain the estimate for

� 	���� �
	��
� .

1When the original � classes are mutually exclusive, the binary clas-
sifiers’ predictions must be combined into one final prediction (and the
separate probability estimates must be normalized). In the experiments
below, we deal only with the case when the original � classes are not
mutually exclusive (i.e. an example may belong to more than one class).



2.2 Motivation for Asymmetric Distribu-
tions

Most of the previous parametric approaches to this prob-
lem2 either directly or indirectly (when fitting only the
posterior) correspond to fitting Gaussians to the class-
conditional densities; they differ only in the criterion used
to estimate the parameters. We can visualize this as de-
picted in figure 2. Since increasing � usually indicates
(when the classifier has good accuracy) increased likeli-
hood of belonging to the positive class, then the rightmost
distribution usually corresponds to ��	���� �� .
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Figure 2: Typical View of Class Discrimination based on
Gaussians

However, using standard Gaussians fails to capitalize
on a basic characteristic commonly seen. Namely, if we
have a raw output score that can be used for discrimina-
tion, then the empirical behavior between the modes (la-
bel B in figure 2) is often very different than that outside
of the modes (labels A and C in figure 2). Intuitively, the
area between the modes corresponds to the hard examples,
which are difficult for this raw output score to distinguish,
while the areas outside the modes are the extreme examples
that are usually easily distinguished. This suggests that we
may want to uncouple the scale of the outside and inside
segments of the distribution (as depicted in figure 3).

As a result, an asymmetric distribution may be a more
appropriate choice for application to the raw output score of
a classifier. Note that the asymmetric distributions depicted
in figure 3 are able to place the estimated mode much more
closely to the true mode because it can separately allocate
its outside and inside mass; whereas the symmetric form
shifts the mode toward the long tail of the outside mass.

Ideally (i.e. perfect classification) there will be some
scores

���
and

���
such that all examples with score greater

than
���

are positive and all examples with scores less then���
are negative. Furthermore, no examples fall between

2A notable exception is (Manmatha et al., 2001) which uses a mixture
model.
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Figure 3: Gaussians vs. Asymmetric Gaussians. A Short-
coming of Symmetric Distributions — The vertical lines
show the modes as estimated nonparametrically.

� �
and

� �
. The distance � � � � � � � corresponds to the

margin in some classifiers, and an attempt is often made to
maximize this quantity. Perfect classification corresponds
to using two very asymmetric distributions, but in this case,
the probabilities are actually one and zero and many meth-
ods will work for typical purposes.

Practically, some examples will fall between
���

and���
, and it is often important to estimate the probabilities of

these examples well (since they correspond to the “hard”
examples). Justifications can be given for both why you
may find more and less examples between

� �
and

� �
than

outside of them, but there are few empirical reasons to be-
lieve that the distributions should be symmetric.

A natural first candidate for an asymmetric distribution
is to generalize a common symmetric distribution, e.g. the
Laplace or the Gaussian. An asymmetric Laplace distribu-
tion can be achieved by placing two exponentials around
the mode in the following manner:

��	�� � � �	� �	
 ��
�� �������

�
�
����� � � � 	 � ���  � ��� �

	 � ��
�� � 
����
�
�
����� � � 
 	�� � �  � � � �

(1)

where
�
,
�

, and



are the model parameters.
�

is the mode
of the distribution,

�
is the inverse scale of the exponential

to the left of the mode, and



is the inverse scale of the ex-
ponential to the right of the mode. We will use the notation� 	�� � � � � ��
  to refer to this distribution.

We can create an asymmetric Gaussian in the same



manner:

��	�� � � � ��� � ���  �
��� ���

�� ���
	��� � ����� � � ��� � 	�� ��� ������ ��� � � �
	 ��� � ��� � � �� ���
	��  � � � � � � � � � 	�� ��� ������ �� � � � �

(2)

where
�
, � � , and � � are the model parameters. To refer

to this asymmetric Gaussian, we use the notation � 	�� �� � ��� � ���  .
These distributions allow us to fit our data with much

greater flexibility at the cost of only fitting six parameters.
We could instead try mixture models for each component or
other extensions, but most other extensions require at least
as many parameters (and can often be more computation-
ally expensive). In addition, the motivation above should
provide significant cause to believe the underlying distribu-
tions actually behave in this way. Furthermore, this family
of distributions can still fit a symmetric distribution, and
finally, in the empirical evaluation, evidence is presented
that demonstrates this behavior.

To the author’s knowledge, neither family of distribu-
tions has been previously used in machine learning. Both
are termed generalizations of an Asymmetric Laplace in
(Kotz et al., 2001), but we refer to them as described above
to reflect the nature of how we derived them for this task.

3 Estimating the Parameters of the
Asymmetric Distributions

This section develops the method for finding maximum
likelihood estimates (MLE) of the parameters for the above
asymmetric distributions. In order to find the MLEs, we
have two choices: (1) use numerical estimation to estimate
all three parameters at once (2) fix the value of

�
, and esti-

mate the other two (
�

and



or ��� and ��� ) given our choice
of

�
, then consider alternate values of

�
. Because of the

simplicity of analysis in the latter alternative, we choose
this method.

3.1 Asymmetric Laplace MLEs

For � ��� �� � � � �"!#!"!�� ��$&% where the �(' are i.i.d. and�*) � 	 � � � �	� �	
  , the likelihood is + $' � 	�� � � � � ��
  .
Now, we fix

�
and compute the maximum likelihood for

that choice of
�
. Then, we can simply consider all choices

of
�

and choose the one with the maximum likelihood (or
equivalently the loglikelihood) over all choices of

�
.

The complete derivation of the following solution is

given in appendix A. We define the following values:

, � � �-� �/.0� � � � � % � , � � �
� �/./� ��� � � % �1 � � 2�4345&6 �47 � � 1 � � 2�4345&6 �48 � �9 � � , � � � 1 � 9 � � 1 � � , � � !
Note that

9 � and
9 � are the sum of the absolute differ-

ences between the � belonging to the left and right halves
of the distribution (respectively) and

�
. Finally the MLEs

for
�

and



for a fixed
�

are:

�(:<;�= � ,9 � �?> 9 � 9 � 
�:@;�= � ,9 � �A> 9 � 9 � ! (3)

These estimates are not wholly unexpected since we would
obtain $ B  if we were to estimate

�
independently of



. The

elegance of the formulae is that the estimates will tend to
be symmetric only insofar as the data dictate it (i.e. the
closer

9 � and
9 � are to being equal, the closer the resulting

inverse scales).
By continuity arguments, when

, � �
, we assign

� �
 �DC�E where C�E is a small constant that acts to disperse
the distribution to a uniform. Similarly, when

,GF� �
and9 � � �

, we assign
� �HC�I JLK where C�I J"K is a very large

constant that corresponds to an extremely sharp distribution
(i.e. almost all mass at

�
for that half).

9 � � �
is handled

similarly.
Assuming that

�
falls in some range

� M �ON �
dependent

upon only the observed datapoints, then this alternative is
also easily computable. Given

, � � 1 � � , � � 1 � , we can com-
pute the posterior and the MLEs in constant time. In addi-
tion, if the scores are sorted, then we can perform the whole
process quite efficiently. Starting with the minimum

� � M
we would like to try, we loop through the scores once and
set

, � � 1 � � , � � 1 � appropriately. Then we increase
�

and
just step past the scores that have shifted from the right
side of the distribution to the left. Assuming the number of
candidate

�
s are P�	RQ  , this process is P�	�Q  , and the over-

all process is dominated by sorting the scores, P�	RQTSVU4WXQ 
(or expected linear time). Simple C code implementing this
algorithm is given in appendix B.

There is no need to let
� �

be less than
� �

for this prob-
lem. Enforcing this makes estimating the parameters for
both distributions expected time P�	 , � , �  . When en-
forcing this, one can easily make the additional constraint
that if there are ties (generally unlikely), prefer the estimate
with higher value for

��� � ���
. However, enforcing these

constraints is rarely needed in practice (since classifiers are
attempting to separate the data); in addition, it is usually
preferable to represent the fact that the classifier score is
reversed (i.e. lower scores tend to mean membership in
positive class).



3.2 Asymmetric Gaussian MLEs

For � � � �  � � � �"!"!#!�� �($ % where the �(' are i.i.d. and � )� 	�� � � � ��� � ���  , the likelihood is + $' � 	�� � � � � ��
  . The
MLEs can be worked out similar to the above.

We assume the same definitions as above (the complete
derivation is given in appendix C), and in addition, let:1 � � � 2� 345@6 � 7 � � � 1 � � � 2� 345@6 � 8 � � �9 � � � 1 � � � 1 � � � � � , � 9 � � � 1 � � � 1 � � � � � , � !

The analytical solution for the maximum likelihood es-
timates for a fixed

�
is:

��� � :<;�= �
� 9 � � � 9 ������ � 9  ���� �, (4)

��� � :<;�= �
� 9 � � � 9 ������ � 9  ���� �, !

(5)

By continuity arguments, when
, � �

, we assign � � �� � � C�I JLK , and when
, F� �

and
9 � � � �

(resp.
9 � � � �

),
we assign � � � C�E (resp. � � � C�E ).

Again, the same computational complexity analysis ap-
plies to estimating these parameters. Appendix D gives C
code implementing this algorithm.

4 Experimental Analysis

4.1 Methods

For each of the methods that use a class prior, we use a
smoothed add-one estimate, i.e.

� 	��  � 6 	 6 �  $ � � where N
is the number of datapoints. For methods that fit the class-
conditional densities, ��	���� �� and ��	���� �� , the resulting den-
sities are inverted using Bayes’ rule as described above.

For recalibrating a classifier (i.e. correcting poor prob-
ability estimates output by the classifier), it is usual to use
the log-odds of the classifier’s estimate as �
	 �� . The log-
odds are defined to be SVU4W�
 	 � 6 � �
 	 � 6 � � . The normal decision
threshold (minimizing error) in terms of log-odds is at zero
(i.e.

� 	���� �� � � 	 � � �� � ��! 
).

As discussed in (Lindley et al., 1979), the log-odds is
useful since it scales the outputs to a space

� ��� � � �
where

normal (and similar distributions) are applicable. Lewis
and Gale (1994) give a more motivating viewpoint that we
can see fitting the log-odds as a dampening effect (correct-
ing for the inaccurate independence assumption) and a bias
correction (for possibly inaccurate estimates for the priors).
We note that in general fitting the log-odds can serve to
boost or dampen the signal from the original classifier as
the data dictate.

4.1.1 Gaussians

A Gaussian is fit to each of the class-conditional densi-
ties, using the usual maximum likelihood estimates. This
method is denoted in the tables below as Gauss.

4.1.2 Asymmetric Gaussians

An asymmetric Gaussian is fit to each of the class-
conditional densities using the maximum likelihood esti-
mation procedure described above. Intervals between ad-
jacent scores are divided by 10 in testing candidate

�
s, i.e.

8 points between actual scores occurring in the data set are
tested. This method is denoted as A. Gauss below.

4.1.3 Laplace Distributions

Even though Laplace distributions are not typically applied
to this task, we also tried this method to isolate why ben-
efit is gained from the asymmetric form. The usual MLEs
were used for estimating the location and scale of a clas-
sical symmetric Laplace distribution as described in Kotz
et al. (2001). We denote this method as Laplace below.

4.1.4 Asymmetric Laplace Distributions

An asymmetric Laplace is fit to each of the class-
conditional densities using the maximum likelihood esti-
mation procedure described above. As with the asymmet-
ric Gaussian, intervals between adjacent scores are divided
by 10 in testing candidate

�
s. This method is denoted as

A. Laplace below.

4.1.5 Logistic Regression

This method is the first of two methods we evaluated that
directly fit the posterior,

� 	���� �
	 ��  . Both methods restrict
the set of families to a two-parameter sigmoid family; they
differ primarily in their model of class labels. As opposed
to the above methods, one can argue that an additional boon
of these methods is they completely preserve the ranking
given by the classifier. When this is desired, these meth-
ods may be more appropriate. The previous methods will
mostly preserve the rankings, but they can deviate if the
data dictate it. Thus, they may model the data behavior bet-
ter at the cost of departing from a monotonicity constraint
in the output of the classifier.

Lewis and Gale (1994) use logistic regression to recal-
ibrate naı̈ve Bayes for subsequent use in active learning.
The model they use is:

� 	���� �
	 ��  � � � � 	�� ��� �
	 �� � � ����� 	������ �
	��
� ! (6)

Instead of using the probabilities directly output by the
classifier, they use the loglikelihood ratio of the probabil-
ities, SVU4W�
 	���6 � �
 	���6 � � , as the score �
	 �� . Instead of using this



below, we will use the log-odds ratio. This does not effect
the model as it simply shifts all of the scores by a constant
determined by the priors.

We refer to this method as LogReg below.

4.1.6 Logistic Regression with Noisy Class Labels

Platt (1999) proposes a framework that extends the logistic
regression model above to incorporate noisy class labels
and uses it to produce probability estimates from the raw
output of an SVM classifier.

This model differs from the LogReg model only in how
the parameters are estimated. The parameters are still fit us-
ing maximum likelihood estimation, but a model of noisy
class labels is used in addition to allow for the possibil-
ity that the class was mislabeled. The noise is modeled by
assuming there is a finite probability of mislabeling a posi-
tive example and of mislabeling a negative example; these
two noise estimates are determined by the number of posi-
tive examples and the number of negative examples (using
Bayes’ rule to infer the probability of incorrect label).

Even though the performance of this model would not
be expected to deviate much from LogReg, we evaluate
it for completeness. We refer to this method below as
LR+Noise.

4.2 Data

We examined the above methods on several “real world”
text corpora, including the MSN Web Directory, Reuters,
and TREC-AP data sets. Since the categories under con-
sideration in the experiments are not mutually exclusive,
the classification was done by training Q binary classifiers,
where Q is the number of classes.

4.2.1 MSN Web Directory

The MSN Web Directory is a large collection of hetero-
geneous web pages (from a May 1999 web snapshot) that
have been hierarchically classified. We used the same
train/test split of 50078/10024 documents as that reported
in Dumais and Chen (2000).

The MSN Web hierarchy is a 7-level hierarchy, but we
have restricted our analysis to the 13 top-level categories.
The class proportions in the training set vary from

�4! � ��
to ���

!
���

�
. In the testing set, they range from

� ! �����
to

�
�4! 	�
�

. The classes are general subject categories such as
Health & Fitness and Travel & Vacation. Human indexers
assign the documents to zero or more categories. There are
approximately 130K binary decisions made over the test
documents (i.e. 13 classes times 10024 test documents).

For the experiments below, only the top 1000 words
with highest mutual information for each class were used
(Duda et al., 2001); approximately 195K words appear in

at least 3 training documents (those occurring in less than
3 were removed).

4.2.2 Reuters

The Reuters 21578 corpus (Lewis, 1997) contains Reuters
news articles from 1987. For this data set, we used the
ModApte standard train/test split of 9603/3299 documents
(8676 unused documents). The classes are economic sub-
jects (e.g., “acq” for acquisitions, “earn” for earnings, etc.)
that human indexers decided applied to the document; a
document may have multiple subjects. There are actually
135 classes in this domain (only 90 of which occur in the
training and testing set); however, we only examined the
10 most frequent classes (similar to (Dumais et al., 1998;
Joachims, 1998; McCallum & Nigam, 1998; Platt, 1999))
as we believed we had a significant enough variation of
class frequency over all the corpora used.3

The class proportions in the training set vary from� ! �����
to ���

!
��

�
. In the testing set, they range from

�4!����
to ���

!
�
��

. There are approximately 33K binary decisions
to be made over the test set.

For the experiments below we used only the top 300
words with highest mutual information for each class; ap-
proximately 15K words appear in at least 3 training docu-
ments.

4.2.3 TREC-AP

The TREC-AP corpus is a collection of AP news stories
from 1988 to 1990. We used the same train/test split of
142791/ 66992 documents that was used in (Lewis et al.,
1996). As described in (Lewis & Gale, 1994) (see also
(Lewis, 1995)), the categories are defined by keywords in
a keyword field. The title and body fields are used in the
experiments below.

The frequencies of the 20 classes are the same as those
reported in (Lewis et al., 1996). The class proportions in
the training set vary from

��! �

�

to �
! �
�
�

. In the testing
set, they range from

��! �
�
�

to
��!
���

�
. There are approxi-

mately 1.3M binary decisions to be made over the test set.
For the experiments described below, we use only the

top 1000 words with the highest mutual information for
each class; approximately 123K words appear in at least
3 training documents.

4.3 Classifiers

We selected two classifiers for evaluation. A linear SVM
classifier which is a discriminative classifier that does not

3A separate comparison over all 90 categories in a slightly non-
standard version of Reuters (Yang & Liu, 1999) was conducted that com-
pared LogReg, LR+Noise, and A. Laplace. That evaluation also supported
the claims made here.



normally output probability values, and a naı̈ve Bayes clas-
sifier whose probability outputs are typically poor (Bennett,
2000; Domingos & Pazzani, 1996) but can be improved
(Bennett, 2000; Zadrozny & Elkan, 2001).

4.3.1 SVM

For linear SVMs, we use the Smox toolkit which is based on
Platt’s Sequential Minimal Optimization algorithm. The
features were represented as continuous values. We used
the raw output score of the SVM as � 	��
 since it has been
shown to be appropriate before (Platt, 1999). The normal
decision threshold (assuming we are seeking to minimize
errors) for this classifier is at zero.

4.3.2 Naı̈ve Bayes

The naı̈ve Bayes classifier model is a multinomial model
(McCallum & Nigam, 1998). We smoothed word and
class probabilities using a Bayesian estimate (with the word
prior) and a Laplace m-estimate, respectively. We use the
log-odds estimated by the classifier as �
	 �� . The normal
decision threshold is at zero.

4.4 Performance Measures

We use log-loss (Good, 1952) and squared error (Brier,
1950; DeGroot & Fienberg, 1986) to evaluate the quality
of the probability estimates. DeGroot and Fienberg (1983)
show how these two scoring rules can be broken down into
a sum of two terms — one corresponding to calibration (as
defined above) and another to refinement. It is beyond the
scope of this article to delve into these issues, but these
scoring rules have been typically used to assess the quality
of probability estimates without breaking down the score
into its component parts. In the literature achieving a better
score according to these rules has sometimes been loosely
termed improving “calibration” but actually meaning the
overall quality was improved (via improving one or both of
the components).

For a datum � with class � 	 �� . � � � � % (i.e. the data
have known labels and not probability values), log-loss is
defined as

� 	 � 	 �� � ��
S�U W � 	���� �� � � 	�� 	��
 � ��
SVU4W � 	 � � �

where

�
is the Kronecker delta function. The squared error

is
� 	�� 	��
 � ���	 � � � 	���� �
� � � � 	�� 	��
 � �� 	 � � � 	 � � ��  � .

We report the sum of these measures as well as their
averages, average log-loss and mean squared error (MSE).

In addition, we also compare the error rate of the clas-
sifiers at their default thresholds and with the probabilities.
This gives an idea of how the probability estimates have
improved with respect to the decision threshold

� 	���� �� ���! 
.4

4We note that this measure should not be used alone when judging
the quality of a probability distribution since this measure only indicates
whether the estimates tend to the correct side of ������� �
	����� � .

We use a a standard paired sign-test (Yang & Liu, 1999)
to determine statistical significance in the difference of all
measures. Only pairs that the methods disagree on are used
in the sign test. This test compares pairs of scores from
two systems with the null hypothesis that the number of
items they disagree on are binomially distributed (i.e. each
system does better about half the time they disagree). We
use a significance level of � � ��! ���

.

4.5 Experimental Methodology

In order to generate the scores that each method uses to fit
its probability estimates, we use five-fold cross-validation
on the training data. We note that even though it is
computationally efficient to perform leave-one-out cross-
validation for the naı̈ve Bayes classifier, this may not be
desirable in all cases since the distribution of scores can be
biased as a result (i.e. the class-conditional densities might
show a larger separation than would be expected in held-out
data). Of course, as with any application of Q -fold cross-
validation, it is also possible to bias the results by holdingQ too low and underestimating the performance of the final
classifier.

4.6 Results

The results for recalibrating naı̈ve Bayes are given on the
left of tables 1 and 2. For producing probabilistic outputs
for SVMs, the results are given on the right of tables 1 and
2.

We can break things down as the sign test does and just
look at wins and losses on the items that the methods dis-
agree on. Looked at in this way only two methods (naı̈ve
Bayes and A. Gauss) ever have more pairwise wins than
A. Laplace; those two sometimes have more pairwise wins
on log-loss and squared error even though the total never
wins (i.e. they are dragged down by heavy penalties). The
reasons for this behavior is discussed below.

In addition, this comparison of pairwise wins means
that for those cases where LogReg and LR+Noise have bet-
ter scores than A. Laplace, it would not be deemed sig-
nificant by the sign test at any level since they do not have
more wins. For example, of the 130K binary decisions over
the MSN Web dataset, A. Laplace had approximately 101K
pairwise wins versus LogReg and LR+Noise.

No method ever has more pairwise wins than
A. Laplace for the error rate comparison nor does any
method every achieve a better total number.

In order to give the reader a better sense of the be-
havior of these methods, figures 4-12 show the fits pro-
duced by these methods versus the actual data behavior
(as estimated nonparametrically using a fixed width ker-
nel) for class Earn in Reuters. Figures 4-6 show the class-
conditional densities. Figures 7-9 show the estimations of



Table 1: Results for naı̈ve Bayes (left) and SVM (right). The best entry for a corpus is in bold. Entries that are statistically
significantly better than all other entries are underlined. A

�
denotes the method is significantly better than all other methods

except for naı̈ve Bayes. A � denotes the entry is significantly better than all other methods except for A. Gauss (and naı̈ve
Bayes for the table on the left).

Log-loss Error
�

Errors
MSN Web
Gauss -60656.41 10503.30 10754
A.Gauss -57262.26 8727.47 9675
Laplace -45363.84 8617.59 10927
A.Laplace -36765.88 6407.84 � 8350
LogReg -36470.99 6525.47 8540
LR+Noise -36468.18 6534.61 8563
naı̈ve Bayes -1098900.83 17117.50 17834
Reuters
Gauss -5523.14 1124.17 1654
A.Gauss -4929.12 652.67 888
Laplace -5677.68 1157.33 1416
A.Laplace -3106.95 � 554.37 � 726
LogReg -3375.63 603.20 786
LR+Noise -3374.15 604.80 785
naı̈ve Bayes -52184.52 1969.41 2121
TREC-AP
Gauss -57872.57 8431.89 9705
A.Gauss -66009.43 7826.99 8865
Laplace -61548.42 9571.29 11442
A.Laplace -48711.55 7251.87 � 8642
LogReg -48250.81 7540.60 8797
LR+Noise -48251.51 7544.84 8801
naı̈ve Bayes -1903487.10 41770.21 43661

Log-loss Error
�

Errors
MSN Web
Gauss -54463.32 9090.57 10555
A. Gauss -44363.70 6907.79 8375
Laplace -42429.25 7669.75 10201
A. Laplace -31133.83 5003.32 6170
LogReg -30209.36 5158.74 6480
LR+Noise -30294.01 5209.80 6551
Linear SVM N/A N/A 6602
Reuters
Gauss -3955.33 589.25 735
A. Gauss -4580.46 428.21 532
Laplace -3569.36 640.19 770
A. Laplace -2599.28 412.75 505
LogReg -2575.85 407.48 509
LR+Noise -2567.68 408.82 516
Linear SVM N/A N/A 516
TREC-AP
Gauss -54620.94 6525.71 7321
A. Gauss -77729.49 6062.64 6639
Laplace -54543.19 7508.37 9033
A. Laplace -48414.39 5761.25 � 6572 �
LogReg -48285.56 5914.04 6791
LR+Noise -48214.96 5919.25 6794
Linear SVM N/A N/A 6718

the posterior, (i.e.
� 	����	��
 � �
	 ��  ). Figures 10-12 show the

estimations of the log-odds, (i.e. log 
 	��������6 ��	�� ���
 	�����������6 ��	 � ��� ). The
differences between LogReg and LR+Noise were not visi-
ble to the eye in these graphs; thus only one line is shown
for both. In order to help the reader quantify the differences
in these fits, we present a detailed breakdown of log-loss
and squared error for class Earn in tables 3 and 4.

4.7 Discussion

We start by noting several points of interest observable in
figures 4-11 and then move on to more general observa-
tions. First, the training and test distributions in figure 4
are clearly different. The training distribution in both cases
(for recalibrating naı̈ve Bayes and producing probabilistic
outputs for SVMs) is harder to separate than the test dis-
tribution. There are two primary reasons why this might
be the case. The first is that Reuters is a time sequence
of news stories, and the train/test split is a split at one
point in time. Therefore, the actual distribution might drift.

The second possible explanation is that using 5-fold cross-
validation might be underestimating the performance of the
final classifier. While few details are observable in figures
7-9, it should give the reader a general sense of the behav-
ior of the posterior of these functions. Finally, in figure 11,
one potential benefit of the A. Laplace method over LogReg
and LR+Noise is demonstrated. Logistic regression corre-
sponds to a line in this space (thus the name), but this can
overconstrain it at times. Whereas, A. Laplace corresponds
to a piecewise linear function of three line segments (the
hinges occur at the modes of the class-conditional densi-
ties). This allows A. Laplace to find a better fit in these
cases.

Several more general observations come from examin-
ing the performance of these methods over the various cor-
pora. The first is that A. Laplace, LR+Noise, and LogReg,
quite clearly outperform the other methods. There is usu-
ally little difference between the performance of LR+Noise
and LogReg (both as shown here and on a decision by de-
cision basis), but this is unsurprising since LR+Noise just



Table 2: Averages for calibrating naı̈ve Bayes (left) and SVM (right). The best entry for a corpus is in bold. Entries that
are statistically significantly better than all other entries are underlined. A

�
denotes the method is significantly better than

all other methods except for naı̈ve Bayes. A � denotes the entry is significantly better than all other methods except for
A. Gauss (and naı̈ve Bayes for the table on the left).

Avg LL MSE Error
MSN Web
Gauss -0.4655 0.0806 0.0825
A.Gauss -0.4394 0.0670 0.0742
Laplace -0.3481 0.0661 0.0839
A.Laplace -0.2821 0.0492 � 0.0641
LogReg -0.2799 0.0501 0.0655
LR+Noise -0.2799 0.0501 0.0657
naı̈ve Bayes -8.4328 0.1314 0.1369
Reuters
Gauss -0.1674 0.0341 0.0501
A. Gauss -0.1494 0.0198 0.0269
Laplace -0.1721 0.0351 0.0429
A. Laplace -0.0942 � 0.0168 � 0.0220
LogReg -0.1023 0.0183 0.0238
LR+Noise -0.1023 0.0183 0.0238
naı̈ve Bayes -1.5818 0.0597 0.0643
TREC-AP
Gauss -0.0432 0.0063 0.0072
A. Gauss -0.0493 0.0058 0.0066
Laplace -0.0459 0.0071 0.0085
A. Laplace -0.0364 0.0054 � 0.0065
LogReg -0.0360 0.0056 0.0066
LR+Noise -0.0360 0.0056 0.0066
naı̈ve Bayes -1.4207 0.0312 0.0326

Avg LL MSE Error
MSN Web
Gauss -0.4179 0.0698 0.0810
A. Gauss -0.3404 0.0530 0.0643
Laplace -0.3256 0.0589 0.0783
A. Laplace -0.2389 0.0384 0.0473
LogReg -0.2318 0.0396 0.0497
LR+Noise -0.2325 0.0400 0.0503
Linear SVM N/A N/A 0.0507
Reuters
Gauss -0.1199 0.0179 0.0223
A. Gauss -0.1388 0.0130 0.0161
Laplace -0.1082 0.0194 0.0233
A. Laplace -0.0788 0.0125 0.0153
LogReg -0.0781 0.0124 0.0154
LR+Noise -0.0778 0.0124 0.0156
Linear SVM N/A N/A 0.0156
TREC-AP
Gauss -0.0408 0.0049 0.0055
A. Gauss -0.0580 0.0045 0.0050
Laplace -0.0407 0.0056 0.0067
A. Laplace -0.0361 0.0043 � 0.0049 �
LogReg -0.0360 0.0044 0.0051
LR+Noise -0.0360 0.0044 0.0051
Linear SVM N/A N/A 0.0050

adds noisy class labels to the LogReg model. With respect
to the three different measures, LR+Noise and LogReg tend
to perform slightly better (but never significantly) at some
tasks with respect to log-loss and squared error. However,
A. Laplace always produces the least number of errors for
all of the tasks, though at times the degree of improvement
is not significant.

The basic observation made about naı̈ve Bayes in pre-
vious work is that it tends to produce estimates very close
to zero and one (Bennett, 2000; Lewis & Gale, 1994). This
means if it tends to be right enough of the time, it will pro-
duce results that do not appear significant in a sign test that
ignores size of difference (as the one here). The totals of
the squared error and log-loss bear out the previous obser-
vation that “when it’s wrong it’s really wrong”.

There are several interesting points about the perfor-
mance of the asymmetric distributions as well. First,
A. Gauss performs poorly because (similar to naı̈ve Bayes)
there are some examples where it is penalized a large
amount. This behavior results from a general tendency

to perform like the picture shown in figure 3 (note the
crossover at the tails). While the asymmetric Gaussian
tends to place the mode much more accurately than a sym-
metric Gaussian, its asymmetric flexibility combined with
its distance function causes it to distribute too much mass to
the outside tails while failing to fit around the mode accu-
rately enough to compensate. Figure 3 is actually a result of
fitting the two distributions to real data (an excerpt of figure
5). As a result, at the tails there can be a large discrepancy
between the likelihood of belonging to each class. Thus
when there are no outliers the A. Gauss can perform quite
competitively, but when there is an outlier the A. Gauss can
be penalized quite heavily for it. There are enough such
cases overall that it seems clearly inferior to the top three
methods.

However, the asymmetric Laplace places much more
emphasis around the mode because of the different distance
function (think of the “sharp peak” of an exponential). As
a result most of the mass stays centered around the modes,
while the asymmetric parameters still allow more flexibility
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Figure 4: Nonparametric estimation (using a fixed width kernel, i.e. data centered bin) of class conditional score densities
in the training and the test set for class Earn in Reuters. The positive class (i.e. Earn) is the distribution on the right in each
graph, and the negative class (i.e. � Earn) is that on the left in each graph.

Table 3: Detailed results from one binary classification task for recalibrating naı̈ve Bayes. The task is discrimination of
class Earn in the Reuters corpus.

Over Training Over Testing
Error

�
MSE Error

�
MSE

Gauss 686.45 0.0715 143.57 0.0435
A. Gauss 392.14 0.0408 78.05 0.0237
Laplace 835.05 0.0870 223.98 0.0679
A. Laplace 378.26 0.0394 70.93 0.0215
LogReg 433.44 0.0451 91.36 0.0277
LR+Noise 434.30 0.0452 91.55 0.0278

Over Training Over Testing
Log-loss Avg LL Log-loss Avg LL

Gauss -3501.49 -0.3636 -862.07 -0.2613
A. Gauss -2361.48 -0.2459 -747.71 -0.2266
Laplace -4259.04 -0.4435 -1261.26 -0.3823
A. Laplace -2176.02 -0.2266 -492.50 -0.1493
LogReg -2684.12 -0.2795 -595.72 -0.1806
LR+Noise -2684.17 -0.2795 -596.39 -0.1808

than the standard Laplace in fitting the data.

We could extend the significance tests here with a
Wilcox signed rank test (which is an extension of the sign
test to consider size of win as well by ranking the abso-
lute differences) (DeGroot, 1989). Though the expectation
is that this would change few of the comparisons except
those against naı̈ve Bayes (since all of the methods post
very large pairwise wins against it).

Finally, we can make a few observations about the use-
fulness of the various performance metrics. First, log-loss
only awards a finite amount of credit as the degree to which
something is correct improves (i.e. there are diminishing
returns as it approaches zero), but it can infinitely penal-
ize for a wrong estimate. Thus, it is possible for one out-
lier to skew the totals, but misclassifying this example may
not matter for any but a handful of actual utility functions
(ones with extremely high skew) used in practice. Secondly,
squared error has a weakness in the other direction. That is,
its penalty and reward are bounded in

� � � ���
, but if the num-

ber of errors are small enough, it is possible for a method
to appear better when it is producing what we generally
consider unuseful probability estimates. For example, con-
sider a method that only estimates probabilities as zero or
one (which naı̈ve Bayes tends to but doesn’t quite reach if
you use smoothing). This method could win according to
squared error, but with just one error it would never per-
form better on log-loss than any method that assigns some
non-zero probability to each outcome. For these reasons,
we recommend that neither of these are used in isolation as
they each give slightly different insights to the quality of
the estimates produced. These observations are straightfor-
ward from the metric definitions but are underscored by the
evaluation.

5 Future Work

A promising extension to the work presented here is a hy-
brid distribution of a Gaussian (on the outside slopes) and
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Figure 5: Estimated class conditional score densities of various methods versus the nonparametric density of the training
data for class Earn in Reuters.
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Figure 6: Estimated class conditional score densities of various methods versus the nonparametric density of the testing
data for class Earn in Reuters.

exponentials (on the inner slopes). From the empirical ev-
idence presented in (Platt, 1999), the expectation is that
such a distribution might allow more emphasis of the prob-
ability mass around the modes (as with the exponential)
while still providing more accurate estimates toward the
tails. Comparing it to a mixture model, such as that used in
(Manmatha et al., 2001) for combining search engine out-
put, may also provide useful insights.

Finally, extending these methods to the outputs of other
discriminative classifiers is an open area. We are currently
evaluating the appropriateness of these methods for the out-
put of a voted perceptron (Freund & Schapire, 1999). By
analogy to the log-odds, the operative score that appears

promising is S�U W weight perceptrons voting
�

weight perceptrons voting
� .

6 Summary and Conclusions

We have reviewed a wide variety of parametric methods
for producing probability estimates from the raw scores of
a discriminative classifier and for recalibrating an uncali-
brated probabilistic classifier. In addition, we have intro-
duced two new families that attempt to capitalize on the
asymmetric behavior that tends to arise from learning a dis-
crimination function. We have given an efficient way to
estimate the parameters of these distributions.

While these distributions attempt to strike a balance be-
tween the generalization power of parametric distributions
and the flexibility that the added asymmetric parameters
give, the asymmetric Gaussian appears to have too great
of an emphasis away from the modes. In striking con-
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Figure 7: Nonparametric estimation of posterior (using Bayes’ rule to invert densities in figure 4) in the training and the
test set for class Earn in Reuters.
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Figure 8: Estimated posteriors of various methods versus the nonparametric estimation of the posterior of the training data
for class Earn in Reuters.

trast, the asymmetric Laplace distribution appears to be
preferable over several large text domains and a variety of
performance measures to the primary competing paramet-
ric methods, though comparable performance is sometimes
achieved with one of two varieties of logistic regression.
Given the ease of estimating the parameters of this distri-
bution, it is a good first choice for producing quality prob-
ability estimates.
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Figure 9: Estimated posteriors of various methods versus the nonparametric estimation of the posterior of the testing data
for class Earn in Reuters.
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Figure 10: Nonparametric estimation of log-odds in the training and the test set for class Earn in Reuters.
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Figure 11: Estimated log-odds of various methods versus the nonparametric estimation of the log-odds of the training data
for class Earn in Reuters.
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Figure 12: Estimated log-odds of various methods versus the nonparametric estimation of the log-odds of the testing data
for class Earn in Reuters.

Table 4: Detailed results from one binary classification task for producing probabilistic outputs for an SVM. The task is
discrimination of class Earn in the Reuters corpus.

Over Training Over Testing
Error

�
MSE Error

�
MSE

Gauss 231.42 0.0241 52.82 0.0160
A. Gauss 165.27 0.0172 37.76 0.0114
Laplace 405.15 0.0422 108.95 0.0330
A. Laplace 164.72 0.0172 37.59 0.0114
LogReg 165.41 0.0172 38.61 0.0117
LR+Noise 165.66 0.0173 38.71 0.0117

Over Training Over Testing
Log-loss Avg LL Log-loss Avg LL

Gauss -1462.49 -0.1523 -384.73 -0.1166
A. Gauss -1195.92 -0.1245 -393.64 -0.1193
Laplace -2368.40 -0.2466 -717.30 -0.2174
A. Laplace -1015.49 -0.1057 -268.56 -0.0814
LogReg -1034.93 -0.1078 -292.21 -0.0886
LR+Noise -1035.07 -0.1078 -292.06 -0.0885



Appendix A: Derivation of MLEs for Asymmetric Laplace Distribution

For � � � �  � � � �#!"!"! � � $ % where the � ' are i.i.d. and � ) � 	�� � � � � ��
  , the likelihood is:$�
' � 	�� � � �	� ��
  ! (7)

We desire to find the maximum likelihood estimates for
� �	


and
�
. To do so, we fix

�
and compute the maximum

likelihood for that choice of
�
. Then, we can simply consider all choices of

�
and choose the one with the maximum

likelihood (or equivalently the loglikelihood) over all choices of
�
.

The loglikelihood we must compute then is:

SVU4W $�'��  � 	 ��' � � �	� �	
  � $2 '��  S�U W � 	���' � � �	� ��
  (8)

� 2�4345&6 �47 � SVU4W � 	�� ' � � �	� �	
  � 2� 345@6 � 8 � SVU4W � 	�� ' � � � � ��
  (9)

� 2�4345&6 �47 �
� SVU4W � 
� � 
 � � 	 � ��� �� � 2� 345<6 �48 �

� SVU4W � 
� � 
 � 
 	 � � � �� (10)

� , S�U W � 
� � 
 � 2�4345&6 �47 � � � � 	 � ���  � � 2�4345&6 �48 � � � 
 	�� � �  � (11)

� ��� , � � �-� �/.�� � � � � % � � , � � �-� �/.�� � � � � % � � 1 � � 2�4345&6 �47 � � � 1 � � 2� 345@6 � 8 � �
� , S�U W � 
� � 
 � , � � � � � 1 � � , � 
 � � 
 1 � (12)� ��� 9 � � , � � � 1 � � 9 � � 1 � � , � �� , S�U W � 
� � 
 � � 9 � � 
 9 � (13)

The partial derivatives are: 	 �	 � � $ ��
	
�
�
�
� � 9 � and 	 �	 � � $ ��

	
�
�
�
� � 9 � . We can set the derivatives to zero and solve

them analytically to find for a fixed
�
:�(:<;�= � ,9 � �?> 9 � 9 � 
�:<;�= � ,9 � �?> 9 � 9 � ! (14)

We then can iterate through alternate choices for
�
.

For comparison of the symmetry of this solution to the asymmetric Gaussian, we give the scale parameters (i.e. inverses
of

�
and



) as follows:

� �  :<;�= � 9  ����,  ����
 9  ���� � 9  ����,  ��� 
 �  :<;�= � 9  �O��,  ����
 9  ���� � 9  ����,  ��� !
(15)

The second part of each equation is equal to 	 � �  :<;�= � 
 �  :<;�=   ��� .



Appendix B: C code for MLE of Asymmetric Laplace

This code is also currently available at http://www.cs.cmu.edu/˜pbennett/asymmetric/aLaplace.c .

/* For the data given in scores,
finds the maximum likelihood set of parameters for
an asymmetric Laplace family

p(x | THETA, BETA, GAMMA) =
if (x <= THETA) then

(BETA * GAMMA)/(BETA + GAMMA) exp[- BETA (THETA - X) ]
else

(BETA * GAMMA)/(BETA + GAMMA) exp[- GAMMA (X - THETA) ]

candidate thetas are restricted to the range [min,max]
*/
void find_aLaplace_parameters(double * scores, /* vector of scores - assumed to

be sorted least to greatest */
long int N, /* number of scores */
double min, /* min mode to try */
double max, /* max mode to try */
double defaultm, /* default mode if N == 0 */
int num_interval_slices, /* breaks scores[i] and

scores[i + 1] into
this many pieces to
try as candidate
modes */

/* next three are return values of distribution */
double * final_theta,
double * final_beta,
double * final_gamma) {

double max_ln_posterior, ln_posterior;
double max_init = 0;
double prev_score_theta = min;
double theta = prev_score_theta, beta, gamma;
long int num_left = 0, num_right = N;
double sum_left = 0, sum_right = 0;
double diff_left, diff_right;
int done = 0, slice_num = 0;
long int i;

if (N == 0) {
/* no scores */
*final_theta = defaultm;
*final_beta = EPSILON_ZERO;
*final_gamma = EPSILON_ZERO;
return;

}

/* loop through and get the sum of all scores */
for (i = 0; i < N; i++) {
sum_right += scores[i];

}



i = 0;
do {
/* update sufficent statistics */
while ((i < N) && (scores[i] <= theta)) {

/* move this example from the right of threshold to the left */
num_left++;
num_right--;
sum_left += scores[i];
sum_right -= scores[i];
i++;

}
diff_left = num_left * theta - sum_left;
diff_right = sum_right - num_right * theta;

/* compute beta */
if (diff_left == 0) {

/* default value for beta */
beta = EPSILON_INF;

}
else {

/* compute closed MLE for beta */
beta = N / (diff_left + sqrt(diff_left) * sqrt(diff_right));

}

/* compute gamma */
if (diff_right == 0) {

/* default value for gamma */
gamma = EPSILON_INF;

}
else {

/* compute closed MLE for gamma */
gamma = N / (diff_right + sqrt(diff_left) * sqrt(diff_right));

}

/* compute log posterior */
ln_posterior = (N * (log(beta * gamma) - log(beta + gamma))

- beta * diff_left - gamma * diff_right);

/* update set of best parameters */
if (max_init) {

if (ln_posterior > max_ln_posterior) {
*final_theta = theta;
*final_beta = beta;
*final_gamma = gamma;
max_ln_posterior = ln_posterior;

}
}
else {

*final_theta = theta;
*final_beta = beta;
*final_gamma = gamma;
max_ln_posterior = ln_posterior;
max_init = 1;



}

/* get new choice for theta */
if (theta == max) {

/* already tried max so we’re done */
done = 1;

}
else {

double next = max;
if (i != N)

next = scores[i];
slice_num++;
if ((slice_num % num_interval_slices) == 0) {

prev_score_theta = next;
theta = prev_score_theta;
slice_num = 0;

}
else {

theta = slice_num * ((next - prev_score_theta) /
num_interval_slices) + prev_score_theta;

}
/* check if that’s the bound */
if (theta > max)

done = 1;
}

} while (!done);
}



Appendix C: Derivation of MLEs for Asymmetric Gaussian Distribution

For � � � �  � � � �#!"!"! � � $ % where the � ' are i.i.d. and � ) � 	 � � � � � � � � �  , the likelihood is:$�
'��  � 	���' � � � ��� � ���  (16)

We desire to find the maximum likelihood estimates for � � � � � and
�
. To do so, we fix

�
and compute the maximum

likelihood for that choice of
�
. Then, we can simply consider all choices of

�
and choose the one with the maximum

likelihood (or equivalently the loglikelihood) over all choices of
�
.

The loglikelihood we must compute then is:

S�U W $�'��  � 	��(' � � � ��� � ���  � $2 '��  S�U W � 	 ��' � � � ��� � ���  (17)

� 2�4345&6 �47 � SVU4WX� 	�� ' � � � � � � � �  � 2�4345&6 �48 � S�U W � 	 � ' � � � � � � � �  (18)

� 2� 345@6 � 7 �
� S�U W �> � � 	 � � � � �  � 	�� � �  �

� � �� � � 2� 345@6 � 8 �
� S�U W �> � � 	 � � � � �  � 	�� � �  �

� � �� � (19)

� , SVU4W �> � � 	 ��� � ���  �
�

� � �� 2�4345&6 �47 � 	 � � �  � � �
� � �� 2� 345@6 � 8 � 	 � � �  � (20)

� � � , � � �-� �/./� � � � � % � � , � � �-� ��./� ��� � � % � � 1 � � 2� 345@6 � 7 � � � 1 � � 2�4345&6 �48 � � �1 � � � 2� 345@6 � 7 � � � ������� 1 � � � 2� 345@6 � 8 � � � !
� , SVU4W �> � � 	 � � � � �  �

�
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� � �� � 1 � � � 1 � � � , � � �	� (21)� � � 9 � � � 1 � � � 1 � � � � � , � � 9 � � � 1 � � � 1 � � � � � , �
� , SVU4W �> � � 	 � � � � �  �

�
� � �� 9 � � �

�
� � �� 9 � � (22)

The partial derivatives are: 	 � 	 � � B  ���
 � $�  � � � and 	 � �	 � � B  �� 
� � $�  � � � . We can set the derivatives to zero and solve

them analytically to find for a fixed
�

only one feasible solution:

� � � :@;�= �
� 9 � � � 9 ������ � 9  ���� �, � � � :<;�= �

� 9 � � � 9 ������ � 9  ���� �, !
(23)

We then can iterate through alternate choices for
�
.

For comparison of the symmetry of this solution to the asymmetric Laplace, we can also write the solution as:

��� � :<;�= � 9  ���� �,  ���
� 9  ���� � � 9  ���� �,  ��� ��� � :<;�= � 9  ���� �,  ���

� 9  ���� � � 9  ���� �,  ��� !
(24)

The second part of each equation is equal to 	 �(� � :<;�= � ��� � :<;�=   ��� .



Appendix D: C Code for MLE of Asymmetric Gaussian

This code is also currently available at http://www.cs.cmu.edu/˜pbennett/asymmetric/aGaussian.c .

/* For the data given in scores,
finds the maximum likelihood set of parameters for
an asymmetric Gaussian family

p(x | THETA, BETA, GAMMA) =
if (x <= THETA) then

(2 / (sqrt(2 * pi) (BETA + GAMMA))) exp [-1/2 ((x -
THETA) / BETA)ˆ2]

else
(2 / (sqrt(2 * pi) (BETA + GAMMA))) exp [-1/2 ((x -

THETA) / GAMMA)ˆ2]

candidate thetas are restricted to the range [min,max]
*/
void find_aGaussian_parameters(double * scores, /* vector of scores - assumed

to be sorted least to
greatest */

long int N, /* number of scores */
double min, /* min mode to try */
double max, /* max mode to try */
double defaultm, /* default mode if N == 0 */
int num_interval_slices, /* breaks scores[i] and

scores[i + 1] into
this many pieces to
try as candidate
modes */

/* next three are return values of distribution */
double * final_theta,
double * final_beta,
double * final_gamma) {

double max_ln_posterior, ln_posterior;
double max_init = 0;
double prev_score_theta = min;
double theta = prev_score_theta, beta, gamma;
long int num_left = 0, num_right = N;
double sum_left = 0, sum_right = 0;
double sum_squares_left = 0, sum_squares_right = 0;
double diff_left, diff_right, diff_left_3root, diff_right_3root;
int done = 0, slice_num = 0;
long int i;

if (N == 0) {
/* no scores */
*final_theta = defaultm;
*final_beta = EPSILON_INF;
*final_gamma = EPSILON_INF;
return;

}

/* loop through and get the sum and sum of square of all scores */
for (i = 0; i < N; i++) {



sum_right += scores[i];
sum_squares_right += (scores[i] * scores[i]);

}

i = 0;
do {
/* update sufficent statistics */
while ((i < N) && (scores[i] <= theta)) {

double score_squared = scores[i] * scores[i];
/* move this example from the right of threshold to the left */
num_left++;
num_right--;
sum_left += scores[i];
sum_right -= scores[i];
sum_squares_left += score_squared;
sum_squares_right -= score_squared;
i++;

}
diff_left = sum_squares_left - 2 * sum_left * theta + theta * theta * num_left;
diff_right = sum_squares_right - 2 * sum_right * theta + theta * theta * num_right;
diff_left_3root = cbrt(diff_left);
diff_right_3root = cbrt(diff_right);

/* compute beta */
if (diff_left == 0) {

/* default value for beta */
beta = EPSILON_ZERO;

}
else {

/* compute closed MLE for beta */
beta = (sqrt(diff_left

+ diff_left_3root * diff_left_3root * diff_right_3root)
/ sqrt(N));

}

/* compute gamma */
if (diff_right == 0) {

/* default value for gamma */
gamma = EPSILON_ZERO;

}
else {

/* compute closed MLE for gamma */
gamma = (sqrt(diff_right

+ diff_right_3root * diff_right_3root * diff_left_3root)
/ sqrt(N));

}

/* compute log posterior */
ln_posterior = ( /* N * (log(2) - log(sqrt(2 * pi))) -- constant for all

choices */
N * (- log (beta + gamma))
- 0.5 * diff_left / (beta * beta)
- 0.5 * diff_right / (gamma * gamma));



/* update set of best parameters */
if (max_init) {

if (ln_posterior > max_ln_posterior) {
*final_theta = theta;
*final_beta = beta;
*final_gamma = gamma;
max_ln_posterior = ln_posterior;

}
}
else {

*final_theta = theta;
*final_beta = beta;
*final_gamma = gamma;
max_ln_posterior = ln_posterior;
max_init = 1;

}

/* get new choice for theta */
if (theta == max) {

/* already tried max so we’re done */
done = 1;

}
else {

double next = max;
if (i != N)

next = scores[i];
slice_num++;
if ((slice_num % num_interval_slices) == 0) {

prev_score_theta = next;
theta = prev_score_theta;
slice_num = 0;

}
else {

theta = slice_num * ((next - prev_score_theta) /
num_interval_slices) + prev_score_theta;

}
/* check if that’s the bound */
if (theta > max)

done = 1;
}

} while (!done);
}
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