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Abstract

As more resources are added to computer networks, and as more ven-

dors look to the world wide web as a viable marketplace, the importance

of being able to restrict access and to ensure some kind of acceptable be-

havior, even in the presence of malicious adversaries, becomes paramount.

Many researchers have proposed the use of security protocols to provide

these security guarantees. In this thesis, I describe a method of verifying
these protocols using a special purpose model checker, Brutus, which

performs an exhaustive state space search of a protocol model. This tool
also includes a natural deduction style derivation engine which models the

capabilities of an adversary trying to attack the protocol. Since the models
are necessarily abstractions, one cannot prove a protocol correct. How-
ever, the tool is extremely useful as a debugger. I have used this tool to

analyze �fteen di�erent security protocols, and have found the previously
reported attacks for them.

The common limitation for model checking is the state explosion

problem. This is particularly true of models in Brutus because they
are composed of multiple components that are executing concurrently.

The traces of the system are de�ned by an interleaved execution. For
this reason, I implemented two well known state reduction techniques in
Brutus. The �rst technique exploits the symmetry due to replicated

components. The second reduction technique is called the partial order

reduction. This technique exploits the fact that the relative order of certain

pairs of actions is immaterial to the overall correctness of the model. This

means that it is not always necessary to explore all possible interleavings of
actions when performing the analysis. It is also of interest that in the case

of security protocol veri�cation, the partial order reduction technique can

be generalized so that an even greater reduction is achieved. This thesis
describes how these reductions are implemented in Brutus, how they

improve the eÆciency of the model checker, and how they apply to model
checking of security protocols in general.
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Chapter 1

Introduction

Initially, security for computers was provided by their physical isolation.
Unauthorized access to these machines was prevented by restricting phys-

ical access. The importance of sharing computing resources led to sys-
tems where users had to authenticate themselves, usually by providing a
name/password pair. This was suÆcient if the user needed to be physically

at the console or was connected to the machine across a secure link. How-
ever, the eÆciency to be gained by sharing data and computing resources

has led to computer networks, in which the communication channels can-
not always be trusted. In this case, authentication information such as
the name/password pairs could be intercepted and even replayed to gain

unauthorized access. When such networks were local to a certain user
community and isolated from the rest of the world, many were willing to

take this risk and to place their trust in the community. However, in order
to be able to share information with those outside the community, this
isolation would have to be removed. The bene�ts to be had by such shar-

ing have been enormous, and the gains are demonstrated by the growth

of such entities as the Internet and the world wide web. Now, very few, if

any, guarantees can be made about the communication links.

Numerous protocols have been proposed that claim to solve many of

the security issues by taking advantage of cryptography. The correctness
of these protocols is paramount, especially when we consider the size of the
networks involved and the desire of users to place con�dential information

and to allow for monetary transactions to take place across these networks.

However, errors in these protocols can be extremely subtle and hard to
�nd. In this thesis, I describe a new model checking tool, Brutus, that

7



8 CHAPTER 1. INTRODUCTION

I have successfully applied to analyze and verify these kinds of protocols.

1.1 Formal Methods

Engineering and technology have led us to the building of extremely com-

plex systems. In many areas, these systems have grown so complex that

it is extremely diÆcult, if not impossible, to guarantee that even the de-

sign of the system is correct. One might argue that nowhere is this more

true than in the area of computer science. For this reason, numerous re-

searchers have turned to mathematical models, abstractions, and formal
reasoning to try to get a handle on how these systems behave and to verify
whether or not they are correct. These methods have the added advantage

that one can often automate the tedious task of analyzing and verifying
the model.

Formal methods research seems to fall into two distinct camps. The
�rst is theorem proving. In this approach, a set of axioms describes the

system being analyzed. The desired properties of the system are speci�ed
as a set of theorems that need to be proven. One then uses the axioms

describing the system and the inference rules of the logic to try to prove
the desired theorems. The goal is to automate the actual theorem proving
process as much as possible. The automatic generation of axioms describ-

ing the system and theorems stating the requirements is desirable as well,
but hard to do. The logic and inference system used can be as general as

�rst order logic, or it can be tailored to the particular problem domain
as in the case of the BAN Logic [7]. Of the many tools for automated
deduction, PVS [28, 60] and Isabelle [64, 65] stand out because of their

generality and widespread use. They have also been used in the area of

security protocol veri�cation.

The second formal approach is called model checking. As opposed to
theorem proving, where the system is described by a set of axioms, in

model checking, an explicit model of the system is given. In the world
of �rst order logic, this would be equivalent to explicitly providing the

interpretation of all the constants, functions, and relations. The desired

properties are again speci�ed as logic formulas, but instead of proving
theorems, we need to verify that the given model satis�es the formulas.

Because the user needs to model the system instead of providing ax-
ioms about the system, a model of computation is required. Kripke struc-
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tures (�nite state transition systems where the states are labeled with

atomic propositions) are a popular model to use since they provide a gen-

eral way of describing the operational behavior of a system. The actual

behavior of the system is given by all the possible executions or traces of

the model. Since the semantics of the model is given in terms of its traces,

the speci�cation language or logic needs to be able to refer to events that

occur in a trace. It is not surprising, then, that speci�cations are typically

given either as another more abstract transition system, or in terms of a

temporal logic formula that is satis�ed exactly by the set of correct traces.

For a good introduction to temporal logic, see [20].

Like theorem proving, the goal is to automate this veri�cation process
as much as possible. This is somewhat easier for model checking because

the veri�cation can be reduced to state space exploration which is highly
automatable. One of the �rst eÆcient temporal logic model checking pro-

cedures can be found in [8]. Much of the time since then has been spent
combating what is known as the state space explosion problem. A simpli-
�ed description of this problem is the statement that the size of the model

of a concurrent system grows exponentially with respect to the number of
components in the model. In other words, if it takes k states to model a

system with a single component, it takes on the order of kn states to model
a system with n components. One of the biggest advances in combating
state explosion is the use of a symbolic representation of the transition sys-

tem and of the states explored [43]. Unfortunately, this advance has not
proved very helpful in the area of security protocol veri�cation. However,
two other techniques, symmetry reduction and partial order reduction,

have proven useful and are described in this thesis. For a good reference
for model checking, including state reduction techniques, see [10].

Because security protocols can be thought of as concurrently executing

�nite state systems, they are amenable to these kinds of formal methods.

In fact, both theorem proving and model checking approaches have been

used to analyze security protocols. For this reason, it is bene�cial to con-

sider the merits of both. Because model checkers work with a concrete

and �nite model, they are really more useful in providing negative in-

formation. One of the biggest advantages of using a model checker is its

counter-example generation capability. This counter-example is invaluable

when it comes time to debug the design. One of the biggest disadvantages

of model checking is that exhaustive state space exploration requires the
models to be �nite. Although abstraction techniques exist that can be
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used to map many in�nite models to �nite models, in practice, this is still

a limitation. In contrast, theorem provers provide positive information

and can handle in�nite systems quite easily. When a proof is successful,

one knows that any system satisfying the axioms (including an in�nite

system) also satis�es the speci�cation. The drawback is that the proce-

dure may not terminate and often there is little feedback when a proof

fails.

This thesis deals with Brutus, a model checker for security protocols

and, as such, does not really discuss theorem proving methods in any

detail. The emphasis will be on how Brutus works and on how to use

Brutus. When appropriate, Brutus is compared to other veri�cation
approaches.

1.2 Brutus

Since Brutus is a model checker for security protocols, the natural ques-

tion is, \Why another model checker?" To better answer this question, it
is necessary to know a little of the history of how state space exploration

techniques have been applied to the problem of security protocol veri�ca-
tion. There seem to be two approaches: new special purpose tools and
pre-existing general purpose model checkers.

Initial state exploration tools such as the Interrogator [52] and the NRL

Protocol Analyzer [47] are special purpose tools that perform what could
be considered a backward state exploration. In other words, one gives an
insecure state and the tool searches backward trying to �nd a state that

leads to the insecure state and that also satis�es the initial con�guration.
However, these tools deal with models that are not necessarily �nite and

so they have some of the properties of theorem provers. Namely, they can

require user interaction during the veri�cation process, and they may not
terminate.

Later model checking e�orts seem to rely on existing general purpose

tools. Two well known tools used for this purpose are Mur� [57] and
FDR [38]. Although these tools are meant to be general purpose, they are

somewhat weak when it comes to modeling an adversary that is trying to

subvert the protocol. The model needs to somehow keep track of what
messages are known and not known to the adversary. In the straightfor-
ward Kripke structure model, each such message would correspond to an



1.2. BRUTUS 11

atomic proposition that would be true if and only if the adversary knows

that message. Since the number of messages is in�nite, the models could

themselves be potentially in�nite. The only alternative is to arbitrarily

restrict the model to keep track of only a �nite subset of all possible mes-

sages. The question then becomes which messages to include and which

to exclude from the model. In essence, the burden is on the user to come

up with a �nite state machine description of the adversary. This process

is all the more complicated if one wants to consider possible interactions

between di�erent protocols since it then becomes even less clear what

messages might be important.

TheBrutusmodel checker is an attempt to separate out the adversary
from the model and to encode it as a set of rewrite rules that can be applied

to messages overheard during the execution of the protocol (or possibly
during the execution of a di�erent protocol). While one still must restrict

how many of these rewrite rules are applied, one need not specify ahead
of time which messages the model needs to keep track of. In essence
then, Brutus has two orthogonal components. One component is a state

exploration component that actually performs the search. The other is
the message derivation engine that models the adversary's capabilities.

As seen in Figure 1.1, these components interact. The set of possible
next states is in
uenced by which messages the adversary can construct
and send out. In turn, the set of messages the adversary can generate is

in
uenced by what messages other agents have sent during the execution
of the protocol.

Since I want to analyze a variety of protocols, I developed a speci-

�cation logic which is powerful enough to describe a variety of security
properties. In this logic one can specify not only what the adversary

should not know, but also what other agents must or should not know.

This allows one to specify non-repudiation as well as secrecy. The past

time operator allows the speci�cation of electronic commerce properties

like guaranteed payment for goods and absence of unauthorized payments.

Even a weak form of anonymity can be speci�ed using this logic.

Finally, I wanted to see how far state space reduction techniques could

be pushed when model checking security protocols. While some general

purpose model checkers already support reduction techniques (Mur�, for

instance, exploits symmetry), to the best of my knowledge no one has in-

vestigated how far these techniques could be pushed when dealing speci�-
cally with security protocols. Indeed, I have identi�ed and exploited some
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Figure 1.1: Brutus model checker

symmetries that seem to be inherent to and speci�c to the domain of

security protocol veri�cation. I have also generalized the idea of partial
order reductions so that traces no longer need to be equivalent in order
to perform the reduction. I show how the correctness of traces that are

\less likely to be true" guarantees the correctness of other traces that are
\more likely to be true." Since this relation between traces is coarser than

the one typically used in partial order reduction, more traces are related
which translates to fewer traces being explored.

1.3 Thesis Contributions

This research centered around the design, implementation, and use of a

security protocol veri�er. The overall goal was to create a practical and

theoretically sound model checker. Along the way, I looked for ways to

make the system more general and for ways to make the system more

eÆcient. I also looked to prove rigorously the correctness of these ideas,

and when possible, to generalize the theoretical results. This work resulted
in a number of contributions, including the following:
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� A prototype model checker for security protocols { Many authen-

tication, key exchange, and electronic commerce protocols can be

modeled and analyzed.

� A temporal logic of knowledge { Brutus uses a temporal logic which

can refer to a principal's knowledge, a principal's variables, and

a principal's actions. It is powerful enough to express many se-

curity properties including authentication, secrecy, privacy, non-

repudiation, and authorization.

� A suite of analyzed protocols { Brutus was used to model and an-

alyze over �fteen di�erent protocols, three of which were electronic

commerce protocols. All previously reported 
aws were found.

� A normalization theorem for the derivations of messages { I prove

that in the adversary model used by most research in this area, all
messages that can be generated by the adversary can be generated
by �rst applying only reduction or shrinking rules and then applying

only introduction or expanding rules. This proof leads naturally to
a very eÆcient algorithm for determining if a particular message can
be generated by the adversary. However, this result depends on a

restriction on encryption to use only atomic keys, which is consistent
with the the restriction so commonly assumed in the literature.

� The identi�cation of common symmetries { This thesis also identi�es
a number of symmetries that are common to all security protocol

models. Unlike more general theorem provers where these symme-
tries must be detected, the structure of security protocols ensures
that certain symmetries always exist. Brutus exploits these sym-

metries to reduce the state space to be searched. While this tech-
nique is certainly not general enough to detect all possible sym-

metries, the fact that one need not search for them means that the

expensive computation of the orbit relation (the equivalence relation
induced by the symmetry) can be avoided.

� A generalization of partial order reductions { Until now, partial order
reductions have been used to identify and to remove from consid-

eration traces that are equal up to the permutation of independent

actions. In order to guarantee correctness, these reductions have in-
sisted that the actions also be invisible (i.e., that they cannot a�ect
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the value of the speci�cation formula). This restriction has meant

that two traces must agree on the speci�cation before one of them

could be ignored. I generalize this technique so that a trace can

be ignored if one can guarantee that there is always another trace

whose correctness implies the correctness of the disregarded trace.

In other words, we can throw out possibly faulty traces as long as we

do not discard all faulty traces. By weakening the restriction on the

traces that can be ignored, I increase the number of traces that are

thrown out, thereby increasing the amount of reduction attained.

This has lead to a signi�cant reduction in the size of the state space

explored in Brutus. It is my hope that this generalization will also
prove useful in other veri�cation domains.



Chapter 2

Security

The use of cryptography can be traced very far back in history. According

to Kahn [33], the �rst printed book on cryptology dates from the early
sixteenth century [78]. Historically, the majority of cryptographic e�ort

was spent on trying to keep messages secret, whether it was battle infor-
mation, diplomatic information, or even personal information. With the
explosion of the world wide web, suddenly cryptography is being used to

provide or facilitate digital signatures, digital cash, electronic commerce,
electronic voting, and personal identi�cation as well as secure communica-
tion. Since the original intent of cryptography was just to ensure secrecy,

often extra machinery (in the form of protocols) is necessary to ensure
the correctness of these new applications. In this chapter I will introduce

some basic building blocks of security and how they are put together in
the form of cryptographic protocols. I also discuss how Brutus models
these constructs. For a more thorough overview of these security topics,

see [51, 72].

2.1 Security Building Blocks

Security protocols are built up from more than just cryptographic algo-

rithms, although certainly these cryptographic algorithms are at the heart
of the protocols. Cryptography by itself can really only guarantee secrecy

and integrity of messages. Cryptographic protocols require that messages
also be fresh and authentic. In what follows, I discuss the basic building

blocks used to guarantee these properties and the abstractions that I used

15
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E(k,m) D(k’,c) mm c

k k’

Figure 2.1: Encryption and decryption

when modeling them in Brutus.

2.1.1 Ensuring Secrecy and Integrity

In security protocols, secrecy and integrity of messages are provided by

encryption. For our purposes, encryption involves just a handful of con-
cepts. First, there is the plaintext to be encrypted. The encryption is
performed via an encryption algorithm. This algorithm is a function. For

every possible plaintext there is one and only one ciphertext. In addition
to the plaintext, the encryption function has a second input called the en-

cryption key. Di�erent keys will yield di�erent ciphertexts when applied
to the same plaintext. The purpose of encryption is to keep the meaning
of the plaintext secret while allowing a select group of people (possibly a

single person) to recover the original plaintext. This is accomplished via a
decryption function. The decryption function also requires a key. Notice

that since the intent is to keep the plaintext secret, the ciphertext should
have the property that it is \diÆcult" to arrive at the original plaintext (or
the decryption key) from just having the ciphertext (and possibly the en-

cryption key). I leave the de�nition of diÆcult imprecise although ideally,

\diÆcult" = \impossible." Also note that encryption and decryption are
inverse functions; therefore, they each must be one-to-one. If encryption

were not one-to-one, then decrypting a ciphertext would yield multiple
plaintexts and so the original message could be ambiguous.1 A diagram

of these relationships can be seen in Figure 2.1 where m is the plaintext,

c is the ciphertext, k is the encryption key and k0 is the decryption key.

All forms of encryption share these components, although there can

1Some cryptosystems (Rabin public-key encryption for example) use encryption

functions that are not one-to-one. However, these schemes rely on the fact that with

extremely high probability only one of the preimages is sensible.
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be slight variations. As we shall see, sometimes the encryption key and

decryption key are identical and sometimes they are di�erent. Often the

encryption function and decryption function are identical as well, and it

is only in how they are used that determines when we are encrypting and

when we are decrypting.

Symmetric-key cryptographic algorithms are by far the most com-

monly used. In symmetric-key cryptography, there is only one key which

serves as both the encryption key and the decryption key. This is not a

surprising restriction since it seems counterintuitive to believe that one

can decrypt something without knowing how it was encrypted in the �rst

place.
The main advantage of symmetric-key cryptography is that generally

it is computationally inexpensive, especially when compared to public-key
cryptography discussed below. This means that it is feasible to encrypt

the large amounts of data used in a protocol. One of the largest drawbacks
to symmetric-key cryptography is the need to establish a di�erent key for
each pair of persons who wish to communicate con�dentially.

In public-key cryptography, the keys used for encryption and decryp-
tion are di�erent. Furthermore, there is no \easy" way to arrive at the

decryption key from knowledge of the encryption key and of ciphertext
encrypted with that key. Public-key cryptography gets its name from the
fact that one of the keys (the encryption key) is made public. The other

key is kept private. This way, anyone can communicate con�dentially with
the owner of the private key by encrypting with the published public key.
Only the owner of the private key can decrypt the message.

The use of two di�erent keys provides public-key cryptography with a
number of advantages over symmetric-key cryptography. First, only one

key pair is needed per individual instead of one key per pair of individ-

uals. In other words the number of keys needed is linear in the number

of principals instead of quadratic. Also, the use of two keys means that

one can be publicly distributed, thus removing the need to securely ex-

change a key before commencing communication. Finally, it allows digital

signatures. This is accomplished by having the owner of the private key

encrypt a plaintext with the private key. Now anyone can verify the signa-

ture by decrypting with the public key. Furthermore, the signature can be

attributed to the sole owner of the private key since only that individual

could have created the correct ciphertext (signature).
Encryption and decryption are modeled in Brutus as black boxes.
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In other words, the only way to generate a particular ciphertext is by

applying the encryption algorithm to the appropriate plaintext with the

appropriate key. Similarly, the only way to get any information out of a

ciphertext is by applying the decryption algorithm to the ciphertext with

the appropriate decryption key. This simpli�cation is called the perfect

encryption assumption. In real-life of course, this is not the case. A ci-

phertext could be generated by guessing, although the probability that

the corresponding plaintext is meaningful would be extremely low. Also,

cryptanalysis could be applied to a ciphertext to get partial if not complete

information about the plaintext, without knowledge of the decryption key.

In addition, certain cryptographic algorithms may have additional math-
ematical properties that are not accounted for in this simpli�ed model

which could conceivably lead to an attack on the protocol. For example,
the Data Encryption Standard (DES), the most commonly used symmet-

ric encryption algorithm, has the following property [51]:

c = Ek(m)) c = Ek(m)

where x is the bitwise compliment of x. This is by no means the only way

in which our black box assumption of cryptography is broken. The RSA
cryptosystem [70, 71], one of the more popular public-key cryptosystems,
has the following property:

Ek(i�m) = Ek(i)� Ek(m)

for any integer i. And, any block cipher (including DES), has the following
property when the length of message m1 is a multiple of the block size of

cryptosystem:
Ek(m1 �m2) = Ek(m1) � Ek(m2):

Such properties are not currently modeled in Brutus; therefore, it is

possible to miss certain attacks. And while there is nothing in the frame-

work preventing us from adding rules to model how an adversary might

exploit these properties, doing so would seriously a�ect the eÆciency of

the message derivation engine that models the adversary's capabilities.

2.1.2 Hashes

Hash functions are probably more well known for their use in the hash

table data structure than for their use in security protocols. For use
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in hash tables, it is desirable that a hash function h have the following

properties as described in [51]:

compression - h maps an input of arbitrary �nite length to an output

of �xed length.

ease of computation - h should be easy to compute.

collision resistance - It is computationally infeasible to �nd a pair of in-

puts (x and x0) that hash to the same value (such that

h(x) = h(x0)).

second preimage resistance - Given an x, it is computationally infea-

sible to �nd an x0 such that h(x) = h(x0).

For use in security protocols, we may also desire the following property:

preimage resistance - It is computationally infeasible to compute an x
such that h(x) = y when only y is known.

Hash functions without the preimage resistance property are used most

often for their compression property. In other words, protocol designers
use the hash of a particular message to stand for the message itself. This
is desirable because the hash of the message is typically much smaller

than the original message. Since certain cryptographic operations are
computationally expensive, designers often apply these operations only
after hashing to reduce the cost of encryption. This use is justi�ed because

of the collision resistance and the second preimage resistance properties.
In other words, the recipient of the hash can check that the hash is correct

by computing the hash from the original message. The recipient can also
rest assured that the sender will not claim the hash is of something else
because it is infeasible for the sender to �nd a di�erent message that hashes

to the same value.

Hashing is modeled in Brutus via encryption with a publicly known

symmetric key called \HASH". Because of the black box assumptions
about cryptography, encryption satis�es the collision resistance and the
second preimage resistance properties. In other words, encrypting a mes-

sage m with the key \HASH" ensures that the only way to generate the

hash of m is by encrypting m with \HASH". Since our level of abstrac-
tion on messages ignores message length and ease of computation, the
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compression and the ease of computation properties are not modeled in

Brutus.

In addition, it is often desirable that a hash function not be invertible.

These kinds of hash functions are called one-way hash functions and sat-

isfy the preimage resistance property de�ned above. These one-way hash

functions are also modeled using encryption. The only new property we

need to satisfy is preimage resistance. To do this, we model one-way hash-

ing via a universally known public key called \ONE-WAY HASH". The

corresponding private key is not known by anyone. Thus anyone can hash

a message using the public key \ONE-WAY HASH", but no one can invert

the hash because no one knows the corresponding private key (decryption

key).

2.1.3 Random Numbers

Random numbers are intimately tied to security. In fact, there is an equiv-

alence between random numbers and cryptography. When encrypting a
plaintext string of bits, the resulting ciphertext should look like a random

string of bits in the sense the ciphertext does not give any information
about the plaintext. To an attacker, then, all plaintexts are \equally
likely" to have generated the ciphertext in question. Conversely, given a

truly random string of bits of suÆcient length, a perfect encryption func-
tion results from applying the xor function to the plaintext string and the
random string. Note how the encrypting string (also known as a one-time

pad) must be random to ensure that an attacker has no advantage when
trying to guess the encryption string or equivalently, the original plain-

text string. If it were not random, the attacker might be able to eliminate

certain encryption strings from consideration and thus gain an advantage.

The other way that random numbers are used is as nonces. In the
de�nition given by van Oorschot [51], a nonce is a value used no more

than once for the same purpose. Typically, it is used to prevent the replay

of an old or stale message. Usually, the term nonce is used to refer to a

random or pseudo-random number used for this purpose. The idea is as

follows:

1. The veri�er generates a random number and sends it to the other

party.



2.1. SECURITY BUILDING BLOCKS 21

2. The other party cryptographically binds that random number to the

reply message.

Theoretically, neither step necessarily requires encryption. However,

in step two there must be a way of permanently associating the random

number to the reply message in such a way that neither can be modi-

�ed. In practice, this is accomplished by concatenating the number to

the message and encrypting the result. Since the number is random, the

veri�er (i.e., the party that generated the random number) can be assured

that any message containing that number must have been created after

the random number was published. The adversary cannot replay an old
message because it cannot bind the newly generated random number to

an old message.
Brutus does not actually generate random numbers when simulating

protocol execution. However, this is not a limitation. The properties of
nonces that are used by cryptographic protocols are:

1. They are unique.

2. They are unpredictable.

3. They are known only to the generator, until disclosed.

All of these are modeled in Brutus by giving each protocol instance a

unique nonce term for every nonce it is supposed to generate during the
execution of the protocol. Notice that when a nonce is generated is not
important, but only when it is disclosed. Its disclosure is explicitly mod-

eled when a message containing the nonce is sent by the principal. The
fact that the principal is modeled as having already generated the nonce

is immaterial. The unpredictability property is trivially satis�ed in our

model because there is no notion of \guessing." The only way to gener-
ate a particular message is via standard message operations (encryption,

concatenation, etc.) on known messages. So the model captures the nec-

essary properties of nonces. On the other hand, Brutus cannot model
poor nonce generators.

2.1.4 Timestamps

The freshness of messages can also be ensured through the use of time-
stamps. Instead of checking if an incoming message contains a recently
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generated random number, the receiver of the message can check the

timestamp against a local clock. Typically, the value of the timestamp

is subtracted from the current local time. This di�erence is then required

to be within some acceptance window in order for the message to be ac-

cepted as fresh. In addition, the value of the timestamp may be required

to be unique with respect to the sender of the message in order to pre-

vent message replay. A second solution to prevent message replay is to

use a suÆciently small acceptance window that would prevent a replayed

message from possibly arriving \on time."

The use of timestamps can have certain advantages over the use of

nonces. The use of nonces requires an extra message to communicate the
initial random number to be used in the protocol. The party sending the

random number must also maintain short-term state information about
the random number so that it can compare with the next message re-

ceived. It is this kind of state information that can become a liability
with respect to denial of service attacks. By starting an arbitrary number
of protocol sessions, an attacker can require a principal to generate and

record an arbitrary number of random numbers. Applying formal meth-
ods to uncover these kinds of attacks is diÆcult, and only recently has

there been any success in this direction [49].
The main drawback to the use of timestamps is the necessity of main-

taining secure and synchronized clocks. The clocks must be secure so that

an adversary can neither turn the clock back in order to get a principal
to accept a stale message nor turn the clock forward in order to construct
a message that can be accepted later. These security properties are dif-

�cult to guarantee in a distributed environment. Additionally, the values
of the clocks must also be suÆciently close in order to prevent valid mes-

sages from being rejected because they fall outside the acceptance window.

Keeping clocks synchronized is itself a diÆcult problem. And, as Menezes,

van Oorschot and Vanstone point out, the clock synchronization necessary

to make timestamps work requires network protocols that must be secure

and could potentially depend on timestamps themselves, thus creating a

circular dependency [51].

Using model checking to analyze protocols that use timestamps can

be diÆcult because in general, model checking for timed systems can be

computationally expensive. Various models and logics for timed systems

have been proposed, including both discrete time models and continuous
time models. The relative merits have been debated [2, 24] and their rela-
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tive expressiveness has been compared. Although continuous time is more

general (there are properties that are not preserved when moving from a

continuous time model to a discrete time model), there are large classes

of properties that are preserved when a model is discretized [24]. So far,

it seems that only a discrete time model has been used to model check

security protocols [39]. Brutus does not model time, so currently, a pro-

tocol using timestamps must be converted into one that uses nonces before

it can be analyzed. Modeling time would be an obvious (although non-

trivial) extension to Brutus. Much work has also been done on partial

order reductions for timed systems [56, 61] and hopefully this work could

be used directly for model checking security protocols with timestamps.

2.2 Protocol Examples

I now provide some simple examples of how the building blocks from the

previous section can be used to construct security protocols. In particular,
I concentrate on authentication, key exchange, and electronic commerce,
since these are the kinds of protocols analyzed so far in my work. Again,

I point out strengths, weaknesses, and areas for future work with respect
to how these protocols can be modeled and analyzed using Brutus.

2.2.1 Authentication

The goal of an authentication protocol is to assure one party of the identity

of the second party participating in the protocol. In other words, the
major goal is to prevent impersonation. It should be the case that no party


 can play the role of A and cause B to complete a protocol execution and

accept 
 as being A. This property must hold even when 
 has previously
or is concurrently executing the protocol with A or B, as well as when 


observes protocol executions between A and B.

The most common way of establishing one's identity in the world of

computer security is by demonstrating knowledge of a particular secret.
The obvious (although not necessarily the best) way to do this is by simply

stating what the secret is. This is basically the notion of a password. A

and B share knowledge of a password. If this password is secret (known

only to A and B), then when some party provides that password to B, B

can be assured that the other party is A. This procedure can be modeled
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as a one message protocol:

A! B : pswdA

This is probably one of the simplest kinds of authentication and is

easily modeled in Brutus by having the password be a unique message

that is known only to A andB. This solution obviously does not work in an

environment where messages can be overheard; Brutus easily �nds this


aw. A naive solution might be to keep the password secret by encrypting

it with key k before transmission.

A! B : fpswdAgk

Since Brutus also models encryption, this modi�cation is easily analyzed
as well. The veri�cation �nds no violation of secrecy (the password is never

divulged), but the authentication property is still not satis�ed. In this
case, an eavesdropper can replay the encrypted password and successfully

impersonate one of the parties without ever learning the actual password:


(A)! B : fpswdAgk

Because of the real danger of such replay attacks, most authentication
protocols are based on challenge-response identi�cation. In this scheme,

one party proves its knowledge of a secret without actually revealing the
secret. For example, if party A wishes to authenticate itself to party B,
party A would request a challenge from party B. This challenge is a time-

variant parameter such as a nonce. Party A then provides a response that
depends on both the challenge and the secret. Party B can then verify that

the response is correct. Eavesdropping this exchange should not provide
an outsider with any useful information since any future authentication

session would use a di�erent challenge. A common response is to encrypt

the challenge (either with a shared key or with a private key). The other
party can then verify the response by decrypting it to get the challenge

back. This protocol then takes the following form:

B ! A : NB

A! B : fNBgk

The uniqueness of the challenge is vital and the obvious replay attack is
again found by Brutus if challenges are allowed to repeat (if party B is
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allowed to use the nonce NB again). However, since encryption is treated

as a black box, Brutus cannot �nd attacks that rely on partial informa-

tion gained by observing challenge-response pairs (called a known plaintext

attack) nor attacks that exploit some other weakness in the cryptosystem

itself.

2.2.2 Key Exchange

If the authentication is being done across a network, often the two parties

would like to exchange a key with which to secure future communication.

The easiest way to do this is by simply including a new session key at some
point during an authentication protocol. Unlike the simple authentication

protocols presented above, mutual authentication is now required. In other
words, it is not enough for B to know it is talking to A. Party A should

also have some assurance that it is talking to B. An example of such a key
exchange protocol is one proposed by Needham and Schroeder [59]. This
protocol makes use of a trusted third party, S, who generates the session

key for A and B. We describe this protocol below and how we model it
in Brutus:

1. First, the initiator, A, generates a nonce, NA, and sends it along
with its own identity and B's identity to the server S.

A! S : A;B;NA

2. Next, the server, S, generates a session key K. It encrypts the pair
(K;A) with a key shared with B. It then sends this along with the

key K, B's name, and A's nonce NA to A, all encrypted with a key

shared with A.

S ! A : fNA; B;K; fK;AgKB
gKA

3. The initiator, A, now decrypts this message, veri�es it nonce NA, re-

covers the session key K, and forwards the encrypted pair fK;AgKB

to B.

A! B : fK;AgKB
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4. The responder, B, now decrypts this message and recovers the ses-

sion key K. It now generates its own nonce, NB, encrypts it with

the session key, and sends it back to A.

B ! A : fNBgK

5. The initiator, A, now decrypts the message and recovers the nonce

NB. The initiator then replies back to B by encrypting the value

(NB � 1) with the session key K.

A! B : f(NB � 1)gK

At this point A and B now share a key K with which to communicate
privately.

This protocol is also easily modeled in Brutus. While the key genera-

tion is not directly modeled, it is simulated by ensuring that each di�erent
server session uses a di�erent key in the same way that unique nonces are
modeled. Also, while arithmetic operations are not directly modeled, the

message (NB�1) is replaced with the concatenation of NB with the num-
ber 1. This message still has the same property that it is distinct from but

based on the original nonce NB. One can verify that the secrecy of the key
K is maintained and that the authentication properties are guaranteed.

However, the protocol does have a weakness. Old session keys are
valuable to the adversary. If an adversary 
 is able to acquire an old

session key K that was used with B, it can get B to accept it again with
the following sequence of messages which starts by replaying an overheard
message number three.

3. 
(A)! B : fK;AgKB

4. B ! 
(A) : fN 0
BgK

5. 
(A)! B : f(N 0
B � 1)gK

Since the adversary has acquired the old session key K, it can use it to

decrypt fN 0
BgK and answer B's new nonce challengeN 0

B with f(N 0
B�1)gK.

SinceBrutus does not model possible compromise of old keys directly,
one must directly give the adversary knowledge of a previous key exchange
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session along with the compromised session key in order to model this

possibility and reveal the 
aw. In other words, if the model has the server

using a fresh session key K, the adversary must be given knowledge of a

previous session key K 0 along with the messages involved in that previous

session, including that necessary third message fK 0; AgKB
.

2.2.3 Electronic Commerce

Secure protocols have also been developed for use in electronic commerce.

In addition to the privacy and authentication concerns raised in key ex-

change, electronic commerce protocols require additional properties such
as the atomicity of transactions. Another added diÆculty is the fact that
electronic commerce protocol designers usually cannot assume that the

parties involved in the transaction are honest. Unlike participants in a
key exchange protocol, the participants in an electronic commerce proto-
col have something to gain by trying to subvert the protocol. In partic-

ular, the protocol must protect against modi�cation of the terms of the
transaction. Often, it is also desirable to have proof of the details of the

transaction that can be presented to an outside party if necessary. This
is accomplished through the use of the same basic cryptographic building
blocks discussed in section 2.1.

As in the case of authentication and key exchange, privacy and pro-
tection against replay is often secured through the use of encryption and
nonces or timestamps. However, how does a protocol protect the integrity

of the details of the transaction? Often, these details are many. These
details can include information about the parties involved, a description
of the goods or services, the price paid, the customer's authorization, and

delivery information. To use encryption on all this information can be
costly, so a hash is usually applied to this information before encrypting.

As we have already seen, hashing is modeled quite easily in Brutus using

encryption with a special key.

The other cryptographic primitive needed for electronic commerce is

the digital signature. This is necessary in order to provide an \autho-

rization" mechanism for the protocol. In other words, the customer can
authorize the purchase by electronically signing the purchase order. This

will also provide proof of authorization to the merchant because anyone

can get access to the public key to verify the signature. Since digital sig-
natures can be implemented using public-key cryptography, Brutus can



28 CHAPTER 2. SECURITY

handle this quite easily as well.

Although Brutus has all the constructs necessary to model and to an-

alyze electronic commerce protocols, the state explosion problem is a major

limitation. Even these simple models have too many reachable states that

must be explored during an exhaustive state space search. While elec-

tronic commerce protocols tend to have more participants (at least 3), the

blowup in the size of the state space comes instead from the complexity

of the messages. The size and complexity of the messages used in elec-

tronic commerce protocols is much greater than the size of the messages

used in authentication and key exchange. For example, the 1KP protocol

analyzed in chapter 7 requires 6 messages, 2 of which have more than 20
�elds. The authentication protocol described earlier has one message with

7 �elds while the other messages have only 2 or 3 �elds. Because the ver-
i�cation requires that the adversary try all possible messages that match

the structure of the messages in the protocol, the number of messages
tried and thus the size of the state space is bound to grow exponentially
in the length of the messages. The situation is analogous to comparing

the number of strings of length 7 to the number of strings of length 20.
(The number of distinct strings grows exponentially in the length of the

string just as the number of distinct messages grows exponentially in the
length of the message). Later chapters explore ways of trying to cut down
the size of the state space.



Chapter 3

Formal System

The formal system I use to analyze security protocols is described in this

chapter. Because I am using model checking, the formal system will con-
sist of two parts. The �rst is an operational model of the system. This
model will implicitly describe the possible behaviors of the system. This

model will consist of independently executing processes that communicate
via messages. The second component is a logic or language in which to

express the requirements of the system. Generally, this language will be
at a higher level of abstraction in the sense that it does not say how a
certain relationship between states and/or actions is enforced, as long as

the relationship holds for all traces of the model. The implementation of
these components in Brutus is discussed below.

3.1 The Model

Like other model checkers, Brutus requires an operational description of

the behavior of agents participating in a protocol. This section begins with
a description of the messages involved in a protocol model and how they

are constructed. A mathematical model for the agents is then presented.

Finally, there is a discussion of the di�erent actions allowed during the
execution of a protocol and how they change the state of the system.

29
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3.1.1 Messages

Typically, the messages exchanged during the run of a protocol are con-

structed from smaller sub-messages using concatenation and encryption.

The smallest such sub-messages (i.e., ones which contain no sub-messages

themselves) are called atomic messages. There are four kinds of atomic

messages.

� Data messages play no role in how the protocol works but are in-

tended to be communicated between principals. The set of all data

messages is D.

� Principal names are used to refer to the participants in a protocol.

The set of all honest principal names is P. To this set we add the
unique name 
 for the adversary. The set P
 refers to the set of all
principal names, including the adversary.

� Nonces can be thought of as randomly generated numbers. The in-

tuition is that no one can predict the value of a nonce; therefore, any
message containing a nonce can be assumed to have been generated

after the nonce was generated. (It is not an \old" message.) The
set of nonces is N .

� Keys are used to encrypt messages. The set of all keys is K. In
the formal model, a function is used to form keys. This allows me

to associate public keys and session keys with principals. The three
functions are:

pubkey : P
 ! K

privkey : P
 ! K

symkey : P+

 ! K

So pubkey(A) is A's public key and privkey(B) is B's private key.

The function symkey can take any nonempty sequence of principal
names as an argument. These principal names are meant to denote

the principals who are to share the key. For example symkey(AS)

might be a symmetric key shared between A and a server S while

symkey(AB) might be a session key intended to be used by A and B.

In the literature, notation of the form KAS is used for a symmetric
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key and notation of the form K�1
B is used for a private key. For

the sake of readability, this notation is preferred here over the more

formal function described above.

Note that keys have the property that every key k has an inverse

k�1 such that for all messages m, ffmgkgk�1 = m. For public key

cryptography, public keys and private keys are inverses while for

symmetric key cryptography, every key is its own inverse.

(pubkey(X))�1 = privkey(X)

(privkey(X))�1 = pubkey(X)

(symkey(X))�1 = symkey(X)

Let A denote the space of atomic messages. Then

A = D [ P
 [ N [ K:

The set of all messages M over some set of atomic messages A is de�ned
inductively as follows:

� If a 2 A then a 2 M. (Any atomic message is a message.)

� If m1 2 M and m2 2 M then m1 �m2 2 M. (Two messages can be
paired together to form a new message.)

� If m 2 M and key k 2 K then fmgk 2 M. (A message m can be

encrypted with key k to form a new message.)

The notion of messages can also be generalized to message templates.

A message template can be thought of as a message containing zero or

more message variables. V will denote the set of message variables. To
extend messages to message templates the following rule is added to the

inductive de�nition of messages:

� If v 2 V is a message variable, then v 2 M.

Because keys have inverses, a message of the form ffmgkgk�1 is always
rewritten as (or simpli�ed to) m. It is also important to note that the

following perfect encryption assumption is necessary. The only way to
generate fmgk is from m and k. In other words, for all messages m;m1;

and m2 and keys k and k0
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1. fmgk 6= m1 �m2

2. fmgk = fm0gk0 implies m = m0 and k = k0

New messages are constructed from already known or existing mes-

sages by encryption, decryption, pairing (concatenation), and projection.

This message generation is modeled using a derivation relation \`" which

captures how a message m can be derived from some initial set of infor-

mation I.

1. If m 2 I then I ` m.

2. If I ` m1 and I ` m2 then I ` m1 �m2. (pairing)

3. If I ` m1 �m2 then I ` m1 and I ` m2. (projection)

4. If I ` m and I ` k for key k, then I ` fmgk. (encryption)

5. If I ` fmgk and I ` k�1 then I ` m. (decryption)

We will use the the notation I to denote the closure of the set I under the
rules given above. In other words m 2 I if and only if I ` m.

These rules de�ne the most commonly used derivability relation in the
literature. The rules stem from an intruder model proposed by Dolev and
Yao [19].

When trying to subvert a protocol, an adversary can only use messages

it can derive from some initial set of information and from overheard

messages using these rules. For example, if I0 is some �nite set of messages

overheard by the adversary and possibly some initially known messages,

then I0 represents the set of all messages known to the adversary. The
adversary is allowed to send any message in I0 to any honest agent in an

attempt to subvert the protocol. More rules could be added as proposed

by Mitchell [57], but at the cost of a much more complex system.

In general, I is in�nite, but researchers have taken advantage of the

fact that one need not actually compute I. It suÆces to check m 2 I for

some �nite number of messages m. However, checking if m 2 I must still
be decidable. I discuss this topic in greater detail in Chapter 4.
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3.1.2 Instances

A protocol is modeled as the asynchronous composition of a set of named

communicating processes, which model the honest agents and the adver-

sary. The model should also include an insecure and unreliable communi-

cation medium, in which a principal has no guarantees about the origin of

a message, and where an adversary is free to eavesdrop on all communica-

tions and free to interfere by introducing fake messages. These properties

of the communication medium are modeled by requiring that all commu-

nications go through the adversary. In other words, all sent messages are

intercepted by the adversary, and all messages received by honest agents
are actually sent by the adversary. In addition, the adversary is allowed to

create and send new messages from the information it gains by eavesdrop-
ping. The speci�c case where a message arrives safely at its destination

without being overheard is not explicitly modeled. However, this behavior
is simulated by the case where the adversary intercepts the message and
forwards it unchanged. Although the adversary has now overheard the

message, this simulation is \safe" in the sense that any attack that could
arise from an execution where the adversary does not overhear a message

will also arise from a similar execution where the adversary does overhear
the message.

In order to make the model �nite, a bound is placed on the number

of times a principal may attempt to execute the protocol. Each such at-
tempt will be called a session. Each session will be modeled as a principal
instantiating some role in the protocol (i.e., initiator or responder). For

this reason, the formal model of an individual session is called an instance.
Each instance is a separate copy or instantiation of a principal and consists

of a single execution of the sequence of actions that make up that agent's
role in the protocol, along with all the variable bindings and knowledge
acquired during the execution. A principal can have multiple instances,

but each instance is executed only once. Combining these instances with a

single instance of the adversary results in the model for the entire protocol.

De�nition 3.1.1 Each instance of an honest principal is modeled as a

4-tuple Ii = hHi; Bi; Ii; Pii where:

� Hi is the instance ID. This ID is unique for each instance. The

notation will be abused by referring to the instance Ii by its ID Hi

(or H
).
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� Bi � V �M is a set of variable bindings for this session. It is a

partial map from some subset of the variables appearing in the ses-

sion to the set of messages. B always contains at least one binding,

(pr; n) where pr 2 V is a special variable meant to hold the name of

the principal on whose behalf this instance is executing and n 2 P is

the name of this principal. The initial set of bindings, B0
i , consists

of the binding for pr, along with the bindings for things like freshly

generated nonces and keys. Note that instances that are playing the

same roles will have the same bound variables, although their values

will di�er except for possibly the variable pr.

� Ii � M is the set of messages known by this particular instance.

As in the case of bindings, the initial set of known messages is de-

noted as I0i . This set is partitioned into a subset consisting of fresh

messages I
]
i and a set of commonly known messages I[i = I0i � I

]
i .

I
]
i includes messages like newly generated nonces and session keys.

In order to be able to parameterize the roles of the protocol by the

nonces and keys, freshly generated messages (which will di�er even

among instances playing the same role) are referred to using vari-

ables that are common to the di�erent instances playing the same

role. Therefore, the set of freshly generated messages will be equal to

the values of the variables bound in B0
i �fprg (i.e., the range of the

initial bindings except for pr). In other words, we have the following

equality:

I
]
i = B0

i (V � fprg)

In particular, then, two instances Ii and Ij of the same principal

have the same set of initial messages except for freshly generated

messages. In other words, B0
i (pr) = B0

j (pr) implies I[i = I[j .

� Pi is a process description given as a sequence of actions to be per-

formed. These actions include the prede�ned-de�ned actions send

and receive, as well as user de�ned internal actions such as pos-

sibly commit and debit actions. Note that if two instances Ii and

Ij are playing the same role, their process descriptions are identical

in the initial state (P 0
i = P 0

j ).

For the sake of uniformity, the adversary is modeled as a special in-
stance, 
. However, the adversary is not bound to follow the protocol and
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so it does not make sense to include either a sequence of actions P
 or a

set of bindings B
 for the adversary. Instead, at any time, the adversary

can receive any message or it can send any message it can generate from

its set of known messages I
. Thus the only component of the adversary

instance 
 that is of any interest is the set of known messages I
.

The global model is the asynchronous composition of the models for

each instance, including the adversary. Because each instance has a unique

instance ID, the state can be represented as a collection (set) of instances

instead of an ordered tuple. If there are k instances of the honest agents,

the global state is

f
; I1; : : : ; Ikg

a collection consisting of the adversary and the k honest instances. Again,
I will abuse the notation and refer to the instances by their IDs. In other

words, I will refer to the global state as

fH
; H1; : : : ; Hkg

where H
 is the instance ID of the adversary and each Hi for 1 � i � k

is the instance ID of one of the honest agents.
Now that the idea of the state of an instance and the idea of the state

of a protocol have been formalized, a formalization is necessary for how
the model actually executes. In other words, it is necessary to de�ne how

one state transitions into another state. These transitions correspond to
actions taken by the individual instances. These actions are described
below.

3.1.3 Actions

The actions allowed during the execution of a protocol include the two

prede�ned actions send and receive , as well as possibly some user
de�ned internal actions. The model changes global state as a result of

actions taken by the individual components, or instances. More formally,

the transition relation is de�ned as follows:

! � ��H � A�M� �

where

� � is the set of global states
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� H is the set of instance IDs of the honest agents

� A is the set of action names (including send and receive )

� M is the set of all possible messages.

The notation �
Hi�a�m
�! �0 is used in place of the more cumbersome

(�;Hi; a;m; �
0) 2 !. In the de�nitions given below, 
 = hH
; ;; I
; ;i

refers to the adversary while Ii = hHi; Bi; Ii; Pii refers to the honest in-

stances. Again,

� = f
; I1; : : : ; Ikg

denotes the global state before the transition and

�0 = f
0; I 01; : : : ; I
0

kg

denotes the global state after the transition. In addition, B refers to the
obvious extension of a set of bindings B from the domain of variables to

the domain of message templates. In other words, B(m) is the result of
substituting each variable v appearing in m, with its corresponding value

B(v). More formally:

De�nition 3.1.2 Let B be a set of bindings, let k be a key, and let

m;m1; and m2 be message templates. Then we extend B to the set of

message templates with variables in the domain of B as follows:

� B(m) = m if m 2 D [ P
 [ N .

� B(pubkey(X)) = pubkey(B(X))

� B(privkey(X)) = privkey(B(X))

� B(symkey(X)) = symkey(B(X))

� B(v) = B(v) for v 2 V.

� B(m1 �m2) = B(m1) �B(m2)

� B(fmgk) = fB(m)gB(k)
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We can now concentrate on the de�nition of the transition relation.

The transition relation de�nition has three parts. The transition relation

must be de�ned for send actions, for receive actions, and for internal

actions.

� �
Hi�send�m
�! �0

An instance Hi can send message m in global state � and the new

global state is �0 if and only if the following hold:

1. I 0
 = I
 [m. (The adversary adds m to the set of messages it
knows.)

2. If in �, Ii = hHi; Bi; Ii; Pii and in �0, I 0i = hH 0
i; B

0
i; I

0
i; P

0
i i then

{ H 0
i = Hi (The instance ID remains unchanged.)

{ B0
i = Bi (The bindings remain unchanged.)

{ I 0i = Ii (The set of information remains unchanged.)

{ Pi = send (s-msg) � P 0
i (The instance is ready to send a

message, and that send action is removed from the process

description in the new state.)

{ m = Bi(s-msg) (The message that the instance is ready to
send and the actual message sent are the same.)

3. Ij = I 0j for all j 6= i. (All other instances remain unchanged.)

Notice that the adversary intercepts all messages. In order for the in-

tended recipient to receive the message, the adversary must forward
it.

� �
Hi� receive �m

�! �0

An instance Hi can receive message m in global state � and the new
global state is �0 if and only if the following hold:

1. m 2 I
. (The adversary can generate the message m.)

2. If in �, Ii = hHi; Bi; Ii; Pii and in �0, I 0i = hH 0
i; B

0
i; I

0
i; P

0
i i then

{ Hi = H 0
i (The instance ID remains unchanged.)
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{ B0
i is the smallest extension of Bi such that B

0
i(r-msg) = m

(The bindings of the instance are updated correctly, and

the message received matches the message template in the

receive action.)

{ I 0i = Ii [ m (The information of the instance is updated

correctly.)

{ Pi = receive (r-msg) �P 0
i (The instance is ready to receive

a message, and that action is removed from the process

description in the next state.)

3. Ij = I 0j for all j 6= i. (All other instances remain unchanged.)

Notice that all messages come from the adversary, although as stated
above they may simply have been forwarded unchanged. This allows

us to also model an adversary than can modify, misdirect, and sup-
press messages.

� �
Hi�A�m
�! �0

An instance Hi can perform some user de�ned internal action A

with argument m in global state � and the new global state is �0 if

and only if the following hold:

1. If in �, Ii = hHi; Bi; Ii; Pii, and in �0, I 0i = hH 0
i; B

0
i; I

0
i; P

0
i i then

{ H 0
i = Hi (The instance ID remains unchanged.)

{ B0
i = Bi (The bindings remain unchanged.)

{ I 0i = Ii (The set of information remains unchanged.)

{ Pi = A(msg) � P 0
i (The instance is ready to perform action

A, and that action is removed from the process description
in the new state.)

{ m = Bi(msg). (The message argument in the process de-

scription and the actual message occurring in the action
are the same.)

2. Ij = I 0j for all j 6= i. (All other instances remain unchanged.)

All that remains is to brie
y formalize what is meant by a trace of the

model:
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De�nition 3.1.3 A trace � = �0�1�1�1 : : : �n�n is a �nite alternating

sequence of states (�i) and actions (�i) such that �i�1
�i
! �i for all

0 < i � n. The number n is referred to as the length of �.

3.2 Logic

In Brutus, a temporal logic is used to specify the requirements or the

desired properties of the protocol. The quanti�ers in this logic range over

the �nite set of instances in a model. In addition, the logic includes the

past-time modal operator so that one can refer to things that happened
in the history of a particular protocol trace. The atomic propositions of
the logic can refer to the bindings of variables in the model, to actions

that occur during execution of the protocol, and to the knowledge of the
di�erent agents participating in the protocol. This discussion begins with
the syntax of the logic, followed by the formal semantics of the logic.

3.2.1 Syntax

Brutus uses a �rst order logic with quanti�ers ranging over the �nite
set of instances. The atomic propositions are used to characterize states,
actions, and knowledge in the model. The arguments to the atomic propo-

sitions are terms expressing instances or messages. Below is a formal
description of the terms in the logic.

� If Hi 2 ID is an instance ID, then Hi is an instance term. Often, an
instance ID like A2 is used to refer to the second instance of principal

A.

� If m 2 A is an atomic message, m is a message term.

� If Hi 2 H is an honest instance ID and v 2 V is a message variable

then Hi:v is a message term representing the binding of v in the
instance Hi.

� If m1 and m2 are message terms, then m1 �m2 is a message term.

� If m1 and m2 are message terms, then fm1gm2
is a message term.
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As in standard �rst order logic, atomic propositions are constructed

from terms using relation symbols. The prede�ned relation symbols are

\=" and \Knows". The user can also de�ne other relation symbols which

would correspond to user de�ned actions in the model. The relation sym-

bols are used in�x to construct atomic propositions as follows:

� If m1 and m2 are message terms, then m1 = m2 is an atomic propo-

sition. Examples of this atomic proposition would include check-

ing if a customer and merchant agree on the price of a purchase

(C0:price = M0:price), or checking if a particular instance of A be-

lieves it is authenticating with B (A0.partner = B).

� IfHi is any instance ID (including the adversary) andm is a message
term, then Hi Knows m is an atomic proposition which intuitively

means that instance Hi knows the message m. This proposition can
be used to verify that the adversary has not compromised the session

key as follows: :(H
 Knows K)

� If Hi is an honest instance ID, m is a message term, and Act is a
user de�ned action, then Hi Act m is an atomic proposition which

intuitively means that instance Hi performed action Act with mes-
sage m as an argument. For example, this could be used to check
if a customer has committed to a transaction with identi�er TID

(C0 commit TID).

Well-formed formulas (w�s) are built up from atomic propositions with

the usual connectives from �rst-order logic and modal logic. These con-
nectives are described below with an intuitive description of the intended
meaning of the connective. The formal meaning will be given in the formal

semantics.

� If � is an atomic proposition, then � is a w�.

� If � is a w�, then :� is a w�.

� If �1 and �2 are w�s, then �1 ^ �2 is a w�.

� if � is a w�, then 3P� is a w�.

The following common shorthands are also used:
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� �1 _ �2 � :(:�1 ^ :�2)

� �1 ! �2 � :�1 _ �2

� �1 $ �2 � �1 ! �2 ^ �2 ! �1

� 2P� � :3P:�

Quanti�ers range over instance IDs. Because all the models are �nite,

quanti�cation is equivalent to a �nite number of disjunctions or conjunc-

tions. Therefore, quanti�cation is also treated as a shorthand.

� 9x:� �
W

Hi2ID
[�=(x 7! Hi)].

This w� is true if the formula [�=(x 7! Hi)] is true for some instance
Hi (i.e., if � is true when some instance Hi is substituted for the
variable x). Note that, strictly speaking, � is not a formula allowed

by the syntax because somewhere inside it contains the formal vari-
able x instead of an instance ID. However, this notation is simply a
shorthand for explicitly writing out all the disjuncts. The result of

expanding this shorthand is a w�.

� 8x:� � :9x::�.

3.2.2 Semantics

The formal meaning of these logic formulas is given by the semantics
below. These semantics are given in terms of the formal model presented
in Section 3.1. In other words, the semantics describe how to evaluate

a formula in a given state of a given trace. As in the description of the

syntax, the semantics begin with the terms of the logic.

De�nition 3.2.1 The notation �(m) is used to denote the interpretation

of the message term m in the state �. This is de�ned inductively on the

structure of m.

� �(a) = a for any atomic message a 2 A.

� �(Hi:v) = Bi(v) where Ii = hHi; Bi; Ii; Pii is an instance in the

global state �.

� �(m1 �m2) = �(m1) � �(m2) for message terms m1 and m2.
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� �(fmgk) = f�(m)g�(k) for message terms m and k.

The w�s of the logic are interpreted over the traces of a particular

model. Recall that a trace � consists of a �nite, alternating sequence of

states and actions �0�1�1 : : : �n. The length of a trace � is denoted by

length(�). The semantics of w�s in the model are given via a recursive

de�nition of the satisfaction relation j=. The notation h�; ii j= � means

that the ith state in the trace �, satis�es the formula �. The satisfaction

relation is de�ned for atomic propositions as follows:

� h�; ii j= m1 = m2 i� �i(m1) = �i(m2). Thus the formulam1 = m2 is

true in a state i� the interpretations ofm1 andm2 are equal. In other
words, two message terms are equal in a state if after applying the

appropriate substitutions to the variables appearing in the message
terms, the resulting messages are equal.

� h�; ii j= Hj Knows m i� �i(m) 2 Ij for the instance

Ij = hHj; Bj; Ij; Pji in �i. In other words, the formulaHj Knows m

is true in a state if the instance Ij can derive message m from its set

of known messages in that state. The instance need not be an honest
instance. For example, h�; ii j= H
 Knows m i� �i(m) 2 I
.

� h�; ii j= Hj A m i� �k = Hj �A � �i(m) for some 1 � k � i. In other
words, h�; ii j= Hj A m for some user de�ned action A i� the honest
instance Hj has performed action A with argument m.

The extension of the satisfaction relation to the logical connectives is
straightforward.

� h�; ii j= :� i� h�; ii 6j= �.

� h�; ii j= �1 ^ �2 i� h�; ii j= �1 and h�; ii j= �2

� h�; ii j= 3P� i� there exists a 0 � j � i such that h�; ji j= � In

other words, the formula 3P� is true in a state of a trace � if the

formula � is true in any state of the trace up to and including the
current state.

A formula � is said to be true in a trace � (denoted as � j= �) i� � is true
in every state of the trace �.
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3.2.3 Speci�cation Examples

Examples of how interesting security properties can be expressed in the

logic are given below:

� Payment Authorization. For the 1KP protocol, one wishes to show

that whenever the customer's account is debited, the customer must

have authorized that debit. This is expressed with the formula

8a : (a:pr = A) ^ (a debit (a:CC; a:price))!

9c : (c:pr = C) ^ (a:CC = c:CC) ^3P (c auth a:price)

This formula states that for all instances a, if a is an instance of the

authority A, and a debits the credit card account CC by the amount
PRICE, then there exists an instance c of the customer C with that

same credit card number that authorized a debit of that amount.

Note that this formula would be true of a trace where there were
multiple debits of a credit card by the same amount, but where
there was only one authorization. However, every electronic com-

merce model we tried with more than one instance of the credit
card authority was too large to be searched successfully. Therefore

only one debit action could possibly occur and this formula suÆced.
The formula can be corrected by adding information identifying the
transaction (like a transaction ID or nonce) to the argument lists for

the auth and debit actions.

� Privacy. The 1KP electronic commerce protocol should not reveal

information about the transaction. In other words, only the appro-

priate principals should know the order information. This can be

expressed with the formula

8s : 8c : (c:pr = C) ^ (s Knows c:DESC)!

(s:pr = C) _ (s:pr =M)

This formula states that for all instances s, if s knows the customer's

description of the transaction, then s is an instance of either the
customer or the merchant.
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� Non-repudiation. One may want to check that a principal cannot

deny knowledge of a particular value (a key or nonce). For instance,

in the Needham-Schroeder protocol, one can check that whenever

principal A ends a session with principal B, B must know the nonce

created by A. This is a somewhat weak notion of non-repudiation.

A may not be able to prove B's knowledge of the nonce. Indeed,

A may not even be able to convince itself that B knows the nonce.

The formula below simply states that there is no trace in which B

does not know the nonce.

8s : 8t : s end t:pr ! 9r [(t:pr = r:pr) ^ (r Knows s:Nonce)]

This formula states that for all pairs of instances s and t, if s ends

a protocol session with t's principal, then there is an instance r of
that principal (possibly r = t) that knows the nonce generated by s.

� Anonymity. Certain protocols claim to maintain the anonymity
of one or more of the parties involved. The requirement that A's
anonymity is maintained can be expressed with the following for-

mula:

8s : s Knows A! 2P (s Knows A)

This formula states that for all instances s, if s knows the name of
principal A, then it always knew the name of A. In other words, it

did not learn the name during the execution of this protocol.

Again, this is weaker than what is usually meant by anonymity.

Anonymity would require that a particular message or transaction

not be associated with a principal. While learning a principal's

name during the execution of a protocol would suggest a failure to
guarantee anonymity, the formula does not guarantee anonymity. In

particular, if an adversary already knew the name of the principal

in question, this formula would be satis�ed regardless of what the

protocol does.



Chapter 4

Algorithms

This chapter focuses on the algorithms used in Brutus. First, the depth-
�rst search algorithm that is used to perform a state space exploration of
the model is discussed. The second algorithm considered is the algorithm

used to keep track of the messages known by the various agents, including
the adversary. Finally, the use of partial order reductions and of symmetry
reductions to reduce the size of the state space is presented. Only the

actual algorithm is described (i.e., how and when Brutus decides to
prune the computation tree). The proofs of correctness are presented in

chapters 5 and 6.

4.1 Search Algorithm

Recall that a trace is an alternating sequence of global states and ac-

tions, and that we are interested in checking all possible traces. Clearly,

everything in the model is �nite except for the set of messages that the

adversary can generate. If the adversary never generates an in�nite set of

messages, then the entire model is �nite. This would mean that Brutus
can perform a depth-�rst search to check that all traces of the model sat-

isfy the given security properties. For the moment, we will assume that

this is the case. The question of ensuring that the search is �nite will be
considered later.

A straightforward depth-�rst search algorithm is presented in Fig-

ure 4.1. This algorithm will form the basis of the explicit model checking
algorithm in Brutus. Note that the speci�cation formula � is included

45
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1 proc DFS(s; �)

2 push(S; s)

3 while (not empty(S)) do

4 scur = pop(S)

5 if sat(scur; �)

6 then L = expand(scur)

7 foreach snext 2 L do

8 push(S; snext)

9 od

10 else counter-example(scur; �)

11 �

12 od

Figure 4.1: Search algorithm

as a parameter to DFS. This is because Brutus must check every state

to ensure that it satis�es the speci�cation �. This is done by calling the
function sat. This function is de�ned recursively and is a straightforward

implementation of the j= relation de�ned in Section 3.2. If the state does
not satisfy �, then Brutus prints out the partial trace that has led to the
current state by calling the procedure counter-example. Note that both

sat and counter-example need access to the history or path to the current
state. This path is updated in the function expand by keeping a pointer in
every reached state that points back to the previous state. It is important

to note that, unlike the usual depth-�rst search algorithm, DFS does not
check to see if an expanded state is one that has been reached already.

In other words, Brutus does not keep track of the set of states already
visited. This is because the speci�cation language allows us to refer to

past events. In some sense, then, the current state must include history

information. Since each possible sequence of actions is tried at most once,
one can never reach the same state via the same sequence of actions. This

means that no two states (even otherwise identical states) ever have the
same history; therefore, no two states are ever the same in our model.

The function expand generates the set of all possible next-states from

a speci�c current state. Again, this is a straightforward implementation

of the transition relation de�ned in section 3.1. Brutus simply checks

all instances in the current state and determines what actions they can
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take. Instances can always take internal actions. Send actions are also

always enabled, and when they are taken, the adversary's knowledge is

updated appropriately. An instance can take a receive action only when

the adversary can generate a message that matches the template of the

message that the instance is waiting to receive. Often, the adversary can

generate more than one message that matches this template. If this is the

case, each message leads to a di�erent receive action and a di�erent next

state. As mentioned in the description of DFS, when DFS constructs the

next state a back pointer to the current state is created so that Brutus

can keep track of the trace up to the current state. In the symmetry

and the partial order discussion (Sections 4.4 and 4.5) I will describe how
the expand function is modi�ed to restrict the set of next states to be

considered.

4.2 Ensuring Finite Branching

Before discussing how to maintain the set of messages known by the ad-
versary, let us return to the question of ensuring that our algorithm termi-

nates. We need to ensure that no part of the search becomes in�nite. The
only part of the model that is in�nite is the set of known messages. The
set of messages known by any instance is usually in�nite. For example,

an agent can repeatedly encrypt a message with a key. Therefore, simply
checking to see if an agent knows a message could involve checking an
in�nite set unless some care is taken. This will be the topic of section 4.3.

For now we concentrate on the other way that the in�nite set of known
messages could a�ect our search. Whenever an instance is waiting to re-

ceive a message, the adversary must be able to generate that message. But
receivers specify message templates that they are willing to receive. This

template could match an in�nite number of messages. Since the adversary

can also generate an in�nite number of messages, this could lead to an in-
�nite number of receive actions that an instance could take. This is a

much more fundamental problem since now the number of states in the

model becomes in�nite. In particular, the branching factor at a particular
state becomes in�nite. The number of messages considered must some-

how be restricted to a �nite set. This is not a \safe" thing to do. By not

considering certain messages, we might end up not considering a behavior
that violates the speci�cation. This, in turn, would lead us to incorrectly
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conclude that the model satis�es the speci�cation. Although there has

been work on �nding a �nite subset of messages that would still preserve

all errors in the model [75], this subset is still too large to be practical

for model checking. In what follows two \natural" (but not necessarily

\safe") ways of limiting the number of messages are considered.

4.2.1 Bound on message complexity

The easiest and probably most straightforward way of limiting the number

of messages tried by the adversary is to limit the number of message

construction rules that it uses when constructing a message. In other
words, one can bound the \size" or more accurately the complexity of

the messages the adversary can generate. While this seems ad hoc, it
also seems intuitive that some such bound should exist and that repeated
concatenation and encryption could only help up to a certain point. Stoller

has computed a bound on the number of nested encryptions that need to
be allowed in order to prove the protocol correct [75]. Roughly, this bound

is the product of the number of encryptions appearing in all messages
sent and received in the protocol and the total number of instances in the
protocol model. Since the number of messages the adversary can generate

of a certain complexity (with a certain number of nested encryptions)
is roughly exponential in the number of nested encryptions, this bound
is too high to use in practice. Typically, one must severely restrict the

power of the adversary by allowing it to encrypt only once or possibly at
most twice when generating a message. Even if the number of encryptions

allowed is equal to the number of nested encryptions appearing in the most
complex message in the protocol, one can easily come up with a protocol
for which the restriction prevents the model checker from �nding an error.

For example, consider the following pair of protocols:

1. A! B : fffxgKb
gKb

gKb

2. B ! A : fffxgK�1
b
gK�1

b
gK�1

b

and

1. A! B : fNagKb

2. B ! A : fNagKa
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The �rst protocol is a somewhat contrived signature protocol where

B signs messages on behalf of A. The second is a simple nonce challenge

where A requires that B decrypt the nonce Na using its private key. Nei-

ther of these protocols is intended to be general purpose. The idea here is

that A and B are the only honest agents in the protocols and they always

play the same roles. In other words, B is the only principal perform-

ing signatures and A is the only principal issuing nonce challenges. The

adversary is still allowed to modify messages, but it is not allowed to par-

ticipate in either protocol. The security requirement is that whenever A

receives the correct response fNagKa to its nonce challenge, B must have

participated in the nonce challenge protocol. The most complex message
has three nested encryptions. However, if we restrict the adversary to only

four nested encryptions we will miss the following violating trace:

1. A! 
(B) : fNagKb

2. 
(A)! B : ffffffNagKb
gKb

gKb
gKb

gKb
gKb

3. B ! 
(A) : Na

4. 
(B)! A : fNagKa

In this trace, A successfully completes the nonce challenge protocol,
but B did not participate in the nonce challenge protocol. PrincipalB was

participating in the signature protocol. This attack required the adversary
to perform �ve nested encryptions in step 2 on the message fNagKb

it in-

tercepted from A in step 1. Clearly, it is not safe to restrict arbitrarily the
amount of encryption the adversary is allowed to perform when modifying

messages. However, this kind of restriction may sometimes be necessary

in order to be able to perform some analysis, even if not exhaustive.

4.2.2 Typed messages

A second way to restrict the set of messages generated by the adversary

is to enforce a type on all messages received by honest agents. These
types include the atomic types (nonces, keys, principal names, data) and

compound types built up using encryption and concatenation (for exam-

ple, fnonce; keygkey ). Since the model contains only a �nite number of

atomic messages, there will only be a �nite number of messages of any
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given type. When the adversary is trying to generate messages that an

honest agent is willing to receive, the set of messages it can attempt will

be restricted by the type associated with the message being received, thus

making the set of messages �nite.

While adding a type system may seem to be a much more reasonable

restriction than the arbitrary bound on message complexity discussed ear-

lier, it is not any safer. To see this, we now consider a protocol proposed

by Woo and Lam [86]. The protocol is given below:

1. A! B : A

2. B ! A : Nb

3. A! B : fNbgKas

4. B ! S : fA � fNbgKasgKbs

5. S ! B : fA �NbgKbs

This protocol can be attacked as follows:

1. 
(A)! B : A

2. B ! 
(A) : Nb

3. 
(A)! B : Nb

4. B ! 
(S) : fA �NbgKbs

5. 
(S)! B : fA �NbgKbs

Note that attack requires that in step 3, B accept a nonce when it is
expecting an encrypted nonce. If only messages that match the receiving

type are allowed, then the adversary would not be allowed to send this

message and this attack would not be found. This solution seems more
satisfactory because one might be willing to believe that B can tell the

di�erence between a nonce and an encrypted nonce although both would
technically be random numbers from B's point of view. However, in gen-

eral, this restriction would mean that receivers of encrypted messages

could tell the types of components hidden \underneath" the encryption,
even if the receiver had no way of checking because it does not possess the

necessary key. For example, consider the following protocol:
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1. A! S : fA;B; fA;B;KgKB
gKAS

2. S ! B : fA;B;KgKB

When the server S receives the �rst message, it cannot decrypt the

component fA;B;KgKB
since it does not possess B's private key K�1

B .

Without knowledge of the new secret key K, it also cannot construct

fA;B;KgKB
itself to compare against the received message. However, if

we place the type restriction on received messages, we would in essence

allow the server to reject a message of the form fA;B;XgKB
even though

it could not really \look inside" to check that the message had components

of the correct type. In other words, there is no way for the S to know that

the X in fA;B;XgKB
is not a key, yet we are giving S this capability.

Although enforcing message types may seem reasonable, it is not safe.
As was the case with the previous restriction on adversary capability,

certain attacks may be lost when using this kind of restriction. However,
some kind of restriction is often necessary. Without any restrictions, the
model can be in�nite and hence could not be analyzed using standard

model checking.

4.3 Maintaining Information

While the solution to in�nite branching is not completely satisfactory,
the solution to the problem of maintaining an in�nite set of messages
known by the adversary is. Section 3.1 discussed how new messages can

be generated from known messages using a set of derivation rules. In
general the set of all known messages is in�nite; however, the discussion

that follows demonstrates that this set can be represented implicitly by

a �nite set of generators. The most obvious set of generators for the
adversary is simply the set of all initially known messages together with

all messages overheard during the execution of the protocol. However,
there is still the question of how to decide whether a particular message

m can be generated. In general, a derivation of m could be arbitrarily

long. After �nite computation one can only search a �nite number of
derivations, each with bounded length. At any moment in time how can

we be sure that there is no derivation of m with a length longer than the
ones tried so far? The solution to this problem is to restrict ourselves to

normalized derivations.
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4.3.1 Normalized derivations

A message that can be derived from some set of messages typically has an

in�nite number of derivations. We will prove that any message that can

be derived from a set of messages also has a normalized derivation. This

normalized derivation has a very speci�c structure for which Brutus can

search. The existence of normalized derivations guarantees that ifBrutus

cannot build a derivation with this speci�c structure, then no derivation

of that message exists and the message cannot be generated.

Before turning to the technical details and proofs, let us take an in-

tuitive look at what is meant by a normalized derivation. Recall that

the message derivation rules came in pairs. Encryption and decryption
are inverses, as are pairing and projection. Borrowing terminology from
[36], each pair has a shrinking rule that makes the messages smaller. The

shrinking rules are decryption and projection. The corresponding expand-
ing rules (encryption and pairing) yield more complex messages. A nor-

malized derivation will be one in which all shrinking rules occur before
all expanding rules. Intuitively this would mean that if one can derive a
message from a set of known messages I, then there must be a derivation

in which one �rst closes I under the shrinking rules to get a set of \gener-
ators". From this set of generators one then applies only expanding rules
to generate the message in question. Note that this makes the question

of whether or not the adversary can generate a message decidable. One
�rst closes under shrinking rules. This is guaranteed to terminate because

each simplifying rule yields a smaller message and this process must stop
when atomic messages are reached. One then tries all combinations of
expanding rules that yield a message of the desired size. Since each ap-

plication of an expanding rule increases the length of the message, there

is a maximum number M of expanding rules that can be applied with-

out exceeding the size of the message in question. If, after applying all

possible combinations of M expanding rules, the message has not been

generated, then the message does not have a normalized derivation. If

every derivable message has a normalized derivation, then any message

that does not have a normalized derivation cannot be generated at all.

In practice one does not generate all messages of a speci�ed size. The

actual algorithm used by Brutus tries to generate the message by recur-

sively trying to generate components until all the messages that need to

be generated are in the set of generators or until an atomic message that
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is not in the set of generators is reached. In the later case, the message

cannot be generated. The details can be found in Section 4.3.2 and in [12].

Most other model checkers used to verify security protocols use a sim-

ilar idea and this result applies pretty directly to their work as well. The

following proof also demonstrates why the simplifying assumption that all

keys are atomic is so useful, and why this assumption is so common in the

literature. Also, there is much similarity between this method and the use

of shrinking rules and expanding rules by Kindred and Wing [35, 36], de-

spite the fact that they are using theorem proving and theory generation

instead of model checking. The high level idea is the same; however, they

apply it to a more complicated set of proof rules. Because I use a more
restricted set of rules, I am able to use results from natural deduction.

m1 m2
�I

m1 �m2

m1 �m2
�El

m1

m1 �m2
�Er

m2

m k
fgkI

fmgk

fmgk k�1

fgkE
m

Figure 4.2: Derivation rules for messages

I will assume that the reader is familiar with derivation trees and so
I will not formalize them here. We will say that a particular message m

is derivable from a set of information I, if there exists a valid derivation

tree using the inference rules in Figure 4.2, such that m appears at the

bottom of the tree and all messages appearing at the top of the tree are

contained in I. An example of such a tree can be found in Figure 4.3.

Note that in general there is more than one derivation tree for some
message m. While all derivations trees are �nite, their sizes are un-

bounded. In order to prove the decidability of checking I ` m we would

like to show that there is always a normalized derivation of bounded size
for which one can search. Unlike normalized derivations in natural de-

duction, this normalized derivation will have the additional property that
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fagk � b
�El

fagk k�1

fgkE
a

fagk � b
�Er

b
�I

a � b

Figure 4.3: A derivation tree for ffagk � b; k
�1g ` a � b

all elimination rules (�El; �Er; fgkE) appear above all introduction rules

(�I; fgkI). A similar idea for placing bounds on the lengths of derivations
can be found in [5, 36, 41, 63]. However, this framework allows a straight-
forward translation into a proof search algorithm and explains the reasons

behind certain assumptions made about the message space, in particular,
the perfect encryption assumption and the atomic key assumption.

Each message construction operation (pairing and encryption) is char-
acterized by a pair of inference rules. One is an introduction rule that

creates a new message whose principal connective is that operation. For
example the fgkI rule creates a new encrypted message fmgk from the
message m and the key k. The second is an elimination rule that removes

that particular operation from the compound message assuming it is the
principal (outermost) connective. For example the �El rule takes a mes-
sage m1 � m2 and returns its left component m1. The intuition behind

normalized derivations is that an instance of an elimination rule appear-
ing immediately below an instance of the corresponding introduction rule

gains no new information. Therefore, such a derivation is transformed

into a smaller derivation in which this redundant step is eliminated.

Using terminology similar to that found in [69], we will call the key
k in an instance of the inference rule fgkE a minor premise. Any other

premise is a major premise. A message that appears in a derivation tree

T as the conclusion of an introduction rule and as a major premise of an
elimination rule is a maximum message. A derivation tree is a normalized

derivation if it contains no maximum message. We now show that any
derivation tree T can be transformed into a normalized derivation tree T 0

by eliminating maximum messages one at a time.

Let T be a derivation tree that is not atomic, and letM be a maximum

message in T . Then T 0, the reduction of T at M , is constructed from T
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�-reduction (i = 1; 2)

�1

m1

�2

m2

m1 �m2

mi

�

)

�i

mi

�

fgk-reduction

�1

m

�2

k

fmgk

�3

k�1

m

�

)

�1

m

�

Figure 4.4: Reduction rules for derivation trees

using one of the rules in Figure 4.4, depending on the form of M . In the
diagrams, � is what would remain of T after removing M and everything

above it, while �1, �2, and �3 represent sequences of derivation trees.

Theorem 4.3.1 Any derivation tree T for m depending on assumptions

in A can be transformed into a normalized derivation tree T 0 for m de-

pending on the same assumptions in A.

Proof: The proof is by induction on the number of maximum messages.

If T has no maximum messages then it is already normalized and there
is nothing to do. Otherwise, take any maximum message M . Because

of the perfect encryption assumption, M cannot be the conclusion of an
introduction rule for one operator and a major premise in the elimination

rule for the other operator. Therefore, one of the reduction rules applies to

M . After applying the appropriate reduction rule, one maximum message
is removed and no new maximum messages are introduced. The result is

a derivation tree for m that depends on the same assumptions and which
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has one less maximum message. By the induction hypothesis this new

derivation tree can be properly transformed.

2

In fact, the structure of these derivations trees is even more restricted

as the following theorem demonstrates.

Theorem 4.3.2 No introduction rule appears above an elimination rule

in a normalized derivation tree.

Proof: A derivation tree is normalized if no message appears as the con-
clusion of an introduction rule and a major premise of an elimination rule.

Therefore, only minor premises need to be considered. The only minor
premises are keys. Recall that keys are restricted to be atomic; there-
fore, no key can appear as the conclusion of an introduction rule. Hence

no message can appear as the conclusion of an introduction rule and a
premise of an elimination rule. It follows that no introduction rule ap-
pears above an elimination rule.

2

4.3.2 Information algorithms

Theorem 4.3.2 suggests an eÆcient algorithm for determining if I ` m.
Since all elimination rules appear above all introduction rules in a nor-

malized derivation, one can �rst construct I�, the closure of the initial set
of assumptions I under all elimination rules. A backwards search for a
derivation of m from I� using only introduction rules is then performed.

(The notation I� `I m is used to denote that such a normalized deriva-

tion tree exists.) We will now prove termination and correctness of this

algorithm.

Theorem 4.3.3 I ` m i� I� `I m (Correctness)

Proof: ()) Consider the case when I ` m. Let T be a normalized
derivation tree for m from I. By removing all elimination rules, we get

a new tree T 0 for m from I [ �, where � is the set of all the messages

appearing at the top of T 0 that are not in I. So T 0 is a derivation tree

for I [ � `I m. From the original tree T , each Æi 2 � can be derived
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from I using only elimination rules, so I [� � I�. Therefore T 0 is also a

derivation tree for I� `I m.

(() Consider the case when I� `I m. By de�nition, I ` i for each

i 2 I�. Therefore, we can transform the tree T 0 for I� `I m into a tree

T for I ` m by placing a derivation tree Ti for I ` i above each message

i 62 I at the top of T 0.

2

Theorem 4.3.3 proves the correctness of the algorithm. To prove termi-

nation, consider all the messages that are generated during the derivation.

The elimination rules start from the assumptions and generate only sub-
messages. Since the original messages are �nite length, and since there are

only a �nite number of them, the process of closing under elimination rules
terminates. Now consider the backwards search using introduction rules.

Since these rules are applied backwards, the new major premise messages
that become subgoals for the search must be proper submessages of the
message being searched for. In other words, each subgoal is smaller then

the goal that generates it. Therefore, this part of the search terminates
when either a message in I� is reached or an atomic message that is not

in I� is reached. The minor premises are all atomic keys. Therefore,
any search for minor premises also involves a simple scan of I� as well.
Therefore, the entire algorithm terminates.

The implementation of this algorithm is given in the following two
�gures. Figure 4.5 shows how to update the adversary's set of informa-

tion when it learns a new message. Any time the adversary gains a new
message, it is added to the set of messages the adversary currently has
and the new set is closed under elimination rules and redundant messages

are removed. (A message in a set I is redundant if it can be generated

from the other messages in I using only introduction rules.) Figure 4.6

describes how to search for a derivation of m from I� using only introduc-

tion rules. This search involves �rst checking if m 2 I�. If this fails, then
it recursively searches for the components of m.

4.4 Partial Order

As is the case with model checking in general, the use of model checking

to analyze and verify security protocols is severely limited by the state ex-
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1 funct add(I;m)

2 foreach i 2 I do

3 if i = fxgy ^ m = y�1

4 then I := add(I; x)
5 if y 2 I then I := I � i �

6 �

7 od

8 if m 2 A

9 then return I [ fmg

10 elsif m = x � y

11 then return add(add(I; x); y)
12 elsif m = fxgy ^ y�1 2 I

13 then if y 2 I

14 then return add(I; x)
15 else return add(I [ fmg; x)

16 �

17 else

18 return I [ fmg

19 �

Figure 4.5: Augmenting the adversary's knowledge
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1 funct in(I;m)

2 if m 2 I

3 then return true

4 elsif m = x � y

5 then return in(I; x) ^ in(I; y)

6 elsif m = fxgy
7 then return in(I; x) ^ in(I; y)

8 else

9 return false

10 �

Figure 4.6: Searching the adversary's knowledge

plosion problem. Intuitively, the problem is that small increases in the size

of the model (for example adding another instance or another principal)
often result in very large increases in the size of the state space. Typically,
the state space grows exponentially with respect to the number of com-

ponents in the model. Since Brutus essentially performs an exhaustive
search, this can greatly restrict the models that can be analyzed.

One source of the state space explosion is the interleaving semantics

given to the composition of two or more processes. Interleaving semantics
models the behavior of a system by considering all possible execution

orderings of the enabled actions. This is often pictured in the literature
using a diamond as in Figure 4.7. The state at the top of the �gure is one

where two actions, a and b, are enabled. From that state one can perform
the action sequence ab or the action sequence ba and end up in the state
at the bottom of the �gure.

While all interleavings must be considered when analyzing the behavior
of a system, it may not be necessary to explore all interleavings when

performing the model checking. This has been the idea behind a great

body of research in what is called partial order theory [23, 67, 81]. The

idea is to reduce the number of interleavings that are explored. One way
to do this is to expand the states by taking actions from some ample set of
actions. Since the ample set of actions is a subset of the set of all enabled

actions only a subset of all the possible traces is generated or explored.

The partial order theory helps us to choose an ample set in such a way
that for every trace that is discarded, there is a trace that is considered
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b a

a b

Figure 4.7: A state with two enabled actions

which agrees with the discarded trace on the speci�cation.
This theory is discussed in more detail in Chapter 6. Speci�cally, I

discuss how the general theory is simpli�ed in the case of my models,
and also how I have generalized the theory to handle models that deal
with a notion of knowledge. For now, the discussion concentrates on how

this partial order reduction is implemented in Brutus and the proof of
correctness is postponed until Chapter 6.

Recall the de�nition of the depth �rst search performed by Brutus.
The algorithm is duplicated in Figure 4.8. In this straightforward imple-
mentation, the function expand generates all next states that result from

taking one of the actions enabled in the current state. I implemented the
partial order reduction by modifying the de�nition of the expand function

so that it does not necessarily expand all the enabled actions in a state.
The new expand function is given in Figure 4.9. In the algorithm, if � is
an action enabled in state s, then �(s) is the state resulting from taking

action � in state s. Also, the function enabled returns the set of actions

that are enabled in state s. Intuitively, the algorithm works as follows:

1. If there is an internal action enabled that does not appear in the
speci�cation, then expand using only \the �rst" such action.

2. Otherwise, if there is a send action enabled then expand using only

\the �rst" send action.

3. Otherwise, expand all enabled actions to generate all possible next
states.
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1 proc DFS(s; �)

2 push(S; s)

3 while (not empty(S)) do

4 scur = pop(S)

5 if sat(scur; �)

6 then L = expand(scur)

7 foreach snext 2 L do

8 push(S; snext)

9 od

10 else counter-example(scur; �)
11 �

12 od

Figure 4.8: Search algorithm

1 funct expand(s; �)

2 foreach � 2 enabled(s) do
3 if (� = INTERNAL) ^ (:occurs(�; �))
4 then return f�(s)g

5 �

6 od

7 foreach � 2 enabled(s) do
8 if � = SEND

9 then return f�(s)g

10 �

11 od

12 ample = fg

13 foreach � 2 enabled(s) do
14 ample = ample [ f�(s)g

15 od

16 return ample

Figure 4.9: Partial Order Expand Function
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The words \the �rst" appear in quotes because the algorithm, breaks out

of the foreach loop after encountering the �rst such action. However,

there is no ordering on the actions. The order in which the actions are

considered is arbitrary.

4.5 Symmetry

There is another source of state space explosion which has generated quite
a bit of research. The source of the explosion is the replicated components

that often appear in models. In the realm of hardware veri�cation, one of
the most obvious replicated components is memory. In security protocols
veri�cation, the replicated components appear for two reasons. Multiple

principals can participate in the protocol; however they can play the same
role and execute the same actions. Secondly, one principal may partici-

pate multiple times in a protocol. Since Brutus models each session or
execution of the protocol with a di�erent instance, the model will have
replicated instances.

If a model contains replicated components, then the model possesses
symmetries. If the components are indeed identical, one should be able

to swap the roles of the components without changing the behaviors of
the system. In the case of a hardware example, one should be able to

swap the roles of two lines of memory or the roles of two general purpose
registers without changing the possible behaviors of the system. In the

case of security protocols, one should be able to swap principals that take

on the same role in the protocol as well as the di�erent attempts of the
same principal to participate in the protocol.

A number of researchers have studied the possibility of exploiting sym-
metry to reduce the size of the state space that must be explored during

model checking [9, 21, 29, 30, 31]. The reductions employed by Brutus
follow from these general theories; however, Brutus does not require

the heavy machinery used by more general model checkers that exploit

symmetry. The reductions are proven correct in Chapter 5. The present
discussion is restricted to a description of the implementation of the algo-
rithm.
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4.5.1 Principal symmetry

Currently, principal symmetry (the symmetry that arises because di�erent

principals play the same role) is not exploited by Brutus because the

number of instances of any principal are �xed for any model. It is up to

the user to realize that a model in which customer A can participate once

and customer B can participate twice should be equivalent to a similar

model where customer A can participate twice and customer B can only

participate once. For this reason, the user only models one of these two

possibilities. However, it may be useful to have a more general kind of

model, one in which we allow a total of three customer instances which

can be divided among A and B in any of four possible ways. One can
see that two of these ways are redundant. For example, the case where A
participates three times and B does not participate is equivalent to the

case where B participates three times and A does not participate. One
need only swap the names of A and B. The same holds for the two cases

where one principal participates twice while the other participates once.

One can avoid these redundant cases by implementing a model gener-
ator for the current model checker. This model generator takes the names

of the principals, what roles they can play in the protocol, and the to-
tal number of instances allowed for each role in the model. The model
generator then generates a set of con�gurations. Each con�guration is a

set of functions, one for each role. Each such function maps a principal
name to the number of times that principal can participate in the pro-

tocol in the given role. In our previous example then, there would be a
customer function that maps A to the number of times A can participate
as a customer and B to the number of times B can participate as a cus-

tomer. The sum over all principal names should be the total number of

instances allowed for that role. This then speci�es a model which can

currently be checked by Brutus. The symmetry reduction in this case

involves making sure that symmetric con�gurations are avoided. If C is a

particular con�guration and � is a permutation on the principal names,

then �(C) = f f Æ � j f 2 C g. Using this de�nition then, the con�gura-

tion where customer A can participate twice and customer B participates

once is symmetric to the con�guration where B participates twice and A

once via the permutation that swaps A and B.

Because this feature has not been implemented, I do not go into more

detail here, but I do prove the correctness of this reduction in Section 5.2.
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4.5.2 Instance symmetry

The second source of symmetry arises because a principal is allowed to

participate multiple times in a protocol. For example, imagine any pro-

tocol that has two parties, an initiator who sends the �rst message (A)

and a responder who receives the �rst message (B). In the model of the

protocol, one would like to allow the possibility of multiple executions of

the protocol by the same parties. Let us assume then that the model has

three instances for each participant (A1; A2; A3; B1; B2; and B3) so that

each A and B can attempt to execute the protocol three times. In the

start state, the Ai are symmetric and the Bi are also symmetric. They are

identical up to their names (instance IDs). At this point in time, anything
A1 can do, A2 or A3 can do. The same holds for the Bi. Intuitively, if we
assign IDs to the di�erent instances in the model, then the initial state is

symmetric with respect to these instance IDs. The instances are equiv-
alent because they are instances of the same principal playing the same

role. Two instances that either belong to di�erent principals or are play-
ing di�erent roles in the protocol are not equivalent. Permutations that
only swap equivalent start state instances are called safe permutations.

These safe permutations in turn allow us to permute traces. Safe per-
mutations only permute instances that are equivalent. In others words,
instances that can do the same things. This means that while the in-

stances may only be equivalent in the start state, one can still permute an
entire trace because whatever one instance can do throughout a trace, an

equivalent instance could do in a permuted trace. For example, consider
Figure 4.10. The �gure on the left represents a trace in which B1 success-
fully responded to a protocol session with A1 and similarly for the pairs

(A2; B2) and (A3; B3). The �gure on the right represents a trace in which
B2 successfully responded to A1 and similarly for the pairs (A2; B3) and

(A3; B1). The traces are symmetric as are the graphs. This is demon-

strated in the �gure on the right. By permuting the labels on the vertices
(the instance IDs in the model) as suggested by the cycling arrows, we

arrive at the original graph (trace).

This symmetry induces an equivalence relation on the set of all traces
of a model. Two traces are equivalent if there is a safe permutation that

maps one to the other. Since the requirements for the models shouldn't
depend on the instance IDs, the requirements should be insensitive to

these permutations. When this is the case, one can restrict the exhaustive
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Figure 4.10: Exploiting Symmetry

search to include only a single representative trace from each equivalence

class. The technical details as well as the proof of correctness is the topic
of Section 5.3.

A diÆculty that arises in general symmetry reduction is how to detect
symmetries. Computing symmetries can be very diÆcult and costly. My
solution is to demonstrate and exploit a few symmetries that are guaran-

teed to exist in any model in Brutus. In particular, there is a symmetry
that always exists at the point in the protocol when the initiator instances

have all sent their �rst message and the responder instances are ready to
receive the �rst message. Because of the partial order reduction, all ini-
tiator instances send their �rst message before any responder instances

receive any messages. Therefore, this state exists in any trace consid-
ered by Brutus. For the sake of illustration, we will consider a concrete

example.

Assume that the model has one initiator A, that can participate twice
and one responder B that can participate twice. The initiator is simply the

principal that sends the �rst message and the responder receives the �rst

message. Consider the point when B is ready to receive its �rst message.

There is nothing in the execution so far that distinguishes between the two
instances of B. Any trace that results from B1 receiving that �rst message
has a symmetric trace in the model where B2 behaves as B1 and receives

that �rst message. So at this point Brutus arbitrarily chooses B1 to

receive the �rst message and ignores the case where B2 receives the �rst
message. Because of the partial order reduction, both A1 and A2 have sent
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their �rst messages, so B1 could receive either one. So this state is also

symmetric with respect to A1 and A2 (since no one but the adversary has

received these messages and it has received both). Any trace that results

from B1 receiving A1's message has a symmetric trace where A2 behaves

as A1 and B1 receives A2's message instead. So at this point, Brutus

arbitrarily chooses to have B1 receive A1's message and ignores the case

where B1 receives A2's message. Note, however, that now the symmetry

is broken. A1 can be distinguished from A2 because someone has received

A1's message while no one has received A2's message. Similarly, B1 can

be distinguished from B2 because B1 has received its �rst message while

B2 has not. However, if there were a third instance of each principal (A3
and B3), then A2 and A3 would still be equivalent and B2 and B3 would

also be equivalent. There would still be symmetric traces from this point.
In general, any instances that are equivalent in the start state remain

equivalent until they receive the �rst message (if they are a responder)
or until some honest instance receives their �rst message (if they are an
initiator).

The algorithm for performing the symmetry reduction can be found
in Figure 4.11. The partial order reduction search algorithm is modi�ed

by �ltering out any symmetric next states. However, to determine if two
next states are symmetric, Brutus needs to maintain information about
equivalence classes of instances. Therefore, the global state is augmented

to include this information. Brutus also needs to keep track of the origin
of any messages sent during the execution of the protocol.

Brutus keeps track of who sent what messages by maintaining a

get origin function. One can think of this function as an associative array
that is used to augment the global state. Whenever an honest instance Hi

performs a send action, Brutus records this with set origin(s;m;Hi).
In state s as well as in all successor states to s, the message m is tagged

with its origin Hi. Because this information is maintained by augmenting

the information in the next global state, this association is \forgotten"
when Brutus backtracks to the previous state.

Brutus also needs to keep track of the set of instances that are sym-
metric in the current state. Recall that in the discussion above, two in-

stances playing the same role on behalf of the same principal (for example

they are both instances of principal A trying to initiate the protocol) are
considered symmetric in the initial state. As the protocol executes, the

symmetry between responders is broken when one of them receives its
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1 funct expand(s; �)

2 foreach � 2 enabled(s) do
3 if (� = INTERNAL) ^ (:occurs(�; �))

4 then return f�(s)g

5 �

6 od

7 foreach � 2 enabled(s) do

8 if (� = i send m)

9 then s0 := �(s)
10 set origin(s0; m; i)
11 return fs0g

12 �

13 od

14 ample := fg

15 foreach � 2 enabled(s) do
16 if (� = i receive m) ^

17 (i = rep(i)) ^
18 (get origin(s;m) = rep(get origin(s;m)))
19 then

20 s0 := �(s)
21 remove(s0; i)

22 remove(s0; get origin(s;m))
23 ample = ample [ fs0g

24 �

25 od

26 return ample

Figure 4.11: Symmetry Expand Function
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�rst message while the symmetry between initiators is broken when any-

one receives one of their messages. This observation is used to maintain

the set of equivalence classes. In the initial state, all instances executing

the same role for the same principal are placed in the same equivalence

class. As the protocol executes, an initiator instance is removed from its

equivalence class when any honest agent receives that initiator's �rst mes-

sage. Similarly, a responder instance is removed from its equivalence class

when it performs its �rst receive action. The equivalence classes are

implemented in Brutus via two functions. The remove(s;Hi) function

removes an instance Hi from its current equivalence class and places it in

its own equivalence class in the augmented global state s. The function
rep(s;Hi) returns the representative of the equivalence class to which Hi

belongs in the state s.

All this machinery is present in the symmetry reduction algorithm in
Figure 4.11. The algorithm uses the same expand function that was used
for the partial-order reduction. If there are any invisible internal actions

one of those actions is expanded and the resulting singleton set is returned.
Otherwise, if there are any send actions, one of those send actions is
expanded (making sure to keep track of the origin of the sent message)

and the resulting singleton set is returned. Otherwise a set of states that
result from multiple receive actions is returned. In general, this set may

lead to symmetric traces. Therefore, the set of next states is reduced by
�ltering out symmetric actions. Two actions are symmetric if all of the
following hold:

1. They are both receive actions.

2. The instances performing the actions are symmetric. (They belong

to the same equivalence class.)

3. The messages being received originated from symmetric instances.
(The sending instances belong to the same equivalence class.)

This check is straightforward using the machinery for maintaining equiv-

alence classes and message origins discussed above.

The algorithm never actually compares two di�erent actions to see

if they are symmetric. This is because there is a speci�c action that is

constructed from each set of equivalent actions. This representative action
is the one where the representative from the equivalence class of receiver
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instances receives a message that originated from the representative of the

equivalence class of sender instances. Any receive action that involves

instances that are symmetric to these representatives will be symmetric

to this particular receive action. Since this representative action is

equivalent to the other actions, Brutus can safely ignore the equivalent

actions that would lead to symmetric traces.
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Chapter 5

Symmetry

Researchers have successfully exploited the symmetry inherent in hard-
ware containing replicated components to reduce the sizes of the models

analyzed when performing veri�cation [9, 21, 29, 30]. By arguing that
some con�guration is identical to a second con�guration up to a change

in the names of the components, one can safely analyze only one of the
con�gurations, because the second will have an error only if the �rst does
as well. In the analysis of security protocols using Brutus, the models

have a speci�c number of participants. These participants, in turn, at-
tempt some �xed number of sessions. Like the hardware examples, these
models consist of a number of replicated components which generate a

large number of symmetries that can be exploited.

In what follows, a permutation p will be de�ned on principal names
or on instance IDs. In either case, the permutation p will be extended

to a permutation on messages, pM. From pM, I will then de�ne per-
mutations on actions, states, traces, and formulas by simply applying
pM to any occurrence of atomic messages in these structures and leav-

ing the rest unchanged. For example, let A and B be principal names

and p = (AB) be a permutation on these names. Then p(A) = B and
p(A send fA �BgKB

) = B send fB �AgKA
.

Typically, protocol models exhibit two kinds of symmetries that can
be exploited. The �rst is a kind of top level symmetry that results from a
renaming of the honest agents. For example, instead of having A initiate

a session with B, we might have B initiate a session with A. The second

kind of symmetry results from the fact that each agent may participate
in multiple sessions. This is modeled with multiple instances of the same

71
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principal. These instances are equivalent in the sense that any sequence of

actions performed by one instance could have been performed by another

instance instead. Since the top level symmetry is easier to understand, it

is discussed �rst. The proofs for the second kind of symmetry can then

borrow some of the structure and ideas from the �rst kind. I begin by

reviewing some of the properties of groups, permutations, and symmetries.

5.1 Groups and Permutations

I begin with a brief review of some basic terminology and properties of
groups and permutations. Much of this information comes from

Hungerford's text on modern algebra [27].

Theorem 5.1.1 Let H be a nonempty �nite subset of a group G. If H is

closed under the operation in G, then H is a subgroup of G.

Proof: Since H inherits the associative operator from G and since H is
assumed to be closed, all that remains is to show that H has inverses.

Once we show that a 2 H has an inverse a�1 2 H, then we know
aa�1 = 1G = 1H 2 H.

To show that every a 2 H has an inverse a�1 2 H consider ak for all
positive integers k. Since H is �nite and each ak 2 H, it must be the case
that ai = aj for some 0 < i < j. Now choose n so that j = i + n. Then

ai = aian. Since ai 2 G, it has an inverse x. Multiplying on the left by
x we get xai = xaian or 1H = an. Which means that 1H = aan�1 and we
have that a�1 = an�1.

2

De�nition 5.1.1 Let G be a group and S be a set. We say that G acts

on S if there is a map (g; s) 7! g(s) such that

� g(s) 2 S;

� 1G(s) = s; and

� (g1g2)(s) = g1(g2(s)).
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Example 5.1.1 Let � = fa; b; cg and consider ��, the set of strings over

�. Let G be the group of permutations on fa; b; cg. Then G acts on �� as

follows. Let �1�2 � � ��n 2 �� and g 2 G. Then

g(�1�2 � � ��n) = g(�1)g(�2) � � � g(�n). For example,�
a b c

b a c

�
(acbac) = bcabc:

Note that the properties required in de�nition 5.1.1 are satis�ed.

� g(�1�2 � � ��n) = g(�1)g(�2) � � �g(�n) 2 ��

� 1G(�1�2 � � ��n) = 1G(�1)1G(�2) � � �1G(�n)

= �1�2 � � ��n

� (g1g2)(�1�2 � � � ; �n) = (g1g2)(�1)(g1g2)(�2) � � � ; (g1g2)(�n)

= g1(g2(�1))g1(g2(�2)) � � � ; g1(g2(�n))

= g1(g2(�1)g2(�2) � � � ; g2(�n)

= g1(g2(�1�2 � � � ; �n))

De�nition 5.1.2 A group G acting on a set S induces a relation �G on

the elements of the set S. This relation is de�ned as follows:

a �G b i� b = g(a) for some g 2 G:

Theorem 5.1.2 Let G be a group acting on a set S and let �G be the

relation induced by G on S. Then �G is an equivalence relation and

partitions S into equivalence classes.

Proof:

� Re
exivity: G contains the identity 1G and a = 1G(a); therefore,

a �G a.
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� Symmetry: Let a �G b. Then b = g(a) for some g 2 G. Since G is

a group, g has an inverse g�1 2 G, and

g�1(b) = g�1(g(a)) = (g�1g)a = 1G(a) = a:

Therefore, b �G a.

� Transitivity: Let a �G b and b �G c. Then there exist g1; g2 2 G

such that b = g1(a) and c = g2(b). Therefore,

c = g2(g1(a)) = (g2g1)(a):

Since G is closed, g2g1 2 G and a �G c.

2

Since permutations are groups that can act on sets, they can be used
to partition sets into equivalence classes. These equivalence classes are
called orbits. The orbit of an element a is denoted G(a).

De�nition 5.1.3 The term symmetry is used to denote a permutation

on the components of some structure that results in an isomorphic struc-

ture.

Example 5.1.2 Let G = (V;E) be a graph with n vertices labeled 1 to n.

Let p be a permutation on the set f1; 2; � � �ng. Then p is a symmetry of G

if the graph G0 derived from G by applying the relabeling p to the vertices is

isomorphic to G. More formally, the permutation p on f1; 2; � � �ng induces
a permutation, p�, on graphs. So p is a symmetry on G when p�(G) �= G.

Example 5.1.3 Let S � �� be some set of strings over �. Let p be a

permutation over �. We extend p to strings as in Example 5.1.1. Let

p(S) = f p(s) j s 2 S g. Then p is a symmetry of S if p(S) = S. For

example, consider

� = fa; b; cg, S = fabbca; cca; baacb; ccbg, and

G =

�
� =

�
a b c

a b c

�
; p =

�
a b c

b a c

��
:

Then p(S) = S. Note that G also partitions S into two equivalence classes:

G(abbca) = G(baacb) = fabbca; baacbg, and

G(cca) = G(ccb) = fcca; ccbg:
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This general theory can be applied to the kinds of models analyzed

with Brutus. Permutations on the names of the honest agents, as well

as permutations on the di�erent instance IDs of di�erent sessions belong-

ing to the same principal, will induce permutations on messages, states,

and traces in the model. In particular the symmetries exhibited on the

sets of traces of the model partition the set of traces into equivalence

classes. Traces in the same equivalence class will agree on all symmetric

speci�cations.

5.2 Symmetry on Principals

First, let us consider the symmetries present in a model when two dif-
ferent principals play the same role in a protocol. Let us assume we are

analyzing a protocol that has two roles, initiator and responder. Let us
further assume that we are interested in bounding the problem by look-
ing at models with at most three initiator instances and three responder

instances. We will also limit ourselves to three di�erent honest principals,
call them A, B, and C. There are many di�erent \con�gurations" that we
could use and still stay within these parameters. For example, we could

allow each principal to have one initiator instance and one responder in-
stance. We could instead allow A to have 3 initiator instances, B to have

two responder instances and C to have one responder instance. I will call
each of these possibilities, a \con�guration." The set of all possible con-
�gurations will usually be symmetric in the names of the honest agents.

If the speci�cation is also symmetric in the names of the honest agents,
then it may only be necessary to analyze some subset of all the possible

con�gurations. I formalize this intuition below.

5.2.1 Con�guration Symmetries

Let P be the set of names of the honest agents. Each principal can play

the role of either the initiator or the responder in a protocol. We will

limit ourselves to these two roles in the discussion that follows to make
it simpler; in general, there may be many roles and multiple protocols.

Recall that the initiator is the sender of the �rst message and the responder

is the receiver of the �rst message. Each initiator can try to initiate
a protocol run with any other principal, including the adversary. Each
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responder can respond to any other principal, including the adversary.

Each such assignment of instances to roles played by principals is called a

con�guration

De�nition 5.2.1 A con�guration is a set of functions C = fC1; C2; : : :g,

one for each role in the protocol. Each function Ck : P ! N is map from

the name of an honest principal to the number of times that principal plays

that particular role in the model.

For the sake of simplicity, I will consider protocols with only the roles of

initiator and responder (and sometimes server); I will denote the corre-
sponding functions Ci; Cr; and Cs.

Theorem 5.2.1 Assuming there arem honest agents, i initiator instances

and r responder instances, there are
�
m+i�1

i

��
m+r�1

r

�
di�erent con�gura-

tions.

Proof: We must choose i initiator instances from the m honest agents
(with repetition). According to Lemma 5.2.2 proven below, there are�
m+i�1

i

�
ways to do this. Similarly, there are

�
m+r�1

r

�
ways to choose r

responder instances from the m honest agents. Since these choices are
independent, the total number of ways of choosing both is the product�
m+i�1

i

��
m+r�1

r

�
.

2

Lemma 5.2.2 The number of selections of n items (with repetition) from

r di�erent types of items is
�
n+r�1

n

�
.

Proof: Consider an arbitrary sequence of n \x" marks and r � 1 \/"
marks. The \/" marks divide the \x"s into r groups. The \x"s before

the �rst \/" signify the number of items of the �rst type. The \x"s

between the �rst \/" and the second \/" signify the number of items of
the second type. The \x"s after the last \/" signify the number of items

of the rth type. Notice that for each such sequence there is exactly one
selection of n items from r di�erent types and for each selection there is

exactly one sequence of n \x"s and r � 1 \/"s. So there is a one-to-one

correspondence between the sequences and selections. So now we need to
count the number of sequences. Notice that each sequence has n + r � 1

elements and once the n \x"s (or the r � 1 \/"s) are placed, the rest of
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the sequence is determined. The number of such sequences is the number

of ways of choosing the n \slots" in which to place the \x"s. The number

of ways of choosing n slots from n + r � 1 slots is
�
n+r�1

n

�
.

2

A great number of these con�gurations are symmetric with respect to

permuting the names of the honest agents. For example, the con�guration

fCi = f(A; 3); (B; 0); (C; 0)g; Cr = f(A; 0); (B; 2); (C; 1)gg

is symmetric to the con�guration

fCi = f(A; 0); (B; 3); (C; 0)g; Cr = f(A; 1); (B; 0); (C; 2)gg:

In general a permutation p on principal names will induce a permutation
on the set of con�gurations by composing p with each of the con�guration

functions as follows:

pC(fCi; Crg) = fCi Æ p; Cr Æ pg:

These permutations then correspond to the symmetries in the set of all
con�gurations. In other words, as in Theorem 5.1.2, SP , the group of
permutations on the set of honest agents P will partition the set of con-

�gurations into equivalence classes. Continuing the example,

fCi = f(A; 3); (B; 0); (C; 0)g; Cr = f(A; 0); (B; 2); (C; 1)gg
�SP

fCi = f(A; 0); (B; 3); (C; 0)g; Cr = f(A; 1); (B; 0); (C; 2)gg

because

fCi = f(A; 0); (B; 3); (C; 0)g; Cr = f(A; 1); (B; 0); (C; 2)gg
=�

A B C

B C A

�
fCi = f(A; 3); (B; 0); (C; 0)g; Cr = f(A; 0); (B; 2); (C; 1)gg:

Theorem 5.2.3 Let �(P; i; r) be the set of all possible con�gurations,

where P is the set of honest agents, i is the number of initiator instances

allowed, and r is the number of responder instances allowed. Let SP be

the set of all permutations on the honest agents P. For any C 2 �(P; i; r)
and for any p 2 SP , pC(C) 2 �(P; i; r).
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Proof: To show that p(C) 2 �(P; i; r) we must show that pC(C) is a valid

con�guration. In other words, it is suÆcient to show that every function

Ck 2 C maps principals in P to integers and that the number of initiator

instances i and responder instances r, do not change. But every function

Ck Æp in pC(C) has P as its domain because p is a permutation on P. Since

pC does not a�ect the range of the functions Ck, it does not a�ect the total

number of initiators nor the total number of responders.

2

Corollary 5.2.4 Let �(P; i; r) be the set of all possible con�gurations,

where P is the set of honest agents, i is the number of initiator instances

allowed, and r is the number of responder instances allowed. Let SP be

the set of all permutations on the honest agents P. Then �(P; i; r) is

symmetric with respect to the set of honest agents. In other words, for

any p 2 SP , p�(�(P; i; r)) = f pC(C) j C 2 �(P; i; r) g and �(P; i; r) are
the same set.

Proof:

p�(�(P; i; r)) � �(P; i; r)

Let C 0 2 p�(�(P; i; r)). Then C
0 = pC(C) for some C 2 �(P; i; r). By

Theorem 5.2.3 pC(C) 2 �(P; i; r) and so C 0 2 �(P; i; r).

�(P; i; r) � p�(�(P; i; r))

Let C 2 �(P; i; r). Since p 2 SP and SP is a group, p�1 2 SP .

Let C 0 = p�1
C
(C). By Theorem 5.2.3, C 0 2 �(P; i; r) since p�1 2 SP .

Therefore, C = pC(p
�1
C
(C)) = pC(C

0) 2 p�(�(P; i; r)).

2

Again, by Theorem 5.1.2, the group SP partitions the set of con�gura-
tions �(P; i; r), into equivalence classes. The fact that two con�gurations

are equivalent means that they are identical up to a renaming of the prin-
cipals. If the speci�cation does not distinguish between agent names then

one should only have to analyze a single representative from each equiv-

alence class of con�gurations. Since each con�guration C is symmetric
to each con�guration p(C) for each p 2 SP , one need only analyze one
representative from each orbit which has size roughly jSP j = jPj!.
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When analyzing the reduction in the size of the problems, one should

note that there are some permutations other than the identity, which still

map a particular con�guration to itself. For example, the con�guration

fCi = f(A; 1); (B; 1); (C; 2)g; Cr = f(A; 2); (B; 2); (C; 0)gg

is mapped to itself by the permutation�
A B C

B A C

�
:

It is for this reason that the number of con�gurations that need to be
analyzed is reduced by roughly a factor of jPj!.

5.2.2 Trace Symmetries

While the the idea of con�guration symmetries is fairly intuitive, it is at
too high a level to prove the correctness of the symmetry reduction. In
order to show that these symmetries respect a speci�cation, one must look

at the traces of the system and verify that all the traces belonging to the
same orbit agree on the speci�cation. In other words, we need to show

that the symmetry is not only an equivalence on traces, but that it is a
congruence with respect to the satisfaction relation j=.

First we must formally extend p from the domain of principal names
to other domains with greater structure.

De�nition 5.2.2 Let p 2 SP be a permutation on the set of principal

names P. Then p : P ! P induces a permutation pM : M!M on the

set of messages templates as follows:

� pM(d) = d for all data d 2 D.

� pM(h) = p(h) for all principal names h 2 P. In other words pM
maps principal names the same way p does.

� pM(n) = n for all nonces n 2 N .

� pM(kx) = kp(x) for all keys kx 2 keys � A. In other words, pM
permutes keys appropriately. If p switches principals A and B, then
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pM maps the keys of A to the keys of B. Formally, in terms of the

key functions, we have:

pM(pubkey(x)) = pubkey(p(x));

pM(privkey(x)) = privkey(p(x)), and

pM(symkey(x)) = symkey(p(x)):

� pM(m1 � m2) = pM(m1) � pM(m2). pM works on a concatenated

message by working on the components.

� pM(fmgk) = fpM(m)gpM(k). pM works on an encrypted message by

working on the plaintext and on the key.

� pM(v) = v for all variables v 2 V.

It is important to note that pM is also a permutation on the set of

atomic messages A. In other words, pM(a) 2 A for all a 2 A. In ad-
dition, it is clear from the de�nition of the extension that the inverse of

an extension of a permutation p is equal to the extension of the inverse
permutation. In our notation this means (pM)�1 = (p�1)M.

De�nition 5.2.3 Let p 2 SP be a permutation on the set of honest agents

P and let pM be the permutation induced by p on the set of messages M.

Then p can be extended to actions, processes, instances, states, and traces

as follows.

� pa acts on actions by applying pM to the message argument of the

action. More formally,

pa(Hi; A;M) = (Hi; A; pM(M)):

� pp acts on a process by applying pM to every message appearing in

the process. More formally,

{ pp(nil) = nil, and

{ pp(a(m) � P 0) = a(pM(m)) � pp(P
0).
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� pi acts on instances, again by applying pM to all messages appearing

in the instances. More formally, let Ii = hHi; Bi; Ii; Pii. Then

pi(Ii) = hHi; pM ÆBi; pM(Ii); pp(Pi)i:

Again pM(Ii) is an abuse of notation for f pM(m) j m 2 Ii g.

� ps acts on states by applying pi to all the instances. More formally,

ps(f
; I1; : : : ; Ing) = fpi(
); pi(I1); : : : ; pi(In)g:

� pt acts on a trace by applying ps to all the states in the trace and pa
to all the actions appearing in the trace. More formally,

pt(�0�1�1�1 � � ��n�n) = ps(�0)pa(�1)ps(�1)pa(�1) � � � pa(�n)ps(�n):

Again, note that the inverse of the extension of p is the extension of

the inverse of p. Namely,

(pa)
�1 = (p�1)a;

(pp)
�1 = (p�1)p;

(pi)
�1 = (p�1)i;

(ps)
�1 = (p�1)s, and

(pt)
�1 = (p�1)t:

With this notation, we can now show that the set of all traces over
all con�gurations �(P; i; r) is symmetric with respect to the names of the

honest agents P. We begin with a couple of lemmas.

Lemma 5.2.5 Let p 2 SP be a permutation on the names of honest agents

and let pM be the extension of p to messages. Let B : V ! M be a set

of variable bindings and B be the extension of B to message templates.

Then pM(B(m)) = pM ÆB(pM(m)) for all message templates m whose

variables are in the domain of B.

The intuition here is straightforward. If we take a message templatem,

apply the bindings B to the variables and then permute the message with
pM [i.e., pM(B(m))] the result should be the same as if we �rst permute
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the message template with pM (leaving the variables alone), then we apply

the permuted bindings to the variables [i.e., pM ÆB(pM(m))]. The formal

proof is below.

Proof: (by induction on the structure of m)

� m = a 2 A

pM(B(m)) = pM(B(a))

= pM(a) De�nition 3.1.2

= pM ÆB(pM(a)) De�nition 3.1.2 and pM(a) 2 A

= pM ÆB(pM(m))

� m = v 2 V

pM(B(m)) = pM(B(v))

= pM(B(v)) De�nition 3.1.2
= (pM ÆB)(v)

= pM ÆB(pM(v)) De�nition 3.1.2

= pM ÆB(pM(m))

� m = m1 �m2

pM(B(m)) = pM(B(m1 �m2))

= pM(B(m1) �B(m2)) De�nition 3.1.2

= pM(B(m1)) � pM(B(m2)) De�nition 5.2.2

= pM ÆB(pM(m1)) � pM ÆB(pM(m2)) ind. hyp.

= pM ÆB(pM(m1) � pM(m2)) De�nition 3.1.2

= pM ÆB(pM(m1 �m2)) De�nition 5.2.2

= pM ÆB(pM(m))

� m = fm0gk

pM(B(m)) = pM(B(fm0gk))

= pM(fB(m0)gB(k)) De�nition 3.1.2

= fpM(B(m0))gpM(B(k)) De�nition 5.2.2

= fpM ÆB(pM(m0))gpMÆB(pM(k)) ind. hyp.

= pM ÆB(fpM(m0)gpM(k)) De�nition 3.1.2

= pM ÆB(pM(fm0gk)) De�nition 5.2.2

= pM ÆB(pM(m))

2
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Lemma 5.2.6 Let k 2 K be a key. Let p 2 SP be a permutation on

honest agent names and let pM be the extension of p to the set of message

templates. Then the inverse of a permuted key is the same as the permuted

inverse key. More formally, pM(k�1) = (pM(k))�1.

Proof: Consider the three possibilities for k. Using De�nition 5.2.2 and

the de�nition of inverse keys:

� k = pubkey(X)

pM((pubkey(X))�1) = pM(privkey(X))

= privkey(pM(X))

= (pubkey(pM(X)))�1

� k = privkey(X)

pM((privkey(X))�1) = pM(pubkey(X))

= pubkey(pM(X))

= (privkey(pM(X)))�1

� k = symkey(X)

pM((symkey(X))�1) = pM(symkey(X))

= symkey(pM(X))

= (symkey(pM(X)))�1

2

Lemma 5.2.7 Let T be a derivation tree for m with assumptions in A.

Let p 2 SP be a permutation on honest agent names P and let pM be

the permutation induced by p over the set of messages M. When pM is

applied to every message appearing in T , the result is a new derivation

tree pM(T ) for pM(m) with assumptions in pM(A).

Proof: (by induction on the height of the derivation tree T )
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� Assume T has height 0 and hence is atomic.

Then T consists of the single message m and m 2 A. This means

that pM(T ) consists of the single message pM(m), and that

pM(m) 2 pM(A).

� Assume T has height n and T has the form

�

m1 �m2

mi

and mi = m. The subtree above mi has height n � 1. By the
inductive hypothesis,

pM(�)

pM(m1 �m2)

is a derivation tree for pM(m1 �m2) with assumptions in pM(A). By

De�nition 5.2.2, pM(m1 �m2) = pM(m1) � pM(m2). Clearly,

pM(m1) � pM(m2)

pM(mi)

is a valid inference. Putting these together results in a derivation

tree for pM(mi) with assumptions in pM(A).

� Assume T has height n and T has the form

�1

m1

�2

m2

m1 �m2

Then the subtrees above m1 �m2 have height at most n� 1. By the
inductive hypothesis,

pM(�i)

pM(mi)

is a derivation tree for pM(mi) with assumptions in pM(A). Clearly,

pM(m1) pM(m2)

pM(m1) � pM(m2)
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is a valid inference. Putting these together results in a new deriva-

tion tree pM(T ) for pM(m1) � pM(m2) = pM(m1 �m2) with assump-

tions in pM(A).

� Assume T has height n and T has the form

�1

fmgk

�2

k�1

m

Then the subtrees above m have height at most n � 1. By the

inductive hypothesis,

pM(�1)

pM(fmgk) and

pM(�2)

pM(k�1)

are derivation trees for pM(fmgk) and pM(k�1) with assumptions
in pM(A). By De�nition 5.2.2, pM(fmgk) = fpM(m)gpM(k), and by
Lemma 5.2.6, pM(k�1) = (pM(k))�1. Clearly,

fpM(m)gpM(k) (pM(k))�1

pM(m)

is a valid inference. Putting these together results in a derivation

tree for pM(m) with assumptions in pM(A).

� Assume T has height n and T has the form

�1

m

�2

k

fmgk

Then the subtrees above fmgk have height at most n � 1. By the

inductive hypothesis,

pM(�1)

pM(m) and

pM(�2)

pM(k)
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are derivation trees for pM(m) and pM(k) with assumptions in pM(A).

Clearly,
pM(m) pM(k)

fpM(m)gpM(k)

is a valid inference. Putting these together results in a new deriva-

tion tree pM(T ) for fpM(m)gpM(k) = pM(fmgk) with assumptions

in pM(A).

2

Lemma 5.2.8 Let p 2 SP be a permutation on the names of the hon-

est agents. Let pM, pa, and ps be the extensions of p to messages, ac-

tions, and states respectively. If �
Hi�A�m
�! �0 is a valid transition then so is

ps(�)
pa(Hi�A�m)
�! ps(�

0).

Proof: It is clear from the de�nition of ps that if � and �0 are states, then

so are ps(�) and ps(�
0). From the de�nition of pa, if Hi �A �m is an action,

then so is pa(Hi � A �m) = Hi � A � pM(m). It remains to show that each
of the three di�erent kinds of actions results in a valid transition.

� Hi � A �m is a send action

1. I 0
 = I
 [m. (The adversary adds m to the set of messages it
knows.)

2. If in �, Ii = hHi; Bi; Ii; Pii, and in �
0, I 0i = hH 0

i; B
0
i; I

0
i; P

0
i i, then

{ H 0
i = Hi (The instance ID remains unchanged.)

{ B0
i = Bi (The bindings remain unchanged.)

{ I 0i = Ii (The set of information remains unchanged.)

{ Pi = send (s-msg) � P 0
i (The instance is ready to send a

message, and that send action is removed from the process

description in the new state.)

{ m = Bi(s-msg) (The message that the instance is ready to

send and the actual sent message are the same.)

3. Ij = I 0j for all j 6= i. (All other instances remain unchanged.)

We now need to show the corresponding properties for the permuted

transition ps(�)
Hi�A�pM(m)
�! ps(�

0).
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1. In ps(�
0),

pM(I 0
) = pM(I
 [m) = pM(I
) [ pM(m):

(The adversary adds pM(m) to the set of messages it knows.)

2. In ps(�),

pi(Ii) = hHi; pM ÆBi; pM(Ii); pp(Pi)i;

and in ps(�
0),

pi(I
0

i) = hH 0

i; pM ÆB0

i; pM(I 0i); pp(P
0

i )i;

and

{ H 0
i = Hi (The instance ID remains unchanged.)

{ B0
i = Bi so

pM ÆB0

i = pM ÆBi

(The bindings remain unchanged.)

{ I 0i = Ii so
pM(I 0i) = pM(Ii)

(The set of information remains unchanged.)

{ Pi = send (s-msg) � P 0
i so

pp(Pi) = send (pM(s-msg)) � pp(P
0

i )

(The instance is ready to send a message, and that send
action is removed from the process description in the new
state.)

{ m = Bi(s-msg) so

pM(m) = pM(Bi(s-msg)) = pM ÆBi(pM(s-msg))

by Lemma 5.2.5. (The message that the instance is ready
to send and the actual sent message are the same.)

3. Ij = I 0j for all j 6= i so

pi(Ij) = pi(I
0

j) for all j 6= i:

(All other instances remain unchanged.)
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� Hi � A �m is a receive action

1. m 2 I
. (The adversary can generate the message m.)

2. If in �, Ii = hHi; Bi; Ii; Pii, and in �
0, I 0i = hH 0

i; B
0
i; I

0
i; P

0
i i, then

{ Hi = H 0
i (The instance ID remains unchanged.)

{ B0
i is the smallest extension of Bi such that B

0
i(r-msg) = m.

(The bindings of the instance are updated correctly, and

the message received matches the message template in the

receive action.)

{ I 0i = Ii [ m (The information of the instance is updated
correctly.)

{ Pi = receive (r-msg) �P 0
i (The instance is ready to receive

a message, and that action is removed from the process
description in the next state.)

3. Ij = I 0j for all j 6= i. (All other instances remain unchanged.)

Again, we must show the corresponding properties for the permuted

transition ps(�)
Hi�A�pM(m)
�! ps(�

0).

1. By Lemma 5.2.7, we can apply pM to the derivation tree for

m 2 I
 to obtain a derivation tree for pM(m) 2 pM(I
). (The
adversary can generate the message pM(m).)

2. In ps(�),

pi(Ii) = hHi; pM ÆBi; pM(Ii); pp(Pi)i;

and in ps(�
0),

pi(I
0

i) = hH 0

i; pM ÆB0

i; pM(I 0i); pp(P
0

i )i;

and

{ Hi = H 0
i (The instance ID remains unchanged.)

{ B0
i is the smallest extension of Bi such that B

0
i(r-msg) = m

so using Lemma 5.2.5, pM Æ B0
i is the smallest extension

of pM ÆBi such that pM ÆB0
i(pM(r-msg)) = pM(m). (The

bindings of the instance are updated correctly, and the mes-

sage received matches the message template in the receive
action.)
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{ I 0i = Ii [m so

pM(I 0i) = pM(Ii [m) = pM(Ii) [ pM(m)

(The information of the instance is updated correctly.)

{ Pi = receive (r-msg) � P 0
i so

pp(Pi) = receive (pM(r-msg)) � pp(P
0

i )

(The instance is ready to receive a message, and that action

is removed from the process description in the next state.)

3. Ij = I 0j for all j 6= i so

pi(Ij) = pi(I
0

j) for all j 6= i:

(All other instances remain unchanged.)

� Hi � A �m is an internal action,

1. If in �, Ii = hHi; Bi; Ii; Pii, and in �
0, I 0i = hH 0

i; B
0
i; I

0
i; P

0
i i, then

{ H 0
i = Hi (The instance ID remains unchanged.)

{ B0
i = Bi (The bindings remain unchanged.)

{ I 0i = Ii (The set of information remains unchanged.)

{ Pi = A(msg) � P 0
i (The instance is ready to perform action

A, and that action is removed from the process description
in the new state.)

{ m = Bi(msg). (The message argument in the process de-
scription and the actual message occurring in the taken

action are the same.)

2. Ij = I 0j for all j 6= i. (All other instances remain unchanged.)

We must show the corresponding properties for the permuted tran-

sition ps(�)
Hi�A�pM(m)
�! ps(�

0).

1. In ps(�),

pi(Ii) = hHi; pM ÆBi; pM(Ii); pp(Pi)i;

and in ps(�
0),

pi(I
0

i) = hH 0

i; pM ÆB0

i; pM(I 0i); pp(P
0

i )i;

and
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{ H 0
i = Hi (The instance ID remains unchanged.)

{ B0
i = Bi so

pM ÆB0

i = pM ÆBi

(The bindings remain unchanged.)

{ I 0i = Ii so

pM(I 0i) = pM(Ii)

(The set of information remains unchanged.)

{ Pi = A(msg) � P 0
i so

pp(Pi) = A(pM(s-msg)) � pp(P
0

i )

(The instance is ready to perform action A, and that action

is removed from the process description in the new state.)

{ m = Bi(msg) so

pM(m) = pM(Bi(msg)) = pM ÆBi(pM(msg))

by Lemma 5.2.5. (The message argument in the process

description and the actual message occurring in the taken
action are the same.)

2. Ij = I 0j for all j 6= i so

pi(Ij) = pi(I
0

j) for all j 6= i:

(All other instances remain unchanged.)

2

Theorem 5.2.9 Let Tr(P; i; r) be the set of all traces with honest agents

in P, with i initiators, and with r responders, and let � 2 Tr(P; i; r). If

p 2 SP and pt is the extension of p to traces, then pt(�) 2 Tr(P; i; r).

Proof: First we show that for any valid trace �, pt(�) is also a trace. We

prove this inductively on the length of a trace.

� Let � = �0 be a trace of length 0. Then pt(�) = ps(�0). Clearly,
ps(�0) is a state as well, and so it is a trace of length 0.
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� Let � = �0�1�1�2 � � ��n+1�n+1 be a trace of length n + 1. Then

�n = �0�1�1�2 � � ��n�n is a trace of length n and by the inductive

hypothesis so is

pt(�n) = ps(�0)pa(�1)ps(�1)pa(�2) � � � pa(�n)ps(�n):

From the trace � we see that �n
�n
�! �n+1 is a valid transition.

By Lemma 5.2.8, ps(�n)
pa(�n+1)
�! ps(�n+1) is also a valid transition.

Appending this to the end of pt(�n) results in the valid trace pt(�).

We still need to show that the trace pt(�) is a trace in Tr(P; i; r).
Since � 2 Tr(P; i; r), � has i initiators and r responders, and all the
honest agents are in P. But pt does not a�ect the number of initiators

or responders; it only changes the names of the honest agents. Therefore,
pt(�) has i initiators and r responders. Furthermore, pt is an extension of

p 2 SP which is a permutation on the names of the honest agents, so the
names of the honest agents in pt are also all members of P. Therefore,
pt(�) 2 Tr(P; i; r).

2

One can relate this to the intuitive description of symmetries on con�g-
urations by noting that if � is a trace of some con�guration C 2 �(P; i; r),
then pt(�) is a trace of the con�guration pC(C).

1

Corollary 5.2.10 Let Tr(P; i; r) be the set of all traces with honest agents

in P and with i initiators and r responders. Let SP be the set of all per-

mutations on the honest agents P. Then Tr(P; i; r) is symmetric with

respect to the set of honest agents. In other words, for any p 2 SP ,

pt(Tr(P; i; r)) = f p(�) j � 2 Tr(P; i; r) g is equal to Tr(P; i; r).

Proof:

pt(Tr(P; i; r)) � Tr(P; n)

Let �0 2 pt(Tr(P; i; r)). Then �0 = pt(�) for some � 2 Tr(P; i; r).
By Theorem 5.2.9, �0 = pt(�) 2 Tr(P; i; r).

1A proof of this would require a formalization of what it means for a trace to belong

to a con�guration. Since the purpose of the con�guration construction is to provide

intuition and not technical details, this would run counter to our purposes.
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Tr(P; i; r) � pt(Tr(P; i; r))

Let � 2 Tr(P; i; r). Since p 2 SP and SP is a group, p�1 2 SP . Let

�0 = p�1t (�). By Theorem 5.2.9, �0 2 Tr(P; i; r) because p�1 2 SP .

Therefore, � = pt(p
�1
t (�)) = pt(�

0) 2 pt(Tr(P; i; r)).

2

As is the case with con�gurations, Theorem 5.1.2 tells us that the group

of permutations induced by SP partitions the set of traces Tr(P; i; r), into

equivalence classes. One trace � is equivalent to another trace �0 if and

only if there exists some p 2 SP such that �0 = pt(�). This symmetry

partitions the traces into sets with equivalent structure, in the sense that
the same actions and relationships are present, however the names of the
honest agents have been permuted. It remains to prove that these equiv-

alence classes of traces respect the truth values of formulas that display
the same symmetry. First we must de�ne the extension of p 2 SP to the

set of formulas.

De�nition 5.2.4 Let SP be the set of permutations on the names of the

honest agents. Let � be any formula in our logic. Then we extend p 2 SP
to formulas as follows:

� pf(Hi:v) = Hi:v for any instance ID i and any message variable v.

� pf(a) = pM(a) for any atomic message a 2 A.

� pf(m1 �m2) = pf(m1) � pf (m2) for all message terms m1 and m2.

� pf(fmgk) = fpf(m)gpf (k) for all message terms m and k.

� pf(m1 = m2) = [pf(m1) = pf(m2)] for any atomic proposition of the

form m1 = m2.

� pf(Hi Knows m) = Hi Knows pf (m) for any atomic proposition

of the form Hi Knows m.

� pf(Hi Act m) = Hi Act pf(m) for any atomic proposition of the

form Hi Act m.

� pf(:�) = :(pf (�)).

� pf(�1 ^ �2) = pf(�1) ^ pf(�2).
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� pf(3P�) = 3Ppf (�).

We now need to show that a trace satis�es a formula if and only if the

permuted trace satis�es the permuted formula. First we need a lemma

analogous to Lemma 5.2.5, but for message terms instead of message tem-

plates.

Lemma 5.2.11 Let p 2 SP be a permutation on the names of honest

agents. Let pM be the extension of p to messages, ps be the extension of

p to states, and pf be the extension of p to formulas. Let m be a message

term and let � be a state in which all variables appearing in m are bound.

Then pM(�(m)) = [ps(�)](pf (m)).

Proof: (by induction on the structure of the message term m)

� m = a 2 A

pM(�(m)) = pM(�(a))

= pM(a) De�nition 3.2.1
= [ps(�)](pM(a)) De�nition 3.2.1 and pM(a) 2 A

= [ps(�)](pf (a)) De�nition 5.2.4
= [ps(�)](pf (m))

� m = Hi:v

pM(�(m)) = pM(�(Hi:v))

= pM(Bi(v)) De�nition 3.2.1
= (pM ÆBi)(v)

= [ps(�)](Hi:v) De�nition 5.2.3 and De�nition 3.2.1
= [ps(�)](pf (Hi:v)) De�nition 5.2.4
= [ps(�)](pf (m))

� m = m1 �m2

pM(�(m)) = pM(�(m1 �m2))
= pM(�(m1) � �(m2)) De�nition 3.2.1

= pM(�(m1)) � pM(�(m2)) De�nition 5.2.2

= [ps(�)](pf(m1)) � [ps(�)](pf(m2)) ind. hyp.

= [ps(�)](pf(m1) � pf(m2)) De�nition 3.2.1

= [ps(�)](pf(m1 �m2)) De�nition 5.2.4
= [ps(�)](pf(m))
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� m = fm0gk

pM(�(m)) = pM(�(fm0gk))

= pM(f�(m0)g�(k)) De�nition 3.2.1

= fpM(�(m0))gpM(�(k)) De�nition 5.2.2

= f[ps(�)](pf(m
0))g[ps(�)](pf (k)) ind. hyp.

= [ps(�)](f(pf(m
0)gpf (k)) De�nition 3.2.1

= [ps(�)](pf(fm
0gk)) De�nition 5.2.4

= [ps(�)](pf(m))

2

Theorem 5.2.12 Let � be a trace, � be a formula, and SP be the permu-

tations on the names of the honest agents. Then for any p 2 SP ; h�; ii j= �

if and only if hpt(�); ii j= pf(�).

Proof: (by induction on the structure of the formula �)

� � = [m1 = m2]

Using the de�nition of j=, Lemma 5.2.11, and De�nition 5.2.4 (the
de�nition of pf ) we have the following:

h�; ii j= [m1 = m2] , �i(m1) = �i(m2)

, pM(�i(m1)) = pM(�i(m2))

, [ps(�i)](pf (m1)) = [ps(�i)](pf(m2))

, hpt(�); ii j= [pf(m1) = pf (m2)]

, hpt(�); ii j= pf([m1 = m2])

� � = Hj Knows m

Let Ij = hHj; Bj; Ij; Pji in �i. Then in ps(�i),

pi(Ij) = hHj; pM ÆBj; pM(Ij); pp(Pj)i

Using the de�nition of j=, Lemma 5.2.7 about applying pM to deriva-

tion trees, Lemma 5.2.11, and De�nition 5.2.4 (the de�nition of pf )
we have the following:

h�; ii j= Hj Knows m , �i(m) 2 Ij

, pM(�i(m)) 2 pM(Ij)

, [ps(�i)](pf(m)) 2 pM(Ij)

, hpt(�); ii j= Hj Knows pf(m)

, hpt(�); ii j= pf (Hj Knows m)
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� � = Hj A m

Using the de�nition of j=, De�nition 5.2.3 (de�nition of pa), Lemma 5.2.11,

and De�nition 5.2.4 (the de�nition of pf ) we have the following:

h�; ii j= Hj A m , �k = Hj � A � �k�1(m) for some 1 � k � i

, pa(�k) = pa(Hj � A � �k�1(m))

, pa(�k) = Hj � A � pM(�k�1(m))

, pa(�k) = Hj � A � [ps(�k�1)](pf(m))

, hpt(�); ii j= Hj A pf(m)

, hpt(�); ii j= pf (Hj A m)

� � = :�0

Using the de�nition of j=, the inductive hypothesis, and De�ni-

tion 5.2.4 (the de�nition of pf) we have the following:

h�; ii j= :�0 , h�; ii 6j= �0

, hpt(�); ii 6j= pf(�
0)

, hpt(�); ii j= :pf(�
0)

, hpt(�); ii j= pf(:�
0)

� � = �1 ^ �2
Using the de�nition of j=, the inductive hypothesis, and De�ni-
tion 5.2.4 (the de�nition of pf) we have the following:

h�; ii j= �1 ^ �2 , h�; ii j= �1 and h�; ii j= �2

, hpt(�); ii j= pf(�1) and hpt(�); ii j= pf (�2)

, hpt(�); ii j= pf(�1) ^ pf(�2)

, hpt(�); ii j= pf(�1 ^ �2)

� � = 3P�
0

Using the de�nition of j=, the inductive hypothesis, and De�ni-

tion 5.2.4 (the de�nition of pf) we have the following:

h�; ii j= 3P�
0 , h�; ji j= �0 for some 0 � j � i
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, hpt(�); ji j= pf(�
0) for the same 0 � j � i

, hpt(�); ii j= 3Ppf (�
0)

, hpt(�); ii j= pf(3P�
0)

2

Note that often the principal names are arbitrary and the correctness of

the protocol should not depend on them. In other words, the speci�cation

is usually insensitive to permuting the principal names. In this case the

following corollary gives the correctness of the symmetry reduction.

Corollary 5.2.13 Given the set of traces Tr(P; i; r), a formula �, and a

permutation on the names of the honest agents p 2 SP such that pf(�) = �

(the formula is symmetric in p), then for any trace � 2 Tr(P; i; r), � j= �

if and only if pt(�) j= �.

Proof: Let l = length(�). Using the de�nition of j=, Theorem 5.2.12, and
the fact that pf (�) = � we have the following:

� j= � , h�; ii j= � for all 0 � i � l

, hpt(�); ii j= pf(�) for all 0 � i � l

, pt(�) j= pf(�)

, pt(�) j= �
2

In practice this allows one to perform the following reduction. Assume
a model has i initiators and r responders, and P is the set of honest agent

names. Then the model has Tr(P; i; r) as its set of traces. Assume the
formula to be veri�ed is �. Let G � SP be the subset of permutations

on the honest agents that preserve the formula �. In other words, let

G = f p 2 SP j pf(�) = � g. If G is a group (proven below in Theo-
rem 5.2.15) then by Theorem 5.1.2, G partitions Tr(P; i; r) into equiva-

lence classes. Furthermore, these equivalence classes are a congruence with
respect to satisfying the formula �. In other words, for any � 2 Tr(P; i; r),

� j= � if and only if �0 j= � for every �0 2 G(�). This means one need

only check one representative from each equivalence class. Each equiva-
lence class has size jGj. Thus, the amount of model checking performed

is reduced by a factor of jGj. In the case when the formula is completely
symmetric with respect to the names of the honest agents, then G = SP
and the number of traces checked is reduced by a factor of jPj!.
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Lemma 5.2.14 Let p; q 2 SP . Then (pq)f = pf Æ qf .

Proof: The equality is proven pointwise. In other words, we show

(pq)f(�) = (pf Æ qf )(�)

for all formulas � by induction on the structure of �.

� � = P , where P 2 P

In this case, pf(P ) = pM(P ) = p(P ) for all p 2 SP , so

(pq)f(P ) = (pq)(P )

= p(q(P ))

= p(qf (P ))

= pf (qf(P ))

= (pf Æ qf)(P ):

� � = a, where a 2 A� P

In this case, pf(a) = pM(a) = a for all p 2 SP , so

(pq)f(a) = a

= qf (a)

= pf (qf(a))

= (pf Æ qf)(a):

� � = Hi:v

In this case, pf(Hi:v) = Hi:v for all p 2 SP , so

(pq)f(Hi:v) = Hi:v

= pf (Hi:v)

= pf (qf(Hi:v)

= (pf Æ qf)(Hi:v):

� � = m1 �m2

In this case, we can use the inductive hypothesis, so

(pq)f(m1 �m2) = (pq)f(m1) � (pq)f(m2)

= (pf Æ qf )(m1) � (pf Æ qf )(m2)

= (pf Æ qf )(m1 �m2):
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� All other cases consist of a straightforward use of the induction hy-

pothesis like the � = m1 �m2 case above.

Theorem 5.2.15 Let � be a formula and let G be the subset of permuta-

tions in SP that preserve the formula �. In other words

G = f p 2 SP j pf(�) = � g :

Then G itself is a group.

Proof: Since SP is �nite, by Theorem 5.1.1, it is suÆcient to show that
G is closed under the group operation of composition. Let p; q 2 G.
Therefore, pf(�) = � and qf(�) = �. Using the lemma just proved,

(pq)f(�) = (pf Æ qf )(�) = pf(qf (�)) = pf (�) = �:

Thus pq 2 G and G is closed. 2

5.3 Symmetry on Instances

The second kind of symmetry inherent in my model arises because a model
may contain multiple instances of the same principal. For example, prin-

cipal A in an authentication protocol may try to initiate the protocol
twice. The model will then have two distinct initiator instances for A,
call them A1 and A2. The model could also have two distinct responder

instances for B, call them B1 and B2. In one trace of this model, it might
be the case that A1 successfully authenticates with B1, and A2 success-

fully authenticates with B2. Now each of A's instances are identical up
to the name given to them (the instance ID). The same is true for B's

instances. It should not matter which instance of A authenticates with

which instance of B. In other words, there should be an \equivalent"
trace in which A1 and A2 switch roles. That is, A1 authenticates with

B2, and A2 authenticates with B1. They are \equivalent" in the sense
that everything that A1 did in the �rst trace, A2 does in the second trace,

and vice versa. Intuitively they should be equivalent because the protocol

should not depend on which particular instance does what. The name or
ID given an instance should have no a�ect on the behavior or the require-

ments of that instance. Clearly, in the start state, before any instance has
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performed any actions, all instances of the same principal performing the

same role are identical. In what follows, we will formalize this notion by

examining a permutation on the instances that will again partition the

traces of a model into equivalence classes. First, we take a high level look

at this symmetry by describing something similar to the con�gurations of

Section 5.2.

5.3.1 Instance Con�gurations

Consider some initial state �0. It has a particular number of initiator

instances for each honest agent and a particular number of responder
instances for each honest agent. These numbers remain constant along

any given trace. What is not determined is which initiator instances of a
particular principal A will communicate with which responder instances

of a particular instance B. We will try to visualize this using a graph.

De�nition 5.3.1 An instance con�guration graph for a particular

trace �, is a graph G� where the set of vertices is the set of honest instance

IDs in that trace. In other words, the nodes are labeled fH1; : : : ; Hkg,

where k is the number of honest instances in each state of the trace �.

There is a directed edge from Hi to Hj i� Ij is a responder instance and

it has received the �rst message sent by initiator instance Ii.

Note that each instance of an honest agent can be either an initiator
instance or a responder instance, but not both. Therefore, no node corre-

sponding to an honest agent can have both incoming edges and outgoing
edges. Secondly, each honest responder instance can receive only one ini-

tial message so each honest node will have at most one directed edge into

it. Thirdly, the adversary may duplicate a particular initial message and
send it to multiple responders; therefore, initiators in the graph may have

multiple edges coming out of them.

Example 5.3.1 Figure 5.1 displays two di�erent instance con�guration

graphs. Both graphs have seven vertices. As in previous sections, the

instance with ID Xi refers to the ith instance of principal X. There are

three instances of principal A trying to initiate the protocol. They are

labeled A1, A2, and A3. There are three instances of principal B trying to

respond to the protocol. They are labeled B1, B2, and B3. Also present,
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A1

A2

A3

B1

B2

A1

A2

A3

B1

B2

B3 B3

a. b.

Ω Ω

Figure 5.1: A pair of instance con�guration graphs
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is the instance of the adversary, 
. In Figure 5.1.a, instance A1's initial

message has been duplicated by the adversary and received by both B1 and

B2. Intuitively, B1 and B2 both believe they are responding to A1. In

addition, instance B3 has received A3's initial message. Note that there is

no edge from A2 since the adversary has prevented its initial message from

being received by any of B's instances. In Figure 5.1.b, B2 and B3 receive

duplicate initial messages, this time from A2 while B1 receives A1's initial

message.

I now de�ne safe permutations on the vertices of an instance con�gu-

ration graph (i.e., on instance IDs). Intuitively, a permutation is safe if

it only permutes the instances of the same principal that have the same
role. Two instances (Ii and Ij) are instances of the same principal if the
variable pr is bound to the same principal name in both instances (i.e.,

Bi(pr) = Bj(pr)). Two instances (Ii and Ij) play the same roll in the
protocol if, in the initial state, �0, the sequence of actions they take are
equal (i.e., Pi = Pj). In addition, two instances of the same principal

playing the same role must have the same set of known messages except
for \freshly generated" messages (i.e., I[i = I[j).

Before continuing, I should point out a slight abuse of notation in the
discussion that follows. I will be using p to denote a permutation on
the set of instance IDs fH1; : : : ; Hkg. However, it is often convenient to

consider it as a permutation on the indices f1; : : : kg in the obvious way.
In other words, for i; j 2 f1; : : : ; kg; p(i) = j whenever p(Hi) = Hj.

De�nition 5.3.2 Let SH be the set of all permutations on the set of hon-

est instance IDs, H = fH1; H2; : : : ; Hkg. We say that p 2 SH is a safe

permutation with respect to a trace � if in the initial state of �

� Bi(pr) = Bp(i)(pr), and

� Pi = Pp(i).

A permutation p 2 SH results in a relabeling of the con�guration

graph. This relabeling respects the names of the principals. Instance Ii
and instance Ip(i) are both instances of the same principal. And of course,
the new graph is isomorphic to the original graph.
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Example 5.3.2 Again, Figure 5.1 serves as an example. In this case, the

graph in part a becomes the graph in part b via the following permutation

on the labels.

p =

�
A1 A2 A3 B1 B2 B3

A2 A3 A1 B2 B3 B1

�

Theorem 5.3.1 Let SH be the set of safe permutations with respect to

trace �. Then SH is a group.

Proof:

� Closure: Let p; q 2 SH . Clearly p Æ q is a permutation. To see that
p Æ q is safe, notice p and q are safe, therefore:

{ Bi(pr) = Bq(i)(pr) = Bp(q(i))(pr) = B(pÆq)(i)(pr), and

{ Pi = Pq(i) = Pp(q(i)) = P(pÆq)(i).

� Associativity: This follows because function composition is associa-

tive.

� Identity: Clearly the identity permutation is safe, therefore � 2 SH .

� Inverse: Since p 2 SH is permutation, so is it's inverse p�1. To see

that p�1 is safe, let p�1(i) = j. But this implies p(j) = i. Since p is
safe we have

{ Bi(pr) = Bp(j)(pr) = Bj(pr) = Bp�1(i)(pr), and

{ Pi = Pp(j) = Pj = Pp�1(i).

Therefore, p�1 is safe.

2

Note that the requirements for a permutation to be safe with respect

to a trace refer only to the initial state. Therefore, if a permutation p is
safe with respect to a trace with initial state �0, then p is safe with respect

to any trace with initial state �0.

Theorem 5.3.2 Let �(�0) be the set of all possible instance con�guration

graphs for all traces starting in initial state �0. Let SH be the set of all

safe permutations on the instances of �0 (vertices on the graph). For any

graph G� 2 �(�0) and any permutation p 2 SH , p(G�) 2 �(�0).
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Proof: A formal proof of this theorem would require us to prove that there

exists another trace �0 starting from state �0 for which p(G�) = G�0 . Since

this is precisely what we want to avoid with this high level discussion, I

do not give a formal proof here. Instead here is an intuitive proof.

The permutation does not change the number of edges or the number of

vertices in the graph. The relabeling maps initiator instances of principal

X to other initiator instances of principal X and responder instances of

X to other responder instances of X. So the principals are still doing

the same thing; however, which speci�c instance does what may have

changed. Intuitively, such a symmetric trace must exist (i.e., one in which

each instance Ip(i) in the trace �0 behaves identically to the instance Ii in
the trace �). Therefore, p(G�) is a valid instance con�guration graph for

some trace starting from state �0.

Corollary 5.3.3 Let �(�0) be the set of all possible instance con�guration
graphs of traces starting from the initial state �0. Let SH be the set of safe

permutations on the instances of �0 (vertices on the graph). Then for any

p 2 SH, �(�0) = p(�(�0)) = f p(G) j G 2 �(�0) g.

Proof:

p(�(�0) � �(�0)

Let G0 2 p(�(�0)). Then G0 = p(G) for some G 2 �(�0). By
Theorem 5.3.2, p(G) 2 �(�0). Therefore G

0 2 �(�0).

�(�0) � p(�(�0))

Let G 2 �(�0). Since p 2 SH and SH is a group (Theorem 5.3.1),

p�1 2 SH . Let G0 = p�1(G). By Theorem 5.3.2, G0 2 �(�0).
Therefore G = p(p�1(G)) = p(G0) 2 p(�(�0)).

2

Again, by Theorem 5.1.2, the group SH partitions the set of instance

con�guration graphs, �(�0), into equivalence classes. Two graphs are

equivalent when there is a particular safe permutation p 2 SH that is the
isomorphism for the two graphs. When two instance con�guration graphs

are isomorphic, the same relationships exist between instances; only the

labels or names of the instances have changed. If the speci�cation does not
distinguish between the di�erent instances of the same principal (which it



104 CHAPTER 5. SYMMETRY

de�nitely should not) then Brutus need analyze only one representative

from each equivalence class of instance con�guration graphs. Each orbit

has size roughly

jSH j =
Y
X2P

[Ck(X)!]

where the Ck's are the con�guration functions for each role in the protocol.

5.3.2 Instance Traces

The instance con�guration graphs capture the relationships between the

instances and help to illustrate the inherent symmetry in my models. To

prove formally that it is safe to exploit this symmetry, one must analyze
the traces of the system and verify that symmetric traces satisfy the same

set of formulas. Again, I begin by extending p 2 SH to the set of messages
templates. As was the case for principal symmetry, permuting a compound
message is done by permuting its components. The only interesting part

is how to permute atomic messages. We have to be careful because when
instance IDs are permuted all private information such as freshly generated
nonces and session keys must also be permuted.

De�nition 5.3.3 Let p 2 SH be a safe permutation on the instances of

some trace �. Let �0 = f
; I1; : : :Ikg be the initial state of �. Let B0
i be

the value of Bi in the state �0 (the initial bindings for instance Ii). Then

p induces a permutation pM on the set of messages and message templates

as follows:

� pM(a) =

8<
:

B0
p(i)(v) if a = B0

i (v) for some variable v

and instance Ii
a otherwise

for all atomic messages a.

� pM(v) = v for all variables v.

� pM(m1 �m2) = pM(m1) � pM(m2). In other words, pM works on a

concatenated message by working on the components.

� pM(fmgk) = fpM(m)gpM(k). In other words, pM works on an en-

crypted message by working on the plaintext and on the key.



5.3. SYMMETRY ON INSTANCES 105

This de�nition is a straightforward inductive de�nition on compound

messages, but the de�nition on atomic messages requires some explana-

tion. Instances may begin with some \private" information such as fresh

nonces or session keys. When swapping instance Ii with instance Ij one

must also swap occurrences of this kind of private information. For exam-

ple, assume Ii has a fresh nonce ni. If Ii is swapped with instance Ij, then

Ij is an instance of the same principal playing the same role and therefore

it has a corresponding fresh nonce nj. Since the intention is to swap the

behaviors of Ii and Ij in the trace, these nonces must also be swapped in

any messages appearing in a trace. In other words, if the original trace has

an action consisting of instance Ii sending nonce ni, then in the permuted
trace, the corresponding action would be instance Ij sending nonce nj.

It is important to note that pM(m) is well de�ned since this is not
clear from the de�nition. In particular, it is not clear that pM(a) is well

de�ned for atomic messages a. We need to consider the case when a =
B0
i (x) and a = B0

j (y) for i 6= j or x 6= y because then there may be

more than one value for pM(a) (namely B0
p(i)(x) and B0

p(j)(y)). Recall,

however, that the initial bindings B0 contain freshly generated messages
(see De�nition 3.1.1). Freshly generated messages cannot be equal to one

another. This is the assumption that nonces and session keys are \fresh".
The symmetry reduction is restricted to models that have this property.

If this is the case, the only initial bindings that are not newly generated
messages are the bindings to pr. In other words, B0

i (x) = B0
j (y) implies

(x = y^i = j) or (x = y = pr). If x = y and i = j then B0
p(i)(x) = B0

p(j)(y)

and pM(a) is well de�ned. If instead x = y = pr, then Bi(pr) = Bp(i)(pr)
and Bj(pr) = Bp(j)(pr) because p is safe. Therefore, Bi(pr) = Bj(pr) = a

implies Bp(i)(pr) = Bp(j)(pr) = a, and pM(m) is also well de�ned in this

case.

There is an additional restriction. If pubkey(X) = B0
i (u) for some

variable u then there exists a variable v such that privkey(X) = B0
i (v) and

vice versa. This is a reasonable restriction because pubkey(X) = B0
i (u) or

privkey(X) = B0
i (v) for some instance Ii implies that this public key pair

is freshly generated. If a public key pair is freshly generated, then there

should be only one instance that initially knows either the public key or

the private key, and that instance should know both since it generated the
public key pair. We shall see that this restriction is necessary to ensure

that pM(k�1) = [pM(k)]�1 for public-private key pairs (Lemma 5.3.7).



106 CHAPTER 5. SYMMETRY

As was the case with principal symmetry, pM is also a permutation

on the set of atomic messages A. In other words, pM(a) 2 A for all

a 2 A. In addition, it is clear from the de�nition of pM, that the inverse

of an extension of a permutation p is equal to the extension of the inverse

permutation. In other words (pM)�1 = (p�1)M.

De�nition 5.3.4 Let p 2 SH be a permutation on the instances of some

trace � and let pM be the extension of p to the set of message templates.

Then p is extended to actions, instances, states, and traces as follows.

� pa acts on actions by applying p to the instance label and pM to the

message argument of the action. More formally,

pa(Hi � A �M) = p(Hi) � A � pM(M):

� pi acts on instances, again by applying pM to all messages appearing

in the instances and by applying p to the instance ID. More formally,

let Ii = hHi; Bi; Ii; Pii. Then

pi(Ii) = hp(Hi); pM ÆBi; pM(Ii); Pii:

Again pM(Ii) is an abuse of notation for f pM(m) j m 2 Ii g. Also,

it is not necessary to permute the process description Pi because p is

safe, which ensures that Pi = Pp(i).

� ps acts on states by applying pi to all the instances. More formally,

ps(f
; I1; : : : ; Ikg) = fpi(
); pi(I1); : : : ; pi(In)g:

� pt acts on a trace by applying ps to all the states in the trace and pa
to all the actions appearing in the trace. More formally,

pt(�0�1�1�1 � � ��n�n) = ps(�0)pa(�1)ps(�1)pa(�1) � � �pa(�n)ps(�n):

As in the case of pM, the inverse of the extension of p is the extension
of the inverse of p. Namely,

(pa)
�1 = (p�1)a;

(pi)
�1 = (p�1)i;

(ps)
�1 = (p�1)s, and

(pt)
�1 = (p�1)t:
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Safe permutations have an interesting and important property. They

map the initial state to itself. This is important because our models have

a unique initial state and all traces must start from that state. Therefore,

a permuted trace would also have to start from that same initial state.

This follows from the following theorem.

Theorem 5.3.4 Let � be a trace with initial state �0 and p be a safe

permutation with respect to �. Then pi(Ij) = Ip(j) for all instances

Ij 2 �0.

Proof: In order to show that

pi(Ij) = pi(hHj; Bj; Ij; Pji) = hp(Hj); pM ÆBj; pM(Ij); Pji

is equal to Ip(j) = hHp(j); Bp(j); Ip(j); Pp(j)i we will show that the compo-
nents are equal.

p(Hj) = Hp(j)

We know this from the de�nition of p.

pM ÆBj = Bp(j)

Recall that we are dealing with the initial state �0 and so Bj = B0
j

and Bp(j) = B0
p(j). Since these initial bindings are all atomic (nonces,

keys, etc.), it is clear from De�nition 5.3.3 that pM ÆB0
j = B0

p(j).

pM(Ij) = Ip(j)

Recall that in the initial state we have I0j = I
]
j [ I

[
j .

� Let us �rst consider I[j . Since p is safe, Ij and Ip(j) are instances

of the same principal and so, except for freshly generated mes-

sages, their initial knowledge is the same (i.e., I[j = I[p(j)). Since

the messages in I[j are not freshly generated, De�nition 5.3.3

gives us pM(I[j) = I[j . Therefore pM(I[j) = I[j = I[p(j).

� Now we consider I]j . Recall that

I
]
j = B0

j (V � fprg)
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Since p is safe, Ij and Ip(j) are playing the same role and they

have the same initial set of variables and so there is a corre-

sponding set of bindings B0
p(j) for instance Ip(j) such that

I
]

p(j)
= B0

pj
(V � fprg)

Therefore, by De�nition 5.3.3 pM(I]j) = I
]

p(j)
.

Combining these two results, we get

pM(I0j ) = pM(I]j [ I
[
j)

= pM(I]j) [ pM(I[j)

= I
]

p(j) [ I
[
p(j)

= I0p(j)

Pj = Pp(j)

This is trivial because p is safe and the process descriptions Pj and
Pp(j) are identical in the initial state �0.

2

Corollary 5.3.5 Let � be a trace with initial state �0 and let p be a safe

permutation with respect to �. Then ps(�0) = �0.

Proof: Theorem 5.3.4 gives us that pi is a permutation on the instances

of the initial state �0. Therefore,

ps(�0) = pi(f Ij j Ij 2 �0 g)

= f pi(Ij) j Ij 2 �0 g

= f Ij j Ij 2 �0 g

= �0

2

I now show that the set of all traces starting from some initial state
�0 is symmetric with respect to the safe permutations on the instances of
�0. I begin with a couple of lemmas.
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Lemma 5.3.6 Let p 2 SH be a safe permutation on the instances of some

trace and let pM be the extension of p to message templates. Let B be a set

of variable bindings. Let B be the extension of B to message templates.

Then pM(B(m)) = pM ÆB(pM(m)) for all message templates m whose

variables are in the domain of B.

The intuition is straightforward. If we take a message template m,

apply the bindings B to the variables and then permute the message with

pM [i.e., pM(B(m))] the result should be the same as if we �rst permute

the message template with pM (leaving the variables alone), then we apply

the permuted bindings to the variables [i.e., pM ÆB(pM(m))]. The formal
proof is below.

Proof: (by induction on the structure of m)

� m = a 2 A

pM(B(m)) = pM(B(a))
= pM(a) De�nition 3.1.2

= pM ÆB(pM(a)) De�nition 3.1.2 and pM(a) 2 A

= pM ÆB(pM(m))

� m = v 2 V

pM(B(m)) = pM(B(v))
= pM(B(v)) De�nition 3.1.2
= (pM ÆB)(v)

= pM ÆB(pM(v)) De�nition 3.1.2

= pM ÆB(pM(m))

� m = m1 �m2

pM(B(m)) = pM(B(m1 �m2))

= pM(B(m1) �B(m2)) De�nition 3.1.2

= pM(B(m1)) � pM(B(m2)) De�nition 5.3.3

= pM ÆB(pM(m1)) � pM ÆB(pM(m2)) ind. hyp.

= pM ÆB(pM(m1) � pM(m2)) De�nition 3.1.2

= pM ÆB(pM(m1 �m2)) De�nition 5.3.3

= pM ÆB(pM(m))
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� m = fm0gk

pM(B(m)) = pM(B(fm0gk))

= pM(fB(m0)gB(k)) De�nition 3.1.2

= fpM(B(m0))gpM(B(k)) De�nition 5.3.3

= fpM ÆB(pM(m0))gpMÆB(pM(k)) ind. hyp.

= pM ÆB(fpM(m0)gpM(k)) De�nition 3.1.2

= pM ÆB(pM(fm0gk)) De�nition 5.3.3

= pM ÆB(pM(m))

2

Lemma 5.3.7 Let k 2 K be a key. Let p 2 SH be a safe permutation on

the instances of some trace and let pM be the extension of p to message

templates. Then the inverse of a permuted key is the same as the permuted

inverse key. More formally, pM(k�1) = (pM(k))�1.

Proof: If k is not freshly generated then k 6= B0
i (x) for any instance Ii

or any variable x. Since k is atomic, then by De�nition 5.3.3 pM(k) = k

and pM(k�1) = k�1. Therefore,

pM(k�1) = k�1 = (pM(k))�1:

If k is freshly generated, then there is exactly one instance Ii such that

B0
i (x) = k. That same instance must know the inverse key, so B0

i (y) = k�1

for some variable y. Note that if k is a symmetric key, then x = y. Now
pM(k) = B0

p(i)(x) and pM(k�1) = B0
p(i)(y). Since Ip(i) is an instance of the

same role, B0
p(i)(x) and B0

p(i)(y) must also be inverses. Therefore,

pM(k�1) = pM(B0
i (y)) for some variable y and instance Ii

= B0
p(i)(y) for the same variable y

= (B0
p(i)(x))

�1 for some variable x

= (pM(B0
i (x)))

�1 for the same variable x

= (pM(k))�1:

2

Lemma 5.3.8 Let T be a derivation tree for m with assumptions in A.

Let p 2 SH be a safe permutation on the instances of some trace and let

pM be the extension of p to the set of message templates. Applying pM to

every message appearing in T , results in a new derivation tree pM(T ) for
pM(m) with assumptions in pM(A).
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Proof: (by induction on the height of the derivation tree T )

� Assume T has height 0 and hence is atomic.

Then T consists of the single message m and m 2 A. This means

that pM(T ) consists of the single message pM(m), and that

pM(m) 2 pM(A).

� Assume T is a derivation tree of height n with assumptions in A,

and that it has the following form:

�

m1 �m2

mi

Then the subtree above mi has height n � 1. By the inductive
hypothesis,

pM(�)

pM(m1 �m2)

is a derivation tree for pM(m1 � m2) with assumptions in pM(A).

Now by De�nition 5.3.3, pM(m1 �m2) = pM(m1) � pM(m2). Clearly,

pM(m1) � pM(m2)

pM(mi)

is a valid inference. Putting these together results in a derivation
tree for pM(mi) with assumptions in pM(A).

� Assume T is a derivation tree of height n with assumptions in A,
and that it has the following form:

�1

m1

�2

m2

m1 �m2

Then the subtrees above m1 �m2 have height at most n� 1. By the

inductive hypothesis,
pM(�i)

pM(mi)
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is a derivation tree for pM(mi) with assumptions in pM(A). Clearly,

pM(m1) pM(m2)

pM(m1) � pM(m2)

is a valid inference. Putting these together results in a derivation

tree for pM(m1)�pM(m2) = pM(m1 �m2) with assumptions in pM(A).

� Assume T is a derivation tree of height n with assumptions in A,

and that it has the following form:

�1

fmgk

�2

k�1

m

Then the subtrees above m have height at most n � 1. By the
inductive hypothesis,

pM(�1)

pM(fmgk) and

pM(�2)

pM(k�1)

are derivation trees for pM(fmgk) and pM(k�1) with assumptions in

pM(A). Now by De�nition 5.3.3, pM(fmgk) = fpM(m)gpM(k) and
by Lemma 5.3.7, pM(k�1) = (pM(k))�1. Clearly,

fpM(m)gpM(k) (pM(k))�1

pM(m)

is a valid inference. Putting these together results in a derivation

tree for pM(m) with assumptions in pM(A).

� Assume T is a derivation tree of height n with assumptions in A,
and that it has the following form:

�1

m

�2

k

fmgk
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Then the subtrees above fmgk have height at most n � 1. By the

inductive hypothesis,

pM(�1)

pM(m) and

pM(�2)

pM(k)

are derivation trees for pM(m) and pM(k) with assumptions in pM(A).

Clearly,
pM(m) pM(k)

fpM(m)gpM(k)

is a valid inference. Putting these together results in a derivation
tree for fpM(m)gpM(k) = pM(fmgk) with assumptions in pM(A).

2

Lemma 5.3.9 Let p 2 SH be a safe permutation on the instances. Let

pM, pa, and ps be the extensions of p to message templates, actions,

and states respectively. If �
Hi�A�m
�! �0 is a valid transition then so is

ps(�)
pa(Hi�A�m)
�! ps(�

0).

Proof: It is clear from the de�nition of ps that if � and �0 are states, then

so are ps(�) and ps(�
0). From the de�nition of pa, if Hi �A �m is an action,

then so is pa(Hi �A �m) = p(Hi) �A � pM(m). It remains to show that each
of the three di�erent kinds of actions results in a valid transition.

� Hi � A �m is a send action

1. I 0
 = I
 [m. (The adversary adds m to the set of messages it

knows.)

2. If in �, Ii = hHi; Bi; Ii; Pii, and in �
0, I 0i = hH 0

i; B
0
i; I

0
i; P

0
i i, then

{ H 0
i = Hi (The instance ID remains unchanged.)

{ B0
i = Bi (The bindings remain unchanged.)

{ I 0i = Ii (The set of information remains unchanged.)

{ Pi = send (s-msg) � P 0
i (The instance is ready to send a

message, and that send action is removed from the process

description in the new state.)
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{ m = Bi(s-msg) (The message that the instance is ready to

send and the actual message sent are the same.)

3. Ij = I 0j for all j 6= i. (All other instances remain unchanged.)

We now need to show the corresponding properties for the permuted

transition ps(�)
p(Hi)�A�pM(m)

�! ps(�
0).

1. In ps(�
0),

pM(I 0
) = pM(I
 [m) = pM(I
) [ pM(m):

(The adversary adds pM(m) to the set of messages it knows.)

2. In ps(�),

pi(Ii) = hp(Hi); pM ÆBi; pM(Ii); pp(Pi)i;

and in ps(�
0),

pi(I
0

i) = hp(H 0

i); pM ÆB0

i; pM(I 0i); pp(P
0

i )i;

and

{ H 0
i = Hi so

p(H 0

i) = p(Hi)

(The instance ID remains unchanged.)

{ B0
i = Bi so

pM ÆB0

i = pM ÆBi

(The bindings remain unchanged.)

{ I 0i = Ii so
pM(I 0i) = pM(Ii)

(The set of information remains unchanged.)

{ Pi = send (s-msg) � P 0
i so

pp(Pi) = send (pM(s-msg)) � pp(P
0

i )

(The instance is ready to send a message, and that send

action is removed from the process description in the new
state.)
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{ m = Bi(s-msg) so

pM(m) = pM(Bi(s-msg)) = pM ÆBi(pM(s-msg))

by Lemma 5.3.6. (The message that the instance is ready

to send and the actual sent message are the same.)

3. Ij = I 0j for all j 6= i so

pi(Ij) = pi(I
0

j) for all j 6= i:

(All other instances remain unchanged.)

� Hi � A �m is a receive action

1. m 2 I
. (The adversary can generate the message m.)

2. If in �, Ii = hHi; Bi; Ii; Pii, and in �
0, I 0i = hH 0

i; B
0
i; I

0
i; P

0
i i, then

{ Hi = H 0
i (The instance ID remains unchanged.)

{ B0
i is the smallest extension of Bi such that B

0
i(r-msg) = m

(The bindings of the instance are updated correctly, and
the message received matches the message template in the

receive action.)

{ I 0i = Ii [ m (The information of the instance is updated

correctly.)

{ Pi = receive (r-msg) �P 0
i (The instance is ready to receive

a message, and that action is removed from the process
description in the next state.)

3. Ij = I 0j for all j 6= i. (All other instances remain unchanged.)

Again, we must show the corresponding properties for the permuted

transition ps(�)
p(Hi)�A�pM(m)

�! ps(�
0).

1. By Lemma 5.3.8, we can apply pM to the derivation tree for
m 2 I
 to obtain a derivation tree for pM(m) 2 pM(I
). (The
adversary can generate the message pM(m).)

2. In ps(�),

pi(Ii) = hp(Hi); pM ÆBi; pM(Ii); pp(Pi)i;
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and in ps(�
0),

pi(I
0

i) = hp(H 0

i); pM ÆB0

i; pM(I 0i); pp(P
0

i )i;

and

{ Hi = H 0
i so

p(Hi) = p(H 0

i):

(The instance ID remains unchanged.)

{ B0
i is the smallest extension of Bi such that B

0
i(r-msg) = m

so using Lemma 5.3.6, pM Æ B0
i is the smallest extension

of pM Æ Bi such that pM ÆB0
i(pM(r-msg)) = pM(m) (The

bindings of the instance are updated correctly, and the mes-
sage received matches the message template in the receive

action.)

{ I 0i = Ii [m so

pM(I 0i) = pM(Ii [m) = pM(Ii) [ pM(m)

(The information of the instance is updated correctly.)

{ Pi = receive (r-msg) � P 0
i so

pp(Pi) = receive (pM(r-msg)) � pp(P
0

i )

(The instance is ready to receive a message, and that action

is removed from the process description in the next state.)

3. Ij = I 0j for all j 6= i so

pi(Ij) = pi(I
0

j) for all j 6= i:

(All other instances remain unchanged.)

� Hi � A �m is an internal action

1. If in �, Ii = hHi; Bi; Ii; Pii, and in �
0, I 0i = hH 0

i; B
0
i; I

0
i; P

0
i i, then

{ H 0
i = Hi (The instance ID remains unchanged.)

{ B0
i = Bi (The bindings remain unchanged.)

{ I 0i = Ii (The set of information remains unchanged.)
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{ Pi = A(msg) � P 0
i (The instance is ready to perform action

A, and that action is removed from the process description

in the new state.)

{ m = Bi(msg). (The message argument in the process de-

scription and the actual message occurring in the taken

action are the same.)

2. Ij = I 0j for all j 6= i. (All other instances remain unchanged.)

We must show the corresponding properties for the permuted tran-

sition ps(�)
p(Hi)�A�pM(m)

�! ps(�
0).

1. In ps(�),

pi(Ii) = hp(Hi); pM ÆBi; pM(Ii); pp(Pi)i;

and in ps(�
0),

pi(I
0

i) = hp(H 0

i); pM ÆB0

i; pM(I 0i); pp(P
0

i )i;

and

{ H 0
i = Hi so

p(H 0

i) = p(Hi)

(The instance ID remains unchanged.)

{ B0
i = Bi so

pM ÆB0

i = pM ÆBi

(The bindings remain unchanged.)

{ I 0i = Ii so

pM(I 0i) = pM(Ii)

(The set of information remains unchanged.)

{ Pi = A(msg) � P 0
i so

pp(Pi) = A(pM(s-msg)) � pp(P
0

i )

(The instance is ready to perform action A, and that action

is removed from the process description in the new state.)
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{ m = Bi(msg) so

pM(m) = pM(Bi(msg)) = pM ÆBi(pM(msg))

by Lemma 5.3.6. (The message argument in the process

description and the actual message occurring in the taken

action are the same.)

2. Ij = I 0j for all j 6= i so

pi(Ij) = pi(I
0

j) for all j 6= i:

(All other instances remain unchanged.)

2

Theorem 5.3.10 Let Tr(�0) be the set of all possible traces with initial

state �0 and let � 2 Tr(�0) be a trace. Let p be a safe permutation on

the instances of �0, let ps be the extension of p to states, and let pt be the

extension of p to traces. Then pt(�) 2 Tr(�0).

Proof: (by induction on the length of a trace)

� Let � = �0 be a trace of length 0. Then pt(�) = ps(�0). Clearly,
ps(�0) is a state as well, and so it is a trace of length 0. By Corol-

lary 5.3.5, ps(�0) = �0, and so pt(�) is a trace with initial state �0.
Hence pt(�) 2 Tr(�0).

� Let � = �0�1�1�2 � � ��n+1�n+1 be a trace of length n + 1 in Tr(�).
Then �n = �0�1�1�2 � � ��n�n is a trace of length n in Tr(�0) and

by the inductive hypothesis so is

pt(�n) = ps(�0)pa(�1)ps(�1)pa(�2) � � �pa(�n)ps(�n):

From the trace � we see that �n
�n+1
�! �n+1 is a valid transition.

By Lemma 5.3.9, ps(�n)
pa(�n+1)
�! ps(�n+1) is also a valid transition.

Appending this to the end of pt(�n) we get that pt(�) is a trace of
length n+ 1 in Tr(�0).

2
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There is an intuitive relationship between instance con�guration graphs

and instance symmetries on traces. If p is a safe permutation with respect

to a trace �, and G� is an instance con�guration graph for the trace �,

then p(G�) = Gpt(�). In other words, the permuted graph p(G�) is the

con�guration graph for the permuted trace pt(�). Since the purpose of

the graphs is to provide an intuitive picture of the symmetries, no proof

is provided.

Corollary 5.3.11 Let Tr(�0) be the set of all traces starting from the ini-

tial state �0. Let SH be the set of safe permutations on the instance IDs in

�0. Then Tr(�0) is symmetric with respect to the set of safe permutations

SH . In other words, for any p 2 SH , pt(Tr(�0)) = f p(�) j � 2 Tr(�0) g

is equal to Tr(�0).

Proof:

pt(Tr(�0)) � Tr(�0)

Let �0 2 pt(Tr(�0)). Then �0 = pt(�) for some � 2 Tr(�0). By
Theorem 5.3.10, �0 = pt(�) 2 Tr(�0).

Tr(�0) � pt(Tr(�0)

Let � 2 Tr(�0). Since p 2 SH and SH is a group (Theorem 5.3.1),
p�1 2 SH . Let �

0 = p�1t (�). By Theorem 5.3.10, �0 2 Tr(�0) because

p�1 2 SH . Therefore, � = pt(p
�1
t (�)) = pt(�

0) 2 pt(Tr(�0)).

2

Theorem 5.1.2 states that f pt j p 2 SH g, the group of safe permuta-
tions on traces, partitions the set of traces Tr(�) into equivalence classes.
One trace � is equivalent to another trace �0 if and only if there exists

some p 2 SH such that �0 = pt(�). This symmetry partitions the traces
into sets with equivalent structure, in the sense that the same actions and

relationships are present; however, the instances performing the actions
have been permuted. I would now like to show that these equivalence

classes of traces also respect the truth values of formulas if the formulas

also display the same symmetry. First, I must de�ne the extension of
p 2 SH to the set of formulas.

De�nition 5.3.5 Let SH be the set of safe permutations on the instances

of some trace. Let � be any formula in our logic. Then p 2 SH is extended

to pf , a permutation on formulas, as follows:
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� pf(Hi:v) = p(Hi):v for any instance ID Hi and any message variable

v.

� pf(a) = pM(a) for any atomic message a 2 A.

� pf(m1 �m2) = pf(m1) � pf (m2) for all message terms m1 and m2.

� pf(fmgk) = fpf(m)gpf (k) for all message terms m and k.

� pf(m1 = m2) = [pf(m1) = pf(m2)] for any atomic proposition of the

form m1 = m2.

� pf(Hi Knows m) = p(Hi) Knows pf(m) for any atomic proposi-

tion of the form Hi Knows m.

� pf(Hi Act m) = p(Hi) Act pf (m) for any atomic proposition of the

form Hi Act m.

� pf(:�) = :(pf (�)).

� pf(�1 ^ �2) = pf(�1) ^ pf(�2).

� pf(3P�) = 3Ppf(�).

We now need to show that a trace satis�es a formula if and only if the
permuted trace satis�es the permuted formula. First we need a lemma

analogous to Lemma 5.3.6, but for message terms instead of message tem-
plates.

Lemma 5.3.12 Let p 2 SH be a safe permutation on the instances of

some trace �. Let pM, ps, and pf be the extensions of p to message

templates, states, and formulas, respectively. Let m be a message term

and let � be a state in � in which all variables appearing in m are bound.

Then pM(�(m)) = [ps(�)](pf(m)).

Proof: (by induction on the structure of the message term m)

� m = a 2 A

pM(�(m)) = pM(�(a))
= pM(a) De�nition 3.2.1

= [ps(�)](pM(a)) De�nition 3.2.1 and pM(a) 2 A
= [ps(�)](pf(a)) De�nition 5.3.5

= [ps(�)](pf(m))



5.3. SYMMETRY ON INSTANCES 121

� m = Hi:v

pM(�(m)) = pM(�(Hi:v))

= pM(Bi(v)) De�nition 3.2.1

= (pM ÆBi)(v)

= [ps(�)](Hi:v) De�nition 5.3.4 and De�nition 3.2.1

= [ps(�)](pf (Hi:v)) De�nition 5.3.5

= [ps(�)](pf (m))

� m = m1 �m2

pM(�(m)) = pM(�(m1 �m2))
= pM(�(m1) � �(m2)) De�nition 3.2.1

= pM(�(m1)) � pM(�(m2)) De�nition 5.3.3
= [ps(�)](pf(m1)) � [ps(�)](pf(m2)) ind. hyp.

= [ps(�)](pf(m1) � pf(m2)) De�nition 3.2.1
= [ps(�)](pf(m1 �m2)) De�nition 5.3.5
= [ps(�)](pf(m))

� m = fm0gk

pM(�(m)) = pM(�(fm0gk))
= pM(f�(m0)g�(k)) De�nition 3.2.1
= fpM(�(m0))gpM(�(k)) De�nition 5.3.3

= f[ps(�)](pf (m
0))g[ps(�)](pf (k)) ind. hyp.

= [ps(�)](f(pf(m
0)gpf (k)) De�nition 3.2.1

= [ps(�)](pf (fm
0gk)) De�nition 5.3.5

= [ps(�)](pf (m))

2

Theorem 5.3.13 Let � be a trace, � be a formula, and SH be the safe

permutations on the instances in �. Then for any p 2 SH ; h�; ii j= � if

and only if hpt(�); ii j= pf(�).

Proof: (by induction on the structure of the formula �)

� � = [m1 = m2]
Using the de�nition of j=, Lemma 5.3.12, and De�nition 5.3.5 (the
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de�nition of pf ) we have the following:

h�; ii j= [m1 = m2] , �i(m1) = �i(m2)

, pM(�i(m1)) = pM(�i(m2))

, [ps(�i)](pf (m1)) = [ps(�i)](pf(m2))

, hpt(�); ii j= [pf(m1) = pf (m2)]

, hpt(�); ii j= pf([m1 = m2])

� � = Hj Knows m

Let Ij = hHj; Bj; Ij; Pji in �i. Then in ps(�i),

pi(Ij) = hp(Hj); pM ÆBj; pM(Ij); Pji:

Using the de�nition of j=, Lemma 5.3.8 about applying pM to deriva-
tion trees, Lemma 5.3.12, and De�nition 5.3.5 (the de�nition of pf )
we have the following:

h�; ii j= Hj Knows m , �i(m) 2 Ij

, pM(�i(m)) 2 pM(Ij)

, [ps(�i)](pf(m)) 2 pM(Ij)

, hpt(�); ii j= p(Hj) Knows pf(m)

, hpt(�); ii j= pf(Hj Knows m)

� � = Hj A m

Using the de�nition of j=, De�nition 5.3.4 (de�nition of pa), Lemma 5.3.12,

and De�nition 5.3.5 (the de�nition of pf) we have the following:

h�; ii j= Hj A m , �k = Hj � A � �k�1(m) for some 1 � k � i

, pa(�k) = pa(Hj � A � �k�1(m))

, pa(�k) = p(Hj) �A � pM(�k�1(m))

, pa(�k) = p(Hj) �A � [ps(�k�1)](pf(m))

, hpt(�); ii j= p(Hj) A pf (m)

, hpt(�); ii j= pf(Hj A m)
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� � = :�0

Using the de�nition of j=, the inductive hypothesis, and De�ni-

tion 5.3.5 (the de�nition of pf) we have the following:

h�; ii j= :�0 , h�; ii 6j= �0

, hpt(�); ii 6j= pf(�
0)

, hpt(�); ii j= :pf(�
0)

, hpt(�); ii j= pf(:�
0)

� � = �1 ^ �2
Using the de�nition of j=, the inductive hypothesis, and De�ni-
tion 5.3.5 (the de�nition of pf) we have the following:

h�; ii j= �1 ^ �2 , h�; ii j= �1 and h�; ii j= �2

, hpt(�); ii j= pf(�1) and hpt(�); ii j= pf (�2)

, hpt(�); ii j= pf(�1) ^ pf(�2)

, hpt(�); ii j= pf(�1 ^ �2)

� � = 3P�
0

Using the de�nition of j=, the inductive hypothesis, and De�ni-
tion 5.3.5 (the de�nition of pf) we have the following:

h�; ii j= 3P�
0 , h�; ji j= �0 for some 0 � j � i

, hpt(�); ji j= pf(�
0) for the same 0 � j � i

, hpt(�); ii j= 3Ppf(�
0)

, hpt(�); ii j= pf (3P�
0)

2

Instance IDs are arbitrary. The correctness of the protocol should not
depend on them. The speci�cation should be insensitive to permutations

on the IDs of instances performing the same role on behalf of the same

principal. In other words, the speci�cation should be insensitive to safe
permutations. If this is the case, one need only check one trace from

the equivalence class of traces that are related via a safe permutation of
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instance IDs. This is formalized in the corollary below, but �rst a minor

technicality should be clari�ed.

Sometimes, when pf is applied to a formula, the result is an equiva-

lent formula although it may not be syntactically equal. This situation

arises because I have de�ned quanti�cation as a shorthand for �nite con-

junction/disjunction, and both operations are commutative. For example,

assuming the message term m contains only variables and messages that

are not freshly generated, then

pf(8Hi : Hi Knows m) � pf

 
k̂

i=1

Hi Knows m

!

�

k^
i=1

p(Hi) Knows pf (m)

�

k^
i=1

p(Hi) Knows m , assuming pf (m) = m

�

k^
i=1

Hi Knows m

� 8Hi : Hi Knows m

The second to the last line is equivalent to the previous line because p

is a permutation. All the disjuncts are present, although not necessarily
in the same order. However, since disjunction (and conjunction) are com-

mutative, they are semantically equivalent (�). In other words, the two

formulas agree on all traces. This semantic equivalence can be de�ned
syntactically as follows:

De�nition 5.3.6 Given two formulas � and �0, � � �0 if and only if �

and �0 are syntactically equal up to the ordering of conjuncts and disjuncts.

Note that \�" is clearly an equivalence.

So, in the previous example, if pf(m) = m, then

pf(8Hi : Hi Knows m) � 8Hi : Hi Knows m:
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The question then is how to ensure that pf(m) = m. A suÆcient condition

for this is to restrict m to contain only \public knowledge" and variables.

In other words, ifm does not contain any freshly generated messages, then

pf(m) = m. It is clear from the de�nition of pf (De�nition 5.3.5), that

this condition is suÆcient. Also, note that this is a reasonable restriction,

because freshly generated messages must be bound to a variable in the

initial state. If necessary, the speci�cation can refer to freshly generated

messages through these variables.

The relation \�" is now used to characterize the formulas for which a

symmetry reduction is possible:

Corollary 5.3.14 Given an initial state �, the set of traces Tr(�), a

formula �, and p 2 SH , a safe permutation on the instances of � such that

pf(�) � � (the formula is symmetric in p), then for any trace � 2 Tr(�),
� j= � if and only if pt(�) j= �.

Proof: Let l = length(�). Using the de�nition of j=, Theorem 5.3.13, and

the fact that pf(�) � � implies �0 j= �, �0 j= pf(�) for any trace �0, we
have the following:

� j= � , h�; ii j= � for 0 � i � l

, hpt(�); ii j= pf (�) for 0 � i � l

, pt(�) j= pf(�)

, pt(�) j= �

2

In practice this allows the following reduction. Assume � is the initial

state of the model to be analyzed. Then the model has Tr(�) as its

set of traces. Assume � is the formula to be veri�ed. Let SH be the

subset of safe permutations on the instances in �. Then SH partitions

Tr(�) into equivalence classes. Furthermore, these equivalence classes are

a congruence with respect to satisfying the formula �. In other words, for
any � 2 Tr(�), � j= � if and only if �0 j= � for every �0 2 SH(�). This

means one need only check a single representative from each equivalence

class. Each equivalence class has size jSH j. This means the amount search
required is reduced by a factor of jSH j.
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How large is SH , the set of safe permutations? Any safe permutation

can be constructed by independently permuting the instances playing the

same role on behalf of the same principal. Each of these subgroups has

size Ck(X)!. Recall that Ck(X) is a function in the con�guration C that

gives the number of instances of principal X playing role k. The total

number of safe permutations is the product of these subgroups, namely

�[Ck(X)!]. Figure 5.1, is an instance con�guration graph for a model with

three initiator instances for principal A and with three responder instances

for principal B. The size of SH , and therefore, the amount of reduction

in this example isY
[Ck(X)!] = Ci(A)! � Ci(B)! � Cr(A)! � Cr(B)!

= 3! � 0! � 0! � 3!

= 36



Chapter 6

Partial Order

Another important technique used to combat the state explosion problem
in model checking is the partial order reduction. Partial order reduction

prunes the set of traces of a system by reducing the number of interleavings
that need to be considered. For example, if the system is insensitive to

permuting two actions � and �, then one can consider a single interleaving
(say ��) and ignore the other interleaving (��) while exploring the system.
Consider a simple system with two processes, one performing the actions

�1; : : : �n in order and the other performing �1; : : : �n in order. All possible
traces are depicted in Figure 6.1. The full product model contains n2

states. Each path in the �gure corresponds to a di�erent trace. As noted

in [32], the number of di�erent paths in an n�n grid is
�
2n

n

�
. (There are 2n

total actions and one must choose where to place the n �-actions). If the

speci�cation is insensitive to the ordering of these actions, then the entire
graph can be collapsed into one representative trace that has n states.
The state space for three processes has n3 states and�

3n

2n

�
�

�
2n

n

�
=

3n!

n!n!n!

di�erent possible interleavings. It is easy to see that the complexity (both

time and space) grows quite quickly in the number of processes. However,

the set of traces that need to be checked could theoretically contain a
single trace containing 3n states. The trick lies in being able to perform

the reduction without having to construct the entire model �rst. This is

done by pruning the state space as the search proceeds. Typically, this
involves expanding a subset of the enabled actions in a state.

127
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Figure 6.1: Two processes with n actions each
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While the set of executions generally cannot be reduced to a single

trace as in the example above, the use of partial order reduction has

proved valuable in verifying reactive systems [23, 67, 81]. I now show

how to apply the partial order reduction technique to the veri�cation of

security protocols. I also present a proof of correctness for this reduction.

While my implementation is speci�c to the Brutus model checker, the

proof of correctness is fairly general and other researchers working in this

area should be able to adapt it to their tools.

While this reduction in Brutus is in
uenced heavily by the tradi-

tional partial order reduction theory, it is not solely a special case of this

theory. In particular, traditional partial order techniques do not directly
apply to Brutus models because these models explicitly keep track of the

knowledge of various agents, and the speci�cation logic can refer to this
knowledge in a meaningful way. In addition, the enabledness of receive

actions depends heavily on the adversary's knowledge. These di�erences

combine to give us a fundamental di�erence in the proof of correctness.
Traditional partial order techniques rely on the equivalence of traces. Any

trace that is not explored is equivalent to another trace that is explored.
Equivalent traces agree on the speci�cation in the sense that they either
both satisfy the speci�cation, or neither satis�es the speci�cation. I will

argue that for any trace that is not considered there is a trace that I do
consider such that if the ignored trace violates the requirement, then the
trace I do consider also violates the requirement. However, I do not insist

that related traces agree on the speci�cation.

6.1 Preliminaries

In order for this partial order reduction to be sound, I must restrict the
set of formulas that are allowed as speci�cations. Consider AP (�), the

set of atomic propositions appearing in the formula �. This set can be

partitioned into the following two sets.

� AP
(�): the set of atomic propositions referring to the adversary.

� APH(�): the set of atomic propositions referring to the honest agents.

Note that because the adversary performs no internal actions, and because
the adversary has no variables, the atomic propositions in AP
(�), must
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be of the form H
 Knows m for some message term m. All other atomic

propositions appearing in � are in APH(�).

In order for this partial order reduction to be sound, any atomic propo-

sitions in AP
(�) must occur negatively in �. To simplify this discussion

as well as the proof, I will assume that � is in negation normal form. This

means that all negations are \pushed in" as far as possible so that the

only negated subformulas in � are atomic propositions. If � is in negation

normal form, the restriction that atomic propositions in AP
(�) occur

negatively is equivalent to the restriction that all propositions in AP
(�)

appear as negated literals. Such a speci�cation will be called admissible.

Intuitively, the restriction to admissible formulas means that one can
only write speci�cations that require messages to remain unknown to the
adversary. One cannot write speci�cations that require the adversary to

know something. Should such a speci�cation be necessary, the partial
order reduction can be disabled to ensure that the veri�cation is still

correct.

Before continuing with the formal description of the partial order re-
duction, let us consider the intuition behind the reduction. The truth
value of a speci�cation � on a trace � is completely determined by the

values of the atomic propositions in the set APH and by the adversary's
knowledge which determines the values of the atomic propositions in the

set AP
. I will refer to the set of atomic propositions in APH that are
true in a state h�; ii as L(h�; ii), the labeling of h�; ii. I will refer to the
set of messages known to the adversary (equivalently, the \adversary's

knowledge") in a state h�; ii, as I
(h�; ii).

As in the case of the usual partial order reduction, I look for invisible
actions. Invisible actions do not a�ect the truth value of the formula

in question. Any actions that do not a�ect the truth value of the atomic
propositions will be invisible. It is precisely these invisible actions that can
be permuted in a trace without a�ecting the truth value of the speci�cation

formula. This means we must identify actions � such that

L(h�; ii) = L(h�; i+ 1i) and I
(h�; ii) = I
(h�; i+ 1i)

for all pairs of states h�; ii and h�; i+ 1i where h�; ii
�
! h�; i+ 1i.

This notion of invisible actions can be extended to the idea of semi-

invisible actions. Semi-invisible actions can only make the speci�cation
false. Because our speci�cations can only require that the adversary not
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know things, any action that increases the adversary's knowledge but is

otherwise \invisible" is semi-invisible (can only make the speci�cation

false). In other words, we also look for actions � such that

L(h�; ii) = L(h�; i+ 1i) and I
(h�; ii) ( I
(h�; i+ 1i)

for any two states h�; ii and h�; i + 1i such that h�; ii
�
! h�; i + 1i. I

show that these actions are precisely the send actions. Since send ac-

tions only increase the adversary's knowledge, these actions can be moved

forward (sooner) in the trace, and the resulting trace will still be a coun-

terexample if the original trace was a counterexample.

It is not suÆcient to ensure that the permutations on the actions pre-
serve the truth value of traces; the permutations must also be allowed. In
other words, the traces that result from the permutations must be valid

traces (possible traces) of the system or model. In traditional partial order
techniques this is accomplished by analyzing the enabledness of di�erent

actions. A check has to be made that two actions which are permuted
cannot disable each other. This task is simpli�ed in my setting because
the actions I move to the front (invisible actions and semi-invisible ac-

tions) never disable any other actions. With this overview in mind, we
now turn to the formal proof of this result.

6.2 A Relation on Traces

I now de�ne a relation \K" on traces that respects satisfaction of �. In
other words, �1 j= � and �1K�2 should imply that �2 j= �. If this is

the case, then whenever �1K�2 for any pair of traces �1 and �2, one need
only check the trace �1. Because this relation can be detected at indi-

vidual states (for traces with a common pre�x), entire subtrees of the

computation tree can be collapsed into a single trace or branch. Infor-
mally, �1K�2 can be thought to hold whenever the adversary might learn

messages sooner in �1 than in �2, but the traces are otherwise \almost

identical." This is de�ned formally below.

De�nition 6.2.1 For any two traces �1 and �2, �1K�2 if and only if there

exist a partition A = fA0; A1; A2; : : : ; Alg of the trace �1 and a partition

B = fB0; B1; B2; : : : Blg of the trace �2 such that the following conditions

hold:
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1. There exist indices

0 = a0 < a1 < a2 < � � � < al < al+1 = length(�1) + 1

such that Ai = fh�1; aii; : : : ; h�1; ai+1 � 1ig. In other words, Ai is

the subtrace of �1 starting at index ai and ending at index ai+1� 1.

2. There exist indices

0 = b0 < b1 < b2 < � � � < bl+1 = length(�2) + 1

such that Bi = fh�2; bii; : : : ; h�2; bi+1 � 1ig. In other words, Bi is
the subtrace of �2 starting at index bi and ending at index bi+1 � 1.

3. For any two corresponding partitions Ak and Bk (0 � k � l), the

following holds:

8h�1; ii 2 Ak : 8h�2; ji 2 Bk : L(h�1; ii) = L(h�2; ji):

In other words, all states in any two corresponding partitions agree

on all the atomic propositions referring to the honest agents.

4. For any partition index 0 � k � l, the following holds:

I
(h�2; bk+1 � 1i) � I
(h�1; aki):

In other words, the adversary knows at least as much in the �rst

state of Ak as it does in the last state of Bk. Since the adversary's
knowledge is monotonically increasing, this also means that the ad-

versary knows at least as much in every state of Ak as it does in any

state of Bk. In other words,

I
(h�2; ji) � I
(h�1; ii)

for any indices i and j within the partition boundaries of Ak and Bk

(i.e., for ak � i < ak+1 and bk � j < bk+1).

Recall that the original idea was to de�ne a relation that respects the
satisfaction relation. The proof follows.
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Theorem 6.2.1 Let � be an admissible speci�cation. Let �1 and �2 be two

traces such that �1K�2. Let A = fA1; � � �Alg and B = fB1; � � �Blg be the

partitions of �1 and �2 that satisfy the de�nition of \K". If h�1; ii j= � for

some state in partition Ak (i.e., for some ak � i < ak+1), then h�2; ji j= �

for all states in partition Bk (i.e., for all bk � j < bk+1).

Proof: (by induction on the formula �)

I will assume that the formula is in negation normal form, and so I

will ignore general negation and treat negated literals as a base case for

the induction.

� � = p or � = :p where p 2 APH

This case is trivial, because Ak and Bk agree on the atomic propo-
sitions in APH . (For all states h�1; ii 2 Ak and for all states

h�2; ji 2 Bk; L(h�1; ii) = L(h�2; ji).) Therefore, if any state
h�1; ii 2 Ak satis�es p then every state h�2; ji 2 Bk satis�es p.

If any state h�1; ii 2 Ak does not satisfy p then no state h�2; ji 2 Bk

satis�es p.

� � = :p where p 2 AP


Again, this case is straightforward because p must have the form

 Knows m and the adversary knows more in every state of Ak

than in any state of Bk. (For all states h�1; ii 2 Ak and for all states
h�2; ji 2 Bk I
(h�1; ii) � I
(h�2; ji).) If h�1; ii j= : H
 Knows m

thenm is not derivable from I
(h�1; ii). Since I
(h�2; ji) � I
(h�1; ii)

for all states h�2; ji 2 Bk, m is also not derivable from I
(h�2; ji)
which means that h�2; ji j= : H
 Knows m for all bk � j < bk+1.

� � = �1 ^ �2

By hypothesis, h�1; ii j= �1 ^ �2 for some state in partition Ak (i.e.,
for some ak � i < ak+1). Therefore h�1; ii j= �1 and h�1; ii j= �2 for

some ak � i < ak+1. By the induction hypothesis h�2; ji j= �1 and

h�2; ji j= �2 for all states in partition Bk (i.e., for all bk � j < bk+1).
Therefore, h�2; ji j= �1 ^ �2 for all bk � j < bk+1.
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� � = �1 _ �2

By hypothesis, h�1; ii j= �1 _ �2 for some state in partition Ak (i.e.,

for some ak � i < ak+1). Therefore, h�1; ii j= �1 or h�1; ii j= �2 for

some ak � i < ak+1. Without loss of generality, assume h�1; ii j= �1.

By the induction hypothesis h�2; ji j= �1 for all states in partition

Bk (i.e., for all bk � j < bk+1). Therefore, h�2; ji j= �1 _ �2 for all

bk � j < bk+1.

� � = 3P�1

By hypothesis, h�1; ii j= 3P�1 for some state in partition Ak (i.e.,

for some ak � i < ak+1). Therefore h�1; i
0i j= �1 for some i0 � i.

There are two cases depending on whether h�1; i
0i falls in the same

partition Ak or some earlier partition.

{ case: h�1; i
0i 2 Ak

In this case h�1; i
0i, the state satisfying �1, is also in parti-

tion Ak (i.e., ak � i0 � i < ak+1). By the inductive hypoth-
esis, h�2; ji j= �1 for all states in partition Bk (i.e., for all
bk � j < bk+1). Therefore, h�2; ji j= 3P�1 for all states in

partition Bk (i.e., for all bk � j < bk+1).

{ case: h�1; i
0i 62 Ak

In this case h�1; i
0i, the state satisfying �1, is in some partition

Ak0 appearing before partition Ak. In other words,

ak0 � i0 < ak0+1 � ak � i < ak+1

for some partition index k0 < k. By the inductive hypoth-

esis, h�2; j
0i j= �1 for all states in partition Bk0 (i.e., for all

bk0 � j 0 < bk0+1). Since bk0+1 � bk, h�2; ji j= 3P�1 for all

bk � j < bk+1. In other words, h�2; ji j= 3P�1 for all states in

partition Bk.

� � = 2P�1

By hypothesis, h�1; ii j= 2P�1 for some state in partition Ak (i.e., for

some ak � i < ak+1). Therefore h�1; i
0i j= �1 for every i0 � i. Since

the smallest possible value for i is ak, in particular, h�1; i
0i j= �1

for every i0 � ak. Since this is true for every i0 � ak it is also
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true for every partition boundary ak0 � ak (i.e., for every k0 where

0 � k0 � k). But this means that there is at least one state (namely

the state h�1; ak0i) in every partition Ak0 up to and including the

partition Ak (for 0 � k0 � k) that satis�es �1. By the induction

hypothesis, every state in every partition Bk0 up to and including

Bk (for 0 � k0 � k) also satis�es �1. In other words h�2; j
0i j= �1

for all j 0 < bk+1. Again, using the de�nition of 2P , h�2; j
0i j= 2P�1

for all j 0 < bk+1. In particular then, h�2; ji j= 2P�1 for all states in

partition Bk, (i.e., for all bk � j < bk+1).

2

So, some state �i in partition Ak of trace �1 satis�es � only if every

state �0j in the corresponding partition Bk of trace �2 also satis�es �. Since
I show this true of every partition Ak, this implies that if h�1; ii j= � for

all i then h�2; ji j= � for all j. This corollary is restated below.

Corollary 6.2.2 Let �1 and �2 be two traces such that �1K�2 and let �

be an admissible speci�cation. Then �1 j= � implies �2 j= �.

6.3 Transformations on Traces

I now de�ne a transformation on traces that respects the relation de�ned in

the previous section. The idea is to de�ne a transformation that permutes
only invisible and semi-invisible actions in a trace � so as to result in a

new trace �0 such that �0K�. This resulting trace should also be a valid
trace of the system being modeled. By Corollary 6.2.2, I can ignore the
original trace (� in this case, but �2 in Corollary 6.2.2) if the transformed

trace satis�es the speci�cation. This transformation is de�ned below.

De�nition 6.3.1 An action is invisible if it is an internal action and it

does not a�ect the value of any of the atomic propositions in the speci�-

cation. In other words, the action must be an internal action to which no

proposition in APH refers.

De�nition 6.3.2 Two traces � and �0 are related by a transformation

step (� ) �0), if the trace �0 results from the trace � after the application

of one of the following operations:
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1. Move an invisible actions forward.

This operation allows an invisible action to be swapped with the

action immediately preceding it, as long as both actions are not

being performed by the same instance (otherwise it would not be a

valid trace). Consider a trace � = �0�1�1 : : : �n. If there exists a

sequence of transitions

�i�i+1�i+1�i+2�i+2

such that �i+2 is an invisible action, and actions �i+1 and �i+2 do

not belong to the same instance, then the actions can be swapped
to get the new trace given below:

�0�1�1 : : : �i�i+2�
0
i+1�i+1�i+2 : : : �n

2. Move a send actions forward.

This operation allows a send action to be swapped with the action
immediately preceding it, as long as both actions are not being per-
formed by the same instance. Consider a trace � = �0�1�1 : : : �n. If

there exists a sequence of transitions

�i�i+1�i+1�i+2�i+2

such that �i+2 is a send action, and actions �i+1 and �i+2 do not
belong to the same instance, then the actions can be swapped to get
the new trace given below:

�0�1�1 : : : �i�i+2�
0
i+1�i+1�i+2 : : : �n

The two transformations just described are called the allowable op-

erations on a trace. I use � ) �0 to denote that trace �0 is obtained

by applying one of the allowable operations to the trace �. The re
exive
transitive closure of) is denoted by )?. The following lemma regarding
) is crucial in proving the correctness of the partial order reduction.

Lemma 6.3.1 Consider two traces � and �0 such that � ) �0. In this

case �0K�.
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Proof: Let � and �0 be the following traces:

� = �0�1�1 : : : �i�i+1�i+1�i+2�i+2 : : : �n

�0 = �0�1�1 : : : �i�i+2�
0
i+1�i+1�i+2 : : : �n

Consider two di�erent cases, one for each of the allowable operations.

� �i+2 is an invisible action

Since �i+2 is invisible, it does not change the values of any of the
atomic propositions either in APH or in AP
. Therefore this action

does not change the labeling nor the adversary knowledge of any
state in either � or �0, regardless of when it is executed. This means
that both the state before the invisible action and the state after the

invisible action can be included in the same partition that is used
in the de�nition of \K". Therefore the traces can be partitioned as
follows:

A0z}|{
�0 �1

A1z}|{
�1 : : :

Aiz}|{
�i �i+1

Ai+1z }| {
�i+1�i+2�i+2 �i+3

Ai+2z}|{
�i+3 : : :

An�2z}|{
�n�1 �n

An�1z}|{
�n

�0|{z}
B0

�1 �1|{z}
B1

: : : �i�i+2�
0
i+1| {z }

Bi

�i+1 �i+2|{z}
Bi+1

�i+3 �i+3|{z}
Bi+2

: : : �n�1|{z}
Bn�2

�n �n|{z}
Bn�1

Since Aj = Bj = f�jg for 0 � j < i, these partitions have matching
labels and adversary knowledge. The same holds for the partitions

Aj = Bj = f�j+1g for i + 1 < j < n. In partitions Ai and Bi,

all states agree on both labels and adversary knowledge because

Ai [ Bi = f�i; �
0
i+1g and �i

�i+2
! �0i+1 with �i+2 being invisible, so

�i and �0i+1 must have matching labels and adversary knowledge.

Similarly, in partitions Ai+1 and Bi+1, all states agree on both labels
and adversary knowledge because Ai+1 [ Bi+1 = f�i+1; �i+2g and

�i+1

�i+2
! �i+2 with �i+2 being invisible, so �i+1 and �i+2 must have

matching labels and adversary knowledge.

� �i+2 is a send action

Since �i+2 is a send action, it is semi-invisible. As in the pre-
vious case, �i+2 does not a�ect the labeling of any states; however
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it can increase the adversary's knowledge. The restrictions on the

partitioning still allow the state preceding and the state following

the action �i+2 to be placed in the same partition. The two traces

are partitioned as before:

A0z}|{
�0 �1

A1z}|{
�1 : : :

Aiz}|{
�i �i+1

Ai+1z }| {
�i+1�i+2�i+2 �i+3

Ai+2z}|{
�i+3 : : :

An�2z}|{
�n�1 �n

An�1z}|{
�n

�0|{z}
B0

�1 �1|{z}
B1

: : : �i�i+2�
0
i+1| {z }

Bi

�i+1 �i+2|{z}
Bi+1

�i+3 �i+3|{z}
Bi+2

: : : �n�1|{z}
Bn�2

�n �n|{z}
Bn�1

As in the previous case, Aj = Bj = f�jg for 0 � j < i and

Aj = Bj = f�j+1g for i + 1 < j < n so each of those pairs
of partitions agree on both state labeling and adversary knowl-
edge. Also as in the previous case, all states in partitions Ai and

Bi agree on the state labeling because Ai [ Bi = f�i; �
0
i+1g and

�i
�i+2
! �0i+1 with �i+2 being semi-invisible. Since �i+2 is semi-

invisible, I
(�i) � I
(�
0
i+1) which is enough to satisfy condition 4 of

the de�nition of K. Similarly Ai+1 and Bi+1 agree on the state label-

ing because Ai+1 [ Bi+1 = f�i+1; �i+2g and �i+1

�i+2
! �i+2 with �i+2

being semi-invisible. Since �i+2 is semi-invisible, I
(�i+1) � I
(�i+2)
which is enough to satisfy condition 4 of the de�nition of K.

We have considered all of the allowable operations. For each opera-
tion, we constructed partitions for � and �0 that satisfy De�nition 6.2.1.

Therefore, we conclude that �0K�.

2

Using Corollary 6.2.2 and Lemma 6.3.1, the proof of the following

theorem is transparent.

Theorem 6.3.2 Assume that � is an admissible speci�cation and that �

and �0 are two traces such that � )? �0. Then �0 j= � implies that � j= �,

or equivalently � 6j= � implies that �0 6j= �.

Proof If � )? �0, then there is some sequence of traces �i such that

� = �0 ) �1 ) �2 ) � � � ) �n = �0:

It follows from Lemma 6.3.1, that
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�0 = �n K �n�1;

�n�1 K �n�2;
...

�1 K �0 = �:

Through repeated use of Corollary 6.2.2, we then get

�n j= � implies �n�1 j= �;
�n�1 j= � implies �n�2 j= �;

...

�1 j= � implies �0 j= �:

We conclude �0 j= � implies � j= �.

2

6.4 The Algorithm

We have seen that if � )� �0, then the correctness of the trace �0 implies
the correctness of trace �. In other words, a model checker would only need

to check the trace �0, and it could disregard the trace �. What remains
is to see how Brutus computes what traces to consider and what traces

to ignore. It should be the case that for any trace � not considered by
Brutus, there is another trace �0 that is considered by Brutus, such

that, � )� �0.

In the discussion that follows, I borrow heavily from the established

terminology of partial order reduction in the literature. I have already
introduced the notion of invisible actions. I now introduce the notion of

independent actions. Intuitively, the order in which independent actions
are executed is really immaterial to the behavior of the system. The partial

order reduction relies on exploiting these independent actions so that one

can avoid enumerating all possible interleavings. Since the order of the
actions does not matter, an arbitrary order can be chosen. However, it

is not enough to construct the entire state space and then consider only
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some of the traces; one must avoid constructing the entire state space to

begin with.

In order to avoid constructing the entire state space, typically one does

not fully expand all successor states to a particular state. Computing an

optimal set of states to expand is NP-hard [66], so di�erent heuristics are

used when computing the set of actions to expand. These heuristics are

given di�erent names in the literature. Peled uses the notion of ample

sets [66, 68], while Wolper and Godefroid introduce persistent sets [83],

and Valmari uses stubborn sets [80]. While the details of how these sets are

computed di�er, the underlying idea is the same: from any state, expand

only a subset of the possible actions.

I also follow this approach. Although I borrow the ample set termi-

nology used by Peled, I do not compute ample sets the same way. I do
use the same dependency criteria used by all three to determine when
actions can be permuted. However, I have di�erent criteria for when such

permutations are allowed with respect to a speci�cation. Recall that I am
not interested in �nding equivalence classes of traces that agree on the

speci�cation. In the previous section, I demonstrated that this was not
necessary for typical security properties. However, I still need to make
sure that Brutus does not throw away too many traces, and that the

transformations performed do result in valid traces of the system (traces
that are checked). First, some notation and de�nitions are needed.

The set of actions enabled in a state � is en(�). The set of states in
which the action � is enabled will be denoted en�. The state resulting from

executing action � in state � is �(�). Independent actions are commonly
de�ned in the literature as follows:

De�nition 6.4.1 A pair of actions � and � are called independent if the

following two conditions hold:

1. For any state � 2 en�; � 2 en(�) implies � 2 en(�(s)).

2. For any state � 2 en� \ en�; �(�(�)) = �(�(�)).

Intuitively, the �rst condition ensures that independent actions cannot

disable each other, while the second condition ensures that the actions
can be permuted safely (the resulting state is the same in either order).
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Originally, partial order theory required that independent actions not

disable nor enable each other. This is equivalent to changing the �rst

condition above to:

1. For any state � 2 en�; � 2 en(�) i� � 2 en(�(s)).

As noted in [68], this original condition would ensure that whenever inde-

pendent actions in a valid trace � are swapped to obtain a trace �0, �0 is

also a valid trace of the model. If actions that are independent according

to De�nition 6.4.1 are arbitrarily swapped, the resulting trace may not

be a valid trace of the model. This is because an action may be moved

before the action that enables it. However, the original requirement is

stronger than is needed; the ample set methods (as well as the persistent
set methods and the stubborn set methods) do not arbitrarily permute

independent actions. Instead, they expand only subsets of all the enabled
actions. Therefore we need not concern ourselves with the possibility of
expanding actions that are disabled.

Using this de�nition of independence, we now consider which actions
in our model are dependent and which are independent.

� Any action is dependent with itself. In our model any action is
disabled once it is taken.

� Two instantiated receive actions that correspond to the same read
template in an instance are dependent. This is clear because an
instance only accepts one message per receive action in its process

description. In e�ect, the receive action as given in the process
description is more of an action template, and once one matching

receive is performed, all other matching receives are disabled.

� All other actions are independent. There is no other way for an

action to become disabled than the two ways mentioned above, and
the order in which the actions are taken does not a�ect the �nal

resulting state.

Now that we know what the independent actions in the model are,

we must de�ne the ample sets for the states in the model. I require that

ample(�), the ample set for a state �, satisfy the following:

De�nition 6.4.2 A set A of actions enabled at a state � (i.e., A � en(�))

is called an ample set if it satis�es the the following 4 conditions.
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C0 If ample(�) = fg then en(�) = fg.

C1 For any trace

� = �0
�1
! �1

�2
! �2

�3
! � � �

�n
! �n

starting from � and consisting of actions �i 62 ample(�), all �i are

independent with respect to all actions in ample(�).

C2 If en(�) contains any invisible or semi-invisible actions, then ample(�)

is a set containing a single invisible or semi-invisible action.

C3 If en(�) contains no invisible actions and no semi-invisible actions,

then ample(�) = en(�).

I use ample(�) to denote the ample for � that is computed by Brutus.

The �rst two conditions (C0 and C1) are the same �rst two conditions
that occur in all three partial order reduction techniques mentioned before
(ample sets, persistent sets, and stubborn sets). Condition C0 guarantees

that arti�cial deadlocks are not introduced into the model. We shall see
that condition C1 guarantees that any trace not considered can be trans-

formed into a trace that is considered. Conditions C2 and C3 satisfy the
restrictions on the allowed transformations that appear in the de�nition
of \)" in De�nition 6.3.2. As discussed in Section 6.3, these guarantee

that the trace that is considered violates the speci�cation whenever the
trace that is ignored violates the speci�cation. For readers familiar with
partial order reduction, the proofs that follow will be similar to what is

found in the literature.

Theorem 6.4.1 A depth-�rst search algorithm that only expands actions

in an ample set satisfying conditions C0-C3 is \safe" in the sense that

for any trace � that it does not consider, there is a trace �0 that it does

consider such that � )� �0.

Proof: Let APO be the depth-�rst search algorithm that uses conditions

C0-C3 above to determine the set of actions it will expand from a par-

ticular state. Let
� = �0�1�1�2 � � ��n�n
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be a trace of the system that would be considered by a normal exhaustive

depth-�rst search. A simple re-arrangement of the actions appearing in �

will lead to a trace �0 that is considered by APO.

To construct the new trace �0, take the longest pre�x of � that is

considered by APO. Let this pre�x be

�k = �0�1�1�2 � � ��k�k:

If k = n then � = �0. Otherwise, for 0 < i � k; �i 2 ample(�i�1)

and �k+1 62 ample(�k). By condition C0, ample(�k) 6= fg since en(�k)

contains at least �k+1. In addition, some action � 2 ample(�k) must

appear in
�k = �k�k+1�k+1�k+2 � � ��n�n;

the suÆx of � starting at �k. This is because condition C1 guarantees

that until an action from ample(�k) is executed, all actions occurring
after the state �k are independent with respect to ample(�k). Therefore,
all the actions in ample(�k) would continue to be enabled until one of

them is executed. (This is why Wolper and Godefroid call these persistent
sets [83].) Since all the traces must be �nite (our models contain no loops),

some action in ample(�k) must eventually be executed in �k. Let �l be
the �rst action in �k that appears in ample(�k). Because condition C1
guarantees independence with respect to all actions �i where k � i < l,

the action �l can be permuted with the preceding action, and the action
before that, and so on until it is permuted with action �k+1.

The result is a trace �00 such that � )� �00. This is because the action

that was moved earlier in the trace (�l) must be invisible or semi-invisible.
Recall that �l was chosen because it is the �rst action in ample(�k) that

appears after �k. Since �l is not taken from state �k, it must be the
case that ample(�k) 6= en(�k). By condition C2, ample(�k) must be a set

containing a single invisible or semi-invisible action, and so �l 2 ample(�k)

must be an invisible or semi-invisible action.
While � )� �00, it is not necessarily the case that �00 is the �0 we are

looking for. (Recall that �0 is the trace we are interested in because it is

considered by APO.) However, �00 is \closer" to the trace �0 in the sense
that the largest pre�x of � considered by APO has length k while the

largest pre�x of �00 considered by APO has length at least k+1. Since the

traces are �nite, this step can be repeated a �nite number of times before

the trace �0 is reached.
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Formally, the theorem is proved via induction on D = n�k, the di�er-

ence in length between trace � and �k, the largest pre�x of � considered

by APO.

Base case: If D = 0, then n = k and the largest pre�x of � considered

by APO is � itself. In this case, let �0 = � and clearly � )� �0.

Inductive case: If D > 0 then the largest pre�x of � considered by APO

has length k < n. In this case, the discussion above shows that there

is some action �l 2 ample(�k) for l > k+1 that can be moved earlier

in the trace � so that it is executed from state �k. This results in a

new trace �00 whose largest pre�x considered by APO has length at
least k+1 and which is related to the original trace � via � )� �00 .

For this trace then, the new di�erence D0 is no more than n� k� 1
which is smaller than D = n � k, so by the inductive hypothesis,
there is a trace �0 related to �00 via �00 )� �0 that is considered by

APO. Since � )
� �00 and �00 )� �0, it follows that � )� �0.

2

All that remains is to show that the algorithm described in Section 4.4
and given in Figure 4.9 guarantees conditions C0-C3. Fortunately, this

is fairly straightforward.

C0 This condition is trivially met because either ample(�) contains one
action or it is equal to en(�). Therefore, if ample(�) = fg, then
en(�) = fg.

C1 Recall that this condition requires that for any trace

� = �0
�1
! �1

�2
! �2

�3
! � � �

�n
! �n

starting from � and consisting of actions �i 62 ample(�), all �i are

independent with respect to all transitions in ample(�). There are

two cases depending on whether en(�) contains any invisible or semi-
invisible actions.

Case 1: en(�) contains an invisible or a semi-invisible action. In

this case ample(�) = f�g for some invisible or semi-invisible ac-
tion �. Invisible actions are internal actions and semi-invisible
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actions are send actions. As discussed earlier, an internal

action is always independent with any action other than itself.

Recall that an internal action cannot disable any action other

than itself. The same is true if � is a send action. A send

action does not disable any action other than itself. There-

fore, � is independent of all other actions, and in particular,

ample(�) = f�g is independent with respect to all the �i's.

Case 2: en(�) contains no invisible or semi-invisible action. In this

case, the algorithm sets ample(�) to be all of en(�). This set

trivially satis�es condition C1 since there can then be no trace

starting from � that does not use an action from ample(�). In

other words, there is no action �1 such that �1 2 en(�) and
�1 62 ample(�).

C2 This condition is trivial because the �rst thing the algorithm does is

look for a single invisible or semi-invisible action that is enabled and
expands it.

C3 Again, this condition is trivial because it is exactly what the algorithm
does. If there is no invisible or semi-invisible action enabled in the

state, then all actions are expanded from that state.

I conclude with a short comparison of my partial order reduction with

other reductions described in the literature. As mentioned earlier, I borrow
heavily from previous work in partial order reduction. My conditions C0
and C1 appear in the other well known reduction techniques. Condition

C1 is basically the condition required of persistent sets [82, 83]. When the
subset of actions to be expanded is computed, there is a further restriction

that the persistent set be non-empty (conditionC0). These conditions are
suÆcient to preserve deadlocks or terminal states for systems with �nite
traces.

If the system has in�nite traces (the model contains cycles), then an

additional condition is required. This condition basically requires that at

least one state in a cycle is fully expanded [68, 80, 82]. Since my models
contain no cycles and all traces are �nite, the theory is simpli�ed in this
case. I am not investigating in�nite behavior nor fairness issues and so I

do not need to enforce this extra condition.

Finally, other restrictions are placed on ample sets to ensure that the
partial order reduction preserves speci�cations (instead of just deadlocks).
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The key restriction here is that actions be invisible [67, 79]. In other words,

the actions cannot a�ect the atomic propositions appearing in the speci�-

cation. This is necessary to preserve formulas in LTL-X (LTL without the

next-time operator). This is also the restriction I place on atomic proposi-

tions that refer to the honest agents. Because my models include a notion

of knowledge that is monotonically increasing, I am able to generalize

the notion of invisibility to semi-invisibility. Here, I exploit the fact that

atomic propositions referring to the adversary require that the adversary

not know something, and that send actions can only increase the adver-

sary's knowledge. Moving a send action forward (sooner) in a trace, can

only make a speci�cation \more false". While this generalization does not
preserve the truth value of formulas in the logic (two \equivalent" traces

may not agree on the speci�cation), I am able to guarantee that for every
faulty trace that is not considered, there is a faulty trace that is consid-

ered (errors are preserved). For the sake of completeness, I should mention
that there is yet another restriction often placed on the ample sets. This
restriction is that for any state �, either ample(�) contains exactly one

action or ample(�) = en(�) [68]. This restriction is required to preserve
branching properties. While my ample sets also satisfy this property, this

is a result of the kinds of models being investigated. I am not currently
checking for branching properties.



Chapter 7

Experiments

I now describe some of the experiments I conducted using Brutus. For
each experiment, I introduce and describe the protocol that is being an-
alyzed. I also describe how it is modeled in Brutus. I then indicate

the speci�cations that were checked and the results of the veri�cation. In
the last section, I discuss how e�ective the symmetry and partial order

reductions are in reducing the time required to perform the veri�cation.

7.1 Needham-Schroeder Public Key

The Needham-Schroeder public key authentication protocol has received
much attention since a new attack was found by Gavin Lowe in 1996 [38].
What follows is a presentation of my analysis of this protocol using Bru-

tus. The structure of this protocol is given below. I will assume that the
initiator is agent A and that it wishes to authenticate with agent B.

1. First, the initiator, A, generates a nonce, Na, (which we can assume

is a random number), and then encrypts the pair Na; A with B's
public key. A then constructs the message A;B; fNa; AgKB

which it

sends to B.

A! B : A;B; fNa; AgKB

2. Upon receiving message number 1, B uses its private key to decrypt
fNa; AgKB

and recover the identity of the initiator, A, and its nonce,

147
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Na. It then generates its own nonce, Nb, encrypts the pair Na; Nb

with A's public key, and constructs the message A;B; fNa; NbgKA

which it sends to A.

B ! A : A;B; fNa; NbgKA

3. Upon receiving message number 2, A uses its private key to decrypt

fNa; NbgKA
. It is now convinced of B's identity and that B pos-

sesses Na, a shared secret that A can include in new messages for

identi�cation. It now replies to B by encrypting Nb with B's public
key and sending the message A;B; fNbgKB

to B.

A! B : A;B; fNbgKB

4. Upon receiving message number 3, B can once again use its private

key to decrypt fNbgKB
. Now B is convinced of A's identity and that

A possesses Nb, a shared secret that B can include in new messages

for identi�cation.

Let us now look at how this protocol is modeled in Brutus. Each
role in the protocol will be modeled as a process (a sequence of actions).
Every instance in the model represents a principal participating once in

the protocol. The role of the initiator is modeled by the sequence of
actions in Figure 7.1. This role is parameterized in pr, the name of the
initiator, and na, the value of its random number or nonce. The internal

action \begin-initiate" is used to mark the point in the protocol when the

initiator has begun execution. The internal action \end-initiate" is used

to mark the point in the protocol when the initiator has �nished executing

the protocol. Each of these internal actions has a variable containing the
name of the principal with whom the initiator is trying to authenticate.

These actions are included in the model so that the requirements can refer

to when an instance begins or ends execution of the protocol.

There is an analogous role for the responder. The de�nition for this

process is given by the sequence of actions in Figure 7.2. It is parame-

terized in pr, the name of the responder, and nb, the value of its random
number. Again, the internal actions \begin-respond" and \end-respond"
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1 INITIATOR =

2 choose (b)

3 internal (\begin-initiate"; b)

4 send hpr; b; fna; prgpubkey (b)i

5 receive hpr; b; fna; nbgpubkey (pr)i

6 send hpr; b; fnbgpubkey (b)i

7 internal (\end-initiate"; b)

Figure 7.1: Needham-Schroeder Initiator

1 RESPONDER =

2 receive ha; pr; fna; agpubkey (pr)i

3 internal (\begin-respond"; a)

4 send ha; pr; fna; nbgpubkey (a)i

5 receive ha; pr; fnbgpubkey (pr)i

6 internal (\end-respond"; a)

Figure 7.2: Needham-Schroeder Responder
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mark the points in the protocol where the responder has begun execu-

tion and where the responder has �nished execution. The argument, a,

indicates the principal with whom the responder is authenticating.

One of the models I veri�ed contained 4 instances. This model con-

tained one initiator instance and one responder instance for principal \A"

and the same for principal \B". The model is the composition of the four

instances in Figure 7.3 with an instance of the adversary.

To perform the analysis, one must also specify the requirements for

the protocol. Three di�erent properties are checked. The �rst is that if

principal A has �nished executing a protocol session with B then B must

have participated in a protocol session with A. Similarly, if principal
B has �nished executing a protocol session with A then A must have

participated in a protocol session with B. The second property checks
that the nonces which are intended to be shared secrets are kept secret

from the adversary. The �nal property is a non-repudiation property and
states that when A �nishes a protocol session with B, B knows A's nonce
and vice-versa. Each of these is presented in more detail below.

� Authentication. This property, which is also called correspondence
by Woo and Lam [84], can be used as a generic requirement for

authentication protocols. Intuitively, the requirement is that if some
principal A has �nished executing an authentication protocol with
B, then B must have participated in the protocol. This is formalized

in our logic with two formulas, one for the initiator and one for the
responder. The �rst formula is:

8A0 : A0 internal (\end-initiate"; A0:b)!

9B0

�
(B0:pr = A0:b) ^

3P (B0 internal (\begin-respond"; A0:pr))

�

This formula states that for all instances A0, if A0 has performed an

\end-initiate" internal action with a principal that it believes is its

partner in the authentication protocol, then there exists an instance

B0 of that partner such that at some point in the past B0 performed
a \begin-respond" internal action with the principal of instance A0.

In other words, for all initiator instances I, if I has �nished executing

with some principal, then some instance R of that other principal
must have at least started executing the protocol with the principal
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I1 :

8>><
>>:

H1 = \A1"

B1 = f(pr; \A"); (na; \Na1")g

I1 = fA;B;
; KA; KB; K
; K
�1
A ; Na1g

P1 = INITIATOR

I2 :

8>><
>>:

H2 = \A2"
B2 = f(pr; \A"); (nb; \Na2")g

I2 = fA;B;
; KA; KB; K
; K
�1
A ; Na2g

P2 = RESPONDER

I3 :

8>><
>>:

H3 = \B1"
B3 = f(pr; \B"); (nb; \Nb1")g

I3 = fA;B;
; KB; KB; K
; K
�1
B ; Nb1g

P3 = INITIATOR

I4 :

8>><
>>:

H4 = \B2"

B4 = f(pr; \B"); (nb; \Nb2")g

I4 = fA;B;
; KB; KB; K
; K
�1
B ; Nb2g

P4 = RESPONDER

Figure 7.3: Needham-Schroeder Model
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executing I. This requirement guarantees the participation of the

responder in an authentication protocol. The model satis�es this

property.

There is an analogous property requiring the participation of the

initiator. The formula for this property is:

8B0 : B0 internal (\end-respond"; B0:a)!

9A0

�
(A0:pr = B0:a) ^

3P (A0 internal (\begin-initiate"; B0:pr))

�
This formula speci�es that, if a responder instance B0 has �nished
executing the protocol with some principal B0:a, then there must be
some initiator instance A0, executing on behalf of the the principal

B0:a, that has participated in the protocol. This property is vio-
lated by the protocol. Figure 7.4 contains the counterexample trace

provided by Brutus. Note that at the end of the trace, A2 has �n-
ished responding with B, but there is no instance of B; (B1 or B2)
that has initiated with A. This attack actually occurs in a model

with a single initiator and a single responder instance. Figure 7.5
illustrates this attack with a single initiatorA and a single responder

B.

� Secrecy. The nonces exchanged in the Needham-Schroeder protocol
are intended to be shared secrets. As such, the adversary should

have no knowledge of them unless an honest agent is trying to au-
thenticate with the adversary. The formula specifying secrecy is:

8X : (H
 Knows X:na _H
 Knows X:nb)!

3P

�
X internal (\begin-initiate";
) _

X internal (\begin-respond";
)

�

In other words, if the adversary knows the value of someone else's

nonce, then that instance must be executing the protocol with the
adversary. This property is also violated by the same trace as before.
On line 21 of the counterexample trace (Figure 7.4), B2 sends A2's

nonce encrypted with the key of the adversary (
). At that point

the adversary knows A2's nonce but A2 is not trying to authenticate
with the adversary.
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1 A1 choose Principal B

2 A1 internal (\begin-initiate"; P rincipal B)

3 A1 send Principal A; Principal B;

4 fNonce Na1; P rincipal Ag Pubkey(Principal B)

5 B2 choose Principal 


6 B2 internal (\begin-initiate"; P rincipal 
)

7 B2 send Principal B; Principal 
;
8 fNonce Nb2; P rincipal Bg Pubkey(Principal 
)

9 B1 receive Principal A; Principal B;

10 fNonce Nb2; P rincipal Ag Pubkey(Principal B)
11 B1 internal (\begin-respond"; P rincipal A)

12 B1 send Principal B; Principal A;

13 fNonce Nb2; Nonce Nb1g Pubkey(Principal A)

14 A2 receive Principal B; Principal A;

15 fNonce Nb2; P rincipal Bg Pubkey(Principal A)
16 A2 internal (\begin-respond"; P rincipal B)

17 A2 send Principal A; Principal B;

18 fNonce Nb2; Nonce Na2g Pubkey(Principal B)
19 B2 receive Principal 
; P rincipal B;

20 fNonce Nb2; Nonce Na2g Pubkey(Principal B)
21 B2 send Principal B; Principal 
;

22 fNonce Na2g Pubkey(Principal 
)
23 B2 internal (\end-initiate"; P rincipal 
)
24 A2 receive Principal B; Principal A;

25 fNonce Na2g Pubkey(Principal A)

26 A2 internal (\end-respond"; P rincipal B)

Figure 7.4: Needham-Schroeder counterexample
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A send(A,   ,{Na,A}   K(    ) )

A B

Learns Na

B rec(A,B,{Na,A}K(B))

B send(B,A,{Na,Nb} K(B))

Learns {Na,Nb}K(B)

K(A))

A send(A,B,{Nb} )

Learns Nb

B rec(A,B,{Nb}K(B))

B endrespond A

Κ(Ω)

A choose

A beginit

A rec(    ,A,{Na,Nb}

Adversary (   )

Ω Ω

Ω

Ω

Ω

Ω

Figure 7.5: Needham-Schroeder attack
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� Non-repudiation. When the protocol �nishes executing, both par-

ties should possess the correct shared secrets (the nonces). This is

a weaker property than what is typically meant by non-repudiation.

This requirement does not guarantee that one principal can prove

that the other possesses the secret. This speci�cation simply states

that there is no execution in which some principal A �nishes authen-

ticating with B but B does not know A's nonce.

8A0 : A0 internal (\end-initiate"; A0:b)!

9B0 [(B0:pr = A0:b) ^ (B0 Knows A0:na)]

Like the authentication requirement, this requirement has a second
formula with the roles of the initiator and responder reversed.

8B0 : B0 internal (\end-respond"; B0:a)!

9A0 [(A0:pr = B0:a) ^ (A0 Knows B0:nb)]

Unlike the authentication requirement, however, the protocol satis-
�es this property. It is the case that if an agent A believes it has

�nished authenticating with agent B, it has sent out its nonce en-
crypted with B's key and has received the nonce back again. The
only way this is possible is if B decrypted the nonce. Therefore, B

must have possession of it, even in the traces where the other two
requirements are violated.

Gavin Lowe has suggested a very simple �x for this protocol [38]. In
the second message, the responder's name B is added to the encrypted
portion so that the message now looks like A;B; fNa; Nb; BgKA

. This

slightly changes the protocol so that now at step 2, B generates this new
message and at step 3, A decrypts the message and checks not only for its

own nonce Na, but also for the identity of B, the principal with whom A

is trying to authenticate. When this change is made to the model of the

Needham-Schroeder protocol, Brutus does not �nd any counterexample

to the properties described above.

7.2 1KP

The next case study is the 1KP protocol. This protocol is a member

of the iKP family of protocols for secure electronic payments over the
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SALTC: random number generated by C used to salt DESC

PRICE: amount and currency

DATE: merchant's date/time stamp

NONCEM : merchant's nonce (random number)

IDM : merchant's ID

TIDM : transaction ID (unique)

DESC: description of the goods and delivery information

CAN : customer's account number

RC: random number chosen by C to form CID

Y/N : yes or no response from credit card authority.

Figure 7.6: 1KP atomic messages

Internet [4]. The protocol has three participants, a customer, a merchant,
and a credit card authority which I refer to as C, M , and A respectively.
This protocol is quite a bit more complicated than the Needham-Schroeder

protocol. The atomic messages for the protocol are given in Figure 7.6 and
some composite �elds are de�ned in Figure 7.7. Also, I use H(�) to denote
a one-way hash function. This hash function is modeled in Brutus by

having a special private key called \HASH" that has no inverse. This way,
the result of encrypting with \HASH" (applying the hash) can be checked,

but there is no way to decrypt the hash (invert the hash function).

The de�nition of the protocol is given below. It should be noted that

there is an assumption that the customer and merchant somehow arrive
at the description of the transaction outside of the 1KP protocol. In other

words, at the time the protocol is executed, the customer and merchant

should already know the values of DESC and PRICE due to some previous
negotiation step.

1. Initiate: The customer generates two random numbers, SALTC

and RC . It also computes CID = H(RC ;CAN). It then sends a
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CID: a customer pseudo-ID formed by H(RC ;CAN)

Common: PRICE; IDM ;TIDM ;DATE;NONCEM ;CID;H(DESC ; SALTC)

Clear: IDM ;TIDM ;DATE;NONCEM ;H(Common)

SLIP: PRICE;H(Common);CAN ; RC

Figure 7.7: 1KP composite messages

message to the merchant consisting of the random number SALTC

and the customer pseudo-ID CID.

C !M : SALTC ;CID

2. Invoice: The merchant recovers the values of SALTC and CID. It

also generates the values NONCEM and TIDM . The merchant al-
ready knows PRICE, DATE, and its own identity IDM so it can cre-
ate the composite message Common. It uses all these components,

along with the hash function to construct the compound message
Clear as de�ned in Figure 7.7 and sends it to the customer.

M ! C : Clear

3. Payment: The customer receives Clear and retrieves the values

IDM , DATE, TIDM , and NONCEM . Since the customer al-
ready has PRICE and CID, it can form Common. It computes

H(Common) and checks that this matches what was received in

Clear. It already has the information necessary to form SLIP (Fig-

ure 7.7) and then encrypts this and sends it to the merchant. At

this point the customer commits to the transaction.

C !M : fSLIPgKA

4. Auth-Request: The merchant receives the encrypted payment slip
and now needs to get authorization from the credit card authority.

It forwards the encrypted slip to the authority, along with Clear and
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H(DESC ; SALTC) so that the authority can check the validity of the

SLIP. At this point, the merchant is committing to the transaction.

M ! A : Clear;H(DESC ; SALTC); fSLIPgKA

5. Auth-Response: The authority receives the authorization request

and performs the following actions.

� The authority extracts the values IDM , TIDM , DATE, and

NONCEM and checks that there is no previous request with
these same values. It also extracts the value h1 which is sup-
posed to be H(Common).

� The authority decrypts the encrypted SLIP. If the decryption is

successful, it now has SLIP and can extract PRICE, CAN, RC ,
and the value h2 which is supposed to again be H(Common).

� The authority veri�es that h1 = h2 which ensures that the

customer and merchant agree on the transaction.

� It now also has all the components to construct Common and
does so. It computes H(Common) and compares this to the
value h1 = h2.

� Assuming everything is in order, it can authorize the payment

by signing the pair Y;H(Common) and returning this to the
merchant.

A!M : Y; fY;H(Common)gK�1
A

6. Con�rm: The merchant receives the authorization response. As-
suming the response is Y, it then veri�es that it has received a valid

signature of Y;H(Common) from the authority. If so, it forwards

this on to the customer who can also verify the signature.

M ! C : Y; fY;H(Common)gK�1A
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Like the Needham-Schroeder protocol, the Brutus de�nition of the

1KP protocol consists of a set of instances with at least one instance for

each role in the protocol. These roles also consist of mostly send and

receive actions with a few internal actions to mark commit points in the

protocol as well as when the authority debits and credits accounts. The

major di�erence between the two models is the much larger size of the 1KP

protocol. Not only are there three roles instead of two and six messages

instead of three, but the size and complexity of the messages is greatly in-

creased. The messages appearing in the Needham-Schroeder protocol were

quite simple. In 1KP, the messages contain many more �elds (so many,

in fact, that composite �elds like Common and SLIP had to be de�ned
in order to simplify the presentation). The messages also have multiple

levels of nested encryption, signatures, and hashes. Because of this, the
number of messages that the adversary can generate in an attempt to

subvert the protocol is much greater as is the number of reachable states.
This is because the number of messages that match a template grows ex-
ponentially in the length of the message. This is analogous to how the

number of strings of a given length grows exponentially with respect to the
length of the string. While using typed messages did reduce the number

of messages considered by the adversary, this was not enough. Using type
information for a particular variable or \slot" in a message, reduces the
number of messages that can �t in that \slot"; however, the total num-

ber of composite messages is still exponential (with a smaller base). This
situation is similar to the di�erence between the number of octal strings
of length n and the number of binary strings of length n. Therefore, to

make the veri�cation tractable, I had to make the model smaller. In par-
ticular, the Brutus model for the protocol has only a single instance of

a customer and merchant and two instances of the authority. Still, I was

able to perform the analysis, and verify the following properties proposed

by Bellare et al. in [4].

� Proof of transaction by customer. When the authority debits a cer-

tain credit card account by a certain amount, it must have unforge-

able proof that the credit card owner has authorized the payment.

Bellare et al. argue that SLIP provides this unforgeable proof. While

verifying that SLIP does provide a proof is outside the capabilities of

Brutus, one can check that the authority only debits credit cards
when it possesses SLIP.
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8A0 : (A0:pr = A) ^ (A0 internal (\debit"; hA0:c; A0:pricei))!

A0 Knows SLIP'

Here SLIP' is identical to SLIP in Figure 7.7 except that A0:c is

used in place of the constant customer account number CAN, and

A0:price is used instead of the constant PRICE. In other words, one

checks that the authority does indeed have a proof with values that

are consistent with this particular debit.

� Unauthorized payment is impossible. This property requires that
the authority debit a customer's account only if the customer has
authorized the debit. One is no longer asking if the authority has

some kind of proof, but whether or not the customer did actually
authorize the debit.

8A0 : (A0:pr = A) ^ (A0 internal (\debit"; hA0:c; A0:pricei))!

9C0 : (C0:pr = A0:c) ^3P (C0 internal (\authorize"; A0:price))

In other words, if some authority instance A0 debits the account be-
longing to principal A0:c (presumably the customer) by the amount
A0:price, then there must be some instance executing on behalf of

the principal A0:c, who has authorized a debit of the same amount
(A0:price). However, this does not guarantee the absence of a re-

play attack, where the adversary simply replays previous messages
to cause a second transaction to take place. In fact, recall that the

�rst thing the credit card authority does when it receives an autho-

rization request is to make sure that there is no previous request
with the same transaction ID, date, and nonce. Since Brutus does

not allow for this kind of check, one would expect there to be a

replay attack in the model. So I checked the following formula.

:[A1 internal (\debit"; hC;A1:pricei) ^

A2 internal (\debit"; hC;A2:price)]
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If there is no replay attack, this formula should hold. Recall that the

model has a single customer instance and a single merchant instance;

therefore, there is at most one debit authorization. This should mean

that there is at most one debit. However, there is a counterexample

to this formula in which the adversary simply replays the message

it sent to one authority instance to the other instance and both

instances end up performing a debit.

� Privacy. Customers want to ensure that the merchant is the only

other party that knows the details of the transaction. Also, the

customer's credit card number should be kept secret as well. The

following two formulas specify these requirements. Note that C1 is
the customer instance in the model.

8S0 :[ S0 Knows C1:DESC ! (S0:pr = C _ S0:pr =M)]

8S0 :[ S0 Knows C1:CAN ! (S0:pr = C _ S0:pr = A)]

In other words, if some instance S0 knows the customer's description
of the transaction, then S0 must be the customer or the merchant.

If some instance S0 knows the customer's account number, then S0

must be either the customer or the authority.

� Proof of transaction authorization by merchant. This particular
property is not claimed to hold of 1KP. It is meant to hold for 2KP

and 3KP, but I tried to verify a variant of it in the model for 1KP.
The requirement is that all transactions allowed by the authority

must be authorized by the merchant.

8A0 : (pr(A0) = A)^(A0 internal (\credit"; hA0:m;A0:pricei))!

9M0 : (pr(M0) = A0:m)^3P (M0 internal (\Mauthorize"; A0:price))

In other words, if the authority credits principal A0:m (presumably

the merchant) by the amount A0:price, then it must be the case that

A0:m authorized a payment of that amount. This particular analysis
did provide some insight. Although the authors do not claim that
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1KP guarantees this property, there was nothing about the protocol

that suggested to me that this property could be violated. Brutus

does �nd a counterexample. All the adversary needs is the mer-

chant's ID (IDM), and some account number to debit (possibly the

adversary's own account). With this information, no one else other

than the authority need participate in order to have the authority

make payments.

7.3 Wide Mouthed Frog

The Wide Mouthed Frog protocol is intended to distribute a freshly gener-
ated session key to another party. In the description that follows, A is the

initiator wishing to communicate with the responder, B. S is a trusted
third party with whom both A and B share a di�erent symmetric key.
The protocol proceeds as follows:

1. The initiator A, generates a new session key Kab that it intends to

distribute to B. It pairs the key with B's name and a timestamp
Ta and encrypts the pair with Kas, the key A shares with the third
party S. It sends this along with its own name to S.

A! S : A; fTa; B;KabgKas

2. The trusted third party S now decrypts fTa; B;KabgKas and checks
the timestamp Ta. If it is fresh (i.e., if the value Ta falls within some

window of the actual current time), then S takes the key Kab and
pairs it with A's name and it's own timestamp and encrypts this

with Kbs, the key it shares with B. It then sends this encrypted

message to B.

S ! B : fTs; A;KabgKbs

3. The responder receives this message and decrypts with the key Kbs.

If the decryption succeeds, it checks the timestamp. If the timestamp

is fresh, then it accepts Kab as a session key for communication with
A.
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1 INITIATOR =

2 choose (b)

3 internal (\begin-initiate"; b)

4 send hpr; fb; k0gsymkey (pr ;s)i

1 RESPONDER =

2 receive fa; k0gsymkey (pr ;s)
3 internal (\end-respond"; a)

1 SERV ER =

2 receive ha; fb; k0gsymkey (a;pr)i

3 send fa; k0gsymkey (b;pr)

Figure 7.8: Roles in the Wide Mouthed Frog protocol

Brutus does not have a notion of time, so I cannot include timestamps
in theBrutusmodel of the Wide Mouthed Frog protocol. Because of this,
the model will not be secure against replay. However, the main purpose in

analyzing this protocol was to explore how exploiting symmetry reduces
the size of the state space and increases the size of the model that can be

analyzed. The Wide Mouthed Frog protocol is ideal for this because of
its small size. The sequence of actions de�ning the roles of the initiator,
responder, and server (trusted third party) are given in Figure 7.8.

I constructed and checked a model of the Wide Mouthed Frog protocol

which contained �ve initiator instances, �ve responder instances, and �ve
server instances. Figure 7.9 contains two example instances for each of

the three roles in the protocol.

The same authentication property that was checked for the Needham-

Schroeder protocol can be checked for this protocol. However, only half

of the property is satis�ed. The formula

8B0 : B0 internal (\end-respond"; B0:a)!

9A0 : (A0:pr = B0:a) ^3P (A0 internal (\begin-initiate"; B0:pr))



164 CHAPTER 7. EXPERIMENTS

I1 :

8>><
>>:

H1 = \A1"

B1 = f(pr; \A"); (kas; Kas); (k
0; K1)g

I1 = fA;B;
; Kas; K1g

P1 = INITIATOR

I2 :

8>><
>>:

H2 = \B1"

B2 = f(pr; \B"); (kbs; Kbs)g
I2 = fA;B;
; Kbsg

P2 = RESPONDER

I3 :

8>><
>>:

H3 = \S1"

B3 = f(pr; \S"); (kas; Kas); (kbs; Kbs)g
I3 = fA;B;
; Kas; Kbsg

P3 = SERVER

I4 :

8>><
>>:

H4 = \A2"

B4 = f(pr; \A"); (kas; Kas); (k
0; K4)g

I4 = fA;B;
; Kas; K4g

P4 = INITIATOR

I5 :

8>><
>>:

H5 = \B2"

B5 = f(pr; \B"); (kbs; Kbs)g
I5 = fA;B;
; Kbsg

P5 = RESPONDER

I6 :

8>><
>>:

H6 = \S2"
B6 = f(pr; S); (kas; Kas); (kbs; Kbs)g

I6 = fA;B;
; Kas; Kbsg

P6 = SERVER

Figure 7.9: Wide Mouthed Frog model
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does hold for this model. The other half of the property (if the initiator

�nishes then the responder must have participated) does not hold in this

model. This is obvious because the only thing the initiator does in the

protocol is send the �rst message. Hence it could �nish executing be-

fore/without a corresponding responder executing if the adversary simply

prevents the message from reaching the responder.

One can also check a secrecy requirement on the session key Kab. One

would like to verify that the adversary does not gain knowledge of the

session key. Again, this requirement need only hold when the initiator

is trying to execute the protocol with someone other than the adversary.

In other words, if the adversary knows the session key, then the initiator
must be trying to execute the protocol with the adversary. The formula

is:

8X : H
 Knows X.k' ! 3P [X internal (\begin-initiate";
)]

Somewhat surprisingly, this property does hold of the model, despite the
fact that it does not use any nonces or any timestamps.

7.4 A Composition Example

One of the advantages of Brutus is the fact that it has a built in model of

the adversary. This is particularly useful when one wants to analyze possi-
ble interactions between di�erent protocols. Because the adversary is built
in, one does not need to anticipate what messages or submessages might

interact. Brutus will catch those possible interactions automatically.
The protocol that follows is a simple toy example that illustrates how

two protocols could each satisfy a requirement in isolation, but when com-

posed in the same model, the adversary could use one to attack the other.
This example borrows from an unpublished protocol suggested by Dawn

Song for this very reason. The original pair of protocols satis�ed di�erent
requirements. I had to change the example slightly so that both protocols

would satisfy the same requirement in isolation.

The �rst protocol is the Needham-Schroeder public key authentication
protocol as modi�ed by Lowe in [38]. It is identical to the original protocol,

except that when sending the second message, the responder includes her
name in the encrypted portion of the message. This small modi�cation

is enough to prevent the attack described in Section 7.1. In fact all of
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the requirements discussed in Section 7.1 are satis�ed by all models of

this new protocol with up to two initiators and three responders. The

messages for this corrected protocol appear in Figure 7.10. The Brutus

roles for the Needham-Schroeder-Lowe protocol are given in Figure 7.11.

Note that there is an additional argument to the internal actions marking

the start and end of execution, namely Data \N S L". This is so that

when the model composed of two di�erent protocols is checked, Brutus

can determine not only when a principal has started or ended executing

a protocol, but also which protocol has started or ended. This would

force a corresponding change in the speci�cation being checked. The new

authentication formula is:

8A0 : A0 internal (\end-initiate"; hA0:b; Data\N S L"i)!

9B0

�
(B0:pr = A0:b) ^

3P (B0 internal (\begin-respond"; hA0:pr; Data\N S L"i))

�

The instances in the Brutus model are otherwise unchanged from what

was used in the original Needham-Schroeder protocol in Figure 7.3.

The second protocol is meant to be a one-way authentication proto-
col. In this protocol, the responder B is authenticated to A, but there is

no guarantee made to B about A. This protocol contains the following
messages.

1. First, the initiator, A, generates a nonce, Na, (which we can assume
is a random number), and then encrypts the pair hNa; Ai with B's

public key. It then sends this message to B.

A! B : fNa; AgKB

2. Upon receiving message number 1, B uses its private key to decrypt

fNa; AgKB
and recover the identity of the initiator, A, and the ini-

tiator's nonce, Na. It then encrypts the pair hNa; Bi with its own
private key, and sends this to A.

B ! A : fNa; BgK�1B
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1. A! B : A;B; fNa; AgKB

2. B ! A : B;A; fNa; Nb; BgKA

3. A! B : A;B; fNbgKB

Figure 7.10: Needham-Schroeder-Lowe protocol

1 INITIATOR =
2 choose (b)
3 internal (\begin-initiate"; hb; Data\N S L"i)

4 send hpr; b; fna; prgpubkey (b)i

5 receive hpr; b; fna; nb; bgpubkey (pr)i

6 send hpr; b; fnbgpubkey (b)i

7 internal (\end-initiate"; hb; Data\N S L"i)

8

9 RESPONDER =
10 receive ha; pr; fna; agpubkey (pr)i

11 internal (\begin-respond"; ha; Data\N S L"i)
12 send ha; pr; fna; nb; prgpubkey (a)i

13 receive ha; pr; fnbgpubkey (pr)i

14 internal (\end-respond"; ha; Data\N S L"i)

Figure 7.11: Needham-Schroeder-Lowe Roles
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1 INITIATOR 1WAY =

2 choose (b)

3 internal (\begin-initiate"; hb; Data\1way"i)

4 send hfna; prgpubkey (b)i

5 receive hfna; bgprivkey (b)i

6 internal (\end-initiate"; hb; Data\1way"i)

7

8 RESPONDER 1WAY =

9 receive hfna; agpubkey (pr)i

10 internal (\begin-respond"; ha; Data\1way"i)

11 send hfna; prgprivkey (pr)i

12 internal (\end-respond"; ha; Data\1way"i)

Figure 7.12: One-way Protocol Roles

3. Upon receiving message number 2, A uses B's public key to decrypt

fNa; BgK�1B
and verify its own nonce and B's name. Assuming a

match, A should now be guaranteed of B's participation in the pro-
tocol.

The Brutus roles for this new one-way authentication protocol ap-

pear in Figure 7.12. These roles were then used in a model of the protocol
containing two initiator instances and two responder instances given in
Figure 7.13. This model was analyzed (independently of the Needham-

Schroeder-Lowe protocol) and was found to satisfy the authentication
property that whenever the initiator, A, �nishes the protocol with a re-

sponder, B, that responder must have participated in the protocol with

A. The formula expressing this property is identical to the one for the

Needham-Schroeder-Lowe protocol, except that Data \N S L" is replaced

with Data \1way".

8A0 : A0 internal (\end-initiate"; hA0:b; Data\1way"i)!

9B0

�
(B0:pr = A0:b) ^

3P (B0 internal (\begin-respond"; hA0:pr; Data\1way"i))

�
The next model was a composed model with one initiator and one re-

sponder from each of the two protocols (four instances total). It simply
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I5 :

8>><
>>:

H5 = \A3"

B5 = f(pr; \A"); (na; \Na3")g

I5 = fA;B;
; KA; KB; K
; K
�1
A ; Na3g

P5 = INITIATOR 1WAY

I6 :

8>><
>>:

H6 = \A4"
B6 = f(pr; \A"); (na; \Na4")g

I6 = fA;B;
; KA; KB; K
; K
�1
A ; Na4g

P6 = INITIATOR 1WAY

I7 :

8>><
>>:

H7 = \B3"
B7 = f(pr; \B")g

I7 = fA;B;
; KB; KB; K
; K
�1
B g

P7 = RESPONDER 1WAY

I8 :

8>><
>>:

H8 = \B4"

B8 = f(pr; \B")g

I8 = fA;B;
; KB; KB; K
; K
�1
B g

P8 = RESPONDER 1WAY

Figure 7.13: One-way Protocol Model
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1 A1 choose Principal B

2 A1 internal (\begin-initiate"; hPrincipal B;Data N S Li)

3 A1 send Principal A; Principal B;

4 fNonce Na1; P rincipal Ag Pubkey(Principal B)

6 A3 choose Principal B

7 A3 internal (\begin initiate"; hPrincipal B;Data 1wayi)

8 A3 send fNonce Na3; P rincipal Ag Pubkey(Principal B)

9 B1 receive Principal 
; P rincipal B;

10 fNonce N
; P rincipal 
g Pubkey(Principal B)

11 B1 internal (\begin-respond"; hPrincipal 
; Data N S Li)

12 B1 send Principal B; Principal 
;
13 fNonce N
; Nonce Nb1g Pubkey(Principal 
)

14 B1 receive Principal 
; P rincipal B;
15 fNonce Nb1g Pubkey(Principal B)
16 B1 internal (\end-respond"; hPrincipal 
; Data N S Li)

17 B3 receive fNonce Na1; P rincipal Ag Pubkey(Pubkey B)
18 B3 internal (\beg-respond"; hPrincipal A;Data 1wayi)
19 B3 send fNonce Na1; P rincipal Bg Privkey(Principal B)

20 B3 internal (\end-respond"; hPrincipal A;Data 1wayi)
21 A1 receive Principal B; Principal A;

22 fNonce Na1; Nonce Na1g Pubkey(Principal A)
23 A1 send Principal A; Principal B;

24 fNonce Na1g Pubkey(Principal B)

25 A1 internal (\end-initiate"; hPrincipal B;Data N S Li)

Figure 7.14: Composition counterexample

consisted of instances I1 and I3 from the Needham-Schroeder-Lowe proto-

col (Figure 7.3) and instances I5 and I7 from the one-way authentication

protocol (Figure 7.13). While each of these protocols satis�ed its corre-
sponding authentication formula in isolation (even in models containing

multiple instances), the formula is not satis�ed in this composed model.
In other words, the adversary is able to use one protocol to attack the

other. The attack appears in Figure 7.14.

The attack is possible in part because both protocols share the mes-

sage fNa; AgKB
. The Needham-Schroeder-Lowe protocol requires that the

nonce Na remain secret while the one-way protocol reveals the nonce Na.
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protocol init resp none p.o. symm p.o+symm

1KP 1 1 17,905,267 906,307 17,905,267 906,307

N-S 1 1 1,208 146 1,208 146

N-S 1 2 1,227,415 6,503 613,713 3,257

N-S 2 2 X 372,977 X 186,340

N-S 2 3 X 78,917,569 X 12,148,470

WMF 1 1 18 18 18 18

WMF 2 2 665,827 1,285 157,275 223

WMF 3 3 X 1,286,074 X 7,004

WMF 4 4 X X X 455,209

WMF 5 5 X X X 47,651,710

Figure 7.15: Table of results

Since both protocols expect the same message format, the adversary can

simply forward the message from the Needham-Schroeder-Lowe protocol
to the one-way protocol for decryption. This is exactly what happens in

lines 17 and 19 in Figure 7.14. Notice that while instance A3 has correctly
sent a message containing its own nonce Na3 in line 8, this was replaced
in line 17 by the adversary with the equivalent portion from the message

in line 3. In line 19, the one-way protocol decrypts the message for the
adversary giving the adversary access to the nonce Na1 which leads to
the attack.

7.5 Results

The table in Figure 7.15, summarizes the results of applying the symmetry

reduction and the partial order reduction to the models of most of the

protocols discussed in this chapter. I examined the 1KP secure payment

protocol [4], the Needham-Schroeder public key protocol [59], and the

Wide Mouthed Frog protocol [7, 72]. In Figure 7.15 these protocols are

labeled as 1KP,N-S, andWMF. Columns two and three give the number

of initiator and responder instances used in building the model. The other

columns give the number of states encountered during the state space

traversal of the model. The column marked with none refers to results
when no reductions were applied. Results corresponding to the partial
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order and symmetry reductions are presented in columns marked with

p.o. and symm respectively. The column labeled with p.o.+symm

presents results when both reductions (partial order and symmetry) were

applied simultaneously. The entries with an \X" represent computations

that were aborted after 24 hours of computation (over 700,000,000 states).

The results in the table demonstrate that the reduction achieved due to

the two techniques is signi�cant. Notice that for the Needham-Schroeder

protocol with one initiator and two responders (third row) the state space

is reduced by a factor of around 400. The partial order techniques by

themselves seem to yield a much larger reduction than the symmetry tech-

niques, but this is somewhat misleading because the models contain very
few instances. In order to appreciate the reduction possible via symme-

try techniques I would need to have models with many instances of the
same roles. The best example is the Wide Mouthed Frog protocol. This

protocol is simple enough to allow a model that has �fteen concurrent
instances. However, an exhaustive search of this model would not be pos-
sible without the symmetry reduction. In addition, although the model

with twelve concurrent instances can be searched without the symmetry
reduction (using only the partial order reduction), the reduction in the

size of the state space when the symmetry reduction is applied is over 180
fold. Also note that there is no reduction in the size of the state space
when applying symmetry reductions to models that do not have more

than one initiator or responder since there are no replicated components
in these models.

While these experiments (and the theoretical results in previous chap-

ters) are speci�c to Brutus, it is worthwhile to speculate how these ideas
can be generalized and applied elsewhere. First, there is nothing neces-

sarily speci�c to the Brutus tool in the discussion. These ideas should

be applicable to any tool using a similar system model for analyzing se-

curity protocols. Speci�cally, these ideas should be applicable to anyone

model checking a Dolev-Yao type intruder. Second, while symmetry has

already been used in many model checking and theorem proving domains,

the generalized partial order reduction discussed here has really only been

used for model checking security protocols. It may be applicable to other

veri�cation domains. The problem is �nding other domains with the same

monotonicity properties. In particular, in order for an action to be semi-

invisible, the atomic propositions relating to that action must be mono-
tonic (once the atomic proposition becomes true it remains true), and the
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proposition must appear negatively in the speci�cation formula.
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Chapter 8

Related Work

A number of researchers have seen the potential in trying to apply formal

methods to the analysis of security protocols. The approaches being used
include theorem proving, non-automated reasoning, model checking, and

rule rewrite systems. Almost all of them use the same basic adversary
model which was originally proposed by Dolev and Yao [19]. However,
the approaches often di�er in how one speci�es the protocol, how one

speci�es the requirements, how one speci�es the adversary, and how the
tool goes about trying to perform the analysis.

8.1 Logic of Authentication

One of the earliest successful attempts at formally reasoning about security
protocols involved the development of a new logic in which one could

express and deduce security properties. The earliest such logic is the
Logic of Authentication proposed by Burrows, Abadi, and Needham [7],

and is commonly referred to as the BAN logic. Their syntax provided

constructs for expressing intuitive properties like

� \A said X." (A j�X)

� \A sees X." (A/X)

� \A believes X." (A j�X)

� \K is a good key for communication between A and B." (A
K
$B)

175
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� \X is a fresh message." (](X))

� \S is an authority on X." (S �)X).

The authors also provide a set of proof rules which can then be used to

try to deduce security properties such as \A and B believe K is a good

key" (A j�A
K
$B and B j�A

K
$B) from a list of explicit assumptions made

about the protocol. For example, their inference system provides rules for

the following:

� If a message X encrypted with a key K is received by a principal P

and K is believed to be a good key, then P believes that the other

party possessing K said the message.

P j�Q
K
$P; P / fXgK

P j�Q j�X

� A principal only says things that it believes. Worded di�erently, if

a principal P receives a recent message X from Q, then P believes
that Q believes X.

P j� ](X); P j�Q j�X

P j�Q j�X

� If a principal P believes some principal Q has jurisdiction over the
statement X, then P trusts Q on the truth of X. If statement X is
about a session key generated by a server, this rule would allow one

to infer that participants in a protocol will believe that the session
key is good if it came from a trusted server that has jurisdiction over

good keys.

P j�Q�)X; P j�Q j�X

P j�X

� A principal can see the components of compound messages and a

principal can decrypt messages with good keys.

P / (XY )

P /X

P j�Q
K
$P; P / fXgK

P /X



8.1. LOGIC OF AUTHENTICATION 177

This formalism was successful in uncovering implicit assumptions that

had been made in a number of protocols. Its success has inspired other

work related to the BAN logic. In fact, there have been a couple of at-

tempts at automating the process of a BAN analysis [17, 36]. In addition,

extensions have been made to the logic in an attempt to add a notion of

accountability to the logic [34].

However, the logic has been criticized for the \protocol idealization"

step required when using this formalism. Protocols in the literature are

typically given as a sequence of messages. Use of the BAN logic requires

that the user transform each message in the protocol into formulas about

that message, so that the inferences can be made within the logic. For ex-
ample, if the server sends a message containing the key Kab, then that step

might need to be converted into a step where the server sends a message

containing A
Kab
$B, meaning that the key Kab is a good key for communica-

tion between A and B. This simple example is pretty straightforward. In

general, however, the idealization step requires that one assign a meaning

to the messages that appear in the protocol, thus introducing an informal

step into the protocol analysis. Because of these criticisms, an attempt
was made to give the logic a formal model [1]; however, this was not en-
tirely successful. Probably the most successful attempt at formalizing the

idealization gap is the work of Kindred and Wing [35, 37].

The second objection to this kind of analysis is that all principals are
honest and so it does not allow for a malicious adversary. In other words,

one tries to argue about how di�erent participants might come to certain
beliefs about keys and secrets, but one cannot investigate how a malicious
adversary might try to subvert the protocol by possibly modifying and

misdirecting messages. For this reason, a number of researchers have

looked to analyzing security protocols in a framework that allows for a

malicious adversary. In fact, one group has even investigated the bene�ts

of combining Revere (Kindred's theory generator for the BAN Logic)
with my model checking tool, Brutus [26].

In the tools that follow, researchers have a concrete operational model

for how the protocol executes. This operational model includes a descrip-

tion of how the honest participants in the protocol behave (i.e., what it

means to execute the protocol) and a description of how an adversary

can interfere with the execution of the protocol. The model of the ad-
versary has evolved from one proposed by Dolev and Yao [19]. Typically,
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the adversary model allows for the maximum amount of interference while

maintaining encryption as a black box. The model of the adversary usually

allows it to overhear and to intercept all messages, to misdirect messages,

and to send fake messages. The adversary can send any message it can

generate from previously overheard messages by concatenating and pro-

jecting onto components as well as by encrypting and decrypting with

known keys. The adversary is also allowed to participate in the protocol.

In other words, it can try to initiate protocol sessions with honest agents,

and honest agents are willing to try to initiate sessions with the adver-

sary. While the details of how this behavior is modeled is di�erent among

the di�erent tools, all the tools described below (including Brutus) do
implement this high-level description of an adversary.

8.2 FDR

Gavin Lowe has investigated the use of FDR to analyze CSP [25] models
of cryptographic protocols [38, 39]. CSP seems to be a natural language

in which to model the communication of an inherently asynchronous com-
position of protocol sessions. Each instance of an agent trying to execute
the protocol is modeled by a CSP process that alternates between waiting

for a message and sending a message (replying). Channels are used for
communication between processes (between participants in the protocol).

Channels are also used to model adversary interference. For example, the
channel intercept models the possibility of the adversary intercepting a
message intended for an honest agent. The channel fake models the pos-

sibility of an honest agent receiving a message that it believes came from
an honest agent, but was actually generated by the adversary. Channels

are also used to keep track of important events in the protocol, such as

commit points. For example, the event I commit.a.b can be generated by
initiator a on channel I commit to represent the fact that it is committing

to a session with responder b.

A description of the initiator in the Needham-Schroeder protocol is

given in Figure 8.1. The de�nition is parameterized in a, the name of
the initiator, and na, the nonce used by the initiator in the session. This

de�nition follows the abstract description of the protocol fairly closely.

The initiator waits for a request from the user then begins running the
protocol and sends message 1. When it receives message 2, it checks if
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1 INITIATOR(a; na) � user.a?b! I running.a.b!

2 comm!Msg1.a.b.Encrypt.key(b):na:a!

3 comm.Msg2.a.b.Encrypt.key(a)?n0a:nb !

4 if na = n0a
5 then comm!Msg3.a.b.Encrypt.key(b):nb !

6 I commit.a.b! session.a.b! Skip

7 else Stop

Figure 8.1: FDR example

the nonce in message 2 matches the nonce sent in message 1. If so, it
sends message 3, commits to the protocol session, and continues with the
session execution (the actual work to be done), otherwise it halts. To

model the interception of messages by the adversary and the introduction
of fake messages by the adversary, a renaming is applied to this process

so that actions that occur on the channel comm can occur on the channel
intercept or fake instead.

Originally, the user also had to provide a description of the adversary.

With the development of Casper, the construction of the adversary be-
came automated [39]. The adversary can be thought of as the parallel
composition of n processes, one for each of n facts or messages that the

adversary may learn during the execution of the protocol. Each process
basically has two states, one in which it knows the message and one in

which it does not. Each of these processes then can generate a number of
events.

� It will synchronize with an agent when overhearing a message sent

by that agent that contains the fact.

� It will synchronize with an agent when it sends a message to that

agent that contains the fact.

� It will synchronize with other processes representing the adversary

when knowledge of those other facts can be used to derive this fact.

� It will synchronize with another process representing the adversary

when this fact can contribute to the derivation of the fact represented

by that other process.
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� It can generate a leak event to signal that the adversary has acquired

knowledge of the fact it represents.

Casper will also construct the speci�cation process for the veri�cation.

FDR is then used to check that the protocol in parallel with the adversary

is a re�nement of the speci�cation process. The speci�cation process for

secrecy is simply the CSP process RUN(� � L) where � is the set of

all possible events, L is the set of leak events that correspond to the

adversary knowing a secret, and RUN(S) is the process that can perform

any sequence of events in S. So the speci�cation is the process that can

perform any sequence of events that do not include the leak events in

question. The authentication speci�cation process AS is de�ned below.

AS0 � R running.A.B ! I commit.A.B ! AS0

A � fR running.A.B; I commit.A.Bg

AS � AS0 k RUN(�� A)

Intuitively, the speci�cation is the process that can perform all events in

any order, except that the subsequence consisting of all R running.A.B

events and all I commit.A.B events must alternate and must begin with

R running.A.B. This means that every time the initiator commits to a
protocol session, there must be a separate responder instance that has
started responding to the initiator. Woo and Lam have a similar correct-

ness requirement which they call correspondence [84]. Their correspon-
dence requirement is not as strict as Lowe's since it does not require strict
alternations of the responder running and initiator committing events.

Most investigators using operational models, myself included, use a spec-
i�cation closer to the one proposed by Woo and Lam.

In a Brutus model, the process description for each role in the pro-

tocol is very similar to the CSP model above. Each honest agent process
consists of a sequence of events that de�ne its role in the protocol. In addi-

tion, each agent (including the adversary), maintains a set of known facts
or knowledge. Because this knowledge is represented as a set of \atomic

facts" together with a set of re-write rules that can be applied to that

set, it actually represents an in�nite set of facts. This becomes especially
important for the model of the adversary. Because the set of known facts

is represented implicitly in Brutus, one is not forced to arti�cially limit
the set of words that the adversary may learn in order to construct a �nite

state model for the adversary.
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8.3 Mur�

Mitchell and others have investigated using a general purpose state enu-

meration based model checking tool, Mur�, for analyzing cryptographic

protocols [57, 58]. In Mur�, the state of the system is determined by the

values of a set of global state variables, including the shared variables that

are used to model communication. For example, each participant has a

variable describing which state it is in and a di�erent variable containing

the name of its \partner" in the protocol. There is also a set of variables

that contain the messages that are sent on the network with one vari-

able describing the type of the message and other variables containing the

�elds of the message. Transition rules are used to describe how honest
agents transition between states and how new messages are inserted into
the network.

For example, the structure of the rule describing how the initiator in

the Needham-Schroeder protocol responds to message number two with
message number three can be found in Figure 8.2. The rule speci�es that if
there is some initiator i waiting for message number two and there is some

message j on the network whose recipient is i then j is removed from the
network and if j is a message two encrypted with i's key and containing

i's nonce, then message three is constructed and added to the network,
and i enters the COMMIT state. Similar rules would be written for each
of the other messages used in the protocol. The authors mention that

rules that capture the behavior of the adversary must also be constructed.
These rules are not provided in the paper, and the authors concede that
formulating the adversary is complicated [57]. Presumably, these rules

would capture how an adversary can intercept messages and misdirect
them and modify them. However, because the description must necessarily

be �nite state, it cannot capture the in�nite behavior of the adversary. In

particular, the description can only keep track of a �nite number of words

that the adversary may know or may learn. Also, this adversary model

would be speci�c to the particular protocol being analyzed.

The speci�cation for the protocol is given by providing an invariant

on the reachable global states of the system. The \usual" correctness
property is used. Namely, if an initiator i commits to a protocol run with

responder r, then r must have at least started to respond to i. The actual

Mur� speci�cation for this property is given in Figure 8.3. The veri�cation
would include an analogous invariant for all responders as well. However,
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1 foreach i 2 1::num initiators

2 foreach j 2 1::network size

3 if (init[i].state = WAITING FOR MESSAGE 2 ^

4 net[j].destination = i)

5 then

6 remove j from the network

7 if (net[j].key = i ^

8 net[j].type = MESSAGE 2 ^

9 net[j].nonce1 = i)
10 then

11 set the �elds of outgoing message out
12 add out to the network
13 init[i].state := COMMIT

14 �

15 �

Figure 8.2: Mur� example

8i 2 1..num initiators :

(init[i].state = COMMIT ^ init[i].responder 2 Responders)!

(resp[init[i].responder].initiator = i^ resp[init[i].responder].state 6= INITIAL)

Figure 8.3: Mur� speci�cation
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the authors do not provide a speci�cation for secrecy. Since keeping track

of the knowledge of each of the agents is somewhat cumbersome in this

approach, this would probably involve a non-trivial extension to the model.

8.4 NRL Protocol Analyzer

Catherine Meadows developed the NRL Protocol Analyzer, a special-

purpose veri�cation tool for the analysis of cryptographic protocols [44,

47]. Like the model checkers, each participant has its own local state and

the global state of the entire system is the composition of these local states
with some state information for the environment or adversary. The state

of each local participant is maintained by a store of learned facts or lfacts.
This is represented by the following store with four indices (which can be
thought of as a function of four arguments)

lfact(p; r; n; t) = v

where

� p is the participant that knows the fact.

� r identi�es the run of the protocol (a run or session identi�er).

� n describes the nature or name of the fact.

� t is the local time as kept by the participant's counter.

� v is a list of words or values that make up the content of the fact.

For example,

lfact(user(A); N; init conv ; T ) = [user(B)]

expresses the fact that A has initiated a conversation with B in run N at

local time T . If A has not yet initiated a conversation with B, then the

value of the fact would be empty and so the value of the function would
be [].

New lfact values are computed using the transition rules that de-

scribe the behavior of the protocol. For example, consider a �red rule
that causes A to perform some action C in run B. Also assume that
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lfact(A;B;C;X) = Y . If the rule �res at local time X, it sets A's local

counter to s(X). If the rule changes the value of the lfact to Z, then

lfact(A;B;C; s(X)) = Z, otherwise lfact(A;B;C; s(X)) = Y .

Each transition rule encodes some action taken by a principal partici-

pating in the protocol. The actual �ring of a rule representing a particular

action is recorded via a store called event. This store has the same four

arguments as lfact. The �rst identi�es the participant in the event, the

second identi�es the protocol round or session, the third identi�es the

event, and the fourth is the value of the principal's local clock after the

rule �res. Like lfact, the value of event is a list of words relevant to the

event.
For the sake of concreteness, an example that parallels the Mur� ex-

ample is given in Figure 8.4. In this example, the �rst rule checks to see
if the initiator has sent message number one but still has not received

message number two. If this is the case, it accepts any message Z that
the intruder knows and records whether or not Z has the correct format
for message number two in an lfact with the name init gotnonce. It checks

for the correct format with id check which is simply the identity function.
The event recorded when this rule �res is

event(user(A; honest); N; init decrypt; s(M)) = [user(B;W ); X; Y; Z]:

This event records the fact that the honest agent A acting as the initiator
has decrypted message number two at time s(M) of round N . The value

of the event consists of the following four words:

1. user(B;W ), the name of the responder;

2. X, the initiator's nonce;

3. Y , the responder's nonce; and

4. Z, the ciphertext being decrypted.

The second rule checks for this lfact and if it exists and the value computed
by id check was ok (true), it produces message number three. This event
is recorded as agent A, acting as the initiator in round N at time s(M),

replies with the responder's name B and the responder's nonce Y .

While this description looks somewhat similar to the Mur� description
(they both use transition rules), this similarity is mostly super�cial. Mur�
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rule(1)

If:

count(user(A,honest)) = [M],

intruderknows(Z),

lfact(user(A,honest), N, init_nonce, M) = [user(B,W), X].

lfact(user(A,honest), N, init_gotnonce, M) = [],

then:

count(user(A,honest)) = [s(M)],

lfact(user(A,honest), N, init_gotnonce, s(M)) =

[user(B, W), Y,

id_check(pke(privkey(user(A,honest)), Z), (X, Y))],

EVENT:

event(user(A,honest), N, init_decrypt, s(M)) =

[user(B, W), X, Y, Z].

rule(2)

If:

count(user(A, honest)) = [M],

lfact(user(A, honest), N, init_gotnonce, M) =

[user(B, W), Y, ok],

lfact(user(A, honest), N, init_nonce, M) = [user(B, W), X],

lfact(user(A, honest), N, init_final, M) = [],

then:

count(user(A, honest)) = [s(M)],

intruderlearns(pke(pubkey(user(B, W)), Y)),

lfact(user(A, honest), N, init_final, s(M)) = [user(B, W), Y],

EVENT:

event(user(A, honest), N, init_reply, s(M)) =

[user(B, W), Y].

Figure 8.4: NRL example
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performs a state space search on explicit state descriptions. The NRL An-

alyzer uses uni�cation to work on a possibly incomplete state description

that would represent a set of states. In addition, the search performed by

the NRL Analyzer is goal driven. The Analyzer searches backwards from

a goal to an initial state. Unlike other �nite-state systems, there is no a

priori bound placed on the number of instances of the protocol that can

be executed; therefore, the number of states to be searched is in�nite. The

NRL Analyzer provides a way to prove certain sets of states (often these

sets are in�nite) unreachable in an attempt to prune the search; however,

the procedure is still not guaranteed to terminate [46].

It is also interesting to compare how the requirements of a protocol
are speci�ed when using the NRL Analyzer. Syverson and Meadows have

developed a logic in which to express the properties required of the proto-
col [76]. The atomic propositions are action symbols with four arguments

that describe the actions taken by the principals at a high level. For exam-
ple, if a particular message coming from a server at local time M conveys
a key K for communication between A and B, this might be encoded as

the following action:

send(S; (user(A;X); user(B; Y )); K;M)

The required relationships between actions are speci�ed using the usual
logical connectives as well as a past-time operator. In this sense, the logic

is very similar to the one used by Brutus. The logic has a learn predicate
which is similar to the Knows predicate used in Brutus. Also, Brutus
allows universal quanti�cation while variables are implicitly universally

quanti�ed in the Analyzer because it uses uni�cation. However, unlike
Brutus, the Analyzer does not have a direct interpretation of the atomic

propositions in terms of the model of computation. A requirement written
in this logic must be transformed into a goal for the Analyzer. This is done

by �rst negating the requirement and then translating all action predicates

into event statements used by the model of computation. This must then
be converted into a goal state that is made up of some combination of the

following:

� a set of words known by the intruder,

� a set of values of local state variables,

� a sequence of events that occurred, and
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� a sequence of events that must not have occurred.

The authors note that these constructs have been adequate for all the

requirements they have attempted to specify; however, the authors do

not discuss any non-repudiation type properties which require the honest

agents to know a particular word. Because of the restrictions on the goal

state, it would seem that there is no way to specify a requirement about

what an honest agent knows or does not know, although it may be possible

to encode such a requirement in terms of events.

The NRL Analyzer has been used to analyze a number of computer

security protocols. The analysis of the Needham-Schroeder public key au-
thentication protocol is of particular interest because Meadows compares
her use of the NRL Analyzer with Lowe's use of FDR [45]. Meadows

has also used her tool to analyze the Internet Key Exchange protocol
(IKE) [48] and the SET electronic commerce protocol [50]. In addition, a

group of researchers have developed a CAPSL Interface for the NRL Ana-
lyzer [6]. CAPSL stands for common authentication protocol speci�cation
language. It is meant to be a common speci�cation language for security

protocols which tool designers can use as a front end for their analysis
tools [18, 53, 55].

8.5 Athena

Song and others have developed a promising new checker for security pro-
tocols called Athena [54, 73, 74]. Like the NRL Analyzer, this tool works

backwards, starting from a faulty state and trying to discover what ini-
tial conditions are necessary to reach that faulty state. Also similar to

the NRL Analyzer, the \states" are kept as general as possible. A \most

general error" state is described. The tool then tries to unify this state

with the right side of a rule. In the case of the NRL Analyzer, this would

be a kind of rewrite rule. In the case of Athena, this is an inference rule.

As the search continues, the \states" become more concrete in the sense

that more variables become bound; therefore, the abstract states represent

fewer and fewer concrete states.

Athena uses an extension of the strand space model proposed by

Thayer, Herzog and Guttman as the underlying model of computation [77].

Because this model is intuitive and because it plays such an important role
in the eÆciency of Athena it is brie
y described below.
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Init [A;B;Na; Nb] Resp[A;B;Na; Nb]

1 : h+fNa � AgKb
i �! 1 : h�fNa �AgKb
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w
w
�

w
w
w
�

2 : h�fNa �Nb�gKai  � 2 : h+fNa �Nb�gKaiw
w
w
�

w
w
w
�

3 : h+fNbgKb
i �! 3 : h�fNbgKb

i

Figure 8.5: Parameterized strands for the Needham-Schroeder protocol

The actions taken during the execution of a protocol are modeled with

nodes. To simplify the discussion, we consider only send and receive

actions. A node is a pair h�; ti consisting of a sign (+ for send and - for
receive) and a message term t. By convention, these nodes are aligned

vertically in the order in which they occur in the protocol. A strand

is the sequence of such nodes (sends and receives) performed by a par-
ticular instance. A role is a parameterized strand, where variables are

allowed to appear in the message terms. To make this discussion more
concrete, parameterized strands for the initiator and responder roles of

the Needham-Schroeder public key authentication protocol are given in
Figure 8.5. Recall that the message 
ows for this protocol are:

1. A! B : fNa; AgKB

2. B ! A : fNa; NbgKA

3. A! B : fNbgKB

The variables A;B;Na; Nb can be bound to speci�c values (speci�c
principal names for A and B and speci�c nonces for Na and Nb) to instan-

tiate the roles. Such an instantiation would correspond to an instance in

Brutus.

Note that nodes belonging to the same role are connected sequentially

via a double arrow ()). In general, for any two nodes n1 and n2, n1 ) n2
means that both nodes occur in the same strand and that the node n2
represents the action immediately following the action n1. In other words,

) represents the sequencing/ordering of actions in individual strands.
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Intercept [a] Duplicate[a] Decrypt [m; k; k�1]

h�; ai h�; ai h�; fmgkiw
w
w
�

w
w
w
�

h+; ai h�; k�1i
w
w
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w
w
w
�

h+; ai h+;mi

Figure 8.6: Parameterized strands for the adversary

This graph can be augmented with single arrows (!) as is done Fig-
ure 8.5. This notation represents the send action and the receive action

corresponding to a particular message. More formally, for two nodes n1
and n2, n1 ! n2 means that n1 = h+; ai and n2 = h�; ai for some message
term a.

The behavior of the adversary is modeled with penetrator strands, one

for each capability of the adversary. For instance, the ability to intercept
messages, the ability to duplicate messages, and the ability to decrypt
messages with known keys can be modeled with the strands in Figure 8.6.

Note that in this case, the ) relation is too restrictive. For example,
the strand modeling decryption requires that the adversary �rst learn the

encrypted message and then the decryption key. One can work around this
restriction by including a second decryption strand in which this order is
reversed.

In this formalism, the two relations,! and) together, de�ne a causal

precedence. In other words, one can de�ne a new relation � that is de-
�ned to be (! [ ))�, the re
exive transitive closure of the union of the

two arrow relations. This relation has the property that n1 � n2 if and

only if n1 must occur before n2. It captures which events must precede
which other events. In [77], Thayer, Herzog, and Guttman prove that this

relation is a partial order, so one immediately gets something analogous
to the trace semantics of Mazurkiewicz [42]. Because the only ordering

imposed on nodes is this causal precedence relation, Athena avoids the

full interleaving semantics and so eliminates the need to perform a partial
order reduction in the �rst place. In a sense, the partial order reduction

is already built into the model itself.
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This causal precedence relation then de�nes how one does a backward

search in Athena. The search starts from a collection of partial strands,

perhaps even a single node. This collection of strands must then be closed

(backwards) under the causal relation. (A collection of strands that is

closed under the causality relation like this is called a bundle.) This means

that for any node in the collection, all preceding nodes along the same

strand are added to the collection. In addition, all received messages

must originate from somewhere. This origin may be a node already in

the collection, or a new strand containing the node may be added to

the collection. There may be multiple ways of satisfying this origination

requirement. Each way would lead to a di�erent history. All of these
histories may eventually be explored.

While using bundles as a model of computation seems promising, the
language used to specify requirements in Athena is a little cumbersome.

In this language, the atomic propositions have the form s 2 C where s is
a strand constant and C is a bundle variable that is typically universally
quanti�ed. Speci�cations then have the form:

8C :
^

�)
_

	

where � and 	 are sets of atomic propositions. Intuitively, the speci�-
cation states that for any bundle C (for any causally closed collection of
strands), if certain strands are in the bundle C (as speci�ed by �), then

some other strand (as speci�ed by 	) must also be in the bundle C. While
this is suÆcient to specify typical authentication/agreement properties, it
is not clear how to extend this to a more general logic.

To conclude, let us see how a typical speci�cation might be written
in Athena. For example, the authentication property for the Needham-

Schroeder public key authentication protocol is speci�ed as follows:

8C: Resp[A;B;Na; Nb] 2 C ) Init [A;B;Na; Nb] 2 C

This speci�cation states that any bundle that contains a responder role

instantiated with arguments A;B;Na, and Nb, must also contain an initia-

tor role instantiated with the same constants. The secrecy of the nonces
can be speci�ed as follows:

8C: Learn[Na] 2 C ) false

8C: Learn[Nb] 2 C ) false
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17 NS3 [j evs 2 ns public;

18 Says A B (Crypt (pubK B) j Nonce NA, Agent A j)

19 2 set of list evs;

20 Says B' A (Crypt (pubK A) fj Nonce NA, Nonce NB jg)

21 2 set of list evs j]

22 =)

23 Says A B (Crypt (pubK B) (Nonce NB))

24 # evs 2 ns public

Figure 8.7: Isabelle example

These speci�cations basically state that no bundle can contain the adver-
sary intercept role instantiated with the nonce Na or the nonce Nb. In
other words, the adversary never learns these nonces.

8.6 Isabelle

Paulson has investigated the use of Isabelle to prove protocols correct [3,

63]. Like the models used in Mur� and in the NRL Analyzer, the protocol
is encoded with a set of rules that describe how the honest participants
in the protocol behave. These rules describe under what circumstances

an agent will generate and send a certain message. Mur� and the NRL
Analyzer use these rules to describe the state that results when a particular

action is taken or a particular message is sent. In contrast, Paulson uses
these rules to inductively de�ne the set of possible traces. In other words,

each of Paulson's rules has the form \if the trace evs contains certain

events, then it can be augmented by concatenating the new event ev to
the end of the trace." For example, in the Needham-Schroeder public key

protocol, the message the initiator sends in step number three is modeled

by the rule in Figure 8.7. If the trace evs contains the actions where
some A sent message one containing nonce NA to B and A receives a

message two containing NA in the �rst �eld and NB in the second �eld,
then the trace is augmented with the action where A sends message three

containing NB.

Since this is a theorem proving environment, the requirement is given

in a syntax identical to that used to model the protocol. Figure 8.8 gives
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25 [j Says A B (Crypt (pubK B) fjNonce NA, Agent Ajg)

26 2 set of list evs;

27 Says B' A (Crypt (pubK A) fjNonce NA, Nonce NBjg)

28 2 set of list evs;

29 A 62 lost; B 62 lost; evs 2 ns public j]

30 =)

31 Says B A (Crypt (pubK A) fjNonce NA, Nonce NBjg)

32 2 set of list evs

Figure 8.8: Isabelle requirement example

a possible requirement for the Needham-Schroeder public key protocol.
The requirement states that if A sends the nonce NA to B in message one

and receives a message two back that contains NA in the �rst slot, then
B must have sent this message. Since this protocol is 
awed and does not
satisfy the property, no proof is found. Unfortunately, no counter example

is found either. The complete report on the analysis of the Needham-
Schroeder public key protocol using Isabelle can be found in [62].

Unlike Mur�, the NRL Analyzer, and Brutus, Paulson's technique is
based entirely on theorem proving. Because he gives an inductive de�ni-

tion for the set of traces in the protocol, there is no limit placed on the
number of protocol sessions considered. In other words, Paulson's proof
of correctness is for an arbitrary number of protocol sessions and not for

a speci�c �nite-state model. However, like the NRL Analyzer, there is no
guarantee of termination. In addition, it is not clear how to get feedback

about possible errors in the protocol from a failed proof. This suggests
that while Paulson's veri�cation technique may be able to prove stronger
statements about a protocol, model-checking techniques would be more

useful to a protocol designer for debugging purposes.

Paulson is not the only one to investigate the use of theorem proving
to verify security protocols. Recently, Cohen has developed a theorem

prover called TAPS for verifying security protocols. He claims TAPS is

faster and easier to use than Isabelle [15, 16]. However, all such theorem
proving approaches have the general criticism that a signi�cant amount of

user interaction and user insight is required to carry out the veri�cation.
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8.7 Revere

I conclude this chapter by brie
y returning to Logic of Authentication.

Revere is the name of Kindred's tool for automating protocol analysis

using the BAN logic. Revere is based on theory generation. Since the full

theory of a set of formulas or axioms is often in�nite, the aim of theory

generation becomes generating a �nite representation (set of formulas)

of the full theory that has some set of useful properties. According to

Kindred [35], not only must this set be �nite, but it should also be small

enough to be manipulated and examined directly. In addition, the set

should be generated eÆciently, and there should be an eÆcient way of

testing speci�c formulas for membership in the full theory. Finally, the
set should be canonical so that direct comparison of sets is meaningful. If

these goals can be attained, then theory generation can be used not only
to check whether certain formulas can be derived from the axioms, but
also to compare the \interesting" formulas in the theories of two sets of

axioms.
Kindred is able to attain these goals by restricting himself to logics

that are simpler than the logic used in Isabelle or in TAPS. In particu-

lar, the BAN logic is one such simple logic. However, Kindred has shown
the feasibility of theory generation for a broad class of logics that also

includes AUTLOG, Kailar's accountability logic, and his own logic, RV,
which is used to formalize the idealization gap for the BAN logic. Be-
cause the approach is a kind of theorem proving approach, Revere has

the same basic capability of proving positive statements about protocols.
And while it cannot provide counter-examples, the generated theory does

provide other avenues for protocol analysis that are unavailable to stan-

dard theorem proving approaches. So by restricting himself to simple
logics, Kindred has been able to maintain the 
avor of theorem proving

while providing the same level of automation that is enjoyed by model
checkers.
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Chapter 9

Conclusions

In this chapter, I conclude by summarizing my results as well as highlight-
ing promising avenues for future work.

9.1 Summary of Results

Brutus is a special purpose model checker for analyzing security proto-
cols. It was inspired by the model proposed by Woo and Lam [84, 85].

This model provided a way to reason about security protocols. I took
this model and investigated the possibility of automating the analysis us-
ing model checking techniques. A description of this original prototype

appears in [40].

During the early part of this research, other researchers turned to
existing model checkers to try to analyze authentication protocols. One
of the biggest drawbacks to these pre-existing tools was having to model

how the adversary acquires new knowledge. In essence, the derivation
rules of section 4.3 would have to be hand coded into every model that
is veri�ed. While this process could be automated, the result would be a

�nite model of what is really an in�nite message space. In other words,

the user would have to specify ahead of time what messages are interesting

so that the model can keep track of when or if they are learned by the
adversary. This means either keeping a separate variable or a separate
process for each interesting message and its submessages.

In contrast, I do not need to restrict the set of messages before begin-
ning the analysis, since Brutus maintains the list of all known messages

195
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implicitly as described in section 4.3. While proving the correctness of the

algorithms that maintain the adversary's knowledge, I have clari�ed why

most models are limited to atomic keys. Ultimately, this is not a necessary

restriction; however, it does allow us to more eÆciently test if a speci�c

message can be derived. In the language of Section 4.3, this restriction

allows us to construct a set of \generators" by closing under elimination

rules. All messages can then be derived from this set of generators using

only introduction rules. If keys were allowed to be non-atomic, then we

might have to use introduction rules to construct a key that would allow

us to use an elimination rule (decryption). This result appears in [12].

In chapter 3, I describe the formal model of computation for Bru-
tus. More importantly, I describe a new logic of knowledge with which

to specify properties about security protocols. Apart from the standard
authentication and secrecy properties, one can also express properties for

electronic commerce protocols, including non-repudiation and a limited
form of anonymity. This logic was �rst introduced in [11]. Hopefully, this
logic will prove general enough to express new security properties as they

come up.
Chapter 5 described how Brutus exploits the symmetry inherent in

security protocols. Because symmetry can be consistently exploited in the
same place in all protocols, this reduction can be performed without hav-
ing to search for or to compute the symmetry. The symmetry is proven

to exist in all models. This result eliminates one of the large drawbacks
of general symmetry reduction, namely, computing the symmetry orbit
relation, which can be prohibitively expensive. Since the symmetry re-

duction is hard wired into the algorithm, Brutus may miss some other
symmetries that are present in the model. These results appear in [14].

One of the biggest contributions of this research is the partial order

reduction described in Chapter 6, which also appeared in [13]. Like tradi-

tional partial order reductions, this reduction is implemented by expand-

ing a subset of the enabled transitions in a state. The novelty of this

reduction does not lie solely in its application to security protocol veri�-

cation. I have also generalized the traditional partial order reduction by

lifting the restriction that two \equivalent traces" agree on the speci�ca-

tion. I have accomplished this by introducing the notion of semi-invisible

actions. These are actions which can only make the speci�cation false. By

moving these actions sooner in a trace � one may end up with a new trace
�0 that does not agree with � on the speci�cation, but which is guaranteed
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to violate the speci�cation if � does. This kind of partial order reduction

need not be limited to security protocol veri�cation, but could be applica-

ble to other domains where semi-invisible actions can be identi�ed. Recall

that for an action to be semi-invisible, all atomic propositions associated

with that action must be monotonic in the model (once it becomes true,

it remains true), and the atomic proposition must appear negatively in

the speci�cation formula.

Finally, in addition to the four protocols discussed earlier, I have mod-

eled and analyzed the following protocols:

� \�xed" Needham-Schroeder-Lowe public-key protocol

� Needham-Schroeder symmetric-key protocol

� enhanced Needham-Schroeder symmetric-key protocol

� Kerberos

� TMN protocol

� Otway-Rees

� Andrew Secure RPC

� Yahalom

� Neuman Stubblebine protocol

� two protocols by Woo and Lam

� SPLICE/AS

� A protocol discussed by Meadows in \The NRL Protocol Analyzer:

An Overview"

9.2 Conclusions

While analyzing all these protocols, I found all previously known attacks

and I con�rmed one limitation on the iKP protocol mentioned in [4].

However, I did not �nd any new attacks. While certainly disheartening,
the lack of new attacks does not undermine the usefulness of the tool.
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Certainly, a lack of new attacks is due in large part to the fact that so

much of the work in this area has been done using the same model of

computation (Dolev-Yao model). I believe that the usefulness of all these

methods has already been demonstrated by prior results.

I believe the automatic addition of a \most general intruder" to any

model being veri�ed is a signi�cant addition to the use of model checkers

for security protocol veri�cation. Certainly, the process of manually creat-

ing such an intruder would be highly error prone. In fact, Lowe augmented

his tool by providing a means of generating such an intruder. However,

even with this addition, the set of words which the intruder can learn is

still arti�cially �xed to a speci�c set. While Brutus must also insure
that the set of words it considers is �nite, there is no a priori restriction

on the set of words considered. This approach allows one to increase the
set of words considered by the adversary easily and incrementally.

The experiments I ran demonstrate the usefulness of the symmetry and
partial order reductions when applied to security protocols. They certainly
increased the size of the models that can be analyzed by Brutus. Perhaps

the real question should be how much more they allow us to verify. In
the case of the Needham-Schroeder protocol they allowed us to investigate

the possible interaction between multiple runs of the protocol. This level
of analysis was not possible without the reductions. While the increase
in the number of concurrent runs of a protocol that can be modeled is

signi�cant, the total number is still quite small. Certainly, the number is
not large enough to justify great con�dence in a model that is successfully
veri�ed. However, in my opinion, this is the wrong way to look at model

checking. If one views model checking not as a way of verifying a system
correct, but instead, as a way of debugging a system, then certainly the

gains are signi�cant. If one really wants to try to prove a protocol correct,

theorem proving techniques are more appropriate. Perhaps a combination

of the two approaches is best. One can �rst use a model checker to debug

the system. Once no bugs are found, a theorem prover can be used to

gain even more con�dence in the system.

I am disappointed with my results when verifying electronic commerce

protocols. While the partial order reduction and the symmetry reduction

signi�cantly decrease the number of states and traces considered during

the veri�cation, the reductions are not enough to enable me to consider

multiple runs of the protocols. The greatest limitation when analyzing
these systems was the complexity of the messages. This complexity sig-
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ni�cantly increased the number of messages that an honest agent is willing

to receive. I believe that this limitation must be addressed before larger

electronic commerce models (or other models with complex messages) can

be analyzed.

Finally, I want to address two general weakness of the Dolev-Yao in-

truder model. This model abstracts away arithmetic properties of cryp-

tographic functions. Although some work has been done in terms of in-

troducing arithmetic properties [57], modeling all of the properties would

make the analysis infeasible. So, in one sense, the adversary model is not

powerful enough. This by itself is not a fatal 
aw. One just needs to be

aware of the assumptions being made and of the kinds of 
aws that the

analysis will miss. Another simpli�cation that is usually made is giving
the intruder complete control of the network. This simpli�es the model

since it is then unnecessary to model when or how an intruder may in-
tercept, suppress, and modify messages on a network. When checking
safety properties (as was done in all of the examples) this simpli�cation

works well. However, it does give the adversary too much power, and it
prohibits the modeling of denial of service attacks. Since Brutus uses

this Dolev-Yao model, it also cannot �nd denial of service attacks. Re-
searchers will have to break away from the traditional Dolev-Yao model
in order to perform this kind of analysis. Indeed, Meadows has already

started looking in this direction [49].

9.3 Future Work

There are several avenues of research that I hope are eventually explored.

Many have to do with improving the Brutus model checker so that it

can handle larger models. Others apply to security model checking in
general. In addition, there are entire new families of security protocols

with di�erent security properties waiting to be analyzed.

9.3.1 Improving Brutus

While the symmetry and partial order reductions presented in this the-

sis signi�cantly increase the eÆciency of Brutus, more still has to be
done. I see some promising directions for research in this area. The �rst

is to implement a parallel model checking algorithm. This idea is ex-
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tremely promising. Since the history at a particular state di�erentiates

two states that would otherwise be identi�ed, the underlying computa-

tions of a model form a tree. Therefore, performing the analysis in parallel

should be as simple as assigning di�erent branches of the tree to di�erent

processors. Another direction would be to restrict the speci�cation logic

so that it cannot distinguish states that di�er only in their histories. I be-

lieve this can be done by simply disallowing the nesting of the past-time

operators 3P and 2P . In this case, states could be hashed in order to

avoid expanding the same state more than once. However, it is not clear

how many unique states there would be in this case. The size of the hash

table may become prohibitively large.

I believe that Brutus could also be improved by adding semantics to

internal actions. Recall that in the logic presented, an internal action (for
example debit) does not have any semantics associated with it. Currently,
the internal actions are used solely to mark when certain important events

take place. In the future, I want to explore the possibility of having
internal actions that can alter the state of the system. For example, it
may be useful to have a debit action that actually debits a customer's

account. However, it is not entirely clear what a�ect this will have on the
symmetry and partial order reductions.

9.3.2 Improving Security Model Checking

Model checking has been around for quite some time, and there has been
much research dedicated to trying to overcome or to circumvent the state
explosion problem. It may be possible to adapt some of these techniques

to the domain of security protocol veri�cation.

The �rst such technique is data abstraction. This technique is par-
ticularly attractive because it is the enormous number of messages that

seems to lead to such large state spaces when analyzing security protocols.

When an honest agent is ready to receive a message, there are typically
many messages the adversary can generate that the honest agent is will-

ing to receive. If a number of those messages can be collapsed into a
single abstract message, a signi�cant reduction in the state space may be

possible.

A second technique that may be applicable to security protocol veri-

�cation is compositional model checking. At �rst glance, this technique
also seems attractive. There are many complex security protocols that
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are made up of smaller protocols. For example, an electronic transaction

might consist of an electronic commerce protocol that �rst requires au-

thentication and session key exchange. The key exchange may require the

use of public keys that must be retrieved using certi�cates. It is unlikely

that the entire system can be analyzed in a single monolithic model. How-

ever, if the requirements of the individual components can be separated

in such a way that the conjunction of their speci�cations implies the cor-

rectness of the entire system, then it would suÆce to analyze the smaller

components in isolation. Of course such a decomposition is not easy and

is not always possible.

9.3.3 Other Families of Protocols

This discussion of future work would not be complete without at least

mentioning the possibility of applying model checking to other families of
protocols. In particular, schemes for electronic voting, electronic auctions,
and digital cash, as well as new uses of smart cards have been proposed

and implemented. The application of formal methods to these protocols is
highly desirable. It is very likely that a more expressive modeling language

and speci�cation language will be required. What is unclear is how much
must be added or changed in existing analysis techniques. While there
is no direct evidence, the results so far are encouraging. For example,

Brutus was originally developed to analyze authentication protocols. In
particular, the only properties originally checked were secrecy and corre-

spondence. However the logic and the model checker proved capable of
specifying and verifying authorization and non-repudiation properties. It
is my hope that with some work, Brutus can be applied to other security

applications.
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