Towards an abstract model of Java dynamic linking and verification

Sophia Drossopoulou
Department of Computing, Imperial College, London

Abstract grammers: Even if they do not program in bytecode, and do
not download unverified bytecode, they may become aware
We suggest a model for dynamic linking and verification of these issues, and may trigger verification, resolution and
as in Java. We distinguish five components in a Java im-loading errors.
plementation: evaluation, resolution, loading, verification, We distinguish the checks performed by verification and
and preparation- with their associated checks. We demon- resolution, and demonstrate their dependencies: Resolution
strate how these five together guarantee type soundness. checks do not guarantee consistency unless applied on ver-
We take an abstract view, and base our model on a lan-ified code, nor are verification checks sufficient unless later
guage nearer to Java source than to bytecode. We considesupported by resolution checks. Our model clarifies which
the following features of Java: classes, subclasses, fieldssituation will throw which exceptions, a question that is not
and hiding, methods and inheritance, and interfaces. unambiguously answered in [12, 18], and it demonstrates
how execution of unverified code may corrupt the store.
A clear understanding of these checks and their interplay
is crucial for the design of new binary formats for Java. In
fact, while most Java implementations use thas format

)) 18], any format satisfying the properties outlined in ch 13.1
Java’s recent spectacular success is partly due to its novel¢ [12] may be used instead.

approach to code deployment. Rather than compiling and

linking a fixed piece of code for a set target machine, Javal_l Overview of Java verification and dynamic
is compiled to bytecode[18], that can be executed on sev- linking, and of our formalization

eral platforms, and can link further code on demand: This '
approach, however, creates opportunities for malicious at-
tacks. The security of Java greatly depends on the safety o
the type system [4].

As it is bytecode that is executed rather than source
code, and as bytecode is not always the product of com-
pilation, Java security lies primarily with the bytecode ver-
ifier, which was formalized as as a type inference system
where stack locations have types on a per-instruction baS'SThus, before execution, the program is linked eagerly, all

[22, 11, 10, 1.9]' On_ the o_ther hand, [21] reported _securlty external references are resolved and type-checked. Execu-
flaws due to inconsistencies between loaders, which were

rectified in later releases, as described in [17]. An opera—tlon has therefore the form
tional semantics for multiple loaders is given in [14].

Thus, various components of Java and the virtual ma-
chine have been studied at considerable depth in isolation;j.e. it takes place in the context of fixétbde, and modified
but, except for this paper and [20] their interplay has not yet the expression and the store.
been formalized. Also, if the expression and state are well-formed in the

We attempt a synthesis, and consider the complete pro-context ofCode, ande is not ground, then execution will
cess,i.e. evaluation, loading, verification, preparation and continue with a well-formed expression, unless a program
resolution in a typed setting. We base our model on a lan-exception is thrown. We call program exceptions those
guage that is very near to Java source, rather than the byte=

1 Introduction

In traditional programming languagese.g. Ada,
Rﬂodula-Z, the compiler checks all type-related require-
ments, and produces code which does not contain type in-
formation. If the various components of a program have
been compiled in an order consistent with their dependen-
cies (dependencies through imports or inheritance) then ex-
ecution is guaranteed to be sound with respect to types.

e,0,Code ~» €', o', Code

. 1By compiling modified Java classes without recompiling all import-
code, asin [20] ing classes one may obtain bytecode that does not verify. Also, execution
Our model is therefore useful for source language pro- sometimes does not attempt to verify local classes.

term meaning definition
L language of loaded code fig 3
P language of prepared code fig 3

e aterm (identical inC andP)

o a store, mapping identifiers and integers to identifiers or integers sect. 5.1
L loaded code, front

P prepared code fro®

e,o,P,L ~¢, 0 ,PP' L e, o rewrite toe’, o', prepared code augmentedPy loaded code becomés fig 4
C-3% expression context, propagates to sub-expression fig5
[null context, may throw exception fig 5
C-Otve type context, may cause loading and verification figs
P,LFc <gg cis a subclass of in context ofP, L fig 6
P,LFc <impi i c implementd in context ofP, L fig 6
PLET <ing 1 i is a subinterface df in context ofP, L fig 6
FP,L O, the subclass/subinterface relationshifjr is acyclic fig 6

F P, LOsups P, L contain all superclasses/superinterfaces of classes/interfaces defitied ifig 6
PLEL SO =, L"” verifier checks that' is well formed in context oP, L, while loadingL” fig 7
PLEt <t <, L verifier checks that widens tot’ in context ofP, L, while loadingL’ fig 7
PLLERe:t <+, L verifier checks that has typet in context ofP, L, while loadingL’ fig 7

E environment for the declaration of variables fig 8
PLFt <t t widens tot’ in the context of the prepared coBeand loaded code fig 9
P,LLEFe:t e has typet in the context of the prepared coBeand environmeri fig 9
P,LEP' O P’ is well-formed in the context d? andL fig 9
LEPO P is well-formed in the context df fig 9
o,Phyv:t value~y conforms weekly to typein context ofP fig 10
o,Pka the object stored at in o is well-formed (conforms strongly) fig 10
P,ELoc O all objects ino are well-formed, and agree to their declarationk in fig 10
PLEt <t t widens tot’ in the context oP andL fig 10
P,LLEL o,e : t run-time expressioa has typet in storeo in the context oP, L, E fig 10
ld(t,P,L) loading fig 11
pr(L,P) preparation fig 11
Fo(f,c,t,P) the offset of fieldf with typet in classc fig 12
Fs(c,P) al fields with types and offsets, defined or inherited in ctass fig 12
Mo(m,c,ta,t1,P) the offset of methoeh with argument type, and result type; in classc fig12
Me(B,c,P) the method body at offsétin classc fig 12
Mot (m, i, tz,t1,P) the offset of methoeh with argument type, and result type; in interfacei fig 12
FLO, PO, FPL <, definitionsinL, orinP, orinL andP are unambiguous omitted
L(t), P(t), PL(t) look-up class or interfacein L, or in P, or inL andP omitted

Figure 1. Concepts defined in this paper

caused by the logic of the program, eg division by zero, Assume that clasé is not definedirL, norinP. If class
null pointer dereferencinetc A can not be found, then a load error is thrown, otherwise

Java on the other hand, does not require the completds loaded andL is extended. Then clagsis verified which
program to have been linked before execution. During ex- means that all its method bodies, and all its superclasses
ecution it is possible that a class is needed, which is partwill be checked, and all required subtype relationships will
of the current code. If bytecode for the class name canbe checked. Assume that clas$iad a method
be found, and verified, then the code is enriched with the void m(int x){ B aB; aB = new C; aB[B, int].f =x}
new class, otherwise, a load-exception or a verification- The termaB[B, int].f indicates selection froraB of a field
exception is thrown. f defined in clas8 with typeint.

The Java approach is even lazier, in the senseGhidd Verification of the above method body requires that class
consists of a verified paR, and a loaded patt, which was C is a subtype oB. Assume thaC has not been loaded
loaded in order to support verification Bf We consider nor verified yet. Then it will get loaded together with all
languagel, which stands fofoadedbinary programs, and its superclasses. If those incluBethen verification will be
P, which stands for verified angteparedbinary programs, successful. This is and example of a class that is loaded but
c.f.section 2. not verified

Verification checks that the subtype relations required in We represent verification through a judgement
some code are satisfied, but dows checlthe presence of
fields or methods referred to in some piece of code. That PLLEhe :t = L
is checked only when and if the method or field are ac-
cessed; if they cannot be found, then a resolution-exceptionyhich means that the expressiewould be verified in the

is thrown. context of prepared, loadedL, and environmenE, and
Therefore, we describe execution in terms of expressionsrequired further binariels’ to be loaded.

L. It has the general form creation of the object of classrequirespreparationof the
. o classC. Preparation determines the layout of the objects
e,0,P,L ~ e,0,PP L of that class and the layout of the method look-up table of

thus describing that the expression may be rewritten, thethat class, e.ns'uring.that the offsets for inherited fields and
state may be modified, code may be loaded, and some O]methods commde_ with those O.f the supgrclasses.

the loaded code may be verified and prepared. The possible When the assignmenB[B, int].f = x is executed, the
errors are program exceptions, loading exceptions, verifica-filed accessaB[B, int].f is resolved If classB does not

tion exceptions, and resolution exceptions. have a fieldf of type int, then a resolution exception is
We classify execution into the following five compo- thrown. Otherwise, resolution returns the offsetimif f
nents: from classB. This offset is used to access the fielchl,

which happens to belong to claGsBut becaus€ is a sub-
e evaluationcorresponds to execution as in most pro- class ofB, and has been prepared, it will have the inherited

gramming languages, field at the same offset & and so the assignment will not
break the consistency of the object.
. resolution_describes the process of resolving refer- If however, the method body had not been verified, and
ences to fields and methods, C was not a subclass &, or if resolution could be fooled,

then the integrity of the object could be violated. Thus, the
above example demonstrates how the verification and reso-
lution checks complement each other.

e |oading is the process of loading class descriptions
necessary for the verification of further classes,

¢ verificationis the process of verifying code We represent consistency of states with prepared code
_ - _ throughP.E . o < and types for run-time expressions
* preparationturns verifiedC code intoP code. throughP, L, E k. o,e : t. In section 4 we prove a sub-

ject reduction and progress lemma, which guarantees for
well-formedP, states consistent withP andL, and well-
typede that execution will either produce a well-typ&dor

a null pointer exception (if a null pointer is de-referenced),

a loader exception (if requested classes could not be found,
or were circular), or a verifier exception (if verification of
requested classes unsuccessful), or a member absent excep-
2Method calls in Java bytecode contain the signature of the method. tion (if a non-existing method or field was accessed). In all

We demonstrate these components in terms of an exam
ple. Consider the following high level view of byte code
method call: new A[A, int, void].m(3)
which stands for the call of a methad defined in clasé,
which takes amnt parameter, and returesid,?, and where
the receiver is a new object of claAs

cases it will preserve the consistencysdfwhich is crucial p
for safety. Furthermore, execution will never get stuck. def
In figure 1 we list all judgements and functions defined
in the paper, with a brief description of their intention, and methHd

def*
interface i exti* { methHd* }
classc extc¢' impl i* { field* meth* }

type m(type x)

the place of their definition. meth = type m(type x {exp} ¢
field = typef 6
The treatment of interfaces erp = eap [type,type,type].m (ezp)
| exp [type,type,type]’.m (ezp)
In order to establish that required subtype relationships are [exp [type,type].f
satisfied, verification looks up the appropriate classes. | var = erp
However, if the required subtype relationships involve | new c
interfaces, then these relationships are automatically as- | this
sumed to hold and amotchecked! | var
Apparently overawed by the multiplicity of par- var ::lz z |2 | exp [type,typel.f
ents possible in a Java interface hierarchy, the im- type c= c|int]i
plementors of Sun’s verifier ... abdicated respon- s — ¢ inC
sibility for type checking involving the use of in- S = B inP
terfaces. Instead, ..., the burden of checking for 3 n= 102 .
compatibility, ... passed implicitly to the run-time o = 0|8
system v - a | 1 | 2 |
Philipp Yelland [25] civm,f,z = ldent

Thus, at run-time these subtype requirements need to be
checked, and execution of interface method calls will) .
check the satisfaction of the associated subtype relationship. ¢ &€ class names, i are interface names

Again, we see that checks from two different JVM compo- ™ &re method names.f are field names,

nents complement each other, and in slightly differentways @ &€ addresses, [are offsets, y are integer values.
for classes than for interfaces.

and where

Figure 3. The syntax of £ and of P
2 The languages and P

method calls, but subtypes are checked for interface method
The binary languag€ presents an abstract view of the cajls. Also, the typént and the address calculations during
Java bytecode. In order to keep the discussion simple, weexecution open the possibility of pitfalls, which, as we shall
only consider classes, subclasses, interfaces, subinterfacegemonstrate, are averted by verification and the resolution
assignment, method overloading and inheritance, field in-checks.

heritance and hiding. Even though our examples use se- |, £ a5 in the bytecode, field accesses and method calls
quential statements, we have not included them indhe 5.6 annotated by descriptors. Field actdsas the form
andP-syntax, as they can be easily encoded by extra meth-g 1, +.].f, wheret, is the class containing the field defini-
ods. In order to simplify the presentation, all methods have tion, andt, the type of that field. Instance method clls

one argument, called _ _ have the forne, [t;,t2,t3].m(e2), Wheret, is the class con-

The only types we consider are classes, interfaces andgjning the method definitions is the type of the method’s
int; these demonstrate several interesting properties of theargument, and; is the result type. Similarly, interface
Java system. Interfaces introduce multiple subtyping. More yathod callé have the forme[t, ,ta,t]i.m(es); wheret, is
interestingly, subtyping introduced through interfaces is the interface containing the method definition s the ar-
dealt with differently from subtyping introduced through gument type, and; is the result type.

subclassing: as we shall see, the verifier assumes an in-' ., o< 21 either integers or addresses of objects. Ad-

terface to be a supertype ahy type, whereas it consid- j aqses are represented by positive integers and are denoted

ers a class to be a supertype of its loaded subclasses onlyby a or o'; the null pointemull is denoted by. Integer

therefore, at runtime subclasses are not checked for instancgalues whether they stand for addresses or for integers, are

3£ is a similar language to language Javacito[16] or the Java subset
from [8]; it is larger than [13] because it considers imperative features,
overloading and interfaces; and, though at a different abstraction level than
[20], it is larger because it studies interfaces .

4corresponding to the bytecode instructigesfield andputfield
5corresponding to the bytecode instructionokevirtual
Scorresponding to the bytecode instructiamokeinterface

I—Ph = Pph =

class Phil ext Object impl €{ class Phil ext Object impl €{
int age int age 1
Phil like Phil like 2
Book think(FrPhil x) Book think(FrPhil x)
{ ... x[FrPhil,Food].like = new Pear ... } { ... x[FrPhil,Food].like = new Pear ... } 1
Phil eat(Food x){ ... x=newFood ...} Phil eat(Food x){ ... x =newFood ...} 2
} }
I—FrPh = PFrPh =
class FrPhil extPhil impl e { class FrPhil extPhil impl € {
Food like Food like 3
Book think(FrPhil x)
{ ... x[FrPhil,Food].like = newPear ... } 1
Phil eat(Food x){ ... x = newPear ...} Phil eat(Food x){ ... x = newPear ... } 2
Food think(FrPhil x) Food think(FrPhil x)
{ new Pear[Food, Salt, Food].cook(new Salt) } { new Pear[Food, Salt, Food].cook(newSalt) } 3
} }
Figure 2. An example in £, and the corresponding examplein P
denoted byy, 7' etc programs are extended by offset information. Thus, the syn-
Figure 3 contains the syntax gfand ofP; figure 2 con- tax of expressions ifP is identical to that of expressions
tains an example i and the corresponding examplefn in £, except that field declarations are augmented by off-
The example is a variation of the one given in [F]hil- sets, determining the field’s position in actual objects on the

osophers have asge, they like other Phil-osophers, and heap, and method definitions are augmented by their off-
produceBook-s when theythink; whereasrPhil-osophers sets, describing the method’s position in the method look

like Food, and produc&ood when theythink. up tables. Offsets are positive integers, and denotef, by
Notice, that the fieldike in FrPhil “shadows” that of /' etc
classPhil. Objects of clasgrPhil contain three fields, The classe®p,, and Pgp are possible results of the
i.e. age andlike from classPhil, andlike from classFrPhil.” preparation olLpy, Lepn: The fields in the subclass (here
Field selection is determined by the type annotations. Forlike in FrPhil) are given distinct offsets to those of the fields
examplex[Phil,Phil].like selects the field of typ€hil de- in the superclass. All inherited methods (here metBodk
fined in classPhil, whereax[FrPhil,Food].like selects the think(FrPhil x){... } inherited inFrPhil from Phil) appear
field of typeFood defined in clas§rPhil. in the subclass with the same offset, whereas new meth-

The instance method cat{Phil,FrPhil,Book].think(...) ods (here metho#ood think(FrPhil x){..} in FrPhil) are
selects from the clas®hil the method which takes given fresh offsets. Finally, any methods overriding meth-
a FrPhil parameter and returns a Book, whereas ods from a superclass obtain the overridden method’s offset
x[FrPhil,FrPhil,FrPhil].think(...) selects from the class (here methodPhil eat(Food x){ ... x = newPear ... } from
FrPhil the method which takes &rPhil parameter and re- classFrPhil overrides methodPhil eat(Food x){ ... x =
turns a FrPhil. new Food ... }, and therefore has offsg}.

Contrary to Java source language rules [¥2]andP- A basic requirement fo€ andP code is that it should be
methods may have the same identifier and argument typeunambiguous. That is, each class or interface should have
but different result type as a method from a superclass, at most one definition, ik, or in P, or in L andP together.
e.g.methodBook think(FrPhil x) { ... } in classPhil, and This is expressed by the judgmentsL <, or- P <,
methodFood think(FrPhil x) { ... } in classFrPhil.8 or P,L <,. If these judgments are satisfied, the lookup

The languageP describes code after preparation; the functionsL(c), or P(c), or PL(c) , will return the appro-

“Itis not required that the field in the subclass has a different type than priate class o interface body, .Oi-f none is th?ré{ .
that in the superclass; for example, it would be legdikif in classFrPhil Also, the Su.bCIaSS and Smeterfacpf relationship and
had typePhil. L should acyclic, as expressed by the judgmeri®, L <,

8Such binaries may be createslg.through compilation of a class and
its subclass, subsequent addition of a method in the superclass, and re- °We do not define these judgments and look-up functions since they are
compilation of the superclass without re-compilation of the subclass. standard.

Evaluation
PROPAGATE
e,o,P,L ~ ¢&,0 P, L
Ced%” g,P,L ~ Ce' 0% ¢g,P,L
Acc

z a variable
z,0,P,L ~ o(z2),0,P,L

VARASS

z=7v,0,P,L ~ v,0[z—4],P,L

NULLPOINTERR

c0a1"™, 6,P,L ~ NIIPErr,o,P,L
NEW
Plc) # ¢
a new inc
.7:8(C, P) = {tl f1 61,. R fn Bn}
o'=ocla—ca+p1—0,...a+ 8, 0]

newc,o,P,L ~ a,0',P,L

Resolution
FLDAccCl
fo(fatlat% P) = B
afty, tz].f,0,P,L ~ o(a+3),0,P,L
a[tl,tZ]'f =7,0, P: L~ Vs U[OL + B — ’Y], P, L

FLDACC3
Fo(f,t1,t2,P) = —1
afty,t2].f,0,P,L ~» NoFIdErr,o, P, L
alty, tz].f =v,0,P,L ~ NoFIdErr,o,P, L

METHCALL 1
./\/lo(m, t1,t2, t3, P) =-2

FLDAcc2
fo(fatl,t2,P) = -2

alty, ta, t3].m(y),0,P,L ~ ClssChngErr,o,P, L

METHCALL 2
Mo(m, t,t2,13,P) = -1
alty, ta, ts].m(y),0,P,L ~ NoMethErr,o,P,L

INTEMETHCALL 1
Mol(m, ty,to, t3,P) = —2

alty, ta, t3]*.m(y), 0, P, L ~ ClssChngErr, o, P, L

INTFMETHCALL 2
Mo'(m,ty,ta,t3,P) = —1

alty, ta, t3]*.m(y),0,P,L ~ NoMethErr,o,P, L

INTFMETHCALL 3
P: L |7/ O'(Oé) Simpl t1

alty, ta, t3]*.m(y), 0, P, L ~ ClssChngErr, o, P, L

afty, to].f,0,P,L ~ ClssChngErr,o,P, L
afty, to].f =v,0,P,L ~» ClssChngErr,o,P,L

METHCALL 3
Mo(m, ty,t2,t3,P) = 3
Me(B,0(a),P) = e
y1,Yy2 are fresh variables ia
e’ = e[x/y1, this/ys]
o' =oly1 — 7,y2 &]
Oé[tl,tz,tg].m(’}/), g, P, L ~ e’,a’, P, L

INTFMETHCALL 4
P, L+ U(Oé) Simpl t1
./\/loi(m,tl,t2,t3,P) =0
./\/lo(m,a(a),t2,t3, P) = B
Me(B,0(a),P) =e
y1,y2 are fresh variables in
e’ = e[x/y1, this/ys]
o' =oly1 = 7,y2 = 0]

Oé[tl,tz,tg]l.m(’)/), ag, P, L ~ e’, U,, P, L

Loading

LOADERR
P(t) =L(t) =¢
ld(t,P,L) = ¢, foraloaderd
Ct3J%,0,P,L ~» LoadErr,o,P,L

LoAD
e=Cta"
P(t) =L(t) =¢
ld(t,P,L) = L', foraloaderd
e,o,P,L ~ e,o,P,LL

Verification

VERIFERR
P(t)=¢
Ll(t) ;é €, and P, L; <>sups
VL': P,LKL O =, L

Cta% . g,P,LiLy ~ VerifErr,o,P,LiLs

Preparation

VERIFANDPREP
e =CtJ?
P(t) =€, and Li(t) #¢, andF P, Ly Ogups
PLEL & =, L
P, = pr(P,L;), fora preparatiompr
e,a,P,L1L2 > e,a,PPl,LgL’

Figure 4. Execution

C-O%P == [C-O[type,type,type].m (exp) eterd! and addresses. Addresses point to objects. An object
| a [type,type,type]l.m (C-1) consists of its class (an identifier) and values for its fields.
[C - O[type, type, type]’.m (exp) These are either values of typ# or addresses; both are
| a [type,type, type]'l.m (C- 1) represented by integers. The symbaineans undefined.
| C - O[type,type].f Stores thus have the form:
[C-O=exp o:[ldnt— (intu{x})] U[int — (intU ldnt U{x})].
if C-3 is anon-l-ground variable For a variablez, and addresa, the store lookupo(z) de-
[var =C-J scribes the value of variabten o, whereasos(a) =c deter-
if var is an |-ground variable mines thaty points to an object of clags The fields of the
[= C-O[type,type,typel.m (exp) object pointed at by are stored at some offset fram We
| C-O[type,type,type]l.m (exp) call an addresa newin o iff o(a 4+ 7) =x, Vv > 0.
[C - Od[type,typel.f Our model of the store is therefore at a lower level than
| C-O[type,typel.f =~ those found in studies of the verifier [22, 10, 20], where
C.-atp = «a[C-3O,type,type]l.m () objects are indivisible entities, and where there are no ad-

a [C-3,type,type]'.m. ()
«a [C-3O,type].f
newrC 7]

dress calculations. This allows us to describe the potential
damage when executing unverified code; as shown in exam-
ple in section 5.3, field assignment in unverified code could

overwrite any part of the memory.

. In the example below, the storey maps iden-
Figure 5. Contexts P 0 P

tifier aPh to an object of class Phil, whose
field like points to an object of classFrPhil:
defined in figure 6. go(aPh) = 5 _ _
Last, we call an expressiaground if it is a value~2°, 70(5) = Phil object of clashil
andl-ground, if it is an identifier, or has the formy[t; t»].f. 0(6) = 45 fieldint age from Phil
oo(7) = 8 field Phil like from Phil
. 0o(8) = FrPhil object of clas$rPhil
3 Execution o0(9) = 55 fieldint age from Phil
o0(10) = 5 field Phil like from Phil
Execution, described in figure 4, is defined in terms of oo(11) = 0 field Food like in FrPhil
a rewriting relationship ononfigurationsgconsisting of ex- ao(y) = % fory ¢ {aPh,5...11}

pressiore, storeo, prepared cod®, and loaded binary.
The expression and store may be modified, more code may3 o anp example
be linked, and further binaries may be loaded. Thus, execu-
1 ! ! ! !
tlorl]nh:rsdg]retcforir\?e :r?oljél_cc:r?cii’e(:jézgi’ I;ioln of the rewrite The following expressiore, represents the body of the
. 9 . Jaescrip . methodFood think(FrPhil x) from classFrPhil, i.e.
semantics, and also, in order to distinguish between routine _
. . . . e; = new Pear[Food, Salt, Food].cook(new Salt)

rewrite rules, and those particular to Java implementation, . . .
L .) The expressiore; is “well-behaved”if the following re-
in figure 5 we introduce three kinds of contexts. Expres- _ . o

. e . . -~~~ gquirements are satisfied:
sion contexts/— - 1P, are filled with a sub-expression;
their execution propagates execution to this sub-expressionR1 classPear exists,
as in rule PropagaTE Null-contexts, - 3™, when
filled with O, raise an exception when executed as in rule R2 Pear is a subclass dfood,
NULL POINTERERR Type contextsi= - 1P, are filled with
a type name; their execution causes the type to be loadedR3 classSalt exists,
and prepared if the type is not part of the loaded or the pre-
pared code, as in rulesoADp, LOADERR, VERIF, VERIFERR
andVERIFANDPREP.

R4 Salt is a subtype ofalt,

R5 classPear has a methoflood cook(Salt x ¥{... },

3.1 The run-time model R6 the methodFood cook(Salt x){... } from classPear is

“well-behaved” and returns an object of a subtype of
States represent stacks and heaps, and contain values for Food.

identifiers and addresseghe former model formal param-

1In Java, assignment to formal parameters does not overwrite the actual
parameter

10and thus also if it is an address

- P,L O, FP,L O,

PL(c) = classcext ¢ impl ...i..{...} PL(i) = interfaceiext ...i" ..{...}
P,L"C Sclss c P,Ll_l Smtf i
P,LFc <gss PLET <inyr 1
P,LEc <impr i
PLET <jngr 1
P,L Fc Simpl i

P: Lkc Sclss C”
P, LEc" Sclss c’
P: Lkc Sclss c

P:L Fc Sclss C
P,L Fc Simpl i’

P.LFc <gss ¢ = ¢ =Object, or PL(c') # ¢

PLFc <gg ¢ andP,LFC <ges ¢ = c=¢ P,LEi <iny i = PL({') #e€
P,LEI <ingg i and P,LFV <jpr i = i=1V P,LFc <imp i = PL(I) #e
FP,L <, FP,LOsups

Figure 6. Subclasses, acyclic programs, programs with complete superclasses

In statically typed programming languages, such re- S3 A new FrPhil object can now be created and

quirements are checkedll together at compile-time; its address assigned te@; we continue with

in dynamically-typed programming languages they are w = new FrPhil... .., PpnPgph, LpearLFood

checkedall togetherwhen (and if) the above expression is

executed. S4 w=new FrPhil creates a secon@rPhil object and
In Java, however, these requirements are checkearat assigns its address tav, and continues with

ious stage®f execution. Consider for example, execution -, PPaPE®h, LpearLFood -

of the verified expressios:
e> = v=new FrPhil; w=new FrPhil;
v[FrPhil, FrPhil, Food].think(w)
where the clas®hil has been loaded and prepared, but no
further class hﬁs been loaded. Thus, we have aconfiguratio%6 new Pear attempts to VerifyLpe, and Lrood:
es,..,Ppn,e. Then:

S5 v[FrPhil, FrPhil, Food].think(w) evaluates andw, re-
solves the methothink in classFrPhil, and continues
with ey, .., PphPrph, LpearLFood -

if un-
successful it throws/erifErr. Otherwise, it estab-
lishes thatany methods defined in cladear or in-
herited from its superclasses will be “well-behaved”
(this means thaR5=-R6). Execution continues with
new Pear, .., Ppy Prph PpearProod; € -

S1 v=new FrPhil, attempts to load the clagsgPhil; if none
is found, or a class circularity is encountered, then
LoadErr is thrown; otherwisd g,pnis loaded, and we

continue execution witmew FrPhil..., .., Ppp, Lrph -
S7 newPear creates @®ear object at some address and
S2 The verifier checkdr.pn, and in the process it checks continues witha, .., PphPrph PpearProod, € -
all methods in that class. In order to verify the body
of methodFood think(FrPhil x) in FrPhil, the veri- S8 new Salt attempts to load clasSalt; if unsucces-
fier needs to establish thBear is a subclass dfood. ful, it throws LoadErr; otherwise it continues with
For this it tries to loadPear and its superclasses. If new Salt, .., Ppy Prph PpearProod; Lsalt -

these cannot be foundpadErr is thrown, otherwise . N] _
R1is established. If they can be found, but do not S9 Lsar is verified; if unsuccessful, therVerifErr

satisfy the subtype requirementerifErr is thrown. is thrown; otherwise R3 and R4 have
Otherwise R2 is established, clagaPhil is prepared, been established, and we continue with
and a newFrPhil object is created. We continue with new Salt, .., Pph Perph PpearProodPsat, € -

vV = new FI’PhI|, .y PphPFrph, I—PearLFood .12

S10 aSalt object is created at some addregsexecution

12We assumed thdear is a direct subclass dfood, which is a direct continues with
subclass oDbject. a[Food, Salt, Food].cook(), .., PphPerphPrearPFood Psat, € -

S11 a[Food, Salt, Food].cook(a') attempts to resolve the 3.4 Resolution

methodcook with parametebalt and result typ&ood

in classFood. If unsuccessful, it throwsloMethErr. Resolution describes the process of resolving references

Otherwise,R5 has been established, which, together to fields or methods. It corresponds to the bytecode instruc-

with R5=>R6 from S4 establishefR6, and execution tionsgetfield, putfield, invokeinterface andinvokevirtual.

continues with the appropriate method body. In Java implementations, resolution may also take place
during linking. The related exceptionBloMethErr and
NoFIdErr, couldbe anticipated at link time; indeed the lan-
guage specification leaves some leeway, and requires that
linkage-related exceptions may only be thrown when an ac-
tion is taken that might require linkage to the class or inter-
face involved in the error.f. 12.1.2 of [12]. Our model
follows the laziest possible approach as to the timing of
throwing link-related exceptions, which also coincides with
current implementationd®

In the above example we see that execution of veri-
fied code might throw verification, loading, or resolution
errors. Thus, verification alone does not ensure “well-
behavedness”.

On the other hand, as shown in section 3.4, execution of
unverified expressioa; 13

e3 = aPh[FrPhil, Food].like = new Pear
in configuration ez, oo, PphPrpn, € (for oo from sec-
tion 3) leads to configuratiori2, oy, PpyPgph, €, Where
01=00[8 +— 12,12 + Pear,.]. In the new storeg,
the class of the object at addregdas been overwritten 3.4.1 Field Resolution

by an address; the can|stency of the store has be:—:n deI':ield access has the fortijty,t2].f. The offset of that field
stroyed! Thus, resolution checks alone do not ensure “well- is determined usingFo(f, t1,t>,P). This function, de-

berllla\i_edneiss i'rt]h(;'s dR4 { att ted in st fined in figure 12, searches the class hierarchy for a defi-
otice also, thats an arenotatiempted Iin stageé iion of a field f with type to, starting with clasg; and

Sll_ th]r?re n SeCt(';_)n 3.6. . | hich d continuing with the superclasses. If the offset is found,
n the appendix we give an exampie which demon- ; o Fo(f,t1,t2,P)=03, then it is used to calculate the ad-
strates the treatment of interfaces based on the one given b&ress of that fieldi.e. a+3 (FLoAcct). Thus, our model

Buechi[2]. We now study the five components of execution: describes address calculations, and is, in that sense, at a

lower-level than those in [10, 20, 19].
If t; is defined, but does not have a declaration for

o . . field f of type to, i.e. Fo(f,ty,t2,P)=-1, or if t; is
Evaluation is the part of execution that is not affected by _ - interfac)gj)e > Folf,t, t;)(P):l-ZQ th()an exceptioﬁs are

dyna_tmm:J?kmg and vgr_|f|cat|on_. It |§ described in the first 0\ (FLDAcc2,FipAccd). Note, that the case where
section of figure 4, and it comprises: Fol(f,t1,t2,P) =-3 need not be treated here, as it corre-
o propagation,.e. propagate execution at the receiver SPONds to the case wherehas not been prepared yet, and
and then the argument of a method call, at the receiver!t IS treated by the rules for loading, verification and prepa-

of a field access and to the left hand and right hand "atiOn, iELOADDERR, VERIFERR, LOADPREPVERIF.
sides of an assignment (rUdgOPAGATE), 14 The offset calculation Fo(f, t1,t2, P) uses the stored,

static type t;, and not the actualdynamic class of

3.3 Evaluation

e throwing theNIIPErr exception when attempting to the object in a. This is why the configuration
call a method, access a field, or assign to a field of aPh[FrPhil, Food].like = new Pear, oy, PpnPrpn, ¢ leads
0 (rule NULL POINTERR), to the unsafe configuratiot2, o, Pp,Prph, € described in
section 3.2

e accessing variables or addressisd), and assigning

{0 variables ¢arASS) Such problems do not arise for previously verified code.

For example, the termaPh[FrPhil, Food].like = new Pear

e creating new objectsNEw) of already prepared class would not verify, because the type aPh is not a subtype
c (i.e. P(c) # €), and initializing the fields wittD at of FrPhil, In general, as we shall see later, in well formed
the offsets prescribed iR. (The function Fs(c,P) codeP, the offset Fo(f,t,t2, P) represents the position
, defined in figure 12, returns types and offsets for all for field f with typet, inherited from class, for all objects

fields declared in clagsor in any ofc's superclasses.) ~ Of classt; or anysubclass of;.*” Provided that the field
access has been checked by the verifier, and thus that the

13The expressiors could be the result of a compilation of expression
e4= aPh.like = new Pear whereaPh had been declared of tygePhil, 15A more general model, reflecting this leeway through restricted non-
and the type obPh was modified without re-compilings. This could determinism in the operational semantics, could be tackled in future re-
happen ifaPh stood for a method parameter, or a field in another class. search.

14For the sake of succinctness we did not supply rules for the propaga- 16because]-‘o(like, FrPhil, Food, Pg.phPpn) = 3.
tion of exceptions; these would have been standard. 17¢.f.the last rule in figure 9.

type of« is indeed a subclass of, the address calculation
will return the appropriate field stored in the objectat

3.4.2 Method Call Resolution

Method calls have the formy[t;,ts,t3].m(y). The offset is
determined by the functionMo(m, t,t»,t3, P), defined

in figure 12. This function considera, the name of the
method;, the class containing the methag, the type of
the argument, antg, the result. The latter two are neces-
sary for overloading resolution. tf is an interface, then
Mo(m,t1,t2,t3, P)= -2, and the exceptiolssChngErris
thrown'8, If classt, exists, but no such method can be found
in t1, the exceptioMoMethErr is thrown METHCALL 2).

As for fields, theactual classof the receiverj.e. the
class ofa, is not considered. If a method is founde. if
Mo(m, 11,12, t3, P)=6 for somegs, thens is used to select
the method body from the lookup table of the classvof
through (Me(8,a(a),P) in METHCALL 3) — here the ac-
tual class of the receivas used. This is so, because, as
we shall see, in well-forme@’s, corresponding methods
have the same offset in the lookup tablestpfand in all
the subclasses of .1° Well formedness of the method call
(as guaranteed by verification) ensures that the clagsof
indeed, a subclass of.

As for fields, the case whete has not been prepared yet

is taken care of by the loading, verification and preparation

rules.

3.4.3 Interface Method Call Resolution

Interface method calls have the foraft;,ts,t3]'.m(7).
The method is first looked up in the interface through
Mo (m,ty,t,t3,P). If t; is a clas®, or if the class
of the receiver, denoted by (a) , does not implement
;% then the exceptior€lssChngErr is thrown. If inter-
facet; exists, but does not contain nor inherit an appropri-
ate method declaratio? then the exceptiohloMethErr.
Otherwise, the method is looked up in thetual class
of the receiver,i.e. offset is determined by the function

18This can happen, if one compiles as a class, then compiles the class
containing the method call, then re-compitgsas an interface, and does
not re-compile the class with the method call.

19¢.f. the last rule in figure 9.

20This can happen, if one compiles as an interface, then compiles the
class containing the method call, then recompiless a class, and does
not re-compile the class with the method call.

21This can happen, if one compiles a clads a superclass ofo(c)
while ¢’ implements the interface;, then compiles the class containing

Mo(m,o(a),ts,t3,P) and then the method body with the
corresponding offset is executdd{FMETHCALL 4).

If we compare method calls and interface method calls,
we notice that the latter require the extra check. Namely
INTFMETHCALL 3 ascertains that the receiver implements
t;. Such a check is not necessary for method calls,
el [t],th,t5].m(e}), because verification guarantees tiat
will evaluate to an object of a subtype df. However, the
verifier is more lenient with interface method calls, and veri-
fication ofe; [t;,t2,t3]1.m(e2) does not guarantee thagtwill
evaluate to an object of a subtypetof therefore this needs
to be checked at the time of execution of the method call.

As for fields and for method calls, the case whigrbas
not been prepared yet is taken care of by the loading, verifi-
cation and preparation rules.

3.5 Loading

Loading is required when a type context,t 1%, is
executed for a class/interfacavhich has not been loaded
yet. That is, when a new object of classs created, or a
when a field of class is accessed, or when a method from
class or interfeaceis called.

If loading is successful,e. ld(t,P,L) =L’ # ¢, then
execution continues with the loaded code augmenteld by
(LoaD), otherwise an exception is throwroap ERR).

A loaderfunctionld(t,P,L) returns class or interface
definitions fort and all its superclasses and superinterfaces
except for those already definedRror L, provided that no
class or interface circularity was encountered; otherwise it
returnse. Any function satisfying the requirements from
figure 11, is a loader. A “real” loader would lookup class
definitions in the filesystem or a database, which may be
modified from outside the Java program, and so different
calls of the loader for the same class might return differ-
ent binaries. Rather than providing a filesystem/database
parameter, in our model different loader functions may be
called, thus giving the same effect.

We have taken a simplified view of loading, and have
disregarded the possibility of class de-allocation and multi-
ple loaders implementing different search strategies, which
we shall consider in future research.

3.6 \Verification

Verification is required when executing a type context
C t J%P, andt has been loaded but not yet prepared,

the method call, then recompiles making sure that none of the superclasse$.€. P(t) = e L;L,(t) . The loaded code consists bf

of o(a) implement the interface;, and does not re-compile the method
call.

22This can happen, if one compiles with the method declaration, then
compiles the method call, then removes fromthe method declaration,
and re-compiles; but does not re-compile the method call.

andL,, whereL, is the part of the loaded code which con-
tains the definition of and its supertypes, except for those
already defined irP, i.e. Li(t) # ¢, and- P, L; Ogyps.

Thenl, is verified. If verification succeeds and requires

2) (3)

(1) F P,L <, F P,L <,
F P,L <, P,LEFc <y C PL(i) = interface ..
PLEt <t %, € PLc < £ ¢ PLEt <i £, ¢
(5)
F P,L <, (6)
PL(c) =€ F P,L <,
(4) ld(c,P,L) =L PL(i) =€, ld(i,P,L) =L’
FP,L O, P,LL'Fc <y € L'(i) = interface ..
PLEint < int <, ¢ PLEc < <, L PLEt <i =, L’
(7)
F P,L <, (8)
P,LELy :int <, ¢ FP,L O,
P,LERO :c <, ¢ E(y) =
P,LLERnewc : c £ ¢ PLLERy : t £, ¢
(9)
P,LLEgvar : t =, L (10)
P,LL,ERe : t' <, L" PLLEe :t =, L
P,LLIL" Bt <t <, L" PLL'Bt < tu <, L"
P,LLEgvar=e : t' =, L'L"L" P,LLEK e[ty,to].f : to =, L'L”
(11)
PLLEL e :t} ’zm L] (12)
P,LLY,Ek ey : t) <, L} P,LLEk e :t] <, L}
PLLILLE] <t =, L’ P,LL1,EK es : t, =, L}
P,LLILILE Bt <t =, L4 P,LLILL Rt < to =, LQ
P,L,E '{, el[tl,tQ,t3].m(e2) : o L, L, L, L, P,L,E '7, e1[t1,t2,t3]‘.m(e2) 13 o LI LI LI
(13)
PL(c') = class ...
PL(i) = interface ...
fi=f = i=] 1<ij<n
m; = m; and t;; = tj1 and t;s = to = i=]j 1<ij<k
P, LLj.. L’2 (i 1),(ti2 x,cthis) Be @t <. L% 1<i<k
PLL . Lh g hth <t tm, Ly 1<i<k
P,L K class c ext ¢’ impl ...i... { tifyoota fo tin mi(tis xX){er} o tin mic(tico x){e} } & =, L. LL,
(14)
PL(i") = interface ...
m; = mj and tj; = t1 and tjp = t2 = i=]j 1<y <k
P,L & interface i ext ...i'"..{ t;1 my(ti2 X), ..., tkg M(ta X) } & =, €
(15)

{ti,. . ta} ={t[L'(t) #e}
PLL ... L. kL'(t)O =, L. 0<i<n

loads 2
PLELUO — L. .U

loads —1 n

Figure 7. Verification

Env

€ | Env, type z | Env, type this

E(z) # e
FE <E

= FE'(z) = E(2)

Figure 8. Environments

the loading ofl’, thenl; is prepared, and execution con-
tinues with the augmented prepared cBdeand additional
loaded codé’, c.f. VERIFANDPRER If verification fails, an
exception is throwng.f. VERIFERR.

Verification in our paper corresponds to the third pass of
the “real” verifier as described in ch. 4.9.1 of [18], and is
expressed through the judgment

P
loads

P,LEL"C L'
meaning that the binary” could be verified in the context
of the prepared code, and the loaded but not yet prepared
codel, and caused’ to be loaded (but not verified). Thus,
this judgment has the “side-effect” of loadihg

Verification of classes is defined in terms of verification
of expressions, with the judgment
.

loads

P,LLEe:t

meaning that the expressierncould be verified as having
typet, in the context ofP, L, and the environmert, and
caused further classes/interfadgsto be loaded (but not
verified). This is described in figure 7.

Establishing the above sometimes requires a judgment

/_L’

loads

PLEt <t

meaning that typet could be verified as widening to
type t' in the context ofP and L, and caused further
classesl/interfacds to be loaded (but not verified). Classes
or interfaces may be loaded when trying to establish
whether a, undefined irP or L is a subtype’, as in rules
(5) and (6) of figure 7.
For example, verification of
e;=new Pear[Food, Salt, Food].cook(new Salt)
requires establishing thBear widens toFood, which, in its
turn, if Pear is not loaded, requires loadirear and all its
superclasses. Therefore, if
ld(Pear, Pph, €) = LpearLFood,
and the superclass d?ear is Food, then:
Pph, € k; Pear < Food e LpearLFood-
The difference between (5) and (6) is, that in¢2)nd all
its superclasses are loaded, whereas in (6) osljoaded.
The assertiorP,L F,t < t <+, € holds for any
t, c.f. rule (1). Thus, verification assumesy identifier
to stand for a class, or interface and so to widen to itself.
Therefore,
Pph, ek Salt < Salt

P
loads €.

Also, the assertioR, L it < i <+, € holds for any
interfacei, c.f.rules (3) and (6). Thus verification assumes
any identifier to widen toi, provided thati stands for an
already loaded or prepared interface.

Verification is “optimistic” with respect to method calls
and field accesses (rules (11) and (12)), and more liberal
than the Java source checks. For field acceds; ,t.].f,
verification only checks that the type ef widens tot,
the static type in the signature, and gives to the whole ex-
pression the type, — it doesnotattempt to check the exis-
tence of a field with type,, but leaves this to the resolution
checks. Similarly for method calls. Therefore, verification
of e; will load Food andPear, and notSalt, and will not
verify either of these classess.

Pph,€,elper @ Food 4 Lpearlrood

Verification of a class (rule (13)) does not imply verifi-
cation of all classes used: Even though, mentions the
classedrPhil, Book, Food, andPear, its verification only
requires classPear and all its superclasses to be loaded.
Thus,

& Lpn iy Lpn ©

Finally, if an order can be found to verify classes and/or
interfaceg;, then verification is successful.f. rule (15).

’,0_,1,1_; I-Food I-Pear-

Verification requires type assignments, expressed
through anenvironment E, which is a sequence of dec-
larations of the formt; var;. Environments are declared
in figure 8; they should contain unique declarations, as
expressed by the judgmeht E <, and allow looking
up the type of variable through E(z) .2®> We do not
require thet; to indicate types declared i or L. So, an
environment may use identifiers as types which have no
corresponding definition iR or L.

In summary, verification is only concerned with widen-
ing, but not with the existence of fields or methods. Nor
does verification enforce the Java source rules forbidding
methods with same identifier and argument types, but dif-
ferent result types. In our example cla3kil defines a
method Book think(FrPhil x){...} and FrPhil defines a
method Food think(FrPhil x){..}. Though illegal Java
source, it is legal bytecode.

23\We do not define- E <, nor E(z) , because they are standard.

3.7 Preparation

If verification is successful, the corresponding binaries
are prepared through the functiopr : P x £L — P,
which maps binanL to pr(P,L) using information from
P. Preparation is concerned with determining the object
layout (through adding offsets to fields), and with creating

However, the criteria for well-formedness Bfcan give
us an intuition as to why the Java approach works, and also,
ideas about alternative approaches.
4.2 Conformance and run-time types

The judgmenP, E k; o O, defined in figure 10, expresses

the method look-up table (through copying some methodsthat the storer conformso prepared prograi and to vari-
from superclasses, and allocating offsets to method bodies)able declarations iE. The main requirements are
Rather than prescribe the exact strategy for offset deter-

mination, we give requirements in figure lile. a map-
ping is alinker if it allocates distinct offsets, copies from
the superclass all non-overridden methods with their off-

sets unaltered, allocates to overriding methods the offset
from the corresponding overridden method, and allocates

fresh offsets to the remaining methods. For the exam-
ple from figure 2, a linkepr,, allocating consecutive off-
sets, would givepro (e, Lpn)=Ppn, Pro(Pph, Lrph)=Prph,
andpro (e, LenLrpn)=PpnPerph.-

4 Soundness

A subject reduction theorem demonstrates that the Java
approach described here indeed preserves types. For this we

first define what it means for prepared cdeléo be well-
formed, and for a state to conform toP andE.

4.1 Well formed prepared code

The judgment - P <, defined in figure 9, guarantees
that the prepared code is well formed in the context of
loaded codé. The main requirements for well-formedness
of prepared code are:

e all classes/interfaces defined i have their super-
classes/superinterfaceshn

e fields defined in a class have the same offset in all
subclasses df,

e methods defined in a clashave the same offset in all
subclasses df,

e method bodies are well-formed and respect their sig-
natures.

As in verification, well-formedness of prepared code does
not guarantee the existence of any fields or methods re
quired in method bodies.

In contrast to verification, well-formedness of linked
code does not cause loading of further binaries. Also, while
judgmentP,LE L' & <, L" represents checks that are

performed by Java implementations, the judgnmehntP <
is only a vehicle for proving soundness.

e all classes/interfaces defined kh have their super-
classes/superinterfaceshn

the classes of all objects storeddirare defined irP,

all objects stored i contain appropriate values at the
offsets of the fields of their class,

no object is stored inside another object,

all variables defined ik have ino values appropriate
to their types,

an object of class is an appropriate value for any su-
perclass ot, and it is an appropriate value for any in-
terface.

The judgmentr, P . a < expresses that the address
points to an object of some classwhich contains at the
corresponding offsets appropriate values for all fields of
c. In order to obtain a well-founded relation, we defined
conformance in terms of the auxiliakyeak conformance
judgments, P ., v : t. Notice, that a positive value
may conform to botlint and a class type, and &myinter-
face type,e.g.00,PphProod Few 5 : int, 09, PphProod F

«w D : Phil, but UO,PPhPFood |7(cu1 5 : Food. Also, if
Pgankints CONtains the declaration of an interfaenkintf,
thenao, PphPEroodPBankintf Few 5 : Bankintf.

Notice also, that store conformance does not take the
loaded, not yet verified binariésnto account. AlsoQ con-
forms to any class, allowing objects with a field initialized
to 0, belonging to a yet undefined class. The requirement
VB < B: o(a+ B') # ¢’ ensures that no object is stored
“inside” another object. It is used to prove that evaluation
does not affect the type of expressions (lemma 4).

Types for run-time expressions are given by the judg-
mentP,L E k. o,e : t, defined in figure 10. The rules
are similar to verification, with the difference that for run-
time expressions the stoseis taken into account, and that
loading of further binaries is not considered.

Typing uses the widening judgmeRtL -t < t, from
figure 10, expressing that can be widened to using the
information from the prepared programand the loaded
programL. 24

2%\We can prove thaP,L -t/ < tiff P,Lt <t

P
Toads €

FP,L O, HAR PPk o BB G
PliFc<c Pl int < int P,LFc <ges € PL(l):lntf:rface...
’ ’ P,LFc < (¢ P,LFt <i

F P,L <,

Ey) =t

P.LEF~ :int P,LEF var : t

P.LLEFO: c PLLEFe: t P.LLEFe
P,LLEFnewc: c PLFt <t PLFt < tg
P.LEFy:t PLEFvar=e: ¢ P.LEF e[ty, o]
PLLEFe : t

PLLEFe : t PLEFe : t,

PLEt] <ty P,LLEFey : t)

PLFt) < t PLFt, < t

P,LLEFeq[t, ta, t3].m(e2) : t3 P,L,EFe[ty,ta, t3]'.m(e2) : t3

P(c") = class ...

P(i) = interface ...

fi:fj andti:tj:>i:j 1<i,j<n

mj; = m; and tj; = tj1 and tp, = tj2 = i=]j

P,L, (tiz x, c this) F e : ti; 1<i<k
PLEt, < ta 1<i<k

Fo(f,c',t,P) >0 = Folf,c,t,P) = Fo(f,c,t,P)
Mo(m,c',t,t',P) >0 = Mo(m,c,t,t',P) = Mo(m,c,t,t',P)
Bi=pF = i=] 1< ij<n

Bl=8=>i=j 1< ij <k

I<ij<k

for all identifiersf,t

for all identifierst,t’, m

;1o

P,LF classcext ¢ impl...i.{ t; f1 81 ...tn fn Bn t11 mi(tie x){e1} 5]

P(i") = interface ...
m; = m; and tj; = tj1 and tj, = tip = i=] 1<ij<k

P,L F interface i ext ...i"..{t;; mi(t12 X) ...tx1 My(to x) } O

FP,L O,
P(t)#e¢ = P,LEP(t) <

LFPO

Figure 9. Well-formed prepared code

. mk(tk2 X){ek} ﬁ{(}<>

ola)=c ola) ="
o(a) an integer value Poebcd <us € P(i) = interface ... o,Pky0:c
0,P Ky a:int o,Phkya:c o,Phya:i o,Phkyv:c
ola) =c
P(c) =class ... F P,eOsups
Vif B e Fs(c,P): o,Plkyo(a+p):t, ola)#% = o,PEa
0,Phy a:int andVg' < B: o(a+p8') #c E(z) #¢ = o0,Pky o(z) : E(z)
o,Pka o,Pka P,Elo <
PEko <
P.Elo < ola) =c P,LLEK o,var : t
P,LLEk o,v : int E(y) = P,LLEK o,e : t/
P,LLELo,0 : ¢ P,LEhLo,a: c PLFt <t
P,LLEk o,newc : c P,LLEL o,y : t P,LLEk o,var=e : t'
PLLELo,e : t}
P,LLEL o,es : t) P,LLEL o,e; : t]
P,LLEko,e: t P,LEt] <ty P,LLEK o,e0 : t),
PLFt <t P,LEt, < t2 P,LEt, < to
P,L,E'?O’,e[tl,tg].f ;1o P,L,E'7:0',61[t1,t2,t3].m(62) Y P,L,E'?-U,el[tl,tg,tg]l.m(GQ) : 13

Figure 10. Conformance, and types of runtime expressions

4.3 Locality and preservation of judgments

4.4 Subject reduction and progress

In general, one expects properties established in a certain Execution of a well-typed expressiendoes not over-
context to hold for larger contexts as well. Locality prop- write objects, creates new objects in the free space, and does
erties were proven in [5], used in [4], and explored in our netaffect the type of any expressiefi —even ife’” were a

model of binary compatibility [6].

We can prove the following locality properties: Widen-

ing or verification requiring binarids, andL), to be loaded,
only requirel), to be loaded, it} had been loaded befdfe
Also, an expressior with type t in environmentE pre-
serves its type in a larger environmeiit

Lemmal Forall P, Py, L, Lo, L}, Ly, L' e, t, E, F, F':
e PLEt <t <« LiL, and

loads
F PP, LoLLiL, <,
=

PoP,LoLL! bt <t/ —, L}

loads

e PLLERe:t <+, LiL,, and

loads

F PoP,LoLLiLS <

=
PoP,LoLL! ,Eke : t =, L)
ePLLEGe:t <~ L' and-E' <E
=
PLLE'he:t

!

loads

Verification of classes implies verification of the bodies of

their methods:
Lemma?2 ForanyP, L, L', L", ¢, ifP,LEL"O ~ L

loads
and L"(c) =classc extc'{...ti; mi(tio x){ e} ...}, then,
there existt{,, L}, L5, Ly and L} such thatL’=LjL5LELY,
andP, LL}, (ti2 x,c this) k5, & : ti; <, L}, and also
P,LLILs Bt < ti Ls.

Preparation of verified code preserves judgments:
Lemma 3 ForanyP, Ly, Ly, L3, L', F, e, t,E, o, if

e P,LiLbk L, ©

e LiLLFPO

e Py=pr(P,L;)
then

o F P LiLls &, = F PPy, LiLs O

e PLiLbFt <t = PP,Lil'Ft <t
P,Lilo,EFe:t = PP, LL/,Ele:t
L,L' PP O
e PELkc®O = PP,ELc <
e P Lils,Eho,e:t = PP Ll Eho,e: t

P
loads

g

loads

25The assertion in the lemma is actually more general, because it also

allows for further binaried(to have been loaded, ath to have been
prepared.

subexpression ofl Such a property is required for type
soundness in imperative object oriented languages, and was
proven,e.g., in [5, 23]. In the current work this property
holds only for well-typed expressions.

Lemma4 For P, L, F, E, o, non-grounck, t, if
e LFPS, and
e P LLEKo,e:t, and
e ¢e,0,P,L~ ¢, 0 ,P L,
then
e g(a) =c = d'(a) =c,
e o/'(a) =c = o(a) =c or afreeino,
e PELcO = P,ELo O
e P,LLEL o,e” : t" = P L ,Ek o’ e : t.

Proof by structural induction over the derivatien and for

the fourth part of the lemma, in the cases\ofRAss or
FLDAcc1 by structural induction over the typing of, us-

ing the store conformance requirement whereby no object
is stored within another object.

We can now prove progress and subject reductfon:

Lemmab For any P, L, F, E, o, non-grounde, t, if
LFPO, and P,L,Ek o,e : t

then there exis®’, L', E’, ¢/, ¢/, t, such that
e,o,P,L ~ ¢,0',P,L', and

L'+ PO, FE <E, and
e PPL'EKo',e : tandP' L't < t,and
t=t’ if e is a non-l-ground variable, or
e ¢’ contains the exceptioNIIPErr, or LoadErr,
or VerifErr, or NoMethErr, or NoFIdErr, or

ClssChngErr.

Proof by structural induction over typiig L,E - o, e : t.
Thus, the new, possibly augmented, prepared cBde,

preserves its well-formedness, and the stgrgreserves

conformance. Uninitialized parts of the store, whergx)

= %, are never de-referenced. Finally, execution never gets

stuck.

26\We assume an unlimited heap so that garbage collection is unneces-
sary.

of the expressior and of the prepared code It is in-
Also, it is easy to prove that if execution of well-typed ex- dicative, that in both judgments, namelylin- P & and in
pressions, loads some some typese(if e rewrites ac- P,L,E K o,e : ttherole of the loaded codsis limited; the
cording toLoAD or LoADERR), thene must have the form only information provided froni is which class/interface
new c, or afa,ts,t3]'.m(y). Namely, the well-typedness of ~ extends/implements which other class/interface, but the
the remaining type-contextse. field accese [t;,t2].f, and contents of the classes/interfaced.irs ignored.
method calk [t;,t2,t3].m(e2), requires the type of; to be A more lazy alternative, as suggested in in [9, 20] and
a subtype ot;, which in its turn requires the presencetpf formalized in [20], instead of immediately establishing that
in P. Therefore, when executing verified code, the only ex- t is a subtype of’ would post a constraint requiring.&o be
pressions that may extend the loaded and prepared classessubtype of’, to be validated only whenis loaded. This

are object creation and interface method call. would treatl’s as constraints, and the judgméhk, ke :
t <+, L' to mean that the verifier establishedo have
5 Summary and alternatives typet, while postingL'.

It is easy to modify our model to express the above al-
ternatives. More challenging would be a unified framework

Verification of class requires verification of all meth- :)
that would allow to characterize all such alternatives.

ods inc and all its (not yet prepared) superclasses. Verifi-
cation of terms requires establishing subtype relations be-
tween typest andt’. If t has not been loaded yet, then g Conclusions, discussion and further work
it will be loaded with all its superclasses, except i&nd

t’ are identical, ot’ is an interface. Verification does not]]
ensure the presence of fields or methods, it only ensures Ve have given a model for the five components of execu-

that all methods in a verified class respect their signatures ion, and have demonstrated how the corresponding checks
Resolution checks for the presence of fields and methods of°9€ther ensure type soundness. Our model describes these
given signatures. Thus the verifier relies on resolution to €X€cution components at a high level, and distinguishes
pick some of the possible errors, and resolution is safe onlytN€seé components and the time of the associated checks.
on code previously checked by the verifier. Thus, our account is useful for source language program-

Verification alone does not guard against link-time errors Mers, designers of new binary formats for Java, and design-
(i.e. LoadErr, or VerifErr, or NoMethErr, or NoFIdErr, or ers of alternative distributions of the checks am(_)ng the four
ClssChngErr), but it does guarantee the integrity of the sys- components. Our model does not yet treat multiple loaders.
tem. On the other hand, execution of unverified code may ~ Formal treatments of linking were suggested in [3], al-
overwriteanypart of the memory, and execarymethods. beit in a static setting. Dynamic linking at a fundamental

Link-time errors can be created when running code that!€vel has been studied recently in [7, 1, 24], allowing for
has been produced by a compiler, as shown in the var-modules as first class values, usually untyped, concentrat-
ious footnotes. However,link-time errors will not occur, NG on confluence and optimization issues. Recently, [15],
one re-complies all importing classes/interfaces and all su-discuss dynamic linking of native code as an extension of
classes/subinterfaces after re-compiling a class or interfacelYPed Assembly Language.

—we have not demonstrated this yet. Recent related work [20] complements ours, and pro-

It is interesting that interfaces are treated by verification Vides a model of Java evaluation, dynamic preparation, ver-
more leniently than classes, and thus require more run-timeification and loading at the bytecode level, without inter-
checks. It would have been possible to treat classes as lefaces, but with multiple loaders. Their approach is lazier
niently, or to treat interfaces more strictly. than that of SUN implementations, and verification posts

In current implementations the boundary of decom- constraints as opposed to loading classes.
position are classes or interfaces. That is, we load Further workincludes refining the model to allow mul-
several classes/interfaces together, and we verify severaliple class loaders (this would require the extension of the
classes/interfaces together. Is it possible to consider otherconcept of class as.g.[20]), extending the model to de-
levels of decomposition? A probably less attractive, more scribe the source language and the compilation process,
lazy alternative would put the boundary of decomposition at extending language£ and P with more Java features,
methods, and would verify method bodies only before they considering different levels of decomposition, and apply-

are first called. This would make the judgmént- P & ing the model to reconsider the meaning of binary compati-
even weaker, and would extend the operational semanticdility [6].
to check for previous verification Finally, though Java is novel in its approach to verifica-

The integrity of the system is demonstrated by the sub-tion and dynamic linking, similar components and associ-
ject reduction lemma. This is based on the well-typednessated checks could be defined for any language that supports

A functionlid : Ident x P x £ — L is aloader iff:

ldt,P,L)=L" =
el'#e¢ = L'(t)#ecandP(t)=L(t)=¢
e P,LO, = F P,LL <,
o Vc': L'(c') =classc’ ext ¢ impl ...i..{..} = PLL'(c") #e€, and PLL'(i) #e€
e Vi: L'(i) = interfaceiext ...i"..{...} = PLL'(i) #e

L'=LL,, Li(c)=e = ld(c,P,LL}) =L}
o YPy: F PoP,LL' &, = L'=1ld(c,PyP,L)

A functionpr : P x £ — P is apreparationfunction iff:

pr(P,L)=P" =
e P'(c)#¢€ iff L(c)#e
o Pl(iy#£e€ iff L(i)#e
° PI(C) = class c ext Cl{tl f1 51 R N Bn ti1 m1(t12 x){el} Bn+1, o tg m1(tq2 x){eq} Bn—&-q } =
- Bi # Bi Vi # jwith 1< i,j<n, or n+1< ij<ntq
— "cis defined inL, and the linked classR’(c)) has the same field$(f; ... t, f,,) as the original classl{(c))
L(c) = class cext c'{ti f1 ... tafn tj; mi(tiox){e}, ...t mi(t), x){ep}}
— c'=0Object and r=s=0 or
PP'(c") =classc’ extc” {tf} BY ...t/ f! B ti) mi(t1yx){el'} By .ty mi (s x){el} B }

— "the methods inP’(c) are composed of ..."
{ tin mi(tiz X){e1 } Bat1s oo tgr miltge X){eq} Bnyq } =
.. the methods inherited frord , and not overridden in”
{ t my (G){ el } Bl | 1<k <s, andV 1<j<p: tj; mj(ti, x)#t; my/ (i, x) }
.. the methods froma which override a method frord, preserving the offset of the overridden method
U {6 mi(t,){e} B¢ | 1<k<s,andI1<j<p: t; mi(tl, x)=t), m/(ty,x) and e=e] }
.. the methods newly introduced i
U {5 mi(ti, e} B | 1<j<p,andV 1<k<s: t; mi(ti, X)#ty; my(t, %) }

e P'(i) =interface... = P’(i) = L(i)
Note that the text enclosed in " and " is explanatory, and not part of the definition.

Figure 11. Loading and preparation

-3 if P(c)=¢
-2 if P(c) = interface ...
Fo(f,c,t,P) = B if P(c) =classcextc'{... tf 5 ...}
Fol(f,c',t,P) if P(c) = class cext c'{ t; f; B1...tn f, 8o meths} andV1<i<n: t;f; #tf
-1 if ¢ = Object
Fs(c,P) =

otherwise

-3 if P(c) =¢

-2 if P(c) = interface ...

B if P(c) =classcextc'{... ty m(t2 x){...} 8 ...}
-1 otherwise

Mo(macatQathP) =

e if P(c) =classcext c'{... ty m(ta x){e} 5 ...}

otherwise

{ {t1 f1 B1,... tu fa Bu} U Fs(c',P) if P(c) = class c ext c'{t; f; B1,... ty fn Bn meths}
0
Meger) = |

-3 if P(c) =¢

-2 if P(c) = class ...

0 if P(i) = interfaceiext ..{... t; m(ta){...} ...}, or Moi(m,i’,t2,t;,P) = 0
-1 otherwise

./\/loi(m, iatZ,tl, P)

Figure 12. The field and method look up functions ~ F, M, M}

some concept of modularity. The generalization of such [6] Sophia Drossopoulou, Susan Eisenbach, and David Wragg.
ideas to other programming languages is an open issue. A Fragment Calculus - towards a model of Separate Compi-
lation, Linking and Binary Compatibility. 1h.ICS Proceed-
ings 1999.

7] Kathleen Fisher, John Reppy, and Jon Riecke. A Calculus
for Compiling and Linking Classes. IBSOP Proceedings
March 2000.

Acknowledgments | am indebted to the TIC referees
for extensible feedback and valuable suggestions. David
Wragg gave invaluable initial information. Tatyana
Valkevych, Susan Eisenbach, and Mark Skipper provided
meticulous comments. Elena Zucca, and Eugenio Moggi

asked pertinent questions and suggested a clearer presentd8! Matthew Flatt, Shiram Khrishnamurthi, and Matthias
tion Felleisen. Classes and Mixins. ROPL ProceedingsJan-

uary 1998.

References [9] PhilipW. L. Fong and Robert D. Cameron. Proof linking: An
architecture for modular verification of dynamically-linked
mobile code. IPACM SIGSOFT Sixth International Sympo-
sium on the Foundations of Software Engineering (FSE'98)
November 1998.

[10] Stephen N. Freund and J. C. Mitchell. A Formal Framework
for the Java Bytecode Language and Verifier. OOPSLA
ProceeedingsNovember 1999.

[1] Davide Ancona and Elena Zucca. A Primitive calculus for
module systems. IRPDP ProceedingsSeptember 1999.

[2] Martin Buechi. Type soundness Issues in
Java, May 1999. Types mailing list, at
http : //www.cis.upenn.edu/ bcpierce/types/archives
and then /current/msg00140.html.

[3] Luca Cardelli. Program Fragments, Linking, and Modular- [11] Stephen N. Freund and J. C. Mitchell. A Type System for
ization. INPOPL'97 Proceedingslanuary 1997. Object Initialization in the Java Bytecode Language. In

[4] Drew Dean. The Security of Static Typing with Dynamic OOPSLA Pr.oceet?dlnggctober 1998.
Linking. In Fourth ACM Conference on Computer and Com- [12] James Gosling, Bill Joy, and Guy Ste€lée Java Language

munication Securityl997. Specification Addison-Wesley, August 1996.
[5] Sophia Drossopoulou, Susan Eisenbach, and Sarfraz Khur-[13] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Feath-
shid. Is Java SoundPheory and Practice of Object Systems erweight Java: A minimal core calculus for Java and GJ. In

5(1), January 1999. OOPSLA Proceeding®lovember 1999.

[14] Thomas Jensen, Daniel Le Metyayer, and Tommy Thorn. A
Formalization of Visibility and Dynamic Loading in Java. In
IEEE ICCL, 1998.

Karl Krary, Michael Hicks, and Stephanie Weirich. Safe and
Flexible Dynamic Linking of Native Code, May 2000. Inter-
nal Report, Univerity of Pennsylvania.

[15]

[16] Christopher League, Zhong Shao, and Valery Trifonov. Rep-

resenting Java Classes in a Typed Intermediate language. In

ICFP ProceedingsSeptember 1999.

Sheng Liang and Gilad Bracha. Dynamic Class Loading in
the Javd™ Virtual Machine. INOOPSLA Proceeding©c-
tober 1998.

[18] Tim Lindholm and Frank Yellin.The Java Virtual Machine
Addison-Wesley, 1997.

[19] Zhenyu Qian. Least Types for Memory Lo-
cations in Java Bytecode. INFOOL 6. http:
[lwww.cs.williams.edu/ kim/FOOL/sched6.html, 1999.

Zhenyu Qian, Allen Goldberg, and Alessandro Coglio. A
Formal Specification of Ja¥d’ Class Loading. IMOOP-
SLA’2000 November 2000. to appear.

Vijay Saraswat. Java is not type-safe. Technical
report, AT&T Rresearch, 1997. http://www.research.
att.comp/ vj/bug.html.

[17]

[20]

[21]

[22] Raymie Stata and Martin Abadi. A Type System For Java
Bytecode Subroutines. IROPL'98 ProceedingsJanuary

1998.

Donald Syme. Proving Java Type Sound. In Jim Alves-Foss,
editor, Formal Syntax and Semantics of Javalume 1523
of LNCS Springer, 1999.

(23]

[24]
soning for Linking with First-Class Primitive Modules. In
ESOP Proceeding®arch 2000.

Phillip Yelland. Re: Type soundness Issues
in Java, May 1999. Types mailing list, at
http : //www.cis.upenn.edu/ bcpierce/types/archives

and then /current/msg00145.html.

[25]

Another example demonstrating interfaces

The following example demonstrates the verifier's and

run-time system’s treatment of interfaces. It is an adapta-

tion of the example which was posted by Martin Buechi [2]

in the types mailing list, and was then discussed at some

length.
We start with an interfac@hinker implemented by class
Man, and the clasMain with methodmain:

interface Thinker { void be(); }

classMan impl Thinker {
void be(){ System.out.printIn("be”) ; }

}

Joe Wells and Rene Vestergaard. Confluent Equational Rea-

classMain {
public static void main (String args[]) }
Thinker descartes;
Man john = new Man();
System.out.printIn(”a Man object created”);
if (john instanceof Thinker)
System.out.printIn(” john is aThinker”);
else
System.out.println(”john is NOT a Thinker”);
descartes = new Man();
System.out.printIn(”a Man assigned to a Thinker”) ;
john.be();

We compileThinker, Man andMain, and we then modify
classMan, so that it does not implemeiffhinker, i.e.

classMan { void be(){ System.out.printin(”be”) ; }}

We compileMan, without re-compilingMain. When we
executéMain, we obtain the output:

a Man object created
john is NOT a Thinker
a Man assigned to a Thinker
IncompatibleClassChangeError :
class Man does not implement Thinker

The above behavior is described by our model, namely:

o \erification of methodnain considers the assignment
descartes = new Man(); as type correct, because the
verifier is "liberal” with respect to interfaces

Verification of the interface method cgdhn.be() re-
quires loading of the interfacEhinker.

Verification of methodnain does not need to load class
Man.

The assignmendescartes = new Man(); is executed
without any checks, and therefore without errors.

The interface method calljohn.be() is com-
piled to a bytecode term which corresponds to
john[Thinker,void,void].(). Execution of that
term requires a run-time check according to rule
INTFMETHCALL3. This check fails, and gives the
error message IncompatibleClassChangeError :
class Man does not implement Thinker

