
Towards an abstract model of Java dynamic linking and verification

Sophia Drossopoulou
Department of Computing, Imperial College, London

Abstract

We suggest a model for dynamic linking and verification
as in Java. We distinguish five components in a Java im-
plementation: evaluation, resolution, loading, verification,
and preparation– with their associated checks. We demon-
strate how these five together guarantee type soundness.

We take an abstract view, and base our model on a lan-
guage nearer to Java source than to bytecode. We consider
the following features of Java: classes, subclasses, fields
and hiding, methods and inheritance, and interfaces.

1 Introduction

Java’s recent spectacular success is partly due to its novel
approach to code deployment. Rather than compiling and
linking a fixed piece of code for a set target machine, Java
is compiled to bytecode[18], that can be executed on sev-
eral platforms, and can link further code on demand: This
approach, however, creates opportunities for malicious at-
tacks. The security of Java greatly depends on the safety of
the type system [4].

As it is bytecode that is executed rather than source
code, and as bytecode is not always the product of com-
pilation, Java security lies primarily with the bytecode ver-
ifier, which was formalized as as a type inference system
where stack locations have types on a per-instruction basis,
[22, 11, 10, 19]. On the other hand, [21] reported security
flaws due to inconsistencies between loaders, which were
rectified in later releases, as described in [17]. An opera-
tional semantics for multiple loaders is given in [14].

Thus, various components of Java and the virtual ma-
chine have been studied at considerable depth in isolation,
but, except for this paper and [20] their interplay has not yet
been formalized.

We attempt a synthesis, and consider the complete pro-
cess,i.e. evaluation, loading, verification, preparation and
resolution in a typed setting. We base our model on a lan-
guage that is very near to Java source, rather than the byte-
code, as in [20].

Our model is therefore useful for source language pro-

grammers: Even if they do not program in bytecode, and do
not download unverified bytecode, they may become aware
of these issues, and may trigger verification, resolution and
loading errors.1

We distinguish the checks performed by verification and
resolution, and demonstrate their dependencies: Resolution
checks do not guarantee consistency unless applied on ver-
ified code, nor are verification checks sufficient unless later
supported by resolution checks. Our model clarifies which
situation will throw which exceptions, a question that is not
unambiguously answered in [12, 18], and it demonstrates
how execution of unverified code may corrupt the store.

A clear understanding of these checks and their interplay
is crucial for the design of new binary formats for Java. In
fact, while most Java implementations use theclass format
[18], any format satisfying the properties outlined in ch 13.1
of [12] may be used instead.

1.1 Overview of Java verification and dynamic
linking, and of our formalization

In traditional programming languages,e.g. Ada,
Modula-2, the compiler checks all type-related require-
ments, and produces code which does not contain type in-
formation. If the various components of a program have
been compiled in an order consistent with their dependen-
cies (dependencies through imports or inheritance) then ex-
ecution is guaranteed to be sound with respect to types.
Thus, before execution, the program is linked eagerly, all
external references are resolved and type-checked. Execu-
tion has therefore the form

e; �;Code; e0; �0;Code

i.e. it takes place in the context of fixedCode, and modified
the expressione and the store�.

Also, if the expression and state are well-formed in the
context ofCode, ande is not ground, then execution will
continue with a well-formed expression, unless a program
exception is thrown. We call program exceptions those

1By compiling modified Java classes without recompiling all import-
ing classes one may obtain bytecode that does not verify. Also, execution
sometimes does not attempt to verify local classes.

term meaning definition

L language of loaded code fig 3
P language of prepared code fig 3
e a term (identical inL andP)
� a store, mapping identifiers and integers to identifiers or integers sect. 5.1
L loaded code, fromL
P prepared code fromP

e; �;P; L ; e0; �0;PP0; L0 e, � rewrite toe0, �0, prepared code augmented byP0, loaded code becomesL0 fig 4

< �=exp expression context, propagates to sub-expression fig 5
< �=nll null context, may throw exception fig 5
< �=typ type context, may cause loading and verification fig 5

P; L ` c �clss c0 c is a subclass ofc0 in context ofP, L fig 6
P; L ` c �impl i c implementsi in context ofP, L fig 6
P; L ` i �intf i0 i is a subinterface ofi0 in context ofP, L fig 6
` P; L 3a the subclass/subinterface relationship inP, L is acyclic fig 6
` P; L3sups P, L contain all superclasses/superinterfaces of classes/interfaces defined inPL fig 6

P; L v̀ L
0 3 (

loads
L00 verifier checks thatL0 is well formed in context ofP, L, while loadingL00 fig 7

P; L v̀ t � t0 (
loads

L0 verifier checks thatt widens tot0 in context ofP, L, while loadingL0 fig 7
P; L;E v̀ e : t (

loads
L0 verifier checks thate has typet in context ofP, L, while loadingL0 fig 7

E environment for the declaration of variables fig 8

P; L ` t � t0 t widens tot0 in the context of the prepared codeP, and loaded codeL fig 9
P; L;E ` e : t e has typet in the context of the prepared codeP, and environmentE fig 9
P; L ` P03 P0 is well-formed in the context ofP andL fig 9
L ` P3 P is well-formed in the context ofL fig 9

�;P c̀w
 : t value
 conforms weekly to typet in context ofP fig 10
�;P c̀ � 3 the object stored at� in � is well-formed (conforms strongly) fig 10
P;E c̀ � 3 all objects in� are well-formed, and agree to their declarations inE fig 10
P; L ` t � t0 t widens tot0 in the context ofP andL fig 10
P; L;E r̀ �; e : t run-time expressione has typet in store� in the context ofP, L, E fig 10

ld(t;P; L) loading fig 11
pr(L;P) preparation fig 11

Fo(f; c; t;P) the offset of fieldf with typet in classc fig 12
Fs(c;P) al fields with types and offsets, defined or inherited in classc fig 12
Mo(m; c; t2; t1;P) the offset of methodm with argument typet2 and result typet1 in classc fig 12
Me(�; c;P) the method body at offset� in classc fig 12
Moi(m; i; t2; t1;P) the offset of methodm with argument typet2 and result typet1 in interfacei fig 12

` L 3u, ` P 3u, ` P; L 3u definitions inL, or inP, or in L andP are unambiguous omitted
L(t) , P(t) , PL(t) look-up class or interfacet in L, or inP, or inL andP omitted

Figure 1. Concepts defined in this paper

caused by the logic of the program, eg division by zero,
null pointer dereferencingetc.

Java on the other hand, does not require the complete
program to have been linked before execution. During ex-
ecution it is possible that a class is needed, which is part
of the current code. If bytecode for the class name can
be found, and verified, then the code is enriched with the
new class, otherwise, a load-exception or a verification-
exception is thrown.

The Java approach is even lazier, in the sense thatCode

consists of a verified partP, and a loaded partL, which was
loaded in order to support verification ofP. We consider
languageL, which stands forloadedbinary programs, and
P , which stands for verified andpreparedbinary programs,
c.f.section 2.

Verification checks that the subtype relations required in
some code are satisfied, but doesnot checkthe presence of
fields or methods referred to in some piece of code. That
is checked only when and if the method or field are ac-
cessed; if they cannot be found, then a resolution-exception
is thrown.

Therefore, we describe execution in terms of expressions
e, states�, verified codeP, and loaded but not verified code
L. It has the general form

e; �;P; L ; e0; �0;PP0; L0

thus describing that the expression may be rewritten, the
state may be modified, code may be loaded, and some of
the loaded code may be verified and prepared. The possible
errors are program exceptions, loading exceptions, verifica-
tion exceptions, and resolution exceptions.

We classify execution into the following five compo-
nents:

� evaluationcorresponds to execution as in most pro-
gramming languages,

� resolution describes the process of resolving refer-
ences to fields and methods,

� loading is the process of loading class descriptions
necessary for the verification of further classes,

� verificationis the process of verifyingL code

� preparationturns verifiedL code intoP code.

We demonstrate these components in terms of an exam-
ple. Consider the following high level view of byte code
method call: new A[A; int;void].m(3)
which stands for the call of a methodm, defined in classA,
which takes anint parameter, and returnsvoid,2, and where
the receiver is a new object of classA.

2Method calls in Java bytecode contain the signature of the method.

Assume that classA is not defined inL, nor inP. If class
A can not be found, then a load error is thrown, otherwiseA

is loaded, andL is extended. Then classA is verified, which
means that all its method bodies, and all its superclasses
will be checked, and all required subtype relationships will
be checked. Assume that classA had a method
void m(int x){ B aB; aB = new C; aB[B; int].f = x }

The termaB[B; int].f indicates selection fromaB of a field
f defined in classB with type int .

Verification of the above method body requires that class
C is a subtype ofB. Assume thatC has not been loaded
nor verified yet. Then it will get loaded together with all
its superclasses. If those includeB, then verification will be
successful. This is and example of a class that is loaded but
not verified.

We represent verification through a judgement

P; L;E v̀ e : t (
loads

L0;

which means that the expressione could be verified in the
context of preparedP, loadedL, and environmentE, and
required further binariesL0 to be loaded.

Now consider execution of the method body form. The
creation of the object of classC requirespreparationof the
classC. Preparation determines the layout of the objects
of that class and the layout of the method look-up table of
that class, ensuring that the offsets for inherited fields and
methods coincide with those of the superclasses.

When the assignmentaB[B; int].f = x is executed, the
filed accessaB[B; int].f is resolved. If classB does not
have a fieldf of type int , then a resolution exception is
thrown. Otherwise, resolution returns the offset ofint f

from classB. This offset is used to access the field inaB,
which happens to belong to classC. But becauseC is a sub-
class ofB, and has been prepared, it will have the inherited
field at the same offset asB, and so the assignment will not
break the consistency of the object.

If however, the method body had not been verified, and
C was not a subclass ofB, or if resolution could be fooled,
then the integrity of the object could be violated. Thus, the
above example demonstrates how the verification and reso-
lution checks complement each other.

We represent consistency of states with prepared code
throughP;E c̀ � 3 and types for run-time expressions
throughP; L;E r̀ �; e : t. In section 4 we prove a sub-
ject reduction and progress lemma, which guarantees for
well-formedP, state� consistent withP andL, and well-
typede that execution will either produce a well-typede0, or
a null pointer exception (if a null pointer is de-referenced),
a loader exception (if requested classes could not be found,
or were circular), or a verifier exception (if verification of
requested classes unsuccessful), or a member absent excep-
tion (if a non-existing method or field was accessed). In all

cases it will preserve the consistency of�0 which is crucial
for safety. Furthermore, execution will never get stuck.

In figure 1 we list all judgements and functions defined
in the paper, with a brief description of their intention, and
the place of their definition.

The treatment of interfaces

In order to establish that required subtype relationships are
satisfied, verification looks up the appropriate classes.

However, if the required subtype relationships involve
interfaces, then these relationships are automatically as-
sumed to hold and arenotchecked!

Apparently overawed by the multiplicity of par-
ents possible in a Java interface hierarchy, the im-
plementors of Sun’s verifier ... abdicated respon-
sibility for type checking involving the use of in-
terfaces. Instead, ..., the burden of checking for
compatibility, ... passed implicitly to the run-time
system
Philipp Yelland [25]

Thus, at run-time these subtype requirements need to be
checked, and execution of interface method calls will
check the satisfaction of the associated subtype relationship.
Again, we see that checks from two different JVM compo-
nents complement each other, and in slightly different ways
for classes than for interfaces.

2 The languagesL andP

The binary languageL presents an abstract view of the
Java bytecode. In order to keep the discussion simple, we
only consider classes, subclasses, interfaces, subinterfaces,
assignment, method overloading and inheritance, field in-
heritance and hiding.3 Even though our examples use se-
quential statements, we have not included them in theL-
andP-syntax, as they can be easily encoded by extra meth-
ods. In order to simplify the presentation, all methods have
one argument, calledx.

The only types we consider are classes, interfaces and
int; these demonstrate several interesting properties of the
Java system. Interfaces introduce multiple subtyping. More
interestingly, subtyping introduced through interfaces is
dealt with differently from subtyping introduced through
subclassing: as we shall see, the verifier assumes an in-
terface to be a supertype ofany type, whereas it consid-
ers a class to be a supertype of its loaded subclasses only;
therefore, at runtime subclasses are not checked for instance

3L is a similar language to language Javacito[16] or the Java subset
from [8]; it is larger than [13] because it considers imperative features,
overloading and interfaces; and, though at a different abstraction level than
[20], it is larger because it studies interfaces .

p ::= def �

def ::= interface i ext i� { methHd� }
classc ext c0 impl i� { �eld� meth� }

methHd ::= type m(type x)
meth ::= type m(type x){exp } Æ

�eld ::= type f Æ

exp ::= exp [type ,type,type].m (exp)
| exp [type ,type,type]i.m (exp)
| exp [type ,type].f
| var = exp

| newc

| this
| var

|

var ::= x | z | exp [type ,type].f
type ::= c | int | i

Æ ::= � in L
Æ ::= � in P
� ::= 1 | 2 | ...
� ::= 0 | �

 ::= � | -1 | -2 | ...
c, i , m, f , z ::= Ident

and where
c are class names, i are interface names
m are method names,f are field names,
� are addresses, � are offsets,
 are integer values.

Figure 3. The syntax of L and of P

method calls, but subtypes are checked for interface method
calls. Also, the typeint and the address calculations during
execution open the possibility of pitfalls, which, as we shall
demonstrate, are averted by verification and the resolution
checks.

In L, as in the bytecode, field accesses and method calls
are annotated by descriptors. Field access4 has the form
e1[t1,t2].f, wheret1 is the class containing the field defini-
tion, andt2 the type of that field. Instance method calls5

have the forme1[t1,t2,t3].m(e2), wheret1 is the class con-
taining the method definition,t2 is the type of the method’s
argument, andt3 is the result type. Similarly, interface
method calls6 have the forme[t1,t2,t3]i.m(e2); wheret1 is
the interface containing the method definition,t2 is the ar-
gument type, andt3 is the result type.

Values are either integers or addresses of objects. Ad-
dresses are represented by positive integers and are denoted
by � or �0; the null pointernull is denoted by0. Integer
values, whether they stand for addresses or for integers, are

4corresponding to the bytecode instructionsget�eld andput�eld
5corresponding to the bytecode instructioninvokevirtual
6corresponding to the bytecode instructioninvokeinterface

LPh =
class Phil ext Object impl � {

int age
Phil like

Book think(FrPhil x)
{ ... x[FrPhil,Food].like = newPear ... }

Phil eat(Food x){ ... x = newFood ... }
}

LFrPh =
class FrPhil extPhil impl � {

Food like

Phil eat(Food x){ ... x = newPear ... }
Food think(FrPhil x)

{ new Pear[Food, Salt, Food].cook(newSalt) }
}

PPh =
class Phil ext Object impl � {

int age 1

Phil like 2

Book think(FrPhil x)
{ ... x[FrPhil,Food].like = newPear ... } 1

Phil eat(Food x){ ... x = newFood ... } 2

}

PFrPh =
class FrPhil extPhil impl � {

Food like 3

Book think(FrPhil x)
{ ... x[FrPhil,Food].like = newPear ... } 1

Phil eat(Food x){ ... x = newPear ... } 2

Food think(FrPhil x)
{ new Pear[Food, Salt, Food].cook(newSalt) } 3

}

Figure 2. An example in L, and the corresponding example in P

denoted by
,
0 etc.
Figure 3 contains the syntax ofL and ofP ; figure 2 con-

tains an example inL and the corresponding example inP .
The example is a variation of the one given in [5]:Phil-
osophers have anage, they like otherPhil-osophers, and
produceBook-s when theythink; whereasFrPhil-osophers
like Food, and produceFood when theythink.

Notice, that the fieldlike in FrPhil “shadows” that of
classPhil. Objects of classFrPhil contain three fields,
i.e. age andlike from classPhil, andlike from classFrPhil.7

Field selection is determined by the type annotations. For
example,x[Phil,Phil].like selects the field of typePhil de-
fined in classPhil, whereasx[FrPhil,Food].like selects the
field of typeFood defined in classFrPhil.

The instance method callx[Phil,FrPhil,Book].think(...)
selects from the classPhil the method which takes
a FrPhil parameter and returns a Book, whereas
x[FrPhil,FrPhil,FrPhil].think(...) selects from the class
FrPhil the method which takes aFrPhil parameter and re-
turns a FrPhil.

Contrary to Java source language rules [12],L- andP-
methods may have the same identifier and argument type
but different result type as a method from a superclass,
e.g.methodBook think(FrPhil x) { ... } in classPhil, and
methodFood think(FrPhil x) { ... } in classFrPhil.8

The languageP describes code after preparation; the

7It is not required that the field in the subclass has a different type than
that in the superclass; for example, it would be legal iflike in classFrPhil
had typePhil.

8Such binaries may be created,e.g.through compilation of a class and
its subclass, subsequent addition of a method in the superclass, and re-
compilation of the superclass without re-compilation of the subclass.

programs are extended by offset information. Thus, the syn-
tax of expressions inP is identical to that of expressions
in L, except that field declarations are augmented by off-
sets, determining the field’s position in actual objects on the
heap, and method definitions are augmented by their off-
sets, describing the method’s position in the method look
up tables. Offsets are positive integers, and denoted by�,
�0 etc.

The classesPPh andPFrPh are possible results of the
preparation ofLPh, LFrPh: The fields in the subclass (here
like in FrPhil) are given distinct offsets to those of the fields
in the superclass. All inherited methods (here methodBook

think(FrPhil x){... } inherited inFrPhil from Phil) appear
in the subclass with the same offset, whereas new meth-
ods (here methodFood think(FrPhil x){...} in FrPhil) are
given fresh offsets. Finally, any methods overriding meth-
ods from a superclass obtain the overridden method’s offset
(here methodPhil eat(Food x){ ... x = newPear ... } from
classFrPhil overrides methodPhil eat(Food x){ ... x =
newFood ... }, and therefore has offset2).

A basic requirement forL andP code is that it should be
unambiguous. That is, each class or interface should have
at most one definition, inL, or inP, or in L andP together.
This is expressed by the judgments` L 3u, or ` P 3u

or ` P; L 3u. If these judgments are satisfied, the lookup
functions L(c) , or P(c) , or PL(c) , will return the appro-
priate class or interface body, or� if none is there.9

Also, the subclass and subinterface relationship inP and
L should acyclic, as expressed by the judgment` P; L 3a,

9We do not define these judgments and look-up functions since they are
standard.

Evaluation

PROPAGATE

e; �;P; L ; e0; �0;P0; L0

<e=exp ; �;P; L ; <e0=exp; �;P; L

NULL POINTERR

<0=nll ; �;P; L ; NllPErr; �;P; L

ACC

z a variable
z; �;P; L ; �(z); �;P; L

VARASS

z =
; �;P; L ;
; �[z 7!
];P; L

NEW

P(c) 6= �

� new in�
Fs(c;P) = ft1 f1 �1; : : : tn fn �ng

�0 = �[� 7! c; �+ �1 7! 0; : : : �+ �n 7! 0]

new c; �;P; L ; �; �0;P; L

Resolution

FLDACC1
Fo(f; t1; t2;P) = �

�[t1; t2].f; �;P; L ; �(�+ �); �;P; L

�[t1; t2].f =
; �;P; L ;
; �[� + � 7!
];P; L

FLDACC2
Fo(f; t1; t2;P) = �2

�[t1; t2].f; �;P; L ; ClssChngErr; �;P; L

�[t1; t2].f =
; �;P; L ; ClssChngErr; �;P; L

FLDACC3
Fo(f; t1; t2;P) = �1

�[t1; t2].f; �;P; L ; NoFldErr; �;P; L

�[t1; t2].f =
; �;P; L ; NoFldErr; �;P; L

METHCALL 1
Mo(m; t1; t2; t3;P) = �2

�[t1; t2; t3].m(
); �;P; L ; ClssChngErr; �;P; L

METHCALL 2
Mo(m; t1; t2; t3;P) = �1

�[t1; t2; t3].m(
); �;P; L ; NoMethErr; �;P; L

METHCALL 3
Mo(m; t1; t2; t3;P) = �

Me(�; �(�);P) = e

y1; y2 are fresh variables in�
e0 = e[x=y1; this=y2]

�0 = �[y1 7!
; y2 7! �]

�[t1; t2; t3].m(
); �;P; L ; e0; �0;P; L

INTFMETHCALL 1
Moi(m; t1; t2; t3;P) = �2

�[t1; t2; t3]i.m(
); �;P; L ; ClssChngErr; �;P; L

INTFMETHCALL 2
Moi(m; t1; t2; t3;P) = �1

�[t1; t2; t3]i.m(
); �;P; L ; NoMethErr; �;P; L

INTFMETHCALL 3
P; L 6` �(�) �impl t1
�[t1; t2; t3]i.m(
); �;P; L ; ClssChngErr; �;P; L

INTFMETHCALL 4
P; L ` �(�) �impl t1
Moi(m; t1; t2; t3;P) = 0

Mo(m; �(�); t2; t3;P) = �

Me(�; �(�);P) = e

y1; y2 are fresh variables in�
e0 = e[x=y1; this=y2]

�0 = �[y1 7!
; y2 7! �]

�[t1; t2; t3]i.m(
); �;P; L ; e0; �0;P; L

Loading

LOADERR

P(t) = L(t) = �

ld(t;P; L) = �; for a loaderld
<t=typ ; �;P; L ; LoadErr; �;P; L

LOAD

e =<t=typ

P(t) = L(t) = �

ld(t;P; L) = L0; for a loaderld
e; �;P; L ; e; �;P; LL0

Veri�cation

VERIFERR

P(t) = �

L1(t) 6= �; and ` P; L13sups

8L0 : P; L 6 v̀ L1 3 (
loads

L0

<t=typ ; �;P; L1L2 ; VerifErr; �;P; L1L2

Preparation

VERIFANDPREP

e =<t=typ

P(t) = �; and L1(t) 6= �; and ` P; L13sups

P; L v̀ L1 3 (
loads

L0

P1 = pr(P; L1); for a preparationpr
e; �;P; L1L2 ; e; �;PP1; L2L

0

Figure 4. Execution

< �=exp ::= < �=[type ,type,type].m (exp)
| � [type,type,type].m (< �=)
| < �=[type ,type,type]i.m (exp)
| � [type,type,type]i.m (< �=)
| < �=[type ,type].f
| < �= = exp

if < �= is a non-l-ground variable
| var = < �=

if var is an l-ground variable
< �=nll ::= < �=[type ,type,type].m (exp)

| < �=[type ,type,type]i.m (exp)
| < �=[type ,type].f
| < �=[type ,type].f =

< �=typ ::= � [< �=,type,type].m (
)
| � [< �=,type,type]i.m (
)
| � [< �=,type].f
| new< �=

Figure 5. Contexts

defined in figure 6.
Last, we call an expressionground, if it is a value
10,

andl-ground, if it is an identifier, or has the form�[t1,t2].f.

3 Execution

Execution, described in figure 4, is defined in terms of
a rewriting relationship onconfigurations, consisting of ex-
pressione, store�, prepared codeP, and loaded binaryL.
The expression and store may be modified, more code may
be linked, and further binaries may be loaded. Thus, execu-
tion has the form e; �;P; L ; e0; �0;PP0; L0 .

In order to give a more concise description of the rewrite
semantics, and also, in order to distinguish between routine
rewrite rules, and those particular to Java implementation,
in figure 5 we introduce three kinds of contexts. Expres-
sion contexts,< � =exp, are filled with a sub-expression;
their execution propagates execution to this sub-expression,
as in rule PROPAGATE. Null-contexts,< � =nll , when
filled with 0, raise an exception when executed as in rule
NULL POINTERERR. Type contexts,< �=typ , are filled with
a type name; their execution causes the type to be loaded
and prepared if the type is not part of the loaded or the pre-
pared code, as in rulesLOAD, LOADERR, VERIF, VERIFERR

andVERIFANDPREP.

3.1 The run-time model

States represent stacks and heaps, and contain values for
identifiers and addresses– the former model formal param-

10and thus also if it is an address�

eters11 and addresses. Addresses point to objects. An object
consists of its class (an identifier) and values for its fields.
These are either values of typeint or addresses; both are
represented by integers. The symbol� means undefined.
Stores thus have the form:
� : [Idnt ! (int [f�g)] [[int ! (int [Idnt[f�g)].

For a variablez, and address�, the store lookup�(z) de-
scribes the value of variablez in �, whereas�(�) =c deter-
mines that� points to an object of classc. The fields of the
object pointed at by� are stored at some offset from�. We
call an address� newin � iff �(�+
) =�, 8
 � 0.

Our model of the store is therefore at a lower level than
those found in studies of the verifier [22, 10, 20], where
objects are indivisible entities, and where there are no ad-
dress calculations. This allows us to describe the potential
damage when executing unverified code; as shown in exam-
ple in section 5.3, field assignment in unverified code could
overwrite any part of the memory.

In the example below, the store�0 maps iden-
tifier aPh to an object of class Phil, whose
field like points to an object of classFrPhil:

�0(aPh) = 5

�0(5) = Phil object of classPhil
�0(6) = 45 fieldint age fromPhil

�0(7) = 8 fieldPhil like fromPhil

�0(8) = FrPhil object of classFrPhil
�0(9) = 55 fieldint age fromPhil

�0(10) = 5 fieldPhil like fromPhil

�0(11) = 0 field Food like in FrPhil

�0(y) = � for y =2 faPh; 5:::11g

3.2 An example

The following expressione1 represents the body of the
methodFood think(FrPhil x) from classFrPhil, i.e.

e1� new Pear[Food, Salt, Food].cook(newSalt)
The expressione1 is “well-behaved”if the following re-
quirements are satisfied:

R1 classPear exists,

R2 Pear is a subclass ofFood,

R3 classSalt exists,

R4 Salt is a subtype ofSalt,

R5 classPear has a methodFood cook(Salt x){... },

R6 the methodFood cook(Salt x){... } from classPear is
“well-behaved” and returns an object of a subtype of
Food.

11In Java, assignment to formal parameters does not overwrite the actual
parameter

` P; L 3u

PL(c) = class c ext c0 impl ::: i :::{ : : : }
P; L ` c �clss c

P; L ` c �clss c0

P; L ` c �impl i

` P; L 3u

PL(i) = interface i ext ::: i0 :::{ : : : }
P; L ` i �intf i

P; L ` i �intf i0

P; L ` c �clss c00

P; L ` c00 �clss c0

P; L ` c �clss c0

P; L ` i �intf i0

P; L ` c �impl i

P; L ` c0 �clss c

P; L ` c0 �impl i0

P; L ` c �clss c0 and P; L ` c0 �clss c) c = c0

P; L ` i �intf i0 and P; L ` i0 �intf i) i = i0

` P; L 3a

P; L ` c �clss c0) c0 = Object; or PL(c0) 6= �

P; L ` i �intf i0) PL(i0) 6= �

P; L ` c �impl i) PL(i) 6= �

` P; L3sups

Figure 6. Subclasses, acyclic programs, programs with complete superclasses

In statically typed programming languages, such re-
quirements are checkedall together at compile-time;
in dynamically-typed programming languages they are
checkedall togetherwhen (and if) the above expression is
executed.

In Java, however, these requirements are checked atvar-
ious stagesof execution. Consider for example, execution
of the verified expressione2:

e2 � v=newFrPhil; w=newFrPhil;
v[FrPhil, FrPhil, Food].think(w)

where the classPhil has been loaded and prepared, but no
further class has been loaded. Thus, we have a configuration
e2; ::;PPh; � . Then:

S1 v=newFrPhil, attempts to load the classFrPhil; if none
is found, or a class circularity is encountered, then
LoadErr is thrown; otherwiseLFrPhis loaded, and we
continue execution withnew FrPhil:::; ::;PPh; LFrPh .

S2 The verifier checksLFrPh, and in the process it checks
all methods in that class. In order to verify the body
of methodFood think(FrPhil x) in FrPhil, the veri-
fier needs to establish thatPear is a subclass ofFood.
For this it tries to loadPear and its superclasses. If
these cannot be found,LoadErr is thrown, otherwise
R1 is established. If they can be found, but do not
satisfy the subtype requirement,VerifErr is thrown.
Otherwise,R2 is established, classFrPhil is prepared,
and a newFrPhil object is created. We continue with
v = new FrPhil::; ::;PPhPFrPh; LPearLFood .12

12We assumed thatPear is a direct subclass ofFood, which is a direct
subclass ofObject.

S3 A new FrPhil object can now be created and
its address assigned tov; we continue with
w = new FrPhil::; ::;PPhPFrPh; LPearLFood

S4 w=new FrPhil creates a secondFrPhil object and
assigns its address tow, and continues with
::; ::;PPhPFrPh; LPearLFood .

S5 v[FrPhil, FrPhil, Food].think(w) evaluatesv andw, re-
solves the methodthink in classFrPhil, and continues
with e1; ::;PPhPFrPh; LPearLFood .

S6 newPear attempts to verifyLPear and LFood; if un-
successful it throwsVerifErr. Otherwise, it estab-
lishes thatany methods defined in classPear or in-
herited from its superclasses will be “well-behaved”
(this means thatR5)R6). Execution continues with
new Pear; ::;PPhPFrPhPPearPFood; � .

S7 newPear creates aPear object at some address�, and
continues with�; ::;PPhPFrPhPPearPFood; � .

S8 new Salt attempts to load classSalt; if unsucces-
ful, it throws LoadErr; otherwise it continues with
new Salt; ::;PPhPFrPhPPearPFood; LSalt .

S9 LSalt is verified; if unsuccessful, thenVerifErr
is thrown; otherwise R3 and R4 have
been established, and we continue with
new Salt; ::;PPhPFrPhPPearPFoodPSalt; � .

S10 a Salt object is created at some address�0; execution
continues with
�[Food; Salt; Food].cook(�0); ::;PPhPFrPhPPearPFoodPSalt; � .

S11 �[Food, Salt, Food].cook(�0) attempts to resolve the
methodcook with parameterSalt and result typeFood
in classFood. If unsuccessful, it throwsNoMethErr.
Otherwise,R5 has been established, which, together
with R5)R6 from S4 establishesR6, and execution
continues with the appropriate method body.

In the above example we see that execution of veri-
fied code might throw verification, loading, or resolution
errors. Thus, verification alone does not ensure “well-
behavedness”.

On the other hand, as shown in section 3.4, execution of
unverified expressione313

e3 � aPh[FrPhil, Food].like = newPear

in configuration e3; �0;PPhPFrPh; � (for �0 from sec-
tion 3) leads to configuration12; �1;PPhPFrPh; � , where
�1=�0[8 7! 12; 12 7! Pear; ::]. In the new store,�1,
the class of the object at address8 has been overwritten
by an address; the consistency of the store has been de-
stroyed! Thus, resolution checks alone do not ensure “well-
behavedness” either.

Notice also, thatR3 andR4 arenot attempted in stage
S1– more in section 3.6.

In the appendix we give an example which demon-
strates the treatment of interfaces based on the one given by
Buechi[2]. We now study the five components of execution:

3.3 Evaluation

Evaluation is the part of execution that is not affected by
dynamic linking and verification. It is described in the first
section of figure 4, and it comprises:

� propagation,i.e. propagate execution at the receiver
and then the argument of a method call, at the receiver
of a field access and to the left hand and right hand
sides of an assignment (rulePROPAGATE), 14,

� throwing theNllPErr exception when attempting to
call a method, access a field, or assign to a field of
0 (rule NULL POINTERR),

� accessing variables or addresses (ACC), and assigning
to variables (VARASS)

� creating new objects (NEW) of already prepared class
c (i.e. P(c) 6= �), and initializing the fields with0 at
the offsets prescribed inP. (The function Fs(c;P)

, defined in figure 12, returns types and offsets for all
fields declared in classc or in any ofc’s superclasses.)

13The expressione3 could be the result of a compilation of expression
e4� aPh.like = newPear whereaPh had been declared of typeFrPhil,
and the type ofaPh was modified without re-compilinge4. This could
happen ifaPh stood for a method parameter, or a field in another class.

14For the sake of succinctness we did not supply rules for the propaga-
tion of exceptions; these would have been standard.

3.4 Resolution

Resolution describes the process of resolving references
to fields or methods. It corresponds to the bytecode instruc-
tionsget�eld, put�eld, invokeinterface andinvokevirtual.

In Java implementations, resolution may also take place
during linking. The related exceptions,NoMethErr and
NoFldErr, couldbe anticipated at link time; indeed the lan-
guage specification leaves some leeway, and requires that
linkage-related exceptions may only be thrown when an ac-
tion is taken that might require linkage to the class or inter-
face involved in the error,c.f. 12.1.2 of [12]. Our model
follows the laziest possible approach as to the timing of
throwing link-related exceptions, which also coincides with
current implementations.15

3.4.1 Field Resolution

Field access has the form�[t1,t2].f. The offset of that field
is determined usingFo(f ; t1; t2;P). This function, de-
fined in figure 12, searches the class hierarchy for a defi-
nition of a field f with type t2, starting with classt1 and
continuing with the superclasses. If the offset is found,
i.e. Fo(f; t1; t2;P)=�, then it is used to calculate the ad-
dress of that field,i.e. �+� (FLDACC1). Thus, our model
describes address calculations, and is, in that sense, at a
lower-level than those in [10, 20, 19].

If t1 is defined, but does not have a declaration for
field f of type t2, i.e. Fo(f; t1; t2;P)=-1, or if t1 is
an interface,i.e. Fo(f; t1; t2;P)=-2, then exceptions are
thrown (FLDACC2,FLDACC3). Note, that the case where
Fo(f; t1; t2;P) =-3 need not be treated here, as it corre-
sponds to the case wheret1 has not been prepared yet, and
it is treated by the rules for loading, verification and prepa-
ration, ieLOADDERR, VERIFERR, LOADPREPVERIF.

The offset calculationFo(f; t1; t2;P) uses the stored,
static type t1, and not the actual,dynamic class of
the object in �. This is why the configuration
aPh[FrPhil;Food].like = new Pear; �0;PPhPFrPh; � leads
to the unsafe configuration12; �1;PPhPFrPh; � described in
section 3.2.16!

Such problems do not arise for previously verified code.
For example, the termaPh[FrPhil, Food].like = new Pear

would not verify, because the type ofaPh is not a subtype
of FrPhil, In general, as we shall see later, in well formed
codeP, the offset Fo(f; t1; t2;P) represents the position
for field f with typet2 inherited from classt1 for all objects
of classt1 or anysubclass oft1.17 Provided that the field
access has been checked by the verifier, and thus that the

15A more general model, reflecting this leeway through restricted non-
determinism in the operational semantics, could be tackled in future re-
search.

16becauseFo(like;FrPhil;Food;PFrPhPPh) = 3.
17c.f. the last rule in figure 9.

type of� is indeed a subclass oft1, the address calculation
will return the appropriate field stored in the object at�.

3.4.2 Method Call Resolution

Method calls have the form�[t1,t2,t3].m(
). The offset is
determined by the functionMo(m; t1; t2; t3;P), defined
in figure 12. This function considersm, the name of the
method,t1, the class containing the method,t2, the type of
the argument, andt3, the result. The latter two are neces-
sary for overloading resolution. Ift1 is an interface, then
Mo(m; t1; t2; t3;P)= -2, and the exceptionClssChngErris
thrown18. If classt1 exists, but no such method can be found
in t1, the exceptionNoMethErr is thrown (METHCALL 2).

As for fields, theactual classof the receiver,i.e. the
class of�, is not considered. If a method is found,i.e. if
Mo(m; t1; t2; t3;P)=� for some�, then� is used to select
the method body from the lookup table of the class of�

through (Me(�; �(�);P) in METHCALL 3) – here the ac-
tual class of the receiveris used. This is so, because, as
we shall see, in well-formedP’s, corresponding methods
have the same offset in the lookup tables oft1 and in all
the subclasses oft1.19 Well formedness of the method call
(as guaranteed by verification) ensures that the class of� is,
indeed, a subclass oft1.

As for fields, the case wheret1 has not been prepared yet
is taken care of by the loading, verification and preparation
rules.

3.4.3 Interface Method Call Resolution

Interface method calls have the form�[t1,t2,t3]i.m(
).
The method is first looked up in the interface through
Moi(m; t1; t2; t3;P). If t1 is a class20, or if the class
of the receiver, denoted by�(�) , does not implement
t1

21 then the exceptionClssChngErr is thrown. If inter-
facet1 exists, but does not contain nor inherit an appropri-
ate method declaration,22 then the exceptionNoMethErr.
Otherwise, the method is looked up in theactual class
of the receiver,i.e. offset is determined by the function

18This can happen, if one compilest1 as a class, then compiles the class
containing the method call, then re-compilest1 as an interface, and does
not re-compile the class with the method call.

19c.f. the last rule in figure 9.
20This can happen, if one compilest1 as an interface, then compiles the

class containing the method call, then recompilest1 as a class, and does
not re-compile the class with the method call.

21This can happen, if one compiles a classc0, a superclass of�(�)
while c0 implements the interfacet1, then compiles the class containing
the method call, then recompiles making sure that none of the superclasses
of �(�) implement the interfacet1 , and does not re-compile the method
call.

22This can happen, if one compilest1 with the method declaration, then
compiles the method call, then removes fromt1 the method declaration,
and re-compilest1 but does not re-compile the method call.

Mo(m; �(�); t2; t3;P) and then the method body with the
corresponding offset is executed (INTFMETHCALL 4).

If we compare method calls and interface method calls,
we notice that the latter require the extra check. Namely
INTFMETHCALL 3 ascertains that the receiver implements
t1. Such a check is not necessary for method calls,
e01[t01,t02,t03].m(e02), because verification guarantees thate01
will evaluate to an object of a subtype oft01. However, the
verifier is more lenient with interface method calls, and veri-
fication ofe1[t1,t2,t3]i.m(e2) does not guarantee thate1 will
evaluate to an object of a subtype oft1; therefore this needs
to be checked at the time of execution of the method call.

As for fields and for method calls, the case wheret1 has
not been prepared yet is taken care of by the loading, verifi-
cation and preparation rules.

3.5 Loading

Loading is required when a type context,< t =typ , is
executed for a class/interfacet which has not been loaded
yet. That is, when a new object of classt is created, or a
when a field of classt is accessed, or when a method from
class or interfeacet is called.

If loading is successful,i.e. ld(t;P; L) = L0 6= �, then
execution continues with the loaded code augmented byL0

(LOAD), otherwise an exception is thrown (LOADERR).
A loader function ld(t;P; L) returns class or interface

definitions fort and all its superclasses and superinterfaces
except for those already defined inP or L, provided that no
class or interface circularity was encountered; otherwise it
returns�. Any function satisfying the requirements from
figure 11, is a loader. A “real” loader would lookup class
definitions in the filesystem or a database, which may be
modified from outside the Java program, and so different
calls of the loader for the same class might return differ-
ent binaries. Rather than providing a filesystem/database
parameter, in our model different loader functions may be
called, thus giving the same effect.

We have taken a simplified view of loading, and have
disregarded the possibility of class de-allocation and multi-
ple loaders implementing different search strategies, which
we shall consider in future research.

3.6 Verification

Verification is required when executing a type context
< t =typ , and t has been loaded but not yet prepared,
i.e. P(t) = �6= L1L2(t) . The loaded code consists ofL1
andL2, whereL1 is the part of the loaded code which con-
tains the definition oft and its supertypes, except for those
already defined inP, i.e. L1(t) 6= �, and` P; L13sups.
ThenL1 is verified. If verification succeeds and requires

(1)

` P; L 3a

P; L v̀ t � t (
loads

�

(2)

` P; L 3a

P; L ` c �clss c0

P; L v̀ c � c0 (
loads

�

(3)

` P; L 3a

PL(i) = interface :::

P; L v̀ t � i (
loads

�

(4)

` P; L 3a

P; L v̀ int � int (
loads

�

(5)

` P; L 3a

PL(c) = �

ld(c;P; L) = L0

P; LL0 ` c �clss c0

P; L v̀ c � c0 (
loads

L0

(6)

` P; L 3a

PL(i) = �; ld(i;P; L) = L0

L0(i) = interface :::

P; L v̀ t � i (
loads

L0

(7)

` P; L 3a

P; L;E v̀
 : int (
loads

�

P; L;E v̀ 0 : c (
loads

�

P; L;E v̀ new c : c (
loads

�

(8)

` P; L 3a

E(y) = t

P; L;E v̀ y : t (
loads

�

(9)

P; L;E v̀ var : t (
loads

L0

P; LL0;E v̀ e : t0 (
loads

L00

P; LL0L00 v̀ t
0 � t (

loads
L000

P; L;E v̀ var = e : t0 (
loads

L0L00L000

(10)

P; L;E v̀ e : t (
loads

L0

P; LL0 v̀ t � t1 (
loads

L00

P; L;E v̀ e[t1; t2].f : t2 (
loads

L0L00

(11)

P; L;E v̀ e1 : t01 (
loads

L01
P; LL01;E v̀ e2 : t02 (

loads
L02

P; LL01L
0

2 v̀ t
0

1 � t1 (
loads

L03
P; LL01L

0

2L
0

3 v̀ t
0

2 � t2 (
loads

L04
P; L;E v̀ e1[t1; t2; t3].m(e2) : t3 (

loads
L01L

0

2L
0

3L
0

4

(12)

P; L;E v̀ e1 : t01 (
loads

L01
P; LL01;E v̀ e2 : t02 (

loads
L02

P; LL01L
0

2 v̀ t
0

2 � t2 (
loads

L04
P; L;E v̀ e1[t1; t2; t3]i.m(e2) : t3 (

loads
L01L

0

2L
0

4

(13)

PL(c0) = class :::

PL(i) = interface :::

f i = fj) i = j 1� i;j�n

mi = mj and ti1 = tj1 and ti2 = tj2) i = j 1� i;j�k

P; LL01:::L
0

2(i�1)
; (ti2 x; c this) v̀ ei : t0i1 (

loads
L02i�1 1� i�k

P; LL01:::L
0

2i�1 v̀ t
0

i1 � ti1 (
loads

L02i 1� i�k

P; L v̀ class c ext c
0 impl :::i:::{ t1 f1 ::: tn fn t11 m1(t12 x){e1} ::: tk1 mk(tk2 x){ek} } 3 (

loads
L01 : : :L

0

2k

(14)

PL(i0) = interface :::

mi = mj and ti1 = tj1 and ti2 = tj2) i = j 1� i;j�k

P; L v̀ interface i ext :::i
0:::{ t11 m1(t12 x); :::; tk1 mk(tk2 x) } 3 (

loads
�

(15)

ft1; : : : tng = ft j L0(t) 6= � g

P; LL01 : : : L
0

i�1 v̀ L
0(ti) 3 (

loads
L0i 0� i�n

P; L v̀ L
0 3 (

loads
L01 : : : L

0

n

Figure 7. Verification

Env ::= � | Env , type z | Env , type this
E(z) 6= �) E0(z) = E(z)

` E0 � E

Figure 8. Environments

the loading ofL0, thenL1 is prepared, and execution con-
tinues with the augmented prepared codeP1, and additional
loaded codeL0, c.f. VERIFANDPREP. If verification fails, an
exception is thrown,c.f. VERIFERR.

Verification in our paper corresponds to the third pass of
the “real” verifier as described in ch. 4.9.1 of [18], and is
expressed through the judgment

P; L v̀ L
00 3 (

loads
L0

meaning that the binaryL00 could be verified in the context
of the prepared codeP, and the loaded but not yet prepared
codeL, and causedL0 to be loaded (but not verified). Thus,
this judgment has the “side-effect” of loadingL0.

Verification of classes is defined in terms of verification
of expressions, with the judgment

P; L;E v̀ e : t (
loads

L0

meaning that the expressione could be verified as having
type t, in the context ofP, L, and the environmentE, and
caused further classes/interfacesL0 to be loaded (but not
verified). This is described in figure 7.

Establishing the above sometimes requires a judgment

P; L v̀ t � t0 (
loads

L0

meaning that typet could be verified as widening to
type t0 in the context ofP and L, and caused further
classes/interfacesL0 to be loaded (but not verified). Classes
or interfaces may be loaded when trying to establish
whether at, undefined inP or L is a subtypet0, as in rules
(5) and (6) of figure 7.

For example, verification of
e1�new Pear[Food, Salt, Food].cook(newSalt)

requires establishing thatPear widens toFood, which, in its
turn, if Pear is not loaded, requires loadingPear and all its
superclasses. Therefore, if

ld(Pear;PPh; �) = LPearLFood,
and the superclass ofPear is Food, then:

PPh; � v̀ Pear � Food (
loads

LPearLFood.
The difference between (5) and (6) is, that in (5)c and all

its superclasses are loaded, whereas in (6) onlyi is loaded.
The assertionP; L v̀ t � t (

loads
� holds for any

t, c.f. rule (1). Thus, verification assumesany identifier
to stand for a class, or interface and so to widen to itself.
Therefore,

PPh; � v̀ Salt � Salt (
loads

�.

Also, the assertionP; L v̀ t � i (
loads

� holds for any
interfacei, c.f. rules (3) and (6). Thus verification assumes
any identifier to widen toi, provided thati stands for an
already loaded or prepared interface.

Verification is “optimistic” with respect to method calls
and field accesses (rules (11) and (12)), and more liberal
than the Java source checks. For field access,e1[t1,t2].f,
verification only checks that the type ofe1 widens tot1,
the static type in the signature, and gives to the whole ex-
pression the typet2 – it doesnot attempt to check the exis-
tence of a field with typet2, but leaves this to the resolution
checks. Similarly for method calls. Therefore, verification
of e1 will load Food andPear, and notSalt, and will not
verify either of these classes,i.e.

PPh; �; � v̀ e1 : Food (
loads

LPearLFood

Verification of a class (rule (13)) does not imply verifi-
cation of all classes used: Even thoughLPh mentions the
classesFrPhil, Book, Food, andPear, its verification only
requires classPear and all its superclasses to be loaded.
Thus,

�; LPh v̀ LPh 3 (
loads

LFoodLPear.

Finally, if an order can be found to verify classes and/or
interfacesti, then verification is successful,c.f. rule (15).

Verification requires type assignments, expressed
through anenvironment, E, which is a sequence of dec-
larations of the form ti vari. Environments are declared
in figure 8; they should contain unique declarations, as
expressed by the judgment` E 3u, and allow looking
up the type of variablez through E(z) .23 We do not
require theti to indicate types declared inP or L. So, an
environment may use identifiers as types which have no
corresponding definition inP or L.

In summary, verification is only concerned with widen-
ing, but not with the existence of fields or methods. Nor
does verification enforce the Java source rules forbidding
methods with same identifier and argument types, but dif-
ferent result types. In our example classPhil defines a
method Book think(FrPhil x){...} and FrPhil defines a
method Food think(FrPhil x){...}. Though illegal Java
source, it is legal bytecode.

23We do not definè E 3u, nor E(z) , because they are standard.

3.7 Preparation

If verification is successful, the corresponding binaries
are prepared through the functionpr : P � L �! P ;

which maps binaryL to pr(P; L) using information from
P. Preparation is concerned with determining the object
layout (through adding offsets to fields), and with creating
the method look-up table (through copying some methods
from superclasses, and allocating offsets to method bodies).

Rather than prescribe the exact strategy for offset deter-
mination, we give requirements in figure 11,i.e. a map-
ping is a linker if it allocates distinct offsets, copies from
the superclass all non-overridden methods with their off-
sets unaltered, allocates to overriding methods the offset
from the corresponding overridden method, and allocates
fresh offsets to the remaining methods. For the exam-
ple from figure 2, a linkerpr0, allocating consecutive off-
sets, would givepr0(�; LPh)=PPh, pr0(PPh; LFrPh)=PFrPh,
andpr0(�; LPhLFrPh)=PPhPFrPh.

4 Soundness

A subject reduction theorem demonstrates that the Java
approach described here indeed preserves types. For this we
first define what it means for prepared codeP to be well-
formed, and for a state� to conform toP andE.

4.1 Well formed prepared code

The judgmentL ` P3 , defined in figure 9, guarantees
that the prepared codeP is well formed in the context of
loaded codeL. The main requirements for well-formedness
of prepared code are:

� all classes/interfaces defined inP have their super-
classes/superinterfaces inP,

� fields defined in a classc have the same offset in all
subclasses ofc,

� methods defined in a classc have the same offset in all
subclasses ofc,

� method bodies are well-formed and respect their sig-
natures.

As in verification, well-formedness of prepared code does
not guarantee the existence of any fields or methods re-
quired in method bodies.

In contrast to verification, well-formedness of linked
code does not cause loading of further binaries. Also, while
judgmentP; L v̀ L

0 3 (
loads

L00 represents checks that are
performed by Java implementations, the judgmentL ` P3

is only a vehicle for proving soundness.

However, the criteria for well-formedness ofP can give
us an intuition as to why the Java approach works, and also,
ideas about alternative approaches.

4.2 Conformance and run-time types

The judgmentP;E c̀ �3, defined in figure 10, expresses
that the store� conformsto prepared programP and to vari-
able declarations inE. The main requirements are

� all classes/interfaces defined inP have their super-
classes/superinterfaces inP,

� the classes of all objects stored in� are defined inP,

� all objects stored in� contain appropriate values at the
offsets of the fields of their class,

� no object is stored inside another object,

� all variables defined inE have in� values appropriate
to their types,

� an object of classc is an appropriate value for any su-
perclass ofc, and it is an appropriate value for any in-
terface.

The judgment�;P c̀ � 3 expresses that the address�

points to an object of some classc, which contains at the
corresponding offsets appropriate values for all fields of
c. In order to obtain a well-founded relation, we defined
conformance in terms of the auxiliaryweak conformance
judgment�;P c̀w
 : t. Notice, that a positive value

may conform to bothint and a class type, and toany inter-
face type,e.g.�0;PPhPFood c̀w 5 : int, �0;PPhPFood `

cw 5 : Phil, but �0;PPhPFood 6 c̀w 5 : Food. Also, if
PBankIntf contains the declaration of an interfaceBankIntf,
then�0;PPhPFoodPBankIntf c̀w 5 : BankIntf.

Notice also, that store conformance does not take the
loaded, not yet verified binariesL into account. Also,0 con-
forms to any class, allowing objects with a field initialized
to 0, belonging to a yet undefined class. The requirement
8�0 � �: �(� + �0) 6= c0 ensures that no object is stored
“inside” another object. It is used to prove that evaluation
does not affect the type of expressions (lemma 4).

Types for run-time expressions are given by the judg-
mentP; L;E r̀ �; e : t, defined in figure 10. The rules
are similar to verification, with the difference that for run-
time expressions the store� is taken into account, and that
loading of further binaries is not considered.

Typing uses the widening judgmentP; L ` t0 � t, from
figure 10, expressing thatt0 can be widened tot using the
information from the prepared programP and the loaded
programL. 24

24We can prove thatP;L ` t0 � t iff P;L v̀ t0 � t (
loads

�.

` P; L 3a

P; L ` c � c

` P; L 3a

P; L ` int � int

` P; L 3a

P; L ` c �clss c0

P; L ` c � c0

` P; L 3a

PL(i) = interface :::

P; L ` t � i

` P; L 3a

E(y) = t

P; L;E `
 : int

P; L;E ` 0 : c

P; L;E ` new c : c

P; L;E ` y : t

P; L;E ` var : t

P; L;E ` e : t0

P; L ` t0 � t

P; L;E ` var = e : t0

P; L;E ` e : t

P; L ` t � t1
P; L;E ` e[t1; t2].f : t2

P; L;E ` e1 : t01
P; L;E ` e2 : t02
P; L ` t01 � t1
P; L ` t02 � t2
P; L;E ` e1[t1; t2; t3].m(e2) : t3

P; L;E ` e1 : t01
P; L;E ` e2 : t02
P; L ` t02 � t2
P; L;E ` e1[t1; t2; t3]i.m(e2) : t3

P(c0) = class :::

P(i) = interface :::

f i = fj and ti = tj) i = j 1� i;j�n

mi = mj and ti1 = tj1 and ti2 = tj2) i = j 1� i;j�k

P; L; (ti2 x; c this) ` ei : t0i1 1� i�k

P; L ` t0i1 � ti1 1� i�k

Fo(f; c0; t;P) > 0) Fo(f; c; t;P) = Fo(f; c0; t;P) for all identifiersf,t
Mo(m; c0; t; t0;P) > 0) Mo(m; c; t; t0;P) =Mo(m; c0; t; t0;P) for all identifierst,t0, m
�i = �j) i = j 1� i;j�n

�0i = �0j) i = j 1� i;j�k

P; L ` class c ext c0 impl :::i:::{ t1 f1 �1 ::: tn fn �n t11 m1(t12 x){e1} �01 ::: tk1 mk(tk2 x){ek} �0k }3

P(i0) = interface :::

mi = mj and ti1 = tj1 and ti2 = tj2) i = j 1� i;j�k

P; L ` interface i ext :::i0:::{t11 m1(t12 x) ::: tk1 mk(tk2 x) }3

` P; L 3a

P(t) 6= �) P; L ` P(t)3

L ` P3

Figure 9. Well-formed prepared code

�(�) an integer value
�;P c̀w � : int

�(�) = c0

P; � ` c0 �clss c

�;P c̀w � : c

�(�) = c0

P(i) = interface :::

�;P c̀w � : i

�;P c̀w 0 : c

�;P c̀w
 : c

�;P c̀w � : int

�;P c̀ � 3

�(�) = c

P(c) = class :::

8t f � 2 Fs(c;P) : �;P c̀w �(�+ �) : t;

and 8�0 � �: �(�+ �0) 6= c0

�;P c̀ � 3

` P; �3sups

�(�) 6= �) �;P c̀ � 3

E(z) 6= �) �;P c̀w �(z) : E(z)

P;E c̀ � 3

P;E c̀ � 3

P; L;E r̀ �;
 : int

P; L;E r̀ �;0 : c

P; L;E r̀ �;new c : c

P;E c̀ � 3

�(�) = c

E(y) = t

P; L;E r̀ �; � : c

P; L;E r̀ �; y : t

P; L;E r̀ �; var : t

P; L;E r̀ �; e : t0

P; L ` t0 � t

P; L;E r̀ �; var = e : t0

P; L;E r̀ �; e : t

P; L ` t � t1
P; L;E r̀ �; e[t1; t2].f : t2

P; L;E r̀ �; e1 : t01
P; L;E r̀ �; e2 : t02
P; L ` t01 � t1
P; L ` t02 � t2
P; L;E r̀ �; e1[t1; t2; t3].m(e2) : t3

P; L;E r̀ �; e1 : t01
P; L;E r̀ �; e2 : t02
P; L ` t02 � t2
P; L;E r̀ �; e1[t1; t2; t3]i.m(e2) : t3

Figure 10. Conformance, and types of runtime expressions

4.3 Locality and preservation of judgments

In general, one expects properties established in a certain
context to hold for larger contexts as well. Locality prop-
erties were proven in [5], used in [4], and explored in our
model of binary compatibility [6].

We can prove the following locality properties: Widen-
ing or verification requiring binariesL01 andL02 to be loaded,
only requireL02 to be loaded, ifL01 had been loaded before25.
Also, an expressione with type t in environmentE pre-
serves its type in a larger environmentE0.

Lemma 1 For all P, P0, L, L0, L01, L02, L0, e, t, E, F, F0:

� P; L v̀ t � t0 (
loads

L01L
0

2, and
` P0P; L0LL

0

1L
0

2 3a

)

P0P; L0LL
0

1 v̀ t � t0 (
loads

L02

� P; L;E v̀ e : t (
loads

L01L
0

2, and
` P0P; L0LL

0

1L
0

2 3a

)

P0P; L0LL
0

1;E v̀ e : t (
loads

L02

� P; L;E v̀ e : t (
loads

L0, and` E0 � E

)

P; L;E0 v̀ e : t (
loads

L0

Verification of classes implies verification of the bodies of
their methods:

Lemma 2 For anyP, L, L0, L00, c, if P; L v̀ L
00 3 (

loads
L0

and L00(c) = classc ext c0 {: : : ti1mi(ti2 x){ ei } : : :}, then,
there existt0i1, L01, L02, L03 andL04 such thatL0=L01L

0

2L
0

3L
0

4,
andP; LL01; (ti2 x; c this) v̀ ei : t0i1 (

loads
L02, and also

P; LL01L
0

2 v̀ t
0

i1 � ti1 (
loads

L03.

Preparation of verified code preserves judgments:

Lemma 3 For anyP, L1, L2, L3, L0, F, e, t, E, �, if

� P; L1L2 v̀ L1 3 (
loads

L0

� L1L2 ` P3

� P1=pr(P; L1)

then

� ` P; L1L2L3 3a) ` PP1; L2L3 3a

� P; L1L2 ` t � t0) PP1; L2L
0 ` t � t0

� P; L1L2;E ` e : t) PP1; L2L
0;E ` e : t

� L2L
0 ` PP13

� P;E c̀ � 3) PP1;E c̀ � 3

� P; L1L2;E r̀ �; e : t) PP0; L2L
0;E r̀ �; e : t

25The assertion in the lemma is actually more general, because it also
allows for further binariesL0 to have been loaded, andP0 to have been
prepared.

4.4 Subject reduction and progress

Execution of a well-typed expressione does not over-
write objects, creates new objects in the free space, and does
not affect the type of any expressione00 – even ife00 were a
subexpression ofe! Such a property is required for type
soundness in imperative object oriented languages, and was
proven,e.g. , in [5, 23]. In the current work this property
holds only for well-typed expressions.

Lemma 4 For P, L, F, E, �, non-grounde, t, if

� L ` P3 , and

� P; L;E r̀ �; e : t, and

� e; �;P; L ; e0; �0;P0; L0 ,

then

� �(�) = c) �0(�) = c,

� �0(�) = c) �(�) = c or � free in�,

� P;E c̀ � 3) P;E c̀ �
0 3

� P; L;E r̀ �; e
00 : t00) P0; L0;E r̀ �

0; e00 : t00.

Proof by structural induction over the derivation;, and for
the fourth part of the lemma, in the cases ofVARASS or
FLDACC1 by structural induction over the typing ofe00, us-
ing the store conformance requirement whereby no object
is stored within another object.

We can now prove progress and subject reduction:26

Lemma 5 For any P, L, F, E, �, non-grounde, t, if
L ` P3; and P; L;E r̀ �; e : t

then there existP0, L0, E0, �0, e0, t0, such that
e; �;P; L ; e0; �0;P0; L0 ; and
L0 ` P03; ` E0 � E, and

� P0; L0;E0 r̀ �
0; e0 : t0, andP0; L0 ` t0 � t, and

t=t0 if e is a non-l-ground variable, or

� e0 contains the exceptionNllPErr, or LoadErr,
or VerifErr, or NoMethErr, or NoFldErr, or
ClssChngErr.

Proof by structural induction over typingP; L;E r̀ �; e : t.
Thus, the new, possibly augmented, prepared code,P0,

preserves its well-formedness, and the store�0 preserves
conformance. Uninitialized parts of the store, where�(�)
= �, are never de-referenced. Finally, execution never gets
stuck.

26We assume an unlimited heap so that garbage collection is unneces-
sary.

Also, it is easy to prove that if execution of well-typed ex-
pressionse, loads some some types (i.e. if e rewrites ac-
cording toLOAD or LOADERR), thene must have the form
new c, or�[�,t2,t3]i.m(
). Namely, the well-typedness of
the remaining type-contexts,i.e.field accesse1[t1,t2].f, and
method calle1[t1,t2,t3].m(e2), requires the type ofe1 to be
a subtype oft1, which in its turn requires the presence oft1
in P. Therefore, when executing verified code, the only ex-
pressions that may extend the loaded and prepared classes
are object creation and interface method call.

5 Summary and alternatives

Verification of classc requires verification of all meth-
ods inc and all its (not yet prepared) superclasses. Verifi-
cation of terms requires establishing subtype relations be-
tween typest and t0. If t has not been loaded yet, then
it will be loaded with all its superclasses, except ift and
t0 are identical, ort0 is an interface. Verification does not
ensure the presence of fields or methods, it only ensures
that all methods in a verified class respect their signatures.
Resolution checks for the presence of fields and methods of
given signatures. Thus the verifier relies on resolution to
pick some of the possible errors, and resolution is safe only
on code previously checked by the verifier.

Verification alone does not guard against link-time errors
(i.e. LoadErr, or VerifErr, or NoMethErr, or NoFldErr, or
ClssChngErr), but it does guarantee the integrity of the sys-
tem. On the other hand, execution of unverified code may
overwriteanypart of the memory, and executeanymethods.

Link-time errors can be created when running code that
has been produced by a compiler, as shown in the var-
ious footnotes. However,link-time errors will not occur,
one re-complies all importing classes/interfaces and all su-
classes/subinterfaces after re-compiling a class or interface
– we have not demonstrated this yet.

It is interesting that interfaces are treated by verification
more leniently than classes, and thus require more run-time
checks. It would have been possible to treat classes as le-
niently, or to treat interfaces more strictly.

In current implementations the boundary of decom-
position are classes or interfaces. That is, we load
several classes/interfaces together, and we verify several
classes/interfaces together. Is it possible to consider other
levels of decomposition? A probably less attractive, more
lazy alternative would put the boundary of decomposition at
methods, and would verify method bodies only before they
are first called. This would make the judgmentL ` P3

even weaker, and would extend the operational semantics
to check for previous verification

The integrity of the system is demonstrated by the sub-
ject reduction lemma. This is based on the well-typedness

of the expressione and of the prepared codeP. It is in-
dicative, that in both judgments, namely inL ` P3 and in
P; L;E r̀ �; e : t the role of the loaded codeL is limited; the
only information provided fromL is which class/interface
extends/implements which other class/interface, but the
contents of the classes/interfaces inL is ignored.

A more lazy alternative, as suggested in in [9, 20] and
formalized in [20], instead of immediately establishing that
t is a subtype oft0 would post a constraint requiring at to be
a subtype oft0, to be validated only whent is loaded. This
would treatL’s as constraints, and the judgmentP; �; v̀ e :

t (
loads

L0 to mean that the verifier establishede to have
typet, while postingL0.

It is easy to modify our model to express the above al-
ternatives. More challenging would be a unified framework
that would allow to characterize all such alternatives.

6 Conclusions, discussion and further work

We have given a model for the five components of execu-
tion, and have demonstrated how the corresponding checks
together ensure type soundness. Our model describes these
execution components at a high level, and distinguishes
these components and the time of the associated checks.
Thus, our account is useful for source language program-
mers, designers of new binary formats for Java, and design-
ers of alternative distributions of the checks among the four
components. Our model does not yet treat multiple loaders.

Formal treatments of linking were suggested in [3], al-
beit in a static setting. Dynamic linking at a fundamental
level has been studied recently in [7, 1, 24], allowing for
modules as first class values, usually untyped, concentrat-
ing on confluence and optimization issues. Recently, [15],
discuss dynamic linking of native code as an extension of
Typed Assembly Language.

Recent related work [20] complements ours, and pro-
vides a model of Java evaluation, dynamic preparation, ver-
ification and loading at the bytecode level, without inter-
faces, but with multiple loaders. Their approach is lazier
than that of SUN implementations, and verification posts
constraints as opposed to loading classes.

Further work includes refining the model to allow mul-
tiple class loaders (this would require the extension of the
concept of class ase.g.[20]), extending the model to de-
scribe the source language and the compilation process,
extending languagesL and P with more Java features,
considering different levels of decomposition, and apply-
ing the model to reconsider the meaning of binary compati-
bility [6].

Finally, though Java is novel in its approach to verifica-
tion and dynamic linking, similar components and associ-
ated checks could be defined for any language that supports

A function ld : Ident�P �L ! L is a loader iff:

ld(t;P; L) = L0)

� L0 6= �) L0(t) 6= � and P(t) = L(t) = �

� ` P; L 3a) ` P; LL0 3a

� 8c0 : L0(c0) = class c0 ext c00 impl :::i:::{:::}) PLL0(c00) 6= �; and PLL0(i) 6= �

� 8i : L0(i) = interface i ext :::i0:::{:::}) PLL0(i) 6= �

� L0=L01L
0

2, L01(c) =�) ld(c;P; LL01) = L02

� 8P0 : ` P0P; LL
0 3a) L0 = ld(c;P0P; L)

A functionpr : P � L ! P is apreparationfunction iff:

pr(P; L) = P0)

� P0(c) 6= � iff L(c) 6= �

� P0(i) 6= � iff L(i) 6= �

� P0(c) = class c ext c0{t1 f1 �1 : : : tn fn �n t11m1(t12 x){e1} �n+1; : : : tq1m1(tq2 x){eq} �n+q })

– �i 6= �j 8i 6= j with 1� i;j�n, or n+1� i;j�n+q

– "c is defined inL, and the linked class (P0(c)) has the same fields (t1 f1 ... tn fn) as the original class (L(c))
L(c) = class c ext c0{t1 f1 : : : tn fn t011m

0

1(t012 x){e
0

1}; : : : t0p1m
0

1(t0p2 x){e
0

p} }

– c0=Object and r=s=0 or
PP0(c0) = classc0 ext c00 { t001 f

00

1 �
00

1 ... t00r f
00

r �
00

r t0011m
00

1 (t0012 x){ e
00

1 } �00r+1 ... t00s1m
00

s (t00s2 x){ e
00

s } �00r+s }

– "the methods inP0(c) are composed of ..."
f t11 m1(t12 x){e1 } �n+1, . . . tq1 m1(tq2 x){eq } �n+q g =
“... the methods inherited fromc0 , and not overridden inc”
f t00k1m

00

k(t00k2 x){ e
00

k } �00r+k j 1�k�s, and8 1� j�p: t0j1m
0

j(t
0

j2 x) 6=t00k1m
00

k(t00k2 x) g
“.... the methods fromc which override a method fromc0, preserving the offset of the overridden method”
[f t00k1 m00

k(t00k2 x){e } �00k j 1�k�s, and9 1� j�p: t0j1m
0

j(t
0

j2 x)=t
00

k1m
00

k(t00k2 x) and e=e0j g
“... the methods newly introduced inc”
[f t0j1 m0

j(t
0

j2 x){ej } � j 1� j�p, and8 1�k�s: t0j1m
0

j(t
0

j2 x) 6=t00k1m
00

k(t00k2 x) g

� P0(i) = interface ...) P0(i) = L(i)

Note that the text enclosed in " and " is explanatory, and not part of the definition.

Figure 11. Loading and preparation

Fo(f; c; t;P) =

8>>>><
>>>>:

�3 if P(c) = �

�2 if P(c) = interface : : :

� if P(c) = class c ext c0{ : : : t f � : : : }
Fo(f; c0; t;P) if P(c) = class c ext c0{ t1 f1 �1:::tn fn �n meths } and8 1� i�n : ti f i 6= t f

�1 if c = Object

Fs(c;P) =

�
ft1 f1 �1; : : : tn fn �ng [Fs(c0;P) if P(c) = class c ext c0{t1 f1 �1; : : : tn fn �n meths}
; otherwise

Mo(m; c; t2; t1;P) =

8>><
>>:

�3 if P(c) = �

�2 if P(c) = interface :::

� if P(c) = class c ext c0{ : : : t1 m(t2 x){ : : : } � : : : }
�1 otherwise

Me(�; c;P) =

�
e if P(c) = class c ext c0{ : : : t1 m(t2 x){ e } � : : : }
� otherwise

Moi(m; i; t2; t1;P) =

8>><
>>:

�3 if P(c) = �

�2 if P(c) = class :::

0 if P(i) = interface i ext :::{ : : : t1 m(t2 x){ : : : } : : : }; orMoi(m; i0; t2; t1;P) = 0

�1 otherwise

Figure 12. The field and method look up functions F , M, Mi

some concept of modularity. The generalization of such
ideas to other programming languages is an open issue.

Acknowledgments I am indebted to the TIC referees
for extensible feedback and valuable suggestions. David
Wragg gave invaluable initial information. Tatyana
Valkevych, Susan Eisenbach, and Mark Skipper provided
meticulous comments. Elena Zucca, and Eugenio Moggi
asked pertinent questions and suggested a clearer presenta-
tion.

References

[1] Davide Ancona and Elena Zucca. A Primitive calculus for
module systems. InPPDP Proceedings, September 1999.

[2] Martin Buechi. Type soundness Issues in
Java, May 1999. Types mailing list, at
http : ==www:cis:upenn:edu= bcpierce=types=archives

and then /current/msg00140.html.

[3] Luca Cardelli. Program Fragments, Linking, and Modular-
ization. InPOPL’97 Proceedings, January 1997.

[4] Drew Dean. The Security of Static Typing with Dynamic
Linking. In Fourth ACM Conference on Computer and Com-
munication Security, 1997.

[5] Sophia Drossopoulou, Susan Eisenbach, and Sarfraz Khur-
shid. Is Java Sound?Theory and Practice of Object Systems,
5(1), January 1999.

[6] Sophia Drossopoulou, Susan Eisenbach, and David Wragg.
A Fragment Calculus - towards a model of Separate Compi-
lation, Linking and Binary Compatibility. InLICS Proceed-
ings, 1999.

[7] Kathleen Fisher, John Reppy, and Jon Riecke. A Calculus
for Compiling and Linking Classes. InESOP Proceedings,
March 2000.

[8] Matthew Flatt, Shiram Khrishnamurthi, and Matthias
Felleisen. Classes and Mixins. InPOPL Proceedings, Jan-
uary 1998.

[9] Philip W. L. Fong and Robert D. Cameron. Proof linking: An
architecture for modular verification of dynamically-linked
mobile code. InACM SIGSOFT Sixth International Sympo-
sium on the Foundations of Software Engineering (FSE’98),
November 1998.

[10] Stephen N. Freund and J. C. Mitchell. A Formal Framework
for the Java Bytecode Language and Verifier. InOOPSLA
Proceeedings, November 1999.

[11] Stephen N. Freund and J. C. Mitchell. A Type System for
Object Initialization in the Java Bytecode Language. In
OOPSLA Proceeedings, October 1998.

[12] James Gosling, Bill Joy, and Guy Steele.The Java Language
Specification. Addison-Wesley, August 1996.

[13] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Feath-
erweight Java: A minimal core calculus for Java and GJ. In
OOPSLA Proceedings, November 1999.

[14] Thomas Jensen, Daniel Le Metyayer, and Tommy Thorn. A
Formalization of Visibility and Dynamic Loading in Java. In
IEEE ICCL, 1998.

[15] Karl Krary, Michael Hicks, and Stephanie Weirich. Safe and
Flexible Dynamic Linking of Native Code, May 2000. Inter-
nal Report, Univerity of Pennsylvania.

[16] Christopher League, Zhong Shao, and Valery Trifonov. Rep-
resenting Java Classes in a Typed Intermediate language. In
ICFP Proceedings, September 1999.

[17] Sheng Liang and Gilad Bracha. Dynamic Class Loading in
the JavaTM Virtual Machine. InOOPSLA Proceedings, Oc-
tober 1998.

[18] Tim Lindholm and Frank Yellin.The Java Virtual Machine.
Addison-Wesley, 1997.

[19] Zhenyu Qian. Least Types for Memory Lo-
cations in Java Bytecode. InFOOL 6. http:
//www.cs.williams.edu/ kim/FOOL/sched6.html, 1999.

[20] Zhenyu Qian, Allen Goldberg, and Alessandro Coglio. A
Formal Specification of JavaTM Class Loading. InOOP-
SLA’2000, November 2000. to appear.

[21] Vijay Saraswat. Java is not type-safe. Technical
report, AT&T Rresearch, 1997. http://www.research.
att.comp/ vj/bug.html.

[22] Raymie Stata and Martin Abadi. A Type System For Java
Bytecode Subroutines. InPOPL’98 Proceedings, January
1998.

[23] Donald Syme. Proving Java Type Sound. In Jim Alves-Foss,
editor,Formal Syntax and Semantics of Java, volume 1523
of LNCS. Springer, 1999.

[24] Joe Wells and Rene Vestergaard. Confluent Equational Rea-
soning for Linking with First-Class Primitive Modules. In
ESOP Proceedings, March 2000.

[25] Phillip Yelland. Re: Type soundness Issues
in Java, May 1999. Types mailing list, at
http : ==www:cis:upenn:edu= bcpierce=types=archives

and then /current/msg00145.html.

Another example demonstrating interfaces

The following example demonstrates the verifier’s and
run-time system’s treatment of interfaces. It is an adapta-
tion of the example which was posted by Martin Buechi [2]
in the types mailing list, and was then discussed at some
length.

We start with an interfaceThinker implemented by class
Man, and the classMain with methodmain:

interfaceThinker { void be(); }

classMan impl Thinker {
void be(){ System:out:println("be") ; }

}

classMain {
public static void main (String args[]) }

Thinker descartes;
Man john = newMan();
System:out:println("a Man object created");
if (john instanceof Thinker)
System:out:println("john is aThinker");

else
System:out:println("john is NOT a Thinker");

descartes = newMan();
System:out:println("a Man assigned to a Thinker") ;
john.be();

}

We compileThinker, Man andMain, and we then modify
classMan, so that it does not implementThinker, i.e.

classMan { void be(){ System:out:println("be") ; } }

We compileMan, without re-compilingMain. When we
executeMain, we obtain the output:

a Man object created

john is NOT a Thinker

a Man assigned to a Thinker

IncompatibleClassChangeError :

class Man does not implement Thinker

The above behavior is described by our model, namely:

� Verification of methodmain considers the assignment
descartes = new Man(); as type correct, because the
verifier is "liberal" with respect to interfaces

� Verification of the interface method calljohn.be() re-
quires loading of the interfaceThinker.

� Verification of methodmain does not need to load class
Man.

� The assignmentdescartes = new Man(); is executed
without any checks, and therefore without errors.

� The interface method calljohn.be() is com-
piled to a bytecode term which corresponds to
john[Thinker,void,void]i.(). Execution of that
term requires a run-time check according to rule
INTFMETHCALL 3. This check fails, and gives the
error message IncompatibleClassChangeError :

class Man does not implement Thinker

