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Abstract. Compilers for Object-Oriented Languages optimize dynamic

message sends through run-time type testing when they cannot precisely

infer the message receiver type. While run-time type testing optimizes

dynamic messages, it still results in redundant type testing. We propose

a ow-sensitive analysis which calculates regions in a program where

an object's type is statically unknown but invariant. The type check is

hoisted at the entry point of a region and its results are shared over all

dynamic call-sites in the region. We implemented this optimization in

the Vortex compiler and demonstrate its e�ectiveness on �ve large Cecil

benchmarks. We observed an average speed-up of 9% and 18% speed-up

in the best case.

1 Introduction and Related Work

Typical programs written in Object-Oriented Programming Languages (OOPLs)
result in a large number of dynamic message sends due to lack of static type
information. Dynamic messages sends can be optimized in OOPLs by using a
compile-time interprocedural type inference [24] [22] [21] [23] [3] [12]. However,
at best only 60% of the message receiver types can be precisely inferred1.

When a type inferencer cannot statically bind a message send, the compiler
inserts some sort of run-time type test. If the set of possible receiver types for a
message send is small, the compiler will inline a series of type tests [2]. Otherwise,
the compiler generates a dynamic run-time type test through a (polymorphic)
inline cache [14] [19].

In all the approaches above, some sort of run-time type check is required
when a dynamic message cannot be precisely inferred. However, neither of these

? This research is partially supported by NSF under grant # CCR 9696129
1 DeFouw et al. [13] showed that only 40-60% of the dynamic call-sites in the Cecil [6]

OOPL could be inferred. Agesen and H�olzle [2] conducted a similar study on the

Self [25] OOPL and found that 30-40% of all dispatches remained in their tiny

benchmarks, 50-60% in their small to medium benchmarks, and 25-60% in their

large benchmarks.



techniques take into account type check redundancy when a type of a receiver
object does not mutate (or change) within a large program region. The fact is,
not all method calls are dynamically bound during run-time. Grove et al. [18]
showed that 50% of the dynamic dispatches in their Cecil programs had a sin-
gle receiver class. This would indicate that many dynamically typed objects,
although statically unknown in their type binding, have a �xed type during a
particular region in the program. In these cases, type tests are only needed at
the �rst use of the object within the region. Run-time type tests or cache probes
for subsequent uses of these objects are extraneous.

A partial redundancy elimination (PRE) of redundant type tests can be per-
formed. One such optimization is splitting [10]. While splitting can eliminate
redundant type tests, code between the �rst test and redundant test must be
duplicated. If the bene�ting code is far away, the increase in code size may out-
weigh the bene�ts of splitting. This would indicate the need for a new technique
based on PRE that can be applied to large regions of code. Our framework,
presented in the next section, is motivated by this fact.

2 Type Invariant Region Analysis

In order to eliminate unneeded type tests, one could perform a static analysis
to determine the program region where the type (although statically unknown)
is invariant once it is dynamically �xed. Methods dispatched on objects whose
types are �xed in a particular program region could be directly called; saving
on the overhead of type tests and/or dynamic dispatches. To maximize the call-
sites that are covered by the type invariant region, one could take the transitive
closure of the object's reaching de�nitions and use a ow-sensitive analysis for
better precision. After calculating this information, we can perform one type
test and share its results for all call-sites in the region2. The end result is fewer
type checks and more direct calls in a given program. Because we generate more
direct calls, the performance greatly improves. The following motivating example
shows the bene�t of our approach.

2.1 Motivating Example

Figure 1 shows part of a list library written in Cecil. The method reverse im-
plements a recursive list reversal on a list with data polymophism3 (the integer
implementation is shown). Because the second parameter (Alist) has data poly-
mophism, the compiler cannot statically bind the tail recursive call.

One observation that can be made from this example is that the types of
the formal parameters are unknown at compile-time, but known at the �rst
invocation of the method. In other words, they do not mutate across recursive
invocations. Most OO languages with functional avor (such as Cecil) support

2 A more formal de�nition of region is given later.
3 The m list object can store a heterogeneous list of integers, oats, strings, etc.



this model since formal parameters are immutable [6]. This allows us to statically
de�ne a region on the Alist formal parameter as illustrated in �gure 2. Next, we
can �x the targets of each call-site in the region at the �rst recursive invocation
of reverse. Because the type of Alist is immutable, we are guaranteed that the
targets for the Alist region will not change across recursive invocations. This
allows us to cache the method targets and save on the method lookup overhead
across recursive invocations leading to better run-time performance. We also
observe that in many typical applications, the parameter types do not always
mutate across multiple invocations of the same method at di�erent call-sites.

method reverse(front@:int, Alist@:m_list[int]) : m_list[int] {

if(Alist.is_empty, { ^Alist; });

let var Blist := reverse(first(Alist),rest(Alist));

Blist.add_first(front);

Blist;

}

Fig. 1. Motivating example Cecil code

Start_Node
ENTER reverse(arg0@:int, arg1@:m_list[A])
front := arg0
Alist := arg1

SEND is_empty(Alist)

RETURN Alist

T
F

                     tmp1 := SEND first(Alist)
                     tmp2 := SEND rest(Alist)

Blist := SEND add_first(Blist, front)
RETURN Blist

Blist := SEND reverse(tmp1, tmp2)

Fig. 2. Motivating Example Control Flow Graph with Corresponding Type Invariant

Region for Parameter Alist.



2.2 Terms and De�nitions

{ A control ow graph (CFG) is a directed graph G = (N;E; START;END),

where N is the set of nodes, E is the set of ow edges, START 2 N , and END 2

N .

{ A de�nition of an object instance x is a statement that assigns, or may assign, a

value (as well as type) to x.

{ When we make an assignment to an object instance x, the set of de�nitions that

may determine the type and value of x are called the set of reaching de�nitions

for x.

{ The receiver set of a message send is the set of object de�nitions that determine

the destination of the message. This set consists of 1-tuples for singly-dispatched

message sends and n-tuples of object de�nitions for multiple-dispatched (or

multi-method) [8] message sends.

{ The program call graph is a CFG that represents the (inter-procedural) calling

relationships between the program's procedures.

{ The type binding (or simply type) of any object used in the receiver set for a

singly- or multiple-dispatched message send is determined solely by a data-ow

(e.g. an initialization, assignment, side-e�ect through a message send, etc.) [4].

2.3 Formal Framework

Our goal is to detect the portion of a method's CFG in which the type of a
call-site's dispatching argument is invariant. This portion of the CFG is referred
to as the type invariant region. After detecting the type invariant region of an
object, run-time type tests can be hoisted to the top of the region and shared
with all call-sites that are dispatched on the type of the object.

For purposes of eÆcient code hoisting, we require a ow-sensitive analysis.
We are only interested in dynamic call-sites whose types must remain invariant
based on the type of the formal parameter, not those that may remain invariant
(computed by a ow-insensitive analysis).

De�nition 1. region(n) = fA Method call-site p such that the callee of p can

be uniquely inferred knowing the type binding of formal parameter ng

Consider the method call-site p(a, b, c) within an outer call q(n) in �gure 3.
Assume p(a,b,c) is dispatched on arguments a, b and c. Our goal is to determine
if the call-site p belongs to the region(n). If the types of a, b and c can be
uniquely inferred knowing the type binding of n, then we can deduce the callee
of method p and avoid a dynamic dispatch. We now propose a property that
must be satis�ed in order to determine the region of a formal parameter.

Lemma 1. Refer to �gure 3. Let ni denote a possible type binding of formal

parameter n; aj denote a reaching de�nition of a; bk denote a reaching de�nition

of b; and cr denote a reaching de�nition of c to a call-site p(a,b,c).

A call-site p belongs to the region(n) only if 8 aj , bk, cr, type(n
i) ) type(aj)

and type(ni) ) type(bk) and type(ni) ) type(cr) such that the inferred type

bindings for a, b and c lead to a single callee of p.



method q(n) : void {

...

p(a, b, c);

...

}

Fig. 3. Formal Framework Motivating Example

Proof:

It is obvious that if we can infer the types of a, b, and c in p(a, b, c) by

using a type binding of n that leads to a single callee for p, then we can uniquely

bind the dispatch of p. In order for this to be true, all the reaching de�nitions

of parameters a, b and c must be type deducible for a given type binding ni of n

and must lead to a single callee for p.

De�nition 2. typededucible(ni) = fThe set of all de�nitions di such that the

type of di can be uniquely inferred using a given type binding nig

Corollary 1. p(a, b, c) is in the region of n if for a given type binding ni of n,

8aj, bk and cr 2 typededucible(ni) leading to a single callee for p where aj , bk
and cr represent reaching de�nitions of a,b and c respectively at call-site p.

In its full generality, computing typededucible(ni) and region(ni) poses the prob-
lem of ow-sensitive type inferencing using reaching de�nitions. Several algo-
rithms for inferring types and constructing call graphs for OOPLs have been
proposed, however they are ow-insensitive approaches [4] [3]. Flow-sensitive
analysis is needed to avoid a loss of precision in our framework. In order to build
a ow-sensitive call graph, reaching de�nitions need to be calculated. However,
solving such a problem in the interprocedural scope can have a considerable com-
plexity as shown by Agesen 4. Morever, there is no empirical data yet that demon-
strates the tractability of ow-sensitive call graph construction using reaching
de�nitions [1]. Thus, we limit our analysis to the intraprocedural scope. Also we
propose a framework based on reaching de�nitions of values rather than types.
This allows us to avoid type inferencing. Although this approach is certainly less
precise, we contend that in the intraprocedural sense the loss of precision is quite
tolerable due to the limited scopes and type locality of the values involved.

In our value based approach, we use the closure of reaching de�nitions of
formal parameter n. We introduce a concept of reaching defs copy(n).

De�nition 3. reaching defs copy(n) is the set of all values that are copies of

reaching de�nitions of n within the callers' scope of method q(n).

4 Reaching de�nitions and the call graph must be built simultaneously [1]. Unfortu-

nately this adds a layer of complexity to the already complex iterative re�nement

that resolves the type and call graph mutually dependent problems [17] [16]. Agesen

also warns that it easy to �nd code examples with inferior asymptotic precision [1].



Thus, k 2 reaching defs copy(n) if and only if either there exists an assignment
k = n or k = r where, r 2 reaching defs copy(n).

Using these de�nitions, we can restate the region of n as follows:

Corollary 2. p(a, b, c) 2 region(n) if 8aj, bk and cr 2 reaching defs copy(n)

leading to a single callee for p where aj , bk and cr represent reaching de�nitions

of a,b and c respectively at call-site p.

Proof:

It is obvious that the set reaching defs copy(n) �
S

i typededucible(n
i), thus

satis�es corollary 1.

In order to e�ectively use corollary 2, we must be able to include all call-sites that
could be inferred using the transitive closure of the set reaching defs copy(n).
Finally, if the outer call-site q(n) had multiple dispatching arguments (such as in
q(n,m)) corollary 2 still holds, except that we now have a de�nition of the region
in terms of a cartesian product of type bindings n and m. The above de�nitions
could be trivially extended to these cases.

Lemma 2. The type for an object de�nition x is said to be invariant from a

program point y to a program point z if and only if there does not exist a path

from y to z that kills de�nition x.

Proof:

When considering objects that are used in singly- or multiple-dispatched mes-

sage sends, the type for an object is determined solely on a data-ow (e.g., an

initialization, assignment, side-e�ect through a message send, etc.) [4]. In order

for x to mutate, there must exist a path from y to z, such that de�nition x gets

killed. Conversely, if there does not exist a rede�nition of x along any path be-

tween y and z, then the type for x must remain invariant between y and z if and

only if type is determined solely by a data-ow.

De�nition 4. Using the de�nitions of x, y, and z from Lemma 2, we describe

the type invariant region for x as all the paths from y to z if and only if lemma

2 holds.

The above lemma and de�nition for type invariant region is applicable for singly-
or multiple-dispatched message sends. Predicate dispatching [7] [15], another (al-
though less common) dispatching technique, is not considered here 5.

2.4 Algorithms for Type Invariant Region Detection

The implementation algorithms are presented in �gures 4 and 5. The �rst al-
gorithm takes as input DefUse(X) which is calculated using a standard du
chain algorithm [5]. Next, we calculate region reaching defs copy(region id) in
�gure 4. In the �rst loop we are seeding region reaching defs copy(n) with all

5 Determining the type-invariant region for an object used in predicate dispatching is

undecidable without loss of generality. A proof was omitted due to space limitations.

The interested reader may request the proof from the authors.



immutable objects6. In the second loop we calculate their transitive closure. Af-
ter region reaching defs copy(region id) is calculated, we can calculate region(n)
(de�nition 1) in �gure 5. We use a table called region table that maps a receiver
set to a set of message sends. We initially seed region table with the range of
region reaching defs copy. Next, we traverse a CFG and examine each dynamic
message send. Whenever we encounter a dynamic message send in which its re-
ceiver set is in the domain of region table, we add it to the appropriate message
set. After traversing the CFG, region(n) is de�ned.

Algorithm 1: Compute Region Reaching defs copy(region cnt)

Input: DefUse(X),

DefUse(X) is a table that maps the object de�nition X to a set of reaching object de�nitions

used by X

Output: region reaching defs copy(region cnt),

table region reaching defs copy(region id) maps region id 2 integer! reaching defs copy(n),

region cnt = the number of regions detected in a CFG and

table region reaching defs copy maps (1 � region id � region cnt)! reaching defs copy(n).

change := true;

region cnt := 1;

for each Z 2 Domain(DefUse(X)) do

if( Z is an immutable object) then

region reaching defs copy(region cnt) := region reaching defs copy(region cnt) [Z;

increment region cnt;

end if

end do

while( change = true ) do

change := false;

for each Z 2 Domain(DefUse(X)) do

let Y := DefUse(Z);

if( :(Z 2 Y ) ) then

for each i 2 region reaching defs copy(n) do

if( Y � region reaching defs copy(i) ) then

region reaching defs copy(i) := region reaching defs copy(i) [Z;

change := true;

end if

end do

end if

end do

end do

Fig. 4. Algorithm 1: Compute region reaching defs copy(region cnt)

6 In Cecil these include all formal parameters, user-speci�ed immutables, and compiler-

generated temporaries. All other objects (e.g., variables) in Cecil are mutable [6].



Algorithm 2: ComputeRegions

Input: The control ow graph (CFG), region reaching defs copy(region cnt)

(computed in Algorithm 1).

Output: region(n) (de�nition 1).

let message set be a set of nodes N 2 CFG such that N is a dynamic message send;

let region table be a table that maps receiver set! message set;

for each i 2 region reaching defs copy(n) do

Domain(region table) := Domain(region table) [ reaching defs copy(i)

for each node N 2 message set do begin

let R := receiver set(N);

if( R 2 Domain(region table)) then

region table(R) := region table(R)[N ;

else

if( 8S 2 R9i 2 Range(region reaching defs copy(region cnt)) such that S � i) then

region table(R) := N ;

end;

let region(n) := region table;

Fig. 5. Algorithm 2: Compute region(n)

3 Implementation

We implemented our Type Invariance Region Analysis (TIRA) framework in
Vortex [11], an optimizing OOPL back-end with front-ends for Cecil, Modula-3,
C++, and Java. We implemented our framework as the last optimizing pass.
The optimizations that precede our analysis are: Static Class Analysis [9], Iter-
ative Class Analysis [10] [20], Class Hierarchy Analysis [12], Inlining [9], Split-
ting [10], and Common Subexpression Elimination [5]. The rationale for placing
our analysis last is that we will optimize only those message sends that the
earlier optimizations could not remove. Moreover, placing it after inlining gives
our framework potentially larger regions to work with. Because our optimization
uses reaching de�nitions of values rather than types, we do not need an inter-
procedural class analysis. We also focus on optimizing regions with more than
one call-site because a region with one call-site is equivalent to an inline cache
or run-time type test7.

In �gure 2 region(Alist) is de�ned after the statement Alist := arg1. We
call this statement the region entry point. During code generation, we generate

7 A region with one call-site inside a loop may bene�t, but most loops in our bench-

marks were not implemented inline. Instead, they were implemented with a closure

passed into a loop method.



run-time code to perform the region type test at the region entry point. We also
generate static message sends for each region call-site.

Each region has a region cache variable that stores the most recent type
binding for n in region(n). Each region call-site has a cache that stores the most
recent message target. At the region entry point, we generate a comparison
between the type of n and the type stored in the region cache. Whenever the
type binding for n di�ers from the region cache, we perform a dynamic dispatch
for each region call-site. When n does not di�er, it is safe to reuse the cached
message targets for each region call-site. Figure 6 illustrates the run-time code for
singly-dispatched regions. If the region consists of multiple-dispatched methods,
a region cache for each dispatching argument is required.

OOP X; /*assume some object X*/

static OOP_MAP * REGION_CACHE_TYPE = NULL; /*region cache*/

static void (*CALL_SITE_CACHE_1) (ARG_LIST); /*call-site cache 1*/

...

static void (*CALL_SITE_CACHE_N) (ARG_LIST); /*call-site cache N*/

/**** The code below is generated at the region entry point ****/

OOP_Map * Xtype = X->type();

if ( Xtype != REGION_CACHE_TYPE ){

CALL_SITE_CACHE_1 = methodLookup(selector_1); /*lookup method 1*/

...

CALL_SITE_CACHE_N = methodLookup(selector_N); /*lookup method N*/

REGION_CACHE_TYPE = Xtype; /*set region cache to new type*/

}

...

/***** Region call-sites below *****/

STATIC_SEND((*CALL_SITE_CACHE_1)(args)); /*directly call cached method 1*/

...

STATIC_SEND((*CALL_SITE_CACHE_N)(args)); /*directly call cached method N*/

Fig. 6. TIRA Run-Time Pseudo-code

3.1 Performance Evaluation

Table 1 summarizes our results 8. The Regions Detected column breaks down the
number of regions and sizes (e.g., number of call-sites) found by our framework.
The Regions Executed column lists the number of regions and their sizes that
were used at run-time. The Hit Rate column measures region cache performance.
When the region cache misses, our run-time must perform method lookups for
each region call-site. On a cache hit, each call-site directly invokes the method

8 Benchmarking was performed on an unloaded 333 MHz UltraSPARC 5/10 worksta-

tion with 256MB of RAM.



stored in its call-site cache. The Type Tests Avoided column lists the number of
receiver type comparisons avoided based on the region size. Time Base is the
execution time for the benchmark compiled with the default full optimization
level in Vortex. Time TIRA is the execution time for the benchmark compiled
with full optimization and our TIRA framework.

The majority of the regions detected were found in Cecil's standard library9.
This probably explains the high cache hit rates as library methods are generally
invoked at the end of a polymorphic call chain. This reveals a nice application
for TIRA. TIRA can be used to optimize separately compiled libraries when no
other type information is available.

4 Conclusion

In this work we developed a framework that augments existing intra and inter-
procedural type analyses for OOPLs. Because our analysis works o� of reaching
de�nition values rather than types, our analysis can optimize message sends in
which no available type information is present. This is especially useful for the
separate compilation of library routines where the types of the incoming formal
parameters are statically unknown but �xed at run-time. Next, we demonstrated
in our benchmarks that most of the messages that we optimized had a single re-
ceiver type. This is evident with the high region cache hit rates and large regions
found. Finally, we used our type invariant region analysis to remove redundant
receiver type tests and improve performance. Average performance improvement
was 9% with 18% in the best case.
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