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Abstract

This paper presents a statistical algorithm for collaborative mobile robot localization. Our ap-

proach uses a sample-based version of Markov localization, capable of localizing mobile robots

in an any-time fashion. When teams of robots localize themselves in the same environment, prob-

abilistic methods are employed to synchronizeeach robot’s belief whenever one robot detects

another. As a result, the robots localize themselves faster, maintain higher accuracy, and high-cost

sensors are amortized across multiple robot platforms. The paper also describes experimental re-

sults obtained using two mobile robots, using computer vision and laser range finding for detecting

each other and estimating each other’s relative location. The results, obtained in an indoor office

environment, illustrate drastic improvements in localization speed andaccuracy when compared

to conventional single-robot localization.
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1 Introduction

Sensor-based robot localization has been recognized as of the fundamental problems in mobile

robotics. The localization problem is frequently divided into two subproblems:Position tracking,

which seeks to identify and compensate small dead reckoning errors under the assumption that the

initial position is known, andglobal self-localization, which addresses the problem of localization

with no a priori information. The latter problem is generally regarded as the more difficult one, and

recently several approaches have provided sound solutions to this problem. In recent years, a flurry

of publications on localization—which includes a book solely dedicated to this problem [6]—

document the importance of the problem. According to Cox [15], “Using sensory information to

locate the robot in its environment is the most fundamental problem to providing a mobile robot

with autonomous capabilities.”

However, virtually all existing work addresses localization of asinglerobot only. The problem

of cooperative multi-robot localization remains virtually unexplored. At first glance, one could

solve the problem of localizingN robots by localizing each robotindependently, which is a valid

approach that might yield reasonable results in many environments. However, if robots can detect

each other, there is the opportunity to do better. When a robot determines the location of another

robot relative to its own, both robots can refine their internal believes based on the other robot’s

estimate, hence improve their localization accuracy. The ability to exchange information during

localization is particularly attractive in the context of global localization, where each sight of

another robot can reduce the uncertainty in the location estimated dramatically.

The importance of exchanging information during localization is particularly striking for het-

erogeneous robot teams. Consider, for example, a robot team where some robots are equipped with

expensive, high accuracy sensors (such as laser range finders), whereas others are only equipped

with low-cost sensors such as ultrasonic range finders. By transferring information across mul-

tiple robots, high-accuracy sensor information can be leveraged. Thus, collaborative multi-robot

localization facilitates the amortization of high-end high-accuracy sensors across teams of robots.

Thus, phrasing the problem of localization as a collaborative one offers the opportunity of im-

proved performance from less data.

This paper proposes an efficient probabilistic approach for collaborative multi-robot local-

ization. Our approach is based onMarkov localization[53, 64, 37, 9], a family of probabilistic

approaches that have recently been applied with great practical success to single-robot localiza-

tion [7, 70, 19, 29]. In contrast to previous research, which relied on grid-based or coarse-grained

topological representations, our approach adopts a sampling-based representation [17, 23], which

is capable of approximating a wide range of belief functions in real-time. To transfer informa-

tion across different robotic platforms, probabilistic “detection models” are employed to model
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the robots’ abilities to recognizeeach other. When one robot detects another, detection mod-

els are used to synchronize the individual robots’ believes, thereby reducing the uncertainty of

both robots during localization. To accommodate the noise and ambiguity arising in real-world

domains, detection models are probabilistic, capturing the reliability andaccuracy of robot detec-

tion. The constraint propagation is implemented using sampling, and density trees [42, 51, 54, 55]

are employed to integrate information from other robots into a robot’s belief.

While our approach is applicable to any sensor capable of (occasionally) detecting other

robots, we present an implementation that uses color cameras for robot detection. Color im-

ages are continuously filtered, segmented, and analyzed, to detect other robots. To obtain accurate

probabilistic models of the detection process, a statistical learning technique is employed to learn

the parameters of this model using the maximum likelihood estimator. Extensive experimental

results, carried out using data collected in two indoor environments, illustrate the appropriateness

of the approach.

In what follows, we will first describe the Monte Carlo Localization algorithm for single

robots. Section 2 introduces the necessary statistical mechanisms for multi-robot localization,

followed by a description of our sampling-based and Monte Carlo localization technique in Sec-

tion 3. In Section 4 we present our vision-based method to detect other robots. Experimental

results are reported in Section 5. Finally, related work is discussed in Section 6, followed by a

discussion of the advantages and limitations of the current approach.

2 Multi-Robot Localization

Let us begin with a mathematical derivation of our approach to multi-robot localization. Through-

out the derivation, it is assumed that robots are given a model of the environment (e.g., a map [69]),

and that they are given sensors that enable them to relate their own position to this model (e.g.,

range finders, cameras). We also assume that robots can detect each other, and that they can

perform dead-reckoning. All of these senses are typically confounded by noise. Further below,

we will make the assumption that the environment is Markov (i.e., the robots’ positions are the

only measurable state), and we will also make some additional assumptions necessary for factorial

representations of joint probability distributions—as explained further below.

Throughout this paper, we adopt a probabilistic approach to localization. Probabilistic meth-

ods have been applied with remarkable success to single-robot localization [53, 64, 37, 9, 25, 8],

where they have been demonstrated to solve problems like global localization and localization in

dense crowds.
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2.1 Data

Let N be the number of robots, and letdn denote the data gathered by then-th robot, with1 �
n � N . Obviously, eachdn is a sequence of three different types of information:

1. Odometry measurements.Each continuouslymonitors its wheel encoders (dead-reckoning)

and generates, in regular intervals, odometric measurements. These measurements, which

will be denoteda, specify the relative change of positionaccording to the wheel encoders.

2. Environment measurements.The robots also queries their sensors (e.g., range finders, cam-

eras) in regular time intervals, which generates measurements denoted byo. The measure-

mentso establish the necessary reference between the robot’s local coordinate frame and the

environment’s frame of reference. In our experiments below,o will be laser range scans.

3. Detections.Additionally, each robot queries its sensors for the presence or absence of other

robots. The resulting measurements will be denotedr. Robot detection might be accom-

plished through different sensors than environment measurements. Below, in our experi-

ments, we will use a combination of visual sensors (color camera) and range finders for robot

detection.

The data of all robots is denotedd with

d = d1 [ d2 [ : : :[ dN : (1)

2.2 Markov Localization

Before turning to the topic of this paper—collaborative multi-robot localization—let us first re-

view a common approach to single-robot localization, which our approach is built upon: Markov

localization. Markov localization uses only dead reckoning measurementsa and environment

measurementso; it ignores detectionsr. In the absence of detections (or similar information that

ties the position of one robot to another), information gathered at different platforms cannot be

integrated. Hence, the best one can do is to localize each robot individually, independently of all

others.

The key idea of Markov localization is that each robot maintains a belief over its position.

The belief of then-th robot at timet will be denotedBel(t)n (�). Here� denotes arobot position

(we will use the termsposition, poseand location interchangeably), which is typically a three-

dimensional value composed of a robot’sx-y position and its heading direction�. Initially, at time

t = 0, Bel(0)n (�) reflects the initial knowledge of the robot. In the most general case, which is

being considered in the experiments below, the initial position of all robots is unknown, hence

Bel
(0)

n (�) is initialized by a uniform distribution.
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At time t, the beliefBel(t)n (�) is the posterior with respect to all data collected up to timet:

Bel(t)n (�) = P (�(t)n j d(t)n ) (2)

where�(t)n denotes the position of then-th robot at timet, andd(t)n denotes the data collected by

then-the robotup totime t. By assumption, the most recent sensor measurement ind
(t)
n is either

an odometry or an environment measurement. Both cases are treated differently, so let’s consider

the former first:

1. Sensing the environment:Suppose the last item ind(t)n is an environment measurement,

denotedo(t)n . Using the Markov assumption (and exploiting that the robot position does not

change when the environment is sensed), we obtain

Bel(t)n (�) = P (�(t)n j d(t)n )

=
P (o

(t)
n j �(t)n ; d

(t�1)
n ) P (�

(t)
n j d(t�1)n )

P (o
(t)
n j d(t�1)n )

=
P (o

(t)
n j �(t)n ) P (�

(t)
n j d(t�1)n )

P (o
(t)
n j d(t�1)n )

= � P (o(t)n j �(t)n ) P (�(t)n j d(t�1)n )

= � P (o(t)n j �(t)n ) P (�(t�1)n j d(t�1)n )

= � P (o(t)n j �(t)n ) Bel(t�1)n (�) (3)

where� is a normalizer that does not depend on�
(t)
n . Notice that the posterior beliefBel(t)n (�)

after incorporatingo(t)n is obtained by multiplying the perceptual modelP (o
(t)
n j �(t)n ) with

the prior belief. This observation suggest theincrementalupdate equation:

Beln(�n)  � P (o(t)n j �(t)n ) Beln(�n) (4)

The conditional probabilityP (on j �n) is called theenvironment perception modelof robot

n. In Markov localization, it is assumed to be given. The probabilityP (on j �n) can be

approximated byP (on j o�), which is the probability of observingon conditioned on the

expected measuremento� at location�. The expected measurement is easily computed using

ray tracing. Figure 1 shows this perception model for laser range finders. Here thex-axis is

the distanceo� expected given the world model, and they-axis is the distanceon measured by

the sensor. The function is a mixture of a Gaussian density and a geometric distribution. It in-

tegrates the accuracy of the sensor with the likelihood of receiving a “random” measurement

(e.g., due to obstacles not modeled in the map [22]).
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Fig. 1: Perception model for laser range finders. Thex-axis depicts the expected measurement, they-axis

the measured distance, and the vertical axis depicts the likelihood. The peak marks the most likely

measurement. The robots are also given a map of the environment, to which this model is applied.

2. Odometry: Now suppose the last item ind(t)n is an odometry measurement, denoteda
(t)
n .

Using the Theorem of Total Probability and exploiting the Markov property, we obtain

Bel(t)n (�) = P (�(t)n j d(t)n )

=

Z
P (�(t)n j d(t)n ; �(t�1)n ) P (�(t�1)n j d(t)n ) d�(t�1)n

=

Z
P (�(t)n j a(t)n ; �(t�1)n ) P (�(t�1)n j d(t�1)n ) d�(t�1)n (5)

which suggests theincrementalupdate equation:

Bel(�n)  �
Z

P (�n j a(t)n ; �0n) Bel(�
0

n) d�
0

n (6)

HereP (� j a; �0) is called themotion modelof robotn. Figure 2 shows an example for

the mobile robots used in our experiments. The straight line represents the trajectory of the

robot, which moved straight from left to right. In the beginningBel
(0)

n (�) was initialized by

a Dirac-Distribution. After 30 meters the robot is highly uncertain about its location which is

represented by the ”‘banana-shaped”’ distributionBel
(t)
n (�). As the figure suggests, a motion

model is basically a model of robot kinematics annotated with uncertainty.

These equations together form the basis of Markov localization, an incremental probabilis-

tic algorithm for estimating robot positions. The Markov localization algorithm consists of the

following steps:
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Fig. 2: Motion model representing the uncertainty in robot motion.

Step 1. InitializeBeln(�) by a uniform distribution.

Step 2.1. For each environment measurementon do

Beln(�n)  � P (on j �n) Beln(�n): (7)

Step 2.2. For each odometry measurementan do

Bel(�n)  �
Z

P (�n j an; �0n) Bel(�0n) d�0n (8)

Thus, Markov localization relies on knowledge ofP (o j �) andP (� j a; �0), The former condi-

tional typically requires a model (map) of the environment. As noticed above, Markov localization

has been applied with great practical success to mobile robot localization. However, it is only ap-

plicable to single-robot localization, and cannot take advantage of robot detection measurements.

Thus, in its current form it cannot exploit relative information between different robots’ positions

in any sensible way.

2.3 Multi-Robot Markov Localization

The key idea of multi-robot localization is to integrate measurements taken at different platforms,

so that each robot can benefit from data gathered by robots other than itself.

At first glance, one might be tempted to maintain a single belief over all robots’ locations, i.e.,

� = f�1; : : : ; �Ng (9)

Unfortunately, the dimensionality of this vector growths with the number of robots: Ifeach robot

position is described by three values (itsx-y position and its heading direction�), � is of dimension
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3N . Distributionsover� are, hence, exponential in the number of robots. Thus, modeling the joint

distribution of the positions of all robots is infeasible for larger values ofN .

Our approach maintainsfactorial representations; i.e., each robot maintains its own belief

function that models only its own uncertainty, and occasionally, e.g., when a robot sees another

one, information from one belief function is transfered from one robot to another. The factorial

representation assumes that the distribution of� is the product of itsN marginal distributions:

P (�
(t)

1
; : : : ; �

(t)

N j d(t)) = P (�
(t)

1
j d(t)) � : : : � P (�(t)N j d(t)) (10)

Strictly speaking, the factorial representation is only approximate, as one can easily construct

situations where the independence assumption does not hold true. However, the factorial repre-

sentation has the advantage that the estimation of the posteriors is conveniently carried out locally

on each robot. In the absence of detections, this amounts to performing Markov localization in-

dependently for each robot. Detections are used to provide additional constraints between the

estimated of pairs of robots, which will lead to refined local estimates.

To derive how to integrate detections into the robots’ beliefs, let us assume the last item ind
(t)
n

is a detection variable, denotedr(t)n . For the moment, let us assume this is the only such detection

variable ind(t), and that it provides information about the location of them-th robot relative to

robotn (with m 6= n). Then

Bel(t)m = P (�(t)m j d(t))
= P (�(t)m j d(t)m ) P (�(t)m j d(t)n )

= P (�(t)m j d(t)m )

Z
P (�(t)m j �(t)n ; r(t)n )P (�(t)n j d(t�1)n ) d�(t�1)n (11)

which suggests incremental update equation:

Bel(�m)  � Bel(�m)

Z
P (�(t)m j �(t)n ; r(t)n ) Bel(�n) d�n (12)

Of course, this is only an approximation, since it makes certain independence assumptions (it

excludes that a sensor reports “I saw a robot, but I cannot say which one”), and strictly speaking it

is only correct if there is only a singler in the entire run. However, this gets us around modeling the

joint distributionP (�1; : : : ; �N j d), which is computationally infeasible as argued above. Instead,

each robot basically performs Markov localization with these additional probabilistic constrains,

hence estimates the marginal distributionsP (�njd) separately.

The reader may notice that, by symmetry, the same detection can be used to constrain then-th

robot’s position based on the belief of them-the robot. The derivation is omitted since it is fully

symmetrical.
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2.4 Additional Considerations

If the data set contains more than one constraintr between two robotsm andn, the situation

becomes more complicated. Basically, repeated integration of different robots’ belief according

to (11) can lead to using the same evidence twice; hence, robots can get overly confident in their

position.

In our approach, this effect is diminished by a set of rules that basically reduce the danger

arising from the factorial distribution.

1. To diminish these effects, our approach ignorednegativesights, i.e., events where a robot

doesnotsee another robot.

2. It also includes timer that, once a robot has been sighted, blocks the ability to see the same

robot again for a pre-specified duration.

In practice, these two restrictions are sufficient to yield superior performance, as demonstrated

below. However, the reader should notice that they imply that detection information may not be

used. At the current point, we are not aware of an approach that would utilize more information

yet maintain the highly convenient factorial representations.

3 Sampling and Monte Carlo Localization

The previous section left open how the belief is represented. In general, the space of all robot

positions is continuous-valued and no parametric model is known that would accurately model

arbitrary beliefs in such robotic domains. However, practical considerations make it impossible to

model arbitrary beliefs using digital computers.

The key idea here is to approximate belief functions using a Monte Carlo method. More

specifically, our approach is an extension of Monte Carlo localization (MCL), which was recently

proposed in [17, 23]. MCL is a version of Markov localization that relies on sample-based rep-

resentation and the sampling/importance re-sampling algorithm for belief propagation [60]. MCL

represents the posterior beliefsBeln(�) by a set ofK weighted random samples, orparticles,

denotedS = fsi j i = 1::Kg. A sample set constitutes a discrete distribution. However, un-

der appropriate assumptions (which happen to be fulfilled in MCL), such distributions smoothly

approximates the “correct” one at a rate of1=
p
K asK goes to infinity [66].

A particularly elegant algorithm to accomplish this has recently been suggested independently

by various authors. It is known alternatively as the bootstrap filter [27], the Monte-Carlo fil-

ter [40], the Condensation algorithm [35, 36], or the survival of the fittest algorithm [38]. These

methods are generically known asparticle filters, or sampling/importance re-sampling [60], and

an overview and discussion of their properties can be found in [18].
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10 meters

Start location

Fig. 3: Sampling-based approximation of the position belief for a non-sensing

robot. The solid line displays the actions, and the samples represent the

robot’s belief at different points in time.

Samples in MCL are of the type

hhx; y; �i; pi (13)

wherehx; y; �i denote a robot position, andp � 0 is a numerical weighting factor, analogous to a

discrete probability. For consistency, we assume
PK

i=1 pi = 1.

In analogy with the general Markov localization approach outlined in Section 2, MCL proceeds

in two phases:

1. Robot motion. When a robot moves, MCL generatesK new samples that approximate the

robot’s position after the motion command. Each sample is generated byrandomlydrawing

a sample from the previously computed sample set, with likelihood determined by theirp-

values. Let�0 denote the position of this sample. The new sample’s� is then generated by

generating a single, random sample fromP (� j �0; a), using the actiona as observed. The

p-value of the new sample isK�1.

Figure 3 shows the effect of this sampling technique for a single robot, starting at an initial

known position (bottom center) and executing actions as indicated by the solid line. As can

be seen there easily, the sample sets approximate distributions with increasing uncertainty,

representing the gradual loss of position information due to slippage and drift.

2. Environment measurementsare incorporated by re-weighting the sample set, which is anal-

ogous to Bayes rule in Markov localization. More specifically, let

h�; pi (14)

be a sample. Then

p  � � P (o j �) (15)
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whereo is a sensor measurement, and� is a normalization constant that enforces
PK

i=1 pi =

1. The incorporation of sensor readings is typically performed in two phases, one in whichp

is multiplied byP (o j �), and one in which the variousp-values are normalized. An algorithm

to perform this re-sampling process efficiently inO(K) time is given in [12].

In practice, we have found it useful to add a small number of uniformly distributed, random sam-

ples after each estimation step [23]. Formally, these samples can be understood as a modified

motion model that allows, with very small likelihood, arbitrary jumps in the environment. The

random samples are needed to overcome local minima: Since MCL uses finite sample sets, it may

happen that no sample is generated close to the correct robot position. This may be the case when

the robot loses track of its position. In such cases, MCL would be unable to re-localize the robot.

By adding a small number of random samples, however, MCL can effectively re-localize the robot,

as documented in our experiments described in [23] (see also the discussion on ’loss of diversity’

in [18]).

3.1 Properties of MCL

A nice property of the MCL algorithm is that it can universally approximate arbitrary probability

distributions. As shown in [66], the variance of the importance sampler converges to zero at a rate

of 1=
p
N (under conditions that are true for MCL). Thus, at least theoretically MCL is superior

to all previous localization approaches that the authors are aware of, in that it can approximate a

much larger class of distributions. The sample set size naturally trades off accuracy and compu-

tation. The true advantage, however, lies in the way MCL places computational resources. By

sampling in proportion to likelihood, MCL focuses its computational resources on regions with

high likelihood, where things really matter.

MCL also lends itself nicely to an any-time implementation [16, 75]. Any-time algorithms

can generate an answer atanytime; however, the quality of the solution increases over time. The

sampling step in MCL can be terminated at any time. Thus, when a sensor reading arrives, or

an action is executed, sampling is terminated and the resulting sample set is used for the next

operation.

3.2 Multi-Robot MCL

The extension of MCL to collaborative multi-robot localization isnot straightforward. This is

because under our factorial representation, each robot maintains each own, local sample set. When

one robot detects another, both sample sets are synchronized using the detection model, according
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(a) (b)

Figure 4: (a) Sample set that corresponds to a detectionr, and (b) its approximation using a density tree.

The tree transforms the discrete sample set into a continuous distribution, which is necessary to generate

new importance factors for the individual sample points representing each robot’s belief.

to the update equation

Bel(�m)  � Bel(�m)

Z
P (�(t)m j �(t)n ; r(t)n ) Bel(�n) d�n (16)

Notice that this equation requires the multiplication of two densities. Since samples inBel(�m)

andBel(�n) are drawn randomly, it isnot straightforward to establish correspondence between

individual samples inBel(�m) and
R
P (�

(t)
m j �(t)n ; r

(t)
n ) Bel(�n) d�n.

To remedy this problem, our approach transforms sample sets into density functions using

density trees[42, 51, 54, 55]. These methods approximate sample sets using piecewise constant

density functions represented by a tree. The resolution of the tree is a function of the densities of

the samples: the more samples exist in a region of space, the finer-grained the tree representation.

Figure 4 shows an example sample set along with the tree that represents this set. Our specific

algorithm grows trees by recursively splitting in the center ofeach coordinate axis, terminating

the recursion when the number of samples is smaller than a pre-defined constant. After the tree is

grown, each leaf’s density is given by the quotient of the sum of all weightsp of all samples that

fall into this leaf, divided by the volume of the region covered by the leaf. The latter amounts to

maximum likelihood estimation of (piecewise) constant density functions.

To implement the update equation above, our approach approximates the density
Z

P (�(t)m j �(t)n ; r(t)n ) Bel(�n) d�n (17)

using samples, just as described above. The resulting sample set is then transformed into a density

tree. These density values are then multiplied into the weights (importance factors) of the samples

in Bel(�m), effectively multiplying both density functions. The result is a refined density for the

m-th robot, reflecting the detection and the belief of then-th robot.
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The same update rule is applied in the other direction, from robotm to robotn. Since the

equations are completely symmetric, they are omitted here.

3.3 Adaptive Sampling

In practice, the best sample set sizes can vary drastically [42]. During global localization, a robot

may be completely ignorant as to where it is; hence, it’s belief uniformly covers its full three-

dimensional state space. During position tracking, on the other hand, the uncertainty is typically

small and often focused on lower-dimensional manifolds. For example, when a robot knows its

relative position to an adjacent wall but does not know what hallway it is in, the belief is focused

on a one-dimensional sub-manifold similar to a road-map. Thus, many more samples are needed

during global localization to approximate the true density with high accuracy, than are needed for

position tracking.

MCL determines the sample set size on-the-fly. The idea is to use the divergence ofP (�n) and

P (�n j on), the beliefbeforeandafter sensing, to determine the sample sets. More specifically,

both motion data and sensor data is incorporated in a single step, and sampling is stopped whenever

the non-normalized sum of weightsp (before normalization!) exceeds a threshold�. If the position

predicted by odometry is well in tune with the sensor reading, each individualp is large and the

sample set remains small. If, however, the sensor reading carries a lot of surprise, as is typically

the case when the robot is globally uncertain or when it lost track of its position, the individual

p-values are small and the sample set is large.

MCL directly relates to the well-known property that the variance of the importance sampler

is a function of the mismatch of the sampling distribution (in our caseP (�n)) and the distribution

that is being approximated with the weighted sample (in our caseP (�n j on)). The less these

distributions agree, the larger the variance (approximation error). The idea is here to compensate

such error by larger sample set sizes, to obtain approximately uniform error.

Robot position
Robot position

Robot position

Fig. 5: Global localization:

Initialization.

Fig. 6: Ambiguity due to

symmetry.

Fig. 7: Achieved localization.
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Fig. 8: Training data of successful detections for the robot perception model.

3.4 A Global Localization Example

Figure 5 to 7 illustrate MCL when applied to localization of a single mobile robot. Shown there is

a series of sample sets (projected into 2D) generated during global localization of the mobile robot

Rhino operating in an office building. In Figure 5, the robot is globally uncertain; hence the sam-

ples are spread uniformly over the free-space. Figure 6 shows the sample set after approximately

1.5 meters of robot motion, at which point MCL has disambiguated the robot’s position mainly up

to a single symmetry. Finally, after another 4 meters of robot motion, the ambiguity is resolved,

the robot knows where it is. The majority of samples is now centered tightly around the correct

position, as shown in Figure 7. All necessary computation is carried out in real-time on a low-end

PC.

4 Learning Visual Detection Models

To implement the multi-robot Monte-Carlo localization technique robots must possess the ability

to sense each other. The crucial component is the detection modelP (�m j �n; rn) which describes

the conditional probability that robotm is at location�m, given that robotn perceives robotm

with measurementrn. From a mathematical point of view, our approach is sufficiently general to

accommodate a wide range of sensors for robot detection, assuming that the conditional density

P (�m j �n; rn) is adjusted accordingly.

We will now describe a specific detection method that integrates information from multiple

sensor modalities. This method, which integrates camera and range information, will be employed

throughout our experiments.
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4.1 Detection

To determine the relative location of other robots, our approach combines visual information ob-

tained from an on-board camera, with proximity information coming from a laser range finder.

Below, in our experiments, only one of the robots is equipped with a camera; however, despite the

asymmetry, the information conveyed by a detection enables both robots to refine their internal

belief as to where they are, utilizing the other robot’s belief.

Camera images are used to detect other robots, and laser ranger finder scans are used to deter-

mine the relative position of the detected robot and its distance. The top row in Figure 8 shows

examples of camera images recorded in the corridor. Each image shows a robot, marked by unique,

colored markers to facilitate their recognition. Even though the robot is only shown with a fixed

orientation in this figure, the markers can be detected regardless of a robot’s orientation.

To find robots in a camera image, our approach first filters the image using Gaussian color

filters tuned to the colors of the markers (see e.g., [34]). The center of the colors are then obtained

by local smoothing, and thresholding is applied to determine whether or not a robot can be seen

in the image. The small black rectangles, superimposed at the center of each marker in the images

in Figure 8, illustrate the center of the marker as identified by this visual routine. Currently,

images are analyzed at a rate of 1Hz, with the main delay being caused by the parallel port over

which images are transferred from the camera to the computer.1 This slow rate is sufficient for the

application at hand.

Once a robot has been detected, a laser scan is analyzed for the relative location of the robot

in polar coordinates (distance and angle). This is done by searching for a convex local minimum

in the distances of the scan, using the angle obtained from the camera image as a starting point.

We found that this method is robust and gives accurate results even in cluttered environments.

The bottom row in Figure 8 shows laser scans and the result of our analysis for the example

situations depicted in the top row of the same figure. Each scan consists of 180 distance mea-

surements with approx. 5 cm accuracy, spaced at 1 degree angular distance. The dark line in each

diagram depicts the extracted location of the robot in polar coordinates, relative to the position of

the detecting robot. All scans are scaled for illustration purposes. Based on a dataset of 54 suc-

cessful robot detections, which were labeled by the “true” positions of both robots, we found the

mean error of the distance estimation to be 88.7cm, and the mean angular error to be 2.36 degree.

4.2 Learning the Detection Model

Next, we have to devise a probabilistic detection model of the typeP (�m j �n; rn). To recap,rn
denotes a detection event by then-th robot, which comprises the identity of the detected robot (if

1With a state-of-the-art memory-mapped frame grabber the same analysis would be feasible at frame rate.
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Fig. 9: Gaussian density representing the robot perception model. The x-axis represents the deviation of

relative angle and the y-axis the error in the distance between the two robots.

any), and its relative location in polar coordinates. The variable�m is the location of the detected

robot (herem with m 6= n refers to an arbitrary other robot), and�n is the location of then-th

robot. As described above, we will restrict our considerations to “positive” detections, i.e., cases

where a robotn did detect a robotm. Negative detection events (a robotn doesnotsee a robotm)

are beyond the scope of this paper and will be ignored.

The detection model is trained using data. More specifically, during training we assume that

the exact location of each robot is known. Whenever a robot takes a camera image, its location is

analyzed as to whether other robots are in its visual field. This is done by a geometric analysis of

the environment, exploiting the fact that the locations of all robots are known during training.

Then, the image is analyzed, and for each detected robot the identity and relative location is

recorded. This data is sufficient to train the detection modelP (�m j �n; rn).

robot detected no robot detected

robot in field of view 64.3% 35.7%

no robot in field of view 6.90% 93.1%

Table 1: Rates of false-positives and false-negatives for our detection routine.

In our implementation, we employ a parametric mixture model to representP (�m j �n; rn).
Our approach models false-positive and false-negative detections using a binary random variable.

Table 1 shows the ratios of these errors in the training set. As can be see there, our current visual

routines have a 35.7% chance of not detecting a robot in their visual field, but only a 6.9% chance
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to erroneously detecting a robot when there is none.

The Gaussian distribution shown in Figure 9 models the error in the estimation of a robot’s

location. Here thex-axis represents the angular error, and they axis the distance error. This

Gaussian has been obtained through maximum likelihood estimation. As is easy to be seen, the

Gaussian is zero-centered along both dimensions, and it assigns low likelihood to large errors.

The correlation between both components of the error, angle and distance, are approximately

zero, suggesting that both errors might be independent.

In our experiments, the “true” location wasnot determined manually; instead, MCL was ap-

plied for position estimation (with a known starting position and very large sample sets). Em-

pirical results in [17] suggest that MCL is sufficiently accurate for tracking a robot with only a

few centimeters error. The robots’ positions, while moving at speeds like 30 cm/sec through our

environment, were then analyzed geometrically to determine whether (and where) robots are in

the visual fields of other robots. As a result, data collection is extremely easy as it does not require

any manual labeling; however, the error in MCL leads to a slightly less confined detection model

that one would obtain with manually labeled data (assuming that the accuracy of manual position

estimation exceeds that of MCL).

5 Experimental Results

Our approach was evaluated systematically using the two mobile robots (Robin and Marian)

shown in Figure 10. Both robots were marked optically by a colored marker, as shown in Fig-

ure 8. The central question driving our experiments war:Can cooperative multi-robot localization

improve the localization accuracy, when compared to conventional single-robot localization?Put

differently,can the task of global localizationsped up significantly when multiple robots cooperate

during localization?

To shed light onto these questions, we operated the robots over extended periods of time in

our university building. Figure 11 shows a map of the environment which was learned using a

probabilistic mapping algorithm [69, 72]. Notice the long corridor. Due to the lack of features,

global localization is quite difficult when the robots operate in this corridor. Previous publications

(e,g,. [17, 23]) have analyzed in detail the performance of Markov localization and MCL. Thus, in

this paper we will focus on the utility of collaboration and detections in multi-robot localization.

Throughout our experiments, we consistently found that the collaboration reduced the time

required for global localization, and it also improved the overall accuracy. Figures 11 to 15 show

an example in detail, obtained in one of our experiments.

In particular, Figure 11 shows the belief state of one of the robots, Robin, at a specific point

in time while performing global localization. In this specific experiment, the robot previously
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Fig. 10: Two of the robots used for testing: Marian (left) and Robin (right).

Fig. 11: Belief state of Robin during global localization in a long corridor.

Fig. 12: Belief state of Marian operating in the room.
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Fig. 13: Image and laser scan Marian uses to determine the relative angle and distance of Robin.

Fig. 14: Sampling-based representation of the density generated by Marian according to the detection of

Robin in the current image.

Fig. 15: Belief state of robin after incorporating the measurement of Marian.
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traversed the corridor from the right to the left, developing a belief that is centered along the main

axis of the corridor. However, the robot is unaware of its exact location within the corridor; neither

does it know its global heading direction.

The second robot, Marian, operates in our lab, which is the cluttered room adjacent to the

corridor. Its belief is shown in Figure 12. Because of the non-symmetric nature of the lab, the

robot knows fairly well where it is.

The key event, illustrating the utility of cooperation in localization, is a detection event. More

specifically, Marian, the robot in the lab, detects Robin, as it moves through the corridor. Figure 13

shows the image and the laser scan, along with the estimated distance and orientation. Using the

detection model described in Section 4 Marian generates the density shown in Figure:14. It then

transmits this density to Robin which integrates it into its current belief. Robin’s resulting density

is shown in Figure 15. As this figure illustrates, this single incident resolves entirely the uncertainty

in Robin’s belief—which would have taken minutes if the robots were unable to detect each other.

Obviously, this experiment is specifically well-suited to demonstrate the advantage of detec-

tions in multi-robot localization, since the robots’ uncertainties are somewhat orthogonal, making

the detection highly effective. Nevertheless, we consistently observed similarly good performance

even when operating the robots in other parts of the environment, e.g., when they both operated in

the corridor.

6 Related Work

Mobile robot localization has frequently been recognized as a key problem in robotics with sig-

nificant practical importance. Cox [15] noted that “Using sensory information to locate the robot

in its environment is the most fundamental problem to providing a mobile robot with autonomous

capabilities.” A recent book by Borenstein, Everett, and Feng [6] provides an excellent overview

of the state-of-the-art in localization. Localization plays a key role in various successful mobile

robot architectures [14, 26, 32, 46, 47, 52, 57, 59, 73] and various chapters in [43]. While some

localization approaches, such as those described in [33, 44, 64] localize the robot relative to some

landmarks in a topological map, our approach localizes the robot in a metric space, just like those

methods proposed in [3, 67, 71].

Almost all existing approach address single-robot localization only. Moreover, the vast ma-

jority of approaches is incapable of localizing a robot globally; instead, they are designed to track

the robot’s position by compensating small odometric errors. Thus, they differ from the approach

described here in that they require knowledge of the robot’s initial position; and they are not able

to recover from global localizing failures. Probably the most popular method for tracking a robot’s

position is Kalman filtering [30, 31, 48, 50, 61, 65], which represent uncertainty by single-modal
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distributions. These approaches are unable to localize robots under global uncertainty—a prob-

lem which Engelson called the “kidnapped robot problem” [20]. Recently, several researchers

proposedMarkov localization, which enables robots to localize themselves under global uncer-

tainty [9, 37, 53, 64]. Global approaches have two important advantages over local ones: First, the

initial location of the robot does not have to be specified and, second, they provide an additional

level of robustness, due to their ability to recover from localization failures. Among the global ap-

proaches those using metric representations of the space such as MCL land [9, 8] can deal with a

wider variety of environments than those methods relying on topological maps. For example, they

are not restricted to orthogonal environments containing pre-defined features such as corridors,

intersections and doors.

In addition, most existing approaches are restricted in the type features that they consider.

Many approaches reviewed in [6], a recent book on this topic, are limited in that they require mod-

ifications of the environment. Some require artificial landmarks such as bar-code reflectors [21],

reflecting tape, ultrasonic beacons, or visual patterns that are easy to recognize, such as black

rectangles with white dots [4]. Of course, modifying the environment is not an option in many ap-

plication domains. Some of the more advanced approaches use more natural landmarks that do not

require modifications of the environment. For example, the approaches of Kortenkamp and Wey-

mouth [44] and Matari´c [49] use gateways, doors, walls, and other vertical objects to determine

the robot’s position. The Helpmate robot uses ceiling lights to position itself [39]. Dark/bright

regions and vertical edges are used in [13, 74], and hallways, openings and doors are used by the

approach described in [41, 62, 63]. Others have proposed methods for learning what feature to

extract, through a training phase in which the robot it told its location [28, 56, 67, 68]. These are

just a few representative examples of many different features used for localization. Our approach

differs from all these approaches in that it does not extract predefined features from the sensor

values. Instead, it directly processes raw sensor data. Such an approach has two key advantages:

First, it is more universally applicable since fewer assumptions are made on the nature of the envi-

ronment; and second, it can utilize all sensor information, typically yielding moreaccurate results.

Other approaches that process raw sensor data can be found in [30, 31, 48].

The issue of cooperation between multiple mobile robots has gained increased interest in the

past (see [11, 1] for overviews). In this context most work on localization has focused on the

question how to reduce the odometry error using a cooperative team of robots. Kurazume and

Shigemi [45], for example, divide the robots into two groups. At every point in time only one

of the groups is allowed to move, while the other group remains at its position. When a motion

command has been executed, all robots stop, perceive their relative position, and use this to reduce

errors in odometry. While this method reduces the odometry error of the whole team of robots

it is not able to perform global localization; neither can it recover from significant sensor errors.
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Rekleitis and colleagues [58] present a cooperative exploration method for multiple robots, which

also addresses localization. To reduce the odometry error, they use an approach closely related to

the one described [45]. Here, too, only one robot is allowed to move at any point in time, while

the other robots observe the moving one. The stationary robots track the position of the moving

robot, thus providing more accurate position estimates than could be obtained with pure dead-

reckoning. Finally, in [5], a method is presented that relies on a compliant linkage of two mobile

robots. Special encoders on the linkage estimate the relative positions of the robots while they

are in motion. The author demonstrates that the dead-reckoning accuracy of the compliant linkage

vehicle is substantially improved. However, all these approaches only seek to reduce the odometry

error. None of them incorporates environmental feedback into the estimation, and consequently

they are unable to localize roots relative to each other, or relative to their environments, from

scratch. Even if the initial location of all robots are known, they ultimately will get lost—but at

a slower pace than a comparable single robot. The problem addressed in this paper differs in that

we are interested in collaborative localization in a global frame of reference, not just reducing

odometry error. In particular, our approach addresses cooperative global localization in a known

environment.

7 Conclusion

7.1 Summary

We have presented a statistical method for collaborative mobile robot localization. At its core, our

approach uses probability density functions to represent the robots’ estimates as to where they are.

To avoid exponential complexity in the number of robots, a factorial representation is advocated

where each robot maintains its own, local belief function. A fast, universal sampling-based scheme

is employed to approximate beliefs. The probabilistic nature of our approach makes it possible

that teams of robots performglobal localization, i.e., they can localize themselves from scratch

without initial knowledge as to where they are.

During localization, robots can detect each other. Here we use a combination of camera images

and laser range scans to determine other robot’s relative location. The “reliability” of the detec-

tion routine is modeled by learning a parametric detection model from data, using the maximum

likelihood estimator. During localization, detections are used to introduce additional probabilistic

constraints, represented by tree-like structure, that tie one robot’s belief to another robot’s belief

function. To combine different sample sets collected generated at different robots (each robot’s

belief is represented by a separate sample set), our approach transforms detections into density

trees, which transform discrete sample sets into piecewise constant density functions. These trees

are then used to refine the weighting factors (importance factors) of other robots’ beliefs, thereby
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reducing their uncertainty in response to the detection. As a result, our approach makes it possible

to amortize data collected at multiple platforms.

Experimental results, carried out in an indoor environment, demonstrate that our approach

can reduce the uncertainty in localization significantly, when compared to conventional single-

robot localization. Thus, when teams of robots are placed in a known environment with unknown

starting locations, our approach can yield much faster localization then conventional, single-robot

location—at approximate equal computation costs and relatively small communication overhead.

7.2 Implications for Heterogeneous Robot Teams

Even though the experiment reported here were carried out using homogeneous robots, the work

reported here offers some interesting perspectives for teams of heterogeneous robots. Tradition-

ally, heterogeneity has often been suggested as a means to achieve a wide range of tasks, requiring

a collection of different actuators, manipulators, or locomotion modalities (wheels, legs). In the

context of behavior-based robotics, heterogeneity has often studied the effect of different software

architectures on the overall task performance [2].

Our approach can exploit heterogeneity in the robots’ sensors. Consider, for example, a team

of robots where only a small number of robots are equipped with sensors that support high-

accuracy localization. For example, laser range finders typically provide highly accurate range

measurements, but they are bulky, expensive, and they consume significantly more energy than

comparable, low-accuracy sensors such as sonar sensors. It might therefore be desirable to equip

only a small number of robots with laser range finders.

As noted above, our approach makes it possible to amortize sensor data across multiple robotic

platforms during localization. Thus, it potentially enables a heterogeneous team of robots to main-

tain highly accurate location estimates, even if only a small number of robots are equipped with

the necessary high-accuracy sensors. In the extreme, one might think of heterogeneous robot

teams where only a small number of robots is capable of performing localization. Our approach

would enable these robots to localize other robots in the team, not capable of localizing themselves

autonomously, thereby provide a unique service to the entire heterogeneous team.

7.3 Limitations and Discussion

The current approach possesses several limitations that warrant future research.

� In our current system, only “positive” detections are processed.Not seeing another robotis

also informative, even though not as informative as positive detections. Incorporating such

negative detections is generally possible in the context of our statistical framework (using the

inverse weighting scheme). However, such an extension would drastically increase the com-
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putational overhead, and it is unclear as to whether the effects on the localization accuracy

justify the additional computation and communication.

� Another limitation of the current approach arises from the fact that our detection approach

must be able to identify individual robots—hence they must be marked appropriately. Of

course, simple means such as bar-codes can provide the necessary, unique labels. However,

from an academic stand point of view it might be interesting to devise methods that can

detect, but not identify robots. The general problem with such a setting lies in our factorial

representation, which cannot model statements such as “either robot A or robot B is straight

in front of me.” To model such situations, one would have to compute distributions over the

joint space of all robots’ coordinates, which would make it impossible that each robot carries

its own, local position estimate. In addition, the complexity of the estimation routine would

now depend super-linearly on the number of robots (as pointed out above, in the worst case it

would scaleexponentiallyinstead oflinearly). In fact, the latter observation is the key reason

as to why factorial representations are chosen here.

� The collaboration described here is purely passive, in that robots combine information col-

lected locally, but they do not change their course of action so as to aid localization. In [10,

24], we proposed an algorithm based on information-theoretic principles, foractive localiza-

tion, where a single robot actively explores its environment so as to best localize itself. A

desirable objective for future research is the application of the same, information-theoretic

principle, to coordinated multi-robot localization.

� Finally, the robots update their instantly whenever they perceive another robot. In situations

in which both robots are highly uncertain at the time of the detection it might be more appro-

priate to delay the update. For example, if one of the robots afterwards becomes more certain

by gathering further information about the environment or by being detected by another, cer-

tain robot, then the synchronization result can be much better if it is done retrospectively.

This, however, requires that the robots keep track of their actions and measurements after

detecting other robots.

Despite these open research areas, our approach does provide a sound statistical basis for informa-

tion exchange during collaborative localization, and empirical results illustrate its appropriateness

in practice. These results suggest that robots acting as a team are superior to robots acting individ-

ually. While we were forced to carry out this research on two platforms only, we conjecture that

the benefits of collaborative multi-robot localization increase with the number of available robots.
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