
Decentralized Execution of Constraint Handling
Rules for Ensembles∗

Edmund S. L. Lam and Iliano Cervesato

Apr 2013
CMU-CS-13-106

CMU-CS-QTR-118

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Carnegie Mellon University, Qatar campus.

The author can be reached at sllam@qatar.cmu.edu or iliano@cmu.edu.

Abstract

CHR is a declarative, concurrent and committed choice rule-based constraint programming language. In
this paper, we adapt CHR to provide a decentralized execution model for parallel and distributed programs.
Specifically, we consider an execution model consisting of an ensemble of computing entities, each with its
own constraint store and each capable of communicating with its neighbors. We extend CHR into CHRe,
in which rewrite rules are executed at one location and are allowed to access the constraint store of its
immediate neighbors. We give an operational semantics for CHRe, denoted ωe0, that defines incremental
and asynchronous decentralized rewriting for the class of CHRe rules characterized by purely local matching
(0-neighbor restricted rules). We show the soundness of the ωe0 semantics with respect to the abstract
CHR semantics. We then give a safe encoding of the more general 1-neighbor restricted rules as 0-neighbor
restricted rules, and discuss how this encoding can be generalized to all CHRe programs.

∗ Funded by the Qatar National Research Fund as project NPRP 09-667-1-100 (Effective Programming for Large
Distributed Ensembles)

mailto:sllam@qatar.cmu.edu
mailto:iliano@cmu.edu

Keywords: Distributed Programming, Constraint Logic Programming, Multiset Rewriting

CONTENTS

Contents

1 Introduction 1

2 Preliminaries 2

2.1 Notations . 2

2.2 CHR Language and Semantics . 3

3 The CHRe Language 4

4 Semantics of CHRe 7

4.1 ωeα Abstract Semantics . 7

4.2 ωe0 Operational Semantics . 8

5 Encoding 1-Neighbor Restricted Programs for ωe0 14

5.1 Basic Encoding Scheme . 14

5.2 Optimizations . 20

6 Generalized Encoding for n-Neighbor Restricted Rules 22

7 Related Works 27

8 Conclusion and Future Works 27

A Proofs 28

A.1 Proofs for the ωeα Semantics . 28

A.2 Proofs for the ωe0 Semantics . 30

A.3 Proofs for 1-Neighbor Restricted Rule Basic Encoding Scheme 36

A.4 Proofs for 1-Neighbor Restricted Rule Optimized Encoding Scheme 41

A.5 Proofs for n-Neighbor Restricted Rule Encoding Scheme . 43

LIST OF FIGURES

List of Figures

1 Distributed All Shortest Path . 1

2 Constraint Handling Rules, Language and Semantics . 3

3 Abstract syntax of CHRe . 5

4 ωeα Abstract Semantics of CHRe . 7

5 CHR Interpretation of CHRe . 8

6 ωe0 Ensemble States . 9

7 ωe0 Operational Semantics for CHRe . 10

8 Abstract Ensemble State Interpretation of Operational Ensemble States 12

9 Concurrent ωe0 Derivation Steps . 13

10 Color Swapping Example: 1-Neighbor Restricted Rule . 15

11 Color Propagation Example: Primary Propagated 1-Neighbor Restricted Rule 16

12 Example of Flawed Encoding of Rule with Non-persistent Propagated Head 17

13 Basic Encoding of 1-Neighbor Restricted Rules . 18

14 Optimized Encoding for Neighbor Persistent Rule . 20

15 Optimized Encodings for Primary Persistent Rules . 21

16 Graph Sum Example: 2-Neighbor Restricted Rule . 23

17 0-Neighbor Restricted Encoding for n-Neighbor Restricted Rules 24

1 INTRODUCTION

1 Introduction

In recent years, we have seen many advances in distributed systems, multicore architectures and cloud
computing, drawing more research interest into better ways to harness and coordinate the combined power
of distributed computation. While this has made distributed computing resources more readily accessible to
main-stream audiences, the fact remains that implementing distributed applications that can exploit such
resources via traditional distributed programming methodologies is an extremely difficult task. As such,
finding effective means of programming distributed systems is more than ever an active and fruitful research
and development endeavor.

In this paper, we propose an extension of the constraint programming language CHR [Frü94] (Constraint
Handling Rules). This language, which we call CHRe is designed specifically as a high-level distributed and
parallel programming language for developing applications that operate in a decentralized manner over an
ensemble of distributed computing entities, referred to as locations. Each rewrite rule executes at a location,
enabling this location to read and write data held by its immediate neighbors. Specifically, we are interested
in rules that can read data from up to n of their immediate neighbors for various values of n, but writes to
any number of neighbors. We call them n-neighbor restricted rules. Such n-neighbor restricted rules are a
generalization of link restriction [LCG+06, ARLG+09] adapted to the context of multiset rewriting. This
gives us a highly expressive model for programming complex behaviors involving distributed ensembles in a
declarative and concurrent manner. Figure 1 shows an example CHRe program that contains three rewrite

base : [X]edge(Y,D) =⇒ [X]path(Y,D)
elim : [X]path(Y,D) \ [X]path(Y,D′)⇐⇒ D < D′ | true
trans : [X]edge(Y,D),[Y]path(Z,D′) =⇒ X 6= Z | [X]path(Z,D +D′)

Figure 1: Distributed All Shortest Path

rules. This program computes all shortest paths of a graph in a distributed manner. An edge of length D
from a location X to Y is represented by a constraint edge(Y ,D) found in X’s constraint store, written
[X]edge(Y,D). Similarly [X]path(Y,D) expresses a path of length D from X to Y . The location of a
constraint is modeled by the [l] operator that prefixes all constraints in the rewrite rules. The rules base
and elim are 0-neighbor restricted rules because their left-hand sides involve constraints from exactly one
location, X. Rule trans is a 1-neighbor restricted rule since its left-hand side involves X and a neighbor
Y . We designate X as the primary location of this rewrite rule because it references Y in an argument
(here, [X]edge(Y,D)). This means that Y is a topological neighbor of X1. Neighbor restriction brings
aspects of the topology of the ensemble (X has an edge to Y) in the rewrite rules. Rule base adds path(Y,D)
at location X for every instance of constraint edge(Y,D) at the same location. Rule elim looks for any
instances of a pair of constraints, path(Y,D) and path(Y,D′) involving the same location Y at location
X and removes the longer of the two path (path(Y,D′) for D < D′). Rule trans adds path(Z,D +D′)
at location X whenever there is edge(Y,D) at location X and a matching path(Z,D′) at location Y for
X 6= Z. This program is declarative because the programmer focuses on which distributed computations
to synchronize (e.g. [X]edge(Y,D), [Y]path(Z,D′)) to produce what results ([X]path(Z,D+D′)), rather
than how synchronization is achieved. It is concurrent because while a rewrite rule applies to a fragment of
the ensemble, many other rewritings can occur asynchronously in the rest of the ensemble.

In this technical report, we present CHRe, a distributed programming language that extends CHR with
located constraints and n-neighbor restricted rewrite rules, a generalized notion of link-restriction [LCG+06].
We define the ωeα abstract semantics of CHRe and prove its soundness with respect to the standard se-
mantics of CHR. Following this, we extend the original CHR refined operational semantics [DSdlBH04] to

1Any location reference Y that appears in an edge predicate is this manner is considered a neighbor to X. This is how
neighbor restriction enforces topological information to be embedded in predicates.

1

2 PRELIMINARIES

support decentralized incremental multiset matching for 0-neighbor restricted rules obtaining the ωe0 opera-
tional semantics, and prove its soundness and the exhaustiveness of rule application, with respect to the ωeα
semantics. We then give an optimized encoding of 1-neighbor restricted rules into 0-neighbor restricted rules
of ωe0, prove the soundness of this encoding. Following this, we generalize this encoding work for n-neighbor
restricted rules and prove its soundness.

The main contributions in this paper are as follows:

• We present CHRe, a distributed programming language that extends CHR with located constraints and
n-neighbor restricted rewrite rules, a generalized notion of link-restriction [LCG+06] in the context of
multiset rewriting.

• We define the ωeα abstract semantics of CHRe and prove its soundness with respect to the CHR abstract
semantics.

• We present the ωe0 operational semantics (based on the refined CHR operational semantics [DSdlBH04])
that supports decentralized incremental multiset matching for 0-neighbor restricted rewrite rules. We
prove its soundness with respect to the ωeα abstract semantics.

• We give an optimized encoding of 1-neighbor restricted rules in ωe0 and prove the soundness of this
encoding.

• We generalize this encoding for n-neighbor restricted rules and prove the soundness of this encoding.

The rest of this report is organized as follows: Section 2 recalls notions used in this paper and the
traditional CHR language. Section 3 defines the CHRe language while Section 4 gives the ωeα abstract
semantics, the ωe0 operational semantics and relates them. Section 5 encodes 1-neighbor restricted rules into
ωe0. In Section 6, we show the encoding of the full CHRe language (n-neighbor restricted rules) into ωe0. We
review related work in Section 7 and conclude in Section 8. Proof of all lemmas and theorems in this report
are consolidated in Appendix A.

2 Preliminaries

In this section, we present the notations that will be used throughout this paper. We also give a brief
introduction to the abstract CHR language and its semantics.

2.1 Notations

Let o be a generic syntactic construct or runtime object of our language. We write ō for a multiset of objects
o and ~o for a sequence of objects o. Relying on these notational accents for disambiguation, we write ‘,’
to represent both multiset union and sequence concatenation, with ∅ as the identity element. For instance,
‘o, ō’ is a multiset while ‘o, ~o’ is a sequence (the former is commutative while the latter is not). A set is
treated as a multiset with single occurrences of each element. We use standard notations for sets: ō1 ∪ ō2

for union, o ∈ ō for membership, and ō1 ⊆ ō2 for subset. Given a set I of labels, we write
⊎
i∈Ioi to denote

the multiset of objects oi, for i ∈ I. It is inductively defined as follows:(⊎
i∈{j}∪Ioi

)
= oj ,

(⊎
i∈Ioi

) (⊎
i∈∅oi

)
= ∅

The substitution of all occurrences of variable x in o with the term expression t is denoted as [t/x]o. It is
inductively defined on all syntactic constructs and runtime objects o in the usual manner. We assume that
substitution is capture-avoiding and rely on implicit α-renaming. Given a sequence of terms ~t and a sequence
of variables ~x, we write [~t/~x]o as the simultaneous substitution of each variable in ~x with the corresponding
term in ~t. We will use this notion with sets as well (i.e, t̄ and x̄). We write FV(o) for the set of free-variables

2

2 PRELIMINARIES

CHR Abstract Syntax

Variables x Values v Predicate names p Rule names r Rule guard G

Term t ::= x | v | ...
Constraint c ::= p(~t)
Rule Heads H ::= · | c,H
Rule Body B ::= ∃x̄. D
Rule Body Elements D ::= true | c,D

Rewrite Rule R ::= r : H \ H ⇐⇒ G | B
Program P ::= R | R P
Store S̄ ::= ∅ | S̄, c

Simplification and Propagation Rule Short-hands

Simpagation Rule

{
r : P \ S ⇐⇒ G | B

r : P \ S ⇐⇒ B = r : P \ S ⇐⇒ true | B

Propagation Rule

{
r : P =⇒ G | B = r : P \ · ⇐⇒ G | B

r : P =⇒ B = r : P \ · ⇐⇒ true | B

Simplification Rule

{
r : S ⇐⇒ G | B = r : · \ S ⇐⇒ G | B

r : S ⇐⇒ B = r : · \ S ⇐⇒ true | B

ωα Abstract Semantics of CHR

r : P ′ \ S′ ⇐⇒ G | B ∈ P |= θG P = θP ′ S = θS′

P B (S̄, P, S) 7→ωα (S̄, P,NF(Inst(θB)))

Figure 2: Constraint Handling Rules, Language and Semantics

in o and say that o is ground if FV(o) = ∅. We write meta level operators in upright font (e.g. FV(−)) and
CHR constraint predicates in italics (e.g. edge, path).

2.2 CHR Language and Semantics

Figure 2 illustrates the abstract syntax of CHR. CHR is a high-level multiset rewriting language built on top
of a term language, which we will keep mostly abstract. We shall only assume that it has variables and that
each term t has a normal form, denoted NF(t). A rule guard G is a set of relations among term expressions,
called built-in constraints. We assume that built-in constraints contain equality. The judgment |= G decides
the validity of ground built-in constraint G.

A CHR constraint p(~t) is a first-order predicate symbol p applied to a sequence of terms ~t. A CHR rule
r : P \ S ⇐⇒ G | B is a rewrite rule with a unique name r, such that P , S and B are multisets of CHR
constraints and G is a set of built-in constraints. Each CHR rule specifies a rewriting that can occur over
fragments of a multiset of constraints, known as the CHR store. Specifically, a rule like this states that we
can replace any matching instance of ‘P, S’ in the CHR store with the corresponding instance of B, if G is
valid when applied to the matching substitution (|= θG). We denote true as the identity built-in constraint
such that |= true is universally true. We will refer to P and S as the propagate and simplify rule heads, G
as the rule guard and B as the rule body. This general form of CHR rule is known as a simpagation rule.

3

3 THE CHRE LANGUAGE

The short-hands r : P =⇒ G | B and r : S ⇐⇒ G | B, known as propagation and simplification rules,
have empty simplified and propagated rule heads respectively. We will omit the rule guard component if it
is empty as well. We take a few benign deviations from traditional treatments of CHR (e.g. [Frü94]): we
require that all constraints in a CHR store be ground and that built-in constraints only appear in the guards
G. This allows us to focus on the distributed multiset rewriting problem in this paper and set aside features
like explicit built-in constraints as orthogonal extensions. Also, a rule body B can be prefixed by zero or
more existential variable declarations (∃x̄). Such variables, which do not appear in the scope of the rule
heads, are instantiated to new constants (that do not appear in the store) during rule application, allowing
the creation of new destinations in destination passing-style programming [Pfe04]. For a rule body ∃x̄. D
such that x̄ is an empty set, we simply write it as D. A CHR rule r : P \ S ⇐⇒ G | B is well-formed if
rule guards and rule body are grounded by the rule heads (FV(G)∪FV(B) ⊆ FV(P)∪FV(S)2) and all term
expressions that appear in the rule are well-formed. A CHR program P is well-formed if all CHR rules in P
are well-formed and have a unique rule name. A CHR store S̄ is a multiset of constraints. It is well-formed
if FV(S̄) = ∅ and all terms that appear in constraints are well-formed.

We inductively extend the normalization function to rule bodies. Given a rule body that contains no
existentials D, NF(D) denotes the normalized rule body with all term expressions in D in normal form.
Since this operation only applies to rule bodies that contain no existentials, we define a complimentary
meta operator that instantiates existential variables to fresh constants: Given a rule body ∃x̄.D, Inst(∃x̄.D)
denotes an instance of D such that each existential variable x̄ that appear in D is replaced by a fresh constant
a. These meta operation is inductively defined as follows:

Normalize

{
NF(p(~t),D) = p(NF(~t)),NF(D)

NF(true) = NF(true)

Instantiate Inst(∃x̄.D) = [ā/x̄]D for each a ∈ ā is a fresh constant

Figure 2 also shows the abstract semantics ωα of CHR. It defines the transitions of well-formed CHR
stores via the derivation step P B S̄ 7→ωα S̄ ′ for a given well-formed CHR program P. A derivation step
models the application of a CHR rule: it checks that rule heads P ′ and S′ match fragments P and S of
the store under a matching substitution θ and that the corresponding instance of guard G is valid (|= θG),
resulting to the rewrite of S with θB with existential variables instantiated and then all term expressions
evaluated to normal form (i.e, NF(Inst(θB))). Derivation steps preserves the well-formedness of constraint
stores. We denote the reflexive and transitive application of derivation steps as PB S̄ 7→∗ωα S̄

′. A CHR store
S̄ is terminal for P if no derivation steps of ωα applies in S̄.

While the semantics in Figure 2 models CHR rewritings abstractly, actual CHR implementations imple-
ment some variant of the refined operational semantics [DSdlBH04]. This semantics computes new matches
incrementally from newly added constraints. Additionally, rule heads are implicitly ordered by an occurrence
index (typically in textual order of appearance) and matches are attempted in that order, thus providing pro-
grammatic idioms that assume a textual ordering of rule application. More details of these will be provided
in Section 4.2.

3 The CHRe Language

In this section, we introduce the CHRe language. CHRe extends CHR in several ways and here we focus on
the syntactic ramifications of these extensions. Locations l in CHRe rewriting rules are name annotations
to a CHR constraint c, written as [l]c and read as ‘c is located at l’. We call [l] the localization operator.
Locations can be variables and in this case are subjected to substitution and other free variable meta
operations as if they were an additional argument in constraints. Operationally, [l]c indicates that constraint
c is held at location l (details in Section 4.2). Figure 3 shows the abstract syntax of CHRe rules and programs.

2Recall that the existential variables are not free.

4

3 THE CHRE LANGUAGE

Location names k

Location l ::= x | k
Rule Heads H ::= · | [l]c,H
Rule Body B ::= ∃x̄.D
Rule Body Elements D ::= true | [l]c,D

Rewrite Rule R ::= r : H \ H ⇐⇒ G | B
Program P ::= R | R P

Figure 3: Abstract syntax of CHRe

All constraints in a rule are now explicitly localized by the operator [l]. A localization operator in a rule
head indicates the location where the constraint is to be matched, while a localization operator in a rule
body indicates the location where that constraint is to be delivered. We call the former locations matching
locations of the rule while the latter are forwarding locations.

CHRe rules and programs are well-formed similarly to CHR rules and programs. Like all variables,
location variables of rule bodies must appear as term arguments or localization operators of rule heads, or
otherwise be existentially quantified. These “existential locations” represent new locations to be created
during rule application and allows the specification of dynamically growing ensembles. We will only consider
well-formed CHRe rules from now on. Given a multiset of located constraints H, Locs(H) denotes the set of
locations that appear in the localization operators of H (e.g. Locs([X]a(Y,Z),[Y]b(Z, 2)) = {X,Y }) and
Args(H) denotes the set of all term arguments of constraints in H (e.g. Args([X]a(Y, Z),[Y]b(Z, 2)) =
{Y,Z, 2}). We write H|l for the location restriction on H, which denotes the multiset of all constraints in
H that is located at l (e.g. ([X]a(Y, Z),[Y]b(Z, 2))|X = a(Y,Z)). We write [l]H for the multiset of all
constraints in H each prefixed with [l]. These operators are inductively defined as follows:

Retrieve Locations

{
Locs([l]c,H) = l ∪ Locs(H)

Locs(·) = ∅

Retrieve Arguments

{
Args([l]p(~t),H) = ~t ∪Args(H)

Args(·) = ∅

Location Restrict (Rule Heads)

([l]c,H)|l = c,H|l

([l′]c,H)|l = H|l if l 6= l′

.|l = ∅

Link restriction in distributed rule based languages [CARG+12, LCG+06] constrains how locations are
used. We generalize it to the notion of n-neighbor restriction. A CHRe rule r : P \ S ⇐⇒ G | B is
n-neighbor restricted (where n = |Locs(P, S)| − 1) if we can select l ∈ Locs(P, S) such that it is directly
connected to each other n locations that appear in the rule heads. Furthermore, rule heads of locations other
than l are isolated in that they do not contain common variables that do not appear at l. Rule guards also
need to be isolated in a manner such that each atomic rule guard is grounded by the rule heads of location l
and at most one other location of the rule head. Such a matching location l is called the primary location of
the n-neighbor restricted rule, while all other matching locations of the rule are called neighbor locations. We
assume that rule guards G have no side-effects and hence are pure boolean assertions. Formally, a CHRe rule
r : P \ S ⇐⇒ G | B is n-neighbor restricted (for n = |Locs(P, S)| − 1) if there exists l ∈ Locs(P, S) such
that the following three conditions are satisfied:

• Directly connected: Locs(P, S) ⊆ {l} ∪Args((P, S)|l)

5

3 THE CHRE LANGUAGE

• Neighbor isolated rule heads: For all other distinct l′, l′′ ∈ Locs(P, S), for each x ∈ FV((P, S)|l′ , (P, S)|l′′),
we have x ∈ FV((P, S)|l).

• Neighbor isolated rule guards: For each guard condition g ∈ G, either we have FV(g) ⊆ FV((P, S)|l)
or for some other l′ ∈ Locs(P, S), we have FV(g) ∈ (FV((P, S)|l) ∪ FV((P, S)|l′)).

n-neighbor restricted rules characterizes multiset rewritings across constraint stores of n + 1 connected
locations in a ‘star’ topology with the primary location in the center, directly connected to each n neighbors.
The neighbor isolation conditions (for rule heads and guards) are defined so as to make the matching
problem decomposable into partial match problems between the primary location l and each of its n-neighbors
separately (details in Section 6). In general, an n-neighbor restricted rule is of the following form:

r :
(⊎

i∈In[ki]Pi
)
\
(⊎

i∈In[ki]Si
)
⇐⇒ G | ∃x̄.

(⊎
i∈In[ki]Di

)
,
(⊎

j∈Im[kj]Dj

)
,
(⊎

l∈Ie[kl]Dl

)
where ki for i ∈ In are matching locations.

kj for j ∈ Im, kj ∈
(
FV(

⊎
i∈InPi) ∪ FV(

⊎
i∈InSi)

)
are non-matched forwarding locations.

kl for l ∈ Ie, kl ∈ x̄ are existential forwarding locations.

The matching locations of the rule r are the set of locations ki labeled by i ∈ In. These are the locations
that will be involved in rule matching and correspond to the set of locations Locs(

(⊎
i∈In[ki]Pi, [ki]Si

)
).

We call each “Pi, Si” belonging to a location ki the matching obligations of ki and assume that each location
ki has a non-empty matching obligation (i.e, either Pi 6= ∅ or Si 6= ∅). All locations that appear in localization
operators of the right-hand side of rule r are called forwarding locations. We classify them into three types:
first we have matched forwarding locations in the rule body

(⊎
i∈In[ki]Di

)
are such that each ki is a matching

location as well. Next, non-matched forwarding locations within
(⊎

j∈Im[kj]Dj

)
are such that kj is not a

matching location, but appear as a term argument of some constraint in the rule head3. Finally, existential
forwarding locations within

(⊎
l∈Ie[kl]Dl

)
are such that kl ∈ x̄, the set of existential variables. Note that

this implicitly means that kl neither is a matching location nor appear as a term argument of a rule head,
hence it is a reference to a new location. We assume that the body of matched forwarding locations (i.e, Di)
may be empty but that of non-matched and existential forwarding locations must be non-empty (i.e, Dj and
Dl). This assumption provide a more concise notation for n-neighbor restricted rules without superfluous
references to locations that are not involved in the rule application4. We will refer to a n-neighbor restricted
program as a general CHRe program, or simply a CHRe program. A well-formed CHRe rule where heads
are located at exactly one location are, by definition, 0-neighbor restricted. We call these local rules. A
CHRe program P is n-neighbor restricted if each rule in P are m-neighbor restricted for m ≤ n.

As an example, consider the example program in Figure 1. Rules base and elim are examples of 0-neighbor
restricted rules or local rules. This is because the each have rule heads that specify constraints from a single
location. Rule trans however, has rule heads from two distinct locations X and Y . Specifically, rule heads
P = [X]edge(Y,D), [Y]path(Z,D′) and S = ∅, satisfying the directly connected condition because we have
edge(Y,D) located at X, while satisfying the neighbor isolation condition by default because the rule only
has one neighboring matching location Y . Hence it is a 1-neighbor restricted rule. An interested observation
is that the 1-neighbor restriction corresponds directly to the link restriction of [CARG+12, LCG+06].

3The directly connected condition of neighbor restriction dictates that the primary matching location would possess one such
constraint.

4Note that a matched forwarding location ki is allowed to have an empty rule body Di because its presence is justified by
its appearance as a matching location.

6

4 SEMANTICS OF CHRE

Constraint Store S̄ ::= ∅ | S̄, c
Abstract Ensemble A ::= ∅ | 〈S̄〉k,A

r :
(⊎

i∈In[k
′
i]P

′
i

)
\
(⊎

i∈In[k
′
i]S
′
i

)
⇐⇒ G | ∃x̄. D̄ ∈ P

|= θG
(⊎

i∈InPi
)

= θ
(⊎

i∈InP
′
i

) (⊎
i∈InSi

)
= θ

(⊎
i∈InS

′
i

) (⊎
i∈In∪Imki

)
= θ

(⊎
i∈In∪Imk

′
i

)(⊎
i∈In[ki]Di,

⊎
j∈Im[kj]Dj ,

⊎
l∈Ie[kl]Dl

)
= NF(Inst(θ(∃x̄. D̄)))

P B A,

(⊎
i∈In〈S̄i, Pi, Si〉ki ,⊎
j∈Im〈S̄j〉kj

)
7→ωeα

A,

⊎
i∈In〈S̄i, Pi, Di〉ki ,⊎
j∈Im〈S̄j , Dj〉kj ,⊎
l∈Ie〈Dl〉kl

where k′j for j ∈ Im such that k′j ∈

(
FV(

⊎
i∈InPi,

⊎
i∈InSi)

)
k′l for l ∈ Ie such that k′l ∈ x̄
D̄ =

(⊎
i∈In[k

′
i]D

′
i

)
,
(⊎

j∈Im[k
′
j]D

′
j

)
,
(⊎

l∈Ie[k
′
l]D

′
l

)

Figure 4: ωeα Abstract Semantics of CHRe

4 Semantics of CHRe

We define the ωeα abstract semantics of CHRe in Section 4.1, which introduces a decentralized execution of
CHRe programs, and prove its soundness with respect to the ωα semantics. Using ωeα as a stepping stone,
Section 4.2 defines and proves the soundness of the ωe0 operational semantics that provides a more operational
view of decentralized execution of CHRe programs. Although this operational semantics only supports 0-
neighbor restricted rules, Section 5 will show how we encode the arbitral CHRe programs into 0-neighbor
restricted programs. Note that in this work, we assume a lossless network, meaning that communication
between locations are always eventually delivered and never lost.

4.1 ωeα Abstract Semantics

In this section, we introduce ωeα, an abstract decentralized semantics for CHRe. This semantics accounts for
the distributed nature of CHRe, where each location has its own constraint store. This abstract semantics
models a state transition system between abstract ensemble states, which are multisets of local stores 〈S̄〉k
where S̄ is a constraint store and k a location name. An abstract ensemble states A is well-formed if all
constraint stores S̄ that appear in it are well-formed and location names k are unique.

Figure 4 shows the ωeα semantics. Given a CHRe program P, we write a derivation step of ωeα as
PBA 7→ωeα

A′ for abstract states A,A′. A derivation step defines the application of an n-neighbor restricted
rules: Each of the n+ 1 locations ki for i ∈ In provides a partial match Pi and Si in their respective stores
to their respective matching obligations (i.e, P ′i and S′i), resulting in the combined substitution θ. If guard
θG is valid, we apply the rule instance by removing Si from the respective store of matching location ki
and replace them with the respective normalized rule body fragment (Di of matching location ki). For
non-matching forwarding locations kj for j ∈ Im, we simply add rule body fragment Dj to their stores.
Finally, for existential forwarding locations, we create new location names kl that contains just the rule
body fragments Dl

5. Since we assume that rule guards G have no side effects, |= θG is a global assertion.
Note that 0-neighbor restriction is the special case where matching is localized (In is a singleton set). We
denote the reflexive and transitive application of derivation steps by P B A 7→∗ωeα A

′. ωeα derivation steps

5New location names are implicitly created by the instantiation of existential variables (i.e, Inst(−)) applied to the rule body
after substitution θ is applied.

7

4 SEMANTICS OF CHRE

Abstract Ensembles VA, 〈S̄〉kW = VAW,VS̄Wk V∅W = ∅

CHR Program VR PW = VRW VPW V·W = ·

CHR Rule Vr : P \ S ⇐⇒ G | BW = r : VPW \ VSW⇐⇒ G | VBW

Constraints Vp(~t)Wl = p(l,~t)

Stores

{
Vc, S̄Wl = VcWl,VS̄Wl

V∅Wl = ∅

Body

V∃x̄. DW = ∃x̄.VDW
V[l]c, DW = VcWl, VDW
VtrueW = true

Head

{
V[l]c, HW = VcWl, VHW
V·W = ·

Figure 5: CHR Interpretation of CHRe

preserves the well-formedness of states A, provided that CHRe programs are well-formed. Lemma 1 states
this property of ωeα derivations.

Lemma 1 (Well-Formedness Preservation of ωeα Derivations) Given a well-formed CHRe program
P, a well-formed state A and state A′, if P BA 7→∗ωeα A

′ then A′ is well-formed.

From here on, we will implicitly assume the well-formedness of P, A and A′, when writing PBA 7→∗ωeα A
′.

We now relate the CHRe abstract semantics ωeα to the CHR abstract semantics ωα. Figure 5 defines a
function V−W that inductively traverses the structure of a CHRe syntactic construct and translates it into
a CHR construct that represents its CHR interpretation. For a CHRe rule, this function translates located
constraints [l]p(~t) to standard CHR constraints by inserting location l as the first (leftmost) term argument
of the predicate (i.e, p(l,~t)). We call these location interpreted CHR constraints. An abstract ensemble
state A is interpreted in CHR simply by collapsing all constraint stores in A into a single global constraint
store, containing location interpreted CHR constraints. The translation function is defined so that given a
well-formed CHRe syntactic object o, VoW is a well-formed syntactic object of CHR. Lemma 2 states this
property of the translation function V−W.

Lemma 2 (Well-Formedness Preservation of V−W Translation) Given a well-formed CHRe object o,
VoW is a well-formed CHR object.

Theorem 3 states the soundness of ωeα, namely the translation function V−W preserves deriviability.

Theorem 3 (Soundness of ωeα) Given a CHRe program P and abstract states A and A′, if PBA 7→∗ωeα A
′,

then VPWB VAW 7→∗ωα VA′W.

4.2 ωe0 Operational Semantics

This section introduces the operational semantics ωe0. Similarly to ωeα, this semantics specifies a distributed
execution for CHRe programs. Unlike ωeα, it is operational in that it describes the execution of CHRe pro-
grams in a procedural manner with a clear and concise execution strategy for each location of the ensemble.
As such, it comprises of more derivation rules, each of which is dedicated to a specific sub-task of decen-
tralized multiset rewriting. The ωe0 semantics is an extension of the refined CHR operational semantics
[DSdlBH04], adapted to describe an execution model for decentralized and incremental multiset matching6.

6It is incremental in that multiset matches are processed incrementally from new information (constraints). This is a property
that is crucial for any effective execution model for distributed rule-based systems.

8

4 SEMANTICS OF CHRE

Stored constraint id d Rule Occurrence Index i

Goals g ::= b | c | c#d : i

Ids ~D ::= ∅ | d, ~D
Buffers ~U ::= ∅ | c, ~U

Goals ~G ::= ∅ | g, ~G
Numbered Store S̄ ::= ∅ | S̄, c#d
History H̄ ::= ∅ | H̄, (~D)

Operational Ensembles Ω ::= ∅ | Ω, 〈~U ; ~G ; S̄ ; H̄〉k

Retrieve Locations

{
Locs(Ω, 〈~U ; ~G ; S̄ ; H̄〉k) = Locs(Ω) ∪ {k}
Locs(∅) = ∅

Figure 6: ωe0 Ensemble States

As such, it shares many meta constructs with the refined CHR operational semantics (e.g. rule head occur-
rence index, goals, numbered constraints, history). We refer the interested reader to [DSdlBH04] for a more
detailed treatment of the refined operational semantics of CHR. The ωe0 semantics applies only to 0-neighbor
restricted rules. While we could easily have included n-neighbor restricted rule execution as a derivation
step of ωe0, doing so would not capture the operational challenges of synchronizing multiple locations during
rule application. Instead we compile n-neighbor restricted rules for n > 1 into 0-neighbor restricted rules in
Section 5.

Figure 6 defines the states of the ωe0 semantics. An ωe0 ensemble Ω is a set of tuples of the form

〈~U ; ~G ; S̄ ; H̄〉k which represent the state of the computing entity at location k. The buffer ~U is a

sequence of the constraints that have been sent to location k. The goals ~G is a sequence of the constraints c
or active constraints c#d : i. The numbered store S̄ is a multiset of numbered constraints c#d. The index
d serves as a reference link between c#d in the store and an active constraint c#d : i in the goals. The
history H̄ is a set of indices where each element is a unique set of constraint ids (~D). Note the use of accents
to explicitly indicate the nature of each collection of objects. Buffers is a novel extension of this semantics
while goals, numbered store and history are artifacts of the refined operational semantics of CHR. Also, like
the refined operational semantics of CHR, we assume that each rule head in a CHR program have a unique
rule occurrence index i, representing the sequence (typically textual order of appearance) in which the rule
head is matched to an active constraint. We write occurrence index i as a subscript of the rule head (i.e,

[l]ci). A state Ω is well-formed if each 〈~U ; ~G ; S̄ ; H̄〉k ∈ Ω has a unique location name k, all objects in ~U ,
~G and S̄ are ground and all term expressions that appear in them are well-formed. Furthermore we require
that each goals ~G has at most one active constraint (c#d : i) found at the head of ~G with a corresponding

c#d found in the store S̄. Ω is initial if all ~U = ∅, S̄ = ∅ and H̄ = ∅ and terminal if all ~U = ∅ and ~G = ∅.
We extend the meta operation Locs(−) to the domain of operational states Ω, namely that Locs(Ω) returns
the set of all locations k that appear in Ω.

We define three meta operations that will be used in the ωe0 semantics: Given a CHR numbered store S̄,
DropIds(S̄) returns the multiset of all constraints in S̄ without their numbered ids; Ids(S̄) returns the set
of all constraint ids that appear in S̄; given a CHR program P, OccIds(P) returns the set of all rule head
occurrence indices that appear in each rule R ∈ P. These meta operations are inductively defined as follows:

9

4 SEMANTICS OF CHRE

(Flush)
~U 6= ∅

P B Ω, 〈~U ; ∅ ; S̄ ; H̄〉k 7→ωe0
Ω, 〈∅ ; ~U ; S̄ ; H̄〉k

(Loc 1)
P B Ω,

(
〈~U ; ([k′]c, ~G) ; S̄ ; H̄〉k,
〈~U ′ ; ~G′ ; S̄ ′ ; H̄′〉k′

)
7→ωe0

Ω,

(
〈~U ; ~G ; S̄ ; H̄〉k,
〈(~U ′, [c]) ; ~G′ ; S̄ ′ ; H̄′〉k′

)

(Loc 2)
P B Ω, 〈~U ; ([k]c, ~G) ; S̄ ; H̄〉k 7→ωe0

Ω, 〈~U ; (c, ~G) ; S̄ ; H̄〉k

(Loc 3)
k 6= k′ k′ /∈ Locs(Ω)

P B Ω, 〈~U ; ([k′]c, ~G) ; S̄ ; H̄〉k 7→ωe0
Ω, 〈~U ; ~G ; S̄ ; H̄〉k, 〈c ; ∅ ; ∅ ; ∅〉k′

(Act)
d is a fresh id

P B Ω, 〈~U ; (p(~t), ~G) ; S̄ ; H̄〉k 7→ωe0
Ω, 〈~U ; (p(~t)#d : 1, ~G) ; (S̄, p(~t)#d) ; H̄〉k

(Simp)

r : [l]P ′ \ [l](S′, c′i, S
′′)⇐⇒ G | B ∈ P |= θ ∧G k = θl

DropIds(P) = θP ′ DropIds(S) = θ(S′, S′′) c = θc′

P B Ω, 〈~U ; (c#d : i, ~G) ; (S̄, P, S, c#d) ; H̄〉k 7→ωe0
Ω, 〈~U ; (NF(Inst(θB)), ~G) ; (S̄, P) ; H̄〉k

(Prop)

r : [l](P ′, c′i, P
′′) \ [l]S′ ⇐⇒ G | B ∈ P |= θ ∧G k = θl

DropIds(P) = θ(P ′, P ′′) DropIds(S) = θS′ c = θc′ (d, Ids(P, S)) /∈ H̄
P B Ω, 〈~U ; (c#d : i, ~G) ; (S̄, P, S, c#d) ; H̄〉k
7→ωe0

Ω, 〈~U ; (NF(Inst(θB)), c#d : i, ~G) ; (S̄, P, c#d) ; (H̄, (d, Ids(P, S)))〉k

(Next)
(Simp) and (Prop) do not apply for c#d : i

P B Ω, 〈~U ; (c#d : i, ~G) ; S̄ ; H̄〉k 7→ωe0
Ω, 〈~U ; (c#d : (i+ 1), ~G) ; S̄ ; H̄〉k

(Drop)
i /∈ OccIds(P)

P B Ω, 〈~U ; (c#d : i, ~G) ; S̄ ; H̄〉k 7→ωe0
Ω, 〈~U ; ~G ; S̄ ; H̄〉k

Figure 7: ωe0 Operational Semantics for CHRe

Drop Ids

{
DropIds(S̄, c#d) = DropIds(S̄), c

DropIds(∅) = ∅

Retrieve Ids

{
Ids(S̄, c#d) = Ids(S̄), d

Ids(∅) = ∅

Retrieve Occ Indices

OccIds(R P) = OccIds(R),OccIds(P)

OccIds(r : P \ S ⇐⇒ G | B) = OccIds(P),OccIds(S)

OccIds([l]ci, H) = i,OccIds(H)

OccIds(·) = ∅

Figure 7 defines the ωe0 operational semantics. Given a 0-neighbor restricted CHRe program P, a ωe0
derivation step expresses a transition between ensemble states, written P B Ω 7→ωe0

Ω′. Execution in a

10

4 SEMANTICS OF CHRE

location 〈~U ; ~G ; S̄ ; H̄〉k ∈ Ω is mainly driven by the goals ~G which function as a stack of procedures

waiting to be executed. By contrast ~U buffers the constraints sent to the location. The (Flush) step states

that constraints in a non-empty buffer ~U are to be moved into the goals if the current goal is empty. (Loc 1),
(Loc 2) and (Loc 3) model the delivery of body constraint [k′]c to forwarding location k′: (Loc 1) applies

if the leading goal is [k′]c and k′ is distinct from the origin location k, and sends c to the buffer ~U ′ of
k′. For (Loc 2) the forwarding location is the origin location, hence no actual transmission occur and the
localization operator [k] is simply stripped away. Finally for (Loc 3) with localization operator [k′], k′

does not appear anywhere in the ensemble, hence we create a new location k′ with just c in the buffer and
all other collections empty7. (Act) applies to a leading goal of the form p(~t). It introduces p(~t) : d into the
store, where d is a fresh constraint identifier, and puts the active constraint p(~t)#d : 1 as the new leading
goal. This represents the initialization of rule matching rooted at p(~t)#d starting from the rule head in the
program P that corresponds to the first occurrence index. The last four derivation steps apply to leading
goals of the form c#d : i. (Prop) and (Simp) model the application of a 0-neighbor restricted CHR rule
instance R ∈ P such that the ith rule head occurrence matches c and respective partner constraints are
found in the store. (Prop) additionally enforces a history check similar to the traditional CHR semantics
[DSdlBH04, Sch05]. The purpose of this is to disallow multiple applications of rule instances that originate
from the same multiset of constraints in the store8. The derivation (Next) increments the occurrence index
of the active constraint, while (Drop) removes the active constraint from the goal once it has been tried
on all rule head occurrences. We define the transitive and reflexive application of ωe0 derivation steps as
P B Ω 7→∗ωe0 Ω′. A state Ω′ is reachable by a program P under the ωe0 semantics if there exists some initial

state Ω such that P B Ω 7→∗ωe0 Ω′.

We are interested in a class of CHRe programs known as locally quiescent CHRe programs. We say that a
CHRe program P is locally quiescent if given any well-formed reachable state Ω, we cannot have any infinite
derivation sequences that does not include the (Flush) derivation step. This specifically means that each
location k in a Ω must always (eventually and asynchronously) execute to a state where its goals are empty,
during which the (Flush) step is applicable and the constraints in the buffer will be pushed into the goals.
Locally quiescent programs have the property that constraints sent across locations are not left to “starve”
in a location’s buffer, because local execution of a location k is guaranteed to be terminating. Hence it
is a form of progress guarantee that each location will eventually process (activate, store and match) each
constraint delivered to it. While we expect that it is reasonable that distributed applications can possibly
behave in a non globally quiescent manner 9, we expect that each location executes in a locally quiescent
manner as described here. We will explicitly consider locally quiescent programs in Section 5.

Lemma 4 states the property that ωe0 derivations preserves the well-formedness of the operational states
Ω.

Lemma 4 (Well-Formedness Preservation of ωe0 Derivations) Given a well-formed 0-neighbor restricted
CHRe program P, a well-formed state Ω and state Ω′, if P B Ω 7→∗ωe0 Ω′ then Ω′ is well-formed.

Given a state Ω, we define a meta operation Goals(Ω) that denotes the consolidated sequence of all goals

in Ω. We extend the notion of location retrieval and location restriction on goals: Locs(~G) denotes the set

of distinct locations k such that [k]c ∈ ~G for some c. Given location k, ~G|k denotes the sequence containing

all constraints c where [k]c ∈ ~G. These are inductively defined by the following:

7New locations are introduced by existential forwarding locations in rule bodies.
8History checking is only required on propagation rules (r : P \ S ⇐⇒ G | B where S = ∅). For brevity, we conservatively

apply history checking to all states that applies to the (Prop) derivation step.
9Globally quiescent: collective execution of the ensemble terminates. In other words, there exists a reachable state where

all locations of the ensemble reaches quiescence.

11

4 SEMANTICS OF CHRE

Ensembles

dΩe = dΩe~G′

,
⊎
k∈(Locs(~G′)−Locs(Ω))〈~G

′
|k〉k where ~G′ = Goals(Ω)

dΩ, 〈~U ; ~G ; S̄ ; H̄〉ke
~G′

= dΩe~G′
, 〈d~Ue, d~Ge, dS̄e, ~G′|k〉k

d∅e~G′
= ∅

Identity d∅e = ∅
Buffers dc, ~Ue = c, d~Ue
Stores dc#d, S̄e = c, dS̄e

Goals

dc, ~Ge = c, d~Ge
dc#d : i, ~Ge = d~Ge
d[k]c, ~Ge = d~Ge

Figure 8: Abstract Ensemble State Interpretation of Operational Ensemble States

Consolidate Goals

{
Goals(Ω, 〈~U ; ~G ; S̄ ; H̄〉k) = Goals(Ω), ~G
Goals(∅) = ∅

Retrieve Locations (Goals)

Locs(c, ~G) = Locs(~G)

Locs([k]c, ~G) = {k} ∪ Locs(~G)

Locs(∅) = ∅

Location Restrict (Goals)

c, ~G|k = ~G|k
[k′]c, ~G|k = ~G|k if k 6= k′

[k]c, ~G|k = c, ~G|k
∅|k = ∅

Figure 8 gives the translation function d−e that inductively traverses the structure of an operational
ensemble state Ω and translates it to a corresponding fragment of an abstract state A. At the top-most

level, dΩe is equivalent to dΩe~G′
,
⊎
k∈(Locs(~G′)−Locs(Ω))〈~G

′
|k〉k such that ~G′ = Goals(Ω) is the consolidated

sequence of all goals in the ensemble. The first component (dΩe~G′
) takes each location in Ω and collapses

~U , ~G and S̄ together while dropping the history H̄ entirely. Kept as a superscript is the sequence of all
goals ~G′. Each location k also extracts from ~G′ all located constraints that belongs to k (i.e, ~G′|k). Buffer

~U is interpreted as a multiset of constraints. For ~G, we discard active constraints c#d : i because well-
formed states have a corresponding c#d in S̄. We also discard located constraints [k]c. For S̄, we strip
away constraint ids #d. We implicitly convert sequences (~U and ~G) into multisets. The second component⊎
k∈(Locs(~G′)−Locs(Ω))〈~G

′
|k〉k retrieves the set of all locations k that are referenced in the goals but are not

known locations in Ω, and “creates” these new locations each containing their respective fragment of the
goals (i.e, ~G′|k). Lemma 5 states the property that this translation maps a well-formed operational state into
a well-formed abstract state.

Lemma 5 (Well-Formedness Preservation of d−e Translation) Given a well-formed ωe0 operational
state Ω, dΩe is a well-formed ωeα abstract state.

Theorem 6 states that ωe0 derivations can be mapped to corresponding ωeα derivations via the d−e inter-
pretation of operational states.

Theorem 6 (Soundness of ωe0) Given 0-neighbor restricted CHRe program P and states Ω and Ω′, if
P B Ω 7→∗ωe0 Ω′, then P B dΩe 7→∗ωeα dΩ

′e.

Note that a terminal state Ω (where all ~Ui = ∅ and ~Gi = ∅) is in a state of quiescence where no ωe0

12

4 SEMANTICS OF CHRE

(Single)
P B Ω 7→ωe0

Ω′

P B Ω 7→||ωe0 Ω′

(Concurrent)
P B (Ω1,Ω2) 7→||ωe0 (Ω′1,Ω2) P B (Ω1,Ω2) 7→||ωe0 (Ω1,Ω

′
2)

P B (Ω1,Ω2) 7→||ωe0 (Ω′1,Ω
′
2)

Figure 9: Concurrent ωe0 Derivation Steps

derivation steps can apply. The ωe0 semantics guarantees that when we reach quiescence from a well-formed
initial state, all rules in the program have been exhaustively applied.

To prove this guarantee of exhaustive rule application in quiescence of ωe0 derivations, we first define the
notion of rule applicability: Given a 0-neighbor restricted rule R = r : P ′ \ S′ ⇐⇒ G | B, we say that R is

applicable in a state Ω, if there exists some 〈~U ; ~G ; S̄ ; H̄〉k ∈ Ω and some substitution θ where there exists
P, S ∈ S̄ such that DropIds(P) = θP ′ and DropIds(S) = θS′, |= θG and Ids(P, S) /∈ H̄. The rule instance of
R in Ω is said to be active if for its rule head instance, P and S, there exists some ‘c#d ∈ P, S’ that matches
the jth occurrence index of R, such that c#d : i ∈ ~G and i ≤ j. Lemma 7 states the property that all rule
instances in a reachable state are active.

Lemma 7 (Always Active Rule Head Instances) Given a 0-neighbor restricted CHRe program P and
an initial state Ω, for any reachable state Ω′ such that PBΩ 7→∗ωe0 Ω′, all rule instances in Ω′ must be active.

Theorem 8 states the exhaustiveness of rule application in the ωe0 semantics. Specifically, it state that
starting from an initial state Ω, if we derive a terminal state from Ω, this terminal state has no rule instances.
This is an important property because it means that exhaustive execution of ωe0 derivations of a CHReprogram
P to a state of quiescence results to the exhaustive application of all rule instances of P.

Theorem 8 (Exhaustiveness of Rule Application in ωe0) Given a 0-neighbor restricted CHRe program
P and reachable states Ω and Ω′, if P B Ω 7→∗ωe0 Ω′ and Ω′ is terminal, then there exists no rule instance
R ∈ P such that R is applicable.

Figure 9 define the concurrent ωe0 derivation step, denoted 7→||ωe0 . It explicitly defines concurrent execution

of ωe0 semantics derivation steps that modifies non-overlapping portions of an operational state. The (Single)

rule states that a standard ωe0 derivation (i.e, 7→ωe0
) maps naively to a concurrent derivation step, 7→||ωe0 . The

rule (Concurrent) states that we can compose concurrent derivation steps together, as long as they operate

on non-overlapping portions of an operational state. We write P B Ω 7→||∗ωe0 Ω′ for the reflexive and transitive

application of 7→||ωe0 derivation steps. The composibility of ωe0 concurrent derivation steps stems from a more

fundamental property of the abstract CHR semantics known as monotonicity [Frü94]. Specifically, it states
that CHR derivations are valid even in a larger context of constraints. The ωe0 semantics has this property
as well, but in a slightly different context: ωe0 derivations are monotonic with-respect-to locations, namely
in a larger context of locations10. Lemma 9 states this property in the ωe0 semantics in its various forms. We
assume implicit α-renaming of locations when composing ensemble states together.

Lemma 9 (Monotonicity of ωe0 semantics) Given a 0-neighbor restricted program P, and reachable states
Ω,Ω′,Ω′′,

1. if P B Ω 7→ωe0
Ω′, then P B Ω,Ω′′ 7→ωe0

Ω′,Ω′′

10Note that the refined operational semantics [DSdlBH04] does not have this property with-respect-to constraint stores, but
it is monotonic with-respect-to its goals.

13

5 ENCODING 1-NEIGHBOR RESTRICTED PROGRAMS FOR ωE0

2. if P B Ω 7→∗ωe0 Ω′, then P B Ω,Ω′′ 7→∗ωe0 Ω′,Ω′′

3. if P B Ω 7→||ωe0 Ω′, then P B Ω,Ω′′ 7→||ωe0 Ω′,Ω′′

4. if P B Ω 7→||∗ωe0 Ω′, then P B Ω,Ω′′ 7→||∗ωe0 Ω′,Ω′′

With the monotonicity property stated in Lemma 9, we can prove Theorem 10, that states that every
concurrent ωe0 derivation can be simulated using sequential ωe0 derivation steps.

Theorem 10 (Serializability of Concurrent ωe0 Derivations) Given a 0-neighbor restricted program P,

and reachable states Ω,Ω′, if we have P B Ω 7→||∗ωe0 Ω′ then we must have P B Ω 7→∗ωe0 Ω′

Theorem 10 has far reaching implications on the concurrent behavior of ωe0: Specifically that 0-neighbor
restricted CHRerule application need not be executed entirely atomically, since the sequence of ωe0 derivation
steps that models a rule application can be interleaved between multiple ωe0 derivation steps. Rather, rule
head observation and deletion (observing presence of all rule head constraints in the store and deleting the
matching simplified rule heads) is the critical component of rule application that needs to be atomic11. More
concretely, it is an application of either the (Simp) or (Prop) ωe0 derivation step followed by a sequence of
(Act), (Next) and (Drop) derivation steps that incrementally “moves” the body B of the rule instance into
the constraint store. Between this sequence of derivation steps, we can possibly execute other concurrent
derivation steps that involve rewritings on non-overlapping portions of the local constraint store or ensemble.
Yet these concurrent derivations of non-atomic rule applications can be serialized to interleaving sequential
ωe0 derivation steps. We will exploit this observation in our encoding of 1-neighbor restricted rules into ωe0
(Section 5).

5 Encoding 1-Neighbor Restricted Programs for ωe0

In this section, we define a translation that transforms a 1-neighbor restricted program into a 0-neighbor
restricted program. Given a 1-neighbor restricted rule r : [X]Px,[Y]Py \ [X]Sx,[Y]Sy ⇐⇒ G | B,
we designate X as the primary location and Y as the neighbor location. We define two properties of a
1-neighbor restricted rule r, namely that r is primary propagated if Sx = ∅ and that r is neighbor propagated
if Sy = ∅. We call Px and Sx the primary matching obligations, while Py and Sy are the neighbor matching
obligations. We only consider locally quiescent CHRe programs from this section.

5.1 Basic Encoding Scheme

Figure 10 illustrates our basic encoding scheme, basic
1Nb on an example. It applies to a 1-neighbor restricted

rule that is neither primary nor neighbor propagated. We assume that constraints of the predicate neighbor
are never deleted, i.e, no other rules in a program with the swap rule have a neighbor constraint as a simplified
head. We call such a constraint a persistent constraint. A constraint c is persistent if there is no substitution
θ such that θc = θc′ for some rule r : P \ S ⇐⇒ G | B ∈ P and constraint c′ ∈ S. Note that the rule heads
demand that we must atomically observe that in some location X we have neighbor(Y) and color(C), while
in Y we have color(C ′). This observation must be atomic in the sense that the observation of X’s and Y ’s
matching obligations should not be interrupted by an interleaving concurrent derivation.

The 0-neighbor restricted encoding of the swap rule (Figure 10) recovers this atomicity: In swap 1
X sends a swap request swap req(X,Y,C) to Y if it possesses the primary matching obligation of the

11This property is first observed in [SL08, LS11] and we call this atomic fragment of rule application atomic rule head
verification.

14

5 ENCODING 1-NEIGHBOR RESTRICTED PROGRAMS FOR ωE0

swap :

(
[X]neighbor(Y),

·

)
\
(

[X]color(C),
[Y]color(C ′)

)
⇐⇒

(
[X]color(C ′),
[Y]color(C)

)

b
a
sic

1
N

b

swap 1 : [X]neighbor(Y),[X]color(C) =⇒ [Y]swap req(X,Y,C)

swap 2 : [Y]color(C ′) \ [Y]swap req(X,Y,C)⇐⇒ [X]swap match(X,Y,C,C ′)

swap 3 : [X]neighbor(Y) \ [X]color(C),[X]swap match(X,Y,C,C ′)
⇐⇒ [Y]swap commit(X,Y,C,C ′)

swap 4a : [Y]swap commit(X,Y,C,C ′),[Y]color(C ′)⇐⇒ [X]color(C ′),[Y]color(C)

swap 4b : [Y]swap commit(X,Y,C,C ′)⇐⇒ [X]color(C)

Figure 10: Color Swapping Example: 1-Neighbor Restricted Rule

swap rule. In swap 2 if Y observes this request together with a color(C ′), it responds to X by send-
ing swap match(X,Y,C,C ′). Note that in this example, swap req(X,Y,C) is simplified since X’s match-
ing obligation is not primary propagated12. In swap 3 , X must observe that it has a response from Y
(swap match(X,Y,C,C ′)) and that its matching obligations are still valid13, then it sends a commit request
to Y swap commit(X,Y,C,C ′). This is the point where X actually commits to the match by consuming
color(C). From here there are two possibilities: swap 4a considers that, if Y still possesses the matching
instance of color(C ′), we complete the execution of swap by delivering its rule body. swap 4b considers the
alternative case where Y no longer has color(C ′) hence we cannot commit to the rule instance. Hence we roll
back X’s commitment by returning color(C) to X. Note that ωe0’s sequencing of rule occurrences is vital to
ensure that given a swap commit instance, rule matching for swap 4a is always attempted before swap 4b.
We call the predicates introduced in the encoding (like swap req , swap match) synchronizing predicates and
constraints they form synchronizing constraints.

The five 0-neighbor restricted rules in Figure 10 implement an asynchronous and optimistic synchroniza-
tion protocol between two locations of the ensemble. It is asynchronous because neither primary X nor
neighbor Y ever “blocks” or busy-waits for responses. Rather they communicate asynchronously via the
synchronizing constraints, while potentially interleaving with other derivation steps. It is optimistic because
non-synchronizing constraints are only ever consumed after both X and Y have independently observed their
respective fragment of the rule head instance.

Figure 11 defines another example of a 1-neighbor restricted rule that differs from the swap example in
two ways: It is primary propagated and it contain a primary propagated head (namely color(C)) that is not
persistent. We highlight in boxes the fragments which differ by the fact that the rule is primary propagated,
and with an underline the fragments which differ by the fact that propagated head color(C) is not persistent.

Since prop is primary propagated, it is possible that a single instance of this rule head fragment be
applied to multiple instances of [Y]color(C ′) for a particular location Y . If we follow a similar encoding
to the swap 2 rule for the previous example (Figure 10) we cannot guarantee exhaustiveness of 1-neighbor
restricted rule application. Therefore, as highlighted in a box in figure 11, rule prop 2 is defined such that
the synchronizing constraint prop req(X,Y,C) is propagated as opposed to being simplified (highlighted in
a box).

12If it was primary propagated (by making [X]color(C) of the swap rule propagated instead), we would have to propagate
swap req(X,Y,C) instead, since X’s matching obligation can match and apply to multiple instances of swap (see Figure 11 for
such an example).

13This revalidation ensures that Y ’s observation of its matching obligation has not been invalidated by an interleaving rule
application that consumed any part of X’s obligations.

15

5 ENCODING 1-NEIGHBOR RESTRICTED PROGRAMS FOR ωE0

prop :

(
[X]neighbor(Y),[X]color(C)

·

)
\
(

·
[Y]color(C ′)

)
⇐⇒ [Y]color(C)

b
a
sic

1
N

b

prop1 : [X]neighbor(Y),[X]color(C) =⇒ [Y]prop req(X,Y,C)

prop2 : [Y]color(C ′),[Y]prop req(X,Y,C) =⇒ [X]prop match(X,Y,C,C ′)

prop3 : [X]neighbor(Y) \ [X]color(C), [X]prop match(X,Y,C,C ′)

⇐⇒ [Y]prop commit(X,Y,C,C ′)

prop4a : [Y]prop commit(X,Y,C,C ′),[Y]color(C ′)⇐⇒ [X]color(C),[Y]color(C)

prop4b : [Y]prop commit(X,Y,C,C ′)⇐⇒ [X]color(C)

Figure 11: Color Propagation Example: Primary Propagated 1-Neighbor Restricted Rule

Since prop has a non persistent propagated head, in order to safely guarantee that the observation of
X and Y matching obligations are done independently, prop3 commits its obligation by deleting its non
persistent propagated constraint(s), in this case color(C), while in prop4a and prop4b, this constraint is
returned to X. While this possibly introduces additional overhead, it is crucial to ensuring the safety of this
rule application. Figure 12 that shows an example of the same rule prop of Figure 11 but with an encoding
that treats non-persistent propagated head color(C) as persistent. This encoding is flawed because we can
derive prop rule applications from the program encoding P0, while P1 has no valid derivation. Specifically,
Figure 12 highlights the steps that leads to a wrong derivation. We consider a contrived program with two
additional rules cheat1 and cheat2 that shuffles a constraint color between two neighboring locations. The
initial state starts with only location k1 having a color(blue) constraint, but with proper timing of the cheat
rules, we can shuffle the single color constraint and derive the application of rule prop.

Figure 13 defines the basic encoding scheme for 1-neighbor restricted rule. It is denoted by R1 basic
1Nb P0,

where R1 is a well-formed 1-neighbor restricted rule while P0 a well-formed 0-neighbor restricted program.
The propagated rule heads of the primary location X are split into two, namely Px containing all rule heads
which are persistent in P1 and P ′x containing all those which are non-persistent. P ′x and Sx will be consumed
in r 3 when the primary location commits, this effectively “locks” the primary matching obligation. The
neighbor location Y applies r 4a to complete the rule application r, specifically adding the rule body D
and “unlocking” P ′x, the primary propagated rule heads which are not persistent. If it is unable to complete
this rule application, r 4b is applied to roll-back location X’s commit attempt by returning P ′x and Sx
to X. MatchRule(·) characterizes the fragment of the encoding unique to primary propagated 1-neighbor
restricted rules, while MatchRule(Sx) for a non-empty Sx represents the corresponding fragment of non-
primary propagated rules. Xs and Ys are the set of variables of the primary and neighbor location rule
heads while Rs is the union of the two. Rule guards are divided into two parts, namely Gx the primary
rule guards and Gy the neighbor rule guards. Primary rule guards Gx are all the guard conditions that are
grounded by Xs, while Gy are the rest of the guards. We refer to these rules (r i) as encoding rules. We
define the meta operator DropSyncs(S̄;P) that returns the multiset of all constraints that appear in S̄ that
are not synchronizing constraints of P:

16

5 ENCODING 1-NEIGHBOR RESTRICTED PROGRAMS FOR ωE0

P1 =

prop :

(
[X]neighbor(Y),[X]color(C)

·

)
\

(
·

[Y]color(C ′)

)
⇐⇒ [Y]color(C)

cheat1 : [X]neighbor(Y) \ [X]color(blue)⇐⇒ [Y]color(red)

cheat2 : [X]neighbor(Y) \ [X]color(red)⇐⇒ [Y]color(blue)

P0 =

prop1 : [X]neighbor(Y),[X]color(C) =⇒ [Y]prop req(X,Y,C)

prop2 : [Y]color(C ′),[Y]prop req(X,Y,C) =⇒ [X]prop match(X,Y,C,C ′)

prop3 : [X]neighbor(Y),[X]color(C) \ [X]prop match(X,Y,C,C ′)

⇐⇒ [Y]prop commit(X,Y,C,C ′)

prop4a : [Y]prop commit(X,Y,C,C ′),[Y]color(C ′)⇐⇒ [Y]color(C)

prop4b : [Y]prop commit(X,Y,C,C ′)⇐⇒ true

cheat1 : [X]neighbor(Y) \ [X]color(blue)⇐⇒ [Y]color(red)

cheat2 : [X]neighbor(Y) \ [X]color(red)⇐⇒ [Y]color(blue)

P0 B 〈 neighbor(k2), color(blue) 〉k1 , 〈neighbor(k1)〉k2
7→prop1
ωeα

〈 neighbor(k2), color(blue) 〉k1 , 〈neighbor(k1), prop req(k1, k2, blue)〉k2
7→cheat1
ωeα

〈neighbor(k2)〉k1 , 〈neighbor(k1), prop req(k1, k2, blue), color(red) 〉k2
7→prop2
ωeα

〈neighbor(k2), prop match(k1, k2, blue, red)〉k1 , 〈 neighbor(k1) , prop req(k1, k2, blue), color(red) 〉k2
7→cheat2
ωeα

〈 neighbor(k2), prop match(k1, k2, blue, red), color(blue) 〉k1 , 〈neighbor(k1), prop req(k1, k2, blue)〉k2
7→prop3
ωeα

〈 neighbor(k2), color(blue) 〉k1 , 〈neighbor(k1), prop req(k1, k2, blue), prop commit(k1, k2, blue, red)〉k2
7→cheat1
ωeα

〈neighbor(k2)〉k1 , 〈neighbor(k1), prop req(k1, k2, blue), prop commit(k1, k2, blue, red), color(red) 〉k2
7→prop4a
ωeα

〈neighbor(k2)〉k1 , 〈neighbor(k1), prop req(k1, k2, blue), color(blue)〉k2

Figure 12: Example of Flawed Encoding of Rule with Non-persistent Propagated Head

SyncPred((r : P \ S ⇐⇒ G | B) P) = r req , r match, r commit , r abort ,SyncPred(P)
SyncPred(·) = ∅

DropSyncs(p(t̄), S̄;P) =

{
p(t̄),DropSyncs(S̄;P) if p /∈ SyncPred(P)

DropSyncs(S̄;P) otherwise

DropSyncs(∅;P) = ∅

As illustrated in Figure 13, we generalize the application of this translation to 1-neighbor restricted
programs, thus given a 1-neighbor restricted program P1, we have its encoding via P1 basic

1Nb P0, such that
the encoding operation is applied to each 1-neighbor restricted rule in P1 while 0-neighbor restricted rules
are simply left unmodified. All rule encodings (each a 0-neighbor program) are then concatenated into a

17

5 ENCODING 1-NEIGHBOR RESTRICTED PROGRAMS FOR ωE0

(r : [X]Px, [X]P ′x, [Y]Py \ [X]Sx, [Y]Sy ⇐⇒ Gx, Gy | ∃z̄. D)

b
a
sic

1
N

b
r 1 : [X]Px , [X]Sx =⇒ Gx | [Y]r req(Xs)
MatchRule(Sx)
r 3 : [X]Px \ [X]P ′x , [X]Sx , [X]r match(Rs)⇐⇒ [Y]r commit(Rs)
r 4a : [Y]Py \ [Y]Sy , [Y]r commit(Rs)⇐⇒ ∃z̄ . [X]P ′x ,D
r 4b : [Y]r commit(Rs)⇐⇒ [X]P ′x , [X]Sx

where
All c ∈ Px are persistent constraints and all c′ ∈ P ′x are non-persistent constraints
MatchRule(.) = r 2 : [Y]Py , [Y]Sy , [Y]r req(Xs) =⇒ Gy | [X]r match(Rs)
MatchRule(Sx) = r 2 : [Y]Py , [Y]Sy \ [Y]r req(Xs)⇐⇒ Gy | [X]r match(Rs) if Sx 6= .
Xs = FV(Px ,P

′
x ,Sx) Ys = FV(Py ,Sy) Rs = FV(Px ,P

′
x ,Sx ,Py ,Sy)

FV(Gx) ⊆ FV(Px ,P
′
x ,Sx) FV(Gy) ⊆ FV(Px ,P

′
x ,Sx ,Py ,Sy)

(1-neighbor)
P basic

1Nb P ′ R1 basic
1Nb P0 R1 is 1-neighbor restricted

(P R1) basic
1Nb (P ′ P0)

(0-neighbor)
P basic

1Nb P ′ R0 is 0-neighbor restricted

(P R0) basic
1Nb (P ′ R0)

(identity)
· basic

1Nb ·

Figure 13: Basic Encoding of 1-Neighbor Restricted Rules

single 0-neighbor restricted program P0. We assume that unique rule head occurrence indices are issued
in order of rule head appearance in P0. When required for specific discussions, we will denote a (Simp) or
(Prop) derivation step that involves the application of a r i encoding rule instance as P B Ω 7→r i

ωe0
Ω′,

where Ω and Ω′ are the states before and after the application of r i .

It is possible that a partial sequences of encoding rules (r i) is executed in a ωe0 derivation. For instance,
primary location X can apply r 1 but never receives a reply from neighbor location Y with r 2 because Y
does not possess the matching obligations required to complete the rule instance. Or similarly, Y can apply
r 2 in response to X’s instance of r 1 , but never receives a reply from X with r 3 because X no longer
possess matching obligations. Such partial sequences of execution are the side-effect of asynchrony in this
synchronization protocol, and are benign in that they do not rewrite (delete or insert) non-synchronizing
constraints. Furthermore, their only observable effects are the introduction of synchronizing constraints r req
and r match whose only purpose and effect is the sequencing and staging of the flow of consensus building
between locations X and Y . Lemma 11 states this property that derivation steps of each r i encoding rule
must have been preceded by derivation steps of matching instances of encoding rules that come before i.

Lemma 11 (Prefix Executions of Encoding) Given a locally quiescent 1-neighbor restricted program P1

and a 0-neighbor restricted program P0 such that P1 basic
1Nb P0, if we have reachable states Ω and Ω′ such

that P0 B Ω 7→ωe0
Ω′, then we have the following:

1. If P0 B Ω 7→r 2
ωe0

Ω′, then there exists some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 1
ωe0

Ω′′′

and P0 B Ω′′′ 7→∗ωe0 Ω

2. If P0 B Ω 7→r 3
ωe0

Ω′, then there exists some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 2
ωe0

Ω′′′

and P0 B Ω′′′ 7→∗ωe0 Ω

18

5 ENCODING 1-NEIGHBOR RESTRICTED PROGRAMS FOR ωE0

3. If P0 B Ω 7→r 4a
ωe0

Ω′, then there exists some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 3
ωe0

Ω′′′

and P0 B Ω′′′ 7→∗ωe0 Ω

4. If P0 B Ω 7→r 4b
ωe0

Ω′, then there exists some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 3
ωe0

Ω′′′

and P0 B Ω′′′ 7→∗ωe0 Ω

We now consider the soundness of this encoding. Specifically, the soundness condition that we need is that
the ωe0 derivations of the 0-neighbor restricted encodings of a 1-neighbor restricted program P derive valid
states computable by P in the ωeα semantics. However, not all states derived by our encodings are such valid
states: It is possible that the ωe0 derivations of the 0-neighbor restricted encodings derive intermediate states
in which a 1-neighbor restricted rule instance is partially applied. Specifically, after application of r 3 only
the X matching obligation is consumed, hence the rule instance is only partially applied. For this reason,
the encodings are defined such that these intermediate states always contain the r commit synchronizing
constraint. We call such states non-commit free states and commit free states are all other states that do
not contain r commit . A state Ω is commit free if and only if for all 〈S̄〉k ∈ dΩe, all p(~t) ∈ S̄ is such that
p 6= r commit . Note we use dΩe for the convenience of collapsing the contents of buffers, goals and stores
of the ωe0 semantics into one abstract store of the ωeα semantics. By definition of the d−e translation, this
effectively means that all buffers, goals and store in the operational state Ω must not contain any commit
synchronizing constraints in order for Ω to qualify as a commit-free state. An important property of this
encoding is that non-commit free states can always be eventually returned to a commit free state by applying
either r 4a or r 4b, resulting to the complete execution of r or a roll-back to the state before its execution
attempt, respectively. Note that this is only true for CHRe programs which are locally quiescent: The reason
is because if a location’s execution is not locally quiescent, it might never push buffered constraints into the
goals (via the (Flush) derivation step of ωe0 semantics) and hence might remain non-commit free indefinitely.

Lemma 12 states that the encoding operation basic
1Nb preserves local quiescence of CHRe programs.

Lemma 12 (basic
1Nb Preserves Local Quiescence) Given a locally quiescent 1-neighbor restricted pro-

gram P1 and a 0-neighbor restricted program P0 such that P1 basic
1Nb P0, then P0 is also locally quiescent.

Lemma 13 states the property that non-commit free states can always eventually derive commit free
state.

Lemma 13 (1-Neighbor Commit-Free Reachability) Given a locally quiescent 1-neighbor restricted
program P1 and a 0-neighbor restricted program P0 such that P1 basic

1Nb P0 and states Ω reachable by P0, if
Ω is not commit-free, then there exists some commit-free state Ω′ such that P0 B Ω 7→∗ωe0 Ω′.

Lemma 14 states that given any ωeα derivation between two commit free state P0 B A 7→∗ωeα A
′, we can

safely permute it such that all applications of r 3 encoding rules are immediately followed by either r 4a or
r 4b. This lemma is proven by using the monotonicity property of the ωeα semantics (Lemma 9).

Lemma 14 (Basic Encoding Rule Serializability) Given a 1-neighbor restricted and locally quiescent
CHRe program P1 and a 0-neighbor restricted CHRe program P0 such that P1 1Nb P0 and commit free
abstract states A1 A2, A3 and A4, given that:

1. For some basic encoding rule instances r 3 and r 4a, we have P0 B A1 7→r 3
ωeα
A2 7→∗ωeα A3 7→r 4a

ωeα
A4

then there exists some A′2 and A′3 such that P0 B A1 7→∗ωeα A
′
2 7→r 3

ωeα
A3 7→r 4a

ωeα
A′3 7→∗ωeα A4

2. For some basic encoding rule instances r 3 and r 4b, we have P0 B A1 7→r 3
ωeα
A2 7→∗ωeα A3 7→r 4b

ωeα
A4

then there exists some A′2 and A′3 such that P0 B A1 7→∗ωeα A
′
2 7→r 3

ωeα
A3 7→r 4b

ωeα
A′3 7→∗ωeα A4

Theorem 15 asserts the soundness of the basic encoding: It states that ωe0 derivations between commit
free states of 0-neighbor restricted encodings have a mapping to ωeα derivations of its original 1-neighbor
restricted program.

19

5 ENCODING 1-NEIGHBOR RESTRICTED PROGRAMS FOR ωE0

blend :

(
[X]neighbor(Y),
[Y]pallete(C ′)

)
\
(

[X]color(C)
·

)
⇐⇒ [Y]color(C + C ′)

n−

p
e
rsist

1
N

b

 blend1 : [X]neighbor(Y),[X]color(C) =⇒ [Y]blend req(X,Y,C)
blend2 : [Y]pallete(C ′) \ [Y]blend req(X,Y,C)⇐⇒ [X]blend match(X,Y,C,C ′)
blend3 : [X]neighbor(Y) \ [X]color(C),[X]blend match(X,Y,C,C ′)⇐⇒ [X]color(C + C ′)

(r : [X]Px, [Y]Py \ [X]Sx ⇐⇒ Gx, Gy | B)

n−

p
e
rsist

1
N

b

 r 1 : [X]Px , [X]Sx =⇒ Gx | [Y]r req(Xs)
MatchRule(Sx)
r 3 : [X]Px \ [X]Sx , [X]r match(Rs)⇐⇒ B

where
All c ∈ Py are persistent constraints
MatchRule(.) = r 2 : [Y]Py , [Y]r req(Xs) =⇒ Gy | [X]r match(Rs)
MatchRule(Sx) = r 2 : [Y]Py \ [Y]r req(Xs)⇐⇒ Gy | [X]r match(Rs) if Sx 6= .
Xs = FV(Px ,Sx) and FV(Gx) ⊆ FV(Px ,Sx) and FV(Gy) ⊆ FV(Px ,Py ,Sy)

Figure 14: Optimized Encoding for Neighbor Persistent Rule

Theorem 15 (Soundness of Basic Encoding) Given a 1-neighbor restricted and locally quiescent CHRe

program P1 and a 0-neighbor restricted CHRe program P0 such that P1 basic
1Nb P0, for any reachable states

Ω and Ω′, if P0 B Ω 7→∗ωe0 Ω′, then we have either Ω′ is not commit free or P1 B DropSyncs(dΩe;P1) 7→∗ωeα
DropSyncs(dΩ′′e;P1).

5.2 Optimizations

We define optimized encoding schemes for two special cases. Consider the basic encoding scheme in Figure 13.
Suppose that we apply to it a 1-neighbor restricted rule that is neighbor propagated (i.e, Sy = ∅) and
furthermore Py is persistent. We call such rules neighbor persistent. This encoding executes an unnecessary
indirection of sending r commit to neighbor Y in r 3 and completing the rule instance r with either r 4a
or r 4b. However if Sy = ∅, primary location X can immediately complete the rule instance at r 3 without

further communications with Y . This specialized encoding scheme is denoted by n−persist
1Nb is shown in

Figure 15. We also show an example rule blend which has this property (Sy = ∅ and we assume constraints
pallete(C) are persistent).

The next optimized encoding scheme applies specifically to 1-neighbor restricted rules which are not only
primary propagated, but furthermore all propagated matching obligations are persistent14. We call such
rules primary persistent rules. An example of this is the trans rule of the program of figure 1: Its primary
matching obligation consists of only one propagated constraint edge(Y,D) which is never deleted by any

rule of the program. Figure 15 shows this specialized encoding as the function p−persist
1Nb . This optimized

14This corresponds to a rule in Figure 13 such that Px = ∅ and Sx = ∅, hence we only have P ′x the persistent propagated
rule heads.

20

5 ENCODING 1-NEIGHBOR RESTRICTED PROGRAMS FOR ωE0

trans : [X]edge(Y,D) , [Y]path(Z ,D ′) =⇒ X 6= Z | [X]path(Z ,D + D ′)

p−

p
e
rsist

1
N

b

(
trans 1 : [X]edge(Y,D) =⇒ [Y]trans req(X,D)
trans 2 : [Y]trans req(X,D),[Y]path(Z,D′) =⇒ X 6= Z | [X]path(Z,D +D′)

)
(r : [X]Px, [Y]Py \ [Y]Sy ⇐⇒ Gx, Gy | B)

p−

p
e
rsist

1
N

b

(
r 1 : [X]Px =⇒ Gx | [Y]r req(Xs)
r 2 : [Y]r req(Xs),[Y]Py \ [Y]Sy ⇐⇒ Gy | B

)
where All c ∈ Px are persistent constraints

Xs = FV(Px) and FV(Gx) ⊆ FV(Px) and FV(Gy) ⊆ FV(Px ,Py ,Sy)

Figure 15: Optimized Encodings for Primary Persistent Rules

translation scheme is very similar to rule localization of link-restricted rule in distributed Datalog [LCG+06]
and indeed it is a special case of rewriting where left-hand sides are not removed as a result of rule application.

Given a 1-neighbor restricted program P1, we define the translation function P1 1Nb P0, where P0 is
the 0-neighbor restricted program encoding in which we apply the optimized encodings where possible: We
apply n−persist

1Nb for 1-neighbor restricted rules in P1 that are neighbor persistent, while we apply p−persist
1Nb

for those that are primary persistent, and basic
1Nb for all other 1-neighbor restricted rule. This is inductively

defined by the following rules:

(Program)
R 1Nb P0 P1 1Nb P ′0

(R P1) 1Nb (P0 P ′0)
(0−N)

R is 0-neighbor restricted

R 1Nb R

(N-Persist)

R is 1-neighbor restricted

R is neighbor persistent

R n−persist
1Nb R′

R 1Nb R
′

(P-Persist)

R is 1-neighbor restricted

R is primary persistent

R p−persist
1Nb R′

R 1Nb R
′

(Basic)

R is 1-neighbor restricted

(N-Persist) and (P-Persist) does not apply

R basic
1Nb R′

R 1Nb R
′

We now consider the soundness of the optimized encoding (the soundness of the basic encoding has been
shown in the previous section). In general, both the neighbor and primary persistent encoding schemes exploit
a similar property: one location’s matching obligation M of the 1-neighbor restricted rules is completely
persistent and we do not need to lock and reserve any constraint in M . This simplifies the application
of such 1-neighbor restricted rules and as long as we observe that persistent matching obligations M are
fulfilled, the rule application can be completed entirely at the other location’s discretion. Lemma 16 and 17

21

6 GENERALIZED ENCODING FOR N -NEIGHBOR RESTRICTED RULES

states this property for the neighbor persistent and primary persistent encoding schemes respectively.

Lemma 16 (Neighbor Persistent Encoding Rule Serializability) Given a 1-neighbor restricted and
locally quiescent CHRe program P1 and a 0-neighbor restricted CHRe program P0 such that P1 1Nb P0 and
commit free abstract states A1 A2, A3 and A4, given that for some matching neighbor persistent encoding
rule instances r 2 and r 3 , we have P0 B A1 7→r 2

ωeα
A2 7→∗ωeα A3 7→r 3

ωeα
A4 then there exists some A′2

such that P0 B A1 7→∗ωeα A
′
2 7→r 2

ωeα
A3 7→r 3

ωeα
A4

Lemma 17 (Primary Persistent Encoding Rule Serializability) Given a 1-neighbor restricted and
locally quiescent CHRe program P1 and a 0-neighbor restricted CHRe program P0 such that P1 1Nb P0 and
commit free abstract states A1 A2, A3 and A4, given that for some matching primary persistent encoding
rule instances r 1 and r 2 , we have P0 B A1 7→r 1

ωeα
A2 7→∗ωeα A3 7→r 2

ωeα
A4 then there exists some A′2

such that P0 B A1 7→∗ωeα A
′
2 7→r 1

ωeα
A3 7→r 2

ωeα
A4

Theorem 18 states the soundness of the optimized encoding.

Theorem 18 (Soundness of Optimized Encoding) Given a 1-neighbor restricted and locally quiescent
CHRe program P1 and a 0-neighbor restricted CHRe program P0 such that P1 1Nb P0, for any reachable
states Ω and Ω′, if P0BΩ 7→∗ωe0 Ω′, then we have either Ω′ is not commit free or P1BDropSyncs(dΩe;P1) 7→∗ωeα
DropSyncs(dΩ′′e;P1).

6 Generalized Encoding for n-Neighbor Restricted Rules

In this section, we show a generalized encoding scheme for n-neighbor restricted rules. The basic 1-neighbor
restricted encoding of Figure 13 implements a consensus protocol between two nodes. Specifically, this
encoding implements a two-phase commit protocol [SS83] lead by an initial round of matching. Rules r 1
and r 2 represent the matching phase, while r 3 the voting phase, and r 4a and r 4b the commit phase.
The encoding of n-neighbor restricted rules is then an implementation of a general consensus protocol that
establishes consensus of a rule application among the primary location X (acting as the coordinator of the
consensus) and n other directly connected and isolated neighbor locations Yi for i ∈ [1, n] (acting as the
cohorts of the consensus).

We first show an example of a 2-neighbor restricted rule encoding into 0-neighbor restricted rules. Fig-
ure 16 shows an example of a 2-neighbor restricted rule that sums up all values in an acyclic graph and
distributes the value to all nodes of the graph. The primary location X must synchronize with neighbor
locations Y and Z to attempt to “atomically” observe each location’s matching obligations and unanimously
decide to commit or abort the rule instance. The translation function nNb decomposes the rule into a se-
quence of 0-neighbor restricted rules that implement the consensus protocol that coordinates the application
of rule s in the following manner: Rule s 1 models the broadcast of the requests (to each matching neighbor
Y and Z) to match on rule s should the primary location X possess its rule head obligations. We assume that
constraints child are persistent and hence never deleted. Note that in the body, we introduce an existential
variable E and each request is parameterized by it. E is known as a destination [Pfe04], used to group
together all synchronizing constraints that originate from a particular request (r req) from primary location
X to synchronize a rule application of s. This provides a form of logical isolation from synchronizing con-
straints that belongs to other instances of this consensus building15. Specifically in this context, we will refer
to destinations like E as consensus destinations. Rules s 2Y and s 2Z implements neighbors Y ’s and Z’s
respective match response to X (s match Y and s match Z) only if they possess their rule head obligations.
Destination E is passed on for reasons discussed earlier. Rule s 3 implements primary location X attempt
to commit if it has confirmation from each neighbor that each possesses matching instances of their rule

15For the 1-neighbor restricted encoding detailed in Section 5 we can omit destinations because isolation is achieved simply
by passing all free-variables between primary location X and its only neighbor location Y .

22

6 GENERALIZED ENCODING FOR N -NEIGHBOR RESTRICTED RULES

s : [X]child(Y),[X]child(Z) \ [X]val(A),[Y]val(B),[Z]val(C)
⇐⇒ [X]val(A+B+C),[Y]val(A+B+C),[Z]val(A+B+C)

n
N

b

s 1 : [X]child(Y),[X]child(Z),[X]val(A)
=⇒ ∃E. [Y]s req Y (X,Y, Z,A,E),[Z]s req Z (X,Y, Z,A,E)

s 2Y : [Y]val(B) \ [Y]s req Y (X,Y, Z,A,E)⇐⇒ [X]s match Y (B,E)

s 2Z : [Z]val(C) \ [Z]s req Z (X,Y, Z,A,E)⇐⇒ [X]s match Z (C,E)

s 3 : [X]child(Y),[X]child(Z) \ [X]val(A),[X]s match Y (B,E),[X]s match Z (C,E)
⇐⇒ [X]s commit X (Y, Z,A,B,C,E),[Y]s vote Y (X,B,E),[Z]s vote Z (X,C,E)

s 4aY : [Y]val(B),[Y]s vote Y (X,B,E)⇐⇒ [X]s commit Y (Y,B,E)

s 4bY : [Y]s vote Y (X,B,E)⇐⇒ [X]s abort(E)

s 4aZ : [Z]val(C),[Z]s vote Z (X,C,E)⇐⇒ [X]s commit Z (Z,C,E)

s 4bZ : [Z]s vote Z (X,C,E)⇐⇒ [X]s abort(E)

s 5a : [X]s commit X (Y,Z,A,B,C,E),[X]s commit Y (Y,B,E),[X]s commit Z (Z,C,E)
⇐⇒ [X]val(A+B+C),[Y]val(A+B+C),[Z]val(A+B+C)

s 5bX : [X]s abort(E) \ [X]s commit X (Y, Z,A,B,C,E)⇐⇒ [X]val(A)

s 5bY : [X]s abort(E) \ [X]s commit Y (Y,B,E)⇐⇒ [Y]val(B)

s 5bZ : [X]s abort(E) \ [X]s commit Z (Z,C,E)⇐⇒ [Z]val(C)

Figure 16: Graph Sum Example: 2-Neighbor Restricted Rule

head obligations, and its own obligations are still valid. Upon applying this rule instance, X consumes the
simplified components of its rule head obligations (i.e, [X]val(A)), produces the synchronizing constraint
s commit X as a witness to this partial rule application of s and broadcasts to each neighbor Y and Z a call
to vote for commitment to this rule instance. Rules s 4aY and s 4aZ implement successful commits in Y and
Z only if each still possesses their respective rule head obligations, producing r commit Y or r commit Z
synchronizing constraints as witnesses to their respective partial rule applications. Rules s 4bY and s 4bZ
implements the alternative scenario where either neighbor has to vote to abort the rule instance application.
Rule s 5a implements the successful commitment for the rule instance of s. Specifically, if primary location
X receives matching commit synchronizing constraints from its neighbors Y and Z, we rewrite with the body
of s and thus completing the rule application of s. Finally, rules r 5bX , r 5bY and r 5bZ implements the
roll back procedure for the cases that any neighbor Y or Z vote for aborting the rule instance because it can
no longer fulfill its matching obligation. Specifically, each rule replaces a commit synchronizing constraint of
a given location (that witnesses the partial rule application of that location) with the simplified rule head
obligation of that particular location (e.g. [X]val(A)), thereby rolling back a failed non commit free state
into a commit free consistent state.

This encoding of rule s is effectively an implementation of a consensus protocol [AD76] in 0-neighbor
restricted rules. It establishes a consensus between the primary location X as the coordinator of the consensus
and neighboring location Y and Z as cohorts of the consensus. This encoding implements a two-phase commit
protocol [SS83] that is lead by an initial round of matching. Specifically, the s 1 rule and s 2x rules collectively
represents the matching phase, while s 3 rule and s 4xx rules represent the voting phase, and s 5a rule and

23

6 GENERALIZED ENCODING FOR N -NEIGHBOR RESTRICTED RULES

r : [X]Px, [X]P ′x,
(⊎

i∈In[Yi]Pi, [Yi]P
′
i

)
\ [X]Sx,

(⊎
i∈In[Yi]Si

)
⇐⇒ Gx,

(⊎
i∈InGi

)
| ∃Z̄.D

n
N

b

r 1 : [X]Px, [X]P ′x,[X]Sx =⇒ Gx | ∃E.
(⊎

i∈In[Yi]r req i(Xs, E)
)(⊎

i∈InMatchRule(i, Sx)
)

r 3 : [X]Px \ [X]P ′x,[X]Sx,
(⊎

i∈In[X]r match i(Ysi, E)
)

⇐⇒ [X]r commit X (Rs, E),
(⊎

i∈In[Yi]r vote i(X,Ysi, E)
)(⊎

i∈InVoteRules(i)
)

r 5a : [X]r commit X (Rs, E),
(⊎

i∈In[X]r commit i(Yi ,Ys i ,E)
)

⇐⇒ ∃Z̄.[X]P ′x,
(⊎

i∈In[Yi]P
′
i

)
, D

r 5bx : [X]r abort(E) \ [X]r commit X (Rs, E)⇐⇒ [X]P ′x, [X]Sx(⊎
i∈Inr 5bi : [X]r abort(E) \ [X]r commit i(Yi,Ysi, E)⇐⇒ [Yi]P

′
i , [Yi]Si

)

where
All c ∈ Px are persistent constraints and all c′ ∈ P ′x are non-persistent constraints
All c ∈

(⊎
i∈InPi

)
are persistent constraints and all c′ ∈

(⊎
i∈InP

′
i

)
are non-persistent constraints

MatchRule(i, ·) = r 2i : [Yi]Pi,[Yi]P
′
i,[Yi]Si,r req i(Xs, E) =⇒ Gi | [X]r match i(Ysi, E)

MatchRule(i, S) = r 2i : [Yi]Pi,[Yi]P
′
i,[Yi]Si \ r req i(Xs, E)⇐⇒ Gi | [X]r match i(Ysi, E) if S 6= ·

VoteRules(i) =

{
r 4ai : [Yi]Pi \ [Yi]P ′i,[Yi]Si,[Yi]r vote i(X,Ysi, E)⇐⇒ [X]r commit i(Yi,Ysi, E)

r 4bi : [Yi]r vote i(X,Ysi, E)⇐⇒ [X]r abort(E)

Xs = FV(Px, Sx) Ysi = FV(Pi, Si) Rs = FV(Px, Sx,
(⊎

i∈InPi, Si
)
) FV(Gx) ⊆ Xs FV(Gi) ⊆ Xs ∪Ysi

Figure 17: 0-Neighbor Restricted Encoding for n-Neighbor Restricted Rules

s 5bx rules the commit phase.

The generalized form of this n-neighbor restricted encoding is shown in Figure 17. Similarly to the
1-neighbor restricted encoding shown in Figure 13, this encoding comprises a set of 0-neighbor restricted
rules, referred to as encoding rules, which collectively implements a n-consensus protocol that allows n + 1
locations (one primary and n neighbor locations) to unanimously decide on the application of an instance of
a n-neighbor restricted rule. Specifically, each encoding rule implements a sub-routine of this n-consensus
protocol in the following manner:

1. Encoding rule r 1 models the initiation of the consensus by the primary location X: If location X
fulfills the primary matching obligations (Px, P

′
x, Sx where Gx), it sends a set of requests r reqi(Xs,E)

to n candidate locations which will participate in a round of consensus building, uniquely identified by
the existential variable E.

2. Each encoding rule r 2i models the asynchronous response of each neighbor location if its matching
obligation is fulfilled (Pi, P

′
i , Si where Gi), replying to primary location X with a r matchi(Ysi, E)

constraint.

3. Encoding rule r 3 states that if location X’s matching obligation is still available and if X has received

24

6 GENERALIZED ENCODING FOR N -NEIGHBOR RESTRICTED RULES

a match response r matchi(Ysi, E), from each neighbor involved in consensus E, it commits its non-
persistent matching obligations (P ′x and Sx) and calls each neighbor location of consensus E to vote
for this rule application (r vote i(X,Ysi, E)).

4. Each encoding rule r 4ai states that if the neighbor location still has its matching obligation (Pi,P
′
i , Si

where Gi) and receives a call to vote for the rule application of r (r vote i(X,Ysi, E)), it commits
its non-persistent matching obligations (P ′i and Si) and sends its decision to commit to location X
(r commit i(Yi,Ysi, E)). Otherwise, encoding rule r 4b states that if the neighbor location no longer
has its matching obligation, it sends its decision to abort consensus E to location X (r abort(E)).

5. Encoding rule r 5a models the completion of rule application r in the event that all neighbor locations
of consensus E have decided to commit to the rule application. Specifically, X receives a full set of
commit synchronizing constraints of consensus E, during which it completes the rule application by
applying the rule body of the n-neighbor restricted rule r (i.e, ∃Z̄.D) and return all non-persistent
propagated rule head matching obligations of the rule r (i.e, P ′x and

⊎
i∈InP

′
i)

6. Encoding rule r 5bx and each encoding rule r 5bi models the abortion of consensus E. Specifically,
upon receive r abort(E) from any neighbor location of consensus E, r 5bx rolls back location X’s
commitment to E by return its non-persistent matching obligations (i.e, P ′x and Sx) while each r 5bi
does the same of each neighbor location.

Note that each derivation step of an encoding rule that models this consensus protocol is designed
so that it can be interleaved with concurrent and non-overlapping derivations without compromising the
correctness of the consensus building. Since we assume a lossless network communication between locations,
this encoding implements a two-phase commit consensus protocol, which is sufficed to guarantee correctness

in a lossless network. Given a n-neighbor restricted program encoding P0, we write P0 B Ω 7→r j (E)
ωe0

Ω′

as a derivation step that involves the application of an instance of the encoding rule r j with the consensus
destination instantiated to some E. We will refer to such derivation steps as E derivation steps.

We now establish the soundness of the n-neighbor restricted rule encoding. The steps of the proof of the
soundness theorem for this encoding are similar to the steps shown in Section 5. Firstly, Lemma 19 states
that the encoding operation nNb preserves local quiescence of CHRe programs.

Lemma 19 (nNb Preserves Local Quiescence) Given a locally quiescent n-neighbor restricted pro-
gram Pn and a 0-neighbor restricted program P0 such that Pn nNb P0, then P0 is also locally quiescent.

Lemma 20 states the property that all applications of encoding rules are part of a derivation of some
prefix sequence of a consensus building routine of a specific consensus destination E.

Lemma 20 (Prefix Executions of n-Neighbor Encoding) Given a locally quiescent n-neighbor restricted
program P1 and a 0-neighbor restricted program P0 such that Pn nNb P0, if we have reachable states Ω,Ω′

such that P0 B Ω 7→ωe0
Ω′, then we have the following:

1. If P0 B Ω 7→r 2i(E)
ωe0

Ω′ for r 2i encoding rule of some consensus destination E, then there exists

some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 1(E)
ωe0

Ω′′′ and P0 B Ω′′′ 7→∗ωe0 Ω

2. If P0 B Ω 7→r 3(E)
ωe0

Ω′ for r 3 encoding rule of some consensus destination E, then there exists some

reachable derivation P0 B Ω′′ 7→∗ωe0 Ω′′′ which contains n derivation steps r 2i(E) for each neighbor

Yi of i ∈ In, and P0 B Ω′′′ 7→∗ωe0 Ω

3. If P0 B Ω 7→r 4ai(E)
ωe0

Ω′, for r 4ai encoding rule of some consensus destination E, then there exists

some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 3(E)
ωe0

Ω′′′ and P0 B Ω′′′ 7→∗ωe0 Ω

25

6 GENERALIZED ENCODING FOR N -NEIGHBOR RESTRICTED RULES

4. If P0 B Ω 7→r 4bi(E)
ωe0

Ω′, for r 4bi encoding rule of some consensus destination E, then there exists

some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 3(E)
ωe0

Ω′′′ and P0 B Ω′′′ 7→∗ωe0 Ω

5. If P0 B Ω 7→r 5a(E)
ωe0

Ω′ for r 5a encoding rule of some consensus destination E, then there exists

some reachable derivation P0 B Ω′′ 7→∗ωe0 Ω′′′ which contains n derivation steps r 2i(E) for each

neighbor Yi of i ∈ In, and P0 B Ω′′′ 7→∗ωe0 Ω

6. If P0 B Ω 7→r 5bx(E)
ωe0

Ω′ of P0 B Ω 7→r 5bi(E)
ωe0

Ω′ for r 5bx or r 5bi encoding rule of some consensus

destination E, then there exists some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 4bj (E)
ωe0

Ω′′′

and P0 B Ω′′′ 7→∗ωe0 Ω

Lemma 21 states the property that non-commit free states that contain partial applications of n-neighbor
restricted rules, can always eventually derive commit free state that only contain complete applications of
n-neighbor restricted rules.

Lemma 21 (n-Neighbor Commit-Free Reachability) Given a locally quiescent n-neighbor restricted
program Pn and a 0-neighbor restricted program P0 such that Pn nNb P0 and states Ω reachable by P0, if
Ω is not commit-free, then there exists some commit-free state Ω′ such that P0 B Ω 7→∗ωe0 Ω′.

Similarly to Lemma 14, Lemma 22 states that given any ωeα derivation between two commit free state
P0 B A 7→∗ωeα A

′ labeled I, we can safely permute I so that for each consensus destination E, derivation
step of r 3 (E) is immediately proceeded by all derivation steps of consensus destination E that occur after
it in I. This simply allows us to focus on derivations which are controlled and orderly.

Lemma 22 (n-Neighbor Encoding Rule Serializability) Given an n-neighbor restricted and locally qui-
escent CHRe program Pn and a 0-neighbor restricted CHRe program P0 such that Pn nNb P0 and commit
free abstract states A,A′ such that P0 B A 7→∗ωeα A

′ labeled as derivation I, if I contain derivations of a
n-neighbor restricted encoding rule instance r of consensus destination E such that:

• We have a successful application of rule instance r of E, then there exists a valid derivation I ′ =
P0 B A 7→∗ωeα AE 7→∗ωeα A′E 7→∗ωeα A′ such that P0 B AE 7→∗ωeα A′E consists the following
non-interleaving derivation sequence:

1. The derivation step r 3 (E).

2. All n derivation steps of r 4ai(E) each of Yi for i ∈ In.

3. The derivation step r 5a(E).

• We have an aborted attempt to apply rule instance r of E, then there exists a valid derivation I ′ =
P0 B A 7→∗ωeα AE 7→

∗
ωeα
A′E 7→∗ωeα A

′ such that P0 B AE 7→∗ωeα A
′
E consists a non-interleaving deriva-

tion sequences of derivation step r 3 (E) followed by all n derivation steps of r 4ai(E) or r 4bieach of
Yi for i ∈ In, followed by

1. The derivation step r 3 (E).

2. All m derivation steps of either r 4ai(E) each of Yi for i ∈ In where m ≤ n.

3. All n−m derivation steps of either r 4bi(E) each of Yi for i ∈ In.

4. The derivation step r 5b(E).

5. All n−m derivation steps of r 5bi(E) of Yi for i ∈ In.

Theorem 23 states the soundness of the n-neighbor restricted encoding scheme.

Theorem 23 (Soundness of n-Neighbor Restricted Encoding) Given an n-neighbor restricted and
locally quiescent CHRe program Pn and a 0-neighbor restricted CHRe program P0 such that Pn nNb P0,
for any reachable states Ω and Ω′, if P0 B Ω 7→∗ωe0 Ω′, then we have either Ω′ is not commit free or

Pn BDropSyncs(dΩe;Pn) 7→∗ωeα DropSyncs(dΩ′′e;Pn).

26

REFERENCES

7 Related Works

An extension of Datalog for implementing network protocols is introduced in [LCG+06]. It defines link
restricted Datalog rules along with the idea of rule localization which encodes link restricted rules into
local Datalog rules. Our work adapts, expands and generalizes these ideas to the context of distributed
multiset rewriting. A distributed and incremental algorithm for computing rule matchings involved in such
distributed Datalog systems is presented in [NJLS11] and is analogous to what ωe0 provides for CHRe. Our
work draws inspiration from the programming language Meld [ARLG+09]. Meld introduces a multitude of
extensions to Datalog, including linearity, aggregates and comprehensions. Work in [CARG+12] adapts Meld
for the context of general purpose multicore parallel programming. The ωe0 semantics extends the refined
CHR operational semantics [DSdlBH04]. A parallel execution model of CHR is introduced in [LS11], which
assumes a more tightly coupled model of concurrent execution, where multiple execution threads compute
rewritings concurrently over a global constraint store.

8 Conclusion and Future Works

We introduced CHRe, an extension of CHR with located constraints and n-neighbor restricted rewrite rules
for programming an ensemble of distributed computing entities. We defined the ωeα abstract semantics and
ωe0 operational semantics of CHRe and showed their soundness. We gave an optimized encoding for 1-
neighbor restricted rules into 0-neighbor restricted rules. Following this, we generalize this encoding scheme
for n-neighbor restricted rules. We have developed a prototype implementation of CHRe in Python with
MPI (Message Passing Interface) as a proof of concept and demonstrated its relative scalability in distributed
execution. In the future we intend to develop a more practical and competitive implementation of CHRe in
C or C++, imbued with existing CHR optimization techniques [Sch05]. We also intend to explore an
implementation over higher-level distributed graph processing frameworks like Google’s Pregel [MAB+10].
Additionally, we intend to explore using ωe0 to serve as an operational semantics that describes the core
multiset rewriting fragment of Meld and derive extensions like aggregates and comprehensions as higher-
level language encodings into ωe0. Our works on encoding n-neighbor restricted rules can be also applied to
extend Meld.

References

[AD76] P. A. Alsberg and J. D. Day. A Principle for Resilient Sharing of Distributed Resources. In
Proc. of the 2nd Int. Conf. on Software Engineering, ICSE ’76, pages 562–570, Los Alamitos,
CA, USA, 1976. IEEE Computer Society Press.

[ARLG+09] M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, P. Pillai, and J. D. Campbell. A Language for
Large Ensembles of Independently Executing Nodes. In Proc. of ICLP’09, volume 5649, pages
265–280. Springer-Verlag, 2009.

[CARG+12] F. Cruz, M. P. Ashley-Rollman, S. C. Goldstein, Ricardo Rocha, and F. Pfenning. Bottom-Up
Logic Programming for Multicores. In Vı́tor Santos Costa, editor, Proc. of DAMP 2012. ACM
Digital Library, January 2012.

[DSdlBH04] G. J. Duck, P. J. Stuckey, M. Garcia de la Banda, and C. Holzbaur. The Refined Operational
Semantics of Constraint Handling Rules. In In 20th Int. Conf. on Logic Programming ICLP’04,
pages 90–104. Springer, 2004.

[Frü94] T. Frühwirth. Constraint handling rules. In Constraint Programming, pages 90–107, 1994.

27

A PROOFS

[LCG+06] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ramakrish-
nan, T. Roscoe, and I. Stoica. Declarative Networking: Language, Execution and Optimization.
In Proc. of SIGMOD ’06, pages 97–108. ACM, 2006.

[LS11] E. S. L. Lam and M. Sulzmann. Concurrent Goal-based Execution of Constraint Handling
Rules. TPLP, 11(6):841–879, 2011.

[MAB+10] G. Malewicz, M. H. Austern, A. J.C Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: A System for Large-Scale Graph Processing. In Proc. of Int. Conf. on Management of
data, SIGMOD, pages 135–146, USA, 2010. ACM.

[NJLS11] V. Nigam, L. Jia, B. T. Loo, and A. Scedrov. Maintaining distributed logic programs incre-
mentally. In Proc. of PPDP’11, pages 125–136. ACM, 2011.

[Pfe04] F. Pfenning. Substructural Operational Semantics and Linear Destination-Passing Style (In-
vited Talk). In APLAS, page 196, 2004.

[Sch05] T. Schrijvers. Analyses, Optimizations and Extensions of Constraint Handling Rules: Ph.D.
Summary. In ICLP, pages 435–436, 2005.

[SL08] M. Sulzmann and E. S. L. Lam. Parallel Execution of Multi-set Constraint Rewrite Rules. In
PPDP, pages 20–31, 2008.

[SS83] D. Skeen and M. Stonebraker. A Formal Model of Crash Recovery in a Distributed Systems.
IEEE Transactions on Software Engineering, pages 219–228, 1983.

A Proofs

A.1 Proofs for the ωeα Semantics

Lemma 1 (Well-Formedness Preservation of ωeα Derivations) Given a well-formed CHRe program P,
a well-formed state A and state A′, if P BA 7→∗ωeα A

′ then A′ is well-formed.

Proof: We proof by induction on ωeα derivation steps. We consider the base case such that PBA 7→∗ωeα A
of zero ωeα derivation step, hence trivially we have A′ = A is well-formed. Now suppose well-formedness
preservation holds for derivations P B A 7→∗ωeα A

′′ of m number of derivation steps, hence state A′′ is
well-formed. We consider the successor state A′ such that P B A′′ 7→ωeα

A′. Specifically, we consider this
derivation step in its most general form as specified in Figure 4: Since all rules in P are well-formed, we are
guaranteed that all fragments of rule body (i.e, D′i, D

′
j and D′k) consist of well-formed constraints, hence

instantiated rule body fragments Di, Dj and Dk are well-formed as well. Constraint stores S̄i and S̄j ex-
tended with well-formed constraints result to well-formed stores as well, hence new components of the state
(i.e,

⊎
i∈In〈S̄i, Pi, Di〉ki ,

⊎
j∈Im〈S̄j , Dj〉kj ,

⊎
l∈Im〈S̄l, Dl〉kl) are all well-formed. We show that new location

names kl (of existential forwarding locations) are unique and do not exist in A: location variables k′l are de-
fined such that they do not appear as term arguments of rule heads (i.e, k′l /∈

(
FV(

⊎
i∈InPi) ∪ FV(

⊎
i∈InSi)

)
)

nor are they matching locations (i.e, ∀i ∈ In. k′l 6= k′i). Therefore, variables k′l are treated as existential
variables and the meta operation Inst(−) would simply assign it a fresh constant kl that has never appeared
before. Hence the state A′ is well-formed. �

Lemma 2 (Well-Formedness Preservation of V−W Translation) Given a well-formed CHRe object
o, VoW is a well-formed CHR object.

Proof: We prove by structural induction over well-formed CHReobjects, where CHR constraints p(~t)
are the base elements:

28

A PROOFS

• Constraints: Vp(~t)Wl = p(l,~t). p(~t) is well-formed, namely terms ~t are well-formed. l is either a
variable or location name (a constant) which is a well-formed term, hence p(l,~t) is well-formed.

• Constraint Store: For V∅Wl = ∅, an empty set which is by default a well-formed store. For Vc, S̄Wl,
suppose VcWl and VS̄Wl are well-formed constraint stores (via constraint and constraint store cases
respectively), then the multiset union VcWl,VS̄Wl is also a well-formed constraint store.

• Abstract Ensemble States: For V∅W = ∅, an empty set is by default a well-formed constraint store.
For VA, 〈S̄〉kW = VAW,VS̄Wk, suppose that VAW is a well-formed (this case) and furthermore, it is a
constraint store. Also suppose that VS̄Wk is a well-formed constraint store (constraint store case), then
the multiset union of the two is also a well-formed constraint store.

• Rule Body: At the top-level, V∃x̄.DW is simply ∃x̄.VDW and is clearly well-formed, if VDW is well-formed.
For VtrueW = true, true is by default a well-formed CHR rule body. For V[l]c,DW = VcWl,VDW,
suppose that VcWl is a well-formed CHR constraint (constraint case) and that VDW is a well-formed
rule body (this case), hence the composition VcWl,VDW is indeed a well-formed CHR rule body.

• Rule Head: For V·W = ·, ‘·’ is by default a well-formed CHR rule head. For V[l]c,HW = VcWl,VHW,
suppose that VcWl is a well-formed CHR constraint (constraint case) and that VHW is a well-formed
rule head (this case), hence the composition VcWl,VHW is indeed a well-formed CHR rule head.

• Rule: Vr : P \ S ⇐⇒ G | BW = r : VPW \ VSW ⇐⇒ G | VBW, Given multisets of well-formed
located constraints P , S and B, we have VPW, VSW and VBW as well-formed CHR constraints. Hence
the resultant CHR rule is well-formed.

• Program: For V·W = ·, empty ‘·’ is by default a well-formed CHR program. For VR PW, suppose VRW
is a well-formed CHR rule (rule case) and VPW is a well-formed CHR program (this case), then the
composition of the two is a well-formed CHR program.

Hence we have shown that given a well-formed CHRe object o, VoW is a well-formed CHR object. �

Theorem 3 (Soundness of ωeα) Given a CHRe program P and abstract states A and A′, if PBA 7→∗ωeα
A′, then VPWB VAW 7→∗ωα VA′W.

Proof: We prove by induction on ωeα derivation steps: We consider the base case such that PBA 7→∗ωeα A
of zero derivation steps. With Lemma 2, since VPW and VAW are well-formed CHR program and store, we
trivially have VPWB VAW 7→∗ωα VAW. We now consider the inductive case: Suppose we have P BA 7→∗ωeα A

′′

such that VPWB VAW 7→∗ωα VA′′W for some derivation of m steps. We consider the successor derivation step
that extends this by one, in its most general form as specified in Figure 4:

P B A′,
(⊎

i∈In〈S̄i, Pi, Si〉ki ,⊎
j∈Im〈S̄j〉kj

)
7→ωeα

A′,

 ⊎
i∈In〈S̄i, Pi, Di〉ki ,⊎
j∈Im〈S̄j , Dj〉kj ,⊎
l∈Ie〈Dl〉kl

such that A′′ = A′,

(⊎
i∈In〈S̄i, Pi, Si〉ki ,

⊎
j∈Im〈S̄j〉kj

)
and from this we can infer (for some rule name r and guard G) the rule instance in P that corresponds

to this derivation step is:

r :
⊎
i∈In[ki]Pi \

⊎
i∈In[ki]Si ⇐⇒ G | ∃x̄.

⊎
i∈In[ki]Di,

⊎
j∈Im[kj]Dj ,

⊎
l∈Ie[kl]Dl

Hence, to complete the induction proof, we need to show that the following holds:

29

A PROOFS

VPW B VA′W,
(⊎

i∈InVS̄iWki ,VPiWki ,VSiWki ,⊎
j∈ImVS̄jWkj

)
7→ωα VA′W,

 ⊎
i∈InVS̄iWki ,VPiWki ,VDiWki ,⊎
j∈ImVS̄jWkj ,VDjWkj ,⊎
l∈IeVDlWkl

 (A)

We apply the translation function on rule instance r, which we know to be an instance of some rule
R ∈ P, hence we have the CHR interpretation of rule instance r:

Vr :
⊎
i∈In[ki]Pi \

⊎
i∈In[ki]Si ⇐⇒ G | ∃x̄.

⊎
i∈In[ki]Di,

⊎
j∈Im[kj]Dj ,

⊎
l∈Ie[kl]DlW

= r :
⊎
i∈InVPiWki \

⊎
i∈InVSiWki ⇐⇒ G | ∃x̄.

⊎
i∈InVDiWki ,

⊎
j∈ImVDjWkj ,

⊎
l∈IeVDlWkl

Note that this CHR rule instance corresponds the rule instance applied in CHR derivation (A), thus
proving that derivation (A) is valid and thus, ωeα is sound and preserves deriviability. �

A.2 Proofs for the ωe0 Semantics

Lemma 4 (Well-Formedness Preservation of ωe0 Derivations) Given a well-formed 0-neighbor re-
stricted CHRe program P, a well-formed state Ω and state Ω′, if P B Ω 7→∗ωe0 Ω′ then Ω′ is well-formed.

Proof: We proof by induction on ωe0 derivation steps. We consider the base case such that PBΩ 7→∗ωe0 Ω

of zero ωe0 derivation step, hence trivially we have Ω′ = Ω is well-formed. Now suppose well-formedness
preservation holds for derivations P B Ω 7→∗ωe0 Ω′′ of m number of derivation steps, hence state Ω′′ is well-

formed. We consider all possible forms (each rule of Figure 7) of successor derivation step that maps Ω′′ to
some state Ω′ (i.e, P BA′′ 7→ωeα

A′):

• (Flush) Step: This step modifies a location k ∈ Locs(Ω′′) by moving its buffer ~U to its empty goals.

Since ~U (a sequence of constraints) is by definition a valid sequence of goals, hence successor state Ω′

is well-formed.

• (Loc 1) This step modifies two distinct locations k, k′ ∈ Locs(Ω′′) by moving leading goal in k [k′]c
into the buffer of k′ as c. Hence goals of k and buffer of k′ are still well-formed and therefore successor
state Ω′ is well-formed.

• (Loc 2) Step: This step modifies the goals of k ∈ Locs(Ω′′) from [k]c, ~G to c, ~G which is clearly still
well-formed. Therefore successor state Ω′ is well-formed.

• (Loc 3) Step: This step modifies the goals of k ∈ Locs(Ω′′) from [k]c, ~G to c, ~G and extends the

successor state Ω′ with 〈c ; ∅ ; ∅ ; ∅〉k′ . c, ~G is clearly still well-formed, and premise of the premise of
the rule restricts k′ to be unique from any other state that appear in Ω′′. Therefore Ω′ is well-formed.

• (Act) Step: This step modifies a location k ∈ Locs(Ω′′) by changing its leading goal from p(~t) to
p(~t)#d : 1 and adding p(~t)#d to its store. Since p(~t)#d : 1 is a valid goal and d is a fresh id, successor
state Ω′ is well-formed.

• (Simp) Step: This step modifies a location k ∈ Locs(Ω′′) by removing a fragment ‘S, c#d’ from the
store, removing leading goal c#d : i from the goals and adding rule body instance NF(Inst(θB))
to the goals. Removing elements from store and goal have benign effects on well-formedness and
since CHReprogram P contains only well-formed rules, rule body instance NF(Inst(θB)) is a ground
and well-form multiset of constraints. We treat this multiset of constraints as an arbitrarily ordered
sequence of constraints when appending to the goals. Therefore successor state Ω′ is well-formed.

30

A PROOFS

• (Prop) Step: This step is similar to (Simp) with exception that the active constraint c#d : i is retained
in the goal, c#d is retained in the store and (d, Ids(P, S)) is added to the history. Since (d, Ids(P, S))
is a valid history element and premise restricts that it must not already appear in the current history
(thus enforcing the set semantics of the history), successor state Ω′ is well-formed.

• (Next) Step: This step modifies a location k ∈ Locs(Ω′′) by changing its leading goal from c$d : i to
c#d : i+ 1, which is a valid goal. Hence successor state Ω′ is well-formed.

• (Drop) Step: This step modifies a location k ∈ Locs(Ω′′) by removing its leading goal. Therefore
successor state is well-formed.

Therefore we have shown that all derivation steps of ωe0 preserves well-formedness. �

Lemma 5 (Well-Formedness Preservation of d−e Translation) Given a well-formed ωe0 operational
state Ω, dΩe is a well-formed ωeα abstract state.

Proof: We prove by structural induction over well-formed ωe0 operational state and sub-structural
fragments:

• Ensembles: dΩe, it is well-formed assuming that its two components dΩe~G′
and

⊎
k∈(Locs(~G′)−Locs(Ω))〈~G

′
|k〉k

are well-formed sets of store and location pairs (〈S̄〉k) and all k are unique. Indeed, by definition of
both components each are sets of store and location pairs and uniqueness of each k is guaranteed by
the assumption that each sub-structure is well-formed and that the second explicitly quantify over

locations k /∈ Locs(Ω) (i.e, k ∈ Locs(~G′) − Locs(Ω)). For dΩ, 〈~U ; ~G ; S̄ ; H̄〉ke
~G′

, we show that it is

well-formed by assuming that the sub-structure dΩe~G′
is well-formed and that d~Ue, d~Ge, dS̄e and ~G′|k

are well-formed multisets of constraints. The latter four sub-structures are collapsed into one multiset

of constraints, hence dΩ, 〈~U ; ~G ; S̄ ; H̄〉ke
~G′

is well-formed. Finally, d∅e~G′
is the empty set ∅ which is

by default a well-formed abstract state.

• Buffers: For d∅e = ∅, ∅ is by default a well-formed constraint store. For dc, ~Ue, it is well-formed

assuming that d~Ue is a well-formed constraint store. Since c is a valid element of a constraint store,

unioning d~Ue with c forms a well-formed constraint store.

• Stores: For d∅e = ∅, ∅ is by default a well-formed constraint store. For dc#d, S̄e, it is well-formed
assuming that dS̄e is a well-formed constraint store. Since we drop d and only retain c, a valid element
of a constraint store, unioning dS̄e with c forms a well-formed constraint store.

• For d∅e = ∅, ∅ is by default a well-formed constraint store. For dc, ~Ge, it is well-formed assuming that

d~Ge is a well-formed constraint store. Since c is a valid element of a constraint store, unioning d~Ge with

c forms a well-formed constraint store. For dc#d : i, ~Ge and d[c], ~Ge, we drop both respective atoms

and only rely on the assumption that d~Ge is well-formed.

Hence we have shown that given a well-formed ωe0 operational state Ω, dΩe is a well-formed ωeα abstract
state. �

Theorem 6 (Soundness of ωe0) Given 0-neighbor restricted CHRe program P and states Ω and Ω′, if
P B Ω 7→∗ωe0 Ω′, then P B dΩe 7→∗ωeα dΩ

′e.

Proof: We proof by induction on ωe0 derivation steps. We consider the base case such that PBΩ 7→∗ωe0 Ω

of zero ωe0 derivation step, hence trivially we have Ω′ = Ω and that P B dΩe 7→∗ωeα dΩe for zero ωeα derivation
step. Now suppose that for derivations P B Ω 7→∗ωe0 Ω′′ of m number of steps, we have P B dΩe 7→∗ωeα dΩ

′′e.
We consider all possible forms (each rule of Figure 7) of successor derivation step that maps Ω′′ to some
state Ω′ (i.e, P B Ω′′ 7→ωeα

Ω′), and show that for each instance we have P B dΩe 7→∗ωeα dΩ
′e:

31

A PROOFS

• (Flush) Step: Successor derivation step P B Ω′′ 7→ωeα
Ω′ is of the form:

P B Ω, 〈~U ; ∅ ; S̄ ; H̄〉k 7→ωe0
Ω, 〈∅ ; ~U ; S̄ ; H̄〉k

Since d〈~U ; ∅ ; S̄ ; H̄〉ke = d〈∅ ; ~U ; S̄ ; H̄〉ke, hence dΩ′′e = dΩ′e and we trivially have PB dΩ′′e 7→∗ωeα
dΩ′e of zero ωeα derivation step. Therefore P B dΩe 7→∗ωeα dΩ

′e.

• (Loc 1) Step: Successor derivation step P B Ω′′ 7→ωeα
Ω′ is of the form:

P B Ω,

(
〈~U ; ([k′]c, ~G) ; S̄ ; H̄〉k,
〈~U ′ ; ~G′ ; S̄ ′ ; H̄′〉k′

)
7→ωe0

Ω,

(
〈~U ; ~G ; S̄ ; H̄〉k,
〈(~U ′, c) ; ~G′ ; S̄ ′ ; H̄′〉k′

)
By definition, d[k′]c, ~Ge = d~Ge and since k 6= k′, we have Goals(Ω′′)|k = Goals(Ω′)|k. Thus for

location k we have 〈d~Ue, d([k′]c, ~G)e, dS̄e,Goals(Ω′′)|k〉k = 〈d~Ue, d~Ge, dS̄e,Goals(Ω′)|k〉k. For location

k′, c, d~U ′e = d~U ′, ce but since Goals(Ω′′)|k = c,Goals(Ω′)|k, we have 〈d~U ′e, d~G′e, dS̄ ′e,Goals(Ω′′)|k〉k′ =

〈d~U ′, ce, d~G′e, dS̄ ′e,Goals(Ω′)|k〉k′ . These imply that dΩ′′e = dΩ′e. We trivially have PBdΩ′′e 7→∗ωeα dΩ
′e

of zero ωeα derivation step. Therefore P B dΩe 7→∗ωeα dΩ
′e.

• (Loc 2) Step: Successor derivation step P B Ω′′ 7→ωeα
Ω′ is of the form:

P B Ω, 〈~U ; ([k]c, ~G) ; S̄ ; H̄〉k 7→ωe0
Ω, 〈~U ; (c, ~G) ; S̄ ; H̄〉k

By definition, we have c, d[k]c, ~Ge = dc, ~Ge and Goals(Ω′′)|k = c,Goals(Ω′)|k. These implies that we

have 〈d~Ue, d[k]c, ~Ge, dS̄e,Goals(Ω′′)|k〉k = 〈d~Ue, dc, ~Ge, dS̄e,Goals(Ω′)|k〉k and hence dΩ′′e = dΩ′e. We
trivially have P B dΩ′′e 7→∗ωeα dΩ

′e of zero ωeα derivation step. Therefore P B dΩe 7→∗ωeα dΩ
′e.

• (Loc 3) Step: Successor derivation step P B Ω′′ 7→ωeα
Ω′ is of the form:

P B Ω, 〈~U ; ([k′]c, ~G) ; S̄ ; H̄〉k 7→ωe0
Ω, 〈~U ; ~G ; S̄ ; H̄〉k, 〈c ; ∅ ; ∅ ; ∅〉k′

By definition, we have d[k′]c, ~Ge = d~Ge. However, since Ω′ has the additional location 〈c ; ∅ ; ∅ ; ∅〉k′ ,
hence c, dΩ′′eGoals(Ω′′) = dΩ′eGoals(Ω′). Yet we have the following in the second component of the d−e
definition:⊎

k∈(Locs(Goals(Ω′′))−Locs(Ω))
〈k|Goals(Ω′′)〉k = c,

⊎
k∈(Locs(Goals(Ω′))−Locs(Ω))

〈k|Goals(Ω′)〉k

Hence we have dΩ′′e = dΩ′e and thus P B dΩ′′e 7→∗ωeα dΩ
′e of zero ωeα derivation step. Therefore

P B dΩe 7→∗ωeα dΩ
′e.

• (Act) Step: Successor derivation step P B Ω′′ 7→ωeα
Ω′ is of the form:

P B Ω, 〈~U ; (p(~t), ~G) ; S̄ ; H̄〉k 7→ωe0
Ω, 〈~U ; (p(~t)#d : 1, ~G) ; (S̄, p(~t)#d) ; H̄〉k

We have dp(~t), ~Ge = p(~t), dp(~t)#d : 1, ~Ge, p(~t), dS̄e = dS̄, p(~t)#de and Goals(Ω′′)|k = Goals(Ω′)|k.
Hence we have:

〈d~Ue, dp(~t), ~Ge, dS̄e,Goals(Ω′′)|k〉k = 〈d~Ue, dp(~t)#d : 1, ~Ge, dS̄, p(~t)#de,Goals(Ω′)|k〉k

Hence we have dΩ′′e = dΩ′e and thus P B dΩ′′e 7→∗ωeα dΩ
′e of zero ωeα derivation step. Therefore

P B dΩe 7→∗ωeα dΩ
′e.

32

A PROOFS

• (Simp) Step: Successor derivation step P B Ω′′ 7→ωeα
Ω′ is of the form:

P B Ω, 〈~U ; (c#d : i, ~G) ; (S̄, P, S, c#d) ; H̄〉k 7→ωe0
Ω, 〈~U ; (NF(Inst(θB)), ~G) ; (S̄, P) ; H̄〉k

for some substitution θ. Applying the translation function and simplifying, we need to prove that:

P B dΩe~G′′
, 〈d~Ue, d~Ge, dS̄e, dP e, dSe, c, ~G′′|k〉k,A

′′

7→ωeα
dΩe~G′

, 〈d~Ue,NF(Inst(θB))|k, d~Ge, dS̄e, dP e, ~G′|k〉k,A
′

where ~G′′ = Goals(Ω′′) and ~G′ = Goals(Ω′)
A′′ =

⊎
k∈Locs(Goals(Ω′′))−Locs(Ω′′)〈Goals(Ω′′)|k〉k

A′ =
⊎
k∈Locs(Goals(Ω′))−Locs(Ω′)〈Goals(Ω′)|k〉k

more precisely, we want to show that this ωeα derivation step involves the application of the 0-neighbor
restricted rule instance:

[k]P \ [k]S, [k]c⇐⇒ G | θBk,
⊎
j∈ImθBj ,

⊎
l∈IeθBl (A)

We known that this rule instance (A) with rule heads [k]P and [k]S and rule guard G such that |= G
exists in P because it has been assumed to apply in P B Ω′′ 7→ωe0

Ω′. We now need to show that the
rule body θBk,

⊎
j∈ImθBj ,

⊎
l∈IeθBl corresponds to new constraints that appear in dΩ′e but not dΩ′′e.

Specifically, we need to show the following:

– That NF(Inst(θB)) = θBk,
⊎
j∈ImθBj ,

⊎
l∈IeθBl such that NF(Inst(θB))|k = θBk, for each j ∈

Im NF(Inst(θB))|kj = θBj and for each l ∈ Ie NF(Inst(θB))|kl = θBl

– For each j ∈ Im such that 〈S̄j〉kj ∈ dΩ′′e
~G′′

for some S̄j , we have 〈S̄j , θBj〉kj ∈ dΩ′e
~G′

– For each l ∈ Ie such that 〈S̄l〉kl /∈ A′′ for any S̄l, we have 〈θBl〉kl ∈ A′

By definition of the translation function d−e, each translated location component kj of dΩ′′e~G′′
, contains

~G′′|kj . By comparison of new constraints in Ω′ but not in Ω′′, we have for each j ∈ Im NF(Inst(θB))|kj =

θBj . Hence the difference of dΩ′e~G′
and dΩ′′e~G′′

is captured by
⊎
j∈ImNF(Inst(θB))|j . For each

l ∈ Ie such that kl /∈ Locs(Ω′′), kl will appear in A′ =
⊎
k∈Locs(Goals(Ω′))−Locs(Ω′)〈Goals(Ω′)|k〉k, i.e,

〈S̄l〉kl for some S̄l. This is because the only change in goals between Ω′′ to Ω′ is the introduction of
NF(Inst(θB)) and all locations not found in Ω′′ will appear in A′, by its definition. Furthermore, S̄l =
NF(Inst(θB))|kl . Hence we have shown that NF(Inst(θB)) captures all constraints in dΩ′e that does
not appear in dΩ′′e, and furthermore with the constraints distributed to the corresponding locations.
Since constraints that appear in dΩ′′e but not in dΩ′e is exactly ‘S, c’ in location k, these corresponds to
the effects of applying rule instance (A) via the ωeα derivation step, in other words: PBdΩ′′e 7→∗ωeα dΩ

′e.

• (Prop) Step: The prove of this step is similar to (Simp), with the exception that active constraint c#d
is kept in the store in successor state dΩ′e. This is consistent to the application of a rule instance where
c matches with a propagated rule head, hence it does not invalidate the proof. Ω′ does still contain
the active goal constraint c#d : i, but this is not visible in dΩ′e as defined by the d−e translation of
goals. Lastly, history of k in Ω′ is extended by (d, Ids(P, S)), but histories are simply discarded in dΩ′e.
Therefore we still have P B dΩ′′e 7→∗ωeα dΩ

′e.

• (Next) Step: Successor derivation step P B Ω′′ 7→ωeα Ω′ is of the form:

P B Ω, 〈~U ; (c#d : i, ~G) ; S̄ ; H̄〉k 7→ωe0
Ω, 〈~U ; (c#d : (i+ 1), ~G) ; S̄ ; H̄〉k

Since we have dc#d : i, ~Ge = dc#d : (i+ 1), ~Ge, we have dΩ′′e = dΩ′e and thus P B dΩ′′e 7→∗ωeα dΩ
′e of

zero ωeα derivation step. Therefore P B dΩe 7→∗ωeα dΩ
′e.

33

A PROOFS

• (Drop) Step: Successor derivation step P B Ω′′ 7→ωeα
Ω′ is of the form:

P B Ω, 〈~U ; (c#d : i, ~G) ; S̄ ; H̄〉k 7→ωe0
Ω, 〈~U ; ~G ; S̄ ; H̄〉k

Since we have dc#d : i, ~Ge = d~Ge, we have dΩ′′e = dΩ′e and thus P B dΩ′′e 7→∗ωeα dΩ
′e of zero ωeα

derivation step. Therefore P B dΩe 7→∗ωeα dΩ
′e.

Therefore, we have shown P B dΩe 7→∗ωeα dΩ
′′e 7→∗ωeα dΩ

′e for all forms of derivation step P B dΩ′′e 7→∗ωeα dΩ
′e

and thus completing the inductive proof of P B dΩe 7→∗ωeα dΩ
′e. �

Lemma 7 (Always Active Rule Head Instances) Given a 0-neighbor restricted CHReprogram P
and an initial state Ω, for any reachable state Ω′ such that P B Ω 7→∗ωe0 Ω′, all rule instances in Ω′ must be
active.

Proof: We proof this by induction on derivation steps between initial state Ω and reachable state Ω′.
For the base case, we consider P B Ω 7→∗ωe0 Ω′ of zero derivation step, hence Ω′ = Ω. Since Ω′ is an initial

state, all stores S̄ in Ω′ are empty, therefore we have no rule instances in Ω′ and the property holds by
default. For inductive case, we assume that we have some derivation of m steps to some reachable state Ω′′

(i.e, P B Ω 7→∗ωe0 Ω′′) and that all rule instances in Ω′′ are active. We will now show that for any successor

derivation step P B Ω′′ 7→∗ωe0 Ω′, reachable state Ω′ is such that all rule instances are active. We show this
by considering all possible forms of this successor derivation:

• (Flush) Step: This step modifies location k in Ω′′ by moving its buffers into the goals. Constraint
store of k remains the same, hence rule instances in Ω′ are similar to those in Ω′′. Therefore all rule
instances in Ω′ are active.

• (Loc 1) Step: This step modifies two locations k and k′ in Ω′′ by moving leading goal of k, [k′]c to
goals of k′. Constraint stores of k and k′ remain the same, hence rule instances in Ω′ are similar to
those in Ω′′. Therefore all rule instances in Ω′ are active.

• (Loc 2) Step: This step modifies location k in Ω′′ by changing leading goal from [k]c to c. Constraint
store of k remains the same, hence rule instances in Ω′ are similar to those in Ω′′. Therefore all rule
instances in Ω′ are active.

• (Loc 3) Step: This step modifies location k in Ω′′ by removing its leading goal [k′]c, and creating a
new location k′ with c in its buffer and everything else empty. Constraint store of k remains the same
and constraint store of k′ is empty, hence rule instances in Ω′ are similar to those in Ω′′. Therefore all
rule instances in Ω′ are active.

• (Act) Step: This step modifies location k in Ω′′ by changing leading goal p(~t) into p(~t)#d : i and also
adding p(~t)#d into the store S̄. This possibly adds new rule instances R in Ω′ which has p(~t)#d as a
rule head. Since p(~t)#d : i is in the goals, all these newly added rule instances are active. Therefore
all rule instances in Ω′ are active.

• (Simp) Step: This step modifies location k in Ω′′ by applying an active rule instance R which has the
leading goal c#d : i as one of its rule heads. Constraints matching the simplified heads S are removed
from the store: the removes rule instances but does not affect activeness of other rule instances that
remains. Rule body of R is added to goals, hence does not remove or add new rule instances. Leading
goal c#d : i is removed from the goals, but since constraint c#d in the constraint store is simplified as
well, all active rule instances that depend on c#d : i to be active will not be found in Ω′. Therefore
all rule instances that remain in Ω′ are still active.

34

A PROOFS

• (Prop) Step: This step is similar to the (Simp) step. Except that leading goal c#d : i is matched to
a propagated rule head of R. Since constraint c#d is not removed from the store, hence there may
exist other rule instances that contain c#d and depend on its corresponding goal c#d : i to be active.
But leading goal c#d : i is retained in Ω′, therefore these rule instances remain active. This step also
extends the history with the applied rule instances rule head ids. While this renders R no longer a rule
instance in Ω′, no new rule instances are added. Therefore all rule instances that remain in Ω′ are still
active.

• (Next) Step: This step modifies a location k in Ω by changing leading goal c#d : i to c#d : (i + 1).
The premise of this rule explicitly asserts that no (Simp) and (Prop) steps must apply for this goal
c#d : i. This effectively enforces that this step only have applied because Ω′′ contains no rule instances
that contain c#d : i hence c#d : i can be removed without making any rule instances inactive. Adding
c#d : (i + 1) possibly introduces new rule instances, but since it is part of the goals, all these newly
added rule instances are active. Therefore all rule instances that remain in Ω′ are still active.

• (Drop) Step: This step modifies a location k in Ω by removing its leading goal c#d : i. The premise
of this rule restricts it to only cases where i is not a occurrence index that appear in the program P,
hence there can never be any rule instances that contain c#d : i and it can be safely removed without
rendering any rule instances inactive. Therefore all rule instances that remain in Ω′ are still active.

Therefore, we have completed the inductive step proof for P B Ω 7→∗ωe0 Ω′. Hence all rule instances in any

reachable state Ω′ are active. �

Theorem 8 (Exhaustiveness of Rule Application in ωe0) Given a 0-neighbor restricted CHReprogram
P and reachable states Ω and Ω′, if P B Ω 7→∗ωe0 Ω′ and Ω′ is terminal, then there exists no rule instance
R ∈ P such that R is applicable.

Proof: We proof this by negation, showing that if we assume otherwise, we contradict Lemma 7. As-
sume that we have P B Ω 7→∗ωe0 Ω′ and Ω′ is terminal, but there exists some rule instance R ∈ P such

that R is applicable. Suppose this rule instance is applicable in some location k ∈ Locs(Ω′). Since Lemma 7
states that any rule instance R must be active, hence there must exists some c#d : i in the goals of k which
matches the ith rule head occurrence of rule instance R. However Ω′ is terminal, in other words, its goals
and buffer are suppose to be empty. Hence we have a contradiction. Therefore, it must be the case that in
Ω′ there exists no rule instance R ∈ P such that R is applicable. �

Lemma 9 (Monotonicity of ωe0 semantics) Given a 0-neighbor restricted program P, and reachable
states Ω,Ω′,Ω′′,

1. if P B Ω 7→ωe0
Ω′, then P B Ω,Ω′′ 7→ωe0

Ω′,Ω′′

2. if P B Ω 7→∗ωe0 Ω′, then P B Ω,Ω′′ 7→∗ωe0 Ω′,Ω′′

3. if P B Ω 7→||ωe0 Ω′, then P B Ω,Ω′′ 7→||ωe0 Ω′,Ω′′

4. if P B Ω 7→||∗ωe0 Ω′, then P B Ω,Ω′′ 7→||∗ωe0 Ω′,Ω′′

Proof:

1. We prove by structural induction over all forms of 7→ωe0
derivation steps. For the (Loc 3) step, we

assume implicit α-renaming of location k′ during composition of a larger context Ω′′. All other cases
are straight-forward, each simply to show that unmodified fragment of the ensemble state Ω can be
extended without affecting the derivation step.

35

A PROOFS

2. We prove by induction on 7→ωe0
derivation steps and also relying on the proof of (1).

3. We prove by structural induction over the (Single) and (Concurrent) derivation steps of 7→||ωe0 and also

relying on the proof of (1).

4. We prove by induction on 7→||ωe0 derivation steps and also relying on the proof of (3).

�

Theorem 10 (Serializability of Concurrent ωe0 Derivations) Given a 0-neighbor restricted program

P, and reachable states Ω,Ω′, if we have P B Ω 7→||∗ωe0 Ω′ then we must have P B Ω 7→∗ωe0 Ω′

Proof: We first proof this for one 7→||ωe0 derivation step, P B Ω 7→||ωe0 Ω′: By structural induction on

all forms of 7→||ωe0 derivation step, we consider the base structure (Single). Hence P B Ω 7→||ωe0 Ω′ consist of

a single 7→ωe0
derivation (i.e, P B Ω 7→ωe0

Ω′) and we naively have P B Ω 7→∗ωe0 Ω′. For the (Concurrent)
step, we have the derivation step form:

P B (Ω1,Ω2) 7→||ωe0 (Ω′1,Ω
′
2) such that Ω = (Ω1,Ω2) and Ω′ = (Ω′1,Ω

′
2)

Hence, assuming that we have P B Ω1 7→||ωe0 Ω′1 and P B Ω1 7→||ωe0 Ω′2 such that P B Ω1 7→ωe0
Ω′1 and

P B Ω1 7→ωe0
Ω′2 by Lemma 9, we have:

P B Ω1,Ω2 7→ωe0
Ω′1,Ω2 7→ωe0

Ω′1,Ω
′
2

Therefore we have P B (Ω1,Ω2) 7→∗ωe0 (Ω′′1 ,Ω
′′
2).

We have shown that given P B Ω 7→||ωe0 Ω′, we have P B Ω 7→∗ωe0 Ω′, now we prove the same for transitive

7→||ωe0 derivation steps by induction on 7→||∗ωe0 derivation steps. For base case, we have P B Ω 7→||∗ωe0 Ω′ of zero

derivation step, hence Ω = Ω′ and we naively have P B Ω 7→∗ωe0 Ω′. For the inductive case, we assume

that we have the property for concurrent derivations of m steps, i.e, P B Ω 7→||∗ωe0 Ω′′ of m steps implies

P B Ω 7→∗ωe0 Ω′′. We consider Ω′ the successor of Ω′′ after one derivation step, P B Ω′′ 7→||ωe0 Ω′. Since we show

that for a single concurrent derivation step, we have P B Ω′′ 7→∗ωe0 Ω′, hence we also have P B Ω 7→∗ωe0 Ω′.

Therefore, we have shown that given P B Ω 7→||∗ωe0 Ω′ then we must have P B Ω 7→∗ωe0 Ω′ �

A.3 Proofs for 1-Neighbor Restricted Rule Basic Encoding Scheme

Lemma 11 (Prefix Executions of Encoding) Given a locally quiescent 1-neighbor restricted program P1

and a 0-neighbor restricted program P0 such that P1 basic
1Nb P0, if we have reachable states Ω,Ω′ such that

P0 B Ω 7→ωe0
Ω′, then we have the following:

1. If P0 B Ω 7→r 2
ωe0

Ω′, then there exists some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 1
ωe0

Ω′′′

and P0 B Ω′′′ 7→∗ωe0 Ω

2. If P0 B Ω 7→r 3
ωe0

Ω′, then there exists some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 2
ωe0

Ω′′′

and P0 B Ω′′′ 7→∗ωe0 Ω

3. If P0 B Ω 7→r 4a
ωe0

Ω′, then there exists some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 3
ωe0

Ω′′′

and P0 B Ω′′′ 7→∗ωe0 Ω

36

A PROOFS

4. If P0 B Ω 7→r 4b
ωe0

Ω′, then there exists some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 3
ωe0

Ω′′′

and P0 B Ω′′′ 7→∗ωe0 Ω

Proof: These are easily proved by reasoning about the definition of encoding rules of Figure 13:

1. By definition of encoding rule r 1 and r 2 , the former has r req(Xs) as a rule body, while the latter has
r req(Xs) as a rule head. Since the synchronizing predicate r req appears in no where else, Application
of r 2 encoding rule must always be preceded by application of a matching instance of r 1 .

2. By definition of encoding rule r 2 and r 3 , the former has r match(Rs) as a rule body, while the latter
has r match(Rs) as a rule head. Since the synchronizing predicate r match appears in no where else,
Application of r 3 encoding rule must always be preceded by application of a matching instance of
r 2 .

3. By definition of encoding rule r 3 and r 4a, the former has r commit(Rs) as a rule body, while the
latter has r commit(Rs) as a rule head. Since the synchronizing predicate r commit appears in no
where else, Application of r 4a encoding rule must always be preceded by application of a matching
instance of r 3 .

4. By definition of encoding rule r 3 and r 4b, the former has r commit(Rs) as a rule body, while the
latter has r commit(Rs) as a rule head. Since the synchronizing predicate r commit appears in no
where else, Application of r 4b encoding rule must always be preceded by application of a matching
instance of r 3 .

�

Lemma 12 (basic
1Nb Preserves Local Quiescence) Given a locally quiescent 1-neighbor restricted

program P1 and a 0-neighbor restricted program P0 such that P1 basic
1Nb P0, then P0 is also locally quiescent.

Proof: By definition of the basic
1Nb translation operation, encoding rules r 1 , r 2 , r 3 and r 4b are

guaranteed to be locally quiescent. This is because their rule bodies only include constraints to be delivered
to its partner location, hence the rules are conservatively locally quiescent. Local quiescence of encoding
rule r 4a however, depends on the local quiescence of the original rule in P1. Since we assume that P1 is
locally quiescent, then r 4a must be locally quiescent. �

Lemma 13 (1-Neighbor Commit-Free Reachability) Given a 1-neighbor restricted program P1

and a 0-neighbor restricted program P0 such that P1 basic
1Nb P0 and states Ω reachable by P0, if Ω is not

commit-free, then there exists some commit-free state Ω′ such that P0 B Ω 7→∗ωe0 Ω′.

Proof: We prove this by considering all possible forms of derivations that lead to non-commit free states.
We consider all forms of 0-neighbor restricted encodings that contains the r 3 , r 4a and r 4b encoding rules
that rewrites (add or delete) r commit synchronizing constraints. By definition of the encodings, the only
rule that produces r commit constraints is r 3 , hence derivations that reach a non commit-free state Ω
must consist of several applications of the r 3 rule. Suppose that one of rule application is contained in the

37

A PROOFS

following derivation:

P0 B Ω,

(
〈~Ux ; ~Gx ;

(
S̄x, Px, Sx, r match(Rs)#d1

)
; H̄x〉x

〈~Uy ; ~Gy ; S̄y ; H̄y〉y

)
−(1)

7→ωe0
Ω,

(
〈~Ux ;

(
[y]r commit(Rs), ~Gx

)
; (S̄x, Px) ; H̄x〉x

〈~Uy ; ~Gy ; S̄y ; H̄y〉y

)
−(2)

7→ωe0
Ω,

(
〈~Ux ; ~Gx ; (S̄x, Px) ; H̄x〉x

〈
(
~Uy, [y]r commit(Rs)

)
; ~Gy ; S̄y ; H̄y〉y

)
−(3)

7→∗ωe0 Ω,

(
〈~U ′x ; ~G′x ; S̄ ′x ; H̄′x〉x

〈~U ′y ;
(

r commit(Rs)#d2 : j , ~G′y
)

;
(
S̄ ′y, r commit(Rs)#d2

)
; H̄′y〉y

)
−(4)

Suppose that x and y the are primary and neighbor locations of the r 3 rule instance. By the definition
of ωe0 derivation steps, we are guaranteed that from an initial state such that a rule instance of r 3 is
active in location x (highlighted in the derivation step (1) in above derivation) is applied (step (2) via
(Simp) or (Prop) ωe0 derivation step) and delivered to location y (step (3) via (Loc 1) ωe0 derivation step),
there exists some successor state ((4)) such that r commit(Rs)#d2 : j is an active constraint of y. This is
guaranteed because we assume that CHReprograms are locally terminating, hence local execution eventually
reach quiescences (goals are emptied) and buffer of y containing r commit(Rs) is moved into the goals.
Eventually, r commit(Rs)#d2 : j will be the active constraint. From (4), there are two possibilities: If
matching obligation of y is still valid in (4) (i.e, Py, Sy ⊆ S̄ ′y), then we have the following derivation:

P0 B

(
〈~U ′x ; ~G′x ; S̄ ′x ; H̄′x〉x

〈~U ′y ;
(

r commit(Rs)#d2 : j, ~G′y
)

;
(
S̄ ′′y , Py, Sy, r commit(Rs)#d2

)
; H̄′y〉y

)
−(4)

7→ωe0

(
〈~U ′x ; ~G′x ; S̄ ′x ; H̄′x〉x

〈~U ′y ;
(
B, ~G′y

)
;
(
S̄ ′′y , Py

)
; H̄′y〉y

)
−(5)

This results to a state which is commit free. If matching obligation of y is no longer valid in (4), r 4b applies,
consuming the commit synchronizing constraint r commit(Rs). Since application of r 4b universal in that
it always applies if r 4a doesn’t, hence any non-commit free state can reach a commit free state by a series
of applications of either r 4a or r 4b. �

Lemma 14 (Basic Encoding Rule Serializability) Given a 1-neighbor restricted and locally quiescent
CHRe program P1 and a 0-neighbor restricted CHRe program P0 such that P1 1Nb P0 and commit free
abstract states A1 A2, A3 and A4, given that:

1. For some basic encoding rule instances r 3 and r 4a, we have P0 B A1 7→r 3
ωeα
A2 7→∗ωeα A3 7→r 4a

ωeα
A4

then there exists some A′2 and A′3 such that P0 B A1 7→∗ωeα A
′
2 7→r 3

ωeα
A3 7→r 4a

ωeα
A′3 7→∗ωeα A4

2. For some basic encoding rule instances r 3 and r 4b, we have P0 B A1 7→r 3
ωeα
A2 7→∗ωeα A3 7→r 4b

ωeα
A4

then there exists some A′2 and A′3 such that P0 B A1 7→∗ωeα A
′
2 7→r 3

ωeα
A3 7→r 4b

ωeα
A′3 7→∗ωeα A4

38

A PROOFS

Proof: Let r be any 1-neighbor restricted rule instance of the general form:

r : [X]Px, [X]P ′x, [y]Py \ [X]Sx, [y]Sy ⇐⇒ G | ∃ z̄. [X]Dx, [Y]Dy,
⊎
j∈Im[kj]Dj ,

⊎
l∈Ie[kl]Dl ∈ P1

where kj for j ∈ Im, kj ∈ FV(Px, P
′
x, Py, Sx, Sy) are non-matched forwarding locations.

kl for l ∈ Ie, kl ∈ z̄ are existential forwarding locations.

for some location X and Y . Hence this instance rule is translated into the following r 3 , r 4a and r 4b
encoding rule instances:

r 3 : [X]Px \ [X]P ′x , [X]Sx , [X]r match(Rs)⇐⇒ [Y]r commit(Rs)
r 4a : [Y]Py \ [Y]Sy , [Y]r commit(Rs)⇐⇒ ∃z̄[X]P ′x , [X]Dx , [Y]Dy ,

⊎
j∈Im[kj]Dj ,

⊎
l∈Ie[kl]Dl

r 4b : [Y]r commit(Rs)⇐⇒ [X]P ′x , [X]Sx

We now will show that derivation steps in the derivation P0 B A 7→∗ωeα A
′ can be permutated such that an

application of r 3 instance is immediately followed by an application r 4a or r 4b. We first consider any
matching pairs of r 3 and r 4a. For this case the derivation P0 B A1 7→r 3

ωeα
A2 7→∗ωeα A3 7→r 4a

ωeα
A4 is

of the form:

P B A′′,
⊎
j∈Im〈S̄j〉kj ,

(
〈S̄x, Px, P ′x, Sx, r match(Rs) 〉X ,

〈S̄y〉Y

)
Apply r 3 instance

7→r 3
ωe0

A′′,
⊎
j∈Im〈S̄j〉kj ,

(
〈 S̄x , Px〉X ,

〈 S̄y , r commit(Rs)〉Y

)
Unspecified interleaving derivations

7→∗ωe0 A′′′′,
⊎
j∈Im〈S̄

′′
j 〉kj ,

(
〈S̄ ′′x , Px〉X ,

〈S̄ ′y, Py, Sy, r commit(Rs) 〉Y

)
Apply r 4a instance

7→∗ωe0 A′′′′,
⊎
j∈Im〈S̄

′′
j , Dj〉kj ,

⊎
l∈Ie〈Dl〉kl ,

(
〈S̄ ′′x , Px, P ′x, Dx〉X ,
〈S̄ ′y, Py, Dy〉Y

)
We highlight the boxes the portions of the state which is responsible for the subsequent derivation step.

By Lemma 9 that states monotonicity of the ωeα semantics, we can permutate derivation steps that rewrite
over non-overlapping portions of the state. Specifically we want to push all derivation steps between r 3
and r 4a either before or after their subsequent derivation steps. Derivation steps that are responsible for
introducing Y ’s matching obligation for r 4a will be pushed before r 3 while all others will be pushed after
This is illustrated by the following:

P B A′′,
⊎
j∈Im〈S̄j〉kj ,

 〈 S̄x, Px , P ′x, Sx, r match(Rs)〉X ,

〈 S̄y 〉Y

 Interleaving derivations resulting
to Y ’s matching obligation− (I1)

7→∗ωeα A′′′,
⊎
j∈Im〈S̄

′
j〉kj ,

(
〈S̄ ′x, Px, P ′x, Sx, r match(Rs) 〉X ,

〈S̄ ′y, Py, Sy〉Y

)
Apply r 3 instance

7→r 3
ωe0

A′′′,
⊎
j∈Im〈S̄

′
j〉kj ,

(
〈S̄ ′x, Px〉X ,

〈 S̄ ′y, Py, Sy, r commit(Rs) 〉Y

)
Apply r 4a instance

7→r 4a
ωe0

A′′′,
⊎
j∈Im〈S̄

′
j , Dj〉kj ,

⊎
l∈Ie〈Dl〉kl ,

(
〈 S̄ ′x , Px, P ′x, Dx〉X ,
〈S̄ ′y, Py, Dy〉Y

)
Other interleaving
Derivations− (I2)

7→∗ωe0 A′′′′,
⊎
j∈Im〈S̄

′′
j , Dj〉kj ,

⊎
l∈Ie〈Dl〉kl ,

(
〈S̄ ′′x , Px, P ′x, Dx〉X ,
〈S̄ ′y, Py, Dy〉Y

)
Consider derivation steps (I1): We highlight conservatively the largest portion of the state which possible

contributes to the derivation of Y ’s matching obligations (i.e, Py and Sy) that were originally interleaving

39

A PROOFS

between r 3 and r 4a. Note that this includes fragments of location X’s store including the Px matching
obligations of encoding rule r 3 (underline in the derivation, Px, P ′x and Sx). Matching obligations P ′x and
Sx are excluded because the original derivations are scheduled after r 3 where P ′x and Sx do not exists. Px
is include but by definition they are persistent and any derivations that depend on any constraint of Px are
guaranteed not to be simplified. Hence we can safely permutate these rules upwards. For derivation steps
in (I2), since they involve portions of the state that are not overlapping with r 4a, we can safely push them
downwards. Hence, we have proven the lemma for the r 4a case.

We now consider r 3 encoding rule instances that are paired with matching r 4b applications. Specifically,
they are of the form:

P B A′′,

(
〈S̄x, Px, P ′x, Sx, r match(Rs) 〉X ,

〈S̄y〉Y

)
Apply r 3 instance

7→r 3
ωe0

A′′ ,

(
〈 S̄x , Px〉X ,

〈 S̄y , r commit(Rs)〉Y

)
Unspecified interleaving derivations

7→∗ωe0 A′′′′,

(
〈S̄ ′′x , Px〉X ,

〈S̄ ′y, r commit(Rs) 〉Y

)
Apply r 4b instance

7→∗ωe0 A′′′′,
(
〈S̄ ′′x , Px, P ′x, Sx〉X ,

〈S̄ ′y〉Y

)
Since matching obligation of r 4b only consist of the constraint r commit(Rs) we can straightforwardly

push all interleaving derivations downwards:

P B A′′,

(
〈S̄x, Px, P ′x, Sx, r match(Rs) 〉X ,

〈S̄y〉Y

)
Apply r 3 instance

7→∗ωe0 A′′,

(
〈S̄x, Px〉X ,

〈S̄y, r commit(Rs) 〉Y

)
Apply r 4b instance

7→∗ωe0 A′′ ,

 〈 S̄x, Px , P ′x, Sx〉X ,
〈 S̄y 〉Y

 Interleaving Derivations

7→∗ωe0 A′′′′,
(
〈S̄ ′′x , Px, P ′x, Sx〉X ,

〈S̄ ′y〉Y

)
Hence we have proven this lemma for all cases. �

Theorem 15 (Soundness of Basic Encoding) Given a 1-neighbor restricted and locally quiescent
CHRe program P1 and a 0-neighbor restricted CHRe program P0 such that P1 basic

1Nb P0, for any reachable
states Ω and Ω′, if P0BΩ 7→∗ωe0 Ω′, then we have either Ω′ is not commit free or P1BDropSyncs(dΩe;P1) 7→∗ωeα
DropSyncs(dΩ′′e;P1).

Proof: Given that we have P0BΩ 7→∗ωe0 Ω′, by Theorem 6, we have P0B dΩe 7→∗ωeα dΩ
′e, labeling this as

D. By Lemma 14, we can safely permutate D such that all applications of r 3 are followed immediately by
r 4a or r 4b. We shall consider such a permutation of D. We will now prove this theorem by induction on ωeα
derivation steps. For base case we consider P0BdΩe 7→∗ωeα dΩ

′e of zero derivation step, hence dΩe = dΩ′e and
we naively have P1 BDropSyncs(dΩe;P1) 7→∗ωeα DropSyncs(dΩ′′e;P1). for dΩ′e being commit free and hence
dΩ′e = dΩ′′e. For the inductive case, we assume we have this property for derivations P0 B dΩe 7→∗ωeα dΩ

′′′e
of m derivation steps. We now consider the successor derivation step dΩ′′e such that P0 B dΩ′′′e 7→r

ωeα
dΩ′′e.

We consider all possible forms rules r applied:

• r is a non-encoding rule instance. Therefore we have r ∈ P1 as well. Furthermore, since synchronizing

40

A PROOFS

constraints are reserved for encoding rules, and hence r does not have rule heads or rule bodies that are
synchronizing constraints. From this, we have P1 B DropSyncs(dΩ′′′e;P1) 7→r

ωeα
DropSyncs(dΩ′′e;P1)

• r is an instance of the encoding rule r 1 . By definition of r 1 encoding rules, this derivation simply adds
synchronizing constraint r req(Xs) to some location x in dΩ′′′e. Therefore, DropSyncs(dΩ′′′e;P1) =
DropSyncs(dΩ′′e;P1) and we naively have P1 B DropSyncs(dΩ′′′e;P1) 7→∗ωeα DropSyncs(dΩ′′e;P1) of
zero derivation step.

• r is an instance of the encoding rule r 2 . By definition of r 1 encoding rules, this derivation sim-
ply removes synchronizing constraint r req(Xs) from some location x add synchronizing constraint
r match(Rs) to some location y in dΩ′′′e. Therefore, DropSyncs(dΩ′′′e;P1) = DropSyncs(dΩ′′e;P1)
and we naively have P1 B DropSyncs(dΩ′′′e;P1) 7→∗ωeα DropSyncs(dΩ′′e;P1) of zero derivation step.

• r is an instance of the encoding rule r 3 . By definition of r 3 encoding rules, this derivation adds
synchronizing constraint r commit(Rs), hence making Ω′′ non commit free. By Lemma 14, This
derivation is followed by a derivation P0BdΩ′′e 7→r′

ωeα
dΩ′′′′e such that r′ is either r 4a or r 4b encoding

rule instance. Furthermore, these encoding rules are of the same matching instance and of the form:

r 3 : [X]Px \ [X]P ′x , [X]Sx , [X]r match(Rs)⇐⇒ [Y]r commit(Rs)
r 4a : [Y]Py \ [Y]Sy , [Y]r commit(Rs)⇐⇒ ∃ z̄ .[X]P ′x ,D
r 4b : [Y]r commit(Rs)⇐⇒ [X]P ′x , [X]Sx

and these encoding rules corresponding to some 1-neighbor restricted rule instance r1 ∈ P1. Let this
rule instance be r1 : [X]Px, [X]P ′x, [Y]Py \ [X]Sx, [Y]Sy ⇐⇒ G | ∃ z̄. D. We now consider
the case that r′ = r 4a: This instance of r 4a removes Sy and r commit(Rs) from location Y and
adds P ′x to location X and D to various locations of the state, while its preceding r 3 derivation
step removes Sx and P ′x from location X. Hence we have that Ω′′′′ is commit free, and the net effect
of these two derivation is the application of the r1 1-neighbor restricted rule instance. Therefore
P1 B DropSyncs(Ω′′′;P1) 7→r1

ωeα
DropSyncs(Ω′′′′;P1).

We now consider the case that r′ = r 4b: This instance of r 4b removes r commit(Rs) from location
Y , and adds P ′x and Sx to location X, while its preceding r 3 derivation step removes P ′x and Sx
from location X. The net effect of these two derivation is that we return to the state before r 3 was
applied. Therefore, Therefore, DropSyncs(dΩ′′′e;P1) = DropSyncs(dΩ′′′′e;P1) and we naively have
P1 B DropSyncs(dΩ′′′e;P1) 7→∗ωeα DropSyncs(dΩ′′′′e;P1) of zero derivation step.

Therefore we have proven the soundness of the basic encoding scheme. �

A.4 Proofs for 1-Neighbor Restricted Rule Optimized Encoding Scheme

Lemma 16 (Neighbor Persistent Encoding Rule Serializability) Given a 1-neighbor restricted and
locally quiescent CHRe program P1 and a 0-neighbor restricted CHRe program P0 such that P1 1Nb P0 and
commit free abstract states A1 A2, A3 and A4, given that for some matching neighbor persistent encoding
rule instances r 2 and r 3 , we have P0 B A1 7→r 2

ωeα
A2 7→∗ωeα A3 7→r 3

ωeα
A4 then there exists some A′2

such that P0 B A1 7→∗ωeα A
′
2 7→r 2

ωeα
A3 7→r 3

ωeα
A4

Proof: By definition, encoding rule r 2 are of the form: [Y]Py, [Y]r req(Xs) =⇒ Gy | [X]r match(Rs)
or [Y]Py \ [Y]r req(Xs)⇐⇒ Gy | [X]r match(Rs) Given that Py are all persistent constraints, and that
r req(Xs strictly matches to this encoding rule only, by Lemma 9 and since Py will never be deleted and
r req(Xs) is exclusive for the application of r 2 and furthermore its rule body r match(Rs) is only ever
required for the application of the matching instance of r 3 encoding rule, we can safely push a derivation
step of r 2 downwards after any derivation step that comes after it, except for its matching r 3 encoding

41

A PROOFS

rule. �

Lemma 17 (Primary Persistent Encoding Rule Serializability) Given a 1-neighbor restricted and
locally quiescent CHRe program P1 and a 0-neighbor restricted CHRe program P0 such that P1 1Nb P0 and
commit free abstract states A1 A2, A3 and A4, given that for some matching primary persistent encoding
rule instances r 1 and r 2 , we have P0 B A1 7→r 1

ωeα
A2 7→∗ωeα A3 7→r 2

ωeα
A4 then there exists some A′2

such that P0 B A1 7→∗ωeα A
′
2 7→r 1

ωeα
A3 7→r 2

ωeα
A4

Proof: By definition, encoding rule r 1 are of the form: [X]Px =⇒ Gx | [X]r req(Xs) Given that
Px are all persistent constraints, by Lemma 9 and since Px will never be deleted and furthermore its rule
body r req(Xs) is only ever required for the application of the matching instance of r 2 encoding rule, we
can safely push a derivation step of r 1 downwards after any derivation step that comes after it, except for
its matching r 2 encoding rule. �

Theorem 18 (Soundness of Optimized Encoding) Given a 1-neighbor restricted and locally quiescent
CHRe program P1 and a 0-neighbor restricted CHRe program P0 such that P1 1Nb P0, for any reachable
states Ω and Ω′, if P0BΩ 7→∗ωe0 Ω′, then we have either Ω′ is not commit free or P1BDropSyncs(dΩe;P1) 7→∗ωeα
DropSyncs(dΩ′′e;P1).

Proof: The proof of this is similar to the proof of Theorem 15. Specifically, we first consider the
ωeα derivations of P0, i.e, P0 B dΩe 7→∗ωeα dΩ

′e, Next we use Lemma 14, 16 and 17 to consider only
P0 B dΩe 7→∗ωeα dΩ

′e derivations such that

• For basic encoding rules, all applied r 3 rule instances are immediately followed by a matching appli-
cation of r 4a or r 4b (Lemma 14).

• For neighbor persistent encoding rules, all applied r 2 rule instances are immediately followed by a
matching application of r 3 (Lemma 16).

• For primary persistent encoding rules, all applied r 1 rule instances are immediately followed by a
matching application of r 2 (Lemma 17).

Given a derivation P0 B dΩe 7→∗ωeα dΩ
′e with the above property, we prove by induction on the derivation

steps: For derivation steps corresponding to the application of basic encoding rules and 0-neighbor restricted
rules we defer to Theorem 15 for details, here we consider the inductive step derivation P0 B dΩ′′e 7→r

ωeα
dΩ′e

for neighbor and primary persistent encoding rules:

• r is an instance of the neighbor persistent encoding rule r 2 . By Lemma 16, this derivation is followed
by a derivation P0 B dΩ′′e 7→r 3

ωe0
dΩ′′′′e. These encoding rules are of the form:

r 2 : [Y]Py \ r req(Xs)⇐⇒ Gy | [X]r match(Rs)
r 3 : [X]Px \ [X]Sx , [X]r match(Rs)⇐⇒ B

and these encoding rules corresponds to some 1-neighbor restricted rule instance r1 ∈ P1. Let this rule
instance be r1 : [X]Px,[Y]Py \ [X]Sx ⇐⇒ Gx, Gy | B and the net effects of the two derivation step
is the application of the r1 rule instance. Therefore P1 B DropSyncs(Ω′′;P1) 7→r1

ωe0
DropSyncs(Ω′;P1).

• r is an instance of the primary persistent encoding rule r 1 . By Lemma 17, this derivation is followed
by a derivation P0 B dΩ′′e 7→r 3

ωe0
dΩ′′′′e. These encoding rules are of the form:

r 1 : [X]Px =⇒ Gx | [Y]r req(Xs)
r 2 : [Y]r req(Xs),[Y]Py \ [Y]Sy ⇐⇒ Gy | B

42

A PROOFS

and these encoding rules corresponds to some 1-neighbor restricted rule instance r1 ∈ P1. Let this rule
instance be r1 : [X]Px,[Y]Py \ [Y]Sy ⇐⇒ Gx, Gy | B and the net effects of the two derivation step
is the application of the r1 rule instance. Therefore P1 B DropSyncs(Ω′′;P1) 7→r1

ωe0
DropSyncs(Ω′;P1).

Hence we have proven the soundness of the optimized encoding scheme. �

A.5 Proofs for n-Neighbor Restricted Rule Encoding Scheme

Lemma 19 (nNb Preserves Local Quiescence) Given a locally quiescent n-neighbor restricted program
Pn and a 0-neighbor restricted program P0 such that Pn nNb P0, then P0 is also locally quiescent.

Proof: By the definition form of the encoding rules of nNb, encoding rules r 1 , r 2i , r 3 , r 4ai , r 4bi
and r 5bi are guaranteed to be locally quiescent. This is because their rule bodies only include constraints
to be delivered to its partner location, hence the rules are conservatively locally quiescent. Local quiescence
of encoding rule r 5a and r 5bx depends on the local quiescence of the original rule r in P1. Since we assume
that P1 is locally quiescent, then r 5a and r 5bx must be locally quiescent. �

Lemma 20 (Prefix Executions of n-Neighbor Encoding) Given a locally quiescent n-neighbor
restricted program P1 and a 0-neighbor restricted program P0 such that Pn nNb P0, if we have reachable
states Ω,Ω′ such that P0 B Ω 7→ωe0

Ω′, then we have the following:

1. If P0 B Ω 7→r 2i(E)
ωe0

Ω′ for r 2i encoding rule of some consensus destination E, then there exists

some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 1(E)
ωe0

Ω′′′ and P0 B Ω′′′ 7→∗ωe0 Ω

2. If P0 B Ω 7→r 3(E)
ωe0

Ω′ for r 3 encoding rule of some consensus destination E, then there exists some

reachable derivation P0 B Ω′′ 7→∗ωe0 Ω′′′ which contains n derivation steps r 2i(E) for each neighbor

Yi of i ∈ In, and P0 B Ω′′′ 7→∗ωe0 Ω

3. If P0 B Ω 7→r 4ai(E)
ωe0

Ω′, for r 4ai encoding rule of some consensus destination E, then there exists

some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 3(E)
ωe0

Ω′′′ and P0 B Ω′′′ 7→∗ωe0 Ω

4. If P0 B Ω 7→r 4bi(E)
ωe0

Ω′, for r 4bi encoding rule of some consensus destination E, then there exists

some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 3(E)
ωe0

Ω′′′ and P0 B Ω′′′ 7→∗ωe0 Ω

5. If P0 B Ω 7→r 5a(E)
ωe0

Ω′ for r 5a encoding rule of some consensus destination E, then there exists

some reachable derivation P0 B Ω′′ 7→∗ωe0 Ω′′′ which contains n derivation steps r 2i(E) for each

neighbor Yi of i ∈ In, and P0 B Ω′′′ 7→∗ωe0 Ω

6. If P0 B Ω 7→r 5bx(E)
ωe0

Ω′ of P0 B Ω 7→r 5bi(E)
ωe0

Ω′ for r 5bx or r 5bi encoding rule of some consensus

destination E, then there exists some reachable states Ω′′ and Ω′′′, such that P0 B Ω′′ 7→r 4bj (E)
ωe0

Ω′′′

and P0 B Ω′′′ 7→∗ωe0 Ω

Proof: The proof for this is similar to Lemma 11’s. The main observation is that each item of the
lemma essentially states a specific ‘input’ ‘output’ dependency between the encoding rules. This dependency
is defined by the synchronizing constraints that appear in the encoding rules. For instance, encoding rule
r 1 adds a unique synchronizing constraint (r reqi) for each of n neighbors. Each r 2i encoding rule has
synchronizing constraint r reqi in its left-hand side, and given that these synchronizing constraints appear

43

A PROOFS

no where else in the program P0, we can infer (1). For the rest of the lemma, we can repeat this same
argument about the definition of the encoding rules. �

Lemma 21 (n-Neighbor Commit-Free Reachability) Given a locally quiescent n-neighbor restricted
program Pn and a 0-neighbor restricted program P0 such that Pn nNb P0 and states Ω reachable by P0, if
Ω is not commit-free, then there exists some commit-free state Ω′ such that P0 B Ω 7→∗ωe0 Ω′.

Proof: The proof for this is similar to Lemma 13’s. For the case of n-neighbor restricted rule encoding,
the proof of this lemma can be substantiated by the guarantee that the encoding rules have the following form
and property: Encoding rule r 3 and r 4ai for each i ∈ In are the rules (n+ 1 in total for each n-neighbor
restricted encoding) in which any form of commit synchronizing constraint will be added to the state. Hence
a state will be non-commit free after the application of any of those rules. If each of the n-neighbors applies
r 4ai we have n+ 1 matching commit synchronizing constraint of the same consensus destination E. With
Lemma 19, we have a progress guarantee that each commit synchronizing constraint will eventually be deliv-
ered to a location and processed by the location. Hence, these n+1 commit synchronizing constraints can be
consumed by a matching application of 5 a. If not all of the n-neighbors applies r 4ai , by definition of the
r 4bi rule, a matching r 4bi rule will be applied instead, producing an abort synchronizing constraint. This
instead of the abort synchronizing constraint will initiate the application of the r 5bx and r 5bi encoding
rules, that will remove each of the commit synchronizing constraints of consensus destination E. The deriva-
tion dependencies of these encoding rules are guarantee by Lemma 20. Hence we have proven this Lemma. �

Lemma 22 (n-Neighbor Encoding Rule Serializability) Given an n-neighbor restricted and locally
quiescent CHRe program Pn and a 0-neighbor restricted CHRe program P0 such that Pn nNb P0 and commit
free abstract states A,A′ such that P0 B A 7→∗ωeα A

′ labeled as derivation I, if I contain derivations of a
n-neighbor restricted encoding rule instance r of consensus destination E such that:

• We have a successful application of rule instance r of E, then there exists a valid derivation I ′ =
P0 B A 7→∗ωeα AE 7→∗ωeα A′E 7→∗ωeα A′ such that P0 B AE 7→∗ωeα A′E consists the following
non-interleaving derivation sequence:

1. The derivation step r 3 (E).

2. All n derivation steps of r 4ai(E) each of Yi for i ∈ In.

3. The derivation step r 5a(E).

• We have an aborted attempt to apply rule instance r of E, then there exists a valid derivation I ′ =
P0 B A 7→∗ωeα AE 7→

∗
ωeα
A′E 7→∗ωeα A

′ such that P0 B AE 7→∗ωeα A
′
E consists a non-interleaving deriva-

tion sequences of derivation step r 3 (E) followed by all n derivation steps of r 4ai(E) or r 4bieach of
Yi for i ∈ In, followed by

1. The derivation step r 3 (E).

2. All m derivation steps of either r 4ai(E) each of Yi for i ∈ In where m ≤ n.

3. All n−m derivation steps of either r 4bi(E) each of Yi for i ∈ In.

4. The derivation step r 5b(E).

5. All n−m derivation steps of r 5bi(E) of Yi for i ∈ In.

Proof: The proof of this Lemma is similar to Lemma 14’s. Firstly, it relies on Lemma 20 for the
guarantee that all the necessary encoding rules exists (For instance, if we have a derivation step of the r 4ai
encoding rule, then r 3 must have been applied as some preceding derivation step). The next part of the
proof is to show that we can safely push all interleaving derivations between the consensus E derivation

44

A PROOFS

steps away (either before or after all E derivation steps). By Lemma 9, all we need to prove that all such
interleaving derivations are non-overlapping with the E derivation steps in question.

For the case that E derivation steps model the successful application of a rule instance r, since the
encoding rules r 3 and each r 4ai are defined such that their propagated rule heads are persistent (r 3
propagated heads consist of only Px while each r 4ai consist of only Pi, all of which are persistent), derivations
interleaving between any of these encoding rules must be non-overlapping with all E derivation steps. As
such we can push all interleaving derivations before all r 3 and r 4ai E derivation steps. For r 5a, its rule
head contains entirely of only commit synchronizing constraints produced by r 3 and r 4ai , hence all other
interleaving derivations can be push after it. Hence we have proven this Lemma for the success case.

For the case that E derivation steps model the abortion of an attempt to apply a rule instance of r,
encoding rules r 3 and r 4ai are the same as the previous case, while we now also have r 4bi rules. These
encoding rules are single headed rules with only one synchronizing constraint r votei as its only rule head.
Since this constraint is produced by r 3 , we can push all other non consensus E derivation steps interleaving
between them, before the derivation step of r 3 . For encoding rules 5 bx and 5 bi , all their rule heads
are synchronizing constraints produced by r 4ai and r 4bi rules. Hence we can push all other interleaving
derivations downwards after all E derivation steps. Hence we have proven this Lemma for the abort case. �

Theorem 23 (Soundness of n-Neighbor Restricted Encoding) Given an n-neighbor restricted
and locally quiescent CHRe program Pn and a 0-neighbor restricted CHRe program P0 such that Pn nNb

P0, for any reachable states Ω and Ω′, if P0 B Ω 7→∗ωe0 Ω′, then we have either Ω′ is not commit free or

Pn BDropSyncs(dΩe;Pn) 7→∗ωeα DropSyncs(dΩ′′e;Pn).

Proof: The prove of this theorem is similar to Theorem 15’s. Firstly, by Theorem 6, we are guaranteed
that from P0 B Ω 7→∗ωe0 Ω′, we have P0 B dΩe 7→∗ωeα dΩ

′e. By Lemma 22, we can safely permutate any such

derivations to an equivalent one, such that all consensus E derivations are compressed together (no concur-
rent and interleaving non E derivations between each E derivation step). Hence, we can focus our attention
only to such orderly derivations. From here, we can prove this Theorem is a manner similar to Theorem 15:
by induction on ωeα derivation steps to show that each derivation step of P0 to a commit free state has a
corresponding derivation of P1 with all synchronizing constraints removed. �

45

	Introduction
	Preliminaries
	Notations
	CHR Language and Semantics

	The CHRe Language
	Semantics of CHRe
	e Abstract Semantics
	e0 Operational Semantics

	Encoding 1-Neighbor Restricted Programs for e0
	Basic Encoding Scheme
	Optimizations

	Generalized Encoding for n-Neighbor Restricted Rules
	Related Works
	Conclusion and Future Works
	Proofs
	Proofs for the e Semantics
	Proofs for the e0 Semantics
	Proofs for 1-Neighbor Restricted Rule Basic Encoding Scheme
	Proofs for 1-Neighbor Restricted Rule Optimized Encoding Scheme
	Proofs for n-Neighbor Restricted Rule Encoding Scheme

