
Generalized Learning Factors Analysis:
Improving cognitive Models with Machine Learning

Hao Cen

April 2009 
CMU-ML-09-102



  



 

 

 
 
 
 

 
Generalized Learning Factors Analysis:   

Improving Cognitive Models  
with Machine Learning 

 
Hao Cen 
April 2008 

CMU-ML-09-102 
 
 

Machine Learning Department 
School of Computer Science 
Carnegie Mellon University 

Pittsburgh, Pennsylvania 

 

Thesis Committee: 
Kenneth Koedinger, Chair 

Brian Junker 
Geoff Gordon 

Noel Walkington, Mathematical Sciences 
 

 
Submitted in partial fulfillment of the requirements  

for the degree of Doctor of Philosophy. 
 
 

Copyright © 2009 Hao Cen 

 
This research was sponsored by the Department of Energy under contract no. R305B070487, the Department of 
Education under contract no. R305K030140, the Department of Energy (WPI) under contract no. 0821622001, 
and the National Science Foundation (PSLC) under contract no. SBE-0354420.  The views and conclusions 
contained in this document are those of the author and should not be interpreted as representing the official 
policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity. 



 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: cognitive models, intelligent tutoring systems, machine learning, 
educational data mining, learning factors, psychometrics, additive factor models, 
latent variable models, exponential principal component analysis, logistic regression, 
combinatorial search 
 
 
 
 
 



 

iii 

 

 

 

 

 

To my parents 

 

and to my wife 



 

iv 

 

CONTENTS 

 

Generalized Learning Factors Analysis:  Improving Cognitive Models with Machine 
Learning........................................................................................................................ i 

LIST OF TABLES........................................................................................................... vii 

LIST OF FIGURES .......................................................................................................... ix 

ACKNOWLEDGMENT .................................................................................................. xi 

ABSTRACT ................................................................................................................... xiii 

1.  Introduction.................................................................................................................. 1 

1.1  The Challenge of Evaluating and Improving Cognitive Models ....................... 1 

1.2  Research Questions and Thesis Overview ......................................................... 2 

1.2.1  Research Questions ................................................................................ 3 

1.2.2  Thesis Organization ............................................................................... 3 

2.  Related Work ............................................................................................................... 5 

2.1  Cognitive Psychology ........................................................................................ 5 

2.2  Psychometrics .................................................................................................... 6 

2.3  Machine Learning and Data Mining .................................................................. 6 

3.  Learning Factors Analysis – The Static Part ............................................................... 9 

3.1  The Q-Matrix ..................................................................................................... 9 

3.2  The Additive Factor Model (AFM) ................................................................... 9 

3.3  The conjunctive factor model (CFM) .............................................................. 10 

3.4  Parameter estimation........................................................................................ 11 

3.4.1.1  Maximum Likelihood Estimation .......................................... 11 

3.4.1.2  Penalized Maximum Likelihood Estimation ......................... 12 

3.5  Assessment of the Statistical Models............................................................... 12 

3.6  Assessment of the Cognitive models ............................................................... 13 

3.7  Example of AFM -- Geometry Area ................................................................ 13 



 

v 

 

3.7.1  Applying AFM..................................................................................... 13 

3.7.2  Comparing two cognitive models ........................................................ 14 

3.8  Comparing AFM and CFM.............................................................................. 15 

4.  Learning Factors Analysis – The Dynamic Part........................................................ 17 

4.1  The P-Matrix .................................................................................................... 17 

4.2  Model operators ............................................................................................... 17 

4.3  Model search .................................................................................................... 19 

4.4  Example of the Search – Simulated Data......................................................... 20 

4.5  Example of the Search – Geometry Learning Data ......................................... 24 

5.  Applications of LFA.................................................................................................. 27 

5.1  Other Researchers’ Use of LFA....................................................................... 27 

5.2  Improving Student Learning Efficiency by Reducing Over Practice .............. 27 

5.2.1  Discover Learning Inefficiency through AFM .................................... 27 

5.2.2  Saving Student Learning Time while Maintaining Learning Gains .... 29 

6.  Automatic Discovery of Q Matrices with EPCA ...................................................... 31 

6.1  Principal Component Analysis (PCA) and Exponential-Family Principal 
Component Analysis (EPCA) .......................................................................... 31 

6.2  Application of EPCA for Automatic Discovery of Q Matrices ....................... 31 

6.2.1  Formulation 1 ....................................................................................... 32 

6.2.2  Formulation 2 ....................................................................................... 32 

6.2.3  Formulation 3 ....................................................................................... 33 

6.2.4  Formulation 4 ....................................................................................... 33 

6.3  Complications of applying EPCA to real data ................................................. 34 

6.4  Evaluation of EPCA – the Fold-in Algorithm.................................................. 34 

6.5  Connections between AFM and EPCA............................................................ 35 

6.6  Results .............................................................................................................. 36 

6.6.1  Simulated Data ..................................................................................... 36 



 

vi 

 

6.6.2  Real Assessment Data .......................................................................... 39 

6.7  Thoughts on MLE and Full Bayesian Modeling for EPCA............................. 43 

7.  Conclusions and Future Work ................................................................................... 46 

8.  Appendix.................................................................................................................... 47 

8.1  The derivation of the log likelihood function of AFM .................................... 47 

8.2  The derivation of the log likelihood function of CFM..................................... 48 

8.3  The Factors in the P matrix for the Geometry Data ......................................... 49 

8.4  The Factors in the P matrix for the EAPS Data ............................................... 50 

8.5  Alternative Q matrices found by LFA search using CFM ............................... 50 

9.  Bibliography .............................................................................................................. 51 

 



 

vii 

 

LIST OF TABLES 

Table 1 Examples of the skills in a cognitive model ......................................................... 2 

Table 2 Comparing LFA with other approaches. .............................................................. 8 

Table 3 A sample Q-matrix ............................................................................................... 9 

Table 4 Skills and predicted probability for three algebra items..................................... 10 

Table 5 A list of skills used in the initial cognitive model of the Geometry Tutor ......... 13 

Table 6. The  sample data ................................................................................................ 14 

Table 7. Statistics for a partial list of the skills, students and the overall model. 

Intercept for skill is the initial difficulty level for each skill. Slope is the 

learning rate. Avg Practice Opportunties is the average amount of practice per 

skill across all students. Initial Probabltiy is the estimated probability of getting 

a problem correct in the first opportunity to use a skill accross all students. Avg 

Probability and Final Probability are the success probability to use a skill at the 

average amount of opportunities and the last opportunity, respectively. ................ 14 

Table 8 Two cognitive models under comparison. The skills changed are highlighted. 

The arrows show the directions of change of the skills........................................... 15 

Table 9 Statistics of two cognitive models ...................................................................... 15 

Table 10 Model comparison of the simulated data. β  = (.1, .5, .9).in probability. 

AFM-P stands for fitting the AFM with penalized MLE. CFM-P stands for 

fitting the CFM with penalized MLE. ..................................................................... 16 

Table 11 Skill coding used in this paper.......................................................................... 16 

Table 12 A sample of the Q-matrix in the EAPS data..................................................... 16 

Table 13 Model comparison of the EAPS data. .............................................................. 16 

Table 14 A Q-matrix........................................................................................................ 17 

Table 15 A P-matrix ........................................................................................................ 17 

Table 16 Adding column “neg” in P to Q........................................................................ 17 

Table 17 Merging “Add” and “Sub” in Q ....................................................................... 18 

Table 18 Splitting “Sub” in Q by “neg” in P ................................................................... 18 

Table 19 Model statistics after a split .............................................................................. 19 

Table 20 The true Q matrix used to generated the data................................................... 21 



 

viii 

 

Table 21 The P matrix ..................................................................................................... 21 

Table 22 Training errors and cross validation errors for the true Q matrix..................... 22 

Table 23 LFA Search result 1 – the skills sets contained in the best, 2nd best, the 3rd 

best models found by LFA. Lamda is the penalty parameter. ................................. 23 

Table 24. BICs for the true Q matrix and for the top three Q matrices found by LFA. .. 23 

Table 25 Cross validation scores for the true Q matrix and for the top Q matrices 

found by LFA when lamda equals 1........................................................................ 24 

Table 26. Factors for the geoemtry data .......................................................................... 25 

Table 27. Top three improved models found by LFA with BIC as the heuristic. ........... 25 

Table 28. Top three improved models found by LFA with BIC as the heuristic. ........... 26 

Table 29 Knowledge tracing parameters used in the 1997 Cognitive Geometry Tutor .. 28 

Table 30 Time cost in the six tutor curriculum units. The time is in minutes. ................ 30 

Table 31 Two Q matrices from EPCA on the same data................................................. 38 

Table 32 The lists of skills along with their parameter estimates from the best three Q 

matrices found by LFA search with penalized AFM on the EAPS data, ranked 

by BIC. The cross validation errors of the three models are listed in the last row.. 41 

Table 33 A part of the best Q matrix found by LFA search on the EAPS data............... 42 

Table 34 The lists of skills along with their parameter estimates from the best three Q 

matrices found by LFA search with penalized CFM on the EAPS data, ranked 

by BIC. The cross validation errors of the three models are listed in the last row.. 50 

 



 

ix 

 

LIST OF FIGURES 

Figure 1 A graphical representation of student responses on items. The question 

mark represents the latent skills that determine student performance. ...................... 3 

Figure 2 A power law learning curve ................................................................................ 5 

Figure 3 A learning curve with blips (left) split into two smoother learning curves 

(right)......................................................................................................................... 6 

Figure 4 Item response model............................................................................................ 7 

Figure 5 Single latent variable response model ................................................................. 7 

Figure 6 Cognitive model .................................................................................................. 7 

Figure 7 A best-first search through the cognitive model space ..................................... 20 

Figure 8 Training errors and cross validation errors for the true Q matrix ..................... 22 

Figure 9 BICs for the true Q matrix and for the top three Q matrices found by LFA..... 23 

Figure 10 Training and cross validation error rates for the true Q matrix and for the 

top Q matrices found by LFA on the simulated data when lamda equals 1 ............ 24 

Figure 11 Learning Curve of Rectangle-Area and Trapezoid-Area – The solid lines 

are the actual error rates over the ordered number of practices. The dotted lines 

are the error rates predicted by LFA........................................................................ 28 

Figure 12 Pretest and post test scores over the two conditions (left) and the retention 

test scores (right)...................................................................................................... 29 

Figure 13 Percentage of Time Saved............................................................................... 30 

Figure 14 Cross validation errors, training errors and their standard errors. Each 

curve is plotted as a function of the number of latent skills. The solid line is for 

the mean cross validation errors and the dotted line is for the training error. One 

standard error bars are imposed on each error curve. The top left, top right, to 

middle left, middle right, bottom left and bottom left plots have the 

regularization parameters lamda for 0, .2, .4, .6. ,8. 1. ............................................ 37 

Figure 15 The error rates for the best Q matrices found by EPCA and LFA. In each 

group, the left bar is for EPCA and the right bar is for LFA................................... 38 

Figure 16 Cross validation errors, training errors and their standard errors by EPCA 

on the EAPS data. Each curve is plotted as a function of the number of latent 



 

x 

 

skills. The solid line is for the mean cross validation errors and the dotted line is 

for the training error. One standard error bars are imposed on each error curve. 

Lamda is the regularization parameter. ................................................................... 40 

Figure 17 Scatter plot of the values of the V matrix found by EPCA when the 

regularization parameter equals 1 and the number of skills equals 2. The items 

are labeled with different numbers. ......................................................................... 42 

Figure 18 The error rates for the best Q matrices found by EPCA and LFA for the 

real assessment data set. In each group, the left bar is for EPCA and the right 

bar is for LFA. ......................................................................................................... 43 

Figure 19 the MAP estimate (the red line) and a sample of the posterior distribution 

(the green lines) from the Irises data set .................................................................. 44 

Figure 20 the plate view of the graphic model representation of EPCA with 

hierarchical priors .................................................................................................... 44 

 



 

xi 

 

ACKNOWLEDGMENT 

  

 
[1] 
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behavior over time is largely a reflection of the complexity of environment in which it 

finds itself.  

       Herbert Simon  
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environment or from the complexity of the ants? Nobel Laureate Herbert Simon 
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where food may possibly lie may tremendously help the ants reach their goal. But 
how do they get such a map? Limited by its cognitive capacity, a single ant may be 
able to explore a small piece of the beach. While many ants explore some pieces of 
the beach, some may go faster and some may go slow. Some may get stuck by big 
boulders and some may get low hanging fruits quickly. The aggregate pattern of their 
exploration all together may provide hints of a beach, like where the obstacles are 
and where a flat terrain lies. 
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ABSTRACT 

In this thesis, we propose a machine learning based framework called Learning 
Factors Analysis (LFA) to address the problem of discovering a better cognitive 
model from student learning data. This problem has both significant real world 
impact and high academic interest. A cognitive model is a binary matrix 
representation of how students solve domain problems. It is the key component of 
Cognitive Tutors, an award-winning computer-based math curriculum that grows out 
of the extensive research in artificial intelligence at Carnegie Mellon. However, 
discovering a better matrix representation is a structure learning problem of 
uncovering the hidden layer of a multi-layer probabilistic graphic model with all 
variables being discrete.  

The LFA framework we developed takes an innovative machine learning 
process that brings human expertise into the discovery loop. It addresses four 
research questions that one builds upon its predecessor. Accordingly, four techniques 
are developed to solve each problem.  

The first question is how to represent and evaluate a cognitive model. We 
brought in the concept of Q-matrix from Psychometrics and developed a pair of 
latent variable models – Additive Factor Model and Conjunctive Factor model -- that 
predict student performance by student prior knowledge, task difficulty and task 
learning rates.  

The second question is how to bring human expertise into the discovery of the 
latent skill variables. We introduced a technique for subject experts labeling latent 
factors and developed three graph operators – add, merge and split to incorporate the 
latent factors in the existing graphical structure.  

The third question is how to improve a cognitive model given extensive human 
labeling. We introduced the concept of P-matrix and developed a penalized 
combinatorial search built on top of the latent variable models. The search 
mechanism semi-automatically improves existing cognitive models by “smartly” 
choosing features from the P-matrix and incorporating them into the Q-matrix. The 
penalty imposed on the search criteria helps to avoid over fitting the data.  

The fourth question is how to automate the latent variable discovery process 
without human involvement. We used Exponential Principal Component Analysis 
that decomposes student-task matrix into a student-skill matrix and a skill-item 
matrix. We then compared its performance with LFA.  

At the end of the thesis, we discuss several applications of LFA to improve 
student learning. We applied LFA to student learning data and used an LFA-
improved cognitive model to save students 10% - 30% learning time across several 
units in a curriculum without hurting their learning performance. The company that 
markets Cognitive Tutor has started to use improved cognitive models for the 2008 
version of the products onward. The estimated timesaving for all U.S. students who 
are using the Tutor is more than two million hours per year in total.  



 

 

1. Introduction 

1.1 The Challenge of Evaluating and Improving Cognitive Models 

Of all the initiatives to improve the math level of U.S. students, vastly improving K-
12 math education has been a top priority.  One major development toward this end is 
Intelligent Tutoring Systems.  The technology that drives intelligent tutoring systems is 
grounded in research into artificial intelligence and cognitive psychology, which seeks to 
understand the mechanisms that underlie human thought, including language processing, 
mathematical reasoning, learning, and memory.  As students attempt to solve problems 
using these tutoring systems, the programs analyze their strengths and weaknesses and 
on that basis provide individualized instruction.  Intelligent tutoring systems do not 
replace teachers.  Rather, they allow teachers to devote more one-on-one time to each 
student, and to work with students of varying abilities simultaneously.  They allow 
teachers to design assignments targeted to individual student needs, thereby increasing 
student advancement.  

 A primary example of Intelligent Tutoring Systems helping U.S. children learn 
math is Cognitive Tutors, an award-winning computer-based math program that grows 
out of the extensive research in human learning and artificial intelligence at Carnegie 
Mellon.  Evidence indicates that students using the Cognitive Tutors program perform 
30% better on questions from the TIMSS assessment, 85% better on assessments of 
complex mathematical problem solving and thinking, and attain 15-25% higher scores 
on the SAT and Iowa Algebra Aptitude Test.  The equivalent learning results hold for 
both minority and non-minority students [3-5]. By 2007, more than 500,000 middle 
school students began using Cognitive Tutors across the United States. 

 The full potential of ITS has not yet been reached, though.  The issues mainly 
concern the efficiency level of the cognitive models used, which is at the heart of most 
tutoring programs.  These models describe a set of math skills that represent how 
students solve math problems. 

 With cognitive models, ITS assesses student knowledge systematically and 
presents curricula tailored to individual skill levels and generates appropriate feedback 
for students and teachers.  An incorrect representation of the domain skills may lead to 
erroneous curriculum design and negatively affect student motivation.  An inaccurate 
model may waste limited student learning time, and teacher instructional energies, both 
of which are vital to full achievement.  According to Carnegie Learning, teachers 
reported that many students could not complete the tutor curriculum on time. This issue 
is serious. First, if students cannot complete the cognitive tutor curriculum, they are 
likely to fall behind their peers.  Second, schools today are calling for increased 
instruction time to ensure adequate yearly progress.  The reality, however, is that 
students have a limited amount of total available learning time, and teachers have a 
restricted amount of instructional time.  Saving one hour of instructional time can be far 
more productive than increasing instruction by the same amount.  This saved time does 
not reduce student or teacher workloads, but simply makes better use of the energy and 
attention given to this subject, thus allowing for greater devotion to other academic 
areas, thus increasing performance in those subjects.  The learning gain may be 
remarkable. 

 Getting the appropriate cognitive model is challenging because: 
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1) There are hundreds of skills involved in a single sub-domain of math. For 
example, the middle school geometry curriculum is estimated to have over 200 
individual skills. 

2) Many math skills are not explicitly stated in textbooks, and textbook authors 
often expect students to acquire those skills via problem solving. 

3) Skill is not directly observable.  The mastering of a skill can only be inferred 
from student performance on tasks that require those skills. 

4) Initial cognitive models were written by math experts. Many prior studies in 
cognitive psychology have shown that experts often make false predictions 
about what causes difficulty for students due to “expert blind spots”  [6-13] 

The existing cognitive models are usually an incomplete representation of student 
knowledge, resulting in both less accurate assessment of student knowledge and lower 
student learning efficiency than desired.  Improving the existing cognitive models, given 
the rate at which the Cognitive Tutor is used across the U.S., has an immediate and 
significant impact on student learning, and has a long-term impact on transforming math 
curriculum design.  Now, an increasing number of student learning data is becoming 
available. Within the Pittsburgh Science of Learning Center, a central education data 
warehouse has hosted over 50 student learning data sets ranging from the domain of 
algebra to foreign language learning. The challenge, then, is how do we get a better 
cognitive model using student learning data? 

1.2 Research Questions and Thesis Overview 

A cognitive model is a set of production rules or skills encoded in intelligent tutors 
to model how students solve problems. (Production, skill, and rule are used 
interchangeably in this paper.) Productions embody the knowledge that students are 
trying to acquire, and allows the tutor to estimate each student’s learning of each skill as 
the student works through the exercises. For example, the following table shows three 
skills used in the Area unit of a geometry tutor.  

Table 1 Examples of the skills in a cognitive model 

Skill name Skill meaning 

Circle-area Given the radius , find the area of a circle 

Circle-circumference Given the diameter, find the circumference of a circle 

Circle-diameter Given the radius or circumference, find the diameter of a circle. 

The properties of the skills in a cognitive model contribute to a student’s 
performance on solving items that require those skills. Figure 1 shows a visual 
representation of several items. On the right hand side are the items. Each item has 
responses as 1 for correct and 0 for incorrect.  
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Figure 1 A graphical representation of student responses on items. The question mark represents the latent skills that 
determine student performance.  

Discovering the set of skills can be formulated as a structure learning problem of 
uncovering the hidden layer of a multi-layer probabilistic graphic model with all 
variables being discrete. Unlike many standard machine learning problems with the goal 
of accurate prediction at the end, a unique requirement of this problem is that the skills 
discovered in the cognitive model need to be interpretable to human beings. After all, 
these models are used to explain and trace student mastery. Both students and teachers 
need to be able to understand what the weaknesses and strengths of a student’s mastery 
of a subject. Tutor authors need to understand the skill labels to be able to author 
targeted items and hint messages. Being able to communicate the meaning of the 
discovered skills to humans is a crucial step for it to be useful. The unique side of the 
Learning Factors Analysis framework is that it brings human expertise into the discovery 
loop. 

1.2.1 Research Questions 

The general framework of LFA attempts to answer a series of research questions 
whose answers build upon each other. 

Question 1 – how to represent and evaluate a cognitive model? 
Question 2 – how to bring human expertise into the discovery of the latent skills? 
Question 3 – how to improve a cognitive model given extensive human labeling? 
Question 4 -- how to discover the latent skills or at least some properties of the skills 

without human involvement?  

1.2.2 Thesis Organization 

The thesis is organized to answer the research questions 
Chapter 2 – We provide an overview of relevant work in machine learning, 

psychometrics and cognitive psychology.  
Chapter 3 – We discuss the concept of a Q matrix, a binary matrix representation of 

a cognitive model. Then we present the set of latent variable models used in LFA – 
Additive Factor Model and Conjunctive Factor Model, their parameter estimation 
method and evaluation methods. This chapter attempts to answer question 1.  
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Chapter 4 – We discuss the concept of P matrix and expert labeling. Heuristic 
combinatorial search is then presented and three model operators on incorporating the 
information of the P matrix into the Q matrix.  This chapter attempts to answer questions 
2 and 3. In both Chapter 3 and Chapter 4, we apply LFA to real world data sets and show 
how it works. 

Chapter 5 – We show how LFA can be used to answer different research questions. 
One example is using the AFM model to reduce over practice by students.  

Chapter 6 -- We present a method call Exponential Family Principal Component 
Analysis to automatically extract Q matrices and compare their properties with LFA. 
This chapter attempts to answer question 4. We also compare the strengths and weakness 
of LFA and EPCA. 

Chapter 7 – We point out the pros and cons of various approaches in discovering 
cognitive models and conclude with future work. 

 



 

5 

 

2. Related Work 

LFA draws strengths from different fields. In machine learning and artificial 
intelligence, it uses combinatorial search [6-13] and latent factor models [14]. In data 
mining, it borrows the idea of improving the Q-matrix from [15, 16]. In statistics, 
particularly a branch of statistics called psychometrics, it shares strength with Q-matrix  
and item response models [17]. In cognitive psychology, it extends the early work in 
learning curve analysis [18-20]. LFA seamlessly puts the ideas from different fields into 
one framework and in some of those fields LFA makes a unique contribution and 
extension. The following sections show each relevant field in details. 

2.1 Cognitive Psychology 

The quantitative exploration of finding better cognitive models can be traced back to 
Newell and Rosenbloom. They found a power relationship between performance and the 
amount of practice [21] . Depicted by Eq. (1), the relationship shows that the error rate 
decreases according to a power function as the amount of practice increase. The curve 
for the equation is called a “learning curve”, seen in Figure 2 

  bY aX=   (1) 

 where 

 Y = the error rate 
 X = the number of opportunities to practice a skill 
 a = the error rate on the first trial, reflecting the intrinsic difficulty of a skill 
 b = the learning rate, reflecting how easy a skill is to learn 

 

Figure 2 A power law learning curve 

The learning curve model has been used to visually identify non-obvious or 
“hidden” knowledge components. Corbett and Anderson observed that the power 
relationship might not be readily apparent in some complex skills, which have blips in 
their learning curves [21], as shown in Figure 3. They also found the power relationship 
holds if the complex skill can be decomposed into subskills, each of which exhibits a 
smoother learning curve. 
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Figure 3 A learning curve with blips (left) split into two smoother learning curves (right) 

As seen on the left in Figure 3, the single production Declare-Parameter produces a 
learning curve with several blips.  However by breaking it into two more specific 
productions, Declare-First-Parameter and Declare-Second-Parameter, the model 
becomes more fine-tuned and provided a better fit to the data as shown on the right in 
Figure 3. The knowledge decomposition (considering parameter position) that was non-
obvious from the original model became revealed on closer inspection of learning curve 
data.  

2.2 Psychometrics 

Psychometrics is a branch of statistics that is dedicated to psychological assessment, 
where cognitive models are usually referred to as Q matrices [22].  

Item response models [17] apply statistical models to test data to measure test 
takers’ latent traits, such as aptitudes and abilities. Extensions of classic IRT models 
incorporate information of the skills required by the test items [23].  

2.3 Machine Learning and Data Mining 

In machine learning and data mining, several innovative approaches have been 
taken to refine an existing cognitive model by having a simulated student to find 
incorrect rules and to learn new rules via human tutor intervention [19, 24-26] using 
theory refinement to introduce errors to model incorrect student behaviors [27], and 
using Q-matrix to discover knowledge structure from student response data [28].  

Finding a better cognitive model can be naturally situated in the framework of 
probabilistic graphic models. The student response data constitute the observed layer of 
nodes, which stand for item responses. The goal becomes finding the latent layer of 
nodes, which stand for the latent skills. The links between the nodes from the skill layer 
to the nodes in the item layer indicate how skills contribute to student performance on 
the items.   

Two extreme solutions to this problem are 1) to model the student responses with all 
the items (Figure 4), and 2) to model the student responses with a single latent factor, 
such as student intelligence (Figure 5). These two approaches represent the way that 
modern standardized tests are built. 
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Figure 4 Item response model 

 

Figure 5 Single latent variable response model 

One distinction between LFA and the previous two extremes is that LFA 
characterizes student responses on items in terms of the skills students use, i.e. the 
cognitive model, seen in Figure 6. 

 

Figure 6 Cognitive model 

Compared with the simulated student approach, our method does not require 
building a full-blown simulated student, although it can be argued our method is a very 
simple “simulated” student. The theory refinement approach starts with an initial 
knowledge base and keeps correcting errors in the knowledge base from error examples 
until the knowledge base is consistent with the examples. It may lead to overfit the 
examples.  The Q-matrix approach was used to automatically extract features in the 
problem set. The model found by this approach may be similar to the model found by 
adding/merging/splitting difficulty factors in our method. Table 2 sketches the 
differences between different methods. In this thesis, we also compare the performance 
of LFA with one machine learning approach called Exponential Principal Component 
Analysis [29].  
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Table 2 Comparing LFA with other approaches. 

Task |Features  
 

IRT-based, 
account for 

student 
differences  

Handle 
conjunctive 

skills  

Automatic 
search for 

better models  

Applicable to 
learning data  

Discover 
factors that are 

directly 
interpretable  

Can skip human 
encoding

DiBello et al.’s 
models  

Yes  Yes        

Q-Matrix Yes  Yes   Yes      

Draney, et al.’s 
model  

Yes     Yes    

Corbett’s 
 

  All manual Yes  Yes  No

EPCA Not IRT based. 
But account for 

students 

Additive plus 
nonlinearity  

Yes Not yet Depends Can skip up front 
encoding

LFA  Yes  Yes  Yes  Yes  Yes  No

 

 



 

9 

 

3. Learning Factors Analysis – The Static Part 

3.1 The Q-Matrix 

The Q-matrix is a Boolean matrix describing the relationship between items and 
skills [17, 30] . A cell value of 1 at the row i, column j means that the item i requires the 
use of skill j. A cell value of 0 means otherwise. Table 3 shows such a relationship 
between two testing items and four associated skills. Notice the first item requires only 
one skill and the second item requires two skills simultaneously.  

Table 3 A sample Q-matrix 

Item | Skill Add Sub Mul Div 
2*8  0  0  1  0  
2*8 - 3  0  1  1  0  

3.2 The Additive Factor Model (AFM)  

The power law model applies to individual skills and does not typically include 
student effects. Because typical cognitive model have multiple skills, and the data 
contains multiple students, following Draney, Wilson and Pirolli [31] we made four 
assumptions about student learning to extend the power law model. 

1. Different students may initially know more or less. Thus, we use an intercept 
parameter for each student. 

2. Students learn at the same rate. Thus, slope parameters do not depend on student. 
This is a simplifying assumption to reduce the number of parameters in Eq. 2. We chose 
this simplification, because we are focused on refining the cognitive model rather than 
evaluating student knowledge growth.  

3. Some productions are more likely to be known than others. Thus, we use an 
intercept parameter for each skill. 

4. Some productions are easier to learn than others. Thus, we need a slope parameter 
for each skill. 

Based on the assumptions, we developed a multiple logistic regression model to 
model the item responses given the skills, depicted by Eq. (2). It captures that the 
probability for student i to get item j  right is proportional to how knowledgeable the 
student is iθ  plus for each skill needed for this item jkq the “easiness” of that skill, plus  
an increment kγ based on how much practice the student has had on that skill ikT  ,  

1

1

exp( ( ))
Pr( 1| , , )

1 exp( ( ))

K

jk ik
k

ij K

jk ik
k

q Ti k k
p Yij i

q Ti k k

θ β γ
θ

θ β γ

=

=

+ +
= = =

+ + +

∑

∑
β γ   (2) 

where 
Yij = the response of student i  on item j  

iθ = coefficient for student i  
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β = skill easiness coefficient vector  
γ = skill learning rate coefficient vector 

kβ = coefficient for skill k   

kγ  = coefficient for the learning rate of skill k  

ikT = the number of practice opportunities student i  has had on the skill k  

1 item j uses skill k
0 otherwisejkq ⎧

= ⎨
⎩

 

The term “Additive” comes from the linear combination of skill k s in item j  in the 
exponent on logit1 scale. That is, if an item requires multiple skills, this model will use 
the linear combination of the item parameters to predict the overall response.   

The model has a connection with Logistic Regression by modeling success as a 
Bernoulli distribution with the probability of p, the logit of which is determined by a 
linear combination of student proficiency, skill easiness, and learning. 

This model also has a connection with Item Response Theory. The additive factor 
model without the learning term reduces to the Linear Logistic Test Model [17] with 
skills as the item attributes.  

Ongoing work by Pavlik and Cen splits ikT into the practice opportunities where the 
student get it right and the practice opportunities where the student get it wrong, which 
leads to the Performance Factor Model [32].  

3.3 The conjunctive factor model (CFM) 

One potential problem with AFM is the way it handles conjunctive skills. Suppose 
there is an item requiring two skills, as shown in Table 4. We would expect the item 
requiring two skills would be more difficult that the items with one of those skills. 
Suppose a student has a θ = 0; two skills above have β = logit(.8) and logit(.5) (which is 
0); and there is no learning (γ = 0). In a conjunctive sense, we need a prediction of .4 ( =  
.8 * .5). AFM will predict the third item with probability of .8 (=1/(1 + exp(-(logit(.8) + 
logit(.5)))), predicting a harder item is easier. One way to fix this problem is to have 
constraints on the parameter values on the AFM model so that the logit are shifted into a 
more multiplicative looking when the logit values are negative.  

Table 4 Skills and predicted probability for three algebra items 

Item  Skill  P  
2*8  mult  .8  
7 - 3  sub  .5  
2*8 - 3 mult, sub  .5 * .8 = .4 

The conjunctive factor model (CFM), depicted by Eq. (3), captures the idea that 
when an item requires multiple skills present, the item is harder than the items requiring 
only one of those skills. The parameters in CFM have the same meaning as those in 
AFM. CFM and AFM reduces to the same form when there is only one skill per item.  

                                                 

1 logit( ) log
1

pp
p

=
−
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1

( )
1

i k k ik
jk

i k k jk

TK
q

ij T
k
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e

θ β γ

θ β γ

+ +

+ +
=

=
+

∏   (3) 

The conjunctive IRT model in Eq. 2 builds upon Embretson’s multicomponent 
latent trait model (MLTM) [25], Dibello’s Unified Model (UM)[19], and Davier’s 
General Diagnostic Model (GDM) [18]. This model is also close to the frequentist 
version of the Noisy-Or Component model [33]. 

3.4 Parameter estimation 

3.4.1.1 Maximum Likelihood Estimation  

Maximum Likelihood Estimation (MLE) has good asymptotic properties 
(asymptotically unbiased, asymptotically efficient, and asymptotically normal) for 
estimators, under certain regularity conditions. In practice these properties appear to be 
approximately true, given a moderately large sample size. Given that we are only trying 
to learn a small number of parameters (see the discussion in Section 6.7), we used MLE 
to jointly estimate the student, skill, and learning parameters.  

 
, ,

[ , , ] arg max [ , , ; ]LogLikelihood
θ β γ

θ β γ θ β γ= X   (4) 

where , ,θ β γ are the student, skill, and learning parameter andX  is the data matrix. 

The Additive Factor Model likelihood function can be shown to be  

 
1

[ , , ; ] ( log(1 ))i

n
z

i i
i

LogLikelihood y z eθ β γ
=

= − +∑X   (5) 

  βT
i iz = x  

The Conjunctive Factor Model log likelihood function can be shown to be  

 
1

[ , , ; ] ( log( ) (1 ) log(1 ))
n

r r r r
r

LogLikelihood y p y pθ β γ
=

= + − −∑X   (6) 

  1

1( )
1 rk

K

r z
k

rk ri rk rk rk

p
e

z Tθ β γ

−
=

=
+

= + +

∏
 

By doing an unconstrained optimization on the log likelihood function, we can get 
the student, skill, learning parameters from both AFM and CFM. However, as the 
number of parameters in AFM and CFM (mainly the number of student parameters) 
increase as there are new observations from new students, it is likely we are not in the 
asymptotic regime. This observation leads to the following method.  
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3.4.1.2 Penalized Maximum Likelihood Estimation  

In earlier work, we found that freely maximizing the likelihood based on Eq. (5) and 
(6) often yielded student parameters that appear unreasonable. We hypothesized that it 
was caused by over fitting. We will talk about this issue in details at Section 6.7. To 
fight overfitting, we designed a Penalized Maximum Likelihood Estimation method 
(PMLE) [20], which penalizes the oversized student parameters in joint maximum 
likelihood estimation. Thus, PMLE maximizes the penalized likelihood depicted in Eq. 
(7). Maximizing the penalized likelihood in this equation is equivalent to finding a 
posterior mode for a Bayesian model, with a normal prior on the  and flat priors on  
and . A higher value for  below corresponds to lower prior variance. 

  2

1

1 , =1 by default
2

I

PMLE MLE i
i

ll ll λ θ λ
=

= − ∑   (7) 

where 
 is the total number of students 

In MLE, it is likely we are not in the asymptotic region. With PMLE, we push 
asymptotic region closer to us, in the hope of getting better out-of-sample results.  

3.5 Assessment of the Statistical Models 

Good statistical models balance between model fit & complexity minimizing 
prediction risk. They capture sufficient variation in data but are not overly complicated 
[34].   

We choose two measures for model assessment -- K-Fold Cross Validation, shown 
in Eq. (8), which is time-consuming and more accurate estimate of prediction errors,  
and BIC, shown in Eq. (9) , which can be fast to compute but may be a fairly crude 
approximate of the prediction errors. It is worth noting some properties of BIC here. BIC 
is asymptotically consistent as a model selection tool, meaning that as sample size grows 
to infinity, BIC will choose the true model given the model space where the true model 
is included. If the data size is limited, often the case in educational data sets and social 
science data sets, BIC may prefer overly simple models [35]. However, the limit 
assumes that the number of parameters in each model is fixed, while the amount of data 
increases. Thus, these BIC theorems do not apply to AFM because the number of 
parameters (usually the number of student parameters) in AFM increases as the sample 
size increases. We use BIC mainly in the search process because the data set is held 
constant and it is much faster to compute BIC than to compute cross validation errors.  

  ( ) 2

1

1 ˆ( ( ))
n

i
i i

i
CV Y f x

n
κ−

=

= −∑   (8) 

  2 *BIC LogLikelihood numParemeter numObservation= − +   (9) 

where ( )ˆ ( )i
if xκ− is the fitted function on the data with the kth  fold removed. 



 

13 

 

3.6 Assessment of the Cognitive models 

With AFM or CFM, we can then proceed to compare various cognitive models. The 
cognitive models with lower cross validation errors are the candidates of being better 
cognitive models. If the computation becomes issue, for example, in the search process 
described in the later chapter, BIC may be a substitute for the purpose of fast 
computation. The reason we call them candidates is that other criteria may also be 
considered such as the interpretability of the skills.  

3.7 Example of AFM -- Geometry Area 

3.7.1 Applying AFM 

The data obtained from the Area Unit of the Geometry Cognitive Tutor (see 
http://www.carnegielearning.com and https://pslcdatashop.web.cmu.edu/). The initial 
cognitive model implemented in the Tutor had 15 skills that correspond to productions 
or, in some cases, groups of productions. Descriptions of these skills are in Table 5.  

Table 5 A list of skills used in the initial cognitive model of the Geometry Tutor 

Skill Name Skill Meaning 

Circle-area  Given the radius , find the area of a circle 

Circle-circumference  Given the diameter, find the circumference of a circle. 

Circle-diameter Given the radius or circumference, find the diameter of a circle. 

Circle-radius Find the radius given the area, circumference, or diameter. 

Compose-by-addition  In a+b=c, given any two of a, b, or c, find the third. 

Compose-by-multiplication  In a*b=c, given any two of a, b, or c, find the third. 

Parallelogram-area  Given the base and height, find the area of a parallelogram. 

Parallelogram-side  Given the area and height (or base), find the base (or height). 

Pentagon-area  Given a side and the apothem, find the area of a pentagon. 

Pentagon-side  Given area and apothem, find the side (or apothem). 

Trapezoid-area  Given the height and both bases, find the area of a trapezoid. 

Trapezoid-base  Given area and height, find the base of a trapezoid. 

Trapezoid-height  Given the area and the base, find the height of a trapezoid. 

Triangle-area  Given the base and height, find the area of a triangle. 

Triangle-side  Given the base and side, find the height of a triangle. 

Our data consist of 4102 data points involving 24 students, and 115 problem steps. 
This sample is a subset of the full data set from Datashop 
https://pslcdatashop.web.cmu.edu. Each data point is a correct or incorrect student action 
corresponding to a single production execution. Table 1 displays typical student action 
records in this data set. It has five columns – student, success, step, skill, and 
opportunities. Student contains a unique anonymous identifier for each student. Success 
is whether the student did that step correctly or not in the first attempt. 1 means success 
and 0, failure. Step is the particular step in a tutor problem the students attempted. 
“p1s1” stands for problem 1 step 1. Skill is the production rule used in that step. 
Opportunities mean the number of previous times to use a particular skill. It increments 



 

14 

 

every time the skill is used by the same student, and can be computed from the first and 
fourth columns. 

Table 6. The  sample data 

Student Success Step Skill Opportunities 

A 0 p1s1 Circle-area 1 

A 1 p2s1 Circle-area 2 

A 1 p3s1 Circle-area 3 

We fit AFM on the data and get the coefficients. The coefficient estimates for the 
skills and students, and the overall model statistics are summarized in the table below.  

Table 7. Statistics for a partial list of the skills, students and the overall model. Intercept for skill is the initial difficulty 
level for each skill. Slope is the learning rate. Avg Practice Opportunities is the average amount of practice per skill 
across all students. Initial Probability is the estimated probability of getting a problem correct in the first opportunity 
to use a skill across all students. Avg Probability and Final Probability are the success probability to use a skill at the 

average amount of opportunities and the last opportunity, respectively.  

Skill Intercept Slope 
Avg 
Opportunties 

Initial 
Probability  

Avg 
Probability 

Final 
Probability 

Parallelogram-
area 2.14 -0.01 14.9 0.95 0.94 0.93 

Pentagon-area -2.16 0.45 4.3 0.2 0.63 0.84  
Student  Intercept 

student0 1.18 

student1 0.82 

student2 0.21 

 
Model Statistics  

AIC 3,950 

BIC 4,285 

MAD  0.083 

The higher the intercept of the each skill, the lower the initial difficulty the skill has. 
The higher the slope of the each skill, the faster students learned the skill. Pentagon-area 
is the hardest skill with the intercept of -2.16. Parallelogram-area is the easiest skill with 
the intercept of 2.14. Three skills have small slopes close to zero -- Compose-by-
addition (-.04) and Parallelogram-area (-.01), Triangle-area (.03). Parallelogram-area 
was already mastered with an initial success probability .95. It appears that more practice 
on those skills does not lead to much learning gain. Interestingly, although 
PENTAGON-AREA is the hardest skill among all, it has the highest learning rate .45, 
leading to bigger improvement with more practice.  

The coefficients for students measure each student’s overall performance. The 
higher the number, the better the student performed. The AIC, BIC and MAD (mean 
absolute deviation) statistics provide a baseline for evaluating alternative models. 

3.7.2 Comparing two cognitive models  

Researchers hypothesized various cognitive models for this data set (see Datashop 
website https://pslcdatashop.web.cmu.edu/). Shown in Table 8, model Textbook is a 
simplified version of the original cognitive model. Model DecomposeArith splits 
“compose-by-addition” into “subtract”, “compose-by-addition” and “decompose”. 
Model DecomposeArith also combines “parallelogram-area”, “rectangle-area” and 
“square-area” into “parallelogram-area”. Notice “compose-by-addition” in model 
DecomposeArith is no longer the same as “compose-by-addition” in model Textbook as 
the former has less items associated with it.  “Parallelogram-area” in model 
DecomposeArith is no longer the same as “parallelogram-area” in model Textbook as 
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the former has more items associated with. Table 9 lists the statistics on the two 
cognitive models. By having a lower BIC, model DecomposeArith arguably describes 
the data better than model Textbook.  
Table 8 Two cognitive models under comparison. The skills changed are highlighted. The arrows show the directions 

of change of the skills.  

 

Table 9 Statistics of two cognitive models 

 AIC BIC Log Likelihood Number of Parameters 

Textbook 5,167 5,710 -2,501 83 

DecomposeArith 5,086 5,629 -2,460 83 

3.8 Comparing AFM and CFM 

To compare CFM with AFM, we used both a simulated data set and a real 
assessment data set. Since students in the assessment data set were not exposed to 
repetitive learning opportunities, we removed the learning term from both models. Cross 
validation errors and the interpretability of the actual parameter fits are used to evaluate 
the models. The details of the comparison can be found in [36]. 

The simulated data is used to answer the question “If the data is conjunctive, which 
model is better?” We simulated data drawn from a CFM model with 100 student 
parameters, 3 skill parameters, and 7 items. We explored four different sets of the three 
skill probability values (.1, .5, .9), (.1, .1, .1), (.4, .5, .6) and (.9, .9, .9). In nearly all 
cases, CFM-PMLE was as good as or better than AFM-PMLE in cross validation. The 
biggest difference was from the skill set (.9, .9, .9) because the skill parameter values are 
so high that AFM-P cannot behave in a conjunctive form (which it can if the logit values 
of parameter estimates β  are negative). Table 10 shows the results from one of the 
above skill sets. As stated as the beginning of the paragraph, this is only a sanity check 
on whether CFM is able to fit the data if the data is conjunctive. We should not be 
surprised that CFM fits better. What is surprising is how well AFM does. AFM can 
model conjunctive data by having negative β  parameter estimates, as is illustrated in the 
last column of Table 10. Thus there are two ways to show whether a real data set has 
conjunctive character. One is a better fit by CFM-P than AFM-P. The other is allβ  
being negative in AFM-P. 
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Table 10 Model comparison of the simulated data. β  = (.1, .5, .9).in probability. AFM-P stands for fitting the AFM 
with penalized MLE. CFM-P stands for fitting the CFM with penalized MLE.  

 CV CVSd β̂ in probability β̂ in logit 

AFM-P 0.120 0.281 (0.03, 0.34, 0.73) (-3.4, -0.67, 0.97) 

CFM-P 0.111 0.174 (0.07, 0.5, 0.89) (-2.54, 0.02, 2.07) 

We explored these different possibilities in a data set used in a prior cognitive 
modeling work that predicts a (mostly) conjunctive structure [13]. The real data set 
EAPS is taken from a difficulty factor study of 247 U.S. algebra students. There are 
1976 observations and 96 distinctive items. A simplification of their skill coding 
involves 3 skills is shown in Table 11. A sample of the Q-matrix is shown in Table 12. 
Notice certain items, such as “waiter-story-result-easy-mult”, have no skills labeled in 
this Q-matrix due to the simplification.  

Table 11 Skill coding used in this paper 

Skill 
Abbreviation 

Skill Meaning 

S Symbolic Comprehension -- necessary for reading an equation 

H Arithmetic Procedure Hard (e.g. with decimal numbers like 2.45/7) 

U Unwind Constraint -- necessary for start-unknown or algebra 
problems, like 7x = 35, but not for result-unknown or arithmetic 

problems, like 7*5 = x. 

Table 12 A sample of the Q-matrix in the EAPS data 

 S U H 

bball-equation-result-easy-div 1 0 0 

donut-equation-result-hard-div 1 0 1 

lottery-word-start-hard-mult 0 1 1 

waiter-story-result-easy-mult 0 0 0 

waiter-word-start-easy-div 0 1 0 

… …    

In the real data set, CFM-P is better than AFM-P by having a lower cross validation 
error, shown in Table 13. Notice AFM-P is essentially performing as a conjunctive 
model with all β  estimates in logit being negative. This verifies the fact that the 
cognitive model underlying this data set has a conjunctive character.  

Table 13 Model comparison of the EAPS data.  

 CV CVSd β̂ in probability β̂ in logit 

AFM-P 0.202 0.142 (0.35, 0.47, 0.43) (-0.63, -0.14, -0.3) 

CFM-P 0.187 0.221 (0.61, 0.7, 0.67) (0.43, 0.85, 0.7) 
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4. Learning Factors Analysis – The Dynamic Part 

4.1 The P-Matrix 

Section 4.1, 4.2, 4.3 are the innovative parts of Learning Factors Analysis to create a 
better cognitive model. First, corresponding to the Q-Matrix, we propose a new concept 
called P-Matrix. A Q-matrix is, in fact, a set of features of the items labeled by domain 
experts before it is put to use by students.  A P-matrix is a set of features of items labeled 
by experts after a Q-matrix is put to use. After domain experts reviewed the student 
responses data, they may find some items labeled with the same set of skills have 
various degrees of difficulties. As seen in Table 14, the second and the third item are 
labeled with the same set of skills. However, the third item may be associated with a 
higher error rate. A further investigation of the item shows that the third item deals with 
negative numbers, imposing more difficulty for students. Thus, we can create a P-matrix 
with item as the row and hypothetical difficulty factors as the columns in Table 15. In 
this example, we can put “Dealing with negative numbers” as one difficulty factor. The 
first two items have zero as the factor value and the third item has 1 as the factor value. 
If there is a fourth item “2*8+30”, the expert may add a second factor “Two digit 
arithmetic” with 1s for the last three items in the P-matrix. 

Table 14 A Q-matrix 

Item | Skill Add Sub Mul Div 

2*8 0 0 1 0 

2*8 – 3 0 1 1 0 

2*8 - 30 0 1 1 0 

2*8 +30 1 0 1 0 

Table 15 A P-matrix 

Item | Skill  Dealing with negative numbers Two digit arithmetic   … 

2*8  0 0  

2*8 - 3  0 1  

2*8 - 30 1 1  

2*8 +30 0 1  

4.2 Model operators 

The second step to create a better cognitive model is to explore incorporating the 
information in a P-matrix into the existing Q matrix. We defined three model operators – 
“add”, “merge”, and “split” – to perform this function. 

“Add” simply moves a column from P to Q. Table 16 is an example of adding the 
“Dealing with negative numbers” column in P to Q. 

Table 16 Adding column “neg” in P to Q 
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Item | Skill Add Sub Mul Div neg 

2*8 0 0 1 0 0 

2*8 – 3 0 1 1 0 0 

2*8 - 30 0 1 1 0 1 

2*8 +30 1 0 1 0 0 

 “Merge” takes the Boolean operation Or among existing columns in Q. We denote 
the columns vectors to be merged as 1 2, ,..., .nq q q  The merged skill column vector 

1 2| | ,merged n=q q q q where | is the bitwise OR operator. Table 19 shows an example of 
merging the “add” and “sub” columns in Q.  

Table 17 Merging “Add” and “Sub” in Q 

Item | Skill Add-Sub Mul Div 

2*8 + 3 1 1 0 

2*8 – 3 1 1 0 

2*8 - 30 1 1 0 

2*8 +30 1 1 0 

“Split” refines an existing skill into two skills based on the presence of a factor. 
Splitting column vector q by column vector p creates a new column vector with values 

& ,q p where & is the bitwise AND operator, and turns the existing q into ^ ,q p where ^ 
is the bitwise XOR operator. Table 18 shows an example of splitting “Sub” in Q by 
“Neg” in P. “Sub&neg” is the result of “Sub” AND ”Neg” and “Sub^Neg” is the result 
of “Sub” XOR ”Neg”. Notice “Split” and “Merge” do not change the conjunctivity of 
the Q-matrix while “Add” changes the conjunctivity of the Q-matrix. 

Table 18 Splitting “Sub” in Q by “neg” in P 

Item | Skill Add Sub^Neg Mul Div Sub &neg  

2*8 0 0 1 0 0  

2*8 – 3 0 1 1 0 0  

2*8 - 30 0 0 1 0 1  

2*8 +30 1 0 1 0 0 

A concrete example of “Split” is from the cognitive model with 15 skills described 
in Section 3.7. We tested a “split” on “triangle-side” by the factor of whether the side is 
a base or a height. Thus the original skill was split into “triangle-side-base” and 
“triangle-side-height”. Now the new model has 16 skills. Shown in Table 19, the new 
model is not better than the original cognitive model in terms of BIC, suggesting the 
factor is not necessary.  
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Table 19 Model statistics after a split 

 LL BIC 

Original -2,003 4,330 

After split -2,000 4,333 

4.3 Model search 

A distinguishing feature of the LFA method is its semi-automatic model search 
process. We formulated finding a better cognitive model as a combinatorial search 
problem. Given an existing cognitive model (i.e. a Q-matrix), and a P-matrix, LFA 
automatically incorporates those factors into models, and finds new models that 
researchers may wish to investigate further. 

The search algorithm in LFA is  a best first search [37]. It starts from an initial node, 
iteratively creates new adjoining nodes, and explores them to reach a goal node. Factors 
in the P matrix are incorporated into the Q matrix through model operators. To limit the 
search space, it employs a heuristic to rank each node and visits the nodes in the order of 
this heuristic estimate. Either cross validation scores or BIC can be used as the heuristics 
in the search. We use BIC as an illustrating example in this document, because it is 
faster to compute and works as reasonably well shown in the next section. As shown in 
Figure 7, at the beginning of a search with BIC as the heuristic, the original model is 
evaluated and BIC is computed. Then the model is split into a new model by 
incorporating the factors. BICs are computed from each of the new models. The search 
algorithm chooses the best one (the shaded node with value 4301) for the next model 
generation. The search algorithm does not always move to a lower level in the search 
hierarchy. It may go up to select a model (the shaded node with value 4212) to expand if 
all the new models have worse heuristic scores than the previous model had. After 
several expansions, it finds a best model with the lowest BIC value within all the models 
searched.  
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Figure 7 A best-first search through the cognitive model space 

4.4 Example of the Search – Simulated Data 

To test the effectiveness of the LFA search process and connect it with the 
comparison with EPCA (in section 6), we use a simulated data set, which is generated 
with AFM without the learning term, shown in Eq. (10). This AFM has 100 students, 3 
skills and 9 items. Every student does all the 9 items. The student parameter is taken 
from a normal distribution with 0 mean and 1 standard deviation. The three skills have 
β  values as -2.2, 0 and 2.2, which correspond to probabilities of .1, .5, and .9. The True 
Q matrix is shown in Table 20. Each item has one skill involved. The P matrix contains 
the true Q matrix in it as well as another 21 fake factors. The goal is to see if LFA is able 
to recover the truth or some elements of the truth, if it starts searching from an empty Q 
matrix and the P matrix. 
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Table 20 The true Q matrix used to generated the data 

Item | Skill A B C

T1_100 1

T2_010 1

T3_001 1

T4_100 1

T5_010 1

T6_001 1

T7_100 1

T8_010 1

T9_001 1

Table 21 The P matrix 

 A B C AB AC BC A1 A2 A3 A11 A22 A33 B1 B2 B3 B11 B22 B33 C1 C2 C3 C11 C22 C33

T1_100 1   1 1  1   1 1              

T2_010  1  1  1       1   1  1       

T3_001   1  1 1             1   1 1  

T4_100 1   1 1   1  1  1             

T5_010  1  1  1        1  1 1        

T6_001   1  1 1              1  1  1 

T7_100 1   1 1    1  1 1             

T8_010  1  1  1         1  1 1       

T9_001   1  1 1               1  1 1 

 

One parameter to determine in the model fitting and the search process is the 
penalization parameterλ . Table 22 and Figure 8 show the training errors and cross 
validation errors for the true Q matrix. When λ  equals 1, the cross validation errors 
reach its minimum.  



 

22 

 

Table 22 Training errors and cross validation errors for the true Q matrix 

Lamda Training CV 

0 0.116 0.154 

0.2 0.117 0.152 

0.5 0.120 0.150 

0.8 0.123 0.149 

1 0.125 0.147 

1.2 0.126 0.148 

1.5 0.129 0.149 

 

 

Figure 8 Training errors and cross validation errors for the true Q matrix 

Table 23 shows the skill sets contained in the top three models found by LFA varied 
by the penalty parameter λ in the parameter fitting procedure. Table 24 lists the BICs for 
the true Q matrix (see Section 3.5 for the discussion of BIC) and for the top three Q 
matrices found by LFA. As λ is close to 1, the best Q matrix found by LFA (with skill A 
and C) is close to the true Q matrix (with skill A, B, and C). For the case that λ equals 1, 
the best Q and the third best Q found by LFA has the same low CV errors as the true Q, 
shown in Table 25 and Figure 10. Notice none of the best models found skill “B”. Recall 
that in the simulated world, β  for skill B is 0. When the Q matrix contains only skills C 
and A, the items with skill B (T2, T5, and T8) are still well predicted. With the BIC 
criterion in LFA search, which favors a simpler model, the Q matrix without skill B is 
more likely to be selected than the Q matrix with skill B.  

The above analysis suggests a way to check the results found by LFA – After LFA 
returns a list of top models, use CV and expert judgment to find appropriate ones by 
comparing their prediction ability and the interpretability of the skill labels.  
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Table 23 LFA Search result 1 – the skills sets contained in the best, 2nd best, the 3rd best models found by LFA. Lamda 
is the penalty parameter. 

Lamda Best 2nd Best 3rd Best 

0 A,AC A,AB A,B 

0.2 A,AC A,C A,AC,B11 

` C,A A,AC A,AC,B11 

0.8 C,A A,AC C,A,B11 

1 C,A C,AC C,A,B11 

1.2 C,A C,AC C,A,B11 

1.5 C,A C,AC C,A,B11 

 

Table 24. BICs for the true Q matrix and for the top three Q matrices found by LFA.  

Lamda trueModel best 2nd Best 3rd Best 

0 1,390 1,376 1,377 1,378 

0.2 1,424 1,411 1,411 1,423 

0.5 1,454 1,442 1,442 1,454 

0.8 1,474 1,462 1,462 1,474 

1 1,484 1,472 1,473 1,484 

1.2 1,493 1,480 1,481 1,492 

1.5 1,503 1,491 1,491 1,502 

  

 

Figure 9 BICs for the true Q matrix and for the top three Q matrices found by LFA 



 

24 

 

Table 25 Cross validation scores for the true Q matrix and for the top Q matrices found by LFA when lamda equals 1 

 Training CV 

TrueQ 0.125 0.147 

Best 0.125 0.148 

2nd Best 0.150 0.176 

3rd Best 0.125 0.148 

 

 

Figure 10 Training and cross validation error rates for the true Q matrix and for the top Q matrices found by LFA on 

the simulated data when lamda equals 1 

4.5 Example of the Search – Geometry Learning Data 

For the geometry data described in the previous section, we identified several 
factors for the P matrix. Here we list only the values of the factors in Table 26. The full 
list of factors is shown in Section 8.3. “Embed” indicates whether a shape is embedded 
in another shape. Consider two tutor problems requiring the same production rule 
CIRCLE-AREA at some step in the problem. In one of the problems, the circle is 
embedded in a square; while in the other one, the circle is presented alone. Students may 
find it harder to find the area of circle when it is embedded in another figure because 
extra effort is necessary to find the circle and its radius. “Backward” means whether the 
production rule to be used is in its backward form of a taught formula, or its forward 
form. The forward form of Compose-by-addition is S = S1 + S2, and its backward forma 
is S1 = S - S2. “Repeat” indicates whether the production rule has been used previously 
in the same problem. “FigurePart” indicates the part of the figure in the geometry shape 
to be computed.  
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Table 26. Factors for the geoemtry data 

Factor Names Factor Values 

Embed alone, embed 

Backward forward, backward 

Repeat initial, repeat 

FigurePart 
area, area-difference, area-combination, 

diameter, circumference, radius, side, 
segment, base, height, apothem 

Table 27 lists the improved models found by LFA. The skills unchanged from the 
original Q are omitted for clarity. The improved skills common to most of the better 
models are Compose-by-multiplication, Compose-by-addition, Circle-area, and 
Triangle-area. All the new models suggest splitting Compose-by-multiplication into two 
skills – CMarea and CMsegment, making a distinction of the geometric quantity being 
multiplied.  

Table 27. Top three improved models found by LFA with BIC as the heuristic.  

Model 1 Model 2 Model 3 

Number of Splits:3 Number of Splits:3 Number of Splits:2 

1. Binary split compose-by-
multiplication by figurepart 
segment 

2. Binary split circle-radius by 
repeat repeat 

3. Binary split compose-by-
addition by backward 
backward 

1. Binary split compose-by-
multiplication by figurepart 
segment 

2. Binary split circle-radius by 
repeat repeat 

3. Binary split compose-by-addition 
by figurepart area-difference 

1. Binary split compose-by-
multiplication by figurepart 
segment 

2. Binary split circle-radius by 
repeat repeat 

Number of Skills: 18 Number of Skills: 18 Number of Skills: 17 

BIC: 4,248.86 BIC: 4,248.86 BIC: 4,251.07 

We also used LFA to answer the question are some skills better merged than if they 
are separate skills? Can LFA recover some elements of truth if we search from a merged 
model, given difficulty factors?   

We merged some skills in the original model to remove some of the distinctions, 
which are represented as the difficulty factors. Circle-area and Circle-radius are merged 
into one skill Circle-AR; Circle-circumference and Circle-diameter into Circle-CD; 
Parallelogram-area and Parallelogram-side into Parallelogram; Pentagon-area, and 
Pentagon-side into Pentagon; Trapezoid-area, Trapezoid-base, Trapezoid-height into 
Trapezoid. The new merged model has 8 skills – CircleAR, CircleCD, Compose-by-
addition, Compose-by-multiplication, Parallelogram, Pentagon, Trapezoid, and Triangle. 

Then we substituted the original skill names with the new skill name in the data, ran 
LFA including the factors. The improved models by LFA with BIC are summarized 
below.  
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Table 28. Top three improved models found by LFA with BIC as the heuristic. 

Model 1 Model 2 Model 3 

Number of Splits: 4 Number of Splits: 3 Number of Splits: 4 

Number of skills: 12 Number of skills: 11 Number of skills: 12 

CircleAR *area 

CircleAR *radius*initial 

CircleAR *radius*repeat 

Compose-by-addition 

Compose-by-addition*area-
difference 
Compose-by-
multiplication*area-
combination 
Compose-by-
multiplication*segment 

All skills are the same as those in 
model 1 except that  
1. CircleAR is split into CircleAR 
*backward*initial, CircleAR 
*backward*repeat, 
CircleAR*forward, 
2. Compose-by-addition is not 
split 
 
 

All skills are the same as those in 
model 1 except that  
1. CircleAR is split into 
CircleAR *backward*initial, 
CircleAR *backward*repeat, 
CircleAR *forward, 
2. Compose-by-addition is split 
into Compose-by-addition and  
Compose-by-addition*segment 

   

BIC: 4,169 BIC: 4,171 BIC: 4,171 
   

LFA refines skill Circle, suggesting the distinctions made in the original model are 
necessary. In model 1, CircleAR is split into CircleAR*area, and CircleAR*radius. The 
other two models split it into CircleAR*backward, and CircleAR*forward, which are 
equivalent to CircleAR*area, and CircleAR*radius because of the one-to-one 
relationship between forward and area and between backward and radius. Thus, LFA 
fully recovers the two Circle skills and further refines one of them. 

None of the models recovered skill Circle-CD, Trapezoid, Triangle or 
Parallelogram. This suggests that distinctions made in the original model are not 
necessary.  

Skill Compose-by-addition is split into two skills by whether the composition was 
done on area or on segment, suggesting a refinement not anticipated in the original 
model.  
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5. Applications of LFA  

As evidence of the utility and expressiveness of the LFA model and algorithm, we 
note that many researchers have used LFA as a new research tool to answer questions in 
domains beyond math and Cognitive Tutors.  

5.1 Other Researchers’ Use of LFA 

Researchers Rafferty (Stanford University) & Yudelson (University of Pittsburgh) 
applied LFA to incorporate learner characteristics and demonstrate that the different 
student groups require different cognitive models. Their results suggest that by 
incorporating learner’s traits to cognitive models, computer tutors can adapt to students 
to a greater flexibility and help certain student group achieve higher learning efficiency 
[38]. 

Nwaigwe (Carnegie Mellon University) and colleagues at the University of 
Pittsburgh used the AFM component of LFA to explore the quality of different methods 
for analyzing student errors during training [39].   

Leszczenski (Carnegie Mellon University) and Beck (Worchester Polytechnic 
Institute) extended LFA to answer a perennial research question on reading transfer: If a 
child learns to read a word (e.g., “cat”), will that child be able to better learn other 
related words (e.g., “cats” or “dog”)?  They used LFA to analyze data from a 
computerized tutor that listens to children while reading (created through $6 million 
grant support from the National Science Foundation).  They discovered that when 
children learn to read, there is transfer of learning from word roots to related words – an 
important finding relevant to national debates about whether early reading instruction 
should emphasize phonetics or word meanings.  LFA was also used to discover that 
students at higher levels of reading proficiency show greater range of transfer, a result 
that supports the hypothesis that helping students make connections between words in 
the same “family” may accelerate the sometimes slow process of learning to read [40, 
41].    

One application we did with the AFM component of LFA was to use it to discovery 
over practice and under practice in the tutoring environment with the goal to improve 
student learning efficiency [42]. This work is described in the next section. 

5.2 Improving Student Learning Efficiency by Reducing Over 
Practice 

5.2.1 Discover Learning Inefficiency through AFM 

By applying AFM to the student log data from the Area unit of the 1997 Geometry 
Cognitive Tutor, we found two interesting phenomena. On the one hand, some easy (i.e. 
high βj) skills with low learning rates (i.e. low γj) are practiced many times. Few 
improvements can be made in the later stages of those practices. “rectangle-area” is an 
example. This skill characterizes the skill of finding the area of a rectangle, given the 
base and height. As shown in Figure 11, students have an average initial error rate 
around 12%. After 18 times of practice, the average error rate reduces to only 8%. The 
average number of practices per student is 10. Many practices spent on an easy skill are 
not a good use of student time. Reducing the amount of practice for this skill may save 
student time without compromising their performance. Other over-practiced skills 
include square-area and parallelogram-area. On the other hand, some difficult (i.e. low 
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βj) skills with high learning rates (i.e. high γj) do not receive enough practice. Trapezoid-
area is such an example in the unit. But students received up to a maximum of 6 
practices. Its initial error rate is 76%. By the end of the 6th practice the error rate 
remains as high as 40%, far from the level of mastery. More practice on this skill is 
needed for students to reach mastery. Other under-practiced skills include pentagon-area 
and triangle-area.  

  

Figure 11 Learning Curve of Rectangle-Area and Trapezoid-Area – The solid lines are the actual error rates over the 

ordered number of practices. The dotted lines are the error rates predicted by LFA. 

What caused the over practice in the Cognitive Tutor curriculum? Cognitive Tutor 
uses the Knowledge Tracing algorithm to update its estimates of students’ mastery of 
skills [13, 43]. Based on these estimates, the Tutor chooses to give students the problems 
with the skills students need to practice more. Table 29 explains the meaning of the four 
parameters P(L0), P (T), P(Guess), P(Slip) used in the update. We discovered that the 
1997 Tutor used the same set of parameter estimates for all the KCs, as shown in Table 
29 column 3. We hypothesized that by using recalibrated the Knowledge Tracing 
parameters, the Tutor could saved significant learning for students. To test the effect of 
calibrated Knowledge Tracing parameters, we planned a study in 2006, when the 
Geometry Cognitive Tutor had evolved into its 2006 version. The 2006 Tutor breaks the 
single 1997 area unit into 6 area units (Squares & Rectangles, Parallelograms, Triangles, 
Trapezoids, Polygons, and Circles), and has a different cognitive model, curriculum 
design, interface, and student population from its predecessor. 

Table 29 Knowledge tracing parameters used in the 1997 Cognitive Geometry Tutor 

Parameter Meaning (The probability that …) Estimate 

P(L0) the KC is initially known 0.25 

P(T) the KC transit form an unknown state to a known state  0.2 

P(Guess) a student will apply a KC correctly even if the KC is not 
learned 

0.2 

p(Slip) a student will apply a KC incorrectly even if the KC is 
learned 

0.1 

We grouped the skills in the 2006 Tutor into several homogeneous groups according 
to their degrees of over-practice from the data collected in 2005. Within each group, 
KCs share the same parameter estimates. Because we had no relevant information on 
slips or guesses, we mainly focused on adjusting P(L0) and P(T) in our study.  

The under-practiced skill (circle-area) is set to a lower P(L0) = 0.2. 
The under-practiced skill with a high learning rate (triangle-area) is set to a lower 

P(L0) = 0.2, and a higher P(T) = .5. 
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The slightly-over-practiced skills (circle-circumference, trapezoid-area, trapezoid-
perimeter, triangle-perimeter) are set to P(L0) = 0.5. 

The moderately-over-practiced skills (parallelogram-area, parallelogram-perimeter, 
rectangle-area, rectangle-length-or-width, rectangle-perimeter, square-area, square-
perimeter, square-side-length) are set to P(L0) = 0.7. 

All the skill for information extraction are set to P(L0) = 0.9. 

5.2.2 Saving Student Learning Time while Maintaining Learning Gains 

In a controlled experiment with 110 students in a high school near Pittsburgh, we 
found that students using the optimized tutor learned as much as the control group but in 
less time. As seen in Figure 12, the two groups have similar scores in both the pre test, 
the post test, and the retention test. There are no significant difference in the retention 
test scores (p = 0.602, two tailed). The results from the post test and the retention tests 
suggest that there is no significant difference between the two groups on either of the 
two tests. Thus, over practice does not lead to a significantly higher learning gain.  

 

Figure 12 Pretest and post test scores over the two conditions (left) and the retention test scores (right) 

The actual learning time in many units is significantly reduced for the students in 
the optimized group.  As shown in Table 30, the students in the optimized condition 
spent less time than the students in the control condition in all the units except in the 
circle unit. The optimized group saved the most amount of time, 14 minutes, in unit 1 
with marginal significance p = .19; 5 minutes in unit 2, p = .01, and 1.92, 0.49, 0.28 
minutes in unit 3, 4, and 5 respectively. In unit 6, where we lowered P(L0), the optimized 
group spent 0.3 more minutes. Notice the percentage of the time saved in each unit. The 
students saved 30% of tutoring time in unit 2 Parallelogram, and 14% in unit 1 Square. 
In total students in the optimized condition saved around 22 minutes, a 12% reduction in 
the total tutoring time.  
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Table 30 Time cost in the six tutor curriculum units. The time is in minutes. 

Optimized Control Time saved % time 
saved 

t Stat P(T<=t) 
one-tail 

Square 87.16 101.18 14.02 14% -0.89 0.19 

Parallelogram 11.83 16.95 5.12 30% -2.58 0.01 

Triangle 13.03 14.95 1.92 13% -0.91 0.18 

Trapezoid 26.39 26.88 0.49 2% -0.15 0.44 

Polygon 10.58 10.86 0.28 3% -0.18 0.43 

Circle 13.42 13.12 -0.30 -2% 0.18 0.43 

Total 162.41 183.93 21.52 12%   

 

 

Figure 13 Percentage of Time Saved 
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6. Automatic Discovery of Q Matrices with EPCA 

Like the secret key to the gate of treasure, the Q matrix serves as key to predict 
student performance on questions. LFA depends on the existence of such a matrix. The 
origination of such matrices involves extensive human expertise. Automatic discovery of 
Q matrices may significantly reduce the human labor in labeling P matrices. 
Exponential-Family Principal Component Analysis is one of the methods that attempt to 
solve this problem. We discuss EPCA in this section in detail. Another approach is 
Partial Ordered Knowledge Structures (POKS) [44]. 

6.1 Principal Component Analysis (PCA) and Exponential-Family 
Principal Component Analysis (EPCA) 

Principal Component Analysis (PCA) is a popular method for feature extraction and 
dimension reduction. It is traditionally viewed as the maximization of the variance of the 
data projected on a lower dimension space. From a generative point of view, PCA can be 
expressed as finding the mapping from data space to latent space with a lower dimension 
than the data space. Specifically, the observed data are generated by a linear 
transformation of the latent variables plus Gaussian noise [45].  

EPCA, a generalization of PCA, addresses the problem when the noise is not 
Gaussian. The general idea of EPCA is that it views each data point d

ijX ∈R as the 
realization of an exponential family random variable with natural parameter ijθ , which 
belongs to a lower dimensional subspace. A link function (.)g is used to connect ijX to 

ijθ [46]. 

  . .

~ ( )

*
ij ij

ij i j

X P

U V

UV

θ

θ =

Θ =

  (11) 

Where 

ijX  the observed value in the data matrix X  

ijθ , the parameter of the latent random variable that generates ijX  
,U V , the factored matrix 

. .,i jU V , the ith row ofU , the jth column of V  
It finds ijθ by minimizing the loss function of U and V with respect to the data 

matrix X. The loss function is  

,
( , ) log ( ; , ) ( | )ij ij

i j
Loss U V p X U V p X θ= − = −∑  

An efficient method designed by Gordon [29] and Singh [15] estimates Θ by 
alternatively optimizing the loss function while holding one of the ,U V matrices 
constant one at a time.  

6.2 Application of EPCA for Automatic Discovery of Q Matrices   

 The typical data for student learning are student responses on test items. The 
responses are usually 1s or 0s, corresponding to correct or failure on the items. By 
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aggregating the student performance data on students and questions, we get a student-
item matrix, the cell values of which can be thought as generated from a binomial 
distribution. We propose four formulations of EPCA with increasing complexities to 
answer various research questions. For each formulation, we show the factored matrices 
as well as the corresponding optimization form. The advantages and disadvantages of 
each formulation are discussed.  

 
~ ( )

[ ] logit[ ]
ij ij

ij ij

X Bernoulli

E X

θ

θ=
  (12) 

6.2.1 Formulation 1  
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 This is a direct translation of the model to the problem. The existing 
implementation of EPCA handles this formulation. However, due to the large number of 
elements of in U and V, the estimation errors could be large. The interpretation of the 
entries in the factored matrices is not obvious. 

6.2.2 Formulation 2  
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min ( , ; )Loss U V X  

This formulation adds a student parameter column to U  and one 1s row to the skill-
step matrix V  accounts for student proficiency. However, it is still hard to interpret the 
meanings of entries other than the student proficiency. 
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6.2.3 Formulation 3  
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Based on formulation 2, this formulation constrainsβ  and q . Matrix V starts to 
behave more like a traditional Q matrix and β has a similar meaning to skill difficulty.  

6.2.4 Formulation 4 
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Based on formulation 3, this formulation constrainsβ  to be negative and q to be in 
the range of 0 and 1 such that V is even closer to a Q matrix.  
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6.3 Complications of applying EPCA to real data 

Oftentimes students are given different test items. A value of zero in the student-
item matrix may mean either that the student failed on this item or that the student may 
not have done the items. A straight forward application of EPCA to the student item 
matrix may lead to erroneous results. One solution to that is to add a weight matrix to the 
student-item matrix. If the student has done the item, the weight is 1. Otherwise the 
weight is 0.  

. . . .

min ( , ; )
( , ; ) ( ln( ) (1 ) ln(1 ))T T

ij ij i j ij i j
ij

Loss U V X
Loss U V X W X U V X U V= + − −∑  

6.4 Evaluation of EPCA – the Fold-in Algorithm 

A nice feature of LFA is that all the skill labels in a Q matrix have interpretable 
meanings. Although EPCA is able to return a Q matrix approximation from the data, it is 
unable to label the columns on the Q matrix. Instead of evaluating the interpretability of 
the Q matrices found by EPCA, we focus on the prediction ability of EPCA.  The 
following example illustrates the Fold-in algorithm that PCA uses to predict 
performance, given new items.  

Step 1 Factor the existing matrix using EPCA, using training data 
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Step 2 Use a smaller number of students to estimate the new V column v_fold, 
holding U fixed, given the new item; using logistic regression to estimate v_fold. Using 
just a single point estimate of v_fold is an approximation, which may not be valid in our 
particular case (see the discussion in Section 6.7). 
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Step 3 Use the new V column and old U to get student performance on the new item 
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Step 4 Compare the actual student performance vs. the predicted student 
performance using  

2

1
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i i
i
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n =

= −∑  

6.5 Connections between AFM and EPCA 

Recall that AFM without learning takes the following form  

 
1

log
1

K
ij

jk
kij

p
qi kp

θ β
=

= +
− ∑   (13) 

This form can also be viewed from a matrix factorization point of view, shown in 
Eq. (14). 

 

log / (1 )
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P P UV
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V Q

θ
β

− =
=
=

1
1

  (14) 

where  
P  is an n mg matrix with ijp  as elements; 
/  is an element-wise division operator;  
U  is the student-skill matrix with the student parameter θ  as the first column and 

ones as the second column; 
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V  is the skill-item matrix with ones as the first row and the vector matrix product of 
the skill difficulty vectorβ  and the Q matrix as the second row.  

Several observations can be made from Eq. (14). First, Eq. (14) is in the EPCA form 
and thus AFM without learning is a special case of EPCA. Second, both U  and V  are of 
rank 2. Third, we cannot tell the difference between two Q s whose row spans both 
contain the desired item difficulty vector Qβ  if 1 1 2 2Q Qβ β= .Then for any given student 
skill vectorθ , we make exactly the same predictions with 1β , 1Q  as we do with 2β , 2Q . 
From these observations, if the data is truly generated from an AFM model without 
learning, EPCA will find at most two skills.  

6.6 Results  

6.6.1 Simulated Data 

The data used here is the same data used in Section 4.4. 
Given the existing implementation of EPCA, we used the first formulation described 

above, using a leave-one-out cross validation. There are two parameters we need to 
determine in EPCA. One is the regularization parameter and the other is the number of 
latent skills. In Figure 14, we have plotted the error rates from a combination of 
regularization parameters and the number of latent skills. In those plots, the presence of 
two or three skills leads to the lowest cross validation errors in EPCA. The lowest cross 
validation error 0.169 occurs when the regularization parameter equals 1 (although an 
even higher regularization parameter may be beneficial) and the number of skills equals 
2. It makes sense because the V  matrix from AFM has a rank 2.  
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Figure 14 Cross validation errors, training errors and their standard errors. Each curve is plotted as a function of the 

number of latent skills. The solid line is for the mean cross validation errors and the dotted line is for the training error. 

One standard error bars are imposed on each error curve. The top left, top right, to middle left, middle right, bottom 

left and bottom left plots have the regularization parameters lamda for 0, .2, .4, .6. ,8. 1.  

The following two tables show two Q matrices from two cross validation tests on 
the same date set when EPCA has the lowest cross validation error. In the Q matrix with 
cross validation on item 1, the item 1 portion of the matrix is not estimated because item 
1 was omitted in the construction of V in EPCA. For a similar reason, the item 2 portion 
of the Q matrix with cross validation on item 2 is not estimated. The Q matrixes 
resulting from EPCA vary from one to another in each validation set from each test. It is 
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worth noting that EPCA returns different results on the same cross validation set if we 
change the number of iterations or the starting point for the parameter estimation 
procedure, because the corresponding optimization problem for EPCA is not convex and 
has many local optima [29].  

Table 31 Two Q matrices from EPCA on the same data 

 Cross Validation on item 1 Cross Validation on item 2 

 A B A B 

T1_100   3.4 -0.4 

T2_010 0.0 1.6   

T3_001 2.9 1.8 -1.7 -0.3 

T4_100 -1.3 -2.7 3.1 -2.2 

T5_010 -2.2 3.0 2.4 3.7 

T6_001 0.7 3.7 -1.4 2.9 

T7_100 -1.3 -1.3 2.1 0.2 

T8_010 3.1 -0.3 2.8 -1.3 

T9_001 2.1 2.8 -1.9 2.1 

It is interesting to compare the best Q matrices found by EPCA and LFA. Shown in 
Figure 15, the cross validation error from EPCA is very close that from LFA, although 
EPCA does not require any human inputs.  

 

Figure 15 The error rates for the best Q matrices found by EPCA and LFA. In each group, the left bar is for EPCA and 

the right bar is for LFA. 

The results here suggest that EPCA can be used as a heuristic to determine whether 
a data set is rank 2 and thus may conform to the unidimensionality assumption behind 
AFM (and the Rasch model more generally). As far as the interpretability of the skills 
discovered, EPCA may still require human subject experts to assign meanings to the 
skill labels.  
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6.6.2 Real Assessment Data  

A fair comparison of EPCA and LFA would be on a real data set when the true Q 
matrix is unknown. Using a section of the data set described in Section 3.8 with 171 
students and 96 items, we compared the performance of EPCA and LFA. 

One thing worth noting is the data sparsity issue in this data set. Every student only 
did 8 out of the 96 items, causing most cell values in the student-item matrix to be 
empty. The researchers (Koedinger, personal communication) report that there was only 
class time for an 8 item quiz and they choose to sample more broadly within the item 
space (systematically generated from a hypothetical set of skills) rather than just 
choosing 8 items from this space for all student quizzes. Every item was seen by an 
average of 14 students with a minimum of 8 students and a maximum of 23 students. 
EPCA handles the data sparsity by using a weight matrix described in Section 6.3.  
However the sparsity imposes an issue when we evaluate the performance of EPCA with 
the fold-in algorithm. Recall in step 2 of the fold-in algorithm, “Use a smaller number of 
students to estimate the new V column v_fold, holding U fixed, given the new item; 
using logistic regression to estimate v_fold”. In order to test for up to 5 skills, we need to 
include 60% of the student observations, which gives us 5 data points for items with the 
minimum number of students (8) and 14 data points for items with the maximum 
number of students (23).  

Shown in Figure 16, the lowest cross validation error 0.23 occurs for EPCA when 
the regularization parameter equals 1 and the number of skills equals 2 (although the 
regularization parameter > 1 could be beneficial). When the regularization parameter 
equals .2, .4, .6, and .8, the corresponding lowest CV errors occurred at 1, 1, 1, and 2 
skills.   
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Figure 16 Cross validation errors, training errors and their standard errors by EPCA on the EAPS data. Each curve is 

plotted as a function of the number of latent skills. The solid line is for the mean cross validation errors and the dotted 

line is for the training error. One standard error bars are imposed on each error curve. Lamda is the regularization 

parameter.  

Table 32 shows the lists of skills from the best three Q matrices found by LFA 
search with penalized AFM on the EAPS data from 23 factors listed in Section 8.4 with 
a regularization parameter of 1. BIC was used as the search heuristic. Lists of skills from 
the best three Q matrices found by LFA search with penalized AFM on this data are 
listed in Section 8.5. 
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Table 32 The lists of skills along with their parameter estimates from the best three Q matrices found by LFA search 
with penalized AFM on the EAPS data, ranked by BIC. The cross validation errors of the three models are listed in the 

last row.  

Best Model 2nd Best 3rd Best 

unknownPosition-result (1.15) unknownPosition-result (1.11) unknownPosition-result (1.18) 

presentation-equation (-1.15) presentation-equation (-0.99) presentation-equation (-1.25) 

numDifficulty-easy (0.85) numDifficulty-easy (0.78) numDifficulty-easy (0.89) 

origArith-div (-0.66) origArith-div (-0.71) origArith-div (-0.62) 

coverStory-lottery (0.62) coverStory-lottery (0.43) coverStory-lottery (0.53) 

finalArith-div (0.35) finalArith-div (0.3) finalArith-div (0.39) 

numCategory-hard-bball (-0.56) numCategory-hard-bball (-0.68) numCategory-hard-bball (-0.56) 

 presentation-story (0.33) presentation-word (-0.3) 

0.172 0.172 0.171 

 

Figure 17 shows the scatter plot of the values of the V matrix found by EPCA when 
the regularization parameter equals 1 and the number of skills equals 2. Each item on the 
plot is assigned a difficulty level between 1 (easiest) to 4 (hardest) according to their 
item features (verbal-result, verbal –start, equation-result, equation-start). There seems to 
be clusters of items according to their difficulty.  
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Figure 17 Scatter plot of the values of the V matrix found by EPCA when the regularization parameter equals 1 and 
the number of skills equals 2. The items are labeled with different numbers. 

Table 33 shows a part of the Q matrix discovered by LFA on the EAPS data.  

Table 33 A part of the best Q matrix found by LFA search on the EAPS data 

Item unknownP
osition-result 

presentati
on-equation 

numDiffi
culty-easy 

origA
rith-div 

coverSt
ory-lottery 

final
Arith-div 

numCategor
y-hard-bball 

bball-equation-
result-easy-div 

1 1 1 1 0 1 0 

bball-equation-
result-easy-mult 

1 1 1 0 0 0 0 

bball-equation-
result-hard-div 

1 1 0 1 0 1 1 

bball-equation-
result-hard-mult 

1 1 0 0 0 0 1 

bball-equation-
start-easy-div 

0 1 1 0 0 1 0 

…        

Figure 18 shows the training errors and cross validation errors of EPCA and LFA on 
the best Q matrix. It is not bad in terms of prediction by EPCA, even if it does not 
require up front human labeling. The use of MAP (maximum a posteriori) estimates 
instead of Bayesian reasoning is the probable cause of the difference in train & test 
performance. The next section illustrates this point in detail. 
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Figure 18 The error rates for the best Q matrices found by EPCA and LFA for the real assessment data set. In each 
group, the left bar is for EPCA and the right bar is for LFA. 

6.7 Thoughts on MLE and Full Bayesian Modeling for EPCA 

Although regularization is used along with EPCA, we observe that EPCA often 
leads to lower training errors but higher prediction errors. In practitioners’ words, there 
is some amount of over-fitting going on, regardless of regularization. In this section, we 
explore the causes of over-fitting and discuss how to avoid over-fitting at all. 

EPCA is computed via a maximum likelihood approach. Asymptotically, MLE 
estimators are consistent, efficient and optimal [47]. Suppose the data matrix X  is dense 
with n mg  entries, which are the number of data points. The factored U  and V  have n kg  
and k mg  entries respectively, which are the number of parameters. In AFM without 
learning, there are only n k+  parameters. Compared with AFM, EPCA is less likely to 
compute the parameters in the asymptotic region, leading to inconsistent and inefficient 
MLE estimators. With regularization, it is possible to get EPCA to be closer to the 
asymptotic region, but not completely. 

For a general model, having regularization on the model can be viewed as finding 
the MAP (maximum a posterior) estimate, the mode of the posterior distribution of the 
parameters. Denote θ  as the parameter vector and X  as the data. The maximum 
likelihood estimate is  

  ˆ arg max Pr( | )MLE X
θ

θ θ=   (15) 

The MAP estimate is  

  ˆ arg max Pr( | ) Pr( )MAP X
θ

θ θ θ=   (16) 

When Pr( )θ is a constant, the MAP estimate is the same the MLE estimate. 
However, the MAP estimate still does not capture the full uncertainly of the posterior 
distribution. 

Figure 19 (courtesy of Geoff Gordon, taken from his graduate AI course slides) 
shows the MAP estimate (the red line) and a sample of the posterior distribution (the 
green lines) from the Irises data set.  When the predictor’s value is in the middle of the 
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range, MAP is approximate the average of the posterior distribution samples. When the 
predictor’s value is close to the extremes, MAP tend to make under prediction or over 
predictions. 
 

 

Figure 19 the MAP estimate (the red line) and a sample of the posterior distribution (the green lines) from the Irises 
data set 

To fully caputre the uncertainty of the posterior distribution, we need a full 
Bayesian treatment. For EPCA, the inference needs to be done on U  and V .  Figure 20 
is the plate view of the graphic model representation of EPCA with hierarchical priors. 
X  is the n mg  data matrix. U  and V  are the factored matrices with n kg and 
k mg elements. For EPCA to have priors, now, U  depends on prior parametersμ , a 
vector of k components. Similarly, V  depends on prior parametersλ , a vector of 
k components.  

 

Figure 20 the plate view of the graphic model representation of EPCA with hierarchical priors 

. To get the posterior distributions of U  and V , given X , we can use an MCMC 
algorithm to get a sample of (U , V ) pairs. When we need to make predictions, we sum 
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over the samples to get the Bayesian prediction. The result of the full Bayesian treatment 
is that the training error and the test error are much closer together, and hopefully lower 
test error, although it is hard to know in advance how much lower it would be.  
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7. Conclusions and Future Work  

While life might be simpler if we simply choose a method that generates the lowest 
cross validation errors, the two methods presented so far have different strengths and 
weaknesses. They cater to different purposes. The biggest strengths of LFA are that it 
brings human expertise into the discovery process. The labels it incorporates into the 
cognitive models are interpretable. Thus curriculum designers can use the meanings of 
the labels to author new items and write targeted hint messages. The price for the 
interpretability is that it requires human work to look at items and come up with features. 
EPCA is on the opposite side – it requires no initial human input. However, the factored 
matrices it produces have no label meanings and still require human expertise to assign 
meanings to the labels. This is not necessarily a minus because the factored matrices can 
be used entirely without labels. One application is to suggest good items for students to 
try next (similar to the case where collaborative filtering is used for online goods 
recommendation).  

Keen readers may ask when we should use which tool. If we are blessed with an 
existing cognitive model and subject experts are willing to donate some time to improve 
the cognitive model, which is often true as well, it is good to have experts come with 
features and run LFA to incorporate those features to find better cognitive models.  How 
do we know the cognitive model at hand needs to improve? Here is a simple two-bracket 
criteria – a cognitive model should perform better than the one skill model (one skill for 
all items) and the item model (each item being a skill). Researchers can run AFM on the 
cognitive model and compare cross validation errors with the two benchmark models. If 
the evaluation scores of the cognitive are worse than those of the benchmark cognitive 
models, it is worth improving. On the other side, if we are given student-item data 
without a cognitive model or our purpose is to do prediction or item recommendation, 
then we may use EPCA to do the initial factorization. If the result is better than the 
existing cognitive model, then construction of a P matrix and use of LFA may be 
warranted.  

The quest for a better cognitive model should not stop here. On the technical side, 
there is a great potential for unsupervised learning method like EPCA. The out-of-
sample prediction is likely to be better if the implementation of EPCA would allow extra 
constraints, thanks to a huge reduction of the parameters. This is entirely solvable. The 
second future direction is that to make LFA and EPCA more scalable to handle large 
data sets. As more and more student data are collected, it is not unusual to see data sets 
with more than 1000 students and 100 item responses for each student. The needs to 
handle such large data sets are increasing. Some of Singh’s work is in this direction [16]. 
The third direction is to use a full Bayesian inference for both methods in the future. 
Such an approach should prevent over fitting.  
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8. Appendix 

8.1 The derivation of the log likelihood function of AFM 

AFM can be thought as the Bernoulli case of a linear generalized model, i.e. logistic 
regression, with  
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8.2 The derivation of the log likelihood function of CFM 

CFM can be viewed as the Bernoulli case of a nonlinear generalized model with  
   

  rk ri rk rk rkz Tθ β γ= + +   (17) 
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where K is the total number of skills required in the step in data point r 

By multiplying rp  we drive the log likelihood in Eq. (19). 

 
1

log ( log( ) (1 ) log(1 ))
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MLE r r r r
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By taking the derivative of the log likelihood function with respect to the 
parameters, we derive the gradient for each parameter in Eq. (20), (21) and (22). 
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8.3 The Factors in the P matrix for the Geometry Data 

Factor Names 

Embed-alone 

Embed-embed 

Backward-forward 

Backward-backward 

Repeat-initial 

Repeat-repeat 

FigurePart-area 

FigurePart-area-difference 

FigurePart-area-combination 

FigurePart-diameter 

FigurePart-circumference 

FigurePart-radius 

FigurePart-side 

FigurePart-segment 

FigurePart-base 

FigurePart-height 

FigurePart-apothem 
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8.4 The Factors in the P matrix for the EAPS Data 

coverStory-bball 

coverStory-donut 

coverStory-lottery 

coverStory-waiter 

finalArith-div 

finalArith-mult 

numCategory-easy-bball 

numCategory-easy-donut 

numCategory-easy-lottery 

numCategory-easy-waiter 

numCategory-hard-bball 

numCategory-hard-donut 

numCategory-hard-lottery 

numCategory-hard-waiter 

numDifficulty-easy 

numDifficulty-hard 

origArith-div 

origArith-mult 

presentation-equation 

presentation-story 

presentation-word 

unknownPosition-result 

unknownPosition-start 

8.5 Alternative Q matrices found by LFA search using CFM 

Table 34 The lists of skills along with their parameter estimates from the best three Q matrices found by LFA search 
with penalized CFM on the EAPS data, ranked by BIC. The cross validation errors of the three models are listed in the 

last row.  

Best Model 2nd Best 3rd Best 

unknownPosition-start (0.82) unknownPosition-start (0.94) unknownPosition-start (0.89) 

unknownPosition-result (2.52) unknownPosition-result (3.38) unknownPosition-result (2.8) 

presentation-equation (0.65) presentation-equation (0.67) presentation-equation (0.63) 

numDifficulty-hard (1.54) numDifficulty-hard (1.58) numDifficulty-hard (1.43) 

origArith-div (1.73) origArith-div (1.61) origArith-div (1.75) 

numCategory-hard-bball (0.85) numCategory-hard-bball (0.84) numCategory-hard-bball (0.83) 

 finalArith-mult (2.34) numCategory-easy-donut (2.08) 

0.177 0.175 0.177 
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