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Abstract

Scientists frequently have multiple types of experiments and data sets on which they can test the
validity of their models and the plausible or optimal regions for the model parameters. Identifying
these parameter regions reduces to finding a level set on a function defined as a composite of the
evaluations of each experiment or data set for a parameter setting. An active learning algorithm for
this problem must at each iteration select a parameter setting to be tested and decide which exper-
iment type to use for the test. We propose an active learning algorithm for identifying level sets of
composite functions. Empirical tests on synthetic functions and on real data for a 7D cosmological
model show it significantly reduces the number of samples required to identify desired regions.
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1 Introduction
Active learning of target functions using informed choices of future experiments has long been
known to drastically decrease a problem’s sample complexity [1]. Many sampling heuristics have
been developed to learn either the entire target function (e.g. [9, 3]) or some feature of the target
function, such as its level sets (e.g. [2, 10]). However, in some applications the target function is
actually a composite of several component functions that are evaluated independently. One exam-
ple is determining the spatial location of a disease outbreak using information derived from medical
records (e.g. hospital admits), as well as sales of over the counter and prescription medications.
Another example is cost/benefit analysis of resource extraction where one must estimate the value
of all resources to be obtained along with the extraction costs in terms of infrastructure and human
resources required. In this work, we focus on a third application: simultaneous statistical analysis
of multiple related data sets for finding valid parameter ranges in scientific models.

Scientists frequently have multiple types of experiments and data sets on which they can test the
validity of their models and the plausible or optimal regions for the model parameters. They would
like to find the region of parameter space that is statistically plausible for all types of experiments.
A test on a single data set may be sufficient to reject a particular model or parameter setting without
testing other data sets. Traditionally, this has been achieved in the sciences in a somewhat ad-hoc
fashion where one scientist publishes plausible parameters derived from one type of experiment
and another uses that information to guide the selection of parameters in future experiments. In
Bayesian analysis, results from one experiment might form the priors for the next. A more rigorous
and efficient approach is to consider multiple experimental sources of evaluation simultaneously
and choose evaluation samples in light of their contribution to the combined evaluation function.
In our empirical efforts, we consider two independent data sets for evaluating a 7D cosmological
model.

Joint Statistical Analysis Joint analyses tend to take one of two forms. In the first we create
statistical model which simultaneously considers all data sets. For instance, when performing an
analysis on two data sets using χ2 tests, we will have one χ2 test for data set A and a second for
data set B. However, since the χ2 test assumes that each of the data points have dependencies
given by the covariance matrix, we can combine the two tests into a single χ2 test of the form[

(~xA − ~µA)T , (~xB − ~µB)T
] [ ΣA ΣAB

ΣAB ΣB

]−1 [
~xA − ~µA

~xB − ~µB

]
∼ χ2

(a+b)

where x?, µ? and Σ? are the associated test model, observed data and observed covariance of model
? given some vector from the parameter space, a and b are the degrees of freedom of the tests as-
sociated with data sets A and B respectively, and ΣAB is the covariance of the data points between
data sets A and B. If data sets A and B are independent, then all elements of ΣAB are zero, and
we can write the above expression as:

(~xA − ~µA)T Σ−1
A (~xA − ~µA) + (~xB − ~µB)T Σ−1

B (~xB − ~µB) ∼ χ2
(a+b).

That is, the target function is merely the sum of the two observable functions: the variance weighted
sum of squares for both data sets.
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Another approach to performing simultaneous joint analyses is to combine the models’ p-
values. There are many ways to combine test procedures, including using Bonferroni corrections,
the inverse normal method, and inverse logit methods [8]. However, the most common method
to combine p-values is Fisher’s method [7]. Fisher noted that since a p-value, pi, has a Uniform
distribution, then −2 log(pi) will have a χ2

(2) distribution. Again, using the fact that the sum of
independent χ2 random variables has a χ2 distribution, the test becomes: reject H0 if and only if:

−2
k∑

i=1

log(pi) ≥ C

where C is the critical value of a χ2
(2k) distribution for some particular level α. Again, we see that

the target function is the sum of two observable functions.

Active Learning Composite Functions As we have seen, the target function that we are in-
terested in learning for combining statistical evidence is some composite of readily available ob-
servable functions. In particular, the previous two techniques rely on the sum of observable func-
tions. It is clearly possible to sample all observable functions at each query point and then directly
compute the value of the target function, effectively reducing the problem into a standard active
learning problem. However, such an approach disregards any strong evidence provided by a single
statistical test, and hence may result in extraneous sampling of the remaining statistical models.

Instead, we are interested in active learning algorithms which use information about each ob-
servable function to learn some composite target function. In this work, we propose a heuristic
for actively learning level sets of composite functions of sums for continuous valued input spaces,
without arbitrarily restricting the input space (e.g. imposing a grid). In Section 3, we show that
this heuristic performs the level-set discovery task more efficiently than both random and sequen-
tial sampling of the constituent functions using state of the art heuristics. Finally, in Section 4, we
demonstrate the utility of our algorithm by computing confidence regions for seven cosmological
parameters using two independent data sets.

2 Active Learning Algorithm
Suppose we are given some sample space Θ ⊆ Rd and a set of observable functions fi : Θ → R
(i = 1, 2, . . . ,m), such that

∑M
i=1 fi(x) = f(x), where f is the target function we are interested

in learning. Given a threshold t, we want to find the set of points Θ′ where f is equal or less than
the threshold: {s ∈ Θ′|s ∈ Θ, f(s) ≤ t}. In general, computing the value of each fi(x)’s may not
incur the same cost. However, in this work we will assume that the costs are similar, and hence
try to minimize the total number of samples of all observable functions, fi, required to accurately
estimate Θ′. Moreover, we assume that f cannot be directly sampled, and that neither f nor any
of the fi’s is invertible. That is, the only way to estimate the level-sets of f is to sample points
from the fi’s and infer f . This formulation accurately mimics combining p-values using Fisher’s
method, as the method for finding the individual p-values may be entirely unknown.
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Figure 1: Outline of our sampling algorithm. Given an initial set of points (possibly empty), we
randomly select a set of candidates and score them using a set of kriging models. The best scoring
point and observable function pair is chosen, and we evaluate the selected observable function at
the given point. This data is added to the corresponding data set.

We must now determine how best to choose samples both among and within the fi’s. Ideally,
we want to sample the observable function fi at the point which best increases our prediction
accuracy (e.g. whether a point is above or below the threshold) over f . Since the parameter space
is continuous and multi-dimensional, we cannot afford to test all possible points and observable
functions to find the best. Instead, we model each of the observable functions given the current
samples taken from that function. Then, for each experiment, we randomly select a small subset
of the parameter space (usually 1000 points drawn uniformly at random) and choose the best point
and observable function pair upon which to experiment from among these candidates. We compute
the value of the observable function at the desired point and add it to the data set used to model
that function, and the process is repeated. The algorithm is illustrated in Figure 1.

There are several methods one could use to model each of the fi’s, notably some form of para-
metric regression. However, we chose to approximate the fi(s) using Gaussian process regression,
as other forms of regression may smooth the data, ignoring subtle features of the function that may
become pronounced with more data. A Gaussian process is a non-parametric form of regression.
Predictions for unobserved points are computed by using a weighted combination of the function
values for those points which have already been observed, where a distance-based kernel function
is used to determine the relative weights. These distance-based kernels generally weight nearby
points significantly more than distant points. Thus, assuming the underlying function is contin-
uous, Gaussian processes will perfectly describe the function given an infinite set of unique data
points.

In particular, we use ordinary kriging, a form of Gaussian processes that assumes the semi-
variance, K(·, ·), between two points is a linear function of their distance [4]; for any two points
s, s′ ∈ Θ,

K(s, s′) =
k

2
E

[(
fi(s)− fi(s

′)
)2
]

where k is a constant — known as the kriging parameter — which is an estimate of the maximum
magnitude of the first derivative of the function. Therefore, the expected semi-variance between
two points, s, s′ ∈ Θ is given by γ(s, s′) = E(K(s, s′)) = kD(s, s′) + c where D(·, ·) is a distance
function defined on the parameter space Θ′ and c is the observed variance (e.g. experimental noise)
when repeatedly sampling the function fi at the same location. We have found that using a simple
weighted Euclidean distance function where each dimension is scaled linearly reasonably ensures
that parameters are given equal consideration given their disparate values and derivatives. For our
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analysis, we adjusted the weights of each dimension in the distance function to ensure that the mean
semi-variance along each axis was approximately unity during the sampling process. Additionally,
we conservatively set k = 2 and c = 1× 10−5 (to account for round-off errors).

For the Gaussian process framework, sampled data are assumed to be Normally distributed
with means equal to the true function and variance given by the sampling noise. Moreover, a
combination of any subset of these points results in a Normal distribution. Thus, we can use the
observed set of data, A ⊂ Θ, to predict the value of fi for any sq ∈ Θ. This query point, sq, will
be Normally distributed, (N(µi,sq , σi,sq)), with mean and variance given by

µi,sq = f̄i(A) + ΣT
AqΣ

−1
AA(fi(A)− f̄i(A)) (1)

σ2
i,sq

= ΣT
AqΣ

−1
AAΣAq (2)

where the elements of the matrix ΣAA and arrays ΣAq and fi(A)− f̄i(A) are given by

ΣAA[j, k] = γ(aj, ak)
ΣAq[j] = γ(aj, sq)

(fi(A)− f̄i(A))[j] = fi(sj)− f̄i(A)
f̄i(A) =

1

|A|

|A|∑
j=1

fi(aj)

and the aj’s and ak’s are the observed data used to make an inference: ai, aj ∈ A, 0 ≤ j, k ≤ |A|.
As given, for a set of ni observed points (|A| = ni), prediction with a Gaussian process requires

O(n3
i ) time, as an ni× ni linear system of equations must be solved. However, for many Gaussian

process — and ordinary kriging in particular — the correlation between two points decreases as
a function of distance. Thus, the full Gaussian process model can be approximated well by a
local Gaussian process, where only the k nearest neighbors of the query point are used to compute
the prediction value; this reduces the computation time to O(k3 + log(ni)) per prediction, since
O(log(ni)) time is required to find the k-nearest neighbors using spatial indexing structures.

2.1 Choosing Experiments
Given this active learning framework, we must now decide how to choose sample / observable
function pairs. We consider the following heuristics:

Random One of the candidate points and the associated observable function, fi, is chosen uni-
formly at random. This method serves as a baseline for comparison of the other heuristics.

Variance We choose the point which has the largest variance on any of the observable functions;
our choice then, is the point with the maximum variance, and the observable function on which
that variance was found. Using model variance to pick the next experiment is common for active
learning methods whose goal is to map out the target function over a parameter space [9, 3].
In particular, [3] showed that greedily picking experiments based upon model variance performs
nearly as well as using a mutual information heuristic when learning the target over the entire
parameter space; this is significant, as the mutual information heuristic can be shown to be (1−1/e)
optimal [3]. Since variance is closely related to distance when using kriging, this heuristic samples
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points which are distant from their nearest neighbors. However, when searching for level-sets, we
are less interested in the function away from the level-set boundary, and instead want to focus our
sampling resources near this predicted boundary. In particular, sampling based solely on variance
results in substantially worse performance than heuristics than concentrate on the function level-set
[2].

Information Gain Information gain is a common myopic metric used in active learning. Com-
puting the information gain over the whole state space for each observable function provides an
optimal 1-step experiment choice. In some discrete or linear problems this can be done, but is
intractable for continuous non-linear spaces. As such we do not consider a traditional information
gain heuristic, but rely on efficient point estimates which act as proxies for global information gain.

Sequential-Straddle As noted in the introduction, the problem can be simplified to a standard
active learning problem if one sequentially samples each of the observable functions in order to
directly compute f . [2] showed that in a setting where experiments yield the (approximately) true
values of the target function, a good heuristic for level set identification is the straddle heuristic:
straddle(sq) = 1.96σ2

sq
− |µsq − t|. This heuristic balances the need to explore uncertain parts of

parameter space, with the desire to refine the model’s estimate around those regions already known
to be close to the level-set boundary. This heuristic leverages the straddle heuristic by choosing the
candidate point with the highest combined straddle score,

combined−straddle(sq) = 1.96
m∑

i=1

σ2
i,sq
−

∣∣∣∣∣
m∑

i=1

µi,sq − t

∣∣∣∣∣ , (3)

and then sequentially sampling all m observable functions at this point.

Variance-Straddle While [2] showed that the straddle heuristic works well when directly sam-
pling the target function, we can hope to do better by considering the output from each observable
function individually. For instance, if a sample point results in a very large value for one of the
observable functions, it may be unlikely that the results of the other fi’s will be such that the re-
sulting value of f is near the level-set. In particular, when dealing with the χ2 models mentioned
in the introduction, we know that fi(x) ≥ 0 for all i. Thus, if a single fi is greater than the level-set
boundary, the target function will also be greater than the level-set boundary, and hence it may be
more efficient to sample elsewhere. This heuristic simply computes the combined-straddle score
as in Equation 3, and then chooses the candidate point and observable function with the largest
variance.

Variance-MaxVarStraddle Finally, we consider a variant of the straddle heuristic. This heuris-
tic tries to mimic the information gain of choosing a particular point and observable function pair.
Note that after observing a point, the variance of the kriging model is effectively zero at that point
(since we have set c to be a very small positive value). The original straddle heuristic balances
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the expected gain in the model fit (σsq ) with the expected distance of the point to the level-set
boundary.

However, with the multiple model formulation, we do not expect the model variance to decrease
by σsq =

∑m
i=1 σ2

i,sq
, but rather by σi,sq where fi is the observable function we pick. Thus, a more

accurate estimate of the information gain of a candidate point and observable function pair is:

Variance−MaxVarStraddle(sq) = max
i

{
1.96σ2

i,sq

}
−

∣∣∣∣∣
m∑

i=1

µi,sq − t

∣∣∣∣∣ .
We choose the candidate point that maximizes this heuristic and the corresponding fi.

3 Experiments
We now assess the accuracy with which our active learning model reproduces known target func-
tions for the sampling heuristics just described. This is done by computing the fraction of test
points in which the predictive model (the sum of the kriging model associated with each observ-
able function) agrees with the true target function about which side of the threshold the test points
are on after some fixed number of experiments; for the four following functions, accuracies were
assessed after 200 experiments. This process was repeated 20 times to account for variations due to
the random nature of the candidate generation process. The first three target functions considered
were sums of two observable functions, while the fourth was a sum of four observable functions.
The considered functions are:

Gaussian This problem consisted of determining the 95% acceptance region of two axis aligned
perpendicular two dimensional Gaussian distributions centered at the origin. Both Gaussians had
diagonal covariance matrices with on diagonal elements of 1 and 16. Since working in probability
space results in many near-zero values, the problem was considered in log-space. As such, the
target function was a 2 dimensional symmetric quadratic function, and the level-set was a circle
centered at the origin. The range of the parameter space (x, y ∈ [−3.4, 3.4])

Sin2D The second problem consists of finding where the two 2D sinusoidal observable functions
sum to zero where x, y ∈ [0, 2]. These observable functions were chosen because 1) the target
threshold winds through the plot giving ample length to test the accuracy of the approximating
model, 2) the boundary is discontinuous with several small pieces, 3) there is an ambiguous region
around (0.9, 1), where the true function is approximately equal to the threshold, and the gradient is
small and 4) there are areas in the domain where the function is far from the threshold and hence
we can see whether algorithms refrain from oversampling in these regions.

SimpleSin2D This problem is a simplified version of the previous problem, where the sinusoidal
observable functions were chosen to reduce the problem’s semi-variances (again x, y ∈ [0 : 2]).
Since problems with large semi-variances result in large model variance estimates in the kriging
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Gaussian SimpleSin2D Sin2D 4-Sin2D
Random > 1000 > 1000 > 1000 > 1000
Variance 95.0±11.0 > 500 105.0±11.5 188.6±32.2

Variance-Straddle 89.5±5.0 157.9±12.3 90.4±9.0 72.5±12.0
Sequential-Straddle 76.2±3.5 150.3±6.5 87.0±7.3 98.1±14.0

Variance-MaxVarStraddle 71.7±3.3 127.3±6.8 82.9±10.2 54.9±16.9

Table 1: Number of samples required to achieve a 99% accuracy on the Gaussian and SimpleSin2D
tests, and a 90% accuracy on the Sin2D and 4-Sin2D tests based on 20 trials. The Variance-
MaxVarStraddle heuristic consistently performs better than competitors.

models, such problems require extensive sampling to correctly identify function level-sets. Perfor-
mance on this function highlights an algorithm’s ability to quickly rule out portions of the function.

4-Sin2D This task consisted of finding where four 2D sinusoids sum to−2. The sinusoids chosen
for this problem were similar to those of the SimpleSin2D problem. The resulting target function
contains both regions of high slope, as well as regions with low derivatives near the specified
threshold.

Classification accuracy results for the four tests are given in Table 1. Variance-MaxVarStraddle
out performs all of the other heuristics on each of the target functions. Not surprisingly, the
straddle-based heuristics beat out the random and variance-weighted heuristics, as both the ran-
dom and variance-weighted heuristics sample the observable functions over the entire parameter
space, while the straddle-based heuristics focus on the level-set of interest. Moreover, Variance-
MaxVarStraddle beats out the Sequential-Straddle heuristic; this validates our supposition that
treating each of the observable functions individually allows for additional learning opportunities.

One surprising result of our experimentation is that the Sequential-Straddle performs as well as
the Variance-Straddle heuristic on all test functions the Gaussian, SimpleSin2D and Sin2D tasks.
We believe that this result illustrates the fact that the Variance-Straddle heuristic is over estimating
the importance of the variance component of the candidate points to the information gain of a point.
The Variance-Straddle heuristic will be as likely to choose a candidate point where one of the two
kriging models for the observable functions is large, and the other is zero as it is to choose a point
where both estimated variances are equal (given the sum of the variances and estimated values for
fi are similar). However, the first candidate has much more information than the second, as se-
lecting the first candidate will give us the (approximately) exact value of the target function, while
selecting the second will only reduce the overall variance by a moderate amount. On the 4-Sin2D
task the Variance-Straddle heuristic is able to make use of the individual observable functions, but
still does not do as well as the Variance-MaxVarStraddle heuristic.

To illustrate the differences in sampling patterns between these heuristics, we plot the samples
chosen for the observable functions (with squares, circles, triangles and x’s, respectively) with
the true (dashed) and predicted (solid) function level-sets for the 4-Sin2D task in Figure 2. The
Variance-MaxVarStraddle heuristic is much better at picking points than the other two heuristics.
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Figure 2: Predicted level-set (solid), true level-set (dashed) and experiments (squares, circle, trian-
gles and x’s) for the 4-Sin2D function after sampling 100 points using the Variance heuristic (left),
the Sequential-Straddle heuristic (center), and C) the Variance-MaxVarStraddle heuristic (right).

Note that the Variance-MaxVarStraddle heuristic is able to learn that some regions of the space are
poor without having to sample all observable functions; as such, its samples lie much closer to the
target level-set. This reinforces our hypothesis that modeling the observable functions separately
results in additional learning opportunities.

4 Joint Analysis of Cosmological Data Sets
Let us now look at a concrete application of this work: a statistical analysis of 7 cosmological
parameters that affect the formation and evolution of our universe using two data sets. The first
data set, the Cosmic Microwave Background (CMB) power spectra observed by the Wilkinson Mi-
crowave Anisotropy Project (WMAP), depicts temperature variations over the sky. The size and
spatial proximity of these temperature fluctuations depict the types and rates of particle interac-
tions in the early universe and hence characterize the formation of large scale structure (galaxies,
clusters, walls and voids) in the current observable universe. It is conjectured that this radiation
permeated through the universe unchanged since its formation 15 billion years ago. The sizes and
angular separations of these CMB fluctuations give an unique picture of the universe immediately
after the Big Bang and have a large implication on our understanding of primordial cosmology. It
is well known that the shape of this curve is affected by at least seven cosmological parameters:
optical depth (τ ), dark energy mass fraction (ΩΛ), total mass fraction (Ωm), baryon density (ωb),
dark matter density (ωdm), neutrino fraction (fn), and spectral index (ns). For instance, the height
of first peak is determined by the total energy density of the universe, while the third peak is re-
lated to the amount of dark matter. Thus, by fitting models of the CMB power spectrum for given
values of the seven parameters, we can determine how the parameters influence the shape of the
model spectrum. Examining those models that fit the data, we can then establish the ranges of the
parameters that result in models which fit the data.

Additionally, we use a supernovae survey from [6]. The data set of [6] contains observations
of type Ia supernovae, recording both the distance modulus (the observed luminosity minus the
intrinsic luminosity), µ and redshift, z, for each supernova. The processes — and hence the in-
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trinsic luminosities — governing type Ia supernovae are well known. (e.g. [5]). Assuming a
homogeneous, isotropic and flat universe, the Robertson-Walker metric [11] predicts

µ = 5 log10

(
c(1 + z)

√
ΩM

100
√

ωDM + ωB

∫ z

0

dt√
ΩM(1 + t)3 + ΩΛ

)
+ 25, (4)

where c is the speed of light. Comparing the predicted distance moduli to the supernovae data
of [6], we can make inferences about the true values of the associated cosmological parameters.
Constraining all seven of these cosmological parameters is the focus of much recent effort in the
astronomical community as these parameters describe the composition, age and eventual fate of
the universe.

In this work, we use Fisher’s method of combining p-values to compute 95% confidence re-
gions for our astronomical problem. Computing expected observations given parameter vectors
is quite fast for the supernovae data of [6] (using Equation 4), and hence we can quickly com-
pute the p-values associated with the supernovae using χ2 tests. However, computing the expected
observations for the CMB data set is much more time consuming. Typically one employs a nu-
merical solver, such as CMBFast to approximate the Boltzmann equation and yield the expected
power spectrum. For this work, we use the database of 1.3 million p-values derived by [2] using
confidence balls, a statistical procedure akin to χ2 tests wherein the expected model is compared
with a nonparametric fit of the observed data, rather than the data themselves, resulting in tighter
confidence regions. However, since database contains only a million models, we had to limit the
choice of candidates presented to the algorithm. To reduce the bias resulting from the non-uniform
sampling within the CMB p-value database, we chose points uniformly at random from within the
parameter space, and the snapped each point to the nearest model in the database.

Using these precomputed p-values reduced the sampling time for the CMB data set from several
minutes to seconds, making the computational cost of sampling p-values from both the CMB and
supernovae statistical tests nearly equivalent. Instead of using the kriging approximator to model
the p-values directly, we modeled −2 times the log p-values, as many of the p-values were nearly
zero, similar to the Gaussian case discussed earlier. Moreover, by approximating the values of −2
times the log p-values, the target function is exactly the sum of the two approximations.

In Figure 3 we depict confidence regions derived using only a single data set (those from
[2] and from the supernovae data set of [6] using χ2 tests), along with the regions obtained by
including both data sets. Observe that while the improved confidence region is smaller than that
previously reported, it is not a strict subset. Fisher’s method combines the evidence from both
tests, accounting for the effect of multiple hypothesis testing. A point rejected as being just outside
the 95% confidence bound on a single test may be included when two tests are considered since the
probability under the null distribution of exceeding the bound on one of two tests is greater than on
one alone, explaining the increase of acceptable value of ωB for small ωDM. Similarly, points with
p-values for both models are just above 0.05 will be rejected by Fisher’s method, resulting in points
accepted by both the CMB and supernovae tests individually being rejected by the combined test.
The supernovae results strongly reject all models with high ωDM, eliminating the second peak from
the right-hand plot of Figure 3.
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Figure 3: 95% confidence regions for ωB as a function of ωDM using just the CMB confidence
ball p-values from [2] (left), the p-values from χ2 tests on just the supernovae data of [6] (center)
and combining the confidence ball and supernovae p-values after 30,000 samples drawn using the
Variance-MaxVarStraddle heuristic (right).

5 Conclusions
We have described the problem of learning a hidden target function based on a set of related ob-
servable functions. We have developed an algorithm for locating the level set of this hidden target
function while minimizing the number of experiments necessary. We described and showed how
several different heuristics for choosing experiments from a set of candidates perform on syn-
thetic target functions. Our experiments indicate that Variance-MaxVarStraddle outperforms both
random and variance-weighted heuristics typically applied to active learning problem. Moreover,
Variance-MaxVarStraddle is better than both the Sequential- and Variance-Straddle heuristics, as it
appears to better approximate the information gain of a candidate point. We applied this algorithm
to a seven dimensional joint analysis of cosmological parameters using two independent astronom-
ical data sets. Using the method detailed in this work, we are able to efficiently compute the 95%
confidence regions for the seven parameters constrained by both astronomical data sets. Using
both the supernovae from [6] and WMAP data results in much different confidence regions than
those reported in [2]; the supernovae data strongly rejects the second peak (at high ωDM), while
suggesting additional fits for low ωDM and high ωB. We are currently looking at applying this work
to problems where the observable functions have different associated costs. This would have been
the case, for instance, if we would have computed the CMB power spectra using CMBFast, rather
than looking them up in a database.
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